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Abstract

In 1981 Peter de Caux proved that finite powers of the Sorgenfrey line are hereditarily

D-spaces. In this paper we build on de Caux’s technique to show that any subspace of a

finite power of the reals with a generalized ordered topology is a finite union of D-spaces

and therefore a transitively D-space. We also note that finite powers of Sorgenfrey Suslin

lines are D-spaces.
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Chapter 1

D-Spaces

A neighborhood assignment on a topological spaceX is a function ϕ fromX to its topology

such that x ∈ ϕ(x) for each x ∈ X. We say X is a D-space if for every neighborhood

assignment ϕ on X there exists a closed discrete subset D of X such that ϕ[D] covers

X. A neighborhood assignment is transitive if ϕ(y) ⊂ ϕ(x) whenever y ∈ ϕ(x), so a

transitively D-space is one in which we can find such a closed discrete subset for every

transitive neighborhood assignment. Certainly any D-space is a transitively D-space, but

Dauvergne showed recently [1] that a transitively D-space need not be a D-space.

For terms or notation left undefined, see [3].

1.1 About closed discrete sets

Let A be a subset of a space X. To be precise we say A is closed if every point not in

A has a neighborhood missing A, A is discrete if every point in A has a neighborhood

missing every other point of A, and x is a limit point of A if every neighborhood of x

meets A at a point other than x. Some ways of identifying closed discrete sets follow

directly from our definitions.

Lemma 1.1. The following are equivalent for a subset D of a space X.

(a) D is closed discrete in X.

(b) D has no limit points in X.

(c) There is a closed subset H of X containing D such that no point of H is a limit

point of D.

1



(d) There is a closed subspace H of X containing D such that D is closed discrete

in H.

(e) There is a closed subset H of X containing D such that every x ∈ H has a

neighborhood U with U ∩D ⊂ {x}.

(f) Every x ∈ X has a neighborhood U with U ∩D ⊂ {x}.

We will frequently need to build closed discrete sets by combining smaller closed

discrete sets. The next few lemmas give some conditions under which we may do so.

Lemma 1.2. A finite union of closed discrete subsets of a space X is closed discrete.

Recall that a collection of subsets of a space is discrete if every point of the space

has a neighborhood meeting at most one member of the collection.

Lemma 1.3. Let F = {Fα : α < κ} be a discrete collection of closed subsets of a space

X. If Dα ⊂ Fα is closed discrete in Fα for each α < κ, then D =
⋃
α<κ

Dα is closed discrete

in X.

Proof. Let F =
⋃
F and fix x ∈ F ; x ∈ Fα for some α < κ. There is a neighborhood

U of x open-in-F missing Fβ for β 6= α, and a neighborhood V of x open-in-F with

V ∩Dα ⊂ {x}. It follows that (U ∩ V ) ∩D ⊂ {x}, so D is closed discrete in F . But F

is closed in X [3, Lemma 135], so D is closed discrete in X. �

Lemma 1.4. Let D =
⋃
α<κ

Dα be a union of closed discrete subsets of a space X. If every

point of X has a neighborhood meeting only finitely many of the Dα’s, then D is closed

discrete.

Proof. Fix x ∈ X, and let Ux be a neighborhood of x such that F = {α < κ : Ux ∩Dα 6= ∅}

is finite. For each α ∈ F , let Uα be a neighborhood of x with Uα ∩ Dα ⊂ {x}. Then

U = Ux ∩
⋂
α∈F

Uα is a neighborhood of x such that U ∩D ⊂ {x}. �
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Lemma 1.5. Let {Dα : α < κ} be a pairwise-disjoint collection of closed discrete subsets

of a first-countable space X. If every {xα : α < κ} ⊂ X with xα ∈ Dα is closed discrete

in X, then D =
⋃
α<κ

Dα is closed discrete in X.

Proof. If κ < ω the result is immediate, so we assume κ > ω. Suppose D is not closed

discrete. Fix a limit point x of D and let {Bn : n < ω} be a decreasing local base at x.

For each n < ω, let An consist of those α < κ for which Bn meets Dα at a point other

than x. Observe that for each n < ω we have |An| > ω and An ⊃ An+1.

Set α0 = minA0, and let x0 be a point of B0∩Dα0 other than x. Suppose for some n >

0 that αm and xm have been defined for every m < n. Take αn = minAn \{αm : m < n},

and let xn be a point of Bn ∩Dαn other than x. In this way, define αn and xn for each

n < ω.

By construction each Bn contains infinitely many of the xn’s, so x is a limit point of

{xn : n < ω}. It follows that there is a subset {xα : α < κ} of X with xα ∈ Dα which is

not closed discrete. �

1.2 Unions of (transitively) D-spaces

In general we cannot say much about unions of D-spaces; in [6] Soukup and Szeptycki

gave a consistent example of a space which is the union of two D-spaces but not itself a

D-space. However, Lemma 1.3 implies the following.

Lemma 1.6. Let {Yα : α < κ} be a discrete collection of closed subsets of a space X. If

each Yα is a D-space, then Y =
⋃
α<κ

Yα is a D-space.

The conditions in Lemma 1.6 can be relaxed a bit; the following is proved in [4].

Lemma 1.7. Let {Yα : α < κ} be a collection of subsets of a space X such that
⋃
α<β

Yα

is closed in X for each β 6 κ. If each Yα is a D-space, then Y =
⋃
α<κ

Yα is a D-space.

Transitively D-spaces are a bit nicer. First, observe that being a (transitively) D-

space is weakly hereditary.
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Lemma 1.8. Any closed subspace of a (transitively) D-space is a (transitively) D-space.

Proof. Let ϕ be a (transitive) neighborhood assignment on a closed subset Y of a

(transitively) D-space X. For each x ∈ X, define ψ(x) = X \ Y when x /∈ Y , and

ψ(x) = ϕ(x) ∪X \ Y when x ∈ Y ; certainly ψ is a (transitive) neighborhood assignment

on X. If D ⊂ X is closed discrete and ψ[D] covers X, then D ∩ Y is closed discrete in Y

and ϕ[D ∩ Y ] covers Y . �

Lemma 1.9. A finite union of transitively D-spaces is a transitively D-space.

Proof. Let X = Y ∪ Z, where Y and Z are transitively D-spaces, and fix a transitive

neighborhood assignment ϕ on X. For each y ∈ Y define ψ(y) = ϕ(y) ∩ Y ; then ψ is

a transitive neighborhood assignment on Y , so let DY be closed discrete in Y such that

ψ[DY ] is a cover of Y .

Put A = DY \DY . Since no point of Y can be a limit point of DY , A is closed in X

and contained in Z. This means A is a transitively D-space; let DA be closed discrete in

A such that ϕ[DA] covers A.

Set D′Y = DY \
⋃
ϕ[DA], and observe

⋃
ϕ[DY ] ⊂

⋃
ϕ[D′Y ∪DA] by transitivity. If

D′Y is closed discrete in X, then D′Y ∪DA is closed discrete in X such that ϕ[D′Y ∪DA]

covers A ∪ Y . To that end, first note that any limit point of D′Y must belong to DY .

Since DY is discrete in Y , any limit point of D′Y must in fact belong to DY \ DY = A.

But A ⊂
⋃
ϕ[DA] and

⋃
ϕ[DA] misses D′Y by construction, so D′Y has no limit points.

Let K = Z \
⋃
ϕ[D′Y ∪DA]; K is closed in X and contained in Z. Let DK be closed

discrete in K (hence, in X) such that ϕ[K] covers K. Then D′Y ∪ DA ∪ DK is closed

discrete in X and ϕ[D′Y ∪DA ∪DK ] covers X. �

1.3 Two easy examples

Recall that a network for a space X is a collection N of subsets of X such that, whenever

U is open and contains x, there is some N ∈ N with x ∈ N ⊂ U . The following is

straightforward.
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Lemma 1.10. Let N be a network for a space X. If for every ψ : X → N with x ∈ ψ(x)

there is a closed discrete subset D of X such that ψ[D] covers X, then X is a D-space.

Proof. Let ϕ be a neighborhood assignment on X. For each x ∈ X pick ψ(x) ∈ N such

that x ∈ ψ(x) ⊂ ϕ(x). If D is a subset of X such that ψ[D] covers X, then ϕ[D] covers

X. �

This allows us to devise a particularly nice base for our space and then investigate

only those neighborhood assignments whose image is in the base. For first-countable

spaces, we can make use of the following.

Theorem 1.11. Let ϕ be a neighborhood assignment on a space X. Suppose there exists

a function j : X → ω such that, whenever F ⊂ X is closed, there exists D ⊂ F closed

discrete in X such that ϕ[D] covers {x ∈ F : j(x) = min j[F ]}. Then there exists a closed

discrete subset D of X such that ϕ[D] covers X.

Proof. Set F0 = X, j0 = min j[F0] andG0 = {x ∈ F0 : j(x) = j0}. LetD0 ⊂ F0 be closed

discrete in X such that ϕ[D0] covers G0. If ϕ[D0] covers F0 we are done; otherwise, note

ϕ[D0] covers those x with j(x) 6 j0 and proceed.

Suppose for some β > 0 that Fα, jα, Gα, and Dα have been defined for each α < β.

If ϕ[
⋃
α<β

Dα] covers F0, take κ = β and the process terminates. Otherwise put Fβ =

F0 \
⋃
α<β

ϕ[Dα], jβ = min j[Fβ], and Gβ = {x ∈ Fβ : j(x) = jβ}. Let Dβ ⊂ Fβ be closed

discrete in X such that ϕ[Dβ] covers Gβ. Observe j0 < · · · < jβ and ϕ[
⋃
α6β

Dα] covers

those x with j(x) 6 jβ. Continue with the induction.

This process must terminate; for some κ 6 ω we get a collection {Dα : α < κ} of

closed discrete subsets of X such that ϕ[
⋃
α<κ

Dα] covers X. Fix x ∈ X. There exists α < κ

and y ∈ Dα such that x ∈ ϕ(y). By construction ϕ(y) misses Dβ whenever α < β < κ,

so
⋃
α<κ

Dα is closed discrete in X by Lemma 1.4. �

We provide two examples of using Theorem 1.11. Recall that the continuous image

of a separable metric space is called a cosmic space.

Theorem 1.12. Cosmic spaces are hereditarily D-spaces.
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Proof. Fix a continuous surjection f from a separable metric space Y onto a space X.

If B = {Bk : k < ω} is a base for Y , then N = {Nk : k < ω} is a network for X, where

Nk = f [Bk]. If Z is a subspace of X then {Z ∩Nk : k < ω} is a countable network for Z,

so it suffices to show X is a D-space. Fix a neighborhood assignment ϕ on X, and for

each x ∈ X let j(x) be minimal so that x ∈ Nj(x) ⊂ ϕ(x).

Let F ⊂ X be closed, set j∗ = min j[F ], and take G = {x ∈ F : j(x) = j∗}. Observe

that x ∈ Nj∗ ⊂ ϕ(x) for each x ∈ G, so G ⊂ Nj∗ . For each x ∈ X, {x} is a closed discrete

subset of X with ϕ[{x}] a cover of G. By Theorem 1.11, X is a D-space. �

Theorem 1.13. Metrizable spaces are hereditarily D-spaces.

Proof. Fix a metric space 〈X, d〉; every subspace of X is metrizable, so it suffices to

show X is a D-space. Fix a neighborhood assignment ϕ on X, and for each x ∈ X define

j(x) to be the least nonnegative integer such that B(x, 2−j(x)) lies within ϕ(x).

Let F ⊂ X be closed, set j∗ = min j[F ], and take G = {x ∈ F : j(x) = j∗}. Well-

order G and set x0 = minG. If xα has been defined for each α < β, take xβ = minG \⋃
α<β

ϕ(xα). Continue in this way until the ϕ(xα)’s cover G. The set D consisting of the

xα’s is closed discrete, since for each x ∈ X the ball B(x, 4−j
∗
) contains at most one point

of D. By Theorem 1.11, X is a D-space. �
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Chapter 2

GO-Topologies

Let 〈X,6〉 be a linearly ordered set. Denote by T6 the order topology on X; that is,

the topology generated by the subbase {X} ∪ {(−∞, x) : x ∈ X} ∪ {(x,∞) : x ∈ X}. A

topology T on X is a generalized ordered topology (GO-topology) if T6 ⊂ T and T has a

base of 6-convex sets. Note that T6 is itself a GO-topology on X.

In [8] van Douwen and Pfeffer showed that every finite power of the Sorgenfrey line

is a D-space. Peter de Caux proved in [2] that finite powers of the Sorgenfrey line are in

fact hereditarily D-spaces. In this paper we build on de Caux’s technique to show that

any subspace of a finite power of the reals with a GO-topology is a finite union of D-

spaces. This will imply that finite powers of the reals with a GO-topology are hereditarily

transitively D-spaces.

2.1 GO-partitions

We generate GO-topologies using GO-partitions, functions from X to the set of symbols

{`, e, r, i}. From our definitions we immediately get the following.

Lemma 2.1. If τ is a GO-partition of a linearly ordered set 〈X,6〉, then the topology T

generated by the subbase T6∪{(−∞, x] : τ(x) = `}∪{[x,∞) : τ(x) = r}∪{{x} : τ(x) = i}

is a GO-topology on X.

We will let Tτ denote the GO-topology generated in Lemma 2.1, and Xτ will denote

the generalized ordered space (GO-space) 〈X, Tτ 〉. For any linearly ordered set, the GO-

partitions ε and λ are those which assign to every point the values e and `, respectively.
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If the linearly ordered set is R, for example, then Rε is the set of reals with the usual

metric topology and Rλ is the Sorgenfrey line. The next result says that we can examine

the GO-topologies on X by considering the GO-partitions of X.

Lemma 2.2. If T is a GO-topology on the linearly ordered set X, then there exists a

GO-partition τ such that T = Tτ .

Proof. For each x ∈ X define τ(x) to be i if x is isolated in T , ` if x is nonisolated and

has a neighborhood (ax, x] in T , r if x is nonisolated and has a neighborhood [x, bx) in

T , and e otherwise. Observe that τ is well-defined and a GO-partition on X.

First note that a point x is isolated in T if and only if it is isolated in Tτ . Suppose

τ(x) = ` and y < x. Then (y, x] = (y,∞) ∩ (−∞, x] is open in Tτ . Moreover (y, x] =

(y, x) ∪ (ax, x] or (y, x] = (ax, x] ∩ (y,∞), both of which are open in T . Similarly, if

τ(x) = r then [x, y) is open in T and Tτ for each y > x. Finally both T and Tτ contain

T6, so T = Tτ . �

Let GP(X) denote the set of all GO-partitions on X, and let GP′(X) denote the

set of all GO-partitions on X whose image does not include i. We will see that, for the

property we are interested in, we may do most of our work in GP′(R) and then easily

extend the result to all of GP(R).

2.2 Paracompactness

Recall that a space X is paracompact if every open cover of X has a locally finite open

refinement, where a collection of subsets of X is locally finite whenever each point of X

has a neighborhood meeting only finitely many members of the collection, and a collection

U of subsets of X is a refinement of a collection V of subsets of X if for each U ∈ U there

exists V ∈ V such that U ⊂ V . In the class of GO-spaces, being a D-space is equivalent

to being paracompact.

Lemma 2.3 [5, Theorem 4.10]. Let 〈X,6〉 be a linearly ordered set. If Xε is hereditarily

paracompact then Xτ is hereditarily paracompact for each τ ∈ GP(X).
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Lemma 2.4 [7, Theorem 1.2]. Let 〈X,6〉 be a linearly ordered set. For τ ∈ GP(X), Xτ

is paracompact if and only if Xτ is a D-space.

Since a subspace of a GO-space is itself a GO-space, we conclude the following.

Theorem 2.5. Let 〈X,6〉 be a linearly ordered set. If Xε is hereditarily paracompact

then Xτ is hereditarily a D-space for each τ ∈ GP(X).

In particular, Rτ is hereditarily a D-space for each τ ∈ GP(R).
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Chapter 3

Every Subspace of RN
τ is a Finite Union of D-Spaces

Fix τ ∈ GP′(R). For x ∈ R and m < ω let QR(m) be the set of integer multiples of

2−m, am(x) the greatest point of QR(m) less than x, and bm(x) the least point of QR(m)

greater than x. Define Bτ (x,m) to be (am(x), x] if τ(x) = `, (am(x), bm(x)) if τ(x) = e,

and [x, bm(x)) if τ(x) = r; certainly the Bτ (x,m)’s form a base for Rτ . Let B◦τ (x,m)

denote the interior of Bτ (x,m) in Rε.

3.1 Single-type subspaces

Fix 1 < N < ω. Let X be a subspace of RN
τ such that τ(xn) = τ(yn) for all ~x, ~y ∈ X and

n < N ; a subspace with this property is called a single-type subspace. For two points ~x

and ~y of X, say ~x / ~y if xn < yn when τ(yn) = ` and yn < xn when τ(yn) = r.

For ~x ∈ X and m < ω let Q(~x,m) = {n < N : xn ∈ QR(m)}; let Q(m) consist of

those ~x with Q(~x,m) nonempty. If ~x ∈ Q(m) for some m, let q(~x) be the least such m.

Set B(~x,m) = X ∩
∏
n<N

Bτ (xn,m) and B◦(~x,m) = X ∩
∏
n<N

B◦τ (xn,m). The B(~x,m)’s

form a base for X and have the following properties.

Lemma 3.1. Fix ~x ∈ X, m < ω, ~y ∈ B◦(~x,m), and ~z ∈ B(~x,m) such that ~y / ~z.

(a) B(~y,m) ⊂ B◦(~x,m).

(b) If {n ∈ Q(~x,m) : τ(xn) = e} ⊂ Q(~z,m), then ~y ∈ B◦(~z,m).

(c) If ~x ∈ Q(m) \Q(0), then ~y ∈ B◦(~z, q(~x)− 1).

Proof.
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(a) Certainly Bτ (yn,m) ⊂ B◦τ (xn,m) for each n < N .

(b) Fix n < N . If τ(xn) = ` then am(zn) = am(x) < yn < zn 6 xn, so yn ∈ B◦τ (zn,m).

Similarly yn ∈ B◦τ (zn,m) if τ(xn) = r.

Now suppose τ(xn) = e. If n /∈ Q(~x,m) then n /∈ Q(~z,m), so am(xn) = am(zn) and

bm(xn) = bm(zn). If n ∈ Q(~x,m) and n ∈ Q(~z,m) then xn = zn, so am(xn) = am(zn) and

bm(xn) = bm(zn). In either case yn ∈ Bτ (zn,m).

If n ∈ Q(~x,m) but n /∈ Q(~z,m) it is possible, for example, that yn < xn = am(zn) <

zn, in which case yn /∈ B◦τ (zn,m).

(c) Fix n < N and set m′ = q(~x) − 1. Note that 0 6 m′ < m, am′(zn) 6 am(xn), and

bm(xn) 6 bm′(zn). �

Let ϕ be a neighborhood assignment on X. We may assume that for each ~x ∈ X

there exists m < ω such that ϕ(~x) = B(~x,m); let j(~x) be the least such m. Take ϕ◦(~x)

to mean B◦(~x, j(~x)). The following result is immediate.

Lemma 3.2. Fix ~x ∈ X, ~y ∈ ϕ◦(~x), and ~z ∈ ϕ(~x) with ~y / ~z.

(a) If j(~x) 6 j(~y), then ϕ(~y) ⊂ ϕ◦(~x).

(b) If j(~z) 6 j(~x) and {n ∈ Q(~x, j(~x)) : τ(xn) = e} ⊂ Q(~z, j(~x)), then ~y ∈ ϕ◦(~z).

(c) If ~x ∈ Q(j(~x)) and j(~z) < q(~x), then ~y ∈ ϕ◦(~z).

3.2 Extending de Caux’s lemmas

Suppose for each 1 6 M < N that every single-type subspace of RM
τ is a D-space. We

extend the three lemmas in [2]. If D is a subset of X and we refer to the assigned

neighborhoods of D, we mean the collection ϕ[D].

Let A be a collection of subsets of X such that A ∈ A if and only if A ⊂ X is closed

and nonempty, ϕ◦(~x)∩A = ∅ for each ~x ∈ A, and for each ~x ∈ A there exists ~y ∈ A\{~x}

with ~x ∈ ϕ(~y). For ~x, ~y ∈ X, let δ(~x, ~y) = {n < N : τ(xn) ∈ {`, r} ∧ xn = yn}.
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Fix A ∈ A, and for each ~x ∈ A define T (~x) = {~y ∈ A \ {~x} : ~x ∈ ϕ(~y)} and t(~x) =

min {|δ(~x, ~y)| : ~y ∈ T (~x)}. Let T ′(~x) be a maximal subset of T (~x) such that |δ(~x, ~y)| =

t(~x) for all ~y ∈ T ′(~x), and δ(~x, ~y) 6= δ(~x, ~z) whenever ~y and ~z are two points of T ′(~x). Set

O(~x) = ϕ(~x) ∩
⋂
ϕ[T ′(~x)] and δ(~x) = {δ(~x, ~y) : ~y ∈ T ′(~x)}.

Lemma 3.3. If ~x 6= ~y ∈ A, ~y ∈ O(~x), and ~z ∈ T ′(~x), then δ(~y, ~z) ⊂ δ(~x, ~z) and

t(~y) 6 |δ(~y, ~z)| 6 |δ(~x, ~z)| = t(~x). Hence, if t(~y) = t(~x) then δ(~y, ~z) = δ(~x, ~z).

Proof. Suppose n ∈ δ(~y, ~z) \ δ(~x, ~z). If τ(xn) = ` then xn < zn = yn, and if τ(xn) = r

then yn = zn < xn. In either case ~y /∈ ϕ(~x), a contradiction. �

Lemma 3.4. If K = {~x ∈ A : t(~x) = max t[A]}, then K contains a closed discrete subset

of X whose assigned neighborhoods cover K.

Proof. Set t∗ = max t[A]. If ~x ∈ A \K and ~y ∈ O(~x) ∩A then t(~y) 6 t(~x) < t∗, so K is

closed. For ~x, ~y ∈ K, say ~x ≺ ~y if and only if δ(~x) ( δ(~y). Set K0 = K.

Let ~x0 be ≺-minimal in K0, and put L0 = {~x ∈ K0 : δ(~x) = δ(~x0)}. Suppose ~x ∈

K0 \ L0 and ~y ∈ O(~x) ∩ K0. Note δ(~y, ~z) = δ(~x, ~z) for each ~z ∈ T ′(~x), so δ(~x) ⊂ δ(~y).

It follows that ~y /∈ L0, so L0 is closed in X. Let ∆ be the unique member of δ[L0], and

form a paritition L of L0 so that two points ~x and ~y of L0 belong to the same member of

L if and only if xn = yn for each n ∈
⋃

∆. Suppose ~x ∈ L0 and ~y ∈ O(~x) ∩ L0. For each

n ∈
⋃

∆ there exists ~z ∈ T ′(~x) with n ∈ δ(~x, ~z); we have xn = yn since δ(~x, ~z) = δ(~y, ~z).

It follows that L is a discrete collection of closed sets, each of which is a D-space by the

inductive hypothesis. Then L0 =
⋃
L is a D-space, so let D0 ⊂ L0 be closed discrete in

X such that ϕ[D0] covers L0.

If ϕ[D0] does not cover K0, put K1 = K0 \
⋃
ϕ[D0]. Let ~x1 be ≺-minimal in K1, and

put L1 = {~x ∈ K1 : δ(~x) = δ(~x1)}. By a similar argument to that for L0, let D1 ⊂ L1 be

closed discrete in X such that ϕ[D1] covers L1.

If ϕ[D1] does not cover K1, put K2 = K1 \
⋃
ϕ[D1]. Let ~x2 be ≺-minimal in K2, and

. . .

This process must end since δ[K] is finite, and the union of the Dn’s is a closed

discrete subset of X whose assigned neighborhoods cover K. �
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Lemma 3.5. Let H ⊂ X be closed such that ϕ◦(~x) ∩H = ∅ for all ~x ∈ H. Then there

exists A ∈ A and a closed discrete subset D of X such that A ⊂ H, D ⊂ H \ A, and

ϕ[D] covers H \ A.

Proof. For any subset H ′ of H, let D(H ′) = {~x ∈ H ′ : ~x /∈
⋃
ϕ[H ′ \ {~x}]}. Certainly

D(H ′) is closed discrete in H ′.

Set H0 = H. Suppose for some β > 0 that Hα has been defined for each α < β so

that Hα = H0 \
⋃
ϕ[

⋃
ξ<α

D(Hξ)]. Put Hβ = H0 \
⋃
ϕ[

⋃
α<β

D(Hα)]. If D(Hβ) 6= ∅ proceed

to the next step; otherwise, set κ = β and the construction terminates.

This must terminate. We claim {D(Hα) : α < κ} is a discrete collection. Certainly

X \ H0 is open and misses each D(Hα), and if ~x ∈ Hκ and ~y ∈ ϕ(~x) then ~y /∈ D(Hα)

for each α < κ. It remains to be seen that each point of H0 \ Hκ ⊂
⋃
ϕ[

⋃
α<κ

D(Hα)]

has a neighborhood meeting at most one of the D(Hα)’s. To that end fix α < κ and

~x ∈ D(Hα); observe ~y ∈ ϕ(~x) implies ~y /∈ D(Hξ) for each ξ < α, and α < ξ < κ implies

D(Hξ) ⊂ Hξ ⊂ H0 \ ϕ(~x) by construction.

We have Hκ ∈ A, and
⋃
α<κ

D(Hα) is a closed discrete subset of X contained in H \Hκ

whose assigned neighborhoods cover H \Hκ. �

Lemma 3.6. If H ⊂ X is closed such that ϕ◦(~x)∩H = ∅ for all ~x ∈ H, then H contains

a closed discrete subset of X whose assigned neighborhoods cover H.

Proof. Set H0 = H. By Lemma 3.5 there exists A0 ∈ A such that A0 ⊂ H0 and H0 \A0

contains a closed discrete subset E0 of X whose assigned neighborhoods cover H0 \ A0.

If A0 = ∅ put D0 = ∅ and the construction terminates. Otherwise put t0 = max t[A0],

and let K0 = {~x ∈ A0 : t(~x) = t0}. By Lemma 3.4, let D0 ⊂ K0 be closed discrete in X

such that ϕ[D0] covers K0.

If the assigned neighborhoods of D0 do not cover A0, let H1 = A0 \
⋃
ϕ[D0]. There

exists A1 ∈ A and E1 closed discrete in X such that A1 ⊂ H1, E1 ⊂ H1 \ A1, and the

assigned neighborhoods of E1 cover H1 \A1. If A1 = ∅ put D1 = ∅ and the construction

terminates. Otherwise put t1 = max t[A1] and take K1 = {~x ∈ A1 : t(~x) = t1}; let D1 ⊂

K1 be closed discrete in X such that ϕ[D1] covers K1.
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If the assigned neighboorhoods of D1 do not cover A1, let H2 = A1 \
⋃
ϕ[D1]. There

exists . . .

This process ends since the tn’s are strictly decreasing. The union of the Dn’s and

En’s is a closed discrete subset of X whose assigned neighborhoods cover H. �

Lemma 3.7. Let G ⊂ X such that j(~x) = j(~y) for all ~x, ~y ∈ G and G ⊂
⋃
ϕ◦[G]. Then

there is a countable D ⊂ G closed discrete in X such that
⋃
ϕ◦[D] =

⋃
ϕ◦[G].

Proof. Since finite powers of Rε are hereditarily Lindelöf, there is a countable subset C of

G with
⋃
ϕ◦[C] =

⋃
ϕ◦[G]. Let C be well-ordered with order type ω and put ~x0 = minC.

Inductively define ~xn = min {~x ∈ C : ϕ◦(~x) 6⊂
⋃
m<n

ϕ◦(~xm)} for each 0 < n < ω, and put

D = {~xn : n < ω}. Certainly
⋃
ϕ◦[D] =

⋃
ϕ◦[C].

Let ~x ∈ G; there exists m < ω such that ~x ∈ ϕ◦(~xm). Observe that n 6= m and

~xn ∈ ϕ◦(~xm) implies ϕ◦(~xn) ⊂ ϕ(~xn) ⊂ ϕ◦(~xm), since j(~xn) = j(~xm). It follows that

ϕ◦(~xm) is a neighborhood of ~x which does not contain ~xn whenever m < n, so ~x is not a

limit point of D. �

Lemma 3.8. If F ⊂ X is closed and G = {~x ∈ F : j(~x) = min j[F ]}, then F contains a

closed discrete subset of X whose assigned neighborhoods cover G.

Proof. Set j∗ = min j[F ]. Fix n < N and let K = {~x ∈ G : n ∈ Q(~x, j∗)}; note K is

closed. Form a partition K of K so that two points ~x and ~y of K belong to the same

member of K if and only if xn = yn. Observe K is a discrete collection of closed sets

whose every member is a D-space, so K is a D-space. This is true for each n < N , so

let E ⊂ G ∩Q(j∗) be a closed discrete subset of X whose assigned neighborhoods cover

G ∩Q(j∗).

Set G0 = G \
⋃
ϕ[E]. If G0 is covered by ϕ◦[G0], we are done by Lemma 3.7;

otherwise, let H0 = G0 \
⋃
ϕ◦[G0] and note that H0 is closed and misses Q(j∗). Suppose

there exist ~x, ~y ∈ H0 with ~y ∈ ϕ◦(~x). Then ~x ∈ G0 \ G0, so there exists ~z ∈ G0 such

that ~z ∈ ϕ(~x) and ~y / ~z. By construction, j(~z) = j∗ 6 j(~x) and ~x ∈ G \ Q(j∗). If

~x /∈ Q(j(~x)) then Q(~x, j(~x)) = ∅, so ~y ∈ ϕ◦(~z) by Lemma 3.2(b). If ~x ∈ Q(j(~x)) then
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j(~z) = j∗ < q(~x), so ~y ∈ ϕ◦(~z) by Lemma 3.2(c). In either case we get ~y /∈ H0, a

contradiction. It follows that ϕ◦(~x)∩H0 = ∅ for all ~x ∈ H0. By Lemma 3.6, let D0 ⊂ H0

be a closed discrete subset of X whose assigned neighborhoods cover H0. Note
⋃
ϕ[D0]

meets G0 since H0 ⊂ G0; if the assigned neighborhoods of D0 cover G0 we are done,

otherwise continue.

Suppose for some β > 0 that for each α < β we have defined Gα ⊂ G0, Hα ⊂ Gα,

and Dα such that ϕ[Dα] covers Hα. If the assigned neighborhoods of
⋃
α<β

Dα cover G0

the construction terminates; put κ = β, Gβ = ∅, and Dβ = ∅. Otherwise put Gβ =

G0 \
⋃
ϕ[

⋃
α<β

Dα] and do as follows.

(a) If Gβ ⊂
⋃
ϕ◦[Gβ], use Lemma 3.7 to get Dβ ⊂ Gβ closed discrete in X with

ϕ◦[Dβ] a cover of Gβ. The construction terminates; take κ = β.

(b) If Gβ 6⊂
⋃
ϕ◦[Gβ], define Hβ = Gβ \

⋃
ϕ◦[Gβ] and note that Hβ is closed and

misses Q(j∗). A similar argument to that for H0 shows ϕ◦(~x) ∩Hβ = ∅ for all

~x ∈ Hβ. By Lemma 3.6, let Dβ ⊂ Hβ be a closed discrete subset of X whose

assigned neighborhoods cover Hβ. Note that
⋃
ϕ[Dβ] meets Gβ, and proceed

to the next step.

This process must terminate; we get collections {Gα : α < κ}, {Hα : α < κ}, and {Dα : α < κ}

defined as above for some κ, and Dκ ⊂ Gκ ⊂ G0 is a closed discrete subset of X whose

assigned neighborhoods cover Gκ.

Let Y = {~yα : α < κ} so that ~yα ∈ Dα for each α < κ. Fix α < β < κ. Note

~yα ∈ Dα ⊂ Hα = Gα \
⋃
ϕ◦[Gα], so ~yα /∈

⋃
ϕ◦[Gα]. Recall Gβ = G0 \

⋃
ϕ[

⋃
ξ<β

Dξ]

and Gα = G0 \
⋃
ϕ[

⋃
ξ<α

Dξ], so Gβ ⊂ Gα and Gβ ∩
⋃
ϕ[Dα] = ∅. By construction

Hα = Gα \
⋃
ϕ◦[Gα] ⊂

⋃
ϕ[Dα], so Gβ ∩ Hα = ∅. But Gβ ⊂ Gα, so ~yβ ∈ Dβ ⊂ Hβ ⊂

Gβ ⊂ Gα \Hα =
⋃
ϕ◦[Gα]. This also shows Dα ∩Dβ = ∅.

Finally, suppose ~x is a limit point of Y ; there exists α < β < κ such that ~yα, ~yβ ∈

B(~x, j∗) and ~yα / ~yβ. Since ~x /∈ Q(j∗) we have ~yα ∈ B(~yβ, j
∗), and ~yβ but not ~yα belongs

to
⋃
ϕ◦[Gα]. Take ~z ∈ Gα such that ~yβ but not ~yα belongs to ϕ◦(~z). Note j(~z) = j∗, so

B(~yβ, j
∗) ⊂ B◦(~z, j∗) = ϕ◦(~z) by Lemma 3.1. This implies ~yα ∈ ϕ◦(~z), a contradiction.
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Since Y is closed discrete in X, we have that D =
⋃
α<κ

Dα is a closed discrete subset of

X whose assigned neighborhoods cover G0 \Gκ.

Then D∪Dκ∪E ⊂ F is a closed discrete subset of X whose assigned neighborhoods

cover G. �

3.3 The result

We have that X is a D-space by Theorem 1.11. We have shown that every single-

type subspace of RN
τ is a D-space if every single-type subspace of RM

τ is a D-space for

1 6M < N . But Rτ is hereditarily a D-space, so the following is true.

Theorem 3.9. If τ ∈ GP′(R) and N > 1, then every single-type subspace of RN
τ is a

D-space.

Extending the previous theorem to every GO-partition in GP(R) is straightforward.

Let τ ∈ GP(R). We know Rτ is hereditarily a D-space, so fix N > 1 and let X be a

single-type subspace of RN
τ . Pick any ~x ∈ X and set i∗ = {n < N : τ(xn) = i}. Form a

partition X of X so that two points ~x and ~y of X belong to the same member of X if and

only if xn = yn for each n ∈ i∗. Then X =
⋃
X is a D-space, as X is a discrete collection

of closed subsets of X whose every member is a D-space.

We have that every single-type subspace of a finite power of R with a GO-topology

is a D-space. Since any subspace is a finite union of single-type subspaces, the following

is proved.

Theorem 3.10. Every subspace of a finite power of R with a GO-topology is a finite

union of D-spaces.

Corollary 3.11. Every finite power of R with a GO-topology is hereditarily a transitively

D-space.
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Chapter 4

A Note on Sorgenfrey Suslin Lines

We can generalize the argument used in [8] to show that finite powers of the Sorgenfrey

line are D-spaces. A space X is called a generalized left-separated space (GLS-space)

if there is a reflexive binary relation 4 on X, called a GLS-relation, such that every

nonempty closed subset of X has a 4-minimal element and {y ∈ X : x 4 y} is open for

each x ∈ X. We need the following results.

Lemma 4.1 [8, Theorem 2]. Every GLS-space is a D-space.

Lemma 4.2 [8, Lemma 2.1]. Let 4 be a reflexive and transitive binary relation of a space

X such that for every nonempty 4-chain K in X there is an m ∈ K with m 4 x for all

x ∈ K. Then each non-empty closed subset of X has a 4-minimal element.

Lemma 4.3 [7, Theorem 1.1(g)]. Suppose X is a paracompact GO-space and C ⊂ X is

closed. There are closed discrete sets S and T which are, respectively, well-ordered and

reverse well-ordered by the given ordering on X, have S ∪ T ⊂ C, and have the property

that if x ∈ C then some points s ∈ S and t ∈ T have s 6 x 6 t.

Let 〈X,6〉 be a linearly ordered set, and fix N > 1.

Lemma 4.4. Suppose every nonempty subset of Xλ which is bounded above has a least

upper bound. Then (−∞, x]N is a D-space for each x ∈ Xλ.

Proof. Fix x ∈ X and put Y = (−∞, x]N . Define a reflexive and transitive binary

relation 4 on Y so that ~x 4 ~y if and only if yn 6 xn for all n < N . Certainly

{~y ∈ Y : ~x 4 ~y} =
∏
n<N

(−∞, xn] is open in Y for each ~x ∈ Y .
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Let K be a nonempty 4-chain in Y , and put Kn = {xn : ~x ∈ K} for each n < N .

Note that each Kn is bounded above in Xλ, so we may define zn = supKn. Put ~z =

〈z0, . . . , zN−1〉; observe that ~z ∈ Y and ~z 4 ~x for all ~x ∈ K.

Consider a basic open neighborhood U =
∏
n<N

(z′n, zn] of ~z in Y . For each n < N ,

there exists ~xn ∈ K such that z′n < ~xn(n) 6 zn. Since K is a 4-chain, we may define

~x = max {~x0, . . . , ~xN−1}. Then ~x ∈ U , so ~z ∈ K. It follows that 4 is a GLS-relation on

Y . �

Theorem 4.5. Suppose every nonempty subset of Xλ which is bounded above has a least

upper bound, and suppose there is a sequence 〈xn〉n<ω such that for every x ∈ Xλ there

exists n < ω such that x 6 xn. Then XN
λ is a D-space.

Proof. Each (−∞, xn]N is closed in XN
λ and a D-space. �

We can now give some sufficient conditions for finite powers of Sorgenfrey topologies

to be D-spaces. Recall that a space is connected if it is not the union of two proper

nonempty open subsets.

Theorem 4.6. Let 〈X,6〉 be a linearly ordered set. If Xε is connected and paracompact,

then every finite power of Xλ is a D-space.

Proof. Connectedness gives that every nonempty bounded-above subset has a least up-

per bound [3, Theorem 183], and paracompactness gives a cofinal sequence 〈xn〉n<ω. Then

XN
λ =

⋃
n<ω

(−∞, xn]N , with each (−∞, xn]N closed and a D-space. �

Recall that a space satisfies the countable chain condition (or, is ccc) if every pairwise-

disjoint collection of open subsets of the space is countable. Now suppose that Xε is

a Suslin line; that is, Xε is ccc and connected, has no first or last point, and is not

homeomorphic to Rε. Since a GO-space is ccc if and only if it is hereditarily Lindelöf [5,

Proposition 2.10] and regular Lindelöf spaces are paracompact [3, Theorem 126], every

finite power of Xλ is a D-space.
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