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Abstract 
 
This study analyzed the effects of climate variability and human activities (i.e., irrigation) on 

groundwater levels from 1981-2017 in four distinct geologic provinces of Georgia. Georgia is 

located in the southeastern United States and is home to around 10 million people and the 

country’s 9th most populous metropolitan area according to U.S. census data. The southeastern 

United States has long been thought to be resilient to the types of groundwater issues that are 

seen in the western United States and around the world. Global climate trends are expected to 

cause increases in temperature and greater variability in precipitation. While climate change 

trends are expected to affect groundwater, the exact effects are unknown and are likely to vary 

significantly based on location and local geology. Declines in streamflow and aquifer storage 

have already been linked to agricultural irrigation expansion in southwestern Georgia.   

 

Data from a total of 404 USGS groundwater monitoring wells have been collected and analyzed 

for water table fluctuations over a period of 37 years (1981 to 2017). Gravity Recovery and 

Climate Experiment (GRACE) data were used to estimate changes in terrestrial water storage in 

comparison with water level fluctuations. High resolution PRISM (Parameter elevation 

Regression on Independent Slopes Model) climate data (precipitation and temperature) were also 

collected for trend analysis at 43 monitoring sites. Long-term and annual groundwater trends are 

computed using a combination of time series analysis, the Mann—Kendall test, and 
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autocorrelation analysis. Statistical trends in climate and hydrological data are used to explore 

the relationship between climate variability, streamflow, and groundwater level. 

Time series analyses show statistically significant declines in groundwater level in Coastal Plain 

and Floridan aquifer systems across the state. The deep confined Coast Plain aquifer appears to 

be decoupled from climate influences and show the strongest declines in water level. The 

shallower and less confined Floridan aquifer system appears to be coupled with climate yet also 

shows declines in water level. By contrast, the Surficial aquifer system and the Northern aquifer 

system both show relatively neutral trends over the same period.  The water table in these 

shallower aquifers correspond to changes in precipitation. Streamflow data from 36 gauging 

stations in Georgia show decreasing minimum streamflow trend while other statistics show no 

trends. Statewide precipitation was found to show no significant trend and temperature averages 

were shown to show slight increases in nighttime averages, indicating non-climate factors has 

likely caused the groundwater declines in deeper, confined aquifers. Autocorrelation analysis 

indicates that each aquifer system and precipitation tend to have different durations of memory. 

The precipitation and unconfined aquifers exhibit the shortest duration of memory ranging from 

3 to 6 months, while the deeper confined aquifers show substantially longer memory and 

significant lag times of 12 to 18 months or greater. Statistically significant decreasing trends in 

water level and long lag times further indicate groundwater in deeper aquifers is decoupled from 

climate influences.  
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Chapter 1: Introduction 
 

Groundwater is an important natural resource and is an integral part of the global freshwater supply 

(Gurdak et al., 2009). Understanding how human impacts and climate change and variability affect 

groundwater and water resources in general is important due to the complexity of the systems 

involved and the significance of freshwater (Dragoni and Sukhija, 2008). The availability of 

groundwater depends heavily on the climate, local geology, and human interaction (Leeth et al., 

2007; Melillo et al., 2014). Around 20 percent of projected freshwater scarcity can be linked to 

climate change (Sophocleous, 2004). Sandstrom (1995) showed that as little as a 15 percent 

reduction in precipitation could lead to around 40 to 50 percent less groundwater recharge in 

semiarid to arid climates. Additionally, growing population has caused overpumping which leads 

to decrease in groundwater and saltwater intrusion in coastal areas (Denizman, 2018).  

Scientific consensus on climate change is that the global temperature will increase leading 

to an increase in regional precipitation variability, both positively and negatively (Green et al., 

2011; IPCC, 2014). For example, seasonal variations of increased precipitation will lead to more 

recharge and less need for groundwater use (Rosenburg et al., 2008). Alternatively, variations in 

precipitation will lead to more extreme drought especially in areas such as the continental interior 

(IPCC, 2007a; Bates et al., 2008). Recurring changes in climate cycles (e.g., El Niño/Southern 

Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation 

(AMO), Northern Atlantic Oscillation (NAO), etc.) can result in short-term and long-term climatic 

influences and can dramatically affect precipitation and groundwater (Wolter and Timlin, 1993; 

Wolter and Timlin, 1998; Hanson et al., 2003; Gurdak et al., 2007). For example, ENSO cycles 

are the primary factor in the Southeastern United States leading to drought conditions and has been 

shown to correspond with water table fluctuations (Mitra et al., 2014). 
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In the United States, groundwater is responsible for up to 40 percent of the freshwater 

supply with as many as 40 million people drinking groundwater (Alley et al., 1999; Gurdak et al., 

2009). Irrigation alone accounts for 60% of this freshwater use (Braneon, 2014). According to 

work done by Brekke et al. (2009), many principal aquifers around the country are in danger of 

depletion due to natural climate variability and anthropogenic climate change. In the western U.S., 

short to long-term drought has been shown to cause irrecoverable, significant declines of water 

table in the Central Valley aquifer in California in as little as a 30 year observation period (Miller 

et al., 2009). The high plains aquifer (Ogallala aquifer) that covers more than 450,000 km2 in eight 

states of the central United States has shown continual decline in water table depths since the 

1950’s to present; in some areas the decline is 50 m or greater (Sophocleous, 2010). 

The ‘water rich’ southeastern U.S. has long been thought to be immune to these kinds of 

climatic effects on surface-water and groundwater (Ingram et al., 2013; NWF, 2008). The 

Southeast’s population is expected to grow by 24% in the next 20 years and land use patterns are 

changing; for example, urban area has increased by 200% from 1945 to 1992 (Wear, 2002; Sun et 

al., 2008). Human land use and change, including irrigation, has been shown to affect local, 

regional, and potentially global climate through surface and air temperature changes, modifying 

partitioning of net radiation into evapotranspiration rates and heat fluxes, and the precipitation 

efficiency (Kumar et al, 2010; Mahmood et al., 2016; Cook et al., 2015). High levels of irrigation 

have been shown to cause aquifer storage loss, changes in groundwater flow (i.e. gaining stream 

to losing stream), decreases in stream baseflow, and decreases in aquifer recharge (Mitra et al., 

2016; Mitra et al; 2019) 

Climate variability and change is causing shifting perspectives on the Southeast’s supply 

of water (Mitra et al., 2014; Singh et al., 2015). The Southeast is expected to see an increase in 
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hurricane intensity, precipitation variability, change in vegetation, and salt-water intrusion from 

rising ocean levels in addition to the effects of raising temperature (i.e., higher evapotranspiration, 

declining runoff, and increased water demand) (Ingram et al., 2013). While the effects of climate 

variation on the Southeast has been studied in some detail, there is little in the literature discussing 

its effects on the groundwater in this region.  

The work conducted for this research seeks to fill the gap in the existing knowledge with 

the assessment of a large dataset of long-term groundwater monitoring wells across the state of 

Georgia by integrating big data techniques with historical hydrogeologic, climate observations, 

and land use change. A total of 404 USGS groundwater monitoring wells have been collected, out 

of which 43 wells had long-term data availability for the recent historical period (1981 to 2017) 

and were analyzed for the changes in water table. A dataset of this size allows for the opportunity 

to assess the role of natural and anthropogenic forcings (e.g. land use change and irrigation) by 

testing the hypothesis that groundwater fluctuations should be a function of climatic cycles and 

any deviation from this may be attributed to anthropogenic forcing.  

Statistical trend analysis, autocorrelation, and time series analysis were used to test this 

hypothesis. Since, the ground water time series is expected to show a high degree of persistence 

(autocorrelation), a statistical technique was used that considers long-term persistence in the time 

series (Kumar et al., 2009; Kumar et al., 2013) to investigate secular changes in the ground water 

availability in the region. Seasonal autocorrelation analysis (Kumar et al., 2019) is employed to 

characterize memory time scale or the persistence in the different aquifer system in Georgia. A 

review of the literature indicates this is first study that investigate long-term changes in the ground 

water in the humid part of the United States and using big data techniques. Since it is important to 

understand the study area, the geology, hydrogeology, climate, and anthropogenic forcings is first 
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introduced in chapter 2. Then, after summarizing the research methodology and available datasets 

in chapter 3, the results of the analysis will be presented and discussed in chapter 4. Finally, chapter 

5 presents a summary and brief conclusion of my findings, noting key limitations of this study and 

suggestions for future investigation.  
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Chapter 2:  Background 
 

Geology and Hydrogeology 

 Georgia consists of four distinct geologic regions (Figure 1 and 2A) beginning with the 

Coastal Plain spanning from the Fall Line to the Atlantic Ocean and into Florida, the Piedmont 

throughout the central area of the state, the Blue Ridge in the northeast, and finally the Valley and 

Ridge in the northwest. The Coastal Plain consists of mostly layered sand, clay, and limestone 

which thickens up to 1.5 km in depth to the southeast; those sediments are derived from the 

weathering of the Appalachian Mountains and repeated transgressive and regressive cycles (Clarke 

and Pierce, 1985).  

Within the Coastal Plain lies the surficial aquifer system, Brunswick, Floridan, Gordon, 

Claiborne, Clayton, Cretaceous aquifer systems, among several others (Figure 1) and they are the 

most productive aquifers in the state (Gordon and Painter, 2018).  These aquifers can essentially 

be categorized as 3 distinct aquifer systems: the Floridan aquifer system (carbonate rocks), the 

Coastal Plain aquifer system (clastic rocks), and the surficial aquifer system (Williams and Dixon, 

2015). Aquifers in the Coastal Plain are typically confined except for in the northern extent of the 

Coastal Plain and the surficial aquifer system (Clarke and Pierce, 1985). The surficial aquifer 

system is comprised of post-Miocene aged deposits and are categorized 3 ways: 1) Pliocene 

marginal marine to shallow marine; 2) Pleistocene marine terrace deposits; and 3) Holocene fluvial 

and residuum deposits (Williams and Dixon, 2015).  The remainder of the state north of the Fall 

Line also has a surficial aquifer system which is composed of soil, saprolite, alluvium, colluvium, 

and surficial deposits (Gordon and Painter, 2018).  

The Floridan aquifer system, one of the most productive in the U.S., underlies the southern 

half of Georgia, is mainly used as the primary source of fresh water, and is characteristically 
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carbonate (Miller, 1986; Fanning, 2003). The Floridan aquifer system is separated into the Upper 

and Lower Floridan aquifers. The Upper Floridan aquifer is of Eocene to Oligocene aged 

limestone, dolomite and calcareous sand (USGS Fact Sheet, 2006). The Lower Floridan Aquifer 

is defined as the unit under the Middle Floridan Confining Unit which is exposed at the surface in 

some portions of southeast Georgia as part of the Floridan aquifer system (Miller, 1988).  

The Upper Floridan aquifer is confined in areas where it is overlain by siliciclastic 

sediments or a low-permeability Miocene aged limestone and is unconfined at surface outcrops at 

the northern extent of the aquifer and through karst features to the southwest and southcentral parts 

of Georgia (Miller, 1986; Williams and Dixon, 2015; Denizman, 2018). The aquifer thickens to 

the southeast up to a maximum depth of around 500 meters (Miller, 1986). Interestingly, although 

the Floridan is a karst aquifer, it has been shown to have significant primary and secondary 

porosities (Denizman, 2018). 

The Southeastern Coastal Plain aquifer system is composed of a thick wedge of 

unconsolidated to poorly consolidated Jurassic to Holocene clastic rocks that dips to the southeast 

from the Fall Line to the Atlantic Ocean (Renken, 1996). The Coastal Plain aquifer system is 

overlain by the Floridan aquifer system and both are hydraulically interconnected laterally 

(Floridan carbonates to the south which grades into Coastal Plain clastics of the same age to the 

north) and vertically (gradual gradations or interfingering between clastics and carbonates) and 

underlain by crystalline bedrock (Renken, 1996). The Lower Floridan aquifer and the Coastal Plain 

aquifer system are connected laterally while the Upper Floridan aquifer and the Coastal Plain 

aquifer system are connected vertically (Renken, 1996). Due to this connection, the Coastal Plain 

aquifer system rocks are both clastic and carbonate especially in the south and southwestern 

portions of Georgia (Renken, 1996). Much of the northern half of the state is represented by the 
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Piedmont and Blue Ridge Provinces. The Piedmont and the Blue Ridge are classified by low to 

high grade metamorphism with the exception of localized plutons such as Stone Mountain 

(Hatcher, 1978). The aquifers here are typically unconfined and mostly composed of regolith or 

crystalline-rock aquifers which store water in fractures, joints, contacts, weathered zones, and 

other features (Clarke and Pierce, 1985; Gordon and Painter, 2018). 

The northwestern most extent of the state is represented by the Valley and Ridge Province. 

The Valley and Ridge is characterized by thrusted and folded parallel ridges underlain by resistant 

sandstone, conglomerate, or cherty dolostone and valleys underlain by siltstone, shale, limestone, 

or other weathering prone rocks (Rutledge and Mesko, 1996). The aquifer systems are typically 

unconfined in joints, fractures, and solution openings (Clarke and Pierce, 1985). 
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Figure 1. Left side shows a map of Georgia, U.S.A., showing the distinct hydrogeologic provinces of Georgia. The 
Claiborne, Clayton, Providence, and Cretaceous aquifer systems are defined as the Coast Plain aquifer system in this 
study. Bottom Right Corner shows aross-section view of Georgia showing the 4 distinct Geological Provinces on the 
top and the stratigraphic relationships of the aquifer units on the sides.  
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Climate and Anthropogenic Forcings 

 Previous literature has focused heavily on the interactions between climate and surface 

water due in large part to the availability of data and the water itself, however recent studies have 

begun to investigate the interactions between climate and groundwater (Green et al., 2007; Gurdak 

et al., 2009). Studies in the U.S. have found that global climate change will lead to water storage 

and supply issues in arid and semiarid environments – while other areas are understudied. Climate 

change and variability will be a factor in long-term groundwater sustainability over broad areas, 

and will also change groundwater flow patterns in coastal areas due to saltwater intrusion, future 

pumping, and sea level rise (Loaiciga et al., 1996; Alley, 1999; Sherif and Singh, 1999; Burnett et 

al., 2006). 

The Southeastern United States typically has high amounts of annual precipitation (43 in. 

to 54 in. on average), limited seasonality, interannual variability, and the region can have seasonal 

to annual length droughts (Labosier and Quiring, 2013; Ford and Labosier, 2014, ). Winter and 

summer precipitation and temperature variability tend to be influenced by different mechanisms: 

El Nino-Southern Oscillation (ENSO) drives winter variability and there is a lack of clear 

consensus on the drivers of summer variability (Ford and Labosier, 2014). Positive phases of 

ENSO (El Nino) correspond to cooler, wetter winter conditions in the southeast and negative 

phases of ENSO (La Nina) correspond to warmer, drier winter conditions in the Southeast. ENSO 

has been shown to have a strong relationship with shallow to moderately deep aquifers in 

southwest Georgia; El Nino phases have been shown to correspond to higher than average water 

table while La Nina phases have been shown to correspond to lower than average water table level 

(Mitra et al., 2014). 
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 Summer precipitation variability has increased in recent decades due to a combination of 

Atlantic Ocean sea surface temperature variability, the North Atlantic subtropical high pressure 

cell, and the Atlantic Multidecadal Oscillation (McCabe et al., 2004; Wang et al., 2010; Diem, 

2006; Diem, 2013; Ford and Labosier, 2014). Studies have also identified that ENSO coupled with 

other cycles such as AMO and NAO can significantly lower baseflows during La Nina phases 

paired with positive PDO and AMO phases and increase baseflows during El Nino phases coupled 

with negative PDO and AMO (Singh et al., 2015). 

Historically the average temperature of Georgia and the southeast showed no warming or 

even cooling trend over the majority of the 20th century (Kunkel et al., 2013). However, taking 

into account only 1975 to present (Figure 2D), there is a warming trend of around 2 degrees F that 

is projected to continue to rise 4 to 8 degrees F (Kunkel et al., 2013) in the next 100 years. The 

expectation is an increase in hot days (>95 degrees F) and a decrease in freezing events (Melillo 

et al., 2014). Annual precipitation (Figure 2C) in the Southeast shows a slightly positive trend from 

1895-2011 according to the Southeast Regional Climate Center. The projected annual change in 

precipitation for Georgia is slightly positive with a small portion of the state showing statistically 

significant variation (Kunkel et al., 2013). Very heavy rainfall events (heaviest 1%) have increased 

across the region by 27% from 1958 to 2012 and models predict that variability in extreme rainfall 

events is likely to increase in the future (Karl et al., 2009; Kunkel et al., 2013; Melillo et al., 2014). 

The projected change of precipitation is expected to be a climatic cause of decrease in 

groundwater (Van Dijck et al., 2006; Kudezwicz et al., 2007; Ouysse et al., 2010).  Groundwater 

is the major contributor to baseflow of streams and rivers in times of dry conditions and climatic 

variability and change is expected to impact surface water bodies due to this connection (Lee and 

Chung, 2007; Dragoni and Sukhija, 2008).  Precipitation variability has been shown to cause both 



11 
 

increases and decreases in surface water runoff which will have uncertain effects on regional 

hydrologic cycles (Chiew and McMahon ,2002; Milley et al., 2005). 

Agricultural withdrawals have been shown, typically in semi-arid to arid climates, to be a 

cause of aquifer depletion in areas where withdrawals exceed the rate of recharge (Siebert et al., 

2010). However, agricultural withdrawal has been the major factor in groundwater depletion in 

other climates such as the North China Plain which has a subtropical monsoon climate (Sun et al., 

2010). Agricultural production increased 50% globally from 1960 to 2000 and this increase can be 

partially linked with a large expansion in irrigation which is also expected to increase by around 

50% globally by 2050 (Tillman, 1999; Tillman, 2001).  

 Increased evapotranspiration from higher surface temperatures is also expected to lead to 

a larger increase in irrigation water demand by crops and a subsequent extra stress on groundwater 

(Doll, 2002). A specific example is seen in the Apalachicola-Chattahoochee-Flint (ACF) River 

Basin which covers much of southwestern Georgia, some of eastern Alabama, and parts of the 

panhandle of Florida and is encountering declining levels of precipitation, soil moisture, and runoff 

(Georgkakos et al., 2010). Water demands have risen due to urban growth and irrigation expansion, 

but climate projections show that a combination of yearlong soil moisture decreases and runoff 

declines will lead to reduced supplies and increased demands (Georgkakos et al., 2010).  Irrigation 

in the region has already led to around a 20% decrease in streamflow and a caused a change from 

perennial streams to intermittent streams, losses in aquifer storage, and changes in groundwater 

flow patterns (Singh et al., 2016; Mitra et al., 2016; Singh et al., 2017; Mitra et al., 2019). In 

Georgia, acres irrigated have increased from 42,408 acres to 936,245 acres (roughly 2000%) from 

1976 to 2013 (Williams et al., 2017). Southwest Georgia, including the ACF basin, is the most 
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densely irrigated area of the state and most other irrigation was limited to the central and eastern 

portions of the Coastal Plain (Figure 2B) (Williams et al., 2017).   
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Figure 2. Composite showing (A) the geology of Georgia with locations of groundwater monitoring wells (Black 
circle: Monitoring well not included in analysis, Red square: Monitoring well included in analysis), (B) Irrigation 
trend map for Georgia from 2007-2012 (data from USDA Irrigation Survey), (C) Annual average precipitation trend 
map for Georgia from 1981-2017 (Scale is multiplied by 10 to show exaggerated trend. i.e. 60 represents 6% change, 
(D) Annual average temperature (day time – night time temperature) map for Georgia from 1981-2017 (Scale 
represents degree temperature change). (Data from C and D are using PRISM data and statistical significance are 
based on linear regression trends) 

A B 

C D 
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Chapter 3: Research Methodology 
 

Sources of Climate, Geological, and Hydrologic Data  

Georgia groundwater table data for 404 monitoring wells were collected from the USGS 

National Water Information System (NWIS) database (Table 1) (https://www.usgs.gov/water-

data-nation-national-water-information-system). The NWIS contains the most complete ground-

water-level dataset for the U.S., including data from federal programs and agencies as well as 

state and local governments. These monitoring wells are spatially distributed in three major 

hydrogeologic provinces including: the Coastal Plain, Piedmont and Blue Ridge, and Valley and 

Ridge (Figure 3).  

Daily water table measurements were obtained from the database for each well, for the 

period from 1951 to present; however, most of the wells did not have constant daily 

measurements over this entire time interval. To include the most wells possible, 43 wells were 

determined to have 90% or more data available over a time range from 1981 to 2017 (Table 1). 

All the wells used in this study are designated as monitoring wells which means they are not in 

use or influenced by human activity and instrumentally record daily water table measurements. 

The data obtained is given in groundwater depth from the well head, so the data was subtracted 

from the altitude of the well for the groundwater surface elevation to be determined relative to 

NAD83. Other information retrieved from the NWIS database includes latitude and longitude for 

the station, name of regional and local aquifer, and depth of the well.  

 

 

https://www.usgs.gov/water-data-nation-national-water-information-system
https://www.usgs.gov/water-data-nation-national-water-information-system
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Figure 3: Geologic map of Georgia showing surface geologic units (USGS) and locations of 404 groundwater 
monitoring wells (unused wells are black and used wells are red). 
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Table 1 List of USGS groundwater monitoring wells used in study. (Aq.: Aquifer, FAS: Floridan Aquifer System, 
CPAS: Coastal Plain Aquifer System, SA: Surficial Aquifer, NAS: Northern Aquifer Systems). 

SI. No. Well ID Site Number Altitude Aq. Local Aquifer 
USGS Monitoring Wells           
Georgia Coastal Plain           
1 304942082213801 27E004 116 FAS Upper Floridan Aquifer 
2 304949083165301 19E009 213 FAS Upper Floridan Aquifer 
3 305356084534601 06F001 110 FAS Upper Floridan Aquifer 
4 305736084355801 09F520 128 FAS Upper Floridan Aquifer 
5 310507084262201 10G313 145 FAS Upper Floridan Aquifer 
6 310651084404501 08G001 152 FAS Upper Floridan Aquifer 
7 310706082155101 27G003 150 FAS Upper Floridan Aquifer 
8 310813083260301 18H016 241.42 FAS Upper Floridan Aquifer 
9 310818081294201 34H391 7.13 FAS Lower Floridan Aquifer 
10 311007081301702 33H133 6.71 FAS Upper Floridan Aquifer 
11 311009084495503 07H003 167 SA Surficial Aquifer 
12 311802084192301 11J011 165 CPAS Claiborne Group 
13 311802084192302 11J012 165 FAS Upper Floridan Aquifer 
14 312127084065801 13J004 194 FAS Upper Floridan Aquifer 
15 312232084391701 08K001 230 FAS Upper Floridan Aquifer 
16 312617084110701 12K014 180.3 FAS Upper Floridan Aquifer 
17 312712082593301 18K049 330 FAS Upper Floridan Aquifer 
18 312919084153801 11K003 194.86 FAS Upper Floridan Aquifer 
19 313146083491601 15L020 420 FAS Upper Floridan Aquifer 
20 313532084203501 11L002 222 CPAS Clayton Group 
21 313554084062501 13L002 212.84 CPAS Clayton Group 
22 313701081543501 30L003 105.77 FAS Upper Floridan Aquifer 
23 313808084093601 12M017 225 FAS Upper Floridan Aquifer 
24 313845081361701 33M004 60.3 FAS Upper Floridan Aquifer 
25 314330084005402 13M006 238 FAS Upper Floridan Aquifer 
26 314330084005403 13M007 238 SA Surficial Aquifer 
27 314602084473701 07N001 445 CPAS Clayton Group 
28 315950081161201 35P094 18.67 SA Surficial Aquifer 
29 320122080510204 39Q003 7 FAS Upper Floridan Aquifer 
30 320202080541201 38Q002 8 FAS Upper Floridan Aquifer 
31 320226082301101 25Q001 190 FAS Upper Floridan Aquifer 
32 320433081042701 37Q016 4.7 FAS Upper Floridan Aquifer 
33 321302082243601 26R001 287 FAS Upper Floridan Aquifer 
34 322036084590301 06S001 255 CPAS Blufftown Formation 
35 322245083290101 18T001 334 CPAS Midville Aquifer 
36 322652083033001 21T001 259 FAS Upper Floridan Aquifer 
37 323030083030003 21U004 282 CPAS Midville Aquifer 
38 323302083263401 18U001 444 CPAS Dublin Aquifer 
39 325232082131501 28X001 269 CPAS Midville Aquifer 
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40 331711081573701 30AA04 297 CPAS Grdn, MP, & Dublin 
Northern Aquifers           
41 334207084254801 10DD02 1013 NAS Crystalline Rocks 
42 335517084164001 11FF04 963.05 NAS Crystalline Rocks 

43 345403085160001 03PP01 730 NAS 
Chickamauga 
Limestone 

 

High resolution PRISM climate data were used in this study. PRISM uses a sophisticated 

regression model called Parameter elevation Regression on Independent Slopes Model to account 

for complex climate regimes associated with orography, rain shadows, temperature inversions, 

slope aspect, coastal proximity, and other factors, and interpolates station observation to spatially 

continuous 4-km grid data (Daly et al., 1997; Daly et al, 1998). For this study, monthly 

precipitation, temperature maximum, and temperature minimum data were collected for Georgia. 

Precipitation and temperature trends were determined on a statewide scale using the entire PRISM 

dataset for the southeastern U.S. Precipitation data was also collected for the nearest PRISM node 

to each 43 individual groundwater monitoring station for correlation and trend analysis.  

Gravity Recovery and Climate Experiment (GRACE) data have been collected to calculate 

terrestrial water storage time series for comparison with Georgia’s groundwater monitoring well 

data. GRACE land are available at http://grace.jpl.nasa.gov, supported by the NASA MEaSUREs 

Program (Senson, 2012; Landerer and Swenson, 2012; Swenson and Wahr, 2006). Irrigation data 

has also been retrieved from the USDA Irrigation Survey 

(https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Farm_and_Ranch_Irrigation/) to 

investigate possible driver or causes of long-term changes in groundwater. 

Data Processing 

The NWIS generates one ASCII (.txt) file for all data downloaded regardless of size or 

location; therefore, the raw data must be sorted and processed before they can be used. The data 

are given with an informational header and water table depth information for every recorded day 

http://grace.jpl.nasa.gov/
https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Farm_and_Ranch_Irrigation/
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and unique well identification number (well ID). The data are listed sequentially by well ID and 

each well contains its own header. The header for each well is unique and is used here as the point 

at which the data can be delineated. The Python programming language is used to “clean” the data 

(appendix 1). Cleaning here refers to separating each well based on the beginning of the header 

(which is always “# # Data provided for”) and the well ID into individual .txt files.  

Separating each well ID into individual .txt files is important so that Visual Basic for 

Applications (VBA) can be used to import the .txt files into Microsoft Excel 2016 as individual 

worksheets (appendix 2). Individual worksheets were used for each well since Excel has a 

maximum capacity of 1,048,576 rows of data in one workbook and all the Georgia well data has 

the potential of having 9,739,229 total rows of data (daily data from 1951 to 2017); however, each 

well only has the potential of having 24,107 rows of data. VBA is the integrated programming 

language for Excel and was used throughout the cleaning and processing phase.  

VBA was used in a variety of ways to further clean and process the data once the wells 

data were separated in Excel worksheets. A “Master” sheet was created which has all the 

information for each well including well ID, site name, type, latitude, longitude, datum, altitude of 

well head, national aquifer code, local aquifer code, and aquifer type. The “Master” sheet was used 

as a reference by VBA to ensure that each line of a specific well’s workbook corresponds to the 

well ID from the “Master” sheet. A “Master 2” sheet was created next to allow for the printing of 

output from VBA and includes: data start date, data end date, number of rows, and number of rows 

with data. VBA code was developed to determine the amount of daily available data from 1951-

2018 for each well and is printed as data start date and data end date and then the percentage of 

the data that was usable by counting the number of rows with data (appendix 3). 
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Further VBA code was developed once the data was counted and organized to add in a 

“null” value that would be specific for the entire dataset (appendix 4). The number “-999.0” was 

chosen due to the unlikelihood of a -999 ft. depth to water table measurement or water table 

elevation. The typical appearance of missing data in the code came as a simple blank cell; however, 

multiple other characters could be given by the NWIS including: “Eqp”, “***”, and “—“. Lastly, 

the final portion of VBA code was written to write all missing data from 1951 to 2017 so that the 

entire dataset has the same length and would only include the working data and the null value 

(appendix 5). All values added from this code can be identified by “CRS” in the final column of 

each well data worksheet.  

Data Analysis and Statistical Methods 

Analysis Tool  

Data analysis was accomplished using the National Center for Atmospheric Research 

Command Language (NCL) and MATLAB. NCL is an open source free software for scientific 

computing.  NCL is an interpreted language designed for scientific data processing and 

visualization (NCAR, 2017) and is one of the available software on Auburn Supercomputer 

“Hopper”. The Georgia groundwater data were exported from excel into individual comma 

delineated .csv files using open-source VBA code and then groundwater data and metadata (from 

“Master”) were read into NCL using the asciiread function to create a netCDF file (.nc) (appendix 

6) with an intent to conduct multi-dimensional analysis. NCL software allows us to conduct 

analysis across multiple sites, and several ground water statistics together using multi-dimensional 

data processing techniques.  
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Metrics 

 Six sets of groundwater statistics were computed in NCL to determine low, medium, and 

high-water conditions in Georgia. The low water table condition statistics include 1-day minimum 

(L1) and 7-day minimum (L7); medium condition statistics include median annual water table 

(M50) and annual average (M1); and high water table condition statistics include 1-day maximum 

(H1) and 7-day maximum (H7). This method is adapted from Kumar et al. (2009) for groundwater 

applications. Additionally, a measure of reliability in ground water availability that is computed 

as the range between 1-day maximum and 1-day minimum flow is included. A higher range or an 

increasing trend in the range represent less reliable ground water availability (Kumar et al., 2014). 

Groundwater table statistics are computed for seasonal and annual durations (appendix 7). 

Seasonal durations include winter (December, January, February), spring (March, April, May), 

summer (June, July, August), and fall (September, October, November). All statistics are 

calculated using groundwater table elevation and are standardized according to:  

𝑍𝑍 = 𝑋𝑋−µ
𝜎𝜎

  (1) 

where 𝑋𝑋 is the value being standardized (e.g. a groundwater elevation for a given day), µ is the 

mean of the distribution, and 𝜎𝜎 is the standard deviation of the distribution.  

 Additional analysis is preformed using similar metric but for the surface flow (stream 

flow), temperature, and precipitation data to better understand ground water changes in the context 

of hydroclimatic changes in the region. 

Statistical Methods 

The goal of this study is to understand long-term changes or trends in ground water 

availability and their drivers. Non-parametric trend detection methods have been used to overcome 

the known deficiency in hydroclimatic time series that do not follow the normal distribution 
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(Gaussian distribution) particularly for extremes, e.g. 1-day maximum ground water tables. Hydro-

climatic time series also show long-term persistence that is clustering of wet or dry events for 

several years in a row (Kumar et al., 2013; Hurst, 1951). This behavior is particularly important 

for ground water time series that reflect integration effects due to land memory process and large 

storage capacity of ground water reservoirs in addition to random climate forcing, and thereby 

ground water spectrum is red compared to the spectrum of climate forcing which is mostly white 

(Ghannam et al., 2016; Kumar et al., 2019).  Presence of long-term persistence reduces the 

independent sample size in the time series and there by overestimates significance of trends 

(Koutsoyiannis and Montanari, 2007; Kumar et al., 2009). There by, trends significance have been 

investigated under two hypothesis: (1) presence of short-term persistence (STP), and (2) presence 

of long-term persistence (LTP).     

Mann-Kendall Test 

Potential trends in each statistic are determined by the Mann-Kendall test (Kendall, 1975; 

Mann, 1945). Mann–Kendall test is used because it is distribution-free, robust against outliers, 

and has a higher power for non-normally distributed data (Onoz and Bayazit, 2003; Yue et al., 

2002). In addition, it has been used in most previous streamflow trend analyses (Aziz and Burn, 

2006; Birsan et al., 2005; Dixon et al., 2006; Lins and Slack, 1999). Mann–Kendall test requires 

the input data to be serially independent. Many other publications discuss the effects of positive 

serial correlation in the data structure and the significance of trends (von Storch, 1995; Yue et 

al., 2002; Hamed and Rao, 1998, Hamed 2008, Kumar et al. 2009).  

As a result of Kumar et al. (2009), two techniques from published literatures are adopted 

in this study. These include Mann–Kendall after trend-free pre-whitening as suggested by Yue et 

al. (2002) and Mann–Kendall test considering long-term persistence (LTP) as suggested by 
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Hamed (2008). Trend-free pre-whitening removes only lag-1 autocorrelation; whereas Mann–

Kendall test considering LTP considers complete serial correlation structure present in the 

dataset. Apart from short term persistence as represented by lag-1 autocorrelation, presence of 

LTP or Hurst phenomenon has been identified as a major source of uncertainty in analyzing 

hydroclimatic data series (Koutsoyiannis and Montanari, 2007; Cohn and Lins, 2005, Tu et al. 

2017).  

Presence of LTP behavior in the data series could lead to underestimation of serial 

correlation in the data structure, and overestimation of significance of Mann–Kendall test 

(Koutsoyiannis, 2003). To incorporate LTP behavior in the Mann–Kendall test, the technique 

proposed by Hamed (2008) is used. Thus, overall, two versions of Mann–Kendall test are used in 

this study: (i) Mann–Kendall with lag-1 autocorrelation and trend-free pre-whitening (MK1), (II) 

Mann–Kendall with LTP (MK2). These two variations of Mann—Kendall test are used in this 

study are based on Kumar et al. (2009) incorporation of LTP and serial autocorrelation in 

relation to statewide streamflow data. Its adoption for the ground water data is described below. 

Simple Mann–Kendall test 

This is a classical form of Mann–Kendall Test used in many trend studies (Lettenmaier et 

al., 1994; Lins and Slack, 1999; Dixon et al., 2006) and is used here as a basis for further 

equations. If 𝑋𝑋1;  𝑋𝑋2; … ; 𝑋𝑋𝑛𝑛 is the time series of length n, then the Mann–Kendall test statistic S 

is given by: 

S = ∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖)𝑛𝑛
𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1
𝑖𝑖=1        (2) 

Where  𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) =  �
1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 > 0
0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 = 0
−1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 < 0

     (3) 
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The null hypothesis 𝐻𝐻0 for the test is “there is no trend in the time series”. If 𝐻𝐻0 is true then S is 

normally distributed with 

𝐸𝐸(𝑆𝑆) = 0                   

(4) 

𝑉𝑉(𝑆𝑆) = 𝑛𝑛(𝑛𝑛−1)(2𝑛𝑛+𝑆𝑆)
18

                 (5) 

Where 𝐸𝐸(𝑆𝑆) is the mean and 𝑉𝑉(𝑆𝑆) is the variance of 𝑆𝑆. Then the Mann—Kendall 𝑧𝑧 is given by: 

𝑍𝑍 =  

⎩
⎪
⎨

⎪
⎧

𝑆𝑆−1
�𝑉𝑉(𝑆𝑆)

  𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆 > 0

0             𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆 = 0
𝑆𝑆+1
�𝑉𝑉(𝑆𝑆)

   𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 < 0
                 

(6) 

A positive value of S indicates an increasing trend and vice versa. Test statistic z gives 

significance level (SL) of rejecting the null hypothesis (chances of rejecting null hypothesis even 

if there is no trend in the dataset). Confidence level (CL) of rejecting the null hypothesis is given 

by: 

𝐶𝐶𝐶𝐶 = 1 − 𝑆𝑆𝑆𝑆                  (7) 

Magnitude of trends has been determined using Theil–Sen approach (TSA) (Sen, 1968; Thiel, 

1950). The TSA slope β is given by: 

𝛽𝛽 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝑋𝑋𝑗𝑗−𝑋𝑋𝑖𝑖
𝑗𝑗−𝑖𝑖

� for all 𝑖𝑖 < 𝑗𝑗              (8) 

Mann—Kendall test with trend-free pre-whitening (MK1) (appendix 8) 

Pre-whitening is a statistical approach to remove the influence of autocorrelation in serial data, 

such as our groundwater time series data. The trend-free pre-whitening (TFPW) procedure as 

described by Yue et al. (2002) involves the following steps: 

1. Compute the lag-one (𝑘𝑘 = 1) autocorrelation coeffiecient (𝑟𝑟1) using: 
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𝑟𝑟𝑘𝑘 =
1

𝑛𝑛−𝑘𝑘
∑ (𝑋𝑋𝑖𝑖−𝑋𝑋�)(𝑋𝑋𝑖𝑖+𝑘𝑘−𝑋𝑋�)𝑛𝑛−𝑘𝑘
𝑖𝑖=1
1
𝑛𝑛
∑ (𝑋𝑋𝑖𝑖−𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1

              (9) 

2. If −1−1.645√𝑛𝑛−2
𝑛𝑛−2

, ≤  𝑟𝑟1  ≤ −1+1.645√𝑛𝑛−2
𝑛𝑛−2

,  then they are assumed to be serially independent 

at 10% significance level (CL = 90%) and no pre-whitening is required. Else data are 

considered to be serially correlated and pre-whitening is required before applying the 

Mann–Kendall test. 

3. Compute non-parametric TSA slope (𝛽𝛽) in the sample data by using Eq. (8), and remove 

the trend from the series to get a detrended series by using the following equation: 

𝑋𝑋𝑖𝑖′ = 𝑋𝑋𝑖𝑖 − (𝛽𝛽 ∗ 𝑖𝑖)              (10) 

4. Compute the lag-1 autocorrelation of the detrended series by using Eq. (9). 

5. Remove the lag-one autoregressive component (AR(1)) from the detrended series to get a 

residual series as given below: 

𝑦𝑦𝑖𝑖′ = 𝑋𝑋𝑖𝑖′ − 𝑟𝑟1 ∗ 𝑋𝑋𝑖𝑖−1′               (11) 

6. The trend (𝛽𝛽 ∗ 𝑖𝑖) is added back to the residual series to get a blended series: 

𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖′ + (𝛽𝛽 ∗ 𝑖𝑖)               (12)  

The Mann–Kendall test is applied to the blended series 𝑦𝑦𝑖𝑖 to determine the significance of the 

trend. This method has been used to determine trends in streamflow data for several studies 

(Aziz and Burn, 2006; Birsan et al., 2005; Novotny and Stefan, 2007).  

Mann—Kendall test considering LTP (MK2) (appendix 9) 

This method is adopted from Hamed (2008), and involves the following steps: 

1. Calculation of Hurst coefficient (𝐻𝐻):  

a. Time series 𝑋𝑋𝑖𝑖 is detrended using non-parametric TSA slope (Eq. (8)) and the 

detrended series 𝑋𝑋𝑖𝑖′ is obtained as described in Eq. (10). 
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b. The equivalent normal variates of rank of the detrended series are obtained using 

following Eq. (13) below. 

𝑍𝑍𝑖𝑖 = 𝜙𝜙−1 � 𝑅𝑅𝑖𝑖
𝑛𝑛+1

�             (13) 

where 𝑅𝑅𝑖𝑖 is the rank of the detrended series 𝑋𝑋𝑖𝑖′, 𝑛𝑛 is the length of the time series, 

and 𝜙𝜙−1 is the inverse standard normal distribution function (mean = 0, standard 

deviation = 1). 

c. Correlation matrix for a given Hurst coefficient is given by: 

𝐶𝐶𝑛𝑛(𝐻𝐻) = �𝜌𝜌|𝑗𝑗−𝑖𝑖|�, for 𝑖𝑖 = 1 ∶ 𝑛𝑛, 𝑗𝑗 = 1 ∶ 𝑛𝑛         (14) 

𝜌𝜌𝑙𝑙 = 1
2

(|𝑙𝑙 + 1|2𝐻𝐻 − 2|𝑙𝑙|2𝐻𝐻 + |𝑙𝑙 − 1|2𝐻𝐻) for 𝑙𝑙 > 1        (15) 

where 𝜌𝜌𝑙𝑙 is the autocorrelation function of lag 𝑙𝑙 for a given 𝐻𝐻, and is independent 

of the time scale of aggregation for the time series (Koutsoyiannis, 2003). 

d. The value of 𝐻𝐻 is obtained by maximizing the log likelihood function of 𝐻𝐻 as 

given by Eq. (16). 

log 𝐿𝐿(𝐻𝐻) = −1
2

log|𝐶𝐶𝑛𝑛(𝐻𝐻)| − 𝑍𝑍𝑇𝑇[𝐶𝐶𝑛𝑛(𝐻𝐻)]−1𝑍𝑍
2𝛾𝛾0

          (16) 

Where |𝐶𝐶𝑛𝑛(𝐻𝐻)| is the determinant of correlation matrix |𝐶𝐶𝑛𝑛(𝐻𝐻)|, 𝑍𝑍𝑇𝑇 is the 

transpose vector of equivalent normal variates 𝑍𝑍 (Eq. (13)). [𝐶𝐶𝑛𝑛(𝐻𝐻)]−1 is the 

inverse matrix, and 𝛾𝛾0 is the variance of 𝑍𝑍𝑖𝑖. Equation (16) can be solved 

numerically for different value of 𝐻𝐻, and the value for which log 𝐿𝐿(𝐻𝐻) is the 

maximum taken as the 𝐻𝐻 value for the given time series 𝑋𝑋𝑖𝑖. In this study, the 

value of 𝐻𝐻 is solved between 0.50 and 0.98 with an incremental step of 0.01. 
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2. Significance level of 𝐻𝐻 is determined (whether obtained value of 𝐻𝐻 in step 1 is 

significantly different from 0.5 or not) using mean (µ𝐻𝐻) and standard deviation (𝜎𝜎𝐻𝐻) 

when 𝐻𝐻 = 0.5 (normal distribution) as given by the following equations: 

µ𝐻𝐻 = 0.5 − 2.87𝑛𝑛−0.9067             (17) 

𝜎𝜎𝐻𝐻 = 0.77654𝑛𝑛−0.5 − 0.0062            (18) 

Equations (17) and (18) are obtained by Hamed (2008). We have used 10% significance 

level for determining significant 𝐻𝐻. 

3. Calculation of variance: If 𝐻𝐻 is found to be significant the variance of 𝑆𝑆 is calculated 

using following equation for given 𝐻𝐻: 

𝑉𝑉(𝑆𝑆)𝐻𝐻′ = ∑ ∑ 2
𝜋𝜋
𝑠𝑠𝑠𝑠𝑠𝑠−2 �𝜌𝜌|𝑗𝑗−𝑖𝑖|−𝜌𝜌|𝑖𝑖−𝑙𝑙|−𝜌𝜌|𝑗𝑗−𝑘𝑘|+𝜌𝜌|𝑖𝑖−𝑘𝑘|

�(2−2𝜌𝜌|𝑖𝑖−𝑗𝑗|)(2−2𝜌𝜌|𝑘𝑘−𝑙𝑙|)
�𝑘𝑘<𝑙𝑙𝑖𝑖<𝑗𝑗          (19) 

where 𝜌𝜌𝑙𝑙 is calculated from Eq. (15) for given 𝐻𝐻. Because 𝐻𝐻 is estimated from given data 

series, 𝑉𝑉(𝑆𝑆)𝐻𝐻′ is a biased estimate. To calculate an unbiased estimate 𝑉𝑉(𝑆𝑆)𝐻𝐻′, the value 

obtained in Eq. (19) is multiplied by a bias correction factor 𝐵𝐵. 

𝑉𝑉(𝑆𝑆)𝐻𝐻 = 𝑉𝑉(𝑆𝑆)𝐻𝐻′ × 𝐵𝐵             (20) 

where 𝐵𝐵 is a function of 𝐻𝐻 and 𝑛𝑛. The significance of Mann–Kendall test is computed by 

using 𝑉𝑉(𝑆𝑆)𝐻𝐻 in place of 𝑉𝑉(𝑆𝑆)in Eq. (6). 

The Mann-Kendall test was computed using MATLAB software with code from Kumar et al. 

(2009). 

Autocorrelation Analysis (Appendix 10) 

Each groundwater well and PRISM precipitation data were converted from daily data to monthly 

data and smoothed with a 3-month running mean to reduce intra-seasonal variability. 3-month 

running mean anomalies are computed by removing the long-term monthly climatology 

determined from the period of record. Six different focus areas were determined based on the 
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available data: Floridan aquifer system (FAS), Coastal Plain aquifer system (CPAS), Surficial 

aquifer system (SAS), Northern aquifer systems (NAS), Combined Statewide aquifer systems 

(CSAS), and precipitation (PCP).   

 The autocorrelation analysis involves correlating each 3-month season with the 

corresponding season’s anomalies with values at lags ranging from -24 to +24 months. This 

study assumes that since the land surface integrates forcing by random weather and climate 

variability, then the subsurface water conditions will match this reaction; and thereby will 

provide a red spectrum. It has been shown in the literature that both confined and unconfined 

aquifers will interact with surface water and climate systems through recharge and discharge 

(Green et al., 2011, Rakhshandehroo and Amiri 2012, Taylor et al. 2013, Joelson et al. 2016). 

Therefore, the simplest null hypothesis for groundwater table variability is red noise or a first-

order Markov process (Amenu et al. 2005, Chikamoto et al. 2015, Delworth and Manabe 1988, 

Schlosser and Milly 2002), whose autocorrelation function 𝜌𝜌 for a given lag 𝜏𝜏  is 

𝜌𝜌(𝜏𝜏)  =  exp (−𝜏𝜏
𝜏𝜏𝐷𝐷

)                (21) 

where 𝜏𝜏𝐷𝐷 is the decorrelation (or e-folding) time scale, also known as groundwater table memory 

in this study.  

 Let us suppose ∏𝑦𝑦=𝑛𝑛,𝑚𝑚=12
𝑦𝑦=1,𝑚𝑚=1

 𝑋𝑋𝑦𝑦,𝑚𝑚 is the seasonal anomalies time series (3-month running 

average) for a given aquifer type where subscript y represent year (1 to n), m represent season (1 

to 12); then the correlation functions are given as below: 

𝐴𝐴𝐴𝐴𝑚𝑚,𝛿𝛿 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �∏ 𝑛𝑛
𝑦𝑦=1

𝑋𝑋𝑦𝑦,𝑚𝑚,∏ 𝑛𝑛
𝑦𝑦=1

𝑋𝑋𝑦𝑦,𝑚𝑚+𝛿𝛿�          (22) 

where 𝐴𝐴𝐴𝐴𝑚𝑚,𝛿𝛿  is autocorrelations for season m, and at lead/lag 𝛿𝛿 which ranges from -24 to +24. 

Correl is the linear correlation coefficient between the two series. For 
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 𝛿𝛿 ≥  12,𝑋𝑋𝑦𝑦,𝑚𝑚+𝛿𝛿 = 𝑋𝑋𝑦𝑦+1,𝑚𝑚+𝛿𝛿−12, and 𝛿𝛿 ≤  12,𝑋𝑋𝑦𝑦,𝑚𝑚+𝛿𝛿 = 𝑋𝑋𝑦𝑦−1,𝑚𝑚+𝛿𝛿+12. The t-statistic for the 

regression coefficient was determined and converted into the statistical probabilities (p-value). 

Thus, every year contributes one sample in the given time series, (e.g. ∏ 𝑛𝑛
𝑦𝑦=1

𝑋𝑋𝑦𝑦,𝑚𝑚) for computing 

correlation. We determined degrees of freedom by accounting for serial autocorrelation in the 

time series and accordingly reducing the effective sample size using the NCL function 

equiv_sample_size (NCL, 2018). 

All autocorrelation work was done in NCL using code based on Kumar et al. (2019) and is 

located in appendix 11. 
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Chapter 4: Results 
 

Trends in Ground Water  

The trends in the well data are analyzed by performing the Mann-Kendall trend analysis 

for annual groundwater statistics following the methods from the previous chapter. The annual 

Mann—Kendall Z values (z ≥ 1.96 and z ≤ -1.96 are statistically significant) for all wells and the 

statewide averages are presented in Table 2. Z values for each aquifer and the statewide averages 

are presented in Table 3. The total number of stations showing significant trend (>95% confidence 

interval) for short-term and long-term Mann—Kendall tests are presented in Table 4.  

 Annual average, minimum, maximum, 7-day minimum, 7-day maximum, and range trends 

are calculated for each groundwater monitoring well. Each statistic is further classified based on 

the aquifer system that the well screen is located in for each well. The SAS and NAS show no 

significant trend for any of the statistics tested when considering both STP and LTP. The FAS 

shows significant declines in annual average, minimum, and 7-day minimum when STP is 

considered and loses significance in only 7-day minimum when LTP is considered. The CPAS 

shows statistically significant declines in all statistics tested for both STP and LTP with the 

exception of annual range which shows significant increased for both STP and LTP.  

Large percentages of streamflow stations (75% or more) have been shown previously to 

lose statistical significance as LTP is considered for Mann-Kendall tests (Kumar et al. 2009). In 

the contrary, our study indicates that none of the test statistics show this large decrease in wells 

showing statistical significance when LTP is incorporated. Annual average water table showed the 

largest decrease in Z value when incorporating LTP with around 50% of the wells losing 

significance.  Annual minimum, 7 day minimum, and 7 day maximum all show a large percentage 

of wells with significant Z values (66-75%) and all show a large decrease when LTP is considered 
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(38-48%). Overall, all statistics considered show a large percentage of wells exhibiting mostly 

significant decreasing trends (down-pointing triangles in Figures 4 and 5) except for the “range” 

(between minimum and maximum level), which show increasing trends. 

 

Table 2. Mann—Kendall “Z value” for annual groundwater statistics using MK1/MK2. Z value for the stations 
showing significant trends at 95% confidence level (z ≥ 1.96 and z ≤ -1.96) are shown in bold (Aq.: Aquifer, M1: 
Average, L1: 1-day minimum water table, L7: 7-day minimum water table, H1: 1-day maximum water table, H7: 7-
day maximum water table). 

Well ID Aq M1 Range L1 L7 H1 H7 
304942082213801 FAS -2.73/-1.04 1.77/1.77 -1.63/-0.69 -3.20/-1.45 -1.82/-0.74 -3.15/-1.35 
304949083165301 FAS 1.40/0.66 0.85/0.85 2.26/1.02 0.77/0.77 2.03/0.96 1.19/1.19 
305356084534601 FAS -0.01/-0.01 1.35/0.66 0.51/0.51 -2.31/-2.31 0.61/0.61 -2.34/-2.34 
305736084355801 FAS -1.66/-1.66 -0.51/-0.51 -1.32/-1.32 -1.53/-1.53 -1.14/-1.14 -1.45/-1.45 
310507084262201 FAS -1.61/-1.61 -0.80/-0.80 -1.14/-1.14 -1.58/-0.81 -1.09/-1.09 -1.45/-0.76 
310651084404501 FAS -1.45/-0.67 0.41/0.41 -0.67/-0.67 -2.24/-0.96 -0.14/-0.14 -1.48/-0.67 
310706082155101 FAS -4.51/-1.99 2.43/2.43 -3.28/-1.48 -5.04/-5.04 -3.18/-1.43 -4.98/-4.98 
310813083260301 FAS -7.15/-2.36 2.52/2.52 -6.92/-2.76 -6.89/-3.53 -6.97/-2.78 -6.97/-6.97 
310818081294201 FAS 4.28/1.31 -0.04/-0.04 4.25/1.50 4.38/1.41 3.81/1.25 4.41/1.38 
311007081301702 FAS 6.74/1.97 -2.35/-2.35 6.32/1.89 6.47/2.08 6.19/2.47 6.37/2.05 
311009084495503 SA -1.52/-1.52 1.99/1.99 -0.24/-0.24 -1.94/-1.94 0.39/0.18 -1.74/-0.83 
311802084192301 CPAS -2.76/-1.28 0.00/0.00 -2.08/-2.08 -3.94/-1.73 -2.16/-2.16 -4.04/-1.82 
311802084192302 FAS -1.48/-1.48 -1.74/-1.74 -1.56/-1.56 -1.11/-1.11 -1.19/-1.19 -1.63/-1.63 
312127084065801 FAS -3.91/-1.35 -0.30/-0.30 -3.07/-1.17 -4.43/-1.43 -2.92/-1.11 -4.28/-1.37 
312232084391701 FAS -1.09/-0.45 2.08/2.08 2.45/0.93 -1.63/-0.76 1.87/0.66 -1.90/-0.88 
312617084110701 FAS -2.89/-2.89 -1.83/-0.96 -2.31/-1.07 -2.97/-1.48 -1.39/-1.39 -2.81/-1.37 
312712082593301 FAS -7.76/-3.09 3.54/3.54 -8.10/-2.42 -7.34/-7.34 -8.04/-2.41 -7.44/-7.44 
312919084153801 FAS -0.25/-0.11 1.45/1.45 0.21/0.10 -0.98/-0.43 0.27/0.14 -0.85/-0.40 
313146083491601 FAS -8.46/-2.66 -0.09/-0.09 -8.31/-2.80 -8.12/-3.49 -8.25/-2.78 -8.15/-3.59 
313532084203501 CPAS -6.19/-2.04 2.05/2.05 -6.53/-2.31 -4.88/-2.50 -6.55/-2.32 -4.93/-2.46 
313554084062501 CPAS 2.66/0.83 0.68/0.68 3.44/1.34 1.63/0.61 3.57/1.39 1.56/0.56 
313701081543501 FAS -5.79/-1.86 4.07/1.58 -3.47/-1.11 -5.82/-2.06 -3.20/-0.91 -5.79/-2.05 
313808084093601 FAS -0.27/-0.11 1.12/0.56 0.14/0.06 -0.95/-0.95 -0.20/-0.08 -1.56/-1.56 
313845081361701 FAS -4.64/-1.39 3.05/3.05 -3.39/-0.99 -4.80/-1.54 -3.15/-0.97 -4.75/-1.53 
314330084005402 FAS -1.77/-1.77 2.00/2.00 -2.50/-1.28 -2.08/-2.08 -3.15/-1.29 -2.60/-2.60 
314330084005403 SA 0.13/0.13 0.89/0.89 0.47/0.47 -0.64/-0.33 0.58/0.58 0.09/0.04 
314602084473701 CPAS -7.00/-1.95 -0.93/-0.93 -6.84/-1.86 -6.26/-2.32 -6.92/-1.84 -6.00/-2.40 
315950081161201 SA 0.80/0.38 -3.86/-3.86 -2.21/-2.21 3.49/1.58 -1.19/-1.19 4.04/1.87 
320122080510204 FAS 4.67/1.21 0.13/0.13 4.98/1.26 3.57/1.07 5.11/1.33 3.57/1.07 
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320202080541201 FAS 5.87/1.56 0.12/0.12 6.06/1.61 4.90/1.50 5.98/1.55 4.80/1.47 
320226082301101 FAS -7.49/-2.47 4.07/4.07 -7.28/-2.77 -7.05/-2.62 -7.23/-2.75 -7.08/-2.63 
320433081042701 FAS 7.26/2.17 -2.26/-2.26 7.47/2.13 6.84/2.25 7.36/2.00 6.94/2.18 
321302082243601 FAS -7.60/-2.27 3.96/3.96 -7.52/-2.60 -7.00/-3.41 -7.55/-2.61 -7.10/-3.29 
322036084590301 CPAS -8.33/-2.01 1.22/0.59 -8.12/-1.96 -8.12/-2.01 -8.10/-1.96 -8.12/-2.01 
322245083290101 CPAS -8.10/-2.00 4.49/4.49 -7.70/-2.00 -7.86/-2.04 -7.39/-1.96 -7.99/-2.03 
322652083033001 FAS -3.57/-3.57 0.07/0.07 -3.34/-3.34 -3.73/-3.73 -3.18/-3.18 -3.81/-3.81 
323030083030003 SCP -8.38/-2.39 4.38/4.38 -8.28/-2.36 -8.07/-2.59 -8.25/-2.41 -8.10/-2.67 
323302083263401 SCP -6.97/-1.85 3.94/3.94 -6.87/-1.83 -6.71/-2.06 -6.84/-1.82 -6.68/-2.05 
325232082131501 SCP -8.46/-1.95 5.48/2.08 -8.25/-1.99 -8.33/-1.92 -8.25/-1.99 -8.33/-1.92 
331711081573701 SCP -6.76/-1.93 1.11/1.11 -6.84/-2.00 -7.10/-2.03 -6.76/-2.02 -7.00/-2.05 
334207084254801 NAS 1.22/0.36 1.09/1.09 1.03/0.32 0.35/0.11 1.40/0.41 0.09/0.03 
335517084164001 NAS -6.16/-2.46 3.57/3.57 -4.70/-2.17 -6.24/-3.28 -4.85/-2.42 -5.85/-5.85 
345403085160001 NAS 3.49/1.66 -2.97/-2.97 2.05/2.05 3.83/1.61 1.45/1.45 3.99/1.55 
Statewide Average -3.70/-1.63 2.16/2.16 -4.04/-1.87 -3.28/-1.48 -3.44/-1.72 -3.28/-1.48 

 
 
Table 3. Average “Z value” for annual groundwater statistics using MK1/MK2 separated by aquifer. Z value for the 
stations showing significant trends at 95% confidence level (z ≥ 1.96 and z ≤ -1.96) are shown in bold. P-scores are 
shown as asterisks (*) beside the Z value (*: 95% confidence, **: 99% confidence, ***: 99.9% confidence). (M1: 
Average, L1: 1-day minimum water table, L7: 7-day minimum water table, H1: 1-day maximum water table, H7: 7-
day maximum water table). 

Z-Values M1 Range L1 L7 H1 H7 
FAS -2.89**/-1.30 1.87/1.87 -3.31***/-3.31*** -3.31***/-1.70* -1.92*/-0.98 -1.74*/-0.79 
CPAS -7.10***/-2.34** 3.02/3.02 -7.08***/-2.76** -7.00***/-2.73** -6.89***/-2.56** -6.89***/-2.56** 
SA -0.33/-0.33 -0.20/-0.10 0.04/0.04 0.72/0.31 -0.85/-0.85 0.01/0.01 
NAS -1.45/-0.57 0.51/0.51 -1.32/-0.58 -1.48/-0.68 -1.03/-0.40 -1.58/-0.53 
SAS -3.70***/-1.63 2.16/2.16 -4.04**/-1.87* -3.28***/-1.48 -3.44***/-1.72* -3.28***/-1.48 

 
 

Table 4. Number of wells showing significant trends (95% confidence level) for annual statistics using MK1/MK2 
(total number of wells = 43). Values for each row should be read as (MK1(+/-) / MK2(+/)). (M1: Average, L1: 1-day 
minimum water table, L7: 7-day minimum water table, H1: 1-day maximum water table, H7: 7-day maximum water 
table). 

Total M1 Range L1 L7 H1 H7 
FAS (5/2)/(11/8) (9/8)/(3/3) (6/2)/(14/10) (6/2)/(13/10) (7/1)/(13/7) (6/2)/(11/6) 
CPAS (1/0)/(9/4) (5/5)/(0/0) (0/0)/(9/7) (0/0)/(9/7) (1/0)/(9/7) (1/0)/(9/6) 
SA (0/0)/(0/0) (0/1)/(0/1) (1/0)/(0/0) (1/0)/(0/0) (0/0)/(1/1) (0/0)/(0/0) 
NAS (1/0)/(1/1) (0/1)/(1/1) (1/0)/(1/1) (1/0)/(1/1) (1/1)/(1/1) (0/0)/(1/1) 
SAS (7/2)/(21/13) (16/15)/(5/5) (8/2)/(24/18) (8/2)/(23/18) (9/2)/(24/16) (7/2)/(21/13) 
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Figure 4. Spatial distribution of wells showing significant trends using MK1. (Ann_AVG: Annual Average, 
Ann_Range: Annual Range, Ann_MAX: Annual 1-day Maximum, Ann_MIN: Annual 1-day Minimum). The 
background color for the map shows linear trend for annual precipitation in units of % change in 37 years (1981 to 
2017) and the corresponding statistics from monthly PRISM climate data. Hatching signifies statistical significance 
linear regression based trend. Statistical significance (hatching) in precipitation is sparse across the state and typically 
cover less than 5% area hence not statistically significant. Black up-pointing and down-pointing triangles show 
increasing and decreasing trends of groundwater level based on Mann-Kendall test (MK1), respectively.  Open circles 
show streamflow stations with no significant trends. 
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Figure 5. Spatial distribution of wells showing significant trends using MK2. (Ann_AVG: Annual Average, 
Ann_Range: Annual Range, Ann_MAX: Annual 1-day Maximum, Ann_MIN: Annual 1-day Minimum) The 
background color for the map shows linear trend for annual precipitation in units of % change in 37 years (1981 to 
2017) and the corresponding statistics from monthly PRISM climate data. Hatching signifies statistical significance 
linear regression based trend. Statistical significance (hatching) in precipitation is sparse across the state and typically 
cover less than 5% area hence not statistically significant. Black up-pointing and down-pointing triangles show 
increasing and decreasing trends of groundwater level based on Mann-Kendall test (MK2), respectively.  Open circles 
show streamflow stations with no significant trends. 
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Climate Trends (Precipitation and Temperature) 

To investigate if groundwater trends are related to climatic factors, Mann-Kendall 

analysis has also been performed for annual precipitation, temperature, and streamflow for the 

years 1981 to 2017 across Georgia. Precipitation and temperature trends are calculated based on 

43 PRISM 4km X 4km grid that is nearest to each of the 43 monitoring wells, respectively. 

Precipitation trend (see color maps in Figures 6 and 7) has very little or no significance 

statewide. Similarly, temperature shows very little significant in daytime temperatures and 

slightly more with nighttime temperatures with STP. Average temperature shows some 

significance but is only considering linear trend. 

 

Streamflow Trends 

Streamflow has been calculated based on 33 streamflow stations. Overall precipitation 

streamflow (Figure 6 and 7) show less statistical significance (short and long term) when compared 

to groundwater level trends (Fig. 4 and 5). Streamflow has 13 stations showing significant 

decreasing minimum baseflow (Fig. 6 and 7), but only three stations with significantly decreasing 

minimum baseflow when LTP is considered. The other statistics for streamflow show no 

significant values 
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Figure 6. Spatial distribution of stream gauging stations showing significant trends using MK1. (Ann_AVG: Annual 
Average, Ann_Range: Annual Range, Ann_MAX: Annual 1-day Maximum, Ann_MIN: Annual 1-day Minimum). 
Black and red lines indicate watershed boundaries. The background color for the map shows linear trend for annual 
precipitation in units of % change in 37 years (1981 to 2017) and the corresponding statistics from monthly PRISM 
climate data. Hatching signifies statistical significance linear regression based trend. Statistical significance (hatching) 
in precipitation is sparse across the state and typically cover less than 5% area hence not statistically significant. Black 
up-pointing and down-pointing triangles show increasing and decreasing trends of streamflow based on Mann-Kendall 
test (MK2), respectively.  Open circles show streamflow stations with no significant trends 
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Figure 7. Spatial distribution of stream gauging stations showing significant trends using MK2. (Ann_AVG: Annual 
Average, Ann_Range: Annual Range, Ann_MAX: Annual 1-day Maximum, Ann_MIN: Annual 1-day Minimum). 
Black and red lines indicate watershed boundaries. The background color for the map shows linear trend for annual 
precipitation in units of % change in 37 years (1981 to 2017) and the corresponding statistics from monthly PRISM 
climate data. Hatching signifies statistical significance linear regression based trend. Statistical significance (hatching) 
in precipitation is sparse across the state and typically cover less than 5% area hence not statistically significant. Black 
up-pointing and down-pointing triangles show increasing and decreasing trends of streamflow based on Mann-Kendall 
test (MK2), respectively.  Open circles show streamflow stations with no significant trends 
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Drivers of Ground Water Trends  

Annual time series of standardized departures and its seasonality for the 43 analyzed wells 

are presented in Figure 8. The annual trend shows most of the wells following along similar 

decreasing trends except for 6 wells (well 9, 10, 29, 30, 32, and 34). Out of 37 stations that show 

decreasing tendencies, 20 stations found to be statistically significant based on MK1 and 12 

stations were found to be statistically significant based on MK2 test. The 6 wells that differ from 

these show an overall increasing tendency for the 37 years out of which 6/3 (MK1/MK2) are 

significant. Five of the increasing tendency wells are located along the Atlantic coast of Georgia 

and begin the record with substantially negative water table elevations in 1981. These wells have 

been reported to be near former municipal pumping locations and the increase in water table may 

be due to ceases of pumping and natural recharge (GADNR, 2006). The last increasing well is 

located in southwestern Georgia near a Super Fund site. 

 The seasonal cycle plot standardized anomalies for all wells and averaged over 37 years 

for each day of the year. The groundwater shows a strong seasonality with a wet period 

corresponding to spring (March-May) and a dry season corresponding to summer (June-August). 

Fall through winter months (September-February) show a general increasing trend back to the wet 

season. The seasonal time series plot shows periods of maximum water table (typically spring) and 

minimum water table (typically summer).  

 Figure 9 show annual averages standardized anomalies averaged across different wells 

each of the 4 aquifer systems together as well as the state wide average. Individual aquifer averages 

were determined for the Floridan aquifer (FAS) that has 27 number of wells, Coastal Plain aquifer 

system (CPAS) having 10 wells, surficial aquifer system (SA) 3 wells, and the Northern aquifer 
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systems (NAS), having 3 wells. P-values have been calculated for each time series and are 

presented in Table 3.   

The SA and the NAS each have the least number of wells (3 each) and show a similar 

neutral trend over the 37 years. Since there is no notable change in precipitation trend over the 

monitoring period, this aquifer response is expected. P-value statistics confirm this hypothesis 

since no statistics for either of these aquifer systems show P-values of 0.05 or less. The statewide 

average groundwater table is largely influenced by the FAS due to the large amount of monitoring 

wells in the aquifer (27 of the 43). The FAS time series shows a slightly decreasing trend over the 

37 years with periods of large fluctuations (variability). The state wide decreasing trend is 

statistically significant for MK1 across all statistics, but only shows significance when MK2 is 

considered with range. 

The FAS is hydrologically interconnected with surface water bodies and may act either as 

an unconfined or a confined aquifer depending on location. Therefore, the similarity in trends 

between the surficial aquifer and the FAS is expected. Likewise, the FAS shows similarities to the 

deeper, mostly confined CPAS. Floridian and statewide aquifer statistics show very similar trends 

in P-value with annual average, minimum, and 7-day minimum all showing significant P-value for 

STP. Statewide also shows significant P-value for annual maximum and 7-day maximum STP 

water table levels.  

The confined CPAS by far shows the largest decreasing trend of any aquifer systems in the 

state and lacks large fluctuations likely caused by ENSO and other climatic variability. This may 

reflect the much longer residence time and mixing processes in the deeper aquifers.  P-values also 

confirm this trend which all statistics showing statistically significant values except for range 

which shows an inverse trend. The CPAS is also the only aquifer that is unaffected across all 
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statistics when LTP is considered. The time series analysis and the significant P-value reveal that 

climate—groundwater interactions do not readily explain the decreasing trend in groundwater in 

the FAS and CPAS.  
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Figure 8. Diagram on top is the annual groundwater time series for all 43 wells analyzed in the study. Most wells show 
overall decreasing trends showing in blue and 6 wells showing increasing trends shown in orange (9, 10, 29, 30, 32, 
and 34).  The bottom diagram is the average daily water table for each well to show seasonality in the groundwater. 
The wells show strong seasonality with a wet season in the spring and a dry season in the summer. Statewide average 
for both graphs is shown in black. 
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Figure 9. Collage of graphs showing trends of water table elevation in different aquifers in Georgia. Linear trend lien 
for each time series, linear equation, and R2 are included in each graph. (A) Shows the statewide time series of average 
for all four aquifers. (B) Shows the Floridan aquifer system. The Floridan aquifer system has the largest quantity of 
monitoring wells (27), so the statewide average looks similar due to the large number of wells in the Floridan. (C) 
Shows the Coastal Plain aquifer system. The Coastal Plain aquifer system has the greatest amount of decrease amongst 
all the aquifers. (D) Shows the surficial aquifer system. The surficial aquifer shows the least amount of change over 
the monitoring period. (E) Shows the Northern aquifer systems. The northern aquifer systems show large fluctuations 
but remains mostly neutral over the time series in terms of average water table level. 

 
 
 
 
 
 

A 

B C 

D E 
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Time series analysis attempts to determine any climatic forcings that may lead to 

groundwater decrease across Georgia as a result. El Nino and La Nina have previously been shown 

to cause fluctuations in groundwater of the Upper Floridan aquifer in southwestern Georgia (Singh 

et al., 2015; Singh et al., 2016; Mitra et al., 2014). Statewide annual groundwater level anomalies 

for each individual aquifer compared to precipitation at the same location as the well is presented 

in Figure 10. Statewide annual groundwater level anomalies for each individual aquifer compared 

to ENSO in is presented in Figure 11.  

 A correlation analysis was performed for groundwater table anomaly, precipitation 

anomaly, and ENSO anomaly and is presented in Table 5. The analysis determines the correlation 

between the groundwater anomaly and precipitation anomaly, groundwater anomaly and ENSO 

anomaly, and precipitation anomaly and ENSO anomaly considering all 37 years of data. The 

correlation analysis shows a relatively low correlation between the statewide water table and 

ENSO. The correlation was also analyzed for average of individual aquifer. The Floridan, Coastal 

Plain, surficial, and northern aquifers were analyzed. The surficial aquifer shows the highest 

correlations of all the aquifers between all three analyses. On average, the shallower aquifers 

showed the most correlation with precipitation and ENSO while the deeper aquifers showed the 

least correlation with climate. Interestingly, all aquifers showed more correlation to precipitation 

than precipitation did to ENSO. The ENSO—groundwater relationship has been shown to be 

present in the surface water and shallow aquifers in previous studies (Singh et al., 2015; Singh et 

al., 2016; Mitra et al., 2014). The correlation analysis also shows that the Coastal Plain aquifer, 
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the deepest aquifer system, has the lowest correlation, or the poorest connection to climate 

variables corresponding with previous studies (see references above).  

 

        Table 5. Correlation Analysis for Georgia groundwater table anomaly precipitation anomaly, and ENSO 
anomaly. Statistically significant values are in bold. P-scores are shown as asterisks (*) beside the correlation (*: 95% 
confidence, **: 99% confidence, ***: 99.9% confidence). 

Aquifer Groundwater/Precipitation Groundwater/ENSO Precipitation/ENSO 
State Average 0.58*** 0.38* 0.50** 
Floridan Aquifer 0.66*** 0.40* 0.48** 
Coastal Plain Aquifer 0.18 0.09 0.45** 
Surficial Aquifer 0.75*** 0.47** 0.51** 
Northern Aquifers 0.58*** 0.37* 0.41* 

 

 

 Time series comparisons have also been conducted between groundwater anomaly data 

and NASA’s GRACE total water storage anomalies data (Figure 12). The GRACE project 

accurately measured variations in Earth's gravity field, which partly correlate to regional changes 

in groundwater storage on Earth’s surface, among other factors. GRACE data show a very similar 

trend to groundwater throughout the comparative time periods.  The results show that the regional 

gravity average increases with rising water table or groundwater storage.  Agreement between the 

data and GRACE data indicates that the analysis is consistent with other independent water balance 

metrics.  
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Figure 10. Graph shows annual Georgia groundwater table anomaly (blue) and precipitation anomaly (gold). The 
two trends show similar increasing and decreasing trends with a slight time lag between precipitation and 
groundwater fluctuations. Correlation (R) for each set of time series is added to the top right of the chart. P-scores 
are shown as asterisks (*) beside the R value (*: 95% confidence, **: 99% confidence, ***: 99.9% confidence). A) 
Shows the statewide time series of average for all four aquifers. (B) Shows the Floridan aquifer system. (C) Shows 
the Coastal Plain aquifer system. (D) Shows the surficial aquifer system. (E) Shows the Northern aquifer systems. 

 



45 
 

 

Figure 11. Graph shows annual Georgia groundwater table anomaly (blue) and ENSO anomaly (grey). The two 
trends show similar increasing and decreasing trends with a slight time lag between ENSO and groundwater 
fluctuations. Correlation (R) for each set of time series is added to the top right of the chart. P-scores are shown as 
asterisks (*) beside the R value (*: 95% confidence, **: 99% confidence, ***: 99.9% confidence). A) Shows the 
statewide time series of average for all four aquifers. (B) Shows the Floridan aquifer system. (C) Shows the Coastal 
Plain aquifer system. (D) Shows the surficial aquifer system. (E) Shows the Northern aquifer systems. 

 

 

 

 

 

 

A 
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Figure 12. Graph showing groundwater anomaly data for each aquifer and the statewide average (left axis) compared 
to GRACE data (right axis). GRACE data (orange line) only is available from 2002 to present. Based on the available 
data, it appears as though GRACE data and groundwater data show similar trends in the observable period. This 
indicates that groundwater is fluctuating consistently with the GRACE water balance model. A) Shows the statewide 
average for all four aquifers. (B) Shows the Floridan aquifer system. (C) Shows the Coastal Plain aquifer system. (D) 
Shows the surficial aquifer system. The surficial aquifer shows the least amount of change over the monitoring period. 
(E) Shows the Northern aquifer systems.  
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Autocorrelation Analysis 

 Figure 12 shows the annual cycle of the autocorrelation function for Georgia groundwater 

table and annual precipitation anomalies for 1981-2017. Autocorrelation function was calculated 

for statewide groundwater table average, average for individual aquifer, and statewide 

precipitation average. Precipitation autocorrelation shows a “memory” of around 3 months, the 

shortest of any of our analysis. The unconfined SA shows the least amount of memory among 

various aquifer system, around 6 months for all seasons with a slight increase in memory from 

May through August. The NAS looks relatively like the SA, but with slightly longer memory from 

April through December. The FAS shows substantially longer memory than the previous two 

aquifers with a memory of 12 to 18 months depending on season. Lastly, the confined CPAS shows 

the longest memory with a memory of over 24 months across all months. The values for each 

month and aquifer are located in table 6. 

 The NAS and FAS show trends where the autocorrelation approaches zero and then 

“reemerges” back to statistical significance. Previously, this has been shown to indicate that deeper 

soil layers with more memory have forced a longer memory in the shallower layers (Kumar et al. 

2019). Similarly, seasonally-varying processes have been shown to provide long-term thermal 

anomalies in extratropical oceans (Alexander and Desser 1995, Alexander et al. 1999, Deser et al. 

2003). Potential reemergence of groundwater occurs in both the FAS and NAS between 12 and 18 

months.  

Reemergence is the strongest from late summer through winter months (JAS through DJF). 

The FAS has strong correlation from the JAS season with an 17-month lead through the NDJ 

season with a 14-month lead. This indicates that the correlation of the JAS season groundwater 

table anomaly with the groundwater table anomaly of the DJF groundwater table anomaly 17-
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months later (e.g., JAS 2015 anomaly correlating with DJF 2016-2017 anomaly). A similar 

correlation is seen in the NAS where a strong correlation can be seen from the MJJ season through 

the NDJ season. Both aquifers also show negative reemergence which is likely the same signal but 

from the past. 

 

Table 6. Table showing the amount of months at which each aquifer loses statistical significance for the 
autocorrelation analysis. For example, the FAS loses statistical significance 9.56 months after January. Therefore, 
statistical significance is lost during October for this example.  

Month     FAS     CPAS      SA    NAS 
January 9.56 24 3.72 10.74 
February 9.63 24 4.38 9.08 
March 10.46 24 4.41 8.32 
April 11.15 24 4.41 7.75 
May 11.31 24 4.61 8.51 
June 11.52 24 4.66 9.10 
July 11.71 24 4.96 8.48 
August 11.73 24 5.05 9.01 
September 11.50 24 4.84 10.60 
October 11.11 24 4.43 11.11 
November 10.60 24 4.11 10.76 
December 10.14 24 4.15 10.95 
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Figure 14. Autocorrelation function of Georgia groundwater table for four aquifers and precipitation. Anomalies are 
departures from the monthly seasonal cycle, smoothed with a 3-month running mean. Autocorrelation lag is measured 
from a base 3-month anomaly. For example, a lead of 6 months at NDJ represents correlation between NDJ and the 
subsequent MJJ season. Plots show the annual cycle of the autocorrelation function for 3-month running mean (A) 
precipitation, (B) Floridan aquifer system, (C) Coastal Plain aquifer system, (D) Surficial aquifer system, and (E) 
Northern aquifer systems. The vertical axis shows the time of the base season and the horizontal axis shows the 
lead/lag.  

 
Figure 15. Autocorrelation function of Georgia groundwater table for four aquifers and precipitation. Anomalies are 
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Chapter 5: Discussion 

Time series water tab;e analysis and GRACE data have shown that groundwater storage 

appears to be decreasing across Georgia from 1981 to present. There appears to be two different 

processes affecting how various groundwater aquifer systems are connected to climate in Georgia. 

The climatically-coupled SA and NAS appear to be largely unaffected by the non-climatic process 

(e.g., irrigation) that is causing the water table decline. Both aquifers show no significant P scores 

in the trend analysis (Table 3) and are both correlated to precipitation and ENSO (Table 5). 

Furthermore, the FAS is shown to be correlated with precipitation and ENSO, but also shows 

significant Z scores in the trend analysis (Table 3), indicating that annual average and minimum 

declines most likely cannot be attributed to climate. On the contrary, the CPAS has the least 

significant precipitation and ENSO correlation (Table 5) and the most significant declining trend. 

This would indicate that climate has the least effect on the water table of deep aquifers that show 

the most significant decreasing trend. 

Increases in the ENSO index during El Nino episodes typically lead to statewide increases 

in the groundwater table; decreases in ENSO index during La Nina phase typically lead to 

decreases in groundwater table with the only exception being from 2013 to 2017. This pattern of 

groundwater table increase while ENSO index is positive and groundwater decrease while ENSO 

index is negative has been shown in other studies of the Upper Floridan aquifer in Southwest 

Georgia (Singh et al., 2015). This analysis appears to show the relationship is valid statewide not 

only in the Upper Floridan aquifer, but also in the surficial aquifer and the northern aquifer 

systems.  

The autocorrelation analysis shows similar results to the time series analysis and the Mann-

Kendall analysis. The unconfined SA especially and the largely unconfined NAS to a less extent 
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share similar memory with precipitation. By contrast the deeper FAS and the CPAS have 

significantly longer memory than two other aquifer systems and the climatic drivers of recharge. 

The longer memory may reflect the longer residence time and mixing processes in the deeper 

aquifers.  Significantly longer memory in deeper, more confined aquifers leads to a decoupling of 

the aquifer from the climate forcing in this case.  

Previous study from Kumar et al (2019) indicated that deeper soil layers with a longer 

memory may influence the memory in the shallower layers.. My study, however, lacks the data to 

be able to quantify a reemergence mechanism in groundwater. Potential memory reemergence of 

groundwater occurs in the FAS aquifer between 12 and 18 months. A possible explanation for the 

reemergence in the FAS could be due to the residence time of recharge from seasons of higher 

precipitation. The NAS are not underlain by the CPAS and varies hydrogeologically from the other 

three aquifers.  

Spatial distribution of monitoring well locations show most of the wells analyzed are 

clustered in the southern and southwestern portions of Georgia. This corresponds to the highly 

irrigated region (Fig. 2B). Irrigation and evapotranspiration have been shown to significantly 

reduce overall water storage in Georgia (Mitra et al., 2019). Except for the coastal region, all the 

wells show decreasing trends in annual average, maximum, and minimum when LTP is considered 

and only one well does not show decreasing trends when STP is considered. The only statistics 

that show an overall increasing trend is annual range of water table. Range measures the variation 

between maximum and minimum. The maximum and minimum are both decreasing, but the 

minimum is decreasing faster; therefore, the range between the water table high and low is 

increasing over time. This leads to a statewide increase in the range of the water table, indicating 

unreliable water availability (Kumar et al., 2014). 
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Chapter 6: Conclusions 

 Groundwater table elevation data from 43 groundwater USGS monitoring wells having 

long term data (37 years) were analyzed for their long-trend and their possible climatic and non-

climatic (irrigation) drivers . Statistical analysis used in this study include time series analysis, two 

variations of Mann-Kendall trend test to consider both short- and long-term serial correlation, and 

the annual cycle of the autocorrelation function. This study attempted to systematically determine 

the relationship between climate variability, groundwater table fluctuation, and anthropogenic 

forcings in Georgia. 

 Results of time series analysis indicated that groundwater levels have been decreasing on 

average across Georgia. Further investigation into individual aquifers reveal that each aquifer has 

responded differently to groundwater depletion influences. The SA and NAS show neutral 

reactions across the state consistent with the precipitation variations, while the FAS and CPAS 

show moderate to severe groundwater depletion. Relationships between different aquifers and 

climatic variables correspond with previous work in Georgia (Mitra et al. 2014). The shallower 

SA and NAS correspond to changes in precipitation and ENSO. The deeper, but hydrologically 

interconnected FAS shows some coupling with climate factors and other influences. The deepest 

confined CPAS appears to be completely decoupled from climate influences and shows the 

strongest declines. 

 Mann-Kendall trend analysis shows spatial distribution of statistically significant water 

table declining trend to be in the southern and southwestern portion of Georgia with the most active 

irrigation. Mann-Kendall trend analysis of precipitation and streamflow show no significant trend 

especially when LTP is considered. Significant decreases in annual minimum and 7-day minimum 

water table occur statewide. Annual minimum and 7-day minimum baseflows in rivers have been 



53 
 

shown previously in southwestern Georgia to correspond with an increase in irrigation (Singh et 

al. 2016). Irrigation induced baseflow minimums could therefore point to irrigation as the cause 

for the observed groundwater table minimum. The FAS and CPAS show the most significant 

decreases across most statistics tested. Previous studies have shown the FAS is affected by 

irrigation withdrawal increases, leading us to conclude that the deeper, even less climatically 

coupled CPAS is also affected by irrigation (Mitra et al. 2019, Singh et al. 2016, Mitra et al. 2016, 

Singh et al. 2017, Mitra et al. 2014). A significant number of wells show annual range (of water 

table fluctuation) increases across Georgia. This is significant because an increase in range 

indicates that groundwater is becoming increasingly less reliable (Kumar et al., 2014) which has 

significant implications on future freshwater management. 

 Annual autocorrelation analysis indicate that each aquifer and precipitation have different 

durations of memory. The precipitation shows the least memory (< 3 months), less than half that 

of the SA. This investigation leads us to further conclude that the deeper aquifers are most likely 

to be affected by a hydrologic factor other than climate. Studies on soil moisture and oceanic 

thermal anomalies have previously shown climatic decoupling is possible when the system 

memory is longer than that of the climate variables (Kumar et al. 2019; Alexander and Deser 1995; 

Alexander et al. 1999; Namias and Born 1970). 

Studies have shown that ENSO linked climate variability has remained largely unchanged 

in the area and water storage decreases are likely caused by increased water withdrawal (Rose, 

2009, Seager et al. 2009, Rugel et al. 2011, Singh et al. 2016). Irrigation acreage in the Coastal 

Plains regions of Georgia have increased by roughly 2000% since 1973 (Williams et al. 2017). 

Irrigation has caused the FAS to lose storage, change recharge and discharge patterns from 

aquifers, and cause some streams to change from gaining to losing (Mitra et al. 2018; Singh et al. 
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2016; Mitra et al. 2016; Singh et al. 2017; Mitra et al. 2014). The results indicate that the 

groundwater withdrawals from the FAS and CPAS has resulted in decreased groundwater storage 

over time statewide.  

Overall, this study provides an elaborate view of past groundwater table trends in various 

Georgia aquifer systems that are in agreement with previous regional work in southwest Georgia. 

By combining time series analysis, STP and LTP correlation trends, and annual phase 

autocorrelation, future researches will have a better understanding of the number and significance 

of wells showing statistically meaningful trends in Georgia. Likewise, by incorporating streamflow 

and precipitation trends, this study provides a clearer understanding of how climatic and 

anthropogenic forcings affect different aquifers at different depths and hydrogeologic conditions. 

A key limitation of this study is the lack of available data in some areas such as the northern part 

of the state. This study provides a base for additional research to address groundwater trends 

throughout the southeastern U.S. and other regions. Addressing the factors that influence 

groundwater fluctuations is critical to understanding how freshwater supply could change in 

response to natural and anthropogenic forcings in the future.   
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Appendix 1-10: Data Management/NCL Code 
 

The code that was written for this study is presented at the following “Box” URL 

(https://auburn.box.com/s/qo17ard4rnl98gloxdibufclapszdmrw). Each code is labeled as 

Appendix 1, 2 ,3, etc. corresponding with the order in which it appears in the text.  

 

 

https://auburn.box.com/s/qo17ard4rnl98gloxdibufclapszdmrw
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