
 
 
 
 
 

Fault Detection in Pressure Swing Adsorption Systems 
 

By 
 

Farshad Amiri 
 
 
 
 

A Thesis Submitted to the Graduate Faculty of 
Auburn University 

in Partial Fulfillment of the 
Requirements for the Degree of 

Master of Science 
 

Auburn, Alabama 
May 4, 2019 

 
 
 
 

Keywords: Process Monitoring, Fault Detection, Principal Component Analysis, 
Statistical Pattern Analysis, Cyclic Processes, Pressure Swing Adsorption  

 
 

Copyright 2019 by Farshad Amiri 
 

Approved by 
 

Q. Peter He, Chair, Associate Professor of Chemical Engineering 
Jin Wang, Co-chair, Walt and Virginia Woltosz Endowed Professor, Chemical Engineering 

Mario Eden, Joe T. and Billie Carole McMillan Professor & Dept. Chair, Chemical Engineering 
 
 
 
 
 



ii 
 

 
 

 
 

Abstract 
 

 
 Over the years, there has been a consistent increase in the amount of data collected by 

systems and processes in many different industries and fields. On the other hand, there is a 

growing push towards revealing and exploiting of the collected data. The chemical processes 

industry is one such field, with high volume and high-dimensional time series data. The massive 

amount of data can be used for better control and production. Because of the high level of 

complexity in chemical processes, mathematical modeling is mostly unachievable and 

impracticable. A number of model base on process data have been suggested and developed by 

researchers for batch and continuous processes. Compared to these type of processes, cyclic 

processes have not received enough attention in the literature and still, it is a relatively intact area 

for developers in fault detection and process monitoring. Moreover, because of the different 

nature of the batch and continuous, well-developed monitoring methods and frameworks in those 

processes cannot be employed to the periodic processes. Therefore, a new multivariate method 

based on combined Principal Component Analysis and Statistical Pattern Analysis framework is 

proposed to help to fill the existing gap in the monitoring of cyclic processes and to overcome 

fault detection issues. 
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Chapter 1 

Introduction  

 

Process monitoring is one of the most important tasks in process system 

engineering to ensure plant safety, product quality, production profit, and environment 

sustainability. Due to the large number of process variables measured and recorded 

continuously in industrial plants, process monitoring has become a challenging task to not 

only detect abnormal process behavior as early as possible but also increase fault detection 

accuracy and mitigate false alarms. With the high-dimensional and correlated process data, 

multivariate statistical process monitoring (MSPM) methods have been developed to 

extract useful information from a large amount of process data and detect various types of 

process faults [1-6]. In this research, due to the lack of attention in literature compared to 

batch and continuous processes, fault detection in cyclic processes is considered. Also as a 

case study, a pressure swing adsorption plant is selected to have the benefit of using 

industrial data in proposing a new framework.  

 

1.1 Introduction to Fault Detection 

The development of new mechanisms and frameworks to better understand and 

analyze data collected in the course of routine process operations and, more importantly, 

during process upsets has become an important research field. A key direction in this area 

is monitoring process operations and, by extension, the identification and isolation of 

process faults. There has been significant progress made in the literature for the monitoring 

of multivariate processes. Available methods can be broadly classified into model-based 

and data-based methods. Model-based methods are reviewed by Venkatasubramanian et 

al. [2] perfectly. In the data-based method space, tools such as principal component 

analysis (PCA) and partial least squares (PLS) regression have been successfully used to 

detect and isolate faults pertaining to individual process variables and units. These ideas 
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have been extended to account for process dynamics and nonlinearity via, e.g., dynamic 

PCA [7], kernel PCA [8] and multiway PCA [9]. Other approaches based on similar 

principles include independent component analysis [10] and statistical pattern analysis 

(SPA) [11]. Dimensionality reduction, a common result of many of the above-mentioned 

methods, has proven to be valuable, forming the basis for score and square prediction error 

(SPE) plots [12].  

 

1.2 Periodic Processes 

Periodic, cyclical operation has found several important applications in the 

chemical process industries. There are processes which, due to physical limitations, must 

be run in a cyclical fashion. Notable examples here include separation systems, such as 

pressure- and temperature-swing adsorption, whereby the limited capacity of the adsorbent 

is compensated for by operating multiple adsorbent-filled vessels (or beds) in parallel, with 

typically one bed being in contact with the process stream while the others undergo 

regeneration steps [13,14]. Chromatographic separations fall under the same category, the 

control and optimization of simulated moving beds, which involves the switching of inlet 

and outlet feeds periodically, has been a topic of exploration [15-18]. 

 

1.2.1 Existing Fault Detection Method in Cyclic Processes 

The economic importance of periodic processes provides a strong incentive for 

ensuring their operational performance, with process monitoring and fault detection being 

a key enabler to this end. However, process monitoring techniques for periodic processes 

have received insufficient attention in the literature. It is important to note that the methods 

and tools used for monitoring continuous processes do not translate directly to the periodic 

realm, owing to the fact that a these processes are constantly in a transient regime- a 

periodic process is essentially never at a steady state in the sense utilized in continuous 

process operations. As an alternative method, Pan et al. proposed using a stochastic state 

space model to describe the statistical behavior of changes on a cycle-to-cycle basis and 

used a Kalman filter method for process monitoring on a waste water treatment system. 

They combined PCA with the subspace identification method to obtain a model that 
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describes the period-to-period multivariate behavior of all the samples collected during 

each period [19]. On the other hand, tools used in batch process monitoring, such as 

Multiway Principal Component Analysis (MPCA), are to some extent applicable in 

periodic systems. For example, in Kim et. al. [20], MPCA was used to monitor periodic 

(daily as well as seasonal) air pollution in subway stations. Using MPCA, the authors were 

able to predict more accurately the air quality in subway stations compared to univariate 

monitoring methods, as well as to isolate characteristics of seasonal variations of different 

air pollutants. Nevertheless, there are important differences between batch and periodic 

systems: chemical batch processes follow a recipe with well-defined start point and desired 

end-point characteristics; the evolution of the process between these points may vary in 

duration and trajectory in the state space. On the other end, the start and end points for 

cyclical processes coincide, and a periodic steady-state is reached, whereby the state-space 

trajectory of one cycle differs minimally from the preceding and subsequent ones [18]. 

Some other types were proposed to address potential problems in production plants by 

adjusting process variables based on changes in measured process parameters. For 

example, United States Patent 8,016,914, Belanger et al., United States Patent 7,674,319, 

Lomax et al., and United States Patent 7,789,939, Boulin, teach various methods for 

measuring an impurity and adjusting a process variable, such as feed time, to control that 

impurity in a bed of a PSA system. Such single bed PSA control is widely used and has 

become an industry practice. Other production plant fault detection methods have been 

discovered and implemented. For example, as is described in the article, entitled, "Finding 

the Source of Nonlinearity in a Process With Plant-Wide Oscillation", Nina F. Thornhill, 

2005, Thornhill proposes a non-linearity index that can be used to detect a root cause of 

oscillation for a dynamic system having a plurality of interacting control loops. This 

method can be used to detect oscillations caused by self-sustained limit cycles in a control 

loop. Such oscillations often originate in one loop but propagate to the other loops. With 

this current practice, the developed non-linearity metric produces high values for the source 

control loop and lower values for the secondary oscillations that allow a root cause analysis 

to be performed [21]. Arslan et al. in a US patent (US Patent 8,882,883) suggested an 

apparatus and methods which are disclosed that allow for the monitoring and analysis of 

production process data for a multi-step asynchronous cyclic production process (e.g. 
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pressure swing adsorption) in a steady state plant (such as a steam methane reforming 

plant). Data collected from cooperating sensors is processed applying a moving window 

Discrete Fourier Transform (DFT). The transformed data can be further analyzed in the 

broader steady-state plant environment to accurately detect any process anomalies and 

avoid false alarms [21]. 

Wang et al. presented a novel approach for monitoring and fault detection in periodic 

processes, based on a geometric representation of periodic process operating data. 

Specifically, they developed a time explicit multivariable representation of data collected 

from the process, which then provides a natural framework for defining “normal” operation 

and the corresponding confidence regions. The fault detection mechanism consists of two 

steps: first, intercycle detection is performed to identify a problematic operating cycle, 

followed by intracycle detection aimed at establishing the time of occurrence of a fault. In 

another study, they defined confidence ellipses for every sample across cycles of normal 

operation; this creates a cycle trajectory that corresponds to the dynamics of a normal 

operating cycle. By comparing the samples of a problematic cycle against the 

corresponding sample confidence ellipse, the moment when deviation begins to occur in 

the problematic cycle can be identified [12]. 

 

1.3 PSA Process Description 

In this section for further understanding, a general overview for a poly-bed Pressure 

Swing Adsorption (PSA) unit for hydrogen purification is described. The purifier system 

uses a pressure swing adsorption to produce a high purity hydrogen product stream. The 

impurities in the feed are adsorbed at high pressure and desorbed at low pressure.  

There are two basic steps for each cycle in the PSA process, Adsorption and Regeneration. 

The process temperature may change slightly due to the heat generated during the 

adsorption and desorption. During the adsorption step, the impurities are adsorbed in high 

pressure by the adsorbent in a vessel and at the end, the purified hydrogen product leaves 

the vessel. In the regeneration step, removing the impurities from the adsorbent, and makes 

the adsorbent ready for another adsorption step. Equalization steps are designed to 

maximize the hydrogen recovery which occurs between a depressurizing vessel and 
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another vessel being repressurized. When repressurization steps are completed, the 

adsorption-regeneration cycle can be repeated. 

 

1.3.1 Adsorption 

The feed gas mixture enters the adsorber (vessel) from the bottom and the 

impurities are adsorbed by the adsorbent. The purified hydrogen product leaves from the 

top. Since several adsorbers are employed in the process, multiple vessels are normally on 

adsorption steps at any one time. But they are not brought online or taken offline 

simultaneously. In other words, the beginning time for adsorption step is staggered so that 

at any one time only one vessel is switched to the adsorption step. 

 

1.3.2 Regeneration 

After the adsorption step, the adsorber is relatively loaded with adsorbed impurities. 

A large part of the impurities are adsorbed in early stages in the adsorber therefore, the 

concentration of impurities is high at the bottom of the adsorber. Recovering hydrogen 

from the top of the adsorber using a series of co-current depressurizations steps helps to 

obtain better hydrogen recovery. The pure hydrogen remaining in the bed is used to provide 

the gas for the Equalization and Provide Purge Steps, for other vessels. In equalization 

steps, a vessel at high pressure equalizes with another vessel at low pressure by forwarding 

the trapped high-pressure hydrogen in the high-pressure vessel to the vessel at low-pressure 

state. When the co-current depressurization steps are performed, the concentration of the 

impurities will be increased at the top stages of the vessel and a downflow is needed to 

sweep them from the vessel. In these steps, the adsorber is depressurized countercurrently 

to the lowest pressure in the system and the impurities are desorbed from adsorbents and 

expelled to the tail gas system. Purging the adsorber countercurrently with pure hydrogen 

gas from another depressurizing adsorber continues the Regeneration process. The 

remaining impurities are removed from the Adsorbent by another countercurrent step 

which is named purge which makes the vessel ready for repressurization steps. 
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1.3.3 Repressurization 

After the vessel has been purged and cleansed of the trapped impurities, it is 

repressurized to adsorption pressure in order to be brought back online to purify hydrogen. 

Thus, using the high-pressure flow supplied by other vessels in high-pressure state, the 

pressure continues to rise during the repressurization steps. A repressurized vessel (to 

adsorption step’s pressure) is being ready for another adsorption step or another cycle.  
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Chapter 2 

General Review on Fault Detection Methods  

 

2.1 Process Monitoring 

Process monitoring and diagnosis are essential for detecting unusual operating 

conditions, process abnormalities, equipment malfunctions and failures, and other faults in 

industrial plants. Thousands of process variables are measured and recorded continuously 

in industrial plants so the process monitoring and data analysis become a challenge for 

researchers and scientists. On the other hand, the huge amounts of process data can be 

employed to build various kinds of models for better process control and monitoring. 

Traditionally, univariate statistical process control (SPC) techniques have been used for 

monitoring industrial processes. Nevertheless, the highly correlated process measurements 

in industrial plants often result in the failure of univariate methods [22]. 

 

2.2 Multivariate Process Monitoring 

Process monitoring techniques are not only key in determining equipment 

malfunctions and instrument failures, but also are fundamental in ensuring process safety, 

product quality, and process efficiency. As large amounts of variables are measured and 

stored automatically by governing control systems, multivariate statistical monitoring 

methods have become increasingly common in process industry. Multivariate process 

monitoring techniques are based in different mathematical algorithms. In addition, the way 

to detect and diagnose faults vary from one approach to the other [23]. This chapter reviews 

process monitoring technique using PCA with a brief review of dynamic PCA and 

nonlinear monitoring techniques such as Kernel PCA (KPCA) and Independent 

Component Analysis (ICA). The complete consideration of these process monitoring 

methods is out of the scope of this thesis. 
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2.3 Multivariate Statistical Process Monitoring  

Multivariate statistical process monitoring (MSPM) techniques like principal 

component analysis (PCA) and partial least squares (PLS) have been widely employed for 

fault detection and fault diagnosis in industrial data [24]. These kinds of methods first 

project the multivariate and collinear data onto a lower dimensional subspace. Then the 

test statistics like T2 and SPE are developed to monitor the multivariate data. The 

effectiveness of these conventional methods requires that the process data approximately 

follow multivariate Gaussian distributions for the derivation of control limits. However, 

industrial data often obeys non-Gaussian distribution so that the PCA/PLS based 

monitoring techniques become ill-suited. On the other hand, ICA is adopted to decompose 

multivariate data into linear combinations of statistically independent components (IC). 

ICA imposes independency on latent variables beyond second-order statistics and thus can 

extract the non-Gaussian features of process data [25]. Moreover, ICA based monitoring 

statistics like I2 and SPE have been developed to describe the variability within the 

independent component and residual subspaces [22, 26]. 

Moreover, unsupervised pattern matching techniques are proposed to identify similar 

patterns between multivariate time-series data sets. Various PCA based pattern matching 

methods compare PC subspaces using similarity factors, which are developed from the 

geometric angles between principal components [27]. Alternately, eigenvalue 

decomposition of the covariance matrices is used to determine the dissimilarity factor 

between two data sets [28]. The dissimilarity method is extended to ICA for comparing 

two data sets using independent components [22, 29]. 

 

2.3.1 Principal Component Analysis 

The central idea of principal component analysis (PCA) is to reduce the 

dimensionality of a data set consisting of a large number of interrelated variables, while 

retaining as much as possible of the variation present in the data set. This is achieved by 

transforming to a new set of variables, the principal components (PCs), which are 

uncorrelated, and which are ordered so that the first few retain most of the variation present 

in all of the original variables [30]. 
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2.3.1.1 Geometric Explanation of PCA 

Consider the data, collected in a matrix X, contains rows that represent an object of 

some sort which is called observation. The observations in X could be a collection of 

measurements from a chemical process at a particular point in time, various properties of 

a final product, or properties from a sample of raw material. The columns in X are the 

values recorded for each observation which are called variables. Consider a 𝐾𝐾-dimensional 

space when referring to the data in X. For looking into geometric interpretation of PCA, 

let’s say X has 3 columns, in other words a 3-dimensional space, using measurements: [𝑥𝑥1, 

𝑥𝑥2, 𝑥𝑥3].  

Figure 2.1 The raw data in the cloud swarm [31] 

 

In figure 2.1 the raw data in the cloud swarm shows how the 3 variables move together. 

The first step in PCA is to move the data to the center of the coordinate system. This is 

called mean-centering and removes the arbitrary bias from measurements that we don’t 

wish to model. Researchers also scale the data, usually to unit-variance. This removes the 

fact that the variables are in different units of measurement. After centering and scaling we 

have moved our raw data to the center of the coordinate system and each variable has equal 

scaling. In figure 2.2 the best-fit line is drawn through the swarm of points. The more 

correlated the original data, the better this line will explain the actual values of the observed 

measurements. This best-fit line will best explain all the observations with minimum 

residual error. Another, but equivalent, way of expressing this is that the line goes in the 

direction of maximum variance of the projections onto the line. When the direction of the 

best-fit line is found we can mark the location of each observation along the line. 
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Figure 2.2 Data after centering and scaling and the best-fit line [31] 

 

Figure 2.3 shows the 90 degree projection of each observation is found onto the line. The 

distance from the origin to this projected point along the line is called the score. Each 

observation gets its own score value. The best-fit line is in the direction of maximum 

variance that the variance of these scores will be maximal. (There is one score for each 

observation, so there are 𝑁𝑁 score values; the variance of these 𝑁𝑁 values is at a maximum). 

Notice that some score values will be positive and others negative. After the best-fit line 

has been added to the data, the first principal component will be calculated, also called the 

first latent variable.  

Hence, the first principal component is fixed and now the second component needs to be 

added to the system. The second component should be perpendicular to the first 

component’s direction. Notice that this vector also starts at the origin, and can point in any 

direction as long as it remains perpendicular to the first component. The direction gives the 

greatest variance in the score values when projected on this new direction vector. 

A principal component model is one type of latent variable model. A PCA model is 

computed in such a way that the latent variables are oriented in the direction that gives 

greatest variance of the scores. There are other latent variable models, but they are 

computed with different objectives [31]. Further details about PCA in [30, 31].  
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2.3.1.2 Fault Detection Using PCA 

Once the PCA model has been determined based on the historical data, new 

multivariate observations in a sample vector x can be referenced against the model. This is 

achieved by projecting these observations onto the plane defined by the PCA loading 

vectors to obtain their scores and residuals [32]. Traditionally, the projections or scores are 

plotted to reveal the relationships of the variables forming a new multivariate observation 

x. In addition, to reveal data patterns, to identify clusters, and to determine the influence of 

different multivariate observations, two-dimensional plots of the most significant scores 

related to the dominant directions of variability (e.g. dominant eigenvectors) are used. 

Furthermore, an evaluation of the magnitudes of the loadings can serve as an indication of 

the relationships between the process variables contained in X. For fault detection, 

Hotelling’s T2 [33] and SPE charts [34] are commonly used. The SPE index measures 

variability that breaks the normal process correlation [35], in other words, measures the 

variation in the residual subspace (RS) [23]. 

The SPE statistic provides a way to test if the process data are outside the normal operating 

region. The SPE statistic is normally complemented by the use of the Hotelling’s T2 [33] 

statistic. The T2 index measures the distance to the origin in the principal component 

subspace (PCS), i.e., provides an indication of abnormal variability in the space defined by 

the PCS. 

 

2.3.2 Multi-way Principal Component Analysis 

Multi-way PCA (MPCA) is considered a data-driven technique in monitoring of 

batch processes. Data in continuous processes are projected into matrixes with two 

dimensions, whereas in the batch processes the data are projected into a three-dimensional 

matrix because the batch number constitutes a dimension. The MPCA method covers this 

extra dimension. Ideally, online measurements of process variables can be fed into MPCA 

to develop real-time monitoring. It is capable of hand ling highly correlated data including 

batch process variables because it reduces dimension of data by using principal 

components methodology. The dimensions of batch data are batch number, process 

variables, and sampling time of each process variable. In order to apply PCA to data 
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obtained from a batch process, data arrays should be re-organized from three-dimensions 

to two dimensions through a procedure called unfolding [36]. Several multidimensional 

techniques have been proposed for re-organizing batch data arrays into the sum of a fewer 

vectors and matrixes, and to summarize the variation of the data in the reduced dimension 

of these spaces. Two different techniques for data unfolding are discussed by Nomikos et 

al. [1] and Wold et al. [37]. MPCA has proved to be a very effective and easy to understand 

method for analyzing batch data because of its simplicity and well defined properties. 

Figure 2.3 describes the unfolding of a matrix batch data for a data set consisting of 36 

batches with 10 variables and 228 time units in the two different unfolding methods [36].  
 

Figure 2.3 Unfolding batch data from 3D to 2D [36] 

 

2.3.3 Kernel Principal Component Analysis 

PCA-based monitoring methods have been extremely successful in many 

applications. However, as PCA only considers the mean and the variance-covariance of 

variables to characterize the process, and it assumes a linear relationship among the process 

variables, it lacks the capability to provide higher order representations for non-Gaussian 
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data. Complex chemical and biological processes are nonlinear in nature. As a 

consequence, the process data inherits a nonlinear behavior. The nonlinearity present in the 

process variables causes PCA to perform poorly [38]. Kernel PCA (KPCA) has emerged 

as a solution to address this problem [23, 39]. In KPCA the input data is first mapped into 

a higher-dimensional space via a nonlinear function. After the higher-dimensional 

nonlinear mapping, the variables in the feature space are more likely to vary linearly [40]. 

Similar to PCA, for fault detection, the T2 and SPE statistics are utilized and the confidence 

limits of the monitoring indexes can be determined theoretically via F-distribution [41] and 

x2 distribution [32], respectively, or empirically using validation data [23]. 

 

2.3.4 Independent Component Analysis 

The presence of unmeasured disturbances, correlations and noise hides the valuable 

factors that govern industrial processes. Revealing these hidden factors can be used to 

better characterize a process. In PCA, this is achieved by projecting the input data onto a 

lower-dimensional space that captures most of the variance and accounts for correlations 

among variables. Since the objective of PCA is to decorrelate the scores (e.g. projections) 

and only consider up to second-order statistics to characterize a process, it lacks the 

capability of represent processes where nonlinearities are prevalent (e.g. non-Gaussian 

distribution of input variables). Independent component analysis (ICA) is a recently 

developed technique [23, 42] that by satisfying formal statistical independence and 

implicitly using higher-order statistics, it decomposes the process data into linear 

combinations of statistically independent components (ICs) that contain the main 

governing characteristics of the process. Applications of ICA have been reported in several 

fields of engineering, some examples are signal processing, machine vibration analysis, 

radio communication, infrared optical source separation etc. [23, 43]. 

It should be expressed that, there is still much information in detail about the mentioned 

methods in literature for those who want to learn more. 
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Chapter 3 

The Proposed Framework 

 

3.1 Challenges in Process Monitoring 

Big data analytics is arguably a major focus in cybermanufacturing, and could 

become a key basis of competitiveness, productivity growth, and innovation [44, 45]. In 

this section, some challenges process monitoring could face in addressing the 4 V’s of big 

data generated in cybermanufacturing: volume, variety, velocity and veracity are discussed. 

Moreover, the potential of SPA to address the challenges is described. 

• Volume: Cybermanufacturing will generate a massive amount of data, both due 

to increased sensoring (more variables) and increased sampling (more observations). 

Therefore, the massive amount of collected data and the way of extracting useful 

information from the “big data” presents significant challenges for process monitoring and 

should be dealt with attentively. In addition, process nonlinearity and process data non 

normality will become more dominant or even become norm instead of exception for 

cybermanufacturing. Generally speaking, more observations do not pose a problem to 

existing multivariate statistical process monitoring (MSPM) methods or SPA. In fact, more 

observations are beneficial for SPA because they allow better estimation of statistics. 

However, significantly increased variables in cybermanufacturing is more difficult to 

handle than just large number of observations, particularly when different variables are 

sampled at different frequencies. Since SPA uses a window approach to compute different 

statistics, it can naturally handle the different sampling frequency by using all samples 

available within the window to compute the statistics. One concern associated with window 

approach is that detection delay. However, it is shown that the detection delay associated 

with SPA is similar or even shorter than that of PCA [11, 46]. Consequently, effective 

variable (statistics) selection will play a key role to improve SPA’s performance, and will 

help address the challenge of large number of variables to certain extent. 
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• Variety: By monitoring different parts of a system, measuring different phases of 

a process, which can be sampled at very different frequencies, different forms of data is 

generated. Current MSPM approaches (e.g., PCA) usually make use of one type of data at 

a time because the data have to form a matrix or matrices. In this aspect, SPA has the 

potential to integrate different data types relatively easily, because the statistics of different 

data types (such as machine data and metrology data) are much easier to integrate than the 

original data. Note that different statistics from different data forms or different parts of the 

process are simply augmented together for process monitoring; there is no restriction on 

the number of the selected statistics. If PCA is applied to monitor the statistics (i.e., SP), 

the same sampling frequency of statistics are required. This can be easily satisfied by using 

all samples available for a given variable within a fixed window to calculate the desired 

statistics. In addition, it has been shown that the information contained in the raw data 

would be altered more or less during data pre-processing, which may negatively impact the 

monitoring performance [11, 46]. Therefore, minimizing required data pre-processing 

would be desirable for cybermanufacturing systems. 

• Velocity: For process monitoring and control, streaming or online models is 

expected to be employed (e.g., diagnostics and prognostics). To address large volume of 

streaming data for real-time statistical analysis and online monitoring, SPM methods that 

do not require data pre-processing such as SPA, or methods that require minimum and 

automated data preprocessing, will have advantage in handling steaming data [46]. 

• Veracity: For modern process monitoring, it is expected that the veracity of the 

data (e.g., data quality or cleanness such as missing data, outliers, noises, delays and data 

asynchronism) will be significant. While the traditional MSPM methods emphasize the 

cleanness of the data to prevent potential misleading conclusions, it is expected that the 

future MSPM methods should consider data errors or messiness as unavoidable, and are 

robust to the imperfections in the data [45]. Because missing data, outliers, or data 

uncertainty has much less impact on various statistics than variable themselves, SPA offers 

advantages in this aspect. For example, the mean of a variable will not be affected 

significantly by the noise or infrequent missing data or outliers [46]. 
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3.2 Introduction to Statistical Process Monitoring 

Process Chemometrics (which is the application of multivariate statistical methods 

to industrial process data characterized by a large number of correlated process 

measurements) applies multivariate analysis techniques to process data analysis and 

process improvements. An important area of tremendous success in process Chemometrics 

is statistical process monitoring (SPM), which has become one of the most active research 

areas in process control over the last decade. Using methods from multivariate statistical 

analysis, SPM has found wide applications in different industrial processes, including 

chemicals, polymers, micro electronics manufacturing and pharmaceutical processes. The 

tasks involved in SPM typically include: fault detection, fault identification and diagnosis, 

fault estimation, which assesses the fault magnitude, and fault reconstruction, which 

estimates the fault-free values to keep control and monitoring on-going even if some faults 

have occurred. Owing to the data-based nature of SPM, it is relatively easy to apply to real 

processes of rather large scale, in comparison with other methods based on systems theory 

or rigorous process models. While the process control community began to investigate the 

use of multivariate statistics for SPM in the late 1980s, the use of multivariate statistics for 

abnormal situation detection has been studied intensively in the area of multivariate quality 

control (MQC) [47]. Typically, the Hotelling’s T2 statistic and the Q statistic, which is also 

known as the squared prediction error (SPE), are used for the detection of an out-of-control 

situation. These two statistics, typically calculated based on a model from principal 

component analysis (PCA) or partial least squares (PLS), give superior performance to the 

univariate quality control methods which monitor one variable at a time. The MQC 

literature, however, mainly focuses on the monitoring of quality variables and the detection 

of a quality problem, with few methods available for identifying root causes [35]. 

Statistical process monitoring relies on the use of normal process data to build process 

models. These models include PCA, PLS, and their variants. PCA models are 

predominantly used to extract variable correlation from data [35]. 
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3.3 Motivation 

Pressure swing adsorption (PSA) is a well-established gas separation technique in 

air separation, gas drying, and hydrogen purification separation. Recently, PSA technology 

has been applied in other areas like methane purification from natural and biogas and has 

a tremendous potential to expand its utilization. It is known that the adsorbent material 

employed in a PSA process is extremely important in defining its properties, but it has also 

been demonstrated that process engineering can improve the performance of PSA units 

significantly [48].  

In many chemical industries pressure swing adsorbers are important process unit which are 

used for separating desired products from impurities. For obtaining desired product yield 

in PSA plants which are classified as complex processes, it is required to maintain normal 

operation condition. To minimize production loss and equipment damage due to different 

abnormal conditions, immediate fault detection seems necessary. Constant manual 

monitoring of PSA plants leads some practical limitations, therefore, implementation of an 

automatic fault detection method is essential. Compared to continuous and batch processes 

just a few methods were suggested by researchers in the literature. The important reason 

behind that is the cyclic and unsteady nature of the process. On the other hand, highly 

automated control systems in industrial sites are able to collect thousands of process 

measurements every day. The data captures the governing phenomena occurring in the 

process. However, the m variables that are selected to represent any given process are 

normally highly correlated and noisy. In addition, the number of variables that adequately 

represent a process can be very large. These factors can make the analysis of process data 

very difficult. The central idea of PCA is reducing the dimensionality of the original 

correlated process data while retaining as much as possible the variation present originally. 

This is achieved by projecting the process data into a lower-dimensional space, where a 

new set of uncorrelated variables, the principal components, contain most of the variation 

of the original variables in the first few principal components [23, 30]. 

Therefore, it can easily handle high dimensional, noisy, and highly correlated data 

generated from chemical processes, and provide superior performance compared to 

univariate statistical monitoring methods such as Shewhart, CUSUM, and EWMA charts. 

In addition, the PCA-based process monitoring methods are attractive because they only 
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require a good historical data set of normal operation, which are easily available for the 

computer-controlled industrial processes [49]. The stored process data corresponds to 

different measurement instruments can be utilized to address several aspects. These include 

monitoring the process over time in order to detect special events (e.g. faults) and assign 

causes for them [23]. 

Motivated by all mentioned above, a novel approach for monitoring and fault detection is 

presented in this chapter to address the challenges associated with fault detection in cyclic 

processes and the capability of SPA is studied for real industrial PSAs operating in 

hydrogen manufacturing plants. As it will be demonstrated in chapter four, it provides 

superior fault detection performance with employing some statistical features. Industrial 

data from historical PSA failures are used to compare the performances. 

 

3.4 Statistical Features  

In order to monitor the process (pressure data in the PSA case), a set of statistics 

which will be called statistical features (or just features) is needed. These features together 

make a matrix for each segment in the process which will be considered as the data that 

explains the characteristics of the corresponding section of the process. With all statistics 

calculated for the whole cycle (period) the final training matrix is obtained by stacking all 

features together to build a master matrix. This matrix, which represent normal status of 

the process since various calculated features obtain different characteristics of the process. 

Therefore the matrix contains the information of the whole system for a certain amount of 

time and will be used as training matrix (input matrix for principal component analysis). 

The features are selected in the way to reveal different type of fault which may be occurred 

in the system. In other words, one of the statistics may be good enough to capture a certain 

type of fault. For this work, 11 different statistics are considered. In the following 

paragraphs all the employed features are presented. 
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3.4.1 Mean 

One of the most useful and simple statistics which is employed as a feature in this 

study is arithmetic mean. The average of all the points in each step will be the first statistics 

in the set of features. 

 

3.4.2 Standard Deviation 

Standard deviation (SD) is a measurement of variation or dispersion of a dataset 

and it is the square root of variance. A low standard deviation indicates that the data points 

tend to be close to the mean of the set, while a high standard deviation indicates that the 

data points are spread out over a wider range of values [50]. 

 

3.4.3. Coefficient of Variation 

In probability theory and statistics, the coefficient of variation (CV), also known as 

relative standard deviation (RSD), is a standardized measure of dispersion of a probability 

distribution or frequency distribution. It is often expressed as a percentage, and is defined 

as the ratio of the standard deviation to the mean of a series of data. In other words, it shows 

the extent of variability in relation to the mean of the population. [51]. 

 

3.4.4 Slope 

The slope or gradient of a line is a number that describes both the direction and the 

steepness of the line. Slope is considered as one of our statistics and may be very helpful 

for detecting fault in the depressurization and repressurization steps because it monitors 

the rate of change of pressure in each step. 

 

3.4.5 Slope of Linear Regression Line 

Slope of linear regression line (SLL) is another type of feature which provides 

information about the shape of the pressure versus time plot in each certain time interval 

(step). It is the slope of the best-fit line (linear regression) which is plotted through all the 

points for each step. 
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3.4.6 Average of First Derivative in an Interval 

Although slope is employed to measure the slope of the curve in each step, average 

of first derivative (AFD) considers all the points between start and end point of each step. 

Actually, it is the average of the slope between the first point and all other points in the 

same step. 

 

3.4.7 Interquartile Range 

The interquartile range (IQR), also called the midspread or middle 50%, is a 

measure of statistical dispersion, being equal to the difference between 75th and 25th 

percentiles, or between upper and lower quartiles. The IQR is a measure of variability, 

based on dividing a data set into quartiles. Quartiles divide a rank-ordered data set into four 

equal parts. The values that separate parts are called the first, second, and third quartiles; 

and they are denoted by Q1, Q2, and Q3 respectively [52]. 

 

3.4.8 Mean Absolute Deviation 

The mean absolute deviation (MAD), also referred to as the "mean deviation" or 

sometimes "average absolute deviation", is the mean of the data's absolute deviations 

around the data's mean: the average (absolute) distance from the mean. It is a summary 

statistic of statistical dispersion or variability. The mean absolute deviation of a set {x1, x2, 

…, xn} is [53]:  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�|𝑥𝑥𝑖𝑖 −  𝑚𝑚(𝑥𝑥)|
𝑛𝑛

𝑖𝑖=1

 

3.4.9 Median Absolute Deviation 

In statistics, the median absolute deviation (MAD) is a robust measure of the 

variability of a univariate sample of quantitative data. For a univariate data set {x1, x2, ..., 

xn}, the MAD is defined as the median of the absolute deviations from the data's median 

[54]:  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛(�𝑥𝑥𝑖𝑖 −  𝑥𝑥|� ) 
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3.4.10 Mean Absolute Error 

In statistics, mean absolute error (MAE) is a measure of difference between two 

continuous variables. Assume X and Y are variables of paired observations that express 

the same phenomenon. The Mean Absolute Error is given by [55]:  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑦𝑦𝑖𝑖 −  𝑥𝑥𝑖𝑖|𝑛𝑛
𝑖𝑖=1

n
=  
∑ |𝑀𝑀𝑖𝑖|𝑛𝑛
𝑖𝑖=1

n
  

 

3.4.11 Sn 

It is an estimator alternative to the median absolute deviation which was presented 

by Rousseeuw and Croux. It was offered because of the fact that median absolute deviation 

is aimed at symmetric distribution and its low (%37) Gaussian efficiency. As it is reported 

in the paper authors, the Gaussian efficiency of Sn is %58. It is defined as [56]:  

 

𝑆𝑆𝑛𝑛 = 1.1926 𝑚𝑚𝑀𝑀𝑀𝑀𝑖𝑖(𝑚𝑚𝑀𝑀𝑀𝑀𝑗𝑗(�𝑥𝑥𝑖𝑖 −  𝑥𝑥𝑗𝑗|)) 

 

3.5 Statistics Usefulness  

In the proposed SPA framework for fault detection in PSA processes 11 statistical 

features were introduced. Now it is needed to clarify the reason for selecting the set of 

statistics. In other words, for a certain type of fault in the system, the degree of contribution 

of features are not the same and some features are more important than the others. Thus, 

by dividing all the features into four subsets, the reasons for choosing them are discussed. 

It is necessary to keep all of them in the set of features to detect different abnormal 

conditions in the system. 

• Mean related statistics: Most of the deviations from the normal condition have a 

detectable effect on mean related statistics like Mean, Mean absolute deviation, Mean 

absolute error, and Coefficient of variation. If only one point has been changed 

significantly or several points have been changed abnormally as it is shown in figure 3.1, 

using mean related statistics would be advantageous. One exception here is oscillation 
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similar to sinusoidal oscillation which cannot be captured by the mean but MAE and CV 

may still be helpful. 

 

 

 

 

 

 

 

 

Figure 3.1 Type of an abnormal situation can be captured by mean related statistics  

 

• Slope related statistics: These type of statistics are selected for unsteady part of 

the process. Since the pressure in PSA processes is swing and there are some steps in which 

the pressure trend is upward or downward slope related statistics like Slope, Slope of linear 

regression line and Average of the first derivative would disclose any probable deviation 

from normal pressure trace. For instance, consider a situation in which pressure decreasing 

in one of the depressurization steps takes more time than usual as demonstrated in figure 

3.2. That is an obvious fault in valves and has a notable effect on the slope of pressure trace 

in the corresponding step. Moreover, in steps with steady pressure, if leakage in valves 

happens, the pressure will decrease and slope related statistics can detect the fault. 
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Figure 3.2 Type of an abnormal situation can be captured by slope related statistics  

 

• Median related statistics: Median absolute deviation and Sn are useful when a 

system oscillates or fluctuates around the normal condition of the process. This type of 

fault in such systems shifts most of the points from their normal situations as it is 

represented in figure 3.3. Therefore, the median of the dataset would be shifted and the 

mentioned related features may reveal the fault. 

 

 

 

 

 

 

 

Figure 3.3 Type of an abnormal situation can be captured by median related statistics  
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• Standard deviation related statistics: Standard deviation and mean are the most 

important and the most employed statistics in statistical analysis. It is used to measure the 

amount of dispersion or variation in a dataset. For example in one type of fault which is 

called sinusoidal oscillation and is shown in figure 3.4, mean is not able to detect the fault. 

But the deviation can be revealed by standard deviation easily.  

   

 

 

 

 

 

 

 

Figure 3.4 Type of an abnormal situation can be captured by standard deviation related statistics  

 

3.6 Proposed Framework 

Statistical pattern analysis is a framework for process monitoring which was 

developed by He and Wang for batch processes [11]. In the framework, statistics of the 

process variables are used for monitoring rather process variables themselves to perform 

fault detection. SPA framework provides many advantages in continues and batch 

processes which have been presented by the mentioned authors [49].  

The basic idea of the SPA-based process monitoring is that the process statistics under 

abnormal conditions would show some deviation from the distribution of the process 

statistics under normal operation. Therefore, in the SPA framework, the process behavior 

is characterized by different statistics of the process variables, instead of by the process 

variables themselves. In other words, the SPA-based fault detection method monitors the 
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variance-covariance structure of the process statistics, instead of the variance-covariance 

structure of the process variables. 

 In the last part, all of the statistical features have been introduced. For developing the SPA 

framework, the whole cycle of the process (for each vessel) is divided into several 

meaningful segments which are called steps. The proposed framework is employed the 

mentioned features for each step and build a matrix by putting the eleven features for all of 

the steps together. For example, for 9 steps (a whole cycle in PSA), the matrix is going to 

have 99 statistic features. This SPA-based method does not use the raw pressure data but 

the all the data points (pressure data) are involved in calculating the features and finally 

build the model. It has been considered a promising framework by author to monitor the 

state of the PSA process and to address the challenge of fault detection in periodic 

processes. 

 

3.7 SPA Approach 

The major difference between the traditional PCA-based and the proposed SPA-

based fault detection methods is that PCA monitors the process variables while SPA 

monitors various statistics of the process variables. In other words, in PCA singular value 

decomposition (SVD) is applied to the original process variables to build the model for 

normal operation, and the new measurements of the process variables are projected onto 

the PCA model to perform fault detection; while in SPA, SVD is applied to various 

statistics of the process variables to build the model, and the statistics calculated using the 

new measurements are projected onto the model to perform fault detection. In this way, 

different statistics that capture the different characteristics of the process can be selected to 

build the model for normal process operation [49].  

As described in literature repeatedly, variable selection plays an important role in 

traditional PCA method. Similar to that, variable selection is a key step in the detection 

performance of the SPA-based methods. Obviously, to select the best set of statistics, some 

well-defined rules and regulations are needed. So, in order to avoid defining rules and 

guidelines, which can be a time consuming procedure and it is out of the scope of this 

study, a set of statistics (features) is employed for different segments of each cycle.  



26 
 

Due to the calculation of different statistics compared to traditional PCA method, the 

computation load of SPA-based methods is higher, but the calculation of mentioned 

statistics is not computationally intensive. Therefore, the increase in computation load 

should not be an issue [49].  

In this study, two major steps are involved in the SPA-based monitoring: statistics pattern 

generation and dissimilarity quantification. For cyclic processes, a statistics pattern is a 

collection of various statistics calculated for each segment of the process cycle. These 

segments are defined based on the process characteristics and properties. These statistics 

capture the characteristics of each individual segment, the interactions among different 

variables (such as correlation), as well as process dynamics (such as autocorrelation and 

cross-correlation) [49, 57]. 

After computing all of the statistics from the training data, the dissimilarities among the 

training statistics are quantified to determine an upper control limit for defining the normal 

operating zone. Then, PCA is employed to quantify the dissimilarities between training 

statistics and test statistics using two detection indices T2 and SPE. In the PSA case study, 

just one of the indices is helpful and the reason behind that will be explained in the next 

chapter. 

 

3.8 Modeling Based on the Proposed Method 

In previous paragraphs, the advantages and disadvantages of PCA-based model 

were discussed. In this study, statistical pattern analysis is employed to address the 

disadvantages of using PCA and challenges of process monitoring in periodic (cyclic) 

processes. This fault detection methodology consists of two major stages. The first stage is 

preparing a master matrix contains features for all of the defined segments of the process 

which is based on the proposed SPA framework. The other one is making a model based 

on the training master matrix which will be used to define the normal operating zone and 

dissimilarity quantification. After detecting dissimilarities, contribution plots will be 

employed to find the abnormal part of the process. Figure 3.1 demonstrates the schematic 

of the step by step procedure for fault detection in periodic processes. 
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Figure 3.5 Schematic of the step by step procedure for fault detection in periodic processes 
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Chapter 4 

Case Study 

 

In chapter 3, the proposed method was discussed. To show the potential of the 

methodology, a pressure swing adsorption plant is chosen as a case study to perform fault 

detection. Using real industrial data, provided by the industrial partner, brings a great 

opportunity to exhibit the superb performance of the proposed method. Although in this 

work the application of the method in the offline analysis is accomplished, it can be 

definitely applied for online analysis and monitoring with taking some considerations 

which are out of the scope of the present study. In this case study, monitoring is based on 

pressure data which is collected every second for 12 vessels in a PSA plant. It should be 

noted that the data for about two days are used to calculate the mentioned features and 

build a model.   

 

4.1 PSA Fault Detection Pipeline 

Step by step procedure of the proposed approach is presented in PSA fault detection 

pipeline in figure 4.1. It begins with data preprocessing which is mainly auto-scaling. So, 

all the data is subtracted by mean of the data and after that divided by the standard deviation 

of the operation data. In this way, the operation data will have zero mean and unit variance. 

The next step is feature extraction. All the statistics are calculated in this stage for every 

segment. Hence, at this point, all the segments in each cycle should have been defined. 

Then, the master matrix of the training set is built by stacking statistics of a certain number 

of cycles in the matrix. The feature matrix for the testing set is built in the same way as the 

training set using a combination of normal and faulty operation data. 
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Figure 4.1 PSA fault detection pipeline 

 

Now, everything is ready for performing PCA and finding dissimilarities. As a result of 

PCA, T2 or SPE plots will disclose fault in the dataset by revealing discrepancies between 

normal and abnormal (faulty) data. Then, by generating contribution plots the exact faulty 

segment of each abnormal cycle of the process will be revealed. 

 

4.2 Different Types of Fault 

Since this work is a collaboration with industry, it was a great opportunity to work 

with real industrial data and real problems which usually happen in a PSA plant. Therefore, 

the faults will be presenting in the next paragraphs are real faults which operators are 

dealing with, in abnormal situations. Provided faults are simulated and tried to be as 

analogous to real ones.  

• Adsorption pressure drifting: It happens in adsorption step (first segment of a 

cycle) and it is related to the pressure of a vessel in adsorption step. In this type of fault, a 

vessel may be working under or above of a reference pressure. The reference pressure is 

defined as the average pressure of all other vessels in the plant in the adsorption step. Figure 

4.2 represents the abnormal situation for several cycles. It should be noted that due to the 
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industrial partner’s policy the pressure and time data is omitted intentionally in all of the 

Pressure-Time plots. 

 

 
 

 

 

 

 

 

 

Figure 4.2 Adsorption pressure drifting 

 

• Pressure profile mismatch: This abnormal situation occurs in unsteady segments 

when the pressure is being changed either increasing or decreasing. If the pressure profile 

is not matched with the reference profile in pressurization or depressurization segments, a 

very clear discrepancy will be distinguished. The mismatch in pressure profile is shown in 

figure 4.3 for one pressurization section. 

 

 

 

 

 

 

 
 

Figure 4.3 Pressure profile mismatch 
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• Pressure fluctuation: This is another type of fault which takes place during the 

adsorption step or purge step. As it was presented before, the pressure in the steady steps 

is supposed to stay constant, but as it is clear in figure 4.4 the pressure fluctuates around 

the actual pressure for one adsorption step. These unusual oscillations can be considered 

as a fault. 

 

 
 

 

 

 

 

 

 

 

Figure 4.4 Pressure fluctuation 

 

• Sudden pressure drop: If during repressurization or depressurization of a vessel 

some harsh and sudden increase or decrease in pressure happens, there must be an issue 

with equalization valves and it is considered as a fault. Figure 4.5 illustrates the fault (in a 

depressurization part of a cycle) which is called sudden pressure drop. 
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Figure 4.5 Sudden pressure drop 

 

4.3 Fault Visualization 

Fault visualization is performed to make a good picture of simulated faults beside 

normal data. The aim of visualization is not performing fault diagnosis as it is used by 

process engineers. These are the main issues in abnormal situations that operators deal with 

them in the PSA process. Most of the reasons of mentioned problems are valve malfunction 

(e.g. leakage in the valve, late closing, etc.) in the process. In figures 4.6 to 4.8 mentioned 

simulated faults are plotted along normal situation to demonstrate the discrepancies 

between normal and abnormal status of the PSA process. It should be noted that except 

pressure fluctuation, there are two types for other faults. One is related to the situation that 

a vessel is working above the normal pressure and the other one below the normal pressure 

as can be realized. 
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Figure 4.6 Adsorption pressure drifting-above and below the reference 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Pressure profile mismatch-above and below the normal condition 
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Figure 4.8 Sudden pressure drop-above and below normal condition 

 

4.4 An Overview of a Normal Cycle   

Before presenting fault detection results and exhibiting the performance of SPA 

based approach, it would be a great idea to picture an overview of a repetitive cycle of the 

PSA process. In figure 4.9 all different steps (segments) of a single cycle are tagged. All 

of the mentioned faults are intentionally introduced into these steps for detection and 

diagnosis purposes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 An overview of a normal cycle 
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4.5 Threshold Lines and False Alarm Rates 

As mentioned before, for capturing abnormal situation, T2 and SPE indices are 

employed separately as detecting indices which are calculated on the model of PCA. So, it 

is needed to define a normal region for them to capture discrepancies. If an observation 

violates the defined control limit (threshold line) and locates far off the model plane then 

it is inconsistent with the model, indicating an issue with the process, and can be recognized 

as a fault.  

After calculation of statistical features from the training data, the dissimilarities among the 

training features are quantified to determine an upper control limit of the detection indices 

[49]. The way of defining the threshold line for T2 and SPE indices has a great impact on 

the false alarm rate. Similar to any other process monitoring and fault detection approach, 

it is desired to reduce the rate of false alarms to a certain low level. For this study, the 

threshold lines for monitoring are determined using the empirical method by the normal 

validation data as suggested in the literature [58, 59]. The confidence level is set to 99% 

which enables the approach to reach not more than 1% false alarm which is great in the 

industrial scale. 

 

4.6 Training and Testing Sets 

As mentioned earlier, for performing the principal component analyses two sets of 

data is required, training and testing sets. After statistical features are computed from the 

process variable dataset (in this case pressure of the PSA vessels) and lumped into a master 

matrix, the input matrix for PCA is ready. A model is built based on training set for 

performing the quantification of dissimilarities between training and testing sets. Then the 

model for normal process operation is able to indicate any probable dissimilarity by 

comparing feature in testing and training datasets. Testing set usually consists of normal 

and faulty data. In the next paragraphs, the performance of the proposed approach in 

capturing the simulated faults is demonstrated. For crafting the model by PCA, a training 

set of 260 cycles of normal data is employed. Moreover, a combination of 20 normal cycles 

followed by 20 faulty cycles create the testing set (extracted from the same vessel).  
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4.7 Dissimilarity Quantification 

After all the statistical features are computed and the training and testing master 

matrix are obtained, a modeling phase is followed. This model prepared by PCA (using 

training set) is utilized to quantify the dissimilarities of training and testing datasets. 

Quantification of dissimilarities in PCA is being performed by distance-based metrics like 

SPE and T2 separately. The major difference between the traditional PCA-based methods 

and the proposed approach is that PCA observes the process variables, while the SPA based 

approach tracks different type of statistical features of the process variables. As noted 

earlier, these statistics gain the characteristics of the normal process condition and 

therefore, various features are being involved in creating the model. Consequently, any 

deviation from normal status of the process (which is in the testing set) will be revealed by 

dissimilarity indices.    

 

4.8 Fault Detection Step 

As pointed out earlier, for performing the principal component analyses two sets of 

data is required, training and testing sets. After statistical features are computed from 

training data (which consists of normal data) and lumped into a master matrix, the input 

matrix for PCA is ready. A model is built based on training set for performing the 

quantification of dissimilarities between training and testing sets. Then the model for 

normal process operation is able to indicate any probable dissimilarity by comparing 

features in testing and training datasets. Testing set usually consists of normal and faulty 

data. In the next paragraphs, the performance of the proposed approach in capturing the 

simulated faults is demonstrated. 

 

4.9 Fault Diagnosis Using Contribution Plots 

It is desired to know which statistical feature in the testing set, is most related to 

the deviation off the model. Thus, it is significantly important to generate contribution plots 

when PCA is used for dissimilarity quantification [31]. It should be noted that for each case 

(type of fault) a plot of detection index and a corresponding contribution plot will be 

presented. Hotelling’s T2 and SPE can detect an out of control situation precisely, but they 
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are not able to reveal which feature deviates from normal condition. Therefore, the 

importance of using contribution plots for fault diagnosis purposes is indisputable. In 

literature these plots are well known and beneficial for fault diagnosis based on PCA [60, 

61, 35], since they break down the SPE and Hotelling’s T2 into each element (individual 

terms) related to the contribution from of each statistics in this work.  

Contribution plots are very easy to generate with no prior process knowledge. Contribution 

plots show the contribution of each process variable to the observed statistic, that is, SPE 

or T2. It is assumed that the process variable with the high contribution is likely the root 

cause of the fault. However, the contribution plots may not explicitly identify the cause of 

an abnormal condition [61], and sometimes may lead to incorrect conclusions [59]. 

Therefore, some new fault diagnosis methods like a method using fault directions in Fisher 

Discriminant Analysis (FDA) have been suggested in the literature [59]. It needs to be 

mentioned that despite some of the shortcoming of using the contribution plots, the results 

of employing them for diagnosing faults show that they are precise and helpful in this 

study. 

 

4.10 Detection and Diagnosis the Results in Simulated Faults 

In this sections, the results of the analysis and detecting the mentioned simulated 

faults based on the proposed approach are presented. Then for better understanding the 

effect of simulated faults on the statistical features and more importantly fault diagnosis,, 

the result of contribution plots of detection indices are discussed.  

  

4.10.1 Detecting Pressure Drifting in Adsorption Step  

According to section 4.2, if a vessel in the adsorption step works above or below 

the reference pressure, it can be considered as a fault. For the two types of the fault, 3.5 

Psig pressure deviation from the reference pressure is considered to introduce the fault as 

it was presented in figure 4.6. In figure 4.10 and figure 4.11 the detection performance of 

the proposed approach using SPE or Hotelling’s T2 indices for training and testing sets are 

presented respectively. In these plots, all 300 samples (cycles) are lumped together to make 

a better pictorial understanding in the way that first 260 cycles are normal cycles in training 
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set and first 20 cycles after dashed line are normal cycles in the testing set. Obviously, the 

rest of them (last 20 cycles) are cycles with simulated pressure drifting fault.   

As it can be deduced from plots of detection indices, SPE index can easily detect the fault 

since the threshold line is violated by all of the faulty cycles. But, Hotelling’s T2 is not able 

to reveal the fault as the fault is introduced to the last 20 cycles intentionally.   

 

 
Figure 4.10 SPE index for adsorption pressure drifting (above) 

 

 
Figure 4.11 Hotelling’s T2 index for adsorption pressure drifting (above) 
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Figure 4.12 and figure 4.13 demonstrate contribution plots to detection indices 

respectively. In these plots, each step is separated by a dashed line from the next step. 

Higher bars have greater contributions in the corresponding index. For example, in figure 

4.12 MAE for the adsorption step has the greatest contribution in SPE index. Since the 

contribution to Hotelling’s T2 index is very low compared to contribution to SPE and most 

of the bars are relatively in the same range, nothing meaningful can be inferred from the 

contribution to Hotelling’s T2. In other words, based on the magnitude of the contribution 

of features to T2 index, which are close to zero, the results of contribution to T2 index is 

meaningless and uninterpretable. Consequently, Hotelling’s T2 index is less informative 

for detecting pressure drifting in adsorption step. 

 

 

 

Figure 4.12 Contribution to SPE for adsorption pressure drifting (above) 
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Figure 4.13 Contribution to T2 for adsorption pressure drifting (above) 

 

Figure 4.14 shows the step-wise contribution of features to SPE index. As it is 

demonstrated in section 4.4 a normal cycle consists of 9 different steps. In the step-wise 

contribution plots, the contribution of each step to SPE or Hotelling’s T2 indices is 

assessed. The height of each bar in the step-wise is the summation of all 11 features of the 

corresponding step. In the first case (adsorption pressure drifting), adsorption is the highest 

bar since the fault is simulated into the adsorption step. Hence, the proposed approach is 

helpful to capture this type of fault. 
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Figure 4.14 Step-wise contribution to SPE for adsorption pressure drifting (above) 

 

Figure 4.15. indicates the degree of association of features in adsorption step with the 

deviation off the model. As it can be seen, MAE and Mean have higher contribution to SPE 

index among all of the employed statistics. 

 
Figure 4.15 Feature-wise contribution to SPE in adsorption step 
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4.10.2 Detecting Pressure Profile Mismatch in Repressurization Step  

As it was shown in figure 4.3, if the pressure profile, whether in pressurization or 

in depressurization, deviates from the reference pressure profile, the PSA system can be 

experiencing a common type of fault. The detection analysis of this type of fault, which is 

introduced into repressurization step, is reported in figure 4.16 and figure 4.17 by using 

SPE and Hotelling’s T2 indices respectively. In these plots, all 300 samples (cycles) are 

lumped together to make a better pictorial understanding in the way that first 260 cycles 

are normal cycles in training set and first 20 cycles after dashed line are normal cycles in 

the testing set. Obviously, the rest of them (last 20 cycles) are cycles with the simulated 

pressure profile mismatch fault. 

As it can be inferred from plots of detection indices, SPE index perfectly detects the fault 

since the upper control limit line is violated by all of the faulty cycles. But, Hotelling’s T2 

is not able to reveal the fault as the fault is introduced to the last 20 cycles intentionally. 

   

 
Figure 4.16 SPE index for pressure profile mismatch  
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Figure 4.17 Hotelling’s T2 index for pressure profile mismatch  

 

Contribution plots to detection indices are presented in figure 4.18 and figure 4.19 

respectively. In these plots, each step is separated by a dashed line from the next step. In 

the last segment, which is related to the repressurization step, Mean has the highest bar; it 

means Mean has the greatest contribution in the SPE index. Since the contribution to 

Hotelling’s T2 index is very low compared to contribution to SPE and most of the bars are 

relatively in the same range, nothing meaningful can be inferred from the contribution to 

Hotelling’s T2. 

Based on the results of Hotelling’s T2 index in section 4.10.1 for adsorption pressure 

drifting and outcomes of figure 4.17 and figure 4.19, it seems that Hotelling’s T2 index is 

not as effective as SPE index for fault detection in the PSA process. As it is mentioned 

before, based on the magnitude of the contribution of features to T2 index the results of 

contribution to T2 index is meaningless and uninterpretable. The reason behind that will be 

discussed later. Accordingly, for the rest of the faults, the performance of the SPE index 

will be considered.   
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Figure 4.18 Contribution to SPE for pressure profile mismatch (below) 

 

 

Figure 4.19 Contribution to T2 for pressure profile mismatch (below) 
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Step-wise contribution to SPE index is presented in figure 4.20. As the fault is introduced 

to the last step of the cycle, repressurization step, it is expected to have higher bars in this 

graph for the corresponding step. The result in figure 4.20 is in a good agreement with what 

has been simulated as fault.  

 

 

Figure 4.20 Step-wise contribution to SPE for pressure profile mismatch (below) 

 

Figure 4.21. shows the degree of contribution of each feature in reppressurization step with 

the deviation off the model. As it can be seen, Mean has the highest contribution to SPE 

index among all of the employed statistics. 
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Figure 4.21 Feature-wise contribution to SPE for pressure profile mismatch (below) 

 

4.10.3 Detecting Pressure Fluctuation in Adsorption Step  

According to section 4.2, in the steady steps like adsorption and purge steps, the 

pressure is supposed to be constant. Any probable pressure fluctuation in these steps, due 

to valve malfunction, has an adverse effect on product quality and can be considered as a 

fault. In figure 4.22 the detection performance of the SPA based approach using SPE index 

is presented. Combination of training and testing sets are the same as what is used for the 

analysis of pressure drifting described in section 4.10.1.  

As it can be concluded from plots of SPE detection index, SPE correctly detects the fault 

since threshold line is violated by all of the faulty cycles.  
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Figure 4.22 SPE index for adsorption pressure fluctuation  

 

Figure 4.23 illustrates contribution plot to SPE detection index. As it mentioned before, 

each step is separated by a dashed line from the next step. Higher bars have greater 

contributions in the corresponding index. For example, in figure 4.23 MAE for the 

adsorption step has the greatest contribution in SPE index. 

 

Figure 4.23 Contribution to SPE for pressure fluctuating 
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Figure 4.24 and figure 4.25 show the step-wise and feature-wise contribution to SPE index 

respectively. As it can be found out from the step-wise contribution plot, adsorption step 

has the greatest contribution to SPE index since the pressure fluctuation has been 

introduced into that step. According to the feature-wise plot, Median AD has the greatest 

contribution to capture the simulated fault. 

 

Figure 4.24 Step-wise contribution to SPE for pressure fluctuation 

 
Figure 4.25 Feature-wise contribution to SPE for pressure fluctuation 
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4.10.4 Detecting Sudden Pressure Drop in Blowdown Step  

As it was shown in figure 4.5, any sudden pressure decrease in depressurization 

steps in the PSA system can be called a sudden pressure drop which is a fault due to valve 

malfunction. The detection analysis of this type of fault using SPE index is reported in 

figure 4.26. Combination of training and testing sets are the same as what is used for the 

analysis of pressure drifting described in section 4.10.1. Again for this type of fault, SPE 

index exhibit a great performance since all the faulty cycles violate the upper control limit 

line in figure 4.26. It should be mentioned that number of principal components for all 

faults are considered 15 PCs which provides variance total captured around 75-80%. Using 

scree plot in figure 4.27, variance captured by the first 15 PCs is almost 75% and by 

increasing that to 20 PCs variance captured would be around 80%. In terms of accuracy in 

fault detection and diagnosis, which is the center of interest in this work, 15 PCs seems 

sufficient in order to capture the variability in the dataset.     

 
Figure 4.26 SPE index for sudden pressure drop (below)  

 

Contribution plot to SPE index is presented in figure 4.28. Right in the middle of the plot, 

which is related to the blowdown step, higher bars compared to other steps can be observed 

that indicates which features are associated with the deviation off the model the most.  
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Figure 4.27 Scree plot 

 

Figure 4.28 Contribution to SPE for sudden pressure drop (below) 

 

Step-wise contribution to SPE index is reported in figure 4.29. As the fault is introduced to 

the blowdown step in depressurization part of the cycle, it is expected to see higher bars in 

this graph for the blowdown step compared to other steps that are in normal condition.  
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Figure 4.29 Step-wise contribution to SPE for sudden pressure drop (below) 

Figure 4.30. shows the degree of contribution of each feature of blowdown step with the 

from the normal behavior. As it can be seen, slope of linear regression line and average of 

first derivative have the highest contribution to SPE index among all of the employed 

statistics.  

 
Figure 4.30 Feature-wise contribution to SPE for sudden pressure drop (below) 
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4.11 Advantage of SPE over Hotelling’s T2 

Although SPE and T2 indices are used in conjunction for process monitoring, as 

noted in [35], the normal region defined by the T2 statistic is usually much larger than the 

one defined by the SPE. The SPE statistic defines a tighter region of normal operation, and 

a sample that breaks the correlation structure defined in the model can easily exceed the 

SPE control limit. Thus giving a more reliable indication of the presence of a fault. The T2 

index measures the distance to the origin in the principal component subspace. Since the 

principal component subspace typically contains normal process variations with large 

variance that represent signals, and the residual subspace contains mainly noise, the normal 

region defined by the control limit for T2 is usually much larger than that of SPE. Therefore 

it usually takes a much larger fault magnitude to exceed the T2 control limit. The normal 

region defined by the SPE control limit includes residual components that are mainly noise. 

Therefore faults with small to moderate magnitudes can easily exceed the SPE control 

limit. This causes the SPE index to have lower chances of false alarms and missed detection 

rates  compared to the T2 [23, 35]. 

 

4.12 Analysis of Fault Detection in Simulated Faults 

As stated in section 4.10 repeatedly, SPE index has an undeniable and key role in 

fault detection in the PSA plant. It works perfectly and captures 100% of the various 

simulated fault into the system. For the fault which has to do with a mean shift like pressure 

drifting or somehow pressure profile mismatch, Mean and MAE are very helpful to capture 

the fault which is rational. Because a considerable change in mean is obvious and also a 

notable change in slope cannot be seen.  

For pressure fluctuation fault, median related features plays a significant role since by 

definition it is a robust measure of the variability. For sudden pressure drop, slope related 

features like Slope of Linear Regression Line and Average of First Derivative are very 

important. Due to an abrupt change in pressure, the slope of the pressure profile in the 

corresponding segment is being under influence of the fault. The most useful features in 

detecting the presented faults are summarized in table 4.1.  
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Table 4.1 The most useful features in fault detection 

Type of fault Useful features in fault detection 

Pressure Drifting MAE and Mean 

Pressure Profile Mismatch Mean 

Pressure Fluctuation Median Absolute Deviation 

Sudden Pressure Drop SLL and AFD 

 

  4.13 Detecting Real Fault  

After simulating the common faults into the dataset and obtaining satisfactory 

detection results, examining the proposed approach by a real type of fault seems necessary. 

Using real plant operating data would be very helpful to show the excellent performance 

of the proposed approach. In other words, the results of fault detection for a real failure can 

draw a more realistic picture of the strength of the proposed approach in dealing with real 

out-of-control situations in PSA systems or even in other cyclic processes. 

Thus, in this section, it is desired to consider the same procedure for fault detection with a 

small change in defining training and testing sets. Since the faulty dataset is not from the 

same plant as the available normal dataset and due to the difference in cycle time between 

the mentioned datasets, a bed-to-bed modeling approach is proposed to address this 

limitation. It should be noted that in the faulty dataset, there are 12 vessels and the pressure 

profile mismatch was found in one of them. Figure 4.31 demonstrates a comparison of the 

repressurization part between vessel 1 and vessel 2 for one of the cycles. 
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Figure 4.31 A comparison between a normal and faulty vessels in the repressurization step-one cycle  
 

A clear deviation in vessel 1 compared to a normal vessel (vessel 2) can be noticed in figure 

4.31. Based on previous explanations about the different type of fault, a clear pressure 

profile mismatch in the repressurization step has occurred. Therefore, due to the current 

limitation with the normal data, 171 cycles from 9 vessels (2 to 8, 10, and 11), 19 cycles 

each, are used to calculate the statistic features and build the training matrix. To create the 

testing set, 19 cycles from vessel 12 are combined with 19 cycles of vessel 1 which is the 

faulty one. The rest of the process is the same as presented previously.  

Figure 4.32 shows only 4 cycles out of 19 cycles of vessel 1 violates the threshold line 

which is in a good agreement with figure 4.33 which demonstrates all of the cycles of 

vessel 2 in solid line and vessel in dashed line. Only 4 cycles of the vessel 1 deviate enough 

from normal cycles of vessel 2 and SPE index captured them perfectly. It seems that the 

rest of the cycles in vessel 2 are in normal operating zone.  
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Figure 4.32 SPE index for the real fault  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33 A comparison between a normal and faulty vessels in the repressurization step-all cycles 

 

Contribution plot to SPE index is presented in figure 4.34. Based on the information from 

figure 4.31 and 4.33, it is expected to see the higher bars in the repressurization step, but it 

seems EQ34 step has the most contribution to SPE index. But no deviation from normal 

cycles can be seen in figure 4.31 and 4.33.  
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The reason behind the inconsistency is that the way of defining training and testing sets is 

different for bed-to-bed modeling. Previously, for defining these sets for simulated faults 

in section 4.10, statistic features were calculated based on the pressure data of just one 

vessel. Although all of the vessels are in the same size and shape, they do not work 

identically because of the operating conditions. Thus, making the model based on the data 

from different vessels may lower the sensitivity of the model and makes the model less 

efficient in fault detection.  

 

Figure 4.34 Contribution to SPE for the real fault 
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Figure 4.35 Step-wise contribution to SPE for the real fault 

 

Step-wise contribution to SPE index is given in figure 4.35. It can be seen that contribution 

to SPE for all steps are in the same range. Comparing figure 4.35 with 4.20, as they are 

plotted for the same type of fault and for the same step, reveals that even without simulating 

fault for adsorption step through EQ12 step, level of contribution to SPE index for different 

steps are around 200 to 300. Therefore, based on the result of figure 4.35, it cannot be sure 

that the fault has occurred in that step. Moreover, considering the visualization of the faulty 

and normal cycles in vessel 1 and 2, no deviation can be seen in the EQ34 step.    
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Chapter 5 

Conclusion and Proposed Future Work 

 

5.1 Conclusion 

Fault detection and diagnosis are essential for revealing unusual operating 

conditions, abnormal status, and equipment failure in industrial processes. Immediate 

detection leads to gain higher efficiency and product quality and also it can increase the 

safety level in the plant. In this study, a new SPA based approach for fault detection in PSA 

systems, which have the cyclic nature, is proposed. PCA is used for quantifying the 

dissimilarities in the data. The employed statistic pattern analysis framework is beneficial 

to avoid utilizing process variables that brings many advantages and improves detection 

performance and the false alarm rate.  

Fault detection is performed using industrial data and some important faults which are very 

common in the PSA process, are introduced to the system. After simulating the faults, 

excellent performance of the proposed approach is presented using the fault detection 

index, SPE rather than Hotelling’s T2. Then, by generating contribution plots the exact 

faulty segment of each abnormal cycle of the process is revealed. Hotelling’s T2 index is 

meaningless compared to SPE index for fault detection in the PSA process. It is shown that 

the proposed framework yields promising results of fault detection in the PSA processes. 

The set of statistics used in this study are very useful for different segments of the PSA 

process.    

 

5.2 Future Work 

Further investigation can be performed around the proposed approach as follows. 

As discussed in chapter 4, one of the main requirements of the proposed approach is data 

availability. Generally, big datasets can help to make stronger and more efficient models. 
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Apart from that, industrial data with real fault inside can be very helpful to find any hidden 

probable weakness of the proposed approach. By carrying out further studies on different 

type and amount of fault, a good library of helpful features can be built. It will be very 

advantageous to recognize the type of fault by just knowing which set of statistical feature 

contributes more to detecting an unknown fault. The other type of dataset which is available 

for this study is valve opening. A robust fault diagnosis using the valve dataset will 

complete the fault diagnosis part of the project and can reveal the root cause of each fault 

for immediate actions. After this stage, developing a real-time application of the proposed 

approach would be very beneficial not only for PSA systems but also for other cyclic 

processes. To do so, a method for updating the training and testing set is required. The 

model itself and the calculation part are very simple which make the model attractive 

enough for different industries. Bed-to-bed modeling can be considered as a very good start 

point to develop an industry-scale model. 
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