A Property of GO-Topologies on the Reals

by

Mark Guest II

A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science

> Auburn, Alabama May 4, 2019

Keywords: topology, generalized ordered spaces, D-spaces

Copyright 2019 by Mark Guest II

Approved by

Gary Gruenhage, Co-chair, Professor Emeritus of Mathematics and Statistics Ziqin Feng, Co-chair, Associate Professor of Mathematics and Statistics Krystyna Kuperberg, Professor of Mathematics and Statistics Stewart Baldwin, Professor of Mathematics and Statistics George Flowers, Dean of the Graduate School

Abstract

In 1981 Peter de Caux proved that finite powers of the Sorgenfrey line are hereditarily D-spaces. In this paper we build on de Caux's technique to show that any subspace of a finite power of the reals with a generalized ordered topology is a finite union of D-spaces and therefore a transitively D-space. We also note that finite powers of Sorgenfrey Suslin lines are D-spaces.

Acknowledgments

Special thanks to Dr. Krystyna Kuperberg for introducing me to topology, to Dr. Gary Gruenhage for his patience and guidance, and to Kelly and Conor for their support.

Table of Contents

Ab	ostrac	t	ii
Acknowledgments			iii
1	D-S	paces	1
	1.1	About closed discrete sets	1
	1.2	Unions of (transitively) <i>D</i> -spaces	3
	1.3	Two easy examples	4
2	GO-	Topologies	7
	2.1	GO-partitions	7
	2.2	Paracompactness	8
3	Ever	y Subspace of \mathbb{R}^N_{τ} is a Finite Union of <i>D</i> -Spaces	10
	3.1	Single-type subspaces	10
	3.2	Extending de Caux's lemmas	11
	3.3	The result	16
4	A N	ote on Sorgenfrey Suslin Lines	17
Re	feren	ces	19

Chapter 1

D-Spaces

A neighborhood assignment on a topological space X is a function φ from X to its topology such that $x \in \varphi(x)$ for each $x \in X$. We say X is a *D*-space if for every neighborhood assignment φ on X there exists a closed discrete subset D of X such that $\varphi[D]$ covers X. A neighborhood assignment is transitive if $\varphi(y) \subset \varphi(x)$ whenever $y \in \varphi(x)$, so a transitively *D*-space is one in which we can find such a closed discrete subset for every transitive neighborhood assignment. Certainly any *D*-space is a transitively *D*-space, but Dauvergne showed recently [1] that a transitively *D*-space need not be a *D*-space.

For terms or notation left undefined, see [3].

1.1 About closed discrete sets

Let A be a subset of a space X. To be precise we say A is closed if every point not in A has a neighborhood missing A, A is discrete if every point in A has a neighborhood missing every other point of A, and x is a limit point of A if every neighborhood of x meets A at a point other than x. Some ways of identifying closed discrete sets follow directly from our definitions.

Lemma 1.1. The following are equivalent for a subset D of a space X.

- (a) D is closed discrete in X.
- (b) D has no limit points in X.
- (c) There is a closed subset H of X containing D such that no point of H is a limit point of D.

- (d) There is a closed subspace H of X containing D such that D is closed discrete in H.
- (e) There is a closed subset H of X containing D such that every x ∈ H has a neighborhood U with U ∩ D ⊂ {x}.
- (f) Every $x \in X$ has a neighborhood U with $U \cap D \subset \{x\}$.

We will frequently need to build closed discrete sets by combining smaller closed discrete sets. The next few lemmas give some conditions under which we may do so.

Lemma 1.2. A finite union of closed discrete subsets of a space X is closed discrete.

Recall that a collection of subsets of a space is *discrete* if every point of the space has a neighborhood meeting at most one member of the collection.

Lemma 1.3. Let $\mathcal{F} = \{F_{\alpha} : \alpha < \kappa\}$ be a discrete collection of closed subsets of a space X. If $D_{\alpha} \subset F_{\alpha}$ is closed discrete in F_{α} for each $\alpha < \kappa$, then $D = \bigcup_{\alpha < \kappa} D_{\alpha}$ is closed discrete in X.

Proof. Let $F = \bigcup \mathcal{F}$ and fix $x \in F$; $x \in F_{\alpha}$ for some $\alpha < \kappa$. There is a neighborhood U of x open-in-F missing F_{β} for $\beta \neq \alpha$, and a neighborhood V of x open-in-F with $V \cap D_{\alpha} \subset \{x\}$. It follows that $(U \cap V) \cap D \subset \{x\}$, so D is closed discrete in F. But F is closed in X [3, Lemma 135], so D is closed discrete in X.

Lemma 1.4. Let $D = \bigcup_{\alpha < \kappa} D_{\alpha}$ be a union of closed discrete subsets of a space X. If every point of X has a neighborhood meeting only finitely many of the D_{α} 's, then D is closed discrete.

Proof. Fix $x \in X$, and let U_x be a neighborhood of x such that $F = \{\alpha < \kappa : U_x \cap D_\alpha \neq \emptyset\}$ is finite. For each $\alpha \in F$, let U_α be a neighborhood of x with $U_\alpha \cap D_\alpha \subset \{x\}$. Then $U = U_x \cap \bigcap_{\alpha \in F} U_\alpha$ is a neighborhood of x such that $U \cap D \subset \{x\}$. **Lemma 1.5.** Let $\{D_{\alpha} : \alpha < \kappa\}$ be a pairwise-disjoint collection of closed discrete subsets of a first-countable space X. If every $\{x_{\alpha} : \alpha < \kappa\} \subset X$ with $x_{\alpha} \in D_{\alpha}$ is closed discrete in X, then $D = \bigcup_{\alpha < \kappa} D_{\alpha}$ is closed discrete in X.

Proof. If $\kappa < \omega$ the result is immediate, so we assume $\kappa \ge \omega$. Suppose D is not closed discrete. Fix a limit point x of D and let $\{B_n : n < \omega\}$ be a decreasing local base at x. For each $n < \omega$, let A_n consist of those $\alpha < \kappa$ for which B_n meets D_{α} at a point other than x. Observe that for each $n < \omega$ we have $|A_n| \ge \omega$ and $A_n \supset A_{n+1}$.

Set $\alpha_0 = \min A_0$, and let x_0 be a point of $B_0 \cap D_{\alpha_0}$ other than x. Suppose for some n > 0 that α_m and x_m have been defined for every m < n. Take $\alpha_n = \min A_n \setminus \{\alpha_m : m < n\}$, and let x_n be a point of $B_n \cap D_{\alpha_n}$ other than x. In this way, define α_n and x_n for each $n < \omega$.

By construction each B_n contains infinitely many of the x_n 's, so x is a limit point of $\{x_n : n < \omega\}$. It follows that there is a subset $\{x_\alpha : \alpha < \kappa\}$ of X with $x_\alpha \in D_\alpha$ which is not closed discrete.

1.2 Unions of (transitively) *D*-spaces

In general we cannot say much about unions of D-spaces; in [6] Soukup and Szeptycki gave a consistent example of a space which is the union of two D-spaces but not itself a D-space. However, Lemma 1.3 implies the following.

Lemma 1.6. Let $\{Y_{\alpha} : \alpha < \kappa\}$ be a discrete collection of closed subsets of a space X. If each Y_{α} is a D-space, then $Y = \bigcup_{\alpha < \kappa} Y_{\alpha}$ is a D-space.

The conditions in Lemma 1.6 can be relaxed a bit; the following is proved in [4].

Lemma 1.7. Let $\{Y_{\alpha} : \alpha < \kappa\}$ be a collection of subsets of a space X such that $\bigcup_{\alpha < \beta} Y_{\alpha}$ is closed in X for each $\beta \leq \kappa$. If each Y_{α} is a D-space, then $Y = \bigcup_{\alpha < \kappa} Y_{\alpha}$ is a D-space.

Transitively D-spaces are a bit nicer. First, observe that being a (transitively) D-space is weakly hereditary.

Lemma 1.8. Any closed subspace of a (transitively) D-space is a (transitively) D-space.

Proof. Let φ be a (transitive) neighborhood assignment on a closed subset Y of a (transitively) D-space X. For each $x \in X$, define $\psi(x) = X \setminus Y$ when $x \notin Y$, and $\psi(x) = \varphi(x) \cup X \setminus Y$ when $x \in Y$; certainly ψ is a (transitive) neighborhood assignment on X. If $D \subset X$ is closed discrete and $\psi[D]$ covers X, then $D \cap Y$ is closed discrete in Y and $\varphi[D \cap Y]$ covers Y.

Lemma 1.9. A finite union of transitively D-spaces is a transitively D-space.

Proof. Let $X = Y \cup Z$, where Y and Z are transitively D-spaces, and fix a transitive neighborhood assignment φ on X. For each $y \in Y$ define $\psi(y) = \varphi(y) \cap Y$; then ψ is a transitive neighborhood assignment on Y, so let D_Y be closed discrete in Y such that $\psi[D_Y]$ is a cover of Y.

Put $A = \overline{D}_Y \setminus D_Y$. Since no point of Y can be a limit point of D_Y , A is closed in X and contained in Z. This means A is a transitively D-space; let D_A be closed discrete in A such that $\varphi[D_A]$ covers A.

Set $D'_Y = D_Y \setminus \bigcup \varphi[D_A]$, and observe $\bigcup \varphi[D_Y] \subset \bigcup \varphi[D'_Y \cup D_A]$ by transitivity. If D'_Y is closed discrete in X, then $D'_Y \cup D_A$ is closed discrete in X such that $\varphi[D'_Y \cup D_A]$ covers $A \cup Y$. To that end, first note that any limit point of D'_Y must belong to \overline{D}_Y . Since D_Y is discrete in Y, any limit point of D'_Y must in fact belong to $\overline{D}_Y \setminus D_Y = A$. But $A \subset \bigcup \varphi[D_A]$ and $\bigcup \varphi[D_A]$ misses D'_Y by construction, so D'_Y has no limit points.

Let $K = Z \setminus \bigcup \varphi[D'_Y \cup D_A]$; K is closed in X and contained in Z. Let D_K be closed discrete in K (hence, in X) such that $\varphi[K]$ covers K. Then $D'_Y \cup D_A \cup D_K$ is closed discrete in X and $\varphi[D'_Y \cup D_A \cup D_K]$ covers X.

1.3 Two easy examples

Recall that a *network* for a space X is a collection \mathcal{N} of subsets of X such that, whenever U is open and contains x, there is some $N \in \mathcal{N}$ with $x \in N \subset U$. The following is straightforward.

Lemma 1.10. Let \mathcal{N} be a network for a space X. If for every $\psi \colon X \to \mathcal{N}$ with $x \in \psi(x)$ there is a closed discrete subset D of X such that $\psi[D]$ covers X, then X is a D-space.

Proof. Let φ be a neighborhood assignment on X. For each $x \in X$ pick $\psi(x) \in \mathcal{N}$ such that $x \in \psi(x) \subset \varphi(x)$. If D is a subset of X such that $\psi[D]$ covers X, then $\varphi[D]$ covers X.

This allows us to devise a particularly nice base for our space and then investigate only those neighborhood assignments whose image is in the base. For first-countable spaces, we can make use of the following.

Theorem 1.11. Let φ be a neighborhood assignment on a space X. Suppose there exists a function $j: X \to \omega$ such that, whenever $F \subset X$ is closed, there exists $D \subset F$ closed discrete in X such that $\varphi[D]$ covers $\{x \in F : j(x) = \min j[F]\}$. Then there exists a closed discrete subset D of X such that $\varphi[D]$ covers X.

Proof. Set $F_0 = X$, $j_0 = \min j[F_0]$ and $G_0 = \{x \in F_0 : j(x) = j_0\}$. Let $D_0 \subset F_0$ be closed discrete in X such that $\varphi[D_0]$ covers G_0 . If $\varphi[D_0]$ covers F_0 we are done; otherwise, note $\varphi[D_0]$ covers those x with $j(x) \leq j_0$ and proceed.

Suppose for some $\beta > 0$ that F_{α} , j_{α} , G_{α} , and D_{α} have been defined for each $\alpha < \beta$. If $\varphi[\bigcup_{\alpha < \beta} D_{\alpha}]$ covers F_0 , take $\kappa = \beta$ and the process terminates. Otherwise put $F_{\beta} = F_0 \setminus \bigcup_{\alpha < \beta} \varphi[D_{\alpha}]$, $j_{\beta} = \min j[F_{\beta}]$, and $G_{\beta} = \{x \in F_{\beta} : j(x) = j_{\beta}\}$. Let $D_{\beta} \subset F_{\beta}$ be closed discrete in X such that $\varphi[D_{\beta}]$ covers G_{β} . Observe $j_0 < \cdots < j_{\beta}$ and $\varphi[\bigcup_{\alpha \leq \beta} D_{\alpha}]$ covers those x with $j(x) \leq j_{\beta}$. Continue with the induction.

This process must terminate; for some $\kappa \leq \omega$ we get a collection $\{D_{\alpha} : \alpha < \kappa\}$ of closed discrete subsets of X such that $\varphi[\bigcup_{\alpha < \kappa} D_{\alpha}]$ covers X. Fix $x \in X$. There exists $\alpha < \kappa$ and $y \in D_{\alpha}$ such that $x \in \varphi(y)$. By construction $\varphi(y)$ misses D_{β} whenever $\alpha < \beta < \kappa$, so $\bigcup_{\alpha < \kappa} D_{\alpha}$ is closed discrete in X by Lemma 1.4.

We provide two examples of using Theorem 1.11. Recall that the continuous image of a separable metric space is called a *cosmic space*.

Theorem 1.12. Cosmic spaces are hereditarily D-spaces.

Proof. Fix a continuous surjection f from a separable metric space Y onto a space X. If $\mathcal{B} = \{B_k : k < \omega\}$ is a base for Y, then $\mathcal{N} = \{N_k : k < \omega\}$ is a network for X, where $N_k = f[B_k]$. If Z is a subspace of X then $\{Z \cap N_k : k < \omega\}$ is a countable network for Z, so it suffices to show X is a D-space. Fix a neighborhood assignment φ on X, and for each $x \in X$ let j(x) be minimal so that $x \in N_{j(x)} \subset \varphi(x)$.

Let $F \subset X$ be closed, set $j^* = \min j[F]$, and take $G = \{x \in F : j(x) = j^*\}$. Observe that $x \in N_{j^*} \subset \varphi(x)$ for each $x \in G$, so $G \subset N_{j^*}$. For each $x \in X$, $\{x\}$ is a closed discrete subset of X with $\varphi[\{x\}]$ a cover of G. By Theorem 1.11, X is a D-space.

Theorem 1.13. Metrizable spaces are hereditarily D-spaces.

Proof. Fix a metric space $\langle X, d \rangle$; every subspace of X is metrizable, so it suffices to show X is a D-space. Fix a neighborhood assignment φ on X, and for each $x \in X$ define j(x) to be the least nonnegative integer such that $B(x, 2^{-j(x)})$ lies within $\varphi(x)$.

Let $F \subset X$ be closed, set $j^* = \min j[F]$, and take $G = \{x \in F : j(x) = j^*\}$. Wellorder G and set $x_0 = \min G$. If x_α has been defined for each $\alpha < \beta$, take $x_\beta = \min G \setminus \bigcup_{\alpha < \beta} \varphi(x_\alpha)$. Continue in this way until the $\varphi(x_\alpha)$'s cover G. The set D consisting of the x_α 's is closed discrete, since for each $x \in X$ the ball $B(x, 4^{-j^*})$ contains at most one point of D. By Theorem 1.11, X is a D-space.

Chapter 2

GO-Topologies

Let $\langle X, \leq \rangle$ be a linearly ordered set. Denote by \mathcal{T}_{\leq} the order topology on X; that is, the topology generated by the subbase $\{X\} \cup \{(-\infty, x) : x \in X\} \cup \{(x, \infty) : x \in X\}$. A topology \mathcal{T} on X is a generalized ordered topology (GO-topology) if $\mathcal{T}_{\leq} \subset \mathcal{T}$ and \mathcal{T} has a base of \leq -convex sets. Note that \mathcal{T}_{\leq} is itself a GO-topology on X.

In [8] van Douwen and Pfeffer showed that every finite power of the Sorgenfrey line is a D-space. Peter de Caux proved in [2] that finite powers of the Sorgenfrey line are in fact hereditarily D-spaces. In this paper we build on de Caux's technique to show that any subspace of a finite power of the reals with a GO-topology is a finite union of Dspaces. This will imply that finite powers of the reals with a GO-topology are hereditarily transitively D-spaces.

2.1 GO-partitions

We generate GO-topologies using *GO-partitions*, functions from X to the set of symbols $\{\ell, e, r, i\}$. From our definitions we immediately get the following.

Lemma 2.1. If τ is a GO-partition of a linearly ordered set $\langle X, \leqslant \rangle$, then the topology \mathcal{T} generated by the subbase $\mathcal{T}_{\leqslant} \cup \{(-\infty, x] : \tau(x) = \ell\} \cup \{[x, \infty) : \tau(x) = r\} \cup \{\{x\} : \tau(x) = i\}$ is a GO-topology on X.

We will let \mathcal{T}_{τ} denote the GO-topology generated in Lemma 2.1, and X_{τ} will denote the generalized ordered space (GO-space) $\langle X, \mathcal{T}_{\tau} \rangle$. For any linearly ordered set, the GOpartitions ε and λ are those which assign to every point the values e and ℓ , respectively. If the linearly ordered set is \mathbb{R} , for example, then \mathbb{R}_{ε} is the set of reals with the usual metric topology and \mathbb{R}_{λ} is the Sorgenfrey line. The next result says that we can examine the GO-topologies on X by considering the GO-partitions of X.

Lemma 2.2. If \mathcal{T} is a GO-topology on the linearly ordered set X, then there exists a GO-partition τ such that $\mathcal{T} = \mathcal{T}_{\tau}$.

Proof. For each $x \in X$ define $\tau(x)$ to be *i* if *x* is isolated in \mathcal{T} , ℓ if *x* is nonisolated and has a neighborhood $(a_x, x]$ in \mathcal{T} , *r* if *x* is nonisolated and has a neighborhood $[x, b_x)$ in \mathcal{T} , and *e* otherwise. Observe that τ is well-defined and a GO-partition on *X*.

First note that a point x is isolated in \mathcal{T} if and only if it is isolated in \mathcal{T}_{τ} . Suppose $\tau(x) = \ell$ and y < x. Then $(y, x] = (y, \infty) \cap (-\infty, x]$ is open in \mathcal{T}_{τ} . Moreover $(y, x] = (y, x) \cup (a_x, x]$ or $(y, x] = (a_x, x] \cap (y, \infty)$, both of which are open in \mathcal{T} . Similarly, if $\tau(x) = r$ then [x, y) is open in \mathcal{T} and \mathcal{T}_{τ} for each y > x. Finally both \mathcal{T} and \mathcal{T}_{τ} contain \mathcal{T}_{\leqslant} , so $\mathcal{T} = \mathcal{T}_{\tau}$.

Let GP(X) denote the set of all GO-partitions on X, and let GP'(X) denote the set of all GO-partitions on X whose image does not include *i*. We will see that, for the property we are interested in, we may do most of our work in $GP'(\mathbb{R})$ and then easily extend the result to all of $GP(\mathbb{R})$.

2.2 Paracompactness

Recall that a space X is *paracompact* if every open cover of X has a locally finite open refinement, where a collection of subsets of X is *locally finite* whenever each point of X has a neighborhood meeting only finitely many members of the collection, and a collection \mathcal{U} of subsets of X is a *refinement* of a collection \mathcal{V} of subsets of X if for each $U \in \mathcal{U}$ there exists $V \in \mathcal{V}$ such that $U \subset V$. In the class of GO-spaces, being a D-space is equivalent to being paracompact.

Lemma 2.3 [5, Theorem 4.10]. Let $\langle X, \leqslant \rangle$ be a linearly ordered set. If X_{ε} is hereditarily paracompact then X_{τ} is hereditarily paracompact for each $\tau \in GP(X)$.

Lemma 2.4 [7, Theorem 1.2]. Let $\langle X, \leqslant \rangle$ be a linearly ordered set. For $\tau \in GP(X)$, X_{τ} is paracompact if and only if X_{τ} is a D-space.

Since a subspace of a GO-space is itself a GO-space, we conclude the following.

Theorem 2.5. Let $\langle X, \leqslant \rangle$ be a linearly ordered set. If X_{ε} is hereditarily paracompact then X_{τ} is hereditarily a D-space for each $\tau \in GP(X)$.

In particular, \mathbb{R}_{τ} is hereditarily a *D*-space for each $\tau \in \mathrm{GP}(\mathbb{R})$.

Chapter 3

Every Subspace of \mathbb{R}^N_{τ} is a Finite Union of *D*-Spaces

Fix $\tau \in \mathrm{GP}'(\mathbb{R})$. For $x \in \mathbb{R}$ and $m < \omega$ let $Q_{\mathbb{R}}(m)$ be the set of integer multiples of 2^{-m} , $a_m(x)$ the greatest point of $Q_{\mathbb{R}}(m)$ less than x, and $b_m(x)$ the least point of $Q_{\mathbb{R}}(m)$ greater than x. Define $B_{\tau}(x,m)$ to be $(a_m(x),x]$ if $\tau(x) = \ell$, $(a_m(x),b_m(x))$ if $\tau(x) = e$, and $[x,b_m(x))$ if $\tau(x) = r$; certainly the $B_{\tau}(x,m)$'s form a base for \mathbb{R}_{τ} . Let $B^{\circ}_{\tau}(x,m)$ denote the interior of $B_{\tau}(x,m)$ in \mathbb{R}_{ε} .

3.1 Single-type subspaces

Fix $1 < N < \omega$. Let X be a subspace of \mathbb{R}^N_{τ} such that $\tau(x_n) = \tau(y_n)$ for all $\vec{x}, \vec{y} \in X$ and n < N; a subspace with this property is called a *single-type subspace*. For two points \vec{x} and \vec{y} of X, say $\vec{x} \triangleleft \vec{y}$ if $x_n < y_n$ when $\tau(y_n) = \ell$ and $y_n < x_n$ when $\tau(y_n) = r$.

For $\vec{x} \in X$ and $m < \omega$ let $Q(\vec{x}, m) = \{n < N : x_n \in Q_{\mathbb{R}}(m)\}$; let Q(m) consist of those \vec{x} with $Q(\vec{x}, m)$ nonempty. If $\vec{x} \in Q(m)$ for some m, let $q(\vec{x})$ be the least such m. Set $B(\vec{x}, m) = X \cap \prod_{n < N} B_{\tau}(x_n, m)$ and $B^{\circ}(\vec{x}, m) = X \cap \prod_{n < N} B^{\circ}_{\tau}(x_n, m)$. The $B(\vec{x}, m)$'s form a base for X and have the following properties.

Lemma 3.1. Fix $\vec{x} \in X$, $m < \omega$, $\vec{y} \in B^{\circ}(\vec{x}, m)$, and $\vec{z} \in B(\vec{x}, m)$ such that $\vec{y} \triangleleft \vec{z}$.

- (a) $B(\vec{y}, m) \subset B^{\circ}(\vec{x}, m).$
- (b) If $\{n \in Q(\vec{x}, m) : \tau(x_n) = e\} \subset Q(\vec{z}, m)$, then $\vec{y} \in B^{\circ}(\vec{z}, m)$.

(c) If
$$\vec{x} \in Q(m) \setminus Q(0)$$
, then $\vec{y} \in B^{\circ}(\vec{z}, q(\vec{x}) - 1)$.

Proof.

(a) Certainly $B_{\tau}(y_n, m) \subset B^{\circ}_{\tau}(x_n, m)$ for each n < N.

(b) Fix n < N. If $\tau(x_n) = \ell$ then $a_m(z_n) = a_m(x) < y_n < z_n \leq x_n$, so $y_n \in B^{\circ}_{\tau}(z_n, m)$. Similarly $y_n \in B^{\circ}_{\tau}(z_n, m)$ if $\tau(x_n) = r$.

Now suppose $\tau(x_n) = e$. If $n \notin Q(\vec{x}, m)$ then $n \notin Q(\vec{z}, m)$, so $a_m(x_n) = a_m(z_n)$ and $b_m(x_n) = b_m(z_n)$. If $n \in Q(\vec{x}, m)$ and $n \in Q(\vec{z}, m)$ then $x_n = z_n$, so $a_m(x_n) = a_m(z_n)$ and $b_m(x_n) = b_m(z_n)$. In either case $y_n \in B_\tau(z_n, m)$.

If $n \in Q(\vec{x}, m)$ but $n \notin Q(\vec{z}, m)$ it is possible, for example, that $y_n < x_n = a_m(z_n) < z_n$, in which case $y_n \notin B^{\circ}_{\tau}(z_n, m)$.

(c) Fix n < N and set $m' = q(\vec{x}) - 1$. Note that $0 \leq m' < m$, $a_{m'}(z_n) \leq a_m(x_n)$, and $b_m(x_n) \leq b_{m'}(z_n)$.

Let φ be a neighborhood assignment on X. We may assume that for each $\vec{x} \in X$ there exists $m < \omega$ such that $\varphi(\vec{x}) = B(\vec{x}, m)$; let $j(\vec{x})$ be the least such m. Take $\varphi^{\circ}(\vec{x})$ to mean $B^{\circ}(\vec{x}, j(\vec{x}))$. The following result is immediate.

Lemma 3.2. Fix $\vec{x} \in X$, $\vec{y} \in \varphi^{\circ}(\vec{x})$, and $\vec{z} \in \varphi(\vec{x})$ with $\vec{y} \triangleleft \vec{z}$.

(a) If $j(\vec{x}) \leq j(\vec{y})$, then $\varphi(\vec{y}) \subset \varphi^{\circ}(\vec{x})$.

(b) If
$$j(\vec{z}) \leq j(\vec{x})$$
 and $\{n \in Q(\vec{x}, j(\vec{x})) : \tau(x_n) = e\} \subset Q(\vec{z}, j(\vec{x}))$, then $\vec{y} \in \varphi^{\circ}(\vec{z})$.

(c) If $\vec{x} \in Q(j(\vec{x}))$ and $j(\vec{z}) < q(\vec{x})$, then $\vec{y} \in \varphi^{\circ}(\vec{z})$.

3.2 Extending de Caux's lemmas

Suppose for each $1 \leq M < N$ that every single-type subspace of \mathbb{R}^M_{τ} is a *D*-space. We extend the three lemmas in [2]. If *D* is a subset of *X* and we refer to the *assigned neighborhoods* of *D*, we mean the collection $\varphi[D]$.

Let \mathcal{A} be a collection of subsets of X such that $A \in \mathcal{A}$ if and only if $A \subset X$ is closed and nonempty, $\varphi^{\circ}(\vec{x}) \cap A = \emptyset$ for each $\vec{x} \in A$, and for each $\vec{x} \in A$ there exists $\vec{y} \in A \setminus \{\vec{x}\}$ with $\vec{x} \in \varphi(\vec{y})$. For $\vec{x}, \vec{y} \in X$, let $\delta(\vec{x}, \vec{y}) = \{n < N : \tau(x_n) \in \{\ell, r\} \land x_n = y_n\}$. Fix $A \in \mathcal{A}$, and for each $\vec{x} \in A$ define $T(\vec{x}) = \{\vec{y} \in A \setminus \{\vec{x}\} : \vec{x} \in \varphi(\vec{y})\}$ and $t(\vec{x}) = \min\{|\delta(\vec{x}, \vec{y})| : \vec{y} \in T(\vec{x})\}$. Let $T'(\vec{x})$ be a maximal subset of $T(\vec{x})$ such that $|\delta(\vec{x}, \vec{y})| = t(\vec{x})$ for all $\vec{y} \in T'(\vec{x})$, and $\delta(\vec{x}, \vec{y}) \neq \delta(\vec{x}, \vec{z})$ whenever \vec{y} and \vec{z} are two points of $T'(\vec{x})$. Set $O(\vec{x}) = \varphi(\vec{x}) \cap \bigcap \varphi[T'(\vec{x})]$ and $\delta(\vec{x}) = \{\delta(\vec{x}, \vec{y}) : \vec{y} \in T'(\vec{x})\}.$

Lemma 3.3. If $\vec{x} \neq \vec{y} \in A$, $\vec{y} \in O(\vec{x})$, and $\vec{z} \in T'(\vec{x})$, then $\delta(\vec{y}, \vec{z}) \subset \delta(\vec{x}, \vec{z})$ and $t(\vec{y}) \leq |\delta(\vec{y}, \vec{z})| \leq |\delta(\vec{x}, \vec{z})| = t(\vec{x})$. Hence, if $t(\vec{y}) = t(\vec{x})$ then $\delta(\vec{y}, \vec{z}) = \delta(\vec{x}, \vec{z})$.

Proof. Suppose $n \in \delta(\vec{y}, \vec{z}) \setminus \delta(\vec{x}, \vec{z})$. If $\tau(x_n) = \ell$ then $x_n < z_n = y_n$, and if $\tau(x_n) = r$ then $y_n = z_n < x_n$. In either case $\vec{y} \notin \varphi(\vec{x})$, a contradiction.

Lemma 3.4. If $K = \{\vec{x} \in A : t(\vec{x}) = \max t[A]\}$, then K contains a closed discrete subset of X whose assigned neighborhoods cover K.

Proof. Set $t^* = \max t[A]$. If $\vec{x} \in A \setminus K$ and $\vec{y} \in O(\vec{x}) \cap A$ then $t(\vec{y}) \leq t(\vec{x}) < t^*$, so K is closed. For $\vec{x}, \vec{y} \in K$, say $\vec{x} \prec \vec{y}$ if and only if $\delta(\vec{x}) \subsetneq \delta(\vec{y})$. Set $K_0 = K$.

Let \vec{x}_0 be \prec -minimal in K_0 , and put $L_0 = \{\vec{x} \in K_0 : \delta(\vec{x}) = \delta(\vec{x}_0)\}$. Suppose $\vec{x} \in K_0 \setminus L_0$ and $\vec{y} \in O(\vec{x}) \cap K_0$. Note $\delta(\vec{y}, \vec{z}) = \delta(\vec{x}, \vec{z})$ for each $\vec{z} \in T'(\vec{x})$, so $\delta(\vec{x}) \subset \delta(\vec{y})$. It follows that $\vec{y} \notin L_0$, so L_0 is closed in X. Let Δ be the unique member of $\delta[L_0]$, and form a paritition \mathcal{L} of L_0 so that two points \vec{x} and \vec{y} of L_0 belong to the same member of \mathcal{L} if and only if $x_n = y_n$ for each $n \in \bigcup \Delta$. Suppose $\vec{x} \in L_0$ and $\vec{y} \in O(\vec{x}) \cap L_0$. For each $n \in \bigcup \Delta$ there exists $\vec{z} \in T'(\vec{x})$ with $n \in \delta(\vec{x}, \vec{z})$; we have $x_n = y_n$ since $\delta(\vec{x}, \vec{z}) = \delta(\vec{y}, \vec{z})$. It follows that \mathcal{L} is a discrete collection of closed sets, each of which is a D-space by the inductive hypothesis. Then $L_0 = \bigcup \mathcal{L}$ is a D-space, so let $D_0 \subset L_0$ be closed discrete in X such that $\varphi[D_0]$ covers L_0 .

If $\varphi[D_0]$ does not cover K_0 , put $K_1 = K_0 \setminus \bigcup \varphi[D_0]$. Let \vec{x}_1 be \prec -minimal in K_1 , and put $L_1 = \{\vec{x} \in K_1 : \delta(\vec{x}) = \delta(\vec{x}_1)\}$. By a similar argument to that for L_0 , let $D_1 \subset L_1$ be closed discrete in X such that $\varphi[D_1]$ covers L_1 .

If $\varphi[D_1]$ does not cover K_1 , put $K_2 = K_1 \setminus \bigcup \varphi[D_1]$. Let \vec{x}_2 be \prec -minimal in K_2 , and ...

This process must end since $\delta[K]$ is finite, and the union of the D_n 's is a closed discrete subset of X whose assigned neighborhoods cover K.

Lemma 3.5. Let $H \subset X$ be closed such that $\varphi^{\circ}(\vec{x}) \cap H = \emptyset$ for all $\vec{x} \in H$. Then there exists $A \in \mathcal{A}$ and a closed discrete subset D of X such that $A \subset H$, $D \subset H \setminus A$, and $\varphi[D]$ covers $H \setminus A$.

Proof. For any subset H' of H, let $D(H') = \{\vec{x} \in H' : \vec{x} \notin \bigcup \varphi[H' \setminus \{\vec{x}\}]\}$. Certainly D(H') is closed discrete in H'.

Set $H_0 = H$. Suppose for some $\beta > 0$ that H_α has been defined for each $\alpha < \beta$ so that $H_\alpha = H_0 \setminus \bigcup \varphi[\bigcup_{\xi < \alpha} D(H_\xi)]$. Put $H_\beta = H_0 \setminus \bigcup \varphi[\bigcup_{\alpha < \beta} D(H_\alpha)]$. If $D(H_\beta) \neq \emptyset$ proceed to the next step; otherwise, set $\kappa = \beta$ and the construction terminates.

This must terminate. We claim $\{D(H_{\alpha}) : \alpha < \kappa\}$ is a discrete collection. Certainly $X \setminus H_0$ is open and misses each $D(H_{\alpha})$, and if $\vec{x} \in H_{\kappa}$ and $\vec{y} \in \varphi(\vec{x})$ then $\vec{y} \notin D(H_{\alpha})$ for each $\alpha < \kappa$. It remains to be seen that each point of $H_0 \setminus H_{\kappa} \subset \bigcup \varphi[\bigcup_{\alpha < \kappa} D(H_{\alpha})]$ has a neighborhood meeting at most one of the $D(H_{\alpha})$'s. To that end fix $\alpha < \kappa$ and $\vec{x} \in D(H_{\alpha})$; observe $\vec{y} \in \varphi(\vec{x})$ implies $\vec{y} \notin D(H_{\xi})$ for each $\xi < \alpha$, and $\alpha < \xi < \kappa$ implies $D(H_{\xi}) \subset H_{\xi} \subset H_0 \setminus \varphi(\vec{x})$ by construction.

We have $H_{\kappa} \in \mathcal{A}$, and $\bigcup_{\alpha < \kappa} D(H_{\alpha})$ is a closed discrete subset of X contained in $H \setminus H_{\kappa}$ whose assigned neighborhoods cover $H \setminus H_{\kappa}$.

Lemma 3.6. If $H \subset X$ is closed such that $\varphi^{\circ}(\vec{x}) \cap H = \emptyset$ for all $\vec{x} \in H$, then H contains a closed discrete subset of X whose assigned neighborhoods cover H.

Proof. Set $H_0 = H$. By Lemma 3.5 there exists $A_0 \in \mathcal{A}$ such that $A_0 \subset H_0$ and $H_0 \setminus A_0$ contains a closed discrete subset E_0 of X whose assigned neighborhoods cover $H_0 \setminus A_0$. If $A_0 = \emptyset$ put $D_0 = \emptyset$ and the construction terminates. Otherwise put $t_0 = \max t[A_0]$, and let $K_0 = \{\vec{x} \in A_0 : t(\vec{x}) = t_0\}$. By Lemma 3.4, let $D_0 \subset K_0$ be closed discrete in Xsuch that $\varphi[D_0]$ covers K_0 .

If the assigned neighborhoods of D_0 do not cover A_0 , let $H_1 = A_0 \setminus \bigcup \varphi[D_0]$. There exists $A_1 \in \mathcal{A}$ and E_1 closed discrete in X such that $A_1 \subset H_1$, $E_1 \subset H_1 \setminus A_1$, and the assigned neighborhoods of E_1 cover $H_1 \setminus A_1$. If $A_1 = \emptyset$ put $D_1 = \emptyset$ and the construction terminates. Otherwise put $t_1 = \max t[A_1]$ and take $K_1 = \{\vec{x} \in A_1 : t(\vec{x}) = t_1\}$; let $D_1 \subset K_1$ be closed discrete in X such that $\varphi[D_1]$ covers K_1 . If the assigned neighboorhoods of D_1 do not cover A_1 , let $H_2 = A_1 \setminus \bigcup \varphi[D_1]$. There exists ...

This process ends since the t_n 's are strictly decreasing. The union of the D_n 's and E_n 's is a closed discrete subset of X whose assigned neighborhoods cover H.

Lemma 3.7. Let $G \subset X$ such that $j(\vec{x}) = j(\vec{y})$ for all $\vec{x}, \vec{y} \in G$ and $\overline{G} \subset \bigcup \varphi^{\circ}[G]$. Then there is a countable $D \subset G$ closed discrete in X such that $\bigcup \varphi^{\circ}[D] = \bigcup \varphi^{\circ}[G]$.

Proof. Since finite powers of \mathbb{R}_{ε} are hereditarily Lindelöf, there is a countable subset C of G with $\bigcup \varphi^{\circ}[C] = \bigcup \varphi^{\circ}[G]$. Let C be well-ordered with order type ω and put $\vec{x}_0 = \min C$. Inductively define $\vec{x}_n = \min \{ \vec{x} \in C : \varphi^{\circ}(\vec{x}) \not\subset \bigcup_{m < n} \varphi^{\circ}(\vec{x}_m) \}$ for each $0 < n < \omega$, and put $D = \{ \vec{x}_n : n < \omega \}$. Certainly $\bigcup \varphi^{\circ}[D] = \bigcup \varphi^{\circ}[C]$.

Let $\vec{x} \in \overline{G}$; there exists $m < \omega$ such that $\vec{x} \in \varphi^{\circ}(\vec{x}_m)$. Observe that $n \neq m$ and $\vec{x}_n \in \varphi^{\circ}(\vec{x}_m)$ implies $\varphi^{\circ}(\vec{x}_n) \subset \varphi(\vec{x}_n) \subset \varphi^{\circ}(\vec{x}_m)$, since $j(\vec{x}_n) = j(\vec{x}_m)$. It follows that $\varphi^{\circ}(\vec{x}_m)$ is a neighborhood of \vec{x} which does not contain \vec{x}_n whenever m < n, so \vec{x} is not a limit point of D.

Lemma 3.8. If $F \subset X$ is closed and $G = \{\vec{x} \in F : j(\vec{x}) = \min j[F]\}$, then F contains a closed discrete subset of X whose assigned neighborhoods cover G.

Proof. Set $j^* = \min j[F]$. Fix n < N and let $K = \{\vec{x} \in \overline{G} : n \in Q(\vec{x}, j^*)\}$; note K is closed. Form a partition \mathcal{K} of K so that two points \vec{x} and \vec{y} of K belong to the same member of \mathcal{K} if and only if $x_n = y_n$. Observe \mathcal{K} is a discrete collection of closed sets whose every member is a D-space, so K is a D-space. This is true for each n < N, so let $E \subset \overline{G} \cap Q(j^*)$ be a closed discrete subset of X whose assigned neighborhoods cover $\overline{G} \cap Q(j^*)$.

Set $G_0 = G \setminus \bigcup \varphi[E]$. If \overline{G}_0 is covered by $\varphi^{\circ}[G_0]$, we are done by Lemma 3.7; otherwise, let $H_0 = \overline{G}_0 \setminus \bigcup \varphi^{\circ}[G_0]$ and note that H_0 is closed and misses $Q(j^*)$. Suppose there exist $\vec{x}, \vec{y} \in H_0$ with $\vec{y} \in \varphi^{\circ}(\vec{x})$. Then $\vec{x} \in \overline{G}_0 \setminus G_0$, so there exists $\vec{z} \in G_0$ such that $\vec{z} \in \varphi(\vec{x})$ and $\vec{y} \triangleleft \vec{z}$. By construction, $j(\vec{z}) = j^* \leq j(\vec{x})$ and $\vec{x} \in \overline{G} \setminus Q(j^*)$. If $\vec{x} \notin Q(j(\vec{x}))$ then $Q(\vec{x}, j(\vec{x})) = \emptyset$, so $\vec{y} \in \varphi^{\circ}(\vec{z})$ by Lemma 3.2(b). If $\vec{x} \in Q(j(\vec{x}))$ then $j(\vec{z}) = j^* < q(\vec{x})$, so $\vec{y} \in \varphi^{\circ}(\vec{z})$ by Lemma 3.2(c). In either case we get $\vec{y} \notin H_0$, a contradiction. It follows that $\varphi^{\circ}(\vec{x}) \cap H_0 = \emptyset$ for all $\vec{x} \in H_0$. By Lemma 3.6, let $D_0 \subset H_0$ be a closed discrete subset of X whose assigned neighborhoods cover H_0 . Note $\bigcup \varphi[D_0]$ meets G_0 since $H_0 \subset \overline{G}_0$; if the assigned neighborhoods of D_0 cover G_0 we are done, otherwise continue.

Suppose for some $\beta > 0$ that for each $\alpha < \beta$ we have defined $G_{\alpha} \subset G_0$, $H_{\alpha} \subset \overline{G}_{\alpha}$, and D_{α} such that $\varphi[D_{\alpha}]$ covers H_{α} . If the assigned neighborhoods of $\bigcup_{\alpha < \beta} D_{\alpha}$ cover G_0 the construction terminates; put $\kappa = \beta$, $G_{\beta} = \emptyset$, and $D_{\beta} = \emptyset$. Otherwise put $G_{\beta} = G_0 \setminus \bigcup_{\alpha < \beta} D_{\alpha}$] and do as follows.

- (a) If $\overline{G}_{\beta} \subset \bigcup \varphi^{\circ}[G_{\beta}]$, use Lemma 3.7 to get $D_{\beta} \subset G_{\beta}$ closed discrete in X with $\varphi^{\circ}[D_{\beta}]$ a cover of \overline{G}_{β} . The construction terminates; take $\kappa = \beta$.
- (b) If $\overline{G}_{\beta} \not\subset \bigcup \varphi^{\circ}[G_{\beta}]$, define $H_{\beta} = \overline{G}_{\beta} \setminus \bigcup \varphi^{\circ}[G_{\beta}]$ and note that H_{β} is closed and misses $Q(j^{*})$. A similar argument to that for H_{0} shows $\varphi^{\circ}(\vec{x}) \cap H_{\beta} = \emptyset$ for all $\vec{x} \in H_{\beta}$. By Lemma 3.6, let $D_{\beta} \subset H_{\beta}$ be a closed discrete subset of X whose assigned neighborhoods cover H_{β} . Note that $\bigcup \varphi[D_{\beta}]$ meets G_{β} , and proceed to the next step.

This process must terminate; we get collections $\{G_{\alpha} : \alpha < \kappa\}$, $\{H_{\alpha} : \alpha < \kappa\}$, and $\{D_{\alpha} : \alpha < \kappa\}$ defined as above for some κ , and $D_{\kappa} \subset G_{\kappa} \subset G_0$ is a closed discrete subset of X whose assigned neighborhoods cover G_{κ} .

Let $Y = \{\vec{y}_{\alpha} : \alpha < \kappa\}$ so that $\vec{y}_{\alpha} \in D_{\alpha}$ for each $\alpha < \kappa$. Fix $\alpha < \beta < \kappa$. Note $\vec{y}_{\alpha} \in D_{\alpha} \subset H_{\alpha} = \overline{G}_{\alpha} \setminus \bigcup \varphi^{\circ}[G_{\alpha}]$, so $\vec{y}_{\alpha} \notin \bigcup \varphi^{\circ}[G_{\alpha}]$. Recall $G_{\beta} = G_{0} \setminus \bigcup \varphi[\bigcup_{\xi < \beta} D_{\xi}]$ and $G_{\alpha} = G_{0} \setminus \bigcup \varphi[\bigcup_{\xi < \alpha} D_{\xi}]$, so $G_{\beta} \subset G_{\alpha}$ and $\overline{G}_{\beta} \cap \bigcup \varphi[D_{\alpha}] = \emptyset$. By construction $H_{\alpha} = \overline{G}_{\alpha} \setminus \bigcup \varphi^{\circ}[G_{\alpha}] \subset \bigcup \varphi[D_{\alpha}]$, so $\overline{G}_{\beta} \cap H_{\alpha} = \emptyset$. But $\overline{G}_{\beta} \subset \overline{G}_{\alpha}$, so $\vec{y}_{\beta} \in D_{\beta} \subset H_{\beta} \subset \overline{G}_{\beta} \subset \overline{G}_{\alpha} \setminus H_{\alpha} = \bigcup \varphi^{\circ}[G_{\alpha}]$. This also shows $D_{\alpha} \cap D_{\beta} = \emptyset$.

Finally, suppose \vec{x} is a limit point of Y; there exists $\alpha < \beta < \kappa$ such that $\vec{y}_{\alpha}, \vec{y}_{\beta} \in B(\vec{x}, j^*)$ and $\vec{y}_{\alpha} \triangleleft \vec{y}_{\beta}$. Since $\vec{x} \notin Q(j^*)$ we have $\vec{y}_{\alpha} \in B(\vec{y}_{\beta}, j^*)$, and \vec{y}_{β} but not \vec{y}_{α} belongs to $\bigcup \varphi^{\circ}[G_{\alpha}]$. Take $\vec{z} \in G_{\alpha}$ such that \vec{y}_{β} but not \vec{y}_{α} belongs to $\varphi^{\circ}(\vec{z})$. Note $j(\vec{z}) = j^*$, so $B(\vec{y}_{\beta}, j^*) \subset B^{\circ}(\vec{z}, j^*) = \varphi^{\circ}(\vec{z})$ by Lemma 3.1. This implies $\vec{y}_{\alpha} \in \varphi^{\circ}(\vec{z})$, a contradiction.

Since Y is closed discrete in X, we have that $D = \bigcup_{\alpha < \kappa} D_{\alpha}$ is a closed discrete subset of X whose assigned neighborhoods cover $G_0 \setminus G_{\kappa}$.

Then $D \cup D_{\kappa} \cup E \subset F$ is a closed discrete subset of X whose assigned neighborhoods cover G.

3.3 The result

We have that X is a D-space by Theorem 1.11. We have shown that every singletype subspace of \mathbb{R}^N_{τ} is a D-space if every single-type subspace of \mathbb{R}^M_{τ} is a D-space for $1 \leq M < N$. But \mathbb{R}_{τ} is hereditarily a D-space, so the following is true.

Theorem 3.9. If $\tau \in GP'(\mathbb{R})$ and $N \ge 1$, then every single-type subspace of \mathbb{R}^N_{τ} is a *D*-space.

Extending the previous theorem to every GO-partition in $GP(\mathbb{R})$ is straightforward. Let $\tau \in GP(\mathbb{R})$. We know \mathbb{R}_{τ} is hereditarily a *D*-space, so fix N > 1 and let *X* be a single-type subspace of \mathbb{R}_{τ}^{N} . Pick any $\vec{x} \in X$ and set $i^{*} = \{n < N : \tau(x_{n}) = i\}$. Form a partition \mathcal{X} of *X* so that two points \vec{x} and \vec{y} of *X* belong to the same member of \mathcal{X} if and only if $x_{n} = y_{n}$ for each $n \in i^{*}$. Then $X = \bigcup \mathcal{X}$ is a *D*-space, as \mathcal{X} is a discrete collection of closed subsets of *X* whose every member is a *D*-space.

We have that every single-type subspace of a finite power of \mathbb{R} with a GO-topology is a *D*-space. Since any subspace is a finite union of single-type subspaces, the following is proved.

Theorem 3.10. Every subspace of a finite power of \mathbb{R} with a GO-topology is a finite union of D-spaces.

Corollary 3.11. Every finite power of \mathbb{R} with a GO-topology is hereditarily a transitively D-space.

Chapter 4

A Note on Sorgenfrey Suslin Lines

We can generalize the argument used in [8] to show that finite powers of the Sorgenfrey line are *D*-spaces. A space X is called a *generalized left-separated space* (*GLS-space*) if there is a reflexive binary relation \preccurlyeq on X, called a *GLS-relation*, such that every nonempty closed subset of X has a \preccurlyeq -minimal element and $\{y \in X : x \preccurlyeq y\}$ is open for each $x \in X$. We need the following results.

Lemma 4.1 [8, Theorem 2]. Every GLS-space is a D-space.

Lemma 4.2 [8, Lemma 2.1]. Let \preccurlyeq be a reflexive and transitive binary relation of a space X such that for every nonempty \preccurlyeq -chain K in X there is an $m \in \overline{K}$ with $m \preccurlyeq x$ for all $x \in K$. Then each non-empty closed subset of X has a \preccurlyeq -minimal element.

Lemma 4.3 [7, Theorem 1.1(g)]. Suppose X is a paracompact GO-space and $C \subset X$ is closed. There are closed discrete sets S and T which are, respectively, well-ordered and reverse well-ordered by the given ordering on X, have $S \cup T \subset C$, and have the property that if $x \in C$ then some points $s \in S$ and $t \in T$ have $s \leq x \leq t$.

Let $\langle X, \leqslant \rangle$ be a linearly ordered set, and fix $N \ge 1$.

Lemma 4.4. Suppose every nonempty subset of X_{λ} which is bounded above has a least upper bound. Then $(-\infty, x]^N$ is a D-space for each $x \in X_{\lambda}$.

Proof. Fix $x \in X$ and put $Y = (-\infty, x]^N$. Define a reflexive and transitive binary relation \preccurlyeq on Y so that $\vec{x} \preccurlyeq \vec{y}$ if and only if $y_n \leqslant x_n$ for all n < N. Certainly $\{\vec{y} \in Y : \vec{x} \preccurlyeq \vec{y}\} = \prod_{n < N} (-\infty, x_n]$ is open in Y for each $\vec{x} \in Y$.

Let K be a nonempty \preccurlyeq -chain in Y, and put $K_n = \{x_n : \vec{x} \in K\}$ for each n < N. Note that each K_n is bounded above in X_{λ} , so we may define $z_n = \sup K_n$. Put $\vec{z} = \langle z_0, \ldots, z_{N-1} \rangle$; observe that $\vec{z} \in Y$ and $\vec{z} \preccurlyeq \vec{x}$ for all $\vec{x} \in K$.

Consider a basic open neighborhood $U = \prod_{n < N} (z'_n, z_n]$ of \vec{z} in Y. For each n < N, there exists $\vec{x}_n \in K$ such that $z'_n < \vec{x}_n(n) \leq z_n$. Since K is a \preccurlyeq -chain, we may define $\vec{x} = \max{\{\vec{x}_0, \ldots, \vec{x}_{N-1}\}}$. Then $\vec{x} \in U$, so $\vec{z} \in \overline{K}$. It follows that \preccurlyeq is a GLS-relation on Y.

Theorem 4.5. Suppose every nonempty subset of X_{λ} which is bounded above has a least upper bound, and suppose there is a sequence $\langle x_n \rangle_{n < \omega}$ such that for every $x \in X_{\lambda}$ there exists $n < \omega$ such that $x \leq x_n$. Then X_{λ}^N is a D-space.

Proof. Each $(-\infty, x_n]^N$ is closed in X^N_λ and a *D*-space.

We can now give some sufficient conditions for finite powers of Sorgenfrey topologies to be D-spaces. Recall that a space is *connected* if it is not the union of two proper nonempty open subsets.

Theorem 4.6. Let $\langle X, \leqslant \rangle$ be a linearly ordered set. If X_{ε} is connected and paracompact, then every finite power of X_{λ} is a D-space.

Proof. Connectedness gives that every nonempty bounded-above subset has a least upper bound [3, Theorem 183], and paracompactness gives a cofinal sequence $\langle x_n \rangle_{n < \omega}$. Then $X_{\lambda}^N = \bigcup_{n < \omega} (-\infty, x_n]^N$, with each $(-\infty, x_n]^N$ closed and a *D*-space.

Recall that a space satisfies the *countable chain condition* (or, is *ccc*) if every pairwisedisjoint collection of open subsets of the space is countable. Now suppose that X_{ε} is a Suslin line; that is, X_{ε} is *ccc* and connected, has no first or last point, and is not homeomorphic to \mathbb{R}_{ε} . Since a GO-space is *ccc* if and only if it is hereditarily Lindelöf [5, Proposition 2.10] and regular Lindelöf spaces are paracompact [3, Theorem 126], every finite power of X_{λ} is a *D*-space.

References

- [1] D. Dauvergne, Not every transitively D-space is D, Topology Appl. 209 (2016), 115– 119.
- [2] P. de Caux, Yet another property of the Sorgenfrey plane, Topology Proc. 6 (1981), 31–43.
- [3] G. Gruenhage and M. Guest, Topology course notes: Fall 2013 to spring 2015, Auburn University, 2019, Available at http://www.auburn.edu/~gruengf/papers/ Topology_Course_Notes.pdf.
- [4] H. Guo and H. Junnila, *D-spaces and thick covers*, Topology Appl. 158 (2011), 2111–2121.
- [5] D. J. Lutzer, On generalized ordered spaces, Dissertationes Math. 89 (1971).
- [6] D. T. Soukup and P. J. Szeptycki, The union of two D-spaces need not be D, Fundamenta Mathematicae 220 (2013), 129–137.
- [7] E. K. van Douwen and D. J. Lutzer, A note on paracompactness in generalized ordered spaces, Proc. Amer. Math. Soc. 125 (1997), no. 4, 1237–1245.
- [8] E. K. van Douwen and W. F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific Journal of Mathematics 81 (1979), no. 2, 371–377.