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Abstract

Bipolar electrochemistry, which generates an asymmetric reactivity on the surface of conductive
objects in a wireless manner, has become a promising field for various applications. It enables the
coupling of anodic and cathodic redox reactions at the opposite ends of the bipolar electrode (BPE) and
provides a new paradigm for electrochemical sensing. Electrochemiluminescence (ECL), the light-
emitting process generated by electrochemical means, could transfer the electrochemical signal into
light emission under bipolar electrochemistry. The primary goal of this dissertation is to develop reliable
BPE ECL sensing systems of detecting electroactive species and bio-targets using thin-layer
electrochemistry and AC square wave excitation with merits of high-throughput, miniaturization,

multiplicity, versatility, low cost, and simple instrumentation.

Chapter 1 first presents a detailed literature review on the principle and background of bipolar
electrochemistry with its relevant applications such as electrodeposition, electrocatalysts screening, and
motion generation. Specifically, the ECL application in bipolar electrochemistry is discussed in detail
on its history, mechanism, and application in analyte sensing. The concept and recent development of

the closed BPE system are also illustrated.

Chapter 2 describes the process of designing the bipolar electrode thin-layer (BETL) ECL system
in detecting electroactive species in a low-concentration range. 3D printing techniques are used to
fabricate versatile bipolar cells containing the reporting system and a thin-layer structure. Preliminary
tests of the BETL system are performed to investigate the effects of different cell configurations and
experimental parameters. With the help of the pre-attempts of cell design, the final established BETL
system with an isolated double-cell design is demonstrated. In addition to the ECL performance,
simultaneous electrochemical simulation is employed to provide an insight view of the BETL system
and correlate the electrical signal with the ECL response. Ferrocyanide/ferricyanide and
hydroquinone/benzoquinone redox systems are studied, providing their concentration profiles and other
important electrochemical parameters by addressing the real-time ECL response from electrochemical

reactions within the thin-layer cell. Also, the electric field distribution in the BPE system is extensively



studied concerning many influential factors and it explains explicitly the ECL intensity variation during

the experiment.

Chapter 3 highlights the development of the AC square wave bipolar ECL system with high
sensitivity and flexibility. This ECL sensing system, in a closed configuration with the phase separation,
is capable of amplifying the signal from the regeneration of analyte by employing the AC square wave
excitation. Significant signal/noise gain is achieved by accumulating the ECL response over multiple
measure-regenerate cycles. Ferricyanide in the solution, polymerized MB confined on the surface, MB-
conjugated DNA monolayer, and DNA loop as a model of ECPA are respectively quantified. Also, the
frequency-dependent electric field distribution is the AC BPE cell is characterized by the help of the

solution potential measurement.

Chapter 4 focuses on the related studies to improve the performance of the AC square wave bipolar
ECL system. Efforts have been taken including the modification of carbon electrodes, the use of a

photon counting photomultiplier tube (PMT), and the MB intercalation method with DNA.

Chapter 5 summarizes the findings of the research. The recommended future work for both the
BETL and AC square wave bipolar ECL system are stated according to the contributed topics to these
projects.
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Chapter 1 Introduction
1.1 Bipolar Electrochemistry
1.1.1 Basic Concept and Background

Over the past decade, bipolar electrochemistry (BPE) which generates an asymmetric behavior on the
surface of conductive materials in the absence of a direct ohmic contact (wireless), has emerged as a
useful tool in various aspects of applications, such as electrodeposition?, concentration enrichment®,
sensing®®3, photosplitting®*, catalysis®®, and motion generation!®!’. With its novel configuration, it is
capable of overcoming many drawbacks of existing electrochemical techniques and apparatuses,
including the difficulty of making electrical contact to subscale electrodes, nonuniform potential
difference control over the electrode surface, and simultaneous regulation and readout of large electrode

arrays.

In bipolar electrochemistry, a conducting object, which is called a bipolar electrode (BPE), is positioned
in an electrolyte solution under the influence of an external electric field, which is applied between two
driving electrodes by a power source. Without the electric field, the immersed object is at a mixed
potential En. When the electric field is applied, due to the current flowing through the system, a
polarization of two sides of this object occurs and makes it into separate cathodic and anodic regions.

Both anodic and cathodic reactions can occur on different sides of the same electrode.
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Scheme 1.1.The principle of bipolar electrochemistry and its configuration'®. Adapted with permission
from [18]. Copyright © (2009) American Chemical Society.
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The principle of bipolar electrochemistry is illustrated in Scheme 1.1, a conducting object with a length
of | is immersed in the electrolyte without wire connection. When an external voltage (E:) is applied
between two driving electrodes by the power supply, a linear potential gradient is established in the
electrolyte solution. If we assume the distance between the two driving electrodes is L and ignore the
inevitable potential drop on the two driving electrodes, then the electric field (potential gradient) in the

solution is given by

Etot
§ =
L

As a consequence of the electric field, the BPE, as an equipotential body, will float to an equilibrium
potential value Egpe, adjusted by the surrounding solution potential. Accordingly, there would be a
potential difference at each lateral position of the electrode/solution interface. In other words, a
polarization potential, given by the difference of the solution potential with respect to the BPE, arises.
It will serve as the driving force that leads to electrochemical reduction and oxidation at the cathodic
region and anodic region, respectively®®. If we assume the solution potential at the cathodic end of the
bipolar electrode is E,, and at the anodic end is E,. E. — E,, as a fraction of E., denote as AV, is the
maximum polarization potential difference between the extremities of the BPE. It is proportional to the

length (1) of the bipolar electrode and the applied voltage (Eior)'®%°.
Etot
AV:EC—Ea:8><l=T><l

Note that in a more accurate calculation, the numerator over L should not be the applied voltage E:o but
the potential difference between the two driving electrodes due to the inevitable potential drop at the
driving electrode/solution interface. That is the overpotential required for the electrochemical reaction
to happen at the driving electrode and to provide the current that polarizes the BPE. One idea of
minimizing the interfacial potential drop and maximizing the utilization of potential drop across the
solution is to put the bipolar electrode in a microchannel that almost has the same length as the
electrolytic bath in which it resides®®. Because of the high resistance of the channel, the overwhelming
majority of E: is dropped linearly across the length of the microchannel. It facilitates the accurate
measurement of the potential difference across the BPE and quantitively theoretical analysis of
reactions happen at both BPE ends. In addition, by using this configuration, we can significantly reduce
the required applied voltage and also weaken the reaction happening on both driving electrodes by
introducing a considerable solution resistance. As a result, unexpected surface chemistry on the driving

electrode and the massive concentration change in the solution can be prevented.

The value of AV is directly related to the reactivity at the ends of the polarized bipolar electrode interface.

With a sufficient AV, reduction and oxidation can take place at the cathodic end and anodic end



simultaneously. The object behaves at the same time as a cathode and anode, that is why we refer it as
a bipolar electrode (BPE). More accurate speaking, there is a particular location where the potential of
the solution equals Egpe. On both the cathodic and anodic poles, the overpotential (polarization
potential) n, noted as the potential difference between the solution and the electrode at a location along
I is the driving force that leads to the reduction and oxidation, respectively (n. for the overpotential at
the cathodic end and n, for the overpotential at the anodic end). Because of charge neutrality within
this conductive bipolar electrode, an electrochemical process at one pole of the BPE must be coupled
electrically at the same rate by an opposite process at the other pole.

For example, electroactive species, R and O’, can undergo the following reactions: R — ne- -0 and O’
+ ne” —»R'. Therefore, the minimum potential value, AVmin, that is needed to trigger these two reactions
at the polarized interfaces at both extremities of the bipolar electrode can be obtained from the Nernst
equation regarding the standard potentials of the two redox couples and their concentrations in the
solution. An accurate way (for experimental conditions) to determine this value, would be to perform a
cyclic voltammetry experiment, using a comparable material to the BPE as working electrode?. If the

condition AV>AVnmin is fulfilled, these faradaic reactions occur spontaneously at both extremities.

The BPE could be any conductive material, such as carbon, metals, semiconductors or coated insulators,
with any characteristic dimension and geometry. One important point is the substrate must have a higher
conductivity than the surrounding medium. The dimension of the BPE, which determines the electric
field applied across it, will have a direct influence on the kinetics of the two redox reactions by
determining the magnitude of polarization. In the case of the electrodeposition process, this will,
therefore, have a considerable influence on the morphology of the deposit, ranging from crystalline to

amorphous.

Bipolar electrochemistry, like conventional electrochemistry, requires an electrolyte that can support
the separate oxidation and reduction reactions. A very concentrated electrolyte, with a large number of
free mobile ions, is too conductive to support the electric fields to induce bipolar electrochemistry. A
dilute electrolyte, with a low number of free or mobile ions, is a relatively poor conductor and can
support the electric fields needed for bipolar electrochemistry. This difference in conductivity provides

a driving force for the movement of current through the bipolar electrode.



Figure 1.1.Current flow and (b) Resistance distribution in the open BPE cell.The total current it
flowing through the BPE cell (in an open system) could be divided into two fractions in the vicinity of
the bipolar electrode?*. One fraction of it, ispe, is the faradaic current which flows through the bipolar

electrode via electronic conduction. This current ensures the electrochemical reactions occurring at
both ends of the BPE. The other fraction, the bypass current inps, is the current flow in the solution
caused by migration of charged species. There is a direct relation between these three terms (Figure
1.1(a)):

itot =ibps + iBPE

ippE _ 1 — lbps _ Rs

itot itot Rs+RppE

The relative fraction of the current passing through the solution and the electrode depends on the
solution resistance R, and global resistance Rgpe from both electron and mass transfer effect (Figure
1.1(b)). Due to a much smaller Rs than Repe, the solution resistance determines the electric field in the
solution in this parallel circuit. As a result, the potential difference obtained at the two ends of the
BPE/solution interface is mainly governed by the uniform potential gradient across the solution. The
determination of igpe can be achieved directly through the use of split bipolar electrodes??. Increasing
the ionic strength of the solution leads to an increase in the bypass current. Comparably, the majority
of the total current passes through the electrolyte solution rather than through BPE in an open system.
Therefore, the deformation of the electric field by faradaic reactions on the BPE will be negligible and
resemble a linear electric field if the conductivity of the electrolyte solution is high. Using a very
conductive bipolar electrode and a high-resistance solution will minimize ins. Another approach to
completely overcome the bypass current is to use a closed bipolar configuration, so the current could

only flow through the bipolar electrode.

When considering the kinetics, we could build up a straightforward model of electron-transfer limited
reaction for qualitatively understanding the faradaic current profile along the bipolar electrode by using
the Butler-VVolmer relation?. Several aspects can influence the kinetic behavior of bipolar

electrochemistry. First, the applied voltage dominates the interfacial potential difference across the



length of the BPE, and consequently the electrochemical reactions happening on the surface. Second,
the electrode nature and geometry (both driving and the bipolar electrodes) also play an essential role
in determining the reaction condition. In addition, electrochemical processes, like adsorption,
heterogeneous electron transfer, and mass transfer, would have effects on the bipolar electrochemistry,
like what is happening in conventional electrochemistry. For example, when dealing with large bipolar
electrodes or high electric fields, there would be a competition between electron and mass transfer
(including diffusion and migration of electroactive species). In bipolar electrochemistry, the potential
gradient across the solution is treated as even and uniform. However, when igpe becomes comparable
with inps, @S in cases when the BPE is a similar size as the driving electrode, then the electric field

distribution influenced by the generated concentration gradients should also be taken into account?+2,

As found by the researchers, instead of a single object, the bipolar electrode could also be assembled
by connecting separated electrodes electrically together. Nyholm and co-workers recognized that two
individual electrodes could be connected outside the electrochemical cell and thus act as a single bipolar
electrode. They found that the induced potential difference between two microband electrodes in
capillary electrophoresis under high separation voltage increased as a function of the applied voltage
and interelectrode distance. In addition, the induced current was proportional to the potential difference
and concentration of the redox couple in the solution. Consequently, this phenomenon is realized useful
in characterizing the behavior of bipolar electrochemistry. Based on this method, the current flowing
through can thus be measured by creating split BPEs and wiring them to an ammeter exterior to the
fluidic space directly?e. They also measured the solution potential and current density distribution in the
BPE system, and the result was examined by surface plasmon resonance (SPR) spectroscopy. Two
small modified reference electrode tips were put in different locations in the solution under the
externally applied voltage and connected outside to a voltmeter. As a result, the exact solution potential
difference between these two specific points was accurately measured, reflecting the electric field across
the solution. Besides, the current density distribution at the BPE/solution interface could be acquired
by positioning the tips close to the BPE surface. The voltage between these two very closely placed

reference electrode tips was proportional to the current density passing in the region of the tips?’.

In the theoretical work done by Crooks’ group, they addressed the BPE potential profile by using a split
electrode design. The middle portion of the bipolar electrode was removed, leaving two microband
electrodes separated at their outer edges. These two microband electrodes were connected outside by a
voltmeter to measure the potential difference. By way of connecting the two split electrodes to an
ammeter instead of a voltmeter, the current that should pass through a continuous BPE of the same
length as the separating distance between the two microbands could also be measured directly. This

measured current is in great agreement with the calculated current from the theoretical assumption.



1.1.2 Applications of Bipolar Electrochemistry

As mentioned before, bipolar electrochemistry is a phenomenon that has been known for quite a long
time but was less popular for a few decades. At that time, the community of chemists mainly worked in
the field of electrolysis, corrosion, and batteries®?%, However, recently, it has attracted considerable
attention. The fabrication of electric contacts between Cu particles by bipolar electrochemistry opened
the door to interests of materials and nanoscience. It has various aspects of applications, such as
electrodeposition, ECL, motion generation?®, sensing®, separation, detection, photosplitting®:, and
catalysis. Some applications will be discussed here as an insightful understanding of bipolar

electrochemistry.
1.1.2.1 Electrodeposition

One topic related to bipolar electrochemistry is Janus particles, named after the Roman god depicted
with two faces. These objects exhibit different physicochemical properties on two opposite sides and
are key components of a significant number of applications that have attracted an increasing interest in
the past several years®?22, Special effects are devoted to the synthesis and surface modification of these
anisotropic objects, endowing them with many amazing features as a unique class of materials ranging
from solid-state libraries, sensor, motion generation, optics, electronic devices, self-healing materials
to photocatalysis. So far, the great majority of methods existing for the generation of Janus particles
break their symmetry by using interfaces or surfaces but are limited by a low time-space yield3!.
Because bipolar electrochemistry allows the bulk production in a single-step technique with a highly
controlled deposit structure and morphology as well as a significantly improved yield*, it now becomes
an appealing and unique tool for bulk and wireless synthesis of asymmetric materials compared with
other techniques such as microfluidic systems®, protection/deprotection mechanisms®®, lithography?’,
Langmuir—Blodgett deposition®, microcontact printing®®, and metal stripping®. The production
guantity often limits the latter techniques because the modification occurs in a two-dimensional reaction
space. However, breaking the asymmetry by way of bipolar electrochemistry has two significant
features. First, the gradient of polarization potential along the surface of the object could be manipulated,;
second, it allows an intrinsically asymmetric reactivity by the varying potential difference between the
solution and the BPE.

For metal deposition, the pioneering works were carried out by Bradley’s group. They have extensively
studied the use of BPE for electrodeposition of Pd catalysts onto micro-scale particles, graphite powder,
carbon nanotubes, and nanofibers*3. For the first publication, a Pd salt was reduced at the cathodic
pole with the organic solvent oxidized at the anodic pole on the micrometer-sized amorphous graphite
particles*. The etched membranes or cellulose papers with one absorbing layer of particles were used

to ensure their immobilization.



Figure 1.2.Symmetric (a) and antisymmetric (b) dumbbell-like object with copper deposits on both
sides by pulsed bipolar electrodeposition*’. Adapted with permission from [45]. Copyright © (2011)
American Chemical Society.

Based on their development of controlled bipolar micro- and nanoelectrodeposition of Pd catalysts,
gold®, copper?, nickel*’, and many other metals have been successfully deposited on various types of
substrates. For example, Bohn et al. experimented to deposit Cu on a very thin Au electrode?®. Fattah
took advantage of BPE to functionalize carbon substrates with asymmetric copper particles
electrodeposited from a bulk solution*®. The spatial orientation of this metal deposit was highly
controlled by two successive potential steps and adjusting the viscosity of the surrounding medium as
well as manipulating the applied electric field. By SEM study, they found that different electric field
orientations dominated the copper cluster topology (centered or noncentered). The BPE was well
adapted to modify carbon substrates with metal asymmetrically, and the topology of the deposit was
controlled by the alignment of substrates in the electric field (Figure 1.2). By a philosophy of using

electric field pulse, the modification of two sides of the electrode with copper was achieved®.
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Figure 1.3.(a) Line profile shows the thicknesses of the gradients observed after different preparation
steps. (b) Thickness map of the protein gradient?’. Reprinted with permission from [27]. Copyright ©
(2008) John Wiley and Sons.

Ulrich et al. proposed the use of a bipolar electrode to create a surface gradient of molecular
functionality?’. The adsorption or desorption of specific molecules could be controlled along the
conducting surface by the gradients of polarization potential. A self-assembled monolayer (SAM) of
HS-C;H4-(0-C2H4)s-COOH (MmPEG) was first formed on the gold electrode by employing protein-
immobilization procedures. By desorbing the thiols both cathodically and anodically, it then generated

a functional molecular gradient across the BPE surface (Figure 1.3).
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Figure 1.4.(a) The expected current-potential response of a solution containing a mixture of S;0s* and
Cd?* showing conditions under which CdS can deposit. The predicted variation of chemical
composition with applied potential is shown in the lower right portion of the frame. (b) A plot of the
AES atomic percentage of Cd and S as a function of lateral position along the BPE*°. Adapted with
permission from [49]. Copyright © (2010) American Chemical Society.

Ramakrishnan in our group used bipolar electrodeposition to form a one-dimensional chemical
composition gradient of CdS on a Au surface (Figure 1.4(a))*°. Under AES and Raman spectroscopy
characterization after electrodeposition, they found that the film formed represented the continuous one-
dimensional solid-state material libraries. As predicted from simple thermodynamic consideration, there
were three distinct deposition zones: Near the cathodic pole of the BPE, the CdS deposit was Cd-rich;
at the middle point, there was an excess of S element; and between these two regions, a nearly

stoichiometric CdS was obtained (Figure 1.4(b)).

Our group also reported the bipolar synthesis of Ag—Au alloy gradients on a stainless steel substrate®.
The interfacial potential gradient in bipolar electrochemistry caused the rates of electrodeposition of Ag
and Au to vary along the length of the BPE and so with the chemical composition. The resulting surface
morphology of the Ag—Au film showed a uniform coverage of deposited material composed of a broad
distribution of spheroidal surface asperities. Simultaneous Energy-dispersive X-ray spectroscopy (EDS)
characterization indicates a nearly linear gradient across the lateral position from approximately 55%
Ag to 100% Ag. A self-assembled monolayer of a Raman-active benzenethiol molecule was then
allowed to form on the alloy surface for Surface-enhanced Raman spectroscopy (SERS) study with the
result in agreement with the observation reported, that the optical extinction of Ag—Au alloy would
increase proportionally to the Ag fraction due to the electromagnetic enhancement of Raman scattering.

Bipolar Electrode

m Electro-click

cu(l) cu()) (\J cu(lly

Pz pZ
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Figure 1.5.The electro-click reaction of PEDOT-N3 film and terminal alkyne using cathodically
generated Cu(]) species on a bipolar electrode®'. Adapted with permission from [51]. Copyright ©
(2012) American Chemical Society.
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Ishiguro et al. used the bipolar manner to achieve electrochemical doping by the introduction of the
dopant. Conducting polymers were formed across the bipolar electrodes with composition
gradients2%3, They also investigated an electrochemical surface modification via an electro-click
reaction, namely, the azide-alkyne cycloaddition using electrogenerated Cu(l) species on a bipolar
electrode (Figure 1.5)°%. The Cu(l) ion generated by reduction on the cathodic pole would catalyze the
electro-click reaction. After introducing different groups such as the perfluoroalkyl group and
rhodamine, they found that this electro-click method made it possible to create versatile functionality-

gradient surfaces in a BPE manner.

Loget reported indirect bipolar electrodeposition via the pH-triggered precipitation mechanism®. A
localized pH gradient was established at the surface of the polarized object by way of water electrolysis,
and it could be used to toposelectively deposit organic layers such as electrophoretic deposition paints
(EDPs) or inorganic layers, which are nonelectroactive precursors. By this method, localized and

asymmetric generation of EDP, silica, silicone, titanate, and titanium dioxide was achieved.

Laurent reported the first BPE experiment carried out in an ionic liquid with different characteristic
sizes ranging from the millimeter to the micrometer scale>. They used a room-temperature ionic liquid
to produce Janus particles modified with a conducting polymer, polypyrrole (PPy). The films
electropolymerized on the glassy carbon beads were thinner and smoother with improved properties
like low surface roughness, thickness, and better mechanical stability.

1.1.2.2 Electrocatalysts Screening

One approach for discovering effective electrocatalysts is to rapidly evaluate candidate materials by
array-based screening®8. People can extract kinetic and thermodynamic information from it and then
subject promising materials to more extensive and quantitative testing. Several methods have been
utilized for screening electrocatalysts. The first approach which involved methanol oxidation was
reported by Smotkin using a pH-sensitive fluorescent indicator®. An alternative method is to monitor
the current passing through individually addressable working electrodes yet at the cost of sophisticated
microfabrication and smaller libraries®®®, A third technique employs scanning electrochemical
microscopy (SECM)®, rastered laser beam®” or optical fiber®®. However, this method is slow because
each array is scanned serially. Recently, Tao took advantage of SPR microscopy®’ to measure changes

in the local refractive index from electrocatalytic reactions.
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Figure 1.6.(a) The number of Ag microbands remaining after the experiment (b) the experiment
device (¢) Thermodynamic link between the overpotential required for the oxygen reduction reaction
(ORR)¥. Reprinted with permission from [69]. Copyright © (2012) American Chemical Society.
To develop a parallel and straightforward means for screening electrocatalyst candidates, the method
of electrodissolution at bipolar electrodes has been introduced. At first, Crooks’ group reported a new
type of sensing platform based on Ag electrodissolution of a metallic bipolar electrode®®. This
dissolution provided a permanent record of a sensing/recognition event. Fosdick et al. reported a method
that was suitable for rapid screening of a large-scale array of electrocatalysts®. The approach relied on
simultaneous Ag electrodissolution and activation of oxygen reduction reaction (ORR) at the anode and
cathode of the BPE, respectively. The anodic poles were composed of parallel Ag microband electrodes,
and ORR electrocatalyst candidates were deposited onto the cathodic poles of the indium-doped tin
oxide (ITO) bipolar electrode (Figure 1.6). When different overpotentials were required to drive ORR
for different catalysts at the cathode, the numbers of Ag microbands that dissolved were different. That
means there was a thermodynamic relationship between the dissolved number and the activity of the

electrocatalysts present on the cathodic pole.

Then, according to this idea, Crooks et al. extended the catalysts screening method of ORR to bimetallic
electrocatalyst candidates’™. He changed the identity of the reporter from Ag to Cr, in case that ORR
and Ag oxidation took place spontaneously due to a comparable negative potential of Ag. He deposited
Cr microbands at the anodic poles of ITO bipolar electrode. Pd—M candidates with different
composition were dispensed at the cathodic poles of the array of BPEs by using a piezo-jet controller.
They calculated the EQRR . by counting the number of Cr microbands eliminated and proved that the
Pd—Co electrocatalyst was the most effective which was consistent with SECM results. This method

was also suggested to provide quantitative Kinetic information about electrocatalytic reactions.
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Figure 1.7.(a) Scheme of the experimental design. (b) Fluorescence-enabled electrochemical
microscopy image showing the oxidation of 10 mM H20; in 0.1 M NaOH at catalytically active “hot-
spots” where Pt was deposited on a CF array®®. Adapted with permission from [15]. Copyright ©
(2013) American Chemical Society.

Apart from the dissolution approach, Zhang reported the use of a closed bipolar electrode combined
with an electrogenerated fluorescent probe to reveal electrochemical and electrocatalytic activity®.
Heterogeneous electrochemical processes were imaged spatially and temporally by coupling a
conventional oxidation reaction to a specific fluorogenic reduction with a large array containing
thousands or more parallel bipolar microelectrodes (Figure 1.7). The time derivative of fluorescence
intensity can be used to obtain information comparable to traditional electrochemical current and their
mutual correlation, makes it a useful platform for high-throughput, multicomponent and parallel

screening in submicrometer or even diffraction-limited resolution.
1.1.2.3 Electrochemiluminescence (ECL)

\[/

Ru(bpy)3" H
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Ru(bpy)s”
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Ru(bpy),?* —> Ru(bpy),** + " (1)
Ru(bpy),** + C,0,2 —> C,0," +e" (2)
C,0,~—CO,~ +CO, ()
Ru(bpy),** + CO,"~ —> Ru(bpy),>** + CO, (4)
Ru(bpy),*+ CO,~ —> Ru(bpy),*+ CO, (5)
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Ru(bpy),** —> Ru(bpy),?* + hv (7)

Figure 1.8.The generation of ECL at a BPE and the ECL mechanism in the presence of coreagent®Z.
Adapted with permission from [11]. Copyright © (2013) American Chemical Society.
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The advantage of bipolar electrochemistry lies in the absence of direct electrical connection, and it
facilitates portable device fabrication, endowing it with a promising sensing platform for spatially
resolved analytical measurement with the merits of miniaturization, multiplicity and even integration
on lab-on-chip systems with low cost. With the extension of this methodology to a large-scale bipolar
array format, it is possible to achieve high throughput electrochemical detection on multiple electrodes
simultaneously attributing to its wireless manner. However, due to the lack of physical contact, the
implementation of bipolar electrochemistry has been hampered by an inability to monitor the current
fling through the BPE. Electrochemiluminescence (ECL), the light-emitting process generated by
electrochemical means, is an alternative to transduce the chemical (electrical) signal to an optical signal.
It has been widely used in various analytical applications as a convenient and high-throughput reporting
method. The ECL platform does not require an excitation light source and is free from the effects of
scattered light compared with fluorescence. A very commonly used ECL system consists of Ru(bpy)s*
as the light-emitting species and TPrA or oxalate anions as a co-reactant’>"2. In this case, Ru(bpy)s**
and TPrA get oxidized to form Ru(bpy)s®* and TPrA™". After a subsequent electron transfer, the excited
state Ru(bpy)s?** forms and then it relaxes with concomitant emission of a photon. The mechanism of
Ru(bpy)s** ECL in the presence of C,0.* is shown in Figure 1.8. In the BPE system, due to the charge
neutrality, the ECL reporting reaction will be coupled with the analyte sensing reaction. Thus the ECL
intensity here can directly show the analyte information. The intensity of light could be directly read
out by charge-coupled device (CCD) cameras or optical microscopes. ECL is a very useful tool for
analytical detection because it can provide us with the current information in the bipolar electrode.
Bipolar electrochemistry, which allows sensor readout without a direct electrical connection to the
working electrode, when combined with ECL, could serve as a powerful way of collecting information
on processes occurring at bipolar electrodes. The reduction of the analyte of interest at the cathode will
be related to the Ru(bpy)s?* oxidation at the anode with the following ECL emission proportional to the
BPE current.
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Figure 1.9.The pictorial representation of detection TPA using U-shaped Pt film electrode’. Adapted
with permission from [73]. Copyright © (2001) American Chemical Society.

Manz and co-workers were the first to use ECL to detect analytes in a separation system using a

“wireless” detector, which was a bipolar electrode’. They described a microfluidic system housing a
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floating, U-shaped platinum electrode to detect the presence of Ru(bpy)s®* related light-emitting
compounds by the electrokinetic chromatography (Figure 1.9). This bipolar system was also employed
in separating and detecting various amino acids (co-reactants for Ru(bpy)s?* ECL at the anodic pole).
However, Manz’s approach was limited to the detection of co-reactants for Ru(bpy)s®*-based ECL
(typically molecules bearing amine functionalities)’ 74,

Crooks’ group then proposed an indirect detection using ECL emission at bipolar electrodes™, which
decoupled the ECL reporting reaction from the electrochemical sensing reaction. The analyte in the
sensing reaction does not interact chemically with the light-emitting species in the ECL process. The
system was configured so that the faradaic process occurring at the cathodic end of the BPE was
correlated to the ECL emission at the anodic end. Due to the intrinsic charge balance of electrochemical
cells, the sensing and ECL reactions were electrically coupled. This method broadens the spectrum of
analyte candidate that can be detected by ECL to any electroactive species by the presence of co-reactant
in the system, beyond the former limit that only analytes participating in the ECL reaction at the anode
could be measured. They also found that changing the relative size and geometry between anode and

cathode could enhance the detection sensitivity.
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Figure 1.10.(a) The experimental configuration of Pt-labeled DNA detection using BPE ECL™. (b)
ECL emission on bipolar electrode array at Ei: = 85.0 V6. Adapted with permission from [10] [76].
Copyright © (2008) (2009) American Chemical Society.

Since this interesting work by Crooks, ECL, especially for the Ru(bpy)s** system, has been frequently
used in indirect reporting of bipolar current, thus creating an idea of analytical detection with advantages
like high sensitivity, low cost and fabricating portable devices’’. An ECL analytical platform for
detection of DNA was exemplified, based on the concept of DNA hybridization. A bipolar electrode
array consisting of a variety of 1 mm long gold microbands was decorated with a specific
oligonucleotide as probes. In this case, cDNA labeled with platinum nanoparticles was recruited to the
cathode of these bipolar electrodes. These Pt particles catalyzed O; reduction at the cathode and
triggered ECL emission at the anode (Figure 1.10(a)). The platform can be used to detect the presence
of biological molecules without electrical contact'®. Many similar experiments have been done to verify

the feasibility of DNA detection, such as bipolar arrays’®788 (Figure 1.10(b)).
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Figure 1.11.The relationship between the total ECL intensity and the faradaic current'®. Reprinted
with permission from [18]. Copyright © (2009) American Chemical Society.
Based on the method proposed by Nyholm that two individual electrodes could behave as a bipolar
electrode and facilitate direct current measurement by connecting to an ammeter8!, Crooks’ group
extended this approach to provide a theoretical work to correlate ECL emission and current profile at
the BPE, confirming the viability and accuracy of BPE ECL to chemical analysis!®. Their strong
correlation confirms the viability and accuracy of ECL to chemical analysis (Figure 1.11). Besides, a
method of snapshot voltammetry relying on the potential difference between the electrolyte solution
was created with a triangular-shaped bipolar electrode for extracting useful electrochemical parameters

in the spatial domain, which was in good agreement with traditional voltammetry?®?,

Another helpful application is ECL quenching. Landers and co-workers developed an intramolecular
ECL quenching assay for the detection of DNA hybridization, according to the phenomenon that ECL
intensity decreased proportionally to the concentration of ferrocenemethanol quencher®®. Sanjun

employed this idea for sensitive detection of ferrocenemethanol and molecular oxygen**.

Laurent et al. broadened the emerging field of analytical applications of ECL, using a new approach to
detect redox-active molecules indirectly relying on the generation of local pH gradients®. They
combined a pH-sensitive fluorescent dye such as fluorescein with redox-active biomolecules. These
biomolecules are either oxidized or reduced at one extremity of a BPE, and the analytical event is

visualized by localized modulation of fluorescence intensity detected by fluorescence spectroscopy.

The ECL BPE platform thus provides a new paradigm for electrochemical sensing with excellent
sensitivity, versatility without the requirement of an excitation light source and free from the effects of
scattered light compared with fluorescence. According to its indirect measurement, a variety of analytes,
such as biomarkers’®8, DNA, RNA®, drug’, and quencher molecules!! were detected and quantified
using the BPE platform with high throughput, low cost, multiple-array and portable device

fabrication’® 78,
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1.1.3 Closed Bipolar Electrochemistry

Open system
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Figure 1.12.Comparison of (a) open BPE system and (b) closed BPE system.

Closed system

Bipolar electrochemistry can be divided into open bipolar electrochemistry and closed bipolar
electrochemistry. Figure 1.12 illustrates the difference between the two configurations. Open bipolar
electrochemistry (Figure 1.12(a)) occurs when BPE is wholly immersed in a suitable electrolyte, with
two driving electrodes present in the same solution. In closed bipolar electrochemistry (Figure 1.12(b)),
a physical barrier is created between two driving electrodes and separates the electrolyte into distinct
compartments. A single BPE, of which the anodic and cathodic poles are physically isolated by this
barrier, becomes the only current pathway itself. Regardless of the potential drop of the driving
electrodes/electrolyte interface, in the closed bipolar electrochemistry, the fraction of voltage dropped
at the BPE/electrolyte interface is substantially equal to the potential applied on the driving electrodes,
due to its serial circuit. In other words, the BPE will behave as an infinite resistance before reactions
can happen on two poles. The potential drop in the solution is thus minimized, and the electrolyte in
practice acts as a metal wire between the driving electrodes and BPE. On this account, electrochemistry
will occur at a relatively low applied voltage. At each pole of the BPE, the surrounding solution is
isolated from the other pole by the barrier, leading to a phase separation entirely.

Several advantages have been shown from the closed BPE system compared with the open one. First,
there is no bypass for the current to flow. Consequently, is, the current flowing in the solution caused
by migration of charged species is eliminated, and theoretically, 100% current efficiency (the current
flow through the BPE/the current flow through the driving electrodes) is achieved. Electrochemistry
could thus be initialized with a much lower applied voltage with only faradaic current flowing through
this closed system, allowing the analyte detection with the merits of energy saving. Second, because of
the phase separation of two compartments in the presence of a barrier, it eliminates possible
interferences from one to another, satisfying the requirement of spatial resolution in microscale

application. Owing to the phase separation, reactions happening at two compartments can have different
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chemical compositions and solvent environments, such as aqueous/organic isolation. Therefore, the
analyte would not be consumed at the driving electrode. More importantly, in the case of ECL sensing,
the overwhelming background ECL from the driving electrode will be removed. Third, this separated
configuration permits remote control of detection. Accordingly, disposable sensing half cells can be
coupled to the same half reporting cell, applicable for rapid and consecutive on-chip diagnostics. Fourth,
the closed BPE setup allows simultaneous sensing using an electrode array with changing analyte and
different electrode modification, overcoming the limitation in an open system in which one universal
solution environment is used. Last, the BPE is not size dependent. In an open system, the polarization
potential difference across the BPE body depends on the electric field in solution and the length of the
BPE, while in the closed system, the external potential is mainly applied at the BPE/electrolyte interface

to facilitate electron transfer at the BPE with the minimized potential drop across the electrolyte.
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Figure 1.13.(a) Schematic diagram of a carbon fiber electrode (CFE) being used to study the oxidation

of Fc. (b) Simplified cell configuration of a closed bipolar microelectrode®®. Adapted with permission
from [86]. Copyright © (2012) American Chemical Society.

The concept of a closed BPE system was formed initially from a Ph.D. thesis from Drexel University
in 20042, Even though there were examples of closed BPE before that, such as carbon fiber electrode
(CFE), they were not described in that way. This first paper involved the closed BPE system as the
established concept was published in 2012%. The configuration depicted using a carbon-fiber
microelectrode, which was different from the closed BPE system people studied later on (Figure
1.13(a)). A small carbon fiber was sealed in a pulled glass capillary pipet as a bipolar electrode. The
carbon disk pointing outside was the anode for Fc oxidation, while the internal carbon fiber served as
the cathodic pole of the BPE with backfilled electrolyte. Two nonpolarizable Ag/AgCI reference
electrodes were used with a relatively small driving voltage, and this voltage was dropped almost
entirely at the solution interface adjacent to the two ends of the BPE. Because of its series connection,
they could directly measure the electrochemical response of the BPE from the driving electrode. When
replacing the internal solution with ferricyanide, the E1/, shifted about 250 mV negatively. Because of
the difficulty to control the size of th