
Wireless Communication Demonstration in Hardware Using an Exactly
Solvable Chaotic System

by

D. Aaron Whitney

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 4, 2019

Keywords: chaos, chaotic oscillator, communication, wireless, matched filter, mixed-signal
processing

Copyright 2019 by D. Aaron Whitney

Approved by

Robert N. Dean, Chair, McWane Professor of Electrical and Computer Engineering
Victor P. Nelson, Professor of Electrical and Computer Engineering

Thaddeus Roppel, Associate Professor of Electrical and Computer Engineering

Abstract

This work presents a hardware demonstration of a mixed-signal wireless communication

system that utilizes a chaotic oscillator based on an exactly solvable piecewise linear set of

differential equations, along with a matched filter derived from its exact analytical solution.

An analog temperature sensor serves as the input for the system. The analog output from

the sensor is converted to an 8-bit value via a microcontroller; this value is then encoded

into an analog chaotic waveform via a linear controller, and data is transmitted serially over

a wireless transmitter and receiver at 2.3 GHz. A matched filter defined in software extracts

the binary data from the received analog signal, and a second microcontroller samples this

binary data and sends it to a computer for verification. Tests show that the system is able

to accurately transmit and receive the sensor data in the intended manner. Included in

this work is relevant background information and theory for the system, a description of the

design, function, and implementation of each component in the system, hardware test results

and verification of the system’s intended function, and the results of multiple bit-error-rate

(BER) tests in varying ambient conditions.

ii

Table of Contents

Abstract . ii

List of Figures . v

1 Introduction . 1

2 Background . 5

2.1 Beginnings of Chaos Theory . 5

2.1.1 The Lorenz System . 5

2.1.2 Universality and The Logistic Map 7

2.2 Saito and Fujita’s System . 9

2.3 The Exactly Solvable Chaotic System . 12

2.4 The Exactly Solvable System in Communications 14

2.5 A Matched Filter for the Chaotic System . 16

3 Development . 18

3.1 Chaotic Oscillator Realization . 18

3.1.1 Low-Frequency Oscillator in Electronics 18

3.1.2 High-Frequency Oscillator in Electronics 26

3.1.3 The Single-Transistor Chaotic Oscillator and its Implementation in

Hardware . 28

3.2 Oscillator Controller . 33

3.3 Matched Filter Realization . 39

3.4 Encoding and Decoding . 53

3.4.1 Encoding . 53

3.4.2 Decoder . 57

4 Testing . 60

iii

5 Results . 64

6 Conclusion . 65

7 Future Work . 67

Bibliography . 68

Appendices . 72

A MATLAB program for digital matched filter demonstration 73

B Program for Software-Defined Matched Filter 76

C Program for Encoder . 100

D Program for Decoder . 129

iv

List of Figures

2.1 Phase-space representation of the Lorenz system exhibiting chaotic behavior.

Note the two orbits, giving the system the appearance of a butterfly. Source:

Adapted from [27] . 6

2.2 Bifurcation diagram showing the value of a population given its growth rate. A

single cycle exists until r ≈ 3.0. The single cycle becomes unstable and is replaced

by a period-doubled cycle. The pattern of instability being replaced by period

doubling continues until r ≈ 3.6 when the system tends to an infinite number of

values. Source: Adapted from [32] . 8

2.3 Zoomed view of bifurcation diagram. Notice the sudden transition from chaotic

behavior to period-5 at r ≈ 3.74, and the transition to period-3 at r ≈ 3.83. It

has been shown that any system which exhibits period-3 at any particular value

is capable of chaotic behavior at other values. [33] Note the bifurcations after

period-3, which are scaled duplicates of the initial bifurcation. Source: Adapted

from [32] . 9

2.4 Plot of two initial conditions of a dynamic population model with a positive

Lyapunov exponent. Slight variance in initial condition causes divergence at

roughly the 33rd generation. Source: Adapted from [32] 10

2.5 Physical representation of the manifold piecewise linear system as a resonant

circuit with a negative resistance. Source: Adapted from [10] 10

v

2.6 Phase-space plot of the solution to Eq. 2.11, with δ = 0.11, β = 0, and all initial

conditions set to 0. Source: Adapted from [10] 12

2.7 Basis function that can be superposed over a binary sequence to form a chaotic

wave. Source: Adapted from [25] . 14

2.8 Plot of the output of the exactly solvable system. The growing oscillation occurs

around one of two equilibrium points until a zero crossing of the output and its

derivative, and the oscillation is forced to the equilibrium point with opposite

sign. Source: Adapted from [36] . 15

3.1 Operation of the exactly solvable folded-band oscillator. The oscillation grows

until the amplitude surpasses +1, then at the local maximum of the oscillation

(roughly t = 7.5) the equilibrium point is switched to 0 for one half period. The

equilibrium point is then switched back to 1, effectively removing energy from

the oscillation and allowing it to continue without becoming unbounded. Source:

Adapted from [12] . 19

3.2 Phase-space representation of the function of the chaotic system. Source: Adapted

from [12] . 20

3.3 Return map for the chaotic system. Source: Adapted from [12] 21

3.4 Schematic of low-frequency oscillator circuit. Source: Adapted from [42] 23

3.5 Simulated output of low-frequency electronic oscillator. Source: Adapted from [42] 24

3.6 Phase-space representation of the electronic chaotic oscillator. Source: Adapted

from [42] . 25

3.7 Electronic schematic for the high-frequency chaotic oscillator. Source: Adapted

from [5] . 26

vi

3.8 Output of the high-frequency chaotic oscillator. Source: Adapted from [5] . . . 26

3.9 Symbolic content of the high-frequency chaotic oscillator. Source: Adapted from [5] 27

3.10 Phase-space representation of the high-frequency oscillator. Source: Adapted

from [5] . 28

3.11 Stretch-twist-fold phenomenon. Source: Adapted from [44] 29

3.12 Block diagram of approach to oscillator design. Source: Adapted from [45] . . . 30

3.13 Schematic of 18.4 kHz resonant circuit. Source: Adapted from [45] 30

3.14 Equivalent circuit for single-transistor resonant circuit. Source: Adapted from [45] 31

3.15 Schematic of single-transistor chaotic oscillator in SPICE. Source: Adapted from [45] 34

3.16 Time-domain output of oscillator. Source: Adapted from [45] 35

3.17 Phase plot of simulation. Source: Adapted from [45] 35

3.18 Time-domain oscilloscope capture of hardware oscillator output, overlaid with

s(t) (blue). Source: Adapted from [45] . 36

3.19 Phase-space oscilloscope capture of hardware oscillator. Source: Adapted from [45] 36

3.20 Oscillator controller block diagram. 37

3.21 Oscillator controller schematic. 40

3.22 Oscilloscope capture of the oscillator output when the controller receives a 1-0-1-0

pattern. Source: Adapted from [46] . 41

3.23 Phase-space capture of the oscillator receiving a 1-0-1-0 pattern. Source: Adapted

from [46] . 41

vii

3.24 Oscilloscope capture of the function of the controller. 42

3.25 Generalized schematic of the analog matched filter. Source: Adapted from [36] . 43

3.26 Results of the simulation of showing the output of matched filter when supplied

with a noisy input signal. Source: Adapted from [36] 44

3.27 Simulation with falsified symbolic content and matched filter correction of falsified

data. Source: Adapted from [36] . 44

3.28 Oscilloscope capture of oscillator output overlaid with symbolic content, and the

matched filter output ξ overlaid with symbolic output η. Source: Adapted from [36] 45

3.29 General diagram of an FIR filter. Source: Adapted from [50] 46

3.30 Simulink model of the oscillator with tunable parameters and outputs to the

MATLAB workspace. 47

3.31 Simulink model of the chaotic equation block diagram. 48

3.32 Decimated oscillator output to simulate sampling. 49

3.33 Sampled level-shifted and scaled oscillator signal (red) and delayed signal (blue). 49

3.34 Sampled oscillator output (red) with output of subtraction operation. 50

3.35 Output of subtractor (red) with output of integrator (blue). 50

3.36 Sampled oscillator signal overlaid with symbolic content, and digital matched

filter algorithm output (yellow). 51

3.37 Development platform used to implement the software matched filter. 52

3.38 Software-defined matched filter (green) shown extracting correct symbolic data

from oscillator output (yellow). 53

viii

3.39 Symbolic content of oscillator (yellow) compared with software matched filter

(green). Notice the small delay in the matched filter’s output. 54

3.40 Temperature sensor connected to encoder microcontroller. 55

3.41 Controller input (yellow) and oscillator output given the binary sequence (green).

Note the transient periods between oscillator states. 56

3.42 Block diagram of the encoder and its interfaces with the oscillator and controller. 57

3.43 Block diagram of the decoder and its interface with the receive side. 58

4.1 Testing environment for the full communication system. Transmit side (right)

and receive side (left). 62

4.2 Oscilloscope capture of the function of the communication system. Oscillator

output (yellow), binary data sent serially to oscillator controller (green), matched

filter output (pink), and decoded binary data (blue). 63

5.1 Bit-error rate test results from both tests. 64

ix

Chapter 1

Introduction

Initially, the area of chaos was primarily studied by mathematicians and physicists in

order to describe or model physical, chemical, or naturally occurring phenomena [1, 2, 3].

This motivation has now shifted towards taking advantage of the inherent properties found

in chaos for various applications, such as communication systems, radar, random number

generation (RNG), and noise signal generation. Some of the advantageous properties include

continuous power spectral density for communication, radar, and noise signal generation. In

particular, communication systems can utilize the spread spectrum properties in order to

minimize the detectability of the signal. This is because the transmitted power is spread

out over a large range of frequencies, which gives the illusion of an increase in the noise

floor. There is a large amount of theory involved in taking advantage of chaotic dynamics;

however, there is room for applying chaos theory to real-world systems. Utilizing chaos theory

in electronic circuitry allows for the realization of complex waveforms and functionality with

minimal electronic circuitry, potentially reducing size, weight, and cost, while enhancing

reliability.

A wireless communication system based on an exactly solvable chaotic equation has

been demonstrated. The system consists of a data input from a temperature sensor, a chaos

oscillator controller, an exactly solvable chaotic oscillator, an AM wireless communication

system, a matched filter, and a data output section. Accurate transmission and reception

of the sensor data is verified via serial buses from ST microcontrollers on both ends of the

system.

The exactly solvable chaotic oscillator has a fundamental frequency of approximately

18.4 kHz. It produces a baseband chaotic signal using a single-transistor sinusoidal oscillator

1

circuit where the signum function-based nonlinearity is generated using operational amplifiers

(op amps), comparators, and digital logic devices. The oscillator is controlled into two

distinct orbits, representing 1s and 0s, using proportional feedback control. This type of

controller compares the measured waveform with a desired waveform and applies a voltage

pulse that is proportional to the magnitude of the difference between these two waveforms.

This voltage pulse is then applied at regular intervals to the chaotic waveform in order to

steer the trajectory to the desired orbit.

A standard frequency modulated (FM) transmitter up-converts the chaotic modulated

signal onto a 2.3 GHz carrier for wireless transmission to a receiver that down converts it

back to baseband. For the purposes of simplicity and reliability, as well as to maintain focus

of work on the novel portions of the system, an off-the-shelf transmitter and receiver were

used in the final iteration.

A matched filter for the exactly solvable system was previously developed. The matched

filter was developed utilizing the exact analytical solution of the chaotic waveform, which

is written as a linear convolution of a fixed basis function. It was shown that the matched

filter could be written as a delay differential equation. The electronic matched filter was

realized using a difference amplifier and an analog integrator, and utilizes all-pass filters to

generate the necessary delay circuit that recovers the information from the received signal.

The matched filter was also realized in software using an ST microcontroller. The matched

filter’s output waveform was sampled by a second ST microcontroller that communicates

over a serial bus to recover the encoded information.

Chaotic oscillators have a wide range of possible applications, including random number

generation [4], communication systems [5, 6], ranging for vehicle collision detection [7], and

noise signal generation [8]. Some distinct characteristics of chaotic systems include topo-

logical mixing, determinism, long-term aperiodic behavior, sensitivity to initial conditions,

as well as a spread spectrum response. The theoretical uniform power density of a chaotic

system is one of the key characteristics that could be taken advantage of in their designs.

2

A majority of these chaotic systems are defined by a an ideal set of differential equations.

One of the problems with implementing these in electronics is having to account for the non-

ideal properties, such as temperature dependencies and limited bandwidth, of the electrical

components. In addition, many of these systems are typically based on a set of higher

order nonlinear dynamical equations. These systems often lack an exact analytical solution,

limiting their applications in communication systems. To improve the performance of these

systems in the presence of additive white Gaussian noise (AWGN), a matched filter is often

used. This requires an exactly solvable solution to develop. However, there are some lower

order linear systems that exhibit chaotic behavior that have been developed. An example of

this can be seen in the piecewise linear system developed [10]. This system is of particular

interest, due to the fact that an exact analytical solution has already been developed [12, 11].

This system is defined by a linear second-order set of differential equations with discrete

states that provide a third dimension of freedom. This chaotic system has been used in

the lower audio frequency range (approximately 84 Hz) for vehicle ranging and detection

applications [20, 21]. It has been shown that a relatively simple matched filter can be de-

rived and implemented at this low frequency making the system suitable for communication

applications [22]. However, the low operating frequency of this design limits its practical

use in a communication system that typically operate in the RF range. For this reason, the

frequency of the oscillator design needs to be increased.

The low frequency oscillator featured analog and discrete components implemented on

a non-permanent prototype board. One of the key components was a negative resistance-

inductor-capacitor (RLC) resonance circuit realized using a negative impedance converter

(NIC). The limited bandwidth of the NIC and prototype layout board proved to be one of

the limiting factors in scaling the frequency. An alternative approach to the NIC has been

developed with an emphasis on the hardware implementation.

Presented is a mixed-signal electronic implementation of an exactly solvable chaotic

oscillator. The design is based on a single transistor in a common-base amplifier configuration

3

combined with an parallel inductor and capacitor (LC) resonance tank circuit and a mixed-

signal feedback network. The oscillator features a simple topology that is implemented using

commercial-off-the-shelf (COTS) parts. This approach is intended to increase the operating

frequency of the oscillator through careful board design. The intended application for this

design is for it to be used in a communication system. Included is a circuit based model of

the system and simulation results.

This approach reduces cost by replacing the NIC, which requires a high bandwidth

operational amplifier, with a single transistor circuit. This design takes careful consideration

of the layout of the oscillator to minimize trace lengths and to reduce the overall footprint

of the components.

4

Chapter 2

Background

2.1 Beginnings of Chaos Theory

The discovery of the conditions in which random behavior occurs is generally attributed

to H. Poincaré and his study of the three-body problem using Newtonian assumptions.

Poincaré noted that the trajectories of the bodies was dependent on initial conditions, and

for certain initial conditions, the behavior of the system was difficult to predict. Numerous

studies on the three-body problem were performed [29], [30]; the prevailing consensus for

some time was that the unpredictable behavior was due to noise and/or measurement error.

2.1.1 The Lorenz System

An early mathematical representation for chaotic behavior in nature was that of a

model of atmospheric convection developed by E. Lorenz. [24] This model showed that a

fluid placed within a box that is heated in a uniform manner from the bottom and cooled

from the top is a nonlinear and deterministic system, as modeled by Lorenz’s simplification

of the three-dimensional Navier-Stokes equations,

dx/dt = σ(y − x) (2.1)

dy/dt = −x(ρ− z)− y (2.2)

dz/dt = xy − βz (2.3)

where σ corresponds to the Prandtl number, ρ corresponds to the Rayleigh number, and β

corresponds to a physical dimension of the system. x(t) represents the rotational speed of the

5

Figure 2.1: Phase-space representation of the Lorenz system exhibiting chaotic behavior.
Note the two orbits, giving the system the appearance of a butterfly. Source: Adapted
from [27]

system, and y(t) and z(t) represent the distribution of temperature. The Rayleigh number

is of particular interest in this model; it represents the amount of turbulence present in the

system dynamics. At high values of p, the convection in the system becomes unstable. [28]

Lorenz showed that the system exhibited chaotic behavior when σ = 10, ρ = 28, and β = 8/3.

The trajectory of this system is highly sensitive to initial conditions, though nearly all initial

conditions will tend to a strange attractor trajectory known as the ”Lorenz attractor”. A

three-dimensional phase-space representation of this attractor is shown in Fig. 2.1.

The sensitivity of this system to initial conditions led to the acceptance of the ”Butterfly

Effect” in which a small change in initial conditions can greatly vary the behavior of a

6

large system. Lorenz hypothesized that further understanding of this system could lead to

improved understanding and prediction of large-scale weather patterns.

2.1.2 Universality and The Logistic Map

Though chaos had been mathematically modeled, the manner in which it emerges had

yet to be theorized. An early demonstration of the conditions in which chaotic behavior

arises was shown by M. Feigenbaum. [31] Feigenbaum showed that chaotic behavior exists

throughout nature and natural phenomena, specifically citing a population of organisms with

a static birth rate. To demonstrate this, a model for a dilute population of organisms was

modeled as:

pn+1 = bpn (2.4)

where pn+1 is the population value dependent on the previous population value pn multiplied

by a constant birthrate b. Eq. 2.4 accurately describes the growth of the organism population

with the solution pn = p0b
n so long as there is no mutual interference or competition and

the environment is fixed. When these conditions inevitably break down, the population is

determined by a varying growth rate, shown in Eq. 2.5:

pn+1 = beffpn (2.5)

where beff < b, and beff is a function of p. One can infer that given a limited amount of

resources, beff ∼= 0 when the population is sufficiently large. If pn is defined as (b/a)xn,

where a is some scaling factor, then the equation can be written in the general form of a

logistic map:

xn+1 = bxn(1− xn) (2.6)

7

Figure 2.2: Bifurcation diagram showing the value of a population given its growth rate. A
single cycle exists until r ≈ 3.0. The single cycle becomes unstable and is replaced by a
period-doubled cycle. The pattern of instability being replaced by period doubling continues
until r ≈ 3.6 when the system tends to an infinite number of values. Source: Adapted
from [32]

By varying the growth rate, the population value can become unstable. Typically, new

population values emerge as previous cycles become unstable, causing the system to oscillate

between these new paths, until the system tends to an infinite number of values. This

phenomena is shown as a bifurcation diagram in Fig. 2.2. Fig. 2.3 shows that the seemingly

random oscillations can be brought back in to order at certain growth rates, and then quickly

bifurcate back to chaotic behavior. Feigenbaum discovered that any system which exhibits

this period-doubling path to chaotic behavior also exhibits the following characteristic – the

distance between bifurcations asymptotically approaches the number 4.669. [32] Additionally,

the strange attractors of these systems are fractals: each new bifurcation is a scaled duplicate

of the original bifurcation.

These models, in addition to Lorenz’s model, also display a characteristic that is often

taken advantage of in its applications – sensitivity to initial conditions. Fig. 2.4 shows a

8

Figure 2.3: Zoomed view of bifurcation diagram. Notice the sudden transition from chaotic
behavior to period-5 at r ≈ 3.74, and the transition to period-3 at r ≈ 3.83. It has been
shown that any system which exhibits period-3 at any particular value is capable of chaotic
behavior at other values. [33] Note the bifurcations after period-3, which are scaled duplicates
of the initial bifurcation. Source: Adapted from [32]

plot of the values of a population for a given generation, with two initial conditions that

vary by a small amount. The system dynamics, including a positive Lyapunov exponent, are

identical, but a minute change in initial conditions produces a divergence that, if one did

not have access to the underlying system parameters, one could not infer with any certainty

that the two systems were identical.

2.2 Saito and Fujita’s System

Although chaotic behavior had been identified and studied to a significant degree [13,

14, 15, 16, 17, 18, 19], there still existed difficulty in performing mathematical analysis on the

systems when chaotic. Saito and Fujita proposed a novel differential equation that exhibited

chaotic behavior, called the manifold piecewise linear system. [10] This system was described

in physical form as a resonant circuit with a negative resistance, shown in Fig. 6.

9

Figure 2.4: Plot of two initial conditions of a dynamic population model with a positive
Lyapunov exponent. Slight variance in initial condition causes divergence at roughly the
33rd generation. Source: Adapted from [32]

Figure 2.5: Physical representation of the manifold piecewise linear system as a resonant
circuit with a negative resistance. Source: Adapted from [10]

10

In this circuit, −R is some negative resistance/impedance, L is and inductance, and C

is a capacitance. V1 and −V1 represent two identical voltage sources with opposite signs. Mq

and Mi are charge and current measuring devices, respectively, and S is a switch dependent

on a number of characteristics of the circuit at a given time. The general function of the

circuit can be described as follows: When the switch is closed upward, the bias in the circuit

is equal to V1. When the charge measuring device detects that the charge on the capacitor

q ≤ qth, where qth is an arbitrary charge threshold, and the current measuring device detects

i = 0, the switch is flipped and the polarity of the circuit is reversed. Once the circuit, now

biased at −V1 reaches the condition i = 0 and q > qth, as detected by the charge and current

measuring devices, the switch will return to its original position. The circuit is governed by

the following parameters and equation:

x =
q

CV
(2.7)

τ =
1√
LC

t (2.8)

2δ = R

√
C

L
(2.9)

β =
qth
CV

(2.10)

ẍ− 2δẋ+ x =


1

−1
(2.11)

Fig. 2.6 shows the solution of Eq. 2.11 in phase-space representation, with δ = 0.11,

β = 0, and initial conditions x(0) = 0.6 and ẋ(0) = 0. The thick bands show the presence

of chaotic behavior, and the overall space resembles Lorenz’s two-spiral chaos. Saito and

11

Figure 2.6: Phase-space plot of the solution to Eq. 2.11, with δ = 0.11, β = 0, and all initial
conditions set to 0. Source: Adapted from [10]

Fujita’s system showed that multi-dimensional sets of linear differential equations were not

the only path to chaotic behavior – chaos could be achieved using a single equation with

piecewise components. Additionally, these equations could be represented with relatively

simple circuitry, as nonlinear electrical components could handle the discrete-time caveat to

these systems. This analytical and simplistic approach is the basis on which the theory for

the presented communication system is derived.

2.3 The Exactly Solvable Chaotic System

Despite the long-standing assumption that the inherent nature of chaotic systems pro-

duced no exact solution, [34] a novel chaotic oscillator system was conceived that yielded an

exact analytical solution. [25]. The system is based on a linear, constant-coefficient ordinary

differential equation with a discrete-time forcing function

ẍ− 2βẋ+ (β2 + ω2)x = (β2 + ω2)s(t) (2.12)

12

where s(t) is a binary waveform. For the initial conditions x(0) = x0 and ẋ(0) = y0, and the

parameter values β = ln(2) ω = 2π. The general solution to this system takes the following

form:

x(t) = xb(t) + xu(t) (2.13)

where xb(t) is a bounded particular solution and xu(t) is a homogeneous solution. To achieve

an exact solution, there must be a condition for which xu(t) = 0 for any time t. Upon analysis

of the system, it was found that the term β was equivalent to a positive Lyapunov exponent,

indicating chaotic behavior. Additionally, this condition was shown to take the form of a

shift map, and it has been shown that shift maps have the chaotic characteristics of dense

orbits, sensitivity to initial conditions, and topological transitivity. [35]

A significant advantage of this derivation of chaos is that the bounded solution can be

realized as a linear superposition of a basis function, and the waveform can be realized in

full for any binary sequence s(t). This approach to the system is defined in Eq. 2.14 and

Eq. 2.15:

xb(t) =
∞∑
i=0

siP (t− i) (2.14)

P (t) =


2t−1(cosωt− β

ω
sinωt), t < 0

1− 2t−1(cosωt− β
ω
sinωt), t = 0

0, t > 0

(2.15)

where xb(t) is the bounded general solution and P (t) is the basis function. A plot of the

basis function for the considered system is shown in Fig. 2.7. So, for any given sequence

s(t) an initial condition exists that yields a bounded particular solution. It stands to reason,

then, that there must exist an initial condition for which a certain binary sequence yields a

bounded particular solution.

13

Figure 2.7: Basis function that can be superposed over a binary sequence to form a chaotic
wave. Source: Adapted from [25]

2.4 The Exactly Solvable System in Communications

From this defined set of linear differential equations, a nonlinear system was considered

based on the fact that the mapping of initial conditions to binary sequences constitutes a

present nonlinearity in the general system. A nonlinear ordinary differential equation was

considered:

ü− 2βu̇+ (β2 + ω2)u = (β)2 + ω2)[2s(t)] (2.16)

where x(t) is the output of the system, ω is the fundamental frequency, and β corresponds

to a Lyapunov exponent. In order for the system to exhibit chaotic behavior, the Lyapunov

exponent must remain positive; for this system, 0 < β ≤ ln(2) constitutes a positive lyapunov

exponent. s(t) is a nonlinear forcing function described as the piecewise function:

s(t) =


+1, x(t) ≥ 0

−1, x(t) < 0
(2.17)

14

Figure 2.8: Plot of the output of the exactly solvable system. The growing oscillation occurs
around one of two equilibrium points until a zero crossing of the output and its derivative,
and the oscillation is forced to the equilibrium point with opposite sign. Source: Adapted
from [36]

with the initial conditions defined as s(0) = u0 and u̇(0) = v0, with β = ln2 and ω = 2π.

The piecewise portion s(t) can be treated as a feedback applied to an oscillator, and can

be represented practically as a signum function that constitutes the equilibrium point about

which the unstable oscillation occurs. The oscillation will increase about an equilibrium

point until the guard condition is reached, at which time the equilibrium point will switch,

and the unstable oscillation will continue with lower energy around the new equilibrium

point. The guard condition is defined as the point at which the output of the system

u(t) and the derivative of the output u̇(t) both cross zero. This means that the oscillation

will grow until it reaches the energy required to maintain an amplitude of 1, and once a

local maximum/minimum of oscillation is reached, the oscillation will be steered to a new

equilibrium point, and the energy of the oscillation will be lost, allowing it to grow again. A

graphical representation of the function of the system is shown in Fig. 2.8.

It has been demonstrated that an oscillation of this type can be controlled without

knowledge of the system dynamics by using small perturbations to prevent the guard condi-

tion from forcing the oscillation to the next equilibrium point. [37] This effectively enables

15

s(t) to be controlled externally, and this ability is the basis on which data is injected into

the communication system. If s(t) can be controlled, then it follows that a sequence of data

could be used as the basis of operation of a control system, and the oscillations would occur

around the desired equilibrium point.

2.5 A Matched Filter for the Chaotic System

In order for communication to occur, it is necessary that the binary data injected into the

oscillator be separated from the oscillatory portion of the signal [40, 41]. This is achieved by

inserting a matched filter on the receive side of the system, which is designed to maximize

signal-to-noise ratio. [38] Chaotic systems are known to have the property of flat power-

spectral density, an attribute shared with AWGN. [39] Therefore, a matched filter designed to

separate the desired signal, which resembles noise, from any noise present in the environment

should be extremely effective in noise-laden environments. A mathematical representation

of a matched filter for this exact purpose was developed by Corron et al. [22] This derivation

utilizes the fact that the chaotic system has an exact solution and can be written as a

convolution of a basis function with a series of binary symbols, and the fact that the matched

filter can be realized as a finite-impulse response (FIR) filter, using the time-reversed basis

function as the impulse response. P (−t) is defined as:

P̈ + 2βṖ + (ω2 + β2)P = (ω2 + β2)h(t) (2.18)

where h(t) is a pulse,

h(t) =


1, −1 ≤ t < 0

0, all other t
(2.19)

Differentiation of Eq. 2.19 yields a time-shifted unit impulse function combined with

another unit impulse function at t = 0. This is a general form of the impulse response of the

16

matched filter for the basis function, and therefore the equation of the matched filter can be

described by the following:

η̇ = v(t+ 1)− v(t) (2.20)

ξ̈ + 2βẋi+ (ω2 + β2)ξ = (ω2 + β2)η(t) (2.21)

where v(t) is the input to the matched filter, η(t) is an intermediate state, and ξ(t) is the

output of the matched filter. The intermediate state η(t) is defined as:

η(t) =
∫
v(t′ + 1− v(t′)dt′. (2.22)

The intermediate state is equivalent to the input to the filter subtracted from the input

delayed by one period. The output of the intermediate stage is then compared to a threshold

to recreate the symbolic data of the original waveform. This generated waveform is then

fed to a resonant circuit that matches the resonant circuit present in the original system, to

recreate the original chaotic waveform. This waveform is then compared to a threshold to

extract the symbolic data.

17

Chapter 3

Development

3.1 Chaotic Oscillator Realization

3.1.1 Low-Frequency Oscillator in Electronics

Due to the simplicity of the discussed exactly solvable chaotic system, successful design

and implementation in electronics can be achieved with relative ease. A low-frequency oscil-

lator was developed by Corron et al. [12], and the design was based on the construction of

an exactly solvable system with respect to a folded band map, instead of a shift map. This

allowed for the process of encoding data to be executed with less difficulty. This system

can also be written as a linear convolution of a basis function and symbolic data, allowing

for the same derivation of a matched filter. The continuous-time portion of the oscillator is

described by the following:

d2u

dt2
− 2β

du

dt
+ (ω2 + β2) · (u− s) = 0 (3.1)

where ω = 2π and β = 0. The transitions of the discrete-time portion of the system are

described as:

du

dt
(t) = 0⇒ s(t) = H(u(t)− 1) (3.2)

where H(t) is the left-continuous Heaviside function,

H(t) =


1, x > 0

0, x ≤ 0
(3.3)

18

Figure 3.1: Operation of the exactly solvable folded-band oscillator. The oscillation grows
until the amplitude surpasses +1, then at the local maximum of the oscillation (roughly
t = 7.5) the equilibrium point is switched to 0 for one half period. The equilibrium point is
then switched back to 1, effectively removing energy from the oscillation and allowing it to
continue without becoming unbounded. Source: Adapted from [12]

.

This describes the guard condition for the system, as the binary state s(t) is assigned

the value of the shown Heaviside function shifted by unity when the derivative of the output

of the system reaches zero. This system operates in a similar manner to the previously

discussed system based on a shift map. Energy is injected into the system until the guard

condition is triggered. The equilibrium point is switched, and the oscillation continues for

half the oscillation period about the new equilibrium point, at which time the point switches

back. This effectively removes energy from the system to a value below the guard condition,

and allows it to continue functioning in a bounded manner. This operation is shown in Fig.

3.1.

The dynamics of this system can also be viewed from the perspective of a phase space,

with a clockwise spiral outward about an attractor at the origin until the x-value passes

one, and once the spiral crosses the y-axis (derivative equal to zero), the attractor shifts to

1, and the radius of the spiral tightens around the new attractor for half a rotation, then

the attractor shifts back to the origin and the spiral “folds” back on itself and continues its

19

Figure 3.2: Phase-space representation of the function of the chaotic system. Source:
Adapted from [12]

original clockwise spiral about the origin. The phase-space representation is shown in Fig.

3.2.

Another way to grasp the function of this system is through a Poincaré return map.

The map is generated using the local maxima of the oscillator’s waveform (Fig 3.1). For any

tn where the s(t) remains the same, the solution

u(t) = sn + (un − sn)eβ(t−tn)cosω(t− tn)− β

w
sinω(t− tn) (3.4)

is valid. The times at which the guard condition allows the state to change are described by

u(tn + 1/2) = sn − eβ/2(un − sn). (3.5)

20

Figure 3.3: Return map for the chaotic system. Source: Adapted from [12]

The return map can then be derived by comparing each local maximum with the next

local maximum in time. This relationship is modeled by

u(tn + 1) = eβun > 0, (3.6)

which describes the first segment of the return map. The second and third segments are

modeled by

u(tn + 3/2) = (eβ + e3β/2)− e3β/2un > 0 (3.7)

and

u(tn + 1) = eβun − (eβ/2 + eβ), (3.8)

21

respectively. The return map generated by these three parameters is shown in Fig.

3.3. The slopes of segments A and C are identical, and the slop of segment B is negative,

but greater in magnitude than A and C. Segment B corresponds to the “folding” shown

in the phase-space representation. Each segment has a slope magnitude greater than one,

indicating chaotic behavior [42].

This chaotic system was also developed in circuitry [42]. This circuit was constructed

using commercially available analog and digital electronic components, and the schematic

for this circuit is shown in Fig 3.4. Notable off-the-shelf components are as follows: om-

amps are all of type TL082, diodes 1N4148. The circuit is comprised of three stages: an

RLC resonant circuit, a guard condition evaluation stage, and a switching stage. The box

denoted by −R corresponds to the realization of a negative resistor using an op-amp circuit,

and the box denoted by L corresponds to the realization of an inductance by a negative

impedance converter (NIC). The resonant portion of the oscillator circuit is modeled by

C
dv

dt
− v

R
+ i = 0 (3.9)

and

L
di

dt
= v − vs (3.10)

where v is the voltage of the tank circuit, i is the inductor current, and vs is a feedback term

generated by the switching stage. This stage is responsible for adding oscillatory energy in

the system. The value of −R is paramount to generating chaotic behavior, and through

tuning it was found that a magnitude of R ≈ 6.5kΩ yielded the desired function. The tank

voltage is fed to an op-amp configured as a comparator with the negative terminal tied to

ground, which measures the sign of the tank voltage. The comparator op-amp is railed, so

a positive tank voltage will correspond to a digital high value, and a negative tank voltage

to a digital low. The diode and voltage divider bring the op-amp output voltage down to

22

Figure 3.4: Schematic of low-frequency oscillator circuit. Source: Adapted from [42]

standard logic levels. The current through the capacitor is converted to a voltage vd using

an op-amp configured as a voltage-to-current converter; vd is described by

vd = −RdC
dv

dt
(3.11)

A comparator, configured in the same manner as the one first discussed, checks the sign

of vd. The DC logical output of the comparator is blocked by the 0.01µF capacitor, and

is converted into a short pulse when the output of the comparator changes. This pulse is

brought to the appropriate logic levels by the diodes and difference amplifier. Concisely put,

the middle trace of the circuit generates a pulse when the sign of the derivative of v changes.

This pulse is treated as the clock input to the flip-flop. The sign of the output voltage is

treated as the input of the flip-flop, and the output is fed back to the resonant circuit. The

flip-flop serves the function of holding the sign of the output voltage at every change in sign

of the derivative of the output voltage. The output is fed to an op-amp configured as a

summer; this amplifies and level-shifts the output of the flip-flop to symmetrical voltages, in

this case ± 15V. The feedback circuit can effectively be modeled mathematically as a signum

function

vs = V sgn(v) + V0 (3.12)

23

Figure 3.5: Simulated output of low-frequency electronic oscillator. Source: Adapted
from [42]

where V0 is a small offset to account for asymmetries in the physical implementation of the

circuit. A simulated output of this circuit is shown in Fig. 3.5.

This circuit operates in a similar manner as those previously discussed: an oscillation

is centered around ±1V, the oscillation grows until the amplitude is greater than 1V and

the oscillation reaches a local maximum. The guard condition forces the circuit to the other

attractor and the oscillation begins to grow again. The location of the attractors over time

defines the binary sequence, and this sequence is overlaid on the oscillator output. The

operation of the circuit can also be understood through the phase-space representation, as

shown in Fig. 3.6.

Examining the phase-space representation, assuming a starting position around the

negative attractor, it can be seen that the trajectory spirals clockwise outward from the

attractor until its radius from the attractor is greater than 1, and when the spiral reaches

a y-axis value of zero, the feedback network forces the oscillation to take place around the

opposite attractor, causing a fold in the trajectory. The trajectory then continues around

the new attractor until the guard condition is met again. Upon simple visual examination,

the presence of chaos can be deduced from the thick, dense bands around each attractor.

24

Figure 3.6: Phase-space representation of the electronic chaotic oscillator. Source: Adapted
from [42]

25

Figure 3.7: Electronic schematic for the high-frequency chaotic oscillator. Source: Adapted
from [5]

Figure 3.8: Output of the high-frequency chaotic oscillator. Source: Adapted from [5]

3.1.2 High-Frequency Oscillator in Electronics

Whereas the original system was derived and proved as a low-frequency system (roughly

84 Hz), a similar chaotic system has been realized at high-frequency, allowing for feasible

use in communication systems. This high-frequency system was realized by Beal et al. [5]

as an exact folded-band chaotic oscillator, with a similar theoretical derivation to the circuit

developed by Corron et al. The schematic for the implementation in electronics of the

high-frequency chaotic system is shown in Fig. 3.7.

Components were chosen for the specific purpose of high-frequency operation. All op-

amps utilized in this design are Linear Technology LT1220, due to its favorable characteristics

26

Figure 3.9: Symbolic content of the high-frequency chaotic oscillator. Source: Adapted
from [5]

at the desired operating frequency of 1 MHz. The impedance converter used to simulate

inductance in the low-frequency design was replaced with a real inductor, with a value of

100uH and a series resistance of 1Ω. Potentiometers were added to allow for tuning of various

parameters to ensure the sensitive conditions that result in chaotic behavior are met. These

adjustments included scaling the value of vd and vs, and adjusting the value of −R. The

flip-flop used for the generation of the symbolic content in the low-frequency design was

replaced with a network of logic gates. This network is fed by v and vd converted to logic

levels. The output of the oscillator is shown in Fig. 3.8 and the symbolic content is shown

in Fig. 3.9. Additionally, a phase-space plot of the circuit simulated with real components

is shown in Fig. 3.10.

Due to the circuit being simulated with non-ideal components, there are a few noticeable

differences in the resulting phase plot as compared to the phase plot of the low-frequency

oscillator. Perhaps the most obvious difference is the “wrinkling” of the plot near the folding

action. This is likely caused by non-ideal switching within the logic network, causing some

secondary oscillations in the resonant circuit. These oscillations are quickly damped and

do not have a major effect on the desired operation of the system. Secondly, the folding

condition does not take place exactly along the x-axis, and this can perhaps be attributed

to hysteresis within the non-ideal active components present. Lastly, the attractors are no

longer centered around ±1; this is certainly caused by the lack of chaotic behavior during

the simulation being remedied by an adjustment of the potentiometer controlling the levels

27

Figure 3.10: Phase-space representation of the high-frequency oscillator. Source: Adapted
from [5]

of the symbolic content s. Overall, this system functions within the necessary parameters

to allow for use in communication systems.

3.1.3 The Single-Transistor Chaotic Oscillator and its Implementation in Hard-

ware

While the previously discussed high-frequency system simulated with real components

is able to function properly within the simulation environment, implementation in hardware

is somewhat difficult due to the narrow band of tuned parameters that allow for chaotic

operations, and the inherent variance of virtually every component with respect to the am-

bient conditions. For this reason, a lower-frequency system was designed by Rhea et al. [45]

to somewhat account for the variations in the ambient conditions in which the physical

oscillator would be placed, and allow for the system to be re-tuned relatively infrequently.

28

Figure 3.11: Stretch-twist-fold phenomenon. Source: Adapted from [44]

This system is based on the previously discussed exactly solvable chaotic system that

can be considered a convolution of a linear basis function and a binary sequence. In this

system, the two attractors are defined as ±1. The design of this particular system is based

on an easy-to-grasp description of chaotic behavior by E. Ott [26]. The process described is

that of the manipulation of a circle. To begin, a circle is stretched until it reaches a certain

size, then it is twisted into a figure-8, and finally folded back on itself, at which point the

two stacked circles merge and become a single, smaller circle. A visual representation is

shown in Fig. 3.11, and it is known that this phenomenon can describe the behavior of

various systems. [44]. The “stretching” corresponds to the exponential sinusoidal growth

of the system. In the implementation of this design, this is performed by a negative RLC

circuit. A negative impedance implies the addition of energy into the system. This growth

is unstable, so there must be a limiter in place to prevent failure of components. This

is performed by a clock signal that is generated to trigger the “twisting” and “folding”

processes, which are analogous to the changing of attractors and removal of energy from the

system. A block diagram of this process is shown in Fig. 3.12.

A feature of this design is the replacing of the op-amp NIC with a single bipolar junction

transistor (BJT) in common-base configuration. A schematic of the resulting resonant circuit

is shown in Fig. 3.13. The relevant components were selected with respect to a resonant

frequency of 18.4 kHz. The capacitors C1 and C2 function as both bypass capacitors for the

29

Figure 3.12: Block diagram of approach to oscillator design. Source: Adapted from [45]

Figure 3.13: Schematic of 18.4 kHz resonant circuit. Source: Adapted from [45]

30

Figure 3.14: Equivalent circuit for single-transistor resonant circuit. Source: Adapted
from [45]

bias network of the transistor, and as a component of the resonant circuit formed with L1.

The voltage source Vs is defined by the piecewise linear function previously discussed, and

it corresponds to the feedback voltage that serves to center the oscillation at one of the two

defined attractors. Modeling the transistor in its application as a voltage-controlled voltage

source, and knowing the states of the discrete-time signal, nodal analysis can be performed

on the equivalent circuit, shown in Fig. 3.14, yielding

Vi
1
sC1

+
Vi
R1

+
Vi − V0

1
sC2

= 0 (3.13)

V0 − Vs
sL

+
v0 − Vi

1
sC2

+
V0 − A0Vi

R2

= 0 (3.14)

where V0 is the output taken from the collector of the BJT, Vi is the input to the emitter,

and Vs is a known binary sequence. The transfer function for this circuit is described by

31

V0
Vs

=
s(C1 + C2) + 1

R1

s3(LC1C2) + s2(B) + s(C1 + C2 + L
R1R2

) + 1
R1

(3.15)

where

B = (
C2L

R1

+
L(C1 + C2)

R2

− AVC2L). (3.16)

One drawback to the design approach for this system is that the resonant circuit being

replaced by the single BJT and the tank circuit constructed with a physical inductor and

capacitor effectively make this system third-order, though the third order terms are many

orders of magnitude smaller than the first and second order terms. To ensure this behav-

ior would not render the previously developed approach to the design of a matched filter

ineffective, the circuit was constructed and further simulated.

For evaluation, a SPICE model of the circuit was designed and tested. The circuit

utilizes the single transistor model in combination with an LC tank circuit to create the re-

quired -RLC component. The resonant circuit effectively adds energy to the system, creating

a growing oscillation. This oscillation is fed into a comparator with the negative reference

terminal grounded. The output of the comparator is fed into a D-latch as the input D,

which functions as the folding mechanism of the system. The clock signal of the latch is

controlled via a network that determines the sign of the derivative of the resonant circuit

output. This network acts as the guard condition and functions by feeding the output of the

resonant circuit into an op-amp configured as a differentiator. To detect a zero-crossing of

the derivative, two differentiators, one with the positive terminal as a reference and the other

with the negative terminal as a reference, take the output of the differentiator and compare

it to ground. The outputs of these comparators are fed into a NOR gate, which then acts

as the clock signal for the latch. The function of this center trace is to create a pulse that

will cause the latch to accept a new input from the comparator on the top trace. This pulse

is created due to the hysteresis present in the dual-comparator configuration, which means

32

that during any zero-crossing event, there will be a short time when both comparators are

driven low, which will drive the output of the NOR gate high. A schematic of the full circuit

is shown in Fig. 3.15, and the simulation results are shown as a time-domain plot (Fig. 3.16)

and a phase plot (Fig. 3.17).

From visual inspection of the simulation results, it is not possible to detect the presence

of third-order dynamics. The system behaves in a more desirable manner, in fact, as the

transient periods and noticeable hysteresis present in the high-frequency design are not

present in this design.

This circuit was implemented in hardware via a four-layer PCB. To ensure proper oper-

ation, the components were laid out with consideration to reducing the average trace length.

Additionally, the second and fourth layers were configured as ground planes to isolate the

components on the top layer from the power rails on the third layer. Potentiometers were

placed at the base, collector, and emitter of the BJT, as well as on the SMA output of

the oscillator, to ensure compatibility with transmitter and receiver components. Trimmer

pots were also used on the Vs output to ensure the levels could always be tuned to ±1V.

These design considerations made the physical oscillator relatively easy to tune to account

for changes in hardware component parameters due to ambient conditions. A time-domain

oscilloscope capture is shown in Fig 3.18, and a phase space capture is shown in Fig. 3.19.

The time-domain capture shows probes of the output V and the symbolic content Vs. This

operation, along with the presence of the double-scroll signature in the phase-space capture,

is consistent with the representation of the dynamics of the theoretical systems.

3.2 Oscillator Controller

To allow the oscillator to act appropriately upon a desired serial sequence of binary

data, a controller was developed by Rhea et al [46]. The design approach to the controller

is based on “steering” the oscillator output value toward a desired value using proportional

control, based on the difference between the oscillator’s output and the desired reference

33

Figure 3.15: Schematic of single-transistor chaotic oscillator in SPICE. Source: Adapted
from [45]

34

Figure 3.16: Time-domain output of oscillator. Source: Adapted from [45]

Figure 3.17: Phase plot of simulation. Source: Adapted from [45]

35

Figure 3.18: Time-domain oscilloscope capture of hardware oscillator output, overlaid with
s(t) (blue). Source: Adapted from [45]

Figure 3.19: Phase-space oscilloscope capture of hardware oscillator. Source: Adapted
from [45]

36

Figure 3.20: Oscillator controller block diagram.

37

voltage. This allows the reference voltage to be controlled externally, giving the system the

ability to accept an input of symbolic data. This controller uses the oscillator output v and

the output derivative vd as inputs. A reference voltage is applied to the controller given the

desired state of the symbolic portion of the oscillator s(t). Both the reference voltage and

the oscillator output voltage are buffered, and the reference voltage is scaled via an op-amp

in a non-inverting configuration. A potentiometer is placed in the feedback path to allow for

tuning of the value of the reference voltage. The oscillator output voltage and the reference

voltage are then compared, and an error value is generated. Meanwhile, the derivative of the

oscillator output is fed into two parallel amplifiers; one inverting and the other noninverting.

The outputs of the parallel amplifiers are then used as the inputs to a NOR gate. This

network takes advantage of the hysteresis present in the amplifier configuration to generate

a short pulse as the derivative of the oscillator output crosses zero. This pulse is fed into

the gate of an N-channel MOSFET, while the drain is driven by the previously generated

error value. The output is taken at the source of the MOSFET, and is a pulse that varies in

magnitude depending on the error magnitude and is allowed to conduct when given a pulse

from the NOR gate. This pulse is fed into a non-inverting op-amp circuit, which contains

a potentiometer to allow for the adjustment of pulse length. This effectively “steers” the

oscillator back to the desired trajectory when the oscillator is nearing the triggering of the

guard condition. It is necessary to adjust the pulse length somewhat infrequently due to

the small variances that can appear in the oscillator output caused by changing ambient

conditions. A block diagram for the controller is shown in Fig. 3.20, and the schematic

is shown in Fig. 3.21. The controller was implemented in hardware via a 4-layer PCB,

with attention paid to overall trace length. The second and fourth layers were configured

as ground planes to isolate the components from the power rails, as well as to ensure the

variation in the ground reference for all components was as small as possible. An oscilloscope

capture of the controlled oscillator is shown in Fig. 3.22. This shows the reference voltage

given to the controller (green), and the corresponding hardware oscillator output (yellow). A

38

more detailed view of the controller function is shown in Fig. 3.23. This shows the hardware

oscillator output (pink), the pulses generated at the points where the derivative of the output

crosses zero (yellow) and the magnitude of the error (purple) when the MOSFET is allowed

to conduct.

3.3 Matched Filter Realization

To allow for the extraction of the symbolic content of the waveform, a matched filter was

developed by Werner et al. [36], using the theory for the matched filter derived by Corron

et al [22]. The matched filter is designed to be the ideal filter for a particular system by

correlating the filter input with a basis function known to represent the dynamics of the

transmitting system. The derived equation for the intermediate stage of a matched filter,

discussed previously, is

η(t) =
∫
v(t′ + 1)− v(t′)dt′. (3.17)

This corresponds to the signal being passed through a delay line that delays the signal by

one period, then subtracts that delayed signal from the origninal signal, and integrates. The

subtraction of the delayed signal with the current signal cancels most of the periodic content

of the received waveform, leaving only the large shifts between attractors. The integration

stage acts as a low-pass filter, further removing the higher-frequency information left over

after the subtraction stage. This description of the filter allows for easy implementation in

analog electronics. A schematic showing the various stages present in the matched filter

is shown in Fig. 3.24. The received waveform v is input into a delay line, consisting of

four amplifier stages with unity gain. These op-amps are configured as inverting first-order

all-pass filters. Four stages were chosen due to the fact that the oscillator waveform con-

tains various frequency components, and the change in delay with frequency leads to some

distortion in the output. This is especially notable with two stages, where each stage must

39

Figure 3.21: Oscillator controller schematic.

40

Figure 3.22: Oscilloscope capture of the oscillator output when the controller receives a
1-0-1-0 pattern. Source: Adapted from [46]

Figure 3.23: Phase-space capture of the oscillator receiving a 1-0-1-0 pattern. Source:
Adapted from [46]

41

Figure 3.24: Oscilloscope capture of the function of the controller.

shift the signal through 180 degrees. To reduce distortion, the amount of delay required

from each stage needs to be reduced. This leads to a small increase in complexity from the

need for more stages, but the signal quality at the delay output is increased. This delayed

signal, along with the original input, are fed into a difference amplifier, which subtracts the

original input from the delayed input. This value is then fed to an op-amp configured as a

low-pass filter, which acts as the transfer function 1
s
, which is integration in the frequency

domain. The output of this integrator is η, the symbolic content of the original waveform.

Additionally, a resonant circuit is present as the final stage of the design. This is used for

verification purposes, to show the mathematically derived output ξ, which should contain

the same oscillatory dynamics as the original chaotic system.

To verify this design and conjecture, a simulation of the electronic matched filter was

created and tested using a simulated chaotic oscillator output mixed with noise. The results

of this test are shown in Fig. 3.26. The original waveform (blue) is injected with noise

42

Figure 3.25: Generalized schematic of the analog matched filter. Source: Adapted from [36]

(red), and the matched filter is able to roughly produce a waveform with the original system

dynamics. Discrepancies between the two waveforms are due to the fact that real filters have

a limited passband, which will inevitably eliminate some high-frequency components of the

spread-spectrum chaotic waveform, and also to the small variations in real components used

to create the resonant circuit in the matched filter designed to replicate the resonant circuit

in the oscillator. Additionally, the simulation was performed with deliberate alterations to

the symbolic content of the waveforms using noise. The results of this test are shown in Fig.

3.27. The matched filter is able to remove the falsified data from the test waveform and

reconstruct the original bitstream.

After demonstration of the successful function of the electronic design, the filter was

constructed in hardware. To ensure the correct delay time, care must be taken in component

selection. To ensure the fundamental frequency of the oscillator is not attenuated, CN and

RN must be selected to ensure the gain bandwidth product is appropriate. To ensure each

43

Figure 3.26: Results of the simulation of showing the output of matched filter when supplied
with a noisy input signal. Source: Adapted from [36]

Figure 3.27: Simulation with falsified symbolic content and matched filter correction of
falsified data. Source: Adapted from [36]

44

Figure 3.28: Oscilloscope capture of oscillator output overlaid with symbolic content, and
the matched filter output ξ overlaid with symbolic output η. Source: Adapted from [36]

stage of the delay line produces a phase shift of 90 degrees, the physical components CA

and RA must be selected to be as close to identical as possible Additionally, to recreate the

original chaotic waveform as accurately as possible, the R, L, and C, present in the resonant

circuit must match the resonant circuit of the oscillator. Given the oscillator’s operation

at 18.4 kHz, the component values were chosen to be CA = 0.1, RA = 75ω, CN = 0.1,

RN = 84ω, C = 0.5, R = 18kω, and L = 150. This hardware matched filter was then

tested with a hardware oscillator injected with a generated noise signal. Fig. 3.28 shows

an oscilloscope capture of this test. The oscillator (yellow) is injected with a noise signal

and its symbolic content (green) is altered. The matched filter is able to extract the correct

symbolic data (red) and roughly reconstruct the original system dynamics (blue).

In addition to this analog filter, a digital matched filter was developed. This was done

to increase the flexibility of the matched filter design for possible use in updated systems

with oscillators that have different parameters to the one used in this system. The digital

45

Figure 3.29: General diagram of an FIR filter. Source: Adapted from [50]

filter was implemented as a software-defined finite-impulse-response (FIR) filter. The general

equation for an N th order FIR filter is

Y [n] = X[n] ∗H[n] =
N−1∑
k=0

H[k] ∗X[n− k], (3.18)

which is a sum of convolutions, and the exact function is described by the values of the FIR

coefficients, H. [49]. A block diagram depicting the general form of an FIR is shown in Fig.

3.29. While this approach is implementable in hardware, it is less than desirable due to the

use of multipliers; however, taking a software approach to this problem alleviates any issues

using certain undesirable hardware components.

To lay out the algorithmic approach to the design of the matched filter in software,

a MATLAB script was written to perform the operations required in an intuitive way. A

Simulink model was designed to simulate the function of the oscillator. The model hierarchy

is shown in Fig. 3.30 and Fig. 3.31. The simulated output of this oscillator was then

decimated to simulate the waveform being sampled at a rate of 4 samples/second, which,

at a fundamental frequency of 18.4 kHz, amounts to a sample rate of 36.8 kSamples/s; this

sampling rate can be handled easily by commonly available hardware. Additionally, this

sampling rate allows a sample to be stored until four more samples are taken, which will

amount to a delay of 360 degrees. The decimated simulink output is shown in Fig. 3.32.

This data is then scaled to an appropriate value to simulate a level-shifted signal that can

46

Figure 3.30: Simulink model of the oscillator with tunable parameters and outputs to the
MATLAB workspace.

be interpreted properly by a 12-bit analog-digital converter (ADC). The array of data is

then subtracted from the array shifted by 4 (for example, Arr[k-4]-Arr[k]) to simulate the

current signal being subtracted from the period-delayed signal. The delayed signal is shown

in Fig. 3.33 and the subtracted signal is shown in Fig. 3.34. The subtraction operation will

show a spike when a change in attractor occurs, and will have a relatively small output when

the attractor does not change between samples. To manipulate these spikes into the desired

sequence of bits, a numeric integration stage is used. This creates a signal in which the spikes

in the subtractor output cause the integrator’s output to change, and the points at which

no spikes occur cause little change in the final output. The output of the integrator stage

compared with the subtraction stage is shown in Fig. 3.35. The output of the integrator is

then compared to a threshold, and a digital output is generated. The digital output compared

with the symbolic content of the initial waveform are shown in Fig. 3.36. By examining

these results, it can be seen that the digital matched filter algorithm is able to successfully

reproduce the symbolic content of the oscillator waveform. The MATLAB program used to

demonstrate this algorithm is contained in Appendix A.

47

Figure 3.31: Simulink model of the chaotic equation block diagram.

48

Figure 3.32: Decimated oscillator output to simulate sampling.

Figure 3.33: Sampled level-shifted and scaled oscillator signal (red) and delayed signal (blue).

49

Figure 3.34: Sampled oscillator output (red) with output of subtraction operation.

Figure 3.35: Output of subtractor (red) with output of integrator (blue).

50

Figure 3.36: Sampled oscillator signal overlaid with symbolic content, and digital matched
filter algorithm output (yellow).

While it may be relatively simple to implement this algorithm in an environment where

nothing has to be done in real-time, far more considerations must be taken into account when

implementing this system in real hardware. For this task, an ST microcontroller was chosen

as the platform to implement the filtering algorithm. The STM32 Nucleo F446 was chosen

for this task because of the onboard ADC, robust processor, and low cost. The development

board is shown in Fig. 3.37. The ARMKeil MDK toolchain was used to set up the various

layers of software and firmware; this toolchain has the advantage of easy instantiation of

peripherals and other components necessary to the physical implementation of this design.

The various programs used are included in Appedix B.

To allow the microcontroller’s hardware to perform any operations on the signal, it must

be converted to a digital waveform. This was accomplished by configuring a 12-bit ADC

to sample the analog signal at a defined general purpose input-output (GPIO) pin on the

microcontroller development board; the incoming signal was tested to ensure its compliance

with the 0-3.3V operating range of the microcontroller hardware. An external timer was

51

Figure 3.37: Development platform used to implement the software matched filter.

configured to trigger an ADC conversion at a rate of 73.6 kSamples/s. This was achieved by

generating a counter that counts the cycles of an internal clock, and when the counter reaches

the appropriate value, the output level of the timer transitions to the opposite logic level.

The ADC notices the change in logic level, and it begins a conversion. When the conversion

is complete, the ADC sets the end-of-conversion (EOC) bit in the appropriate register to

HIGH. When the EOC bit is set, an interrupt request is sent to the microcontroller’s nested

vector interrupt controller (NVIC). Since the ADC interrupts are enabled, the processor calls

an interrupt request handler, which reads the value from the ADC data register, clears the

ADC interrupt flag, and calls a callback function. This callback function stores the ADC

converted value as a variable into an element of an 8-element array. This array is used to

store previously converted values for the last eight samples, to allow the oldest sample to

be compared to the current, which acts as the delay and subtraction stages of the matched

filter. After the current value is subtracted from the previous value, the previous value is

overwritten by the current value in the array. A counter is used to select which element

52

Figure 3.38: Software-defined matched filter (green) shown extracting correct symbolic data
from oscillator output (yellow).

of the array is used for the subtraction and overwriting. The subtracted value is stored as

a variable, and the variable is passed to a numeric integrator, which takes the sum of the

current value and the previous value and divides by an integration constant. This value is

then added to the previous output of the integrator. The integrator output is then compared

to a set threshold and a GPIO pin configured as a digital output is set to a logic level. For

testing and observation purposes, the output of the integrator is written to a 12-bit digital-

analog converter (DAC), which is updated at the same rate at which the ADC sampling

occurs. The function of the matched filter is shown in Fig. 3.38 and Fig. 3.39.

3.4 Encoding and Decoding

3.4.1 Encoding

To demonstrate the function of the communication system, data from an analog tem-

perature sensor was used. As the temperature sensor itself was not within the scope of

53

Figure 3.39: Symbolic content of oscillator (yellow) compared with software matched filter
(green). Notice the small delay in the matched filter’s output.

this project, the connection of the temperature sensor with the microcontroller was made as

simple as possible. The microcontroller 5V power output and ground serve as the supply for

the sensor, and the data output of the sensor is attached directly to a GPIO pin. Fig. 3.40

shows the temperature sensor connected with the encoder microcontroller.

It was discovered that the hardware implementation of the oscillator, when controlled by

the hardware controller receiving an external input, is steered into two completely separate

states, each with two orbits of their own. This is likely due to the small differences in

the simulated oscillator and controller versus the realized versions, and the fact that these

differences are greatly amplified by the use of a chaotic system. This led to larger amounts of

energy being required from the controller to change the state of the oscillator, and noticeable

transient periods were introduced [47]. To allow the communication system to function

properly, these transient periods must be allowed to settle into the appropriate orbits so

the matched filter can extract the binary data. This was accomplished by sending multiple

54

Figure 3.40: Temperature sensor connected to encoder microcontroller.

copies of the same bit to the controller. The transient periods can be seen in Fig. 3.41. The

encoder determines the length of a single bit by monitoring the pulse given by the folding

mechanism of the oscillator. The folding mechanism sends a pulse when the guard condition

is met, and the controller is able to counter any switching of attractors with its own pulse.

For a single given bit from the data input, the encoder has a set number of pulses it counts

before moving to the next bit.

To send data from the sensor over the communication system, the sensor data is read

through an 8-bit ADC on the encoder microcontroller. A block diagram of the encoder,

along with its interfaces to the other components on the transmit side of the communication

system, is shown in Fig. 3.42. The program used for the encoder is included in Appendix C,

and a block diagram of the decoder, along with its interfaces with the other components on

the receive side is shown in Fig. 3.43. The ADC was set up in the same manner as the ADC

on the digital matched filter, using an external timer configured in output-compare mode

to trigger an event. The external timer was configured to trigger a conversion once every

55

Figure 3.41: Controller input (yellow) and oscillator output given the binary sequence
(green). Note the transient periods between oscillator states.

two seconds, allowing for easy viewing and debugging on an oscilloscope. Once a conversion

of the temperature sensor data is complete, the conversion complete callback function is

again used to perform the operations necessary to sending the data. The data from the

temperature sensor is stored as an 8-bit value, and the value is parsed into an array of length

eight, with each element containing an individual bit. Each element of the array is used to

drive a GPIO pin to the appropriate logic level. The GPIO pin is driven to that level until

the folding mechanism reaches the specified value of pulses, and the encoder moves to the

next bit. This process occurs until all eight bits are sent. The microcontroller also sends

the sampled temperature data to a computer via UART for verification purposes. To notify

the receive side of incoming data, a start sequence consisting of directly sent high and low

pulses are sent.

Initially, a midpoint sampling scheme was used to recover the serial data, but due to

the chaotic nature of the system, the length of each individual period of unstable growth

56

Figure 3.42: Block diagram of the encoder and its interfaces with the oscillator and controller.

in the system varies. This variation results in an inconsistent period for each bit, resulting

in false data being recovered by the midpoint sampler. For this reason, an ad-hoc scheme

was introduced to increase the reliability of the system. This solution can be described as

“constant off-time pulse width modulation”. The scheme treats a data one as “1-0” and a

data zero as “1-1-0”. This bypasses the small inconsistencies inherent to the chaotic system

by rendering them relatively small compared to the variation in pulse length.

3.4.2 Decoder

Due to the changes in behavior of the transmit side of the system, the matched filter

output resembles binary frequency shift-keying (BFSK) [48]; however, standard methods of

decoding a BFSK signal are not reliable, as the frequencies shown are not consistent enough

to be modulated and low-pass filtered successfully. The decoder scheme reads the matched

filter output into a GPIO port, configured either for analog or digital data, depending on

which matched filter is used. If the analog matched filter is used, the ADC is configured

to sample the signal at an extremely high speed, using direct-memory access to attain the

57

Figure 3.43: Block diagram of the decoder and its interface with the receive side.

highest speed possible. This signal is then recreated at digital logic levels by comparing the

current ADC value with the previous value, and if they differ greatly, meaning a change in

logic level is detected, a GPIO pin configured for digital output is updated to the appropriate

level. This digital signal is then fed into another GPIO pin configured for digital input, and

pulse length is measured using a configured timer. If the digital matched filter is used,

this stage is bypassed and the digital matched filter output is fed directly to the digital

input GPIO pin. The pulse length is then compared to a threshold, and a decision is made

on the corresponding logic level. These pulses are counted until a logic zero is received,

corresponding to the constant off-time portion of the encoding scheme. At this time, the

number of pulses counted is compared to a threshold number, and a decision is made. If the

pulse count is greater than the threshold, the decoder assumes the sequence 1-1-0 was sent,

and an element of an array of length eight is set to zero. If the pulse count is less than the

threshold, a 1-0 sequence is assumed and the element is set to one. The program used to

perform the decoding operations is included in Appendix D.

58

The start sequence is treated in a different manner to the actual data, allowing for a

simple implementation that requires next to no change in the encoder parameters. Each

individual pulse of both the one and zero of the start sequence is counted. On the first zero

pulse, the number of counted one pulses is compared to a set number. If they are equal, the

decoder begins counting the zero pulses. If they are not equal, the zero pulses are not counted

and the ones counter is reset. At the point of transition back to ones pulses, the number

of zero pulses is counted and compared to a set number. If they are unequal, the following

data transmission is ignored. If they are equal, the encoder begins accepting data. Since

the number of pulses corresponding to each component of the start sequence will remain

consistent, each can be compared to an exact number, greatly reducing the possibility of an

erroneous start detection. This is further reduced by the fact that the start sequence high

and low lengths are unequal to that of any encoded data.

After eight decisions are made, the decoder stops accepting data and prepares to send it

to a computer via the UART. This is done by operating on the data in the opposite manner

as the encoder–each element of the array containing the decoded data is added to a single

8-bit variable using a loop containing a logic AND operation with a left shift corresponding

to the loop count value. This allows the variable to be used as an argument in a generated

UART transmit function.

59

Chapter 4

Testing

To demonstrate the function of the communication system, a hardware test was per-

formed. Initially, an AM transmitter and receiver were designed to modulate and demodulate

the signal at 2.3 GHz, however, this system proved to be unreliable in practical use, as com-

ponents used caused large nonlinearities in the received signal, overwhelming the matched

filter. Additionally, the receiver contained no automatic gain control (AGC) system, and

reliability was inconsistent at various distances. To remedy this, an off-the-shelf FM trans-

mitter and receiver were introduced. This change greatly improved the quality of the signal

and made evaluation and debugging more manageable. Three microcontrollers were required

for this system: one for the encoder, one for the decoder, and one for the digital matched

filter. It was intended to integrate the decoder and matched filter onto a single microcon-

troller, but the combined computational intensity of both the matched filter algorithm and

the decoder algorithm were too great for one microcontroller to handle.

To ensure optimal functionality of the system, various parameters of the system require

tuning. Generally, the tuning process begins with the oscillator. If the oscillator output is

periodic, the potentiometer connected to the source of the MOSFET must be adjusted until

chaotic behavior appears, either by inspection of the phase space or the time-domain output.

(interestingly, it is possible to hear the oscillator and adjust it until the sound resembles that

of an out-of-tune analog television.) Once the oscillator exhibits the desired behavior, s(t)

is examined and adjusted via potentiometers controlling magnitude and level shift to ensure

operation at ±1V. Once all oscillator parameters are as desired, the encoder and controller

are connected, and the oscillator output is examined with a test pattern of 1-0-1-0. The

controller and encoder rarely require adjustment, and may only need to be adjusted if a

60

parameter on the receive side requires a change in the encoding process. After the transmit

side is functioning properly, the received waveform is observed, along with the matched filter

output. Often, small changes in the behavior of the oscillator will require an adjustment of

Rη on the analog filter, or an adjustment of the threshold on the digital filter. The pulse

length threshold on the decoder requires occasional adjustment due to the variations in the

unstable growth rate in the oscillator.

The test was conducted in an indoor environment, with the transmitter and receiver

spaced roughly one meter apart. Radio-frequency and baseband noise were observed in the

environment by an external software-defined radio, indicating a good environment to demon-

strate the system’s desired performance in a noisy space. The testing environment is shown

in Fig. 4.1. It was assumed that the sensitivity of the oscillator to initial conditions, and the

small parameter changes in electronic components given varying external conditions, would

cause a change in reliability if the environment was varied. This was tested by conducting

two bit-error rate (BER) tests [52], one with the room’s thermostat set to the maximum, and

the other with the thermostat set to the minimum. Typically, the system is operated using

two separate computers to verify the congruence of the transmitted data and the received

data. For this test, a Python program was written to send a randomized ASCII character.

Both the encoder and decoder UART outputs are connected to one computer, and the test

program can determine if the character transmission is successful. Additionally, the pro-

gram compares the 8-bits of the transmitted and received values individually, and counts

the number of incorrect bits to constitute a true BER test. An oscilloscope capture of the

overall function of the system is shown in Fig. 4.2.

61

Figure 4.1: Testing environment for the full communication system. Transmit side (right)
and receive side (left).

62

Figure 4.2: Oscilloscope capture of the function of the communication system. Oscillator
output (yellow), binary data sent serially to oscillator controller (green), matched filter
output (pink), and decoded binary data (blue).

63

Chapter 5

Results

The test was conducted twice, with the temperature sensor reading an average temper-

ature of 25.9 degrees C and 22.1 degrees C, respectively. Ideally, the temperature variance

would have been greater, but the HVAC system in the building in which the test was per-

formed is only able to produce heating and air conditioning separately. However, the tem-

perature variance that was present was still enough to show evidence for claims that varying

the environment would cause changes in the system. The results of both BER tests are

shown in Fig 5.1. The results show that the system is able to achieve a very low error rate,

even without any formal error correction. Additionally, no NULLs were detected, indicating

perfect reliability in the start sequence detection scheme; a false start sequence detection

would result in either a decoded NULL or a timeout, in which case a NULL is sent.

Figure 5.1: Bit-error rate test results from both tests.

64

Chapter 6

Conclusion

Presented is a hardware demonstration of a wireless communication system that takes

advantage of the spread spectrum characteristics of an exactly solvable chaotic oscillator

operating at a baseband frequency of 18.4 kHz. The system is based on previous work that

found an exact analytical solution and an equation for a matched filter to a chaotic system

defined as a linear convolution of a fixed basis function and a discrete-time function. This

communication system has been shown to have the ability to transmit and receive data from

a temperature sensor with a low bit-error rate in a relatively uncontrolled environment. The

system was implemented using an FM transmitter and an FM receiver, a controller, an oscil-

lator, and a matched filter, all realized on custom-designed PCBs. The digital matched filter,

and all encoding and decoding was implemented on STM32F446 breakout boards, which are

based on the ARM Cortex M4 microcontroller architecture. All programs used were written

in embedded C, and they take advantage of the KEIL toolchain and the abstraction layers it

provides. Programs were written so that an individual with little software experience could

more easily grasp their function and follow a straightforward manual to operate the entire

system. Hardware testing shows that the received binary data from the temperature sensor

can be encoded into two controlled orbits of the chaotic oscillator. It was found through

examination of the received signal that noise was present in the environment; however, the

matched filter was still able to produce the filtered signal in a manner that could be easily

decoded. An ad-hoc encoding and decoding scheme was implemented to take advantage

of observed properties of the system. This scheme proved to be very reliable, as no false

data was recorded by the BER test (meaning no NULLs, showing no falsely detected start

sequence). As expected, varying the ambient temperature caused the system to go out of

65

tune, and the reliability decreased. This is likely caused by the matched filter threshold value

becoming inaccurate, or by the decoder pulse threshold becoming inaccurate when compared

with the incoming signal. One notable drawback to the implementation of this system is the

data rate. As the oscillator operates at a baseband of 18.4 kHz, and multiple copies of the

same bit along with a custom encoding scheme are both required to increase accuracy to

acceptable levels, the current system’s use is largely limited to remote sensing applications

where fast data updates are not required. Overall, the system was able to function as the

theoretical background indicated.

66

Chapter 7

Future Work

Future work will almost certainly involve increasing the baseband frequency of the

chaotic oscillator to increase data transmission rate. This will likely involve further de-

velopment of either the single-transistor oscillator or the HF oscillator, with a priority being

tunability. Additionally, it may be possible to implement an automatic tuning system in

either software or hardware to tune the oscillator before any transmission begins. Eliminat-

ing the problem of the transient periods between oscillator states is paramount to increasing

the data rate. This may be achieved by redesigning the controller around a different control

scheme–one that is able to remedy the issue observed in the phase-space plots of the con-

trolled oscillator. This issue appears to be that the oscillator controller is unable to perturb

the oscillator at the most desirable point, which is as near as possible to the ideal “fold”

point. It was observed that the controller would occasionally perturb the oscillator near

that point, and the transient period was not observable. There is also room for improve-

ment in the trajectories to which the controller steers the oscillator to more closely resemble

the ideal function. This would likely include a ground-up reworking of the encoding and

decoding schemes, which take advantage of the deficiencies in the controller.

The receive side can likely be reduced in footprint by implementing all digital opera-

tions on an FPGA. This may allow for integration of the currently separate matched filter

and decoder (when using the digital matched filter), as the ability of FPGAs to perform

operations in parallel would likely yield improvements in performance. The system would

certainly see an improvement in reliability if a standard error reduction method, such as a

parity bit [51], was introduced.

67

Bibliography

[1] Wiener, N., The Homogeneous Chaos, American Journal of Mathematics, 1938.

[2] Grad, H., Principles of the Kinetic Theory of Gases, Thermodynamics of Gases, 1958.

[3] O’Toole, J. T.; Dahler, J. S., On the Kinetic Theory of a Fluid Composed of Rigid
Spheres, J. Chem. Phys., 1960.

[4] Ergun, Salih,Regional random number generator from a cross-coupled chaotic oscillator,
Circuits and Systems, 2011 IEEE 54th International Midwest Symposium on, pp. 1-4,
Aug. 2011.

[5] Beal, A. N.; Bailey, J. P.; Hale, S. H.; Dean R. N.; Hamilton, M.; Tugnait, J. K.; Hahs,
D. W.; Corron, N. J.,, Design and simulation of a high frequency exact solvable chaotic
oscillator, Military Communications Conference, 2012 - MILCOM 2012 , vol., no.,
pp.1,6, Oct. 29 2012-Nov. 1 2012.

[6] Corron, N. J.; Blakely, J. N.; Pethel, S. D., Communicating with exactly solvable chaos,
Henry Leung, ed., Chaotic Signal Processing, SIAM, pp. 48-84, 2013.

[7] Venkatasubramanian, V.; Leung, H., A robust chaos radar for collision detection and
vehicular ranging in intelligent transportation systems, Intelligent Transportation
Systems, 2004. Proceedings. The 7th International IEEE Conference on, pp. 548-552,
Oct. 2004.

[8] Zhang, Wenfang; He, Dake Chaotic secure communication based on discrete-time chaos
noise generator, Parallel and Distributed Computing, Applications and Technologies,
2003. PDCAT’2003. Proceedings of the Fourth International Conference on, pp. 935-939,
27-29 Aug. 2003.

[9] Lau, Francis C. M.; Tse, Chi K.Study of Anti-Jamming Capabilities of Chaotic Digi-
tal Communcation Systems, Information Theory and Its Applications, International
Symposium on, pp. 65-68, 2002.

[10] Saito, T.; Fujita, H.,Chaos in a Manifold Piecewise Linear System, Electronics and
Communications Journal, vol. 64, no. 10, pp. 9-17, Oct. 1981.

[11] Corron, Ned J.,An Exactly Solvable Chaotic Differential Equation, Dynamics of Con-
tinuous, Discrete and Impulsive Systems, vol. 16, pp. 777-788, 2009.

[12] Corron, Ned J.; Blakely, Jonathan N.,Exact folded-band chaotic oscillator, Chaos, 22,
023113, 2012.

68

[13] Coullet, P.; Elphick, C.; Repaux, D., Nature of Spatial Chaos, Phys. Rev. Lett., 1987.

[14] Deakin, M., Catastrophe and Chaos: Mathematical Views of the World, Meanjin,
1978.

[15] May, R. M., Nonlinear Phenomena in Ecology and Epidemiology, Annals of the New
York Academy of Sciences, 1980.

[16] Sinai, Y. G., Dynamical Systems with Elastic Reflections. Ergodic Properties of Dispers-
ing Billiards., Uspekhi Mat. Nauk, 1970.

[17] Oono, Y.; Takahashi, Y., Chaos, External Noise and Fredholm Theory, Progress of
Theoretical Physics, 1980.

[18] Pesin, Y. B., Characteristic Lyapunov Exponents and Smooth Ergodic Theory, Uspekhi
Mat. Nauk, 1977.

[19] Rosser, J. B., Chaos Theory and the New Keynsian Economics, The Manchester
School of Economic and Social Studies, University of Manchester, 1990.

[20] Blakely, Jonathan N.; Corron, Ned J.,Ambiguity in Range-Doppler Determination Using
Waveforms of a Solvable Chaotic Oscillator, Signal Processing, vol. 104, pp. 136-142,
Nov. 2014.

[21] Corron, Ned J.; Stahl, Mark T.; Harrison, R. C.,Acoustic Detection and Ranging Using
Solvable Chaos, International Conference on Theory and Application in Nonlinear
Dynamics, vol. 23, pp. 213-223, Dec. 2013.

[22] Corron, Ned J.; Blakely, Jonathan N.; Stahl, Mark T.,A Matched Filter For Chaos,
Chaos, 20, 023123, 2010.

[23] Rössler, O. E.,An Equation for Continuous Chaos, Physics Letters A, vol. 57, no. 5,
1976.

[24] Lorenz, Edward N.,Deterministic Nonperiodic Flow, Journal of Atmospheric Sciences,
vol. 20, pp. 130-141, 1963.

[25] Corron, Ned J., An Exactly Solvable Chaotic Differential Equation, Dynamics of Con-
tinuous, Discrete and Impulzive Systems, A: Mathmatical Analysis 16, Watam Press,
pp. 777-788, 2009.

[26] Ott, Edward, Chaos in Dynamical Systems, Cambridge University Press, second
edition, 2002.

[27] Reartes, Walter The Homoptopy Analysis Method in the Search for Periodic Orbits,
Actas Del XII Congreso Dr. Antonio A. R. Monteiro, 2013.

[28] Rodakoviski, Rodrigo B.; Dias, Nelson L., Statistical Description of Rayleigh-Bénard
Convection Using the Lorenz Equations, American Journal of Environmental Engi-
neering, 2018.

69

[29] Kolmogorov, A. N., The Local Structure of Turbulence in Incompressible Viscous Fluid
for Vry Large Reynolds Numbers, Proceedings of the Royal Society A, 1941.

[30] Cartwright, M. L.; Littlewood, J. E., On Non-Linear Differential Equations of the Sec-
ond Order, Journal of the London Mathematical Society, 1945.

[31] Feigenbaum, M., Quantitative Universality for a Class of Nonlinear Transformations,
Journal of the London Mathematical Society, 1945.

[32] Boeing, J., Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-
Similarity and the Limits of Prediction, Systems, 2016.

[33] Li, T. Y.; Yorke, J. A., Period Three Implies Chaos, The American Mathematical
Monthly, Vol. 82, No. 10, 1975.

[34] Katsura, S.; Fukuda, W., Exactly Solvable Models Showing Chaotic Behavior, Physica
A: Statistical Mechanics and its Applications, 1985.

[35] Devaney, R. L., An Introduction to Chaotic Dynamical Systems, Addison-Wesley,
1989.

[36] Werner, F. T.; Rhea, B. K.; Harrison, R. C.; Dean, R. N., Electronic implementation of
a Practical Matched Filter for a Chaos-based Communication System, Chaos, Solitons,
and Fractals, 2017.

[37] Ott, E; Grebogi, C.; Yorke, J. A., Controlling Chaos, Phys. Rev. Lett 64, 1990.

[38] Turin, G., An introduction to Matched Filters, IRE Transactions on Information
Theory, 1960.

[39] Valsakumar, M. C.; Satyanarayana S. V. M.; Sridhar V., Signature of Chaos in Power
Spectrum, Pramana Journal of Physics, 1997.

[40] Hayes, S., Chaos from Linear Systems: Implications for Communicating with Chaos,
and the Nature of Determinism and Randomness, Journal of Physics Conference
series 23, 2005.

[41] Hayes, S.; Grebogi, C.; Ott, E., Communicating with Chaos, Phys. Rev. Lett 70, 1993.

[42] Corron, N. J.; Stahl, M. T.; Blakely, J. N, Exactly Solvable Chaotic Circuit, Interna-
tional Symposium on Circuits and Systems (ISCAS) 2010.

[43] Corron, N. J.; Pethel, S. D.; Hopper, B. A.;, Controlling Chaos with Simple Limiters,
Phys. Rev. Lett 84, 2000.

[44] Childress, C.; Gilbert, A. D., Stretch, Twist, Fold: The Fast Dynamo, Springer, 1995.

[45] Rhea, B. K.; Beal, A. N.; Werner, F. T.; Dean, R. N., Chaotic Oscillator Implementation
Based on an Exactly Solvable Piecewise Linear Chaotic System Intended for Communi-
cation System Applications, IMAPS 2017.

70

[46] Rhea, B. K.; Harrison, R. C.; Whitney, D. A.; Werner, F. T., Hardware Implementation
of Chaos Control Using a Proportional Feedback Controller, ICAND 2018.

[47] Grebogi, C.; Ott, E.; Yorke, J. A., Crises, Sudden Changes in Chaotic Attractors, and
Transient Chaos, Bell Labs Technical Journal, 1963.

[48] Bennett, W. R.; Rice, S. O., Spectral Density and Autocorrelation Functions Associated
with Binary Frequency-Shift Keying., Bell Labs Technical Journal, 1963.

[49] Nekeoi, F.; Kavian, Y.; Strobel, O., Some Schemes of Realization Digital FIR Filters
on FPGA for Communication Applications, Microwave and Telecommunication Tech-
nology, 2010.

[50] Damian, C.; Lunca, E., A low-area FIR Filter for FPGA Implementation., IEEE,
2011.

[51] Davey, M. C., Error-Correction using Low-Density Parity-Check Codes, University of
Cambridge, 2000.

[52] Jeruchim, M., Techniques for Estimating the Bit Error Rate in the Simulation of Digital
Communication Systems, IEEE Journal on Selected Areas in Communications, 1984.

71

Appendices

72

Appendix A

MATLAB program for digital matched filter demonstration

%If you’re using an outside signal file you shouldn’t need lines 1 through

2 %5 or the for loop in line 10. just make x in line 6 equal to the data you

want to filter. Also make

%sure all of the array values match up

4 %f=18e3;

%fs=f∗4;%sample at 4 times the frequency of the signal

6 %nCyl=40; %generate five cycles of sinusoid

%t=0:1/fs:nCyl∗1/f; %time index

8 %x=.2+.05∗cos(2.6∗pi∗f∗t)+.3∗sin(10∗pi∗f∗t)+.05∗sin(12.3∗pi∗f∗t)+.05∗sin

(25∗pi∗f∗t); %change this to input file or whatever

%for k=1:161 %this function generates the two states for the wave above.

Comment out if using outside data.

10 % if k<20

% x(k)=x(k)+.5;

12 %elseif k<55

% x(k)=x(k)+.3;

14 %elseif k<70

% x(k)=x(k)+.7;

16 % elseif k<85

% x(k)=x(k)+.3;

18 % elseif k<128

% x(k)=x(k)+.5;

20 % elseif k<156

% x(k)=x(k)+.3;

22 % elseif k<180

% x(k)=x(k)+.7;

24 % else

73

% x(k)=x(k)−10;

26 % end

%end

28 %plot(t,x);

t = 1:401;

30 %plot(t,simout)

KI = 1; % this changes the amount of separation of the two states of the

output

32 %plot(t,x)

t i t l e (’Continuous sinusoidal signal ’);

34 xlabel (’Time(s)’);

ylabel (’Amplitude ’);

36 %delay signal 360 degrees (was 180, changed according to Frank’s paper on

%analog matched filter

38 %4 samples taken per cycle, so a delay of 360 is 4 samples

x = 1241*((simout ’) /11+1.2);

40 for h=1:401

i f h<5

42 y(h)=x(h);

e l se

44 y(h)=x(h-4);

end

46 end

plot (t,y,t,x)

48 pause;

%add negative of delayed signal back into original. This detects a change

50 %in value of the two samples. If the two values are the same or close, the

%output of the adder will not change much.

52 xy=x-y;

plot (t,xy/4,t,x -1100)

54 pause;

for j=2:401 %this is the integrator (LPF) stage. Uses trapezoidal Riemann

sums

74

56 x1 = xy(j);

i f j==1

58 x2 = x1;

e l se

60 x2 = xy(j-1);

end

62 sum1(j) = (x1+x2);

sum2 (1) =0;

64 sum2(j) = (sum2(j-1)+sum1(j))*KI;

sumout (1) = 0;

66 sumout(j) = (sum2(j)+sum2(j-1));

i f 1000+ sum2(j) >0

68 binout(j)=1;

e l se

70 binout(j)=0;

end

72 end

plot (t,simout ,t,sim ,t,binout +2.5)

75

Appendix B

Program for Software-Defined Matched Filter

NOTE: This program was written in such a way that an individual unfamiliar with

programming can make necessary changes to maintain the function of the communication

system. Attention to efficiency and elegance yields to ease of access.

/**

2 **

* File Name : main.c

4 * Description : Main program body

**

6 *

* COPYRIGHT(c) 2017 STMicroelectronics

8 *

* Redistribution and use in source and binary forms , with or without

modification ,

10 * are permitted provided that the following conditions are met:

* 1. Redistributions of source code must retain the above copyright

notice ,

12 * this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

notice ,

14 * this list of conditions and the following disclaimer in the

documentation

* and/or other materials provided with the distribution.

16 * 3. Neither the name of STMicroelectronics nor the names of its

contributors

* may be used to endorse or promote products derived from this

software

76

18 * without specific prior written permission.

*

20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "

AS IS"

* AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO,

THE

22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE

* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE

LIABLE

24 * FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR

CONSEQUENTIAL

* DAMAGES (INCLUDING , BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR

26 * SERVICES; LOSS OF USE , DATA , OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER

* CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT

LIABILITY ,

28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE

* OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

30 *

**

32 */

/* Includes

--*/

34 #include "stm32f4xx_hal.h"

36 /* USER CODE BEGIN Includes */

38 /* USER CODE END Includes */

77

40 /* Private variables

---*/

ADC_HandleTypeDef hadc1;

42

DAC_HandleTypeDef hdac;

44

TIM_HandleTypeDef htim2;

46 TIM_HandleTypeDef htim3;

TIM_HandleTypeDef htim4;

48

/* USER CODE BEGIN PV */

50 /* Private variables

---*/

uint32_t ADC_data [1];

52 int valueReady = 0;

int firstRun1 = 1;

54 int firstRun2 = 1;

int firstRun3 = 1;

56 int firstRun4 = 1;

int firstRun5 = 1;

58 int firstRun6 = 1;

int firstRun7 = 1;

60 int firstRun8 = 1;

int32_t sum[1];

62 int32_t lastSum [1];

int32_t store1 [1];

64 int32_t store2 [1];

int32_t store3 [1];

66 int32_t store4 [1];

int32_t store5 [1];

68 int32_t store6 [1];

int32_t store7 [1];

70 int32_t store8 [1];

78

int32_t lastxint2 [1];

72 int lastStore = 4;

int firstSum = 1;

74 int32_t KI1 = 1; // integrator constant

int32_t KI2 = 1;

76 int32_t xint1 [1];

int32_t xint2 [1];

78 int32_t currentval [1];

int32_t xout [1];

80 uint32_t dacout [1];

int32_t timeavg_arr [36]; // # values used in time average is 50 with 1

extra to shift , use 26 for 4 samples per period

82 int32_t avgval = 0;

int32_t avgsum = 0;

84 int num = 1;

int maxnum = 35; //use 35 for 4 samples per period , use 50 for 8 samples

per period

86 int32_t avgout [1];

uint32_t dacavgout [1];

88 int shiftvalue = 3750;

uint32_t maxout [1];

90 uint32_t minout [1];

int currentstate = 0;

92 /* USER CODE END PV */

94 /* Private function prototypes

---*/

void SystemClock_Config(void);

96 void Error_Handler(void);

static void MX_GPIO_Init(void);

98 static void MX_ADC1_Init(void);

static void MX_TIM2_Init(void);

100 static void MX_DAC_Init(void);

79

static void MX_TIM3_Init(void);

102 static void MX_TIM4_Init(void);

104 void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);

106

/* USER CODE BEGIN PFP */

108 /* Private function prototypes

---*/

110 /* USER CODE END PFP */

112 /* USER CODE BEGIN 0 */

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc1)

114 {

ADC_data [0] = HAL_ADC_GetValue(hadc1);

116 i f (lastStore == 4) //use this with 4 samples/period

// i f (lastStore == 8) //use this with 8 samples/period

118 {

lastStore = 1;

120 i f (firstRun1 == 0)

{

122 currentval [0] = ADC_data [0]/2; // divide adjusted to try and help

with noise getting into signal somehow -- grounding issue ,

supply , etc

sum[0] = currentval [0] - store1 [0]; /* add current read value to

negative of delayed value */

124 xint1 [0] = (sum[0] + lastSum [0])*KI1/KI2; // integrator stage

xint2 [0] = xint1 [0]+ lastxint2 [0];

126 lastSum [0] = sum[0];

xout [0] = xint2 [0];

128 }

store1 [0] = currentval [0];

80

130 firstRun1 = 0;

lastxint2 [0] = xint2 [0];

132 }

e l se i f (lastStore == 1)

134 {

lastStore = 2;

136 i f (firstRun2 == 0)

{

138 currentval [0] = ADC_data [0]/2;

sum[0] = currentval [0] - store2 [0]; /* add current read value to

negative of delayed value */

140 xint1 [0] = (sum[0] + lastSum [0])/KI1/KI2; // integrator stage

xint2 [0] = xint1 [0]+ lastxint2 [0];

142 lastSum [0] = sum[0];

xout [0] = xint2 [0];

144 }

store2 [0] = currentval [0];

146 firstRun2 = 0;

lastxint2 [0] = xint2 [0];

148 }

e l se i f (lastStore == 2)

150 {

lastStore = 3;

152 i f (firstRun3 == 0)

{

154 currentval [0] = ADC_data [0]/2;

sum[0] = currentval [0] - store3 [0]; /* add current read value to

negative of delayed value */

156 xint1 [0] = (sum[0] + lastSum [0])*KI1/KI2; // integrator stage

xint2 [0] = xint1 [0]+ lastxint2 [0];

158 lastSum [0] = sum[0];

xout [0] = xint2 [0];

160 }

81

store3 [0] = currentval [0];

162 firstRun3 = 0;

lastxint2 [0] = xint2 [0];

164 }

e l se i f (lastStore == 3)

166 {

lastStore = 4;

168 i f (firstRun4 == 0)

{

170 currentval [0] = ADC_data [0]/2;

sum[0] = currentval [0] - store4 [0]; /* add current read value to

negative of delayed value */

172 xint1 [0] = (sum[0] + lastSum [0])*KI1/KI2; // integrator stage

xint2 [0] = xint1 [0]+ lastxint2 [0];

174 lastSum [0] = sum[0];

xout [0] = xint2 [0];

176 }

store4 [0] = currentval [0];

178 firstRun4 = 0;

lastxint2 [0] = xint2 [0];

180 }

// uncomment lines 181 -245 for 8 samples per period

182 // e l se i f (lastStore == 4)

// {

184 // lastStore = 5;

// i f (firstRun5 == 0)

186 // {

// currentval [0] = ADC_data [0]/4;

188 // sum[0] = currentval [0] - store5 [0]; /* add current read value to

negative of delayed value */

// xint1 [0] = (sum[0] + lastSum [0])*KI1/KI2; // integrator stage

190 // xint2 [0] = xint1 [0]+ lastxint2 [0];

// lastSum [0] = sum[0];

82

192 // xout [0] = xint2 [0];

// }

194 // store5 [0] = currentval [0];

// firstRun5 = 0;

196 // lastxint2 [0] = xint2 [0];

// }

198 // e l se i f (lastStore == 5)

// {

200 // lastStore = 6;

// i f (firstRun6 == 0)

202 // {

// currentval [0] = ADC_data [0]/4;

204 // sum[0] = currentval [0] - store6 [0]; /* add current read value to

negative of delayed value */

// xint1 [0] = (sum[0] + lastSum [0])*KI1/KI2; // integrator stage

206 // xint2 [0] = xint1 [0]+ lastxint2 [0];

// lastSum [0] = sum[0];

208 // xout [0] = xint2 [0];

// }

210 // store6 [0] = currentval [0];

// firstRun6 = 0;

212 // lastxint2 [0] = xint2 [0];

// }

214 // e l se i f (lastStore == 6)

// {

216 // lastStore = 7;

// i f (firstRun7 == 0)

218 // {

// currentval [0] = ADC_data [0]/4;

220 // sum[0] = currentval [0] - store7 [0]; /* add current read value to

negative of delayed value */

// xint1 [0] = (sum[0] + lastSum [0])*KI1/KI2; // integrator stage

222 // xint2 [0] = xint1 [0]+ lastxint2 [0];

83

// lastSum [0] = sum[0];

224 // xout [0] = xint2 [0];

// }

226 // store7 [0] = currentval [0];

// firstRun7 = 0;

228 // lastxint2 [0] = xint2 [0];

// }

230 // e l se i f (lastStore == 7)

// {

232 // lastStore = 8;

// i f (firstRun8 == 0)

234 // {

// currentval [0] = ADC_data [0]/4;

236 // sum[0] = currentval [0] - store8 [0]; /* add current read value to

negative of delayed value */

// xint1 [0] = (sum[0] + lastSum [0])*KI1/KI2; // integrator stage

238 // xint2 [0] = xint1 [0]+ lastxint2 [0];

// lastSum [0] = sum[0];

240 // xout [0] = xint2 [0];

// }

242 // store8 [0] = currentval [0];

// firstRun8 = 0;

244 // lastxint2 [0] = xint2 [0];

// }

246

248 dacout [0] = xout[0]- shiftvalue; // manually scale value for the DAC

output to look right (0 to 4096)

i f (num <= maxnum) //use array values 1 to 50 (omitting 0)

250 {

timeavg_arr[num] = xout [0];

252 avgsum = avgsum + timeavg_arr[num];

avgval = avgsum/num;

84

254 num ++;

}

256 e l se

{

258 for (int j=1; j<= maxnum; j++)

{

260 timeavg_arr[j-1] = timeavg_arr[j];

}

262 timeavg_arr[maxnum] = xout [0];

avgsum = avgsum + timeavg_arr[maxnum] - timeavg_arr [0];

264 avgval = avgsum/maxnum;

}

266 avgout [0] = avgval -shiftvalue;

dacavgout [0] = avgout [0]; //avoid issues with unsigned int vs int

268

i f (dacavgout [0] > maxout [0]) // adjust max and min

270 {

maxout [0] = dacavgout [0];

272 }

i f (dacavgout [0] < minout [0])

274 {

minout [0] = dacavgout [0];

276 }

278 HAL_DAC_SetValue (&hdac , DAC_CHANNEL_2 , DAC_ALIGN_12B_R , avgout [0]);

// HAL_DAC_SetValue (&hdac , DAC_CHANNEL_2 , DAC_ALIGN_12B_R , dacout [0]);

280

//NOTE: actual 1 and 0 are opposite what they appear to be on the

DACOUT. This part takes care of that.

282

// ANOTHER NOTE: The new transciever doesn ’t have the problem of

flipping the 1 and 0. Program adjusted to compensate.

284

85

i f (dacavgout [0] > minout [0] + 600) // hardcoded number here is a

tuned number. change based on what scope shows you

286 {

HAL_GPIO_WritePin(BINOUT_GPIO_Port , BINOUT_Pin , GPIO_PIN_SET);

288 i f (currentstate == 0) // check to see i f there is a switch to a new

state

{

290 minout [0] = dacavgout [0];// reset max and min

maxout [0] = dacavgout [0];

292 currentstate = 1; // change state

}

294 }

i f (dacavgout [0] + 675 < maxout [0]) // hardcoded number here is a

tuned number. change based on what scope shows you

296 {

HAL_GPIO_WritePin(BINOUT_GPIO_Port , BINOUT_Pin , GPIO_PIN_RESET);

298 i f (currentstate == 1) // check to see i f new state

{

300 minout [0] = dacavgout [0]; // reset max and min

maxout [0] = dacavgout [0];

302 currentstate = 0; // change state

}

304 }

306 }

//this part is supposed to simulate hardware MF

308 void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)

{

310 i f (htim ->Instance == TIM3 && currentstate == 1)

{

312 HAL_GPIO_TogglePin(BFSKOUT_GPIO_Port , BFSKOUT_Pin);

}

314 e l se i f (htim ->Instance == TIM4 && currentstate == 0)

86

{

316 HAL_GPIO_TogglePin(BFSKOUT_GPIO_Port , BFSKOUT_Pin);

}

318 }

/* USER CODE END 0 */

320

int main(void)

322 {

324 /* USER CODE BEGIN 1 */

326 /* USER CODE END 1 */

328 /* MCU Configuration

--*/

330 /* Reset of a l l peripherals , Initializes the Flash interface and the

Systick. */

HAL_Init ();

332

/* Configure the system clock */

334 SystemClock_Config ();

336 /* Initialize a l l configured peripherals */

MX_GPIO_Init ();

338 MX_ADC1_Init ();

MX_TIM2_Init ();

340 MX_DAC_Init ();

MX_TIM3_Init ();

342 MX_TIM4_Init ();

344 /* USER CODE BEGIN 2 */

HAL_TIM_OC_Start_IT (&htim2 , TIM_CHANNEL_1);

87

346 HAL_TIM_Base_Start_IT (&htim3); //TIMER 3 is for fast pulses (period = 20

us)

HAL_TIM_Base_Start_IT (&htim4); //TIMER 4 is for slow pulses (period = 50

us)

348 // FHAL_TIM_Base_Start_IT (& htim2);

// HAL_ADC_Start_DMA (&hadc1 , ADC_data , sizeof(uint32_t)); DON ’T USE THIS

350

HAL_ADC_Start_IT (& hadc1); // comment out to see i f pulses work

352 HAL_DAC_Start (&hdac , DAC_CHANNEL_2);

/* USER CODE END 2 */

354

/* Infinite loop */

356 /* USER CODE BEGIN WHILE */

while (1)

358 {

360 /* USER CODE END WHILE */

362 /* USER CODE BEGIN 3 */

364 }

/* USER CODE END 3 */

366

}

368

/** System Clock Configuration

370 */

void SystemClock_Config(void)

372 {

374 RCC_OscInitTypeDef RCC_OscInitStruct;

RCC_ClkInitTypeDef RCC_ClkInitStruct;

376

88

__HAL_RCC_PWR_CLK_ENABLE ();

378

__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

380

RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;

382 RCC_OscInitStruct.HSIState = RCC_HSI_ON;

RCC_OscInitStruct.HSICalibrationValue = 16;

384 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;

RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;

386 RCC_OscInitStruct.PLL.PLLM = 8;

RCC_OscInitStruct.PLL.PLLN = 144;

388 RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;

RCC_OscInitStruct.PLL.PLLQ = 2;

390 RCC_OscInitStruct.PLL.PLLR = 2;

i f (HAL_RCC_OscConfig (& RCC_OscInitStruct) != HAL_OK)

392 {

Error_Handler ();

394 }

396 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

398 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

400 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;

RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

402 i f (HAL_RCC_ClockConfig (& RCC_ClkInitStruct , FLASH_LATENCY_4) != HAL_OK)

{

404 Error_Handler ();

}

406

HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq () /1000);

408

HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

89

410

/* SysTick_IRQn interrupt configuration */

412 HAL_NVIC_SetPriority(SysTick_IRQn , 0, 0);

}

414

/* ADC1 init function */

416 static void MX_ADC1_Init(void)

{

418

ADC_ChannelConfTypeDef sConfig;

420

/** Configure the global features of the ADC (Clock , Resolution , Data

Alignment and number of conversion)

422 */

hadc1.Instance = ADC1;

424 hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;

hadc1.Init.Resolution = ADC_RESOLUTION_12B;

426 hadc1.Init.ScanConvMode = DISABLE;

hadc1.Init.ContinuousConvMode = DISABLE;

428 hadc1.Init.DiscontinuousConvMode = DISABLE;

hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISINGFALLING

;

430 hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T2_TRGO;

hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;

432 hadc1.Init.NbrOfConversion = 1;

hadc1.Init.DMAContinuousRequests = ENABLE;

434 hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;

i f (HAL_ADC_Init (&hadc1) != HAL_OK)

436 {

Error_Handler ();

438 }

90

440 /** Configure for the selected ADC regular channel its corresponding

rank in the sequencer and its sample time.

*/

442 sConfig.Channel = ADC_CHANNEL_10;

sConfig.Rank = 1;

444 sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;

i f (HAL_ADC_ConfigChannel (&hadc1 , &sConfig) != HAL_OK)

446 {

Error_Handler ();

448 }

450 }

452 /* DAC init function */

static void MX_DAC_Init(void)

454 {

456 DAC_ChannelConfTypeDef sConfig;

458 /**DAC Initialization

*/

460 hdac.Instance = DAC;

i f (HAL_DAC_Init (&hdac) != HAL_OK)

462 {

Error_Handler ();

464 }

466 /**DAC channel OUT2 config

*/

468 sConfig.DAC_Trigger = DAC_TRIGGER_NONE;

sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;

470 i f (HAL_DAC_ConfigChannel (&hdac , &sConfig , DAC_CHANNEL_2) != HAL_OK)

{

91

472 Error_Handler ();

}

474

}

476

/* TIM2 init function */

478 static void MX_TIM2_Init(void)

{

480

TIM_ClockConfigTypeDef sClockSourceConfig;

482 TIM_MasterConfigTypeDef sMasterConfig;

TIM_OC_InitTypeDef sConfigOC;

484

htim2.Instance = TIM2;

486 htim2.Init.Prescaler = 0;

htim2.Init.CounterMode = TIM_COUNTERMODE_UP;

488 // htim2.Init.Period = 489; //use this i f you want 8 samples per period (

more processing load on the controller)

htim2.Init.Period = 978; //use this for 4 samples per period

490 htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

i f (HAL_TIM_Base_Init (&htim2) != HAL_OK)

492 {

Error_Handler ();

494 }

496 sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

i f (HAL_TIM_ConfigClockSource (&htim2 , &sClockSourceConfig) != HAL_OK)

498 {

Error_Handler ();

500 }

502 i f (HAL_TIM_OC_Init (&htim2) != HAL_OK)

{

92

504 Error_Handler ();

}

506

sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;

508 sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;

i f (HAL_TIMEx_MasterConfigSynchronization (&htim2 , &sMasterConfig) !=

HAL_OK)

510 {

Error_Handler ();

512 }

514 sConfigOC.OCMode = TIM_OCMODE_TOGGLE;

sConfigOC.Pulse = 0;

516 sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

518 i f (HAL_TIM_OC_ConfigChannel (&htim2 , &sConfigOC , TIM_CHANNEL_1) !=

HAL_OK)

{

520 Error_Handler ();

}

522

HAL_TIM_MspPostInit (& htim2);

524

}

526

/* TIM3 init function */

528 static void MX_TIM3_Init(void)

{

530

TIM_ClockConfigTypeDef sClockSourceConfig;

532 TIM_MasterConfigTypeDef sMasterConfig;

TIM_OC_InitTypeDef sConfigOC;

534

93

htim3.Instance = TIM3;

536 htim3.Init.Prescaler = 0;

htim3.Init.CounterMode = TIM_COUNTERMODE_UP;

538 htim3.Init.Period = 1679;

htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

540 i f (HAL_TIM_Base_Init (&htim3) != HAL_OK)

{

542 Error_Handler ();

}

544

sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

546 i f (HAL_TIM_ConfigClockSource (&htim3 , &sClockSourceConfig) != HAL_OK)

{

548 Error_Handler ();

}

550

i f (HAL_TIM_OC_Init (&htim3) != HAL_OK)

552 {

Error_Handler ();

554 }

556 sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

558 i f (HAL_TIMEx_MasterConfigSynchronization (&htim3 , &sMasterConfig) !=

HAL_OK)

{

560 Error_Handler ();

}

562

sConfigOC.OCMode = TIM_OCMODE_TOGGLE;

564 sConfigOC.Pulse = 0;

sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

566 sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

94

i f (HAL_TIM_OC_ConfigChannel (&htim3 , &sConfigOC , TIM_CHANNEL_1) !=

HAL_OK)

568 {

Error_Handler ();

570 }

572 HAL_TIM_MspPostInit (& htim3);

574 }

576 /* TIM4 init function */

static void MX_TIM4_Init(void)

578 {

580 TIM_ClockConfigTypeDef sClockSourceConfig;

TIM_MasterConfigTypeDef sMasterConfig;

582 TIM_OC_InitTypeDef sConfigOC;

584 htim4.Instance = TIM4;

htim4.Init.Prescaler = 0;

586 htim4.Init.CounterMode = TIM_COUNTERMODE_UP;

htim4.Init.Period = 4199;

588 htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

i f (HAL_TIM_Base_Init (&htim4) != HAL_OK)

590 {

Error_Handler ();

592 }

594 sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

i f (HAL_TIM_ConfigClockSource (&htim4 , &sClockSourceConfig) != HAL_OK)

596 {

Error_Handler ();

598 }

95

600 i f (HAL_TIM_OC_Init (&htim4) != HAL_OK)

{

602 Error_Handler ();

}

604

sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

606 sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

i f (HAL_TIMEx_MasterConfigSynchronization (&htim4 , &sMasterConfig) !=

HAL_OK)

608 {

Error_Handler ();

610 }

612 sConfigOC.OCMode = TIM_OCMODE_TOGGLE;

sConfigOC.Pulse = 0;

614 sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

616 i f (HAL_TIM_OC_ConfigChannel (&htim4 , &sConfigOC , TIM_CHANNEL_1) !=

HAL_OK)

{

618 Error_Handler ();

}

620

HAL_TIM_MspPostInit (& htim4);

622

}

624

/** Configure pins as

626 * Analog

* Input

628 * Output

* EVENT_OUT

96

630 * EXTI

PA2 ------> USART2_TX

632 PA3 ------> USART2_RX

*/

634 static void MX_GPIO_Init(void)

{

636

GPIO_InitTypeDef GPIO_InitStruct;

638

/* GPIO Ports Clock Enable */

640 __HAL_RCC_GPIOC_CLK_ENABLE ();

__HAL_RCC_GPIOH_CLK_ENABLE ();

642 __HAL_RCC_GPIOA_CLK_ENABLE ();

__HAL_RCC_GPIOB_CLK_ENABLE ();

644

/* Configure GPIO pin : B1_Pin */

646 GPIO_InitStruct.Pin = B1_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;

648 GPIO_InitStruct.Pull = GPIO_NOPULL;

HAL_GPIO_Init(B1_GPIO_Port , &GPIO_InitStruct);

650

/* Configure GPIO pins : BFSKOUT_Pin BINOUT_Pin */

652 GPIO_InitStruct.Pin = BFSKOUT_Pin|BINOUT_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

654 GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

656 HAL_GPIO_Init(GPIOA , &GPIO_InitStruct);

658 /* Configure GPIO pins : USART_TX_Pin USART_RX_Pin */

GPIO_InitStruct.Pin = USART_TX_Pin|USART_RX_Pin;

660 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;

GPIO_InitStruct.Pull = GPIO_NOPULL;

662 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;

97

GPIO_InitStruct.Alternate = GPIO_AF7_USART2;

664 HAL_GPIO_Init(GPIOA , &GPIO_InitStruct);

666 /* Configure GPIO pin Output Level */

HAL_GPIO_WritePin(GPIOA , BFSKOUT_Pin|BINOUT_Pin , GPIO_PIN_RESET);

668

}

670

/* USER CODE BEGIN 4 */

672

/* USER CODE END 4 */

674

/**

676 * @brief This function is executed in case of error occurrence.

* @param None

678 * @retval None

*/

680 void Error_Handler(void)

{

682 /* USER CODE BEGIN Error_Handler */

/* User can add his own implementation to report the HAL error return

state */

684 while (1)

{

686 }

/* USER CODE END Error_Handler */

688 }

690 #ifdef USE_FULL_ASSERT

692 /**

* @brief Reports the name of the source file and the source l ine number

694 * where the assert_param error has occurred.

98

* @param file: pointer to the source file name

696 * @param l ine : assert_param error l ine source number

* @retval None

698 */

void assert_failed(uint8_t* file , uint32_t l ine)

700 {

/* USER CODE BEGIN 6 */

702 /* User can add his own implementation to report the file name and l ine

number ,

ex: printf (" Wrong parameters value: file %s on line %d\r\n", file,

line) ∗/

704 /* USER CODE END 6 */

706 }

708 #endif

710 /**

* @}

712 */

714 /**

* @}

716 */

718 /************************ (C) COPYRIGHT STMicroelectronics ***** END OF

FILE ****/

99

Appendix C

Program for Encoder

/**

2 **

* File Name : main.c

4 * Description : Main program body

**

6 *

* COPYRIGHT(c) 2017 STMicroelectronics

8 *

* Redistribution and use in source and binary forms , with or without

modification ,

10 * are permitted provided that the following conditions are met:

* 1. Redistributions of source code must retain the above copyright

notice ,

12 * this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

notice ,

14 * this list of conditions and the following disclaimer in the

documentation

* and/or other materials provided with the distribution.

16 * 3. Neither the name of STMicroelectronics nor the names of its

contributors

* may be used to endorse or promote products derived from this

software

18 * without specific prior written permission.

*

20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "

AS IS"

100

* AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO,

THE

22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE

* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE

LIABLE

24 * FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR

CONSEQUENTIAL

* DAMAGES (INCLUDING , BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR

26 * SERVICES; LOSS OF USE , DATA , OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER

* CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT

LIABILITY ,

28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE

* OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

30 *

**

32 */

/* Includes

--*/

34 //This program WILL NOT WORK i f not hooked up to oscillator and controller

!!!!

#include "stm32f4xx_hal.h"

36

/* USER CODE BEGIN Includes */

38 #define OFFSET 30

#include "ManchesterEncode.h"

40 /* USER CODE END Includes */

42 /* Private variables

---*/

101

ADC_HandleTypeDef hadc1;

44

DAC_HandleTypeDef hdac;

46

TIM_HandleTypeDef htim2;

48 TIM_HandleTypeDef htim3;

TIM_HandleTypeDef htim4;

50

UART_HandleTypeDef huart2;

52 UART_HandleTypeDef huart3;

54 /* USER CODE BEGIN PV */

/* Private variables

---*/

56 static int TestArray[ONES_REPEATED + ZEROES_REPEATED];

//To prevent transients on the oscillator , multiple copies of the same

symbol must be sent in a row.

58 //This sequence is actually 101010101010

int ArrLen = sizeof(TestArray) / sizeof(int);

60 int ArrInd = 0;

int NextSymbol = 85, CurrentSymbol = 85;

62 //85 = invalid input , prevents accidentaly entering loops

64 uint8_t ADC_data [1]; // for reading temp sensor

int ConvCplt = 0; //this is used to begin transmit function after ADC

takes a reading

66 uint8_t ConvData [1];

uint8_t buffer1 [100];

68

70 volatile int togglecheck = 1; // f l ag for when to update nextt transmitted

symbol

102

char PolarityCheck = ’R’; //used to update current edge polarity (Rise or

fall)

72 int stop_ADC = 1;

int CaseNumber = 0; //used to (eventually) switch between data entry modes

74 int EdgeCount = 0; // counts edges detected to determine when to transmit

next symbol

76 volatile uint32_t ADCConvertedValue; //holds last converted value

uint32_t LastValue = 5000; // invalid value to prevent invalid start

78

uint16_t CaptureIndex = 0;

80 uint32_t CapValue0 = 0;

uint32_t CapValue1 = 0;

82 uint32_t CapValue2 = 0;

uint32_t ValueDiff = 0;

84

uint32_t i = 0;

86

volatile uint32_t EntryModeFlag = 0;

88 volatile uint32_t StartFlag = 0;

90 uint8_t view1 = 0; // for viewing values parsed from ADC data

uint8_t view2 = 0;

92 uint8_t view3 = 0;

uint8_t view4 = 0;

94 uint8_t view5 = 0;

uint8_t view6 = 0;

96 uint8_t view7 = 0;

uint8_t view8 = 0;

98 int switch1 = 1;

int switch2 = 1;

100 /* USER CODE END PV */

103

102 /* Private function prototypes

---*/

void SystemClock_Config(void);

104 void Error_Handler(void);

static void MX_GPIO_Init(void);

106 static void MX_ADC1_Init(void);

static void MX_DAC_Init(void);

108 static void MX_TIM2_Init(void);

static void MX_TIM3_Init(void);

110 static void MX_USART3_UART_Init(void);

static void MX_TIM4_Init(void);

112 static void MX_USART2_UART_Init(void);

114 void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);

116

/* USER CODE BEGIN PFP */

118 /* Private function prototypes

---*/

void TestCaseOutput(void); // output function for testcase mode

120 void ReadCustomData(void);

/* USER CODE END PFP */

122

/* USER CODE BEGIN 0 */

124

/* USER CODE END 0 */

126

int main(void)

128 {

130 /* USER CODE BEGIN 1 */

uint16_t testindex = 0;

132 uint16_t tmp_tot = ONES_REPEATED + ZEROES_REPEATED;

104

for (testindex =0; testindex < ONES_REPEATED; testindex ++){

134 TestArray[testindex] = 1;

}

136 for (testindex = ONES_REPEATED; testindex <tmp_tot; testindex ++){

TestArray[testindex] = 0;

138 }

/* USER CODE END 1 */

140

/* MCU Configuration

--*/

142

/* Reset of a l l peripherals , Initializes the Flash interface and the

Systick. */

144 HAL_Init ();

146 /* Configure the system clock */

SystemClock_Config ();

148

/* Initialize a l l configured peripherals */

150 MX_GPIO_Init ();

MX_ADC1_Init ();

152 MX_DAC_Init ();

MX_TIM2_Init ();

154 MX_TIM3_Init ();

MX_USART3_UART_Init ();

156 MX_TIM4_Init ();

MX_USART2_UART_Init ();

158

/* USER CODE BEGIN 2 */

160 HAL_TIM_Base_Start_IT (&htim2); //time base for adc sampling rate

// HAL_ADC_Start_DMA (&hadc1 , &ADCConvertedValue , sizeof(uint32_t));

162 // HAL_TIM_OC_Start (&htim2 ,TIM_CHANNEL_1);

105

164 HAL_TIM_IC_Start_IT (&htim3 , TIM_CHANNEL_1);

HAL_TIM_OC_Start_IT (&htim2 , TIM_CHANNEL_1);

166 HAL_ADC_Start_IT (& hadc1);

168 /* USER CODE END 2 */

170 /* Infinite loop */

/* USER CODE BEGIN WHILE */

172 while (1)

{

174 // HAL_GPIO_WritePin(TransistorSwitch_GPIO_Port , TransistorSwitch_Pin ,

GPIO_PIN_SET);

/* USER CODE END WHILE */

176

/* USER CODE BEGIN 3 */

178 // while(! StartFlag){

// }

180 // StartFlag = 0;

switch(CaseNumber){

182 case (0) :

i f (switch1 == 1)

184 {

HAL_ADC_Stop_IT (&hadc1); //stop the ADC to keep its callback and

interrupt out of the way

186 switch1 = 0;

switch2 = 1;

188 }

while(togglecheck){ // i f it ’s time to switch to next symbol THIS

MAKES NO SENSE.

190 // If togglecheck is commented in l ine 205, test case works but

cannot get out of this loop.

TestCaseOutput (); // transmit

192 }

106

break;

194 case (1) :

i f (switch2 == 1)

196 {

HAL_ADC_Start_IT (& hadc1); // Start the ADC to get temperature

readings

198 switch1 = 1;

switch2 = 0;

200 }

ReadCustomData ();

202

break;

204 case (2):

break;

206 default :

break;

208 }

}

210 /* USER CODE END 3 */

212 }

214 /** System Clock Configuration

*/

216 void SystemClock_Config(void)

{

218

RCC_OscInitTypeDef RCC_OscInitStruct;

220 RCC_ClkInitTypeDef RCC_ClkInitStruct;

222 __HAL_RCC_PWR_CLK_ENABLE ();

224 __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

107

226 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;

RCC_OscInitStruct.HSIState = RCC_HSI_ON;

228 RCC_OscInitStruct.HSICalibrationValue = 16;

RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;

230 RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;

RCC_OscInitStruct.PLL.PLLM = 8;

232 RCC_OscInitStruct.PLL.PLLN = 168;

RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;

234 RCC_OscInitStruct.PLL.PLLQ = 2;

RCC_OscInitStruct.PLL.PLLR = 2;

236 i f (HAL_RCC_OscConfig (& RCC_OscInitStruct) != HAL_OK)

{

238 Error_Handler ();

}

240

RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

242 |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;

244 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;

246 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV4;

i f (HAL_RCC_ClockConfig (& RCC_ClkInitStruct , FLASH_LATENCY_5) != HAL_OK)

248 {

Error_Handler ();

250 }

252 HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq () /1000);

254 HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

256 /* SysTick_IRQn interrupt configuration */

HAL_NVIC_SetPriority(SysTick_IRQn , 0, 0);

108

258 }

260 /* ADC1 init function */

static void MX_ADC1_Init(void)

262 {

264 ADC_ChannelConfTypeDef sConfig;

266 /** Configure the global features of the ADC (Clock , Resolution , Data

Alignment and number of conversion)

*/

268 hadc1.Instance = ADC1;

hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;

270 hadc1.Init.Resolution = ADC_RESOLUTION_8B;

hadc1.Init.ScanConvMode = DISABLE;

272 hadc1.Init.ContinuousConvMode = DISABLE;

hadc1.Init.DiscontinuousConvMode = DISABLE;

274 hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;

hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T2_TRGO;

276 hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;

hadc1.Init.NbrOfConversion = 1;

278 hadc1.Init.DMAContinuousRequests = ENABLE;

hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;

280 i f (HAL_ADC_Init (&hadc1) != HAL_OK)

{

282 Error_Handler ();

}

284

/** Configure for the selected ADC regular channel its corresponding

rank in the sequencer and its sample time.

286 */

sConfig.Channel = ADC_CHANNEL_10;

288 sConfig.Rank = 1;

109

sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;

290 i f (HAL_ADC_ConfigChannel (&hadc1 , &sConfig) != HAL_OK)

{

292 Error_Handler ();

}

294

}

296

/* DAC init function */

298 static void MX_DAC_Init(void)

{

300

DAC_ChannelConfTypeDef sConfig;

302

/**DAC Initialization

304 */

hdac.Instance = DAC;

306 i f (HAL_DAC_Init (&hdac) != HAL_OK)

{

308 Error_Handler ();

}

310

/**DAC channel OUT1 config

312 */

sConfig.DAC_Trigger = DAC_TRIGGER_NONE;

314 sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;

i f (HAL_DAC_ConfigChannel (&hdac , &sConfig , DAC_CHANNEL_1) != HAL_OK)

316 {

Error_Handler ();

318 }

320 }

110

322 /* TIM2 init function */

static void MX_TIM2_Init(void)

324 {

326 TIM_ClockConfigTypeDef sClockSourceConfig;

TIM_MasterConfigTypeDef sMasterConfig;

328 TIM_OC_InitTypeDef sConfigOC;

330 htim2.Instance = TIM2;

htim2.Init.Prescaler = 2624;

332 htim2.Init.CounterMode = TIM_COUNTERMODE_UP;

htim2.Init.Period = 63999;

334 htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

i f (HAL_TIM_Base_Init (&htim2) != HAL_OK)

336 {

Error_Handler ();

338 }

340 sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

i f (HAL_TIM_ConfigClockSource (&htim2 , &sClockSourceConfig) != HAL_OK)

342 {

Error_Handler ();

344 }

346 i f (HAL_TIM_OC_Init (&htim2) != HAL_OK)

{

348 Error_Handler ();

}

350

sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;

352 sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

i f (HAL_TIMEx_MasterConfigSynchronization (&htim2 , &sMasterConfig) !=

HAL_OK)

111

354 {

Error_Handler ();

356 }

358 sConfigOC.OCMode = TIM_OCMODE_TOGGLE;

sConfigOC.Pulse = 0;

360 sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

362 i f (HAL_TIM_OC_ConfigChannel (&htim2 , &sConfigOC , TIM_CHANNEL_1) !=

HAL_OK)

{

364 Error_Handler ();

}

366

HAL_TIM_MspPostInit (& htim2);

368

}

370

/* TIM3 init function */

372 static void MX_TIM3_Init(void)

{

374

TIM_ClockConfigTypeDef sClockSourceConfig;

376 TIM_MasterConfigTypeDef sMasterConfig;

TIM_IC_InitTypeDef sConfigIC;

378 TIM_OC_InitTypeDef sConfigOC;

380 htim3.Instance = TIM3;

htim3.Init.Prescaler = 41;

382 htim3.Init.CounterMode = TIM_COUNTERMODE_UP;

htim3.Init.Period = 0xffff;

384 htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

i f (HAL_TIM_Base_Init (&htim3) != HAL_OK)

112

386 {

Error_Handler ();

388 }

390 sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

i f (HAL_TIM_ConfigClockSource (&htim3 , &sClockSourceConfig) != HAL_OK)

392 {

Error_Handler ();

394 }

396 i f (HAL_TIM_IC_Init (&htim3) != HAL_OK)

{

398 Error_Handler ();

}

400

i f (HAL_TIM_OC_Init (&htim3) != HAL_OK)

402 {

Error_Handler ();

404 }

406 sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

408 i f (HAL_TIMEx_MasterConfigSynchronization (&htim3 , &sMasterConfig) !=

HAL_OK)

{

410 Error_Handler ();

}

412

sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;

414 sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;

sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;

416 sConfigIC.ICFilter = 0;

113

i f (HAL_TIM_IC_ConfigChannel (&htim3 , &sConfigIC , TIM_CHANNEL_1) !=

HAL_OK)

418 {

Error_Handler ();

420 }

422 sConfigOC.OCMode = TIM_OCMODE_TOGGLE;

sConfigOC.Pulse = 0;

424 sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

426 i f (HAL_TIM_OC_ConfigChannel (&htim3 , &sConfigOC , TIM_CHANNEL_2) !=

HAL_OK)

{

428 Error_Handler ();

}

430

sConfigOC.OCMode = TIM_OCMODE_TIMING;

432 i f (HAL_TIM_OC_ConfigChannel (&htim3 , &sConfigOC , TIM_CHANNEL_3) !=

HAL_OK)

{

434 Error_Handler ();

}

436

HAL_TIM_MspPostInit (& htim3);

438

}

440

/* TIM4 init function */

442 static void MX_TIM4_Init(void)

{

444

TIM_ClockConfigTypeDef sClockSourceConfig;

446 TIM_MasterConfigTypeDef sMasterConfig;

114

TIM_OC_InitTypeDef sConfigOC;

448

htim4.Instance = TIM4;

450 htim4.Init.Prescaler = 671;

htim4.Init.CounterMode = TIM_COUNTERMODE_UP;

452 htim4.Init.Period = 62499;

htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

454 i f (HAL_TIM_Base_Init (&htim4) != HAL_OK)

{

456 Error_Handler ();

}

458

sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

460 i f (HAL_TIM_ConfigClockSource (&htim4 , &sClockSourceConfig) != HAL_OK)

{

462 Error_Handler ();

}

464

i f (HAL_TIM_OC_Init (&htim4) != HAL_OK)

466 {

Error_Handler ();

468 }

470 sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

472 i f (HAL_TIMEx_MasterConfigSynchronization (&htim4 , &sMasterConfig) !=

HAL_OK)

{

474 Error_Handler ();

}

476

sConfigOC.OCMode = TIM_OCMODE_TIMING;

478 sConfigOC.Pulse = 0;

115

sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

480 sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

i f (HAL_TIM_OC_ConfigChannel (&htim4 , &sConfigOC , TIM_CHANNEL_1) !=

HAL_OK)

482 {

Error_Handler ();

484 }

486 }

488 /* USART2 init function */

static void MX_USART2_UART_Init(void)

490 {

492 huart2.Instance = USART2;

huart2.Init.BaudRate = 9600;

494 huart2.Init.WordLength = UART_WORDLENGTH_8B;

huart2.Init.StopBits = UART_STOPBITS_1;

496 huart2.Init.Parity = UART_PARITY_NONE;

huart2.Init.Mode = UART_MODE_TX_RX;

498 huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;

huart2.Init.OverSampling = UART_OVERSAMPLING_16;

500 i f (HAL_UART_Init (& huart2) != HAL_OK)

{

502 Error_Handler ();

}

504

}

506

/* USART3 init function */

508 static void MX_USART3_UART_Init(void)

{

510

116

huart3.Instance = USART3;

512 huart3.Init.BaudRate = 115200;

huart3.Init.WordLength = UART_WORDLENGTH_8B;

514 huart3.Init.StopBits = UART_STOPBITS_1;

huart3.Init.Parity = UART_PARITY_NONE;

516 huart3.Init.Mode = UART_MODE_TX_RX;

huart3.Init.HwFlowCtl = UART_HWCONTROL_RTS_CTS;

518 huart3.Init.OverSampling = UART_OVERSAMPLING_16;

i f (HAL_UART_Init (& huart3) != HAL_OK)

520 {

Error_Handler ();

522 }

524 }

526 /** Configure pins as

* Analog

528 * Input

* Output

530 * EVENT_OUT

* EXTI

532 */

static void MX_GPIO_Init(void)

534 {

536 GPIO_InitTypeDef GPIO_InitStruct;

538 /* GPIO Ports Clock Enable */

__HAL_RCC_GPIOC_CLK_ENABLE ();

540 __HAL_RCC_GPIOA_CLK_ENABLE ();

__HAL_RCC_GPIOB_CLK_ENABLE ();

542

/* Configure GPIO pin : B1_Pin */

117

544 GPIO_InitStruct.Pin = B1_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;

546 GPIO_InitStruct.Pull = GPIO_PULLDOWN;

HAL_GPIO_Init(B1_GPIO_Port , &GPIO_InitStruct);

548

/* Configure GPIO pin : LD2_Pin */

550 GPIO_InitStruct.Pin = LD2_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

552 GPIO_InitStruct.Pull = GPIO_PULLDOWN;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

554 HAL_GPIO_Init(LD2_GPIO_Port , &GPIO_InitStruct);

556 /* Configure GPIO pin : TransistorSwitch_Pin */

GPIO_InitStruct.Pin = TransistorSwitch_Pin;

558 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_PULLDOWN;

560 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;

HAL_GPIO_Init(TransistorSwitch_GPIO_Port , &GPIO_InitStruct);

562

/* Configure GPIO pin Output Level */

564 HAL_GPIO_WritePin(GPIOA , LD2_Pin|TransistorSwitch_Pin , GPIO_PIN_RESET);

566 /* EXTI interrupt init*/

HAL_NVIC_SetPriority(EXTI15_10_IRQn , 0, 0);

568 HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);

570 }

572 /* USER CODE BEGIN 4 */

void TestCaseOutput(void)

574 {

576 i f (NextSymbol == 85){ //data validation for the initial transmission

118

NextSymbol = TestArray[ArrInd]; // load the first transmission symbol

in the array

578 ArrInd ++;

}

580

i f (NextSymbol == 1){

582 HAL_GPIO_WritePin(TransistorSwitch_GPIO_Port , TransistorSwitch_Pin ,

GPIO_PIN_SET);

// HAL_GPIO_WritePin(LD2_GPIO_Port , LD2_Pin , GPIO_PIN_SET);

584 } e l se i f (NextSymbol == 0){

HAL_GPIO_WritePin(TransistorSwitch_GPIO_Port , TransistorSwitch_Pin ,

GPIO_PIN_RESET);

586 }

588 i f ((ArrInd + 1) <= (ArrLen))

{ // prevent ArrInd going out of bounds

590 CurrentSymbol = NextSymbol;

NextSymbol = TestArray[ArrInd];

592 ArrInd ++;

i f (ArrInd == ArrLen)

594 {

ArrInd = 0;

596 }

}

598 togglecheck = 0; // c lear f l ag

}

600

void ReadCustomData(void)

602 {

// HAL_GPIO_TogglePin(LD2_GPIO_Port , LD2_Pin);

604 // static int p=0; //,i = 0;

// uint8_t buffer [100]; // for inputting data

606 // uint8_t recbuff [1]; // for inputting data

119

uint8_t sendbuff [8];

608 //p = ADC_data [0];

// HAL_UART_Transmit (&huart2 , buffer , p, 50);

610 i f (ConvCplt == 1)

{

612 ConvData [0] = ADC_data [0];

for (i=0;i<8;i++)

614 {

i f (ConvData [0]%2 == 1)

616 {

sendbuff[i] = 1;

618 }

e l se

620 {

sendbuff[i] = 0;

622 }

ConvData [0] = ConvData [0]/2;

624 }

view1 = sendbuff [0];

626 view2 = sendbuff [1];

view3 = sendbuff [2];

628 view4 = sendbuff [3];

view5 = sendbuff [4];

630 view6 = sendbuff [5];

view7 = sendbuff [6];

632 view8 = sendbuff [7];

// p = spr int f ((char *)buffer , "Please enter in your own input:\n");

for entering data from putty/serial

634 // HAL_UART_Transmit (&huart2 , buffer , p,50);

// HAL_UART_Receive (&huart2 , recbuff , 2, 10000);

636 //p = 0;

// recbuff [0] = ;

638 // for (i=0;i<8;i++){

120

// sendbuff[i] = (recbuff [0] & (0x1 << i)); //this might parse the

recbuff (which is stored as a single element) into 8 bits

640 // sendbuff[i] = sendbuff[i] >> i; // perhaps the best way to get

ADC temp value to this state would be to create var ADCsendbuff [8]

and do the same as is done to the value from UART

// //p++;

642 // }

644 for (int k=0;k<7;k++)

{

646 // these two for loops create the start sequence of 1-1-0-0

for (int z = 0; z<1; z++) // changed to z<1 for try of 1-0

648 {

for (int j=0;j<ONES_REPEATED;j++)

650 { //Flag a start to the sequence

while(! togglecheck){}

652 HAL_GPIO_WritePin(TransistorSwitch_GPIO_Port ,

TransistorSwitch_Pin , GPIO_PIN_SET);

// HAL_GPIO_WritePin(LD2_GPIO_Port , LD2_Pin , GPIO_PIN_SET);

654 togglecheck = 0;

}

656 // HAL_GPIO_WritePin(TransistorSwitch_GPIO_Port ,

TransistorSwitch_Pin , GPIO_PIN_RESET);

}

658 for (int z = 0; z<1; z++)

{

660 for (int j=0;j<ZEROES_REPEATED;j++) // changed to z<1 for 1-0

{ //Flag a start to the sequence

662 while(! togglecheck){}

HAL_GPIO_WritePin(TransistorSwitch_GPIO_Port ,

TransistorSwitch_Pin , GPIO_PIN_RESET);

664 // HAL_GPIO_WritePin(LD2_GPIO_Port , LD2_Pin , GPIO_PIN_RESET

);

121

togglecheck = 0;

666 }

// HAL_GPIO_WritePin(TransistorSwitch_GPIO_Port ,

TransistorSwitch_Pin , GPIO_PIN_SET);

668 }

//this loop takes the 8 values in sendbuff and makes them into the

bitstream to be sent

670 i f (k%2 == 0 && k<5)

{

672 for (i=0;i<8;i++)

{

674 i f (sendbuff[i] == 1) //1 = 1-0

{

676 ManchesterOne ();

ManchesterZero ();

678 i f (k>4)

{

680 sendbuff[i] = 0;

}

682 }

e l se i f (sendbuff[i] == 0) //0 = 1-1-0

684 {

ManchesterOne ();

686 ManchesterOne ();

ManchesterZero ();

688 i f (k>4)

{

690 sendbuff[i] = 0;

}

692 }

}

694 }

e l se //nul l delimiter thing

122

696 {

for (i=0;i<8;i++)

698 {

ManchesterOne ();

700 ManchesterOne ();

ManchesterZero ();

702 // ManchesterZero ();

}

704 }

HAL_Delay (10);

706 }

ConvCplt = 0;

708 }

while(! togglecheck){ // set back to low

710 }

HAL_GPIO_WritePin(TransistorSwitch_GPIO_Port , TransistorSwitch_Pin ,

GPIO_PIN_RESET);

712 // HAL_GPIO_WritePin(LD2_GPIO_Port , LD2_Pin , GPIO_PIN_RESET);

togglecheck = 0;

714 }

716

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc1) // reads

temperature sensor

718 {

ADC_data [0] = HAL_ADC_GetValue(hadc1);

720 HAL_GPIO_TogglePin(LD2_GPIO_Port , LD2_Pin); //shows conversion

happening every 2 seconds

static int p1=0;

722 p1 = spr int f ((char *)buffer1 , "%d%c%d%c%d%c%c",ADC_data[0],0,ADC_data

[0],0,ADC_data[0],0,0); // remember sprintf returns a length

HAL_UART_Transmit (&huart2 , buffer1 , p1 ,50); // transmit data in buffer1

with length p1

123

724 ConvCplt = 1;

}

726 //void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) // IGNORE THIS

CALLBACK --UNUSED

//{

728 // // HAL_GPIO_TogglePin(LD2_GPIO_Port , LD2_Pin); //pin toggle to ensure

operation

//

730 // i f (LastValue <= 4095){

// i f ((LastValue < LOWEDGE) && (ADCConvertedValue > HIGHEDGE)){

732 // EdgeCount ++;

// i f (HAL_TIM_IC_Start_IT (&htim3 , TIM_CHANNEL_1) != HAL_OK)

734 // {

// Error_Handler ();

736 // }

// }

738 //

//// i f (CurrentSymbol == 1){

740 //// i f (EdgeCount >= HIGHCOUNT){

//// EdgeCount = 0;

742 //// togglecheck = 1;

//// }

744 //// } e l se i f (CurrentSymbol == 0){

//// i f (EdgeCount >= LOWCOUNT){

746 //// EdgeCount = 0;

//// togglecheck = 1;

748 //// }

//// }

750 // }

752 // LastValue = ADCConvertedValue; // store last state

//}

754

124

void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef* htim){ //this

function writes the togglecheck back to 1 for the while loop in main

756 //this means the uc must have the oscillator folding mechanism on pin D12

to generate the 1010101010 pattern

758 i f (htim ->Channel == HAL_TIM_ACTIVE_CHANNEL_1){ //check that the proper

timer channel interrupted

i f ((PolarityCheck == ’R’) && (CaptureIndex == 0)){ // i f the next edge

is rising and the first capture

760 CapValue0 = HAL_TIM_ReadCapturedValue(htim , TIM_CHANNEL_1);

CaptureIndex ++; // increase index variable

762 PolarityCheck = ’F’; // change capture polarity

} e l se i f (CaptureIndex == 1){

764 CapValue1 = HAL_TIM_ReadCapturedValue(htim , TIM_CHANNEL_1);

CaptureIndex ++;

766 PolarityCheck = ’R’;

} e l se i f (CaptureIndex == 2){

768 CapValue0 = HAL_TIM_ReadCapturedValue(htim , TIM_CHANNEL_1);

CaptureIndex --; // bring back to CapInd = 1

770 PolarityCheck = ’F’;// change polarity

togglecheck = 1; //now that ---__-- low pulse detected , begin next

transmission

772 }

i f (PolarityCheck == ’R’){ // change IC capture polarity

774 __HAL_TIM_SET_CAPTUREPOLARITY (&htim3 , TIM_CHANNEL_1 ,

TIM_INPUTCHANNELPOLARITY_RISING);

} e l se i f (PolarityCheck == ’F’){

776 __HAL_TIM_SET_CAPTUREPOLARITY (&htim3 , TIM_CHANNEL_1 ,

TIM_INPUTCHANNELPOLARITY_FALLING);

}

778 }

}

780

125

void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef* htim){

782 HAL_TIM_OC_Stop_IT(htim , TIM_CHANNEL_1);

i f (EntryModeFlag){

784 CaseNumber = 1;

EntryModeFlag = 0;

786 StartFlag = 1;

} e l se i f (! CaseNumber){

788 ArrInd = 0;

ArrLen = sizeof(TestArray) / sizeof(int);

790 // HAL_TIM_IC_Start_IT (&htim3 , TIM_CHANNEL_1);

StartFlag = 1;

792 }

}

794

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin){

796

798 // i f ((htim4.Instance ->CR1 && 0x0001) == 0){

// HAL_TIM_OC_Start_IT (&htim4 , TIM_CHANNEL_1);

800 // } e l se i f ((htim4.Instance ->CR1 && 0x0001) == 1){

// EntryModeFlag = 1;

802 // }

StartFlag = 1;

804 CaseNumber ++;

// i f (! CaseNumber){

806 // HAL_TIM_IC_Stop_IT (&htim3 , TIM_CHANNEL_1);

// CaseNumber ++;

808 // ArrInd = 0;

// } e l se {

810 // CaseNumber = 0;

// ArrLen = sizeof(TestArray) / sizeof(int);

812 // ArrInd = 0;

// HAL_TIM_IC_Start_IT (&htim3 , TIM_CHANNEL_1);

126

814 // }

}

816

void HAL_UART_RxCpltCallback(UART_HandleTypeDef * huart){

818

}

820 /* USER CODE END 4 */

822 /**

* @brief This function is executed in case of error occurrence.

824 * @param None

* @retval None

826 */

void Error_Handler(void)

828 {

/* USER CODE BEGIN Error_Handler */

830 /* User can add his own implementation to report the HAL error return

state */

while (1)

832 {

}

834 /* USER CODE END Error_Handler */

}

836

#ifdef USE_FULL_ASSERT

838

/**

840 * @brief Reports the name of the source file and the source l ine number

* where the assert_param error has occurred.

842 * @param file: pointer to the source file name

* @param l ine : assert_param error l ine source number

844 * @retval None

*/

127

846 void assert_failed(uint8_t* file , uint32_t l ine)

{

848 /* USER CODE BEGIN 6 */

/* User can add his own implementation to report the file name and l ine

number ,

850 ex: printf (" Wrong parameters value: file %s on line %d\r\n", file,

line) ∗/

/* USER CODE END 6 */

852

}

854

#endif

856

/**

858 * @}

*/

860

/**

862 * @}

*/

864

/************************ (C) COPYRIGHT STMicroelectronics ***** END OF

FILE ****/

128

Appendix D

Program for Decoder

/**

2 **

* File Name : main.c

4 * Description : Main program body

**

6 ** This notice applies to any and a l l portions of this file

* that are not between comment pairs USER CODE BEGIN and

8 * USER CODE END. Other portions of this file , whether

* inserted by the user or by software development tools

10 * are owned by their respective copyright owners.

*

12 * COPYRIGHT(c) 2017 STMicroelectronics

*

14 * Redistribution and use in source and binary forms , with or without

modification ,

* are permitted provided that the following conditions are met:

16 * 1. Redistributions of source code must retain the above copyright

notice ,

* this list of conditions and the following disclaimer.

18 * 2. Redistributions in binary form must reproduce the above copyright

notice ,

* this list of conditions and the following disclaimer in the

documentation

20 * and/or other materials provided with the distribution.

* 3. Neither the name of STMicroelectronics nor the names of its

contributors

129

22 * may be used to endorse or promote products derived from this

software

* without specific prior written permission.

24 *

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "

AS IS"

26 * AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO,

THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE

28 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE

LIABLE

* FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR

CONSEQUENTIAL

30 * DAMAGES (INCLUDING , BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR

* SERVICES; LOSS OF USE , DATA , OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER

32 * CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT

LIABILITY ,

* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE

34 * OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

36 **

*/

38 /* Includes

--*/

#include "main.h"

40 #include "stm32f4xx_hal.h"

42 /* USER CODE BEGIN Includes */

//# include "extern_declare.h"

130

44 #define ZEROPULSE 3400 // change this to change the threshold for 1 and 0

pulse length

#define SAMPLE_DELAY 2550

46 #define EIGHT_TWO_MSDELAY 8200

#define INPUT_RISE ’R’

48 #define INPUT_FALL ’F’

/* USER CODE END Includes */

50

/* Private variables

---*/

52 ADC_HandleTypeDef hadc1;

DMA_HandleTypeDef hdma_adc1;

54 DAC_HandleTypeDef hdac;

TIM_HandleTypeDef htim1;

56 TIM_HandleTypeDef htim2;

TIM_HandleTypeDef htim3;

58 TIM_HandleTypeDef htim4;

TIM_HandleTypeDef htim5;

60 TIM_HandleTypeDef htim6;

UART_HandleTypeDef huart2;

62

/* USER CODE BEGIN PV */

64 /* Private variables

---*/

uint32_t dbgflg = 0;

66 uint32_t dbg2 = 0;

68 int index_seq = 0;

int num = 0;

70

uint32_t IntegratorValue;

72 uint32_t ADCValue [1];

131

74 uint32_t OverSampleCounter = 0;

uint32_t SymbolCounter = 0;

76 uint32_t OnesCounter = 0;

uint32_t ZeroCounter = 0;

78 uint32_t ZeroDetected = 0;

uint32_t RUNONCEFLAG = 0;

80

uint32_t CurrentConvertedValue;

82 uint32_t PastConvertedValue;

84 uint32_t FallTimestamp;

uint32_t RiseTimestamp;

86 uint32_t TimeDiff;

uint8_t EdgeFlag;

88 uint32_t FilteredSignal;

uint32_t EdgeDetectFlag;

90

uint32_t difference = 0;

92

uint32_t ValueCheck;

94 uint32_t PulseArray [80];

uint32_t PulseIndex = 0;

96 uint32_t CountEntries = 0;

uint32_t SymbolIndex = 0;

98 uint32_t RecoveredSignal = 0;

uint32_t CollectFlag = 0;

100

char buffer [10];

102 int n;

104 uint32_t SerialModeFlag = 0;

uint32_t SymbolReceived;

106 uint32_t SequenceFlags;

132

uint32_t SequenceIndex;

108 uint32_t StartFlag = 0;

uint8_t SerialSequenceReceived [8]; // changed to 16 to accept Manchester

data

110 uint32_t SerialIndex = 8; // changed to 16 to accept the Manchester data

int start = 0; //used with new encoding scheme (1-0 and 1-1-0)

112 int databegin = 0; //to make sure the pulse measurement takes place on the

rising edge of the first data sequence

int arrayPos = 8; //used to store data bits in array

114

116 /* USER CODE END PV */

118 /* Private function prototypes

---*/

void SystemClock_Config(void);

120 static void MX_GPIO_Init(void);

static void MX_DMA_Init(void);

122 static void MX_ADC1_Init(void);

static void MX_TIM2_Init(void);

124 static void MX_USART2_UART_Init(void);

static void MX_DAC_Init(void);

126 static void MX_TIM3_Init(void);

static void MX_TIM6_Init(void);

128 static void MX_TIM4_Init(void);

static void MX_TIM5_Init(void);

130 static void MX_TIM1_Init(void);

132 void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);

134

/* USER CODE BEGIN PFP */

133

136 /* Private function prototypes

---*/

void ADCBasicMode(void);

138 uint8_t EdgeDetect(uint32_t past_val , uint32_t curr_val , uint32_t* f l ag);

uint32_t PulseSymbolValidation(uint32_t rise_time , uint32_t fall_time);

140 uint32_t StartSequenceCheck(uint32_t last_symbol , uint32_t received_ptr ,

uint32_t index);

void OutputSymbol (void);

142 void SequenceCheck(void);

uint32_t IntegratorAdjust(uint32_t signal , uint32_t integrator);

144 /* USER CODE END PFP */

146 /* USER CODE BEGIN 0 */

148 /* USER CODE END 0 */

150 int main(void)

{

152

/* USER CODE BEGIN 1 */

154

/* USER CODE END 1 */

156

/* MCU Configuration

--*/

158

/* Reset of a l l peripherals , Initializes the Flash interface and the

Systick. */

160 HAL_Init ();

162 /* USER CODE BEGIN Init */

164 /* USER CODE END Init */

134

166 /* Configure the system clock */

SystemClock_Config ();

168

/* USER CODE BEGIN SysInit */

170

/* USER CODE END SysInit */

172

/* Initialize a l l configured peripherals */

174 MX_GPIO_Init ();

MX_DMA_Init ();

176 MX_ADC1_Init ();

MX_TIM2_Init ();

178 MX_USART2_UART_Init ();

MX_DAC_Init ();

180 MX_TIM3_Init ();

MX_TIM6_Init ();

182 MX_TIM4_Init ();

MX_TIM5_Init ();

184 MX_TIM1_Init ();

186 /* USER CODE BEGIN 2 */

HAL_ADC_Start_DMA (&hadc1 , ADCValue , sizeof(uint16_t));

188 HAL_TIM_Base_Start (&htim2);

HAL_TIM_IC_Start_IT (&htim4 , TIM_CHANNEL_1);

190

/* USER CODE END 2 */

192

/* Infinite loop */

194 /* USER CODE BEGIN WHILE */

while (1)

196 {

/* USER CODE END WHILE */

135

198

/* USER CODE BEGIN 3 */

200

}

202 /* USER CODE END 3 */

204 }

206 /** System Clock Configuration

*/

208 void SystemClock_Config(void)

{

210

RCC_OscInitTypeDef RCC_OscInitStruct;

212 RCC_ClkInitTypeDef RCC_ClkInitStruct;

214 /** Configure the main internal regulator output voltage

*/

216 __HAL_RCC_PWR_CLK_ENABLE ();

218 __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

220 /** Initializes the CPU , AHB and APB busses clocks

*/

222 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;

RCC_OscInitStruct.HSIState = RCC_HSI_ON;

224 RCC_OscInitStruct.HSICalibrationValue = 16;

RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;

226 RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;

RCC_OscInitStruct.PLL.PLLM = 8;

228 RCC_OscInitStruct.PLL.PLLN = 170;

RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;

230 RCC_OscInitStruct.PLL.PLLQ = 2;

136

RCC_OscInitStruct.PLL.PLLR = 2;

232 i f (HAL_RCC_OscConfig (& RCC_OscInitStruct) != HAL_OK)

{

234 _Error_Handler(__FILE__ , __LINE__);

}

236

/** Activate the Over -Drive mode

238 */

i f (HAL_PWREx_EnableOverDrive () != HAL_OK)

240 {

_Error_Handler(__FILE__ , __LINE__);

242 }

244 /** Initializes the CPU , AHB and APB busses clocks

*/

246 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

248 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

250 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;

RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV4;

252

i f (HAL_RCC_ClockConfig (& RCC_ClkInitStruct , FLASH_LATENCY_5) != HAL_OK)

254 {

_Error_Handler(__FILE__ , __LINE__);

256 }

258 /** Configure the Systick interrupt time

*/

260 HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq () /1000);

262 /** Configure the Systick

*/

137

264 HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

266 /* SysTick_IRQn interrupt configuration */

HAL_NVIC_SetPriority(SysTick_IRQn , 0, 0);

268 }

270 /* ADC1 init function */

static void MX_ADC1_Init(void)

272 {

274 ADC_ChannelConfTypeDef sConfig;

276 /** Configure the global features of the ADC (Clock , Resolution , Data

Alignment and number of conversion)

*/

278 hadc1.Instance = ADC1;

hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;

280 hadc1.Init.Resolution = ADC_RESOLUTION_12B;

hadc1.Init.ScanConvMode = DISABLE;

282 hadc1.Init.ContinuousConvMode = DISABLE;

hadc1.Init.DiscontinuousConvMode = DISABLE;

284 hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;

hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T2_TRGO;

286 hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;

hadc1.Init.NbrOfConversion = 1;

288 hadc1.Init.DMAContinuousRequests = ENABLE;

hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;

290 i f (HAL_ADC_Init (&hadc1) != HAL_OK)

{

292 _Error_Handler(__FILE__ , __LINE__);

}

294

138

/** Configure for the selected ADC regular channel its corresponding

rank in the sequencer and its sample time.

296 */

sConfig.Channel = ADC_CHANNEL_0;

298 sConfig.Rank = 1;

sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;

300 i f (HAL_ADC_ConfigChannel (&hadc1 , &sConfig) != HAL_OK)

{

302 _Error_Handler(__FILE__ , __LINE__);

}

304

}

306

/* DAC init function */

308 static void MX_DAC_Init(void)

{

310

DAC_ChannelConfTypeDef sConfig;

312

/**DAC Initialization

314 */

hdac.Instance = DAC;

316 i f (HAL_DAC_Init (&hdac) != HAL_OK)

{

318 _Error_Handler(__FILE__ , __LINE__);

}

320

/**DAC channel OUT1 config

322 */

sConfig.DAC_Trigger = DAC_TRIGGER_NONE;

324 sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;

i f (HAL_DAC_ConfigChannel (&hdac , &sConfig , DAC_CHANNEL_1) != HAL_OK)

326 {

139

_Error_Handler(__FILE__ , __LINE__);

328 }

330 }

332 /* TIM1 init function */

static void MX_TIM1_Init(void)

334 {

336 TIM_ClockConfigTypeDef sClockSourceConfig;

TIM_MasterConfigTypeDef sMasterConfig;

338 TIM_OC_InitTypeDef sConfigOC;

TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig;

340

htim1.Instance = TIM1;

342 htim1.Init.Prescaler = 84;

htim1.Init.CounterMode = TIM_COUNTERMODE_UP;

344 htim1.Init.Period = 0xffff;

htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

346 htim1.Init.RepetitionCounter = 0;

i f (HAL_TIM_Base_Init (&htim1) != HAL_OK)

348 {

_Error_Handler(__FILE__ , __LINE__);

350 }

352 sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

i f (HAL_TIM_ConfigClockSource (&htim1 , &sClockSourceConfig) != HAL_OK)

354 {

_Error_Handler(__FILE__ , __LINE__);

356 }

358 i f (HAL_TIM_OC_Init (&htim1) != HAL_OK)

{

140

360 _Error_Handler(__FILE__ , __LINE__);

}

362

sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

364 sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

i f (HAL_TIMEx_MasterConfigSynchronization (&htim1 , &sMasterConfig) !=

HAL_OK)

366 {

_Error_Handler(__FILE__ , __LINE__);

368 }

370 sConfigOC.OCMode = TIM_OCMODE_TOGGLE;

sConfigOC.Pulse = 0;

372 sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;

374 sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;

376 sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;

i f (HAL_TIM_OC_ConfigChannel (&htim1 , &sConfigOC , TIM_CHANNEL_2) !=

HAL_OK)

378 {

_Error_Handler(__FILE__ , __LINE__);

380 }

382 sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;

sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;

384 sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;

sBreakDeadTimeConfig.DeadTime = 0;

386 sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;

sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;

388 sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;

i f (HAL_TIMEx_ConfigBreakDeadTime (&htim1 , &sBreakDeadTimeConfig) !=

HAL_OK)

141

390 {

_Error_Handler(__FILE__ , __LINE__);

392 }

394 }

396 /* TIM2 init function */

static void MX_TIM2_Init(void)

398 {

400 TIM_ClockConfigTypeDef sClockSourceConfig;

TIM_MasterConfigTypeDef sMasterConfig;

402 TIM_OC_InitTypeDef sConfigOC;

404 htim2.Instance = TIM2;

htim2.Init.Prescaler = 0;

406 htim2.Init.CounterMode = TIM_COUNTERMODE_UP;

htim2.Init.Period = 45;

408 htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

i f (HAL_TIM_Base_Init (&htim2) != HAL_OK)

410 {

_Error_Handler(__FILE__ , __LINE__);

412 }

414 sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

i f (HAL_TIM_ConfigClockSource (&htim2 , &sClockSourceConfig) != HAL_OK)

416 {

_Error_Handler(__FILE__ , __LINE__);

418 }

420 i f (HAL_TIM_OC_Init (&htim2) != HAL_OK)

{

422 _Error_Handler(__FILE__ , __LINE__);

142

}

424

sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;

426 sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;

i f (HAL_TIMEx_MasterConfigSynchronization (&htim2 , &sMasterConfig) !=

HAL_OK)

428 {

_Error_Handler(__FILE__ , __LINE__);

430 }

432 sConfigOC.OCMode = TIM_OCMODE_TIMING;

sConfigOC.Pulse = 0;

434 sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

436 i f (HAL_TIM_OC_ConfigChannel (&htim2 , &sConfigOC , TIM_CHANNEL_1) !=

HAL_OK)

{

438 _Error_Handler(__FILE__ , __LINE__);

}

440

sConfigOC.OCMode = TIM_OCMODE_TOGGLE;

442 i f (HAL_TIM_OC_ConfigChannel (&htim2 , &sConfigOC , TIM_CHANNEL_3) !=

HAL_OK)

{

444 _Error_Handler(__FILE__ , __LINE__);

}

446

HAL_TIM_MspPostInit (& htim2);

448

}

450

/* TIM3 init function */

452 static void MX_TIM3_Init(void)

143

{

454

TIM_ClockConfigTypeDef sClockSourceConfig;

456 TIM_MasterConfigTypeDef sMasterConfig;

TIM_OC_InitTypeDef sConfigOC;

458

htim3.Instance = TIM3;

460 htim3.Init.Prescaler = 0;

htim3.Init.CounterMode = TIM_COUNTERMODE_UP;

462 htim3.Init.Period = 0xffff;

htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

464 i f (HAL_TIM_Base_Init (&htim3) != HAL_OK)

{

466 _Error_Handler(__FILE__ , __LINE__);

}

468

sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

470 i f (HAL_TIM_ConfigClockSource (&htim3 , &sClockSourceConfig) != HAL_OK)

{

472 _Error_Handler(__FILE__ , __LINE__);

}

474

i f (HAL_TIM_OC_Init (&htim3) != HAL_OK)

476 {

_Error_Handler(__FILE__ , __LINE__);

478 }

480 sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

482 i f (HAL_TIMEx_MasterConfigSynchronization (&htim3 , &sMasterConfig) !=

HAL_OK)

{

484 _Error_Handler(__FILE__ , __LINE__);

144

}

486

sConfigOC.OCMode = TIM_OCMODE_TIMING;

488 sConfigOC.Pulse = 0;

sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

490 sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

i f (HAL_TIM_OC_ConfigChannel (&htim3 , &sConfigOC , TIM_CHANNEL_1) !=

HAL_OK)

492 {

_Error_Handler(__FILE__ , __LINE__);

494 }

496 }

498 /* TIM4 init function */

static void MX_TIM4_Init(void)

500 {

502 TIM_ClockConfigTypeDef sClockSourceConfig;

TIM_MasterConfigTypeDef sMasterConfig;

504 TIM_IC_InitTypeDef sConfigIC;

506 htim4.Instance = TIM4;

htim4.Init.Prescaler = 0;

508 htim4.Init.CounterMode = TIM_COUNTERMODE_UP;

htim4.Init.Period = 0xffff;

510 htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

i f (HAL_TIM_Base_Init (&htim4) != HAL_OK)

512 {

_Error_Handler(__FILE__ , __LINE__);

514 }

516 sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

145

i f (HAL_TIM_ConfigClockSource (&htim4 , &sClockSourceConfig) != HAL_OK)

518 {

_Error_Handler(__FILE__ , __LINE__);

520 }

522 i f (HAL_TIM_IC_Init (&htim4) != HAL_OK)

{

524 _Error_Handler(__FILE__ , __LINE__);

}

526

sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

528 sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

i f (HAL_TIMEx_MasterConfigSynchronization (&htim4 , &sMasterConfig) !=

HAL_OK)

530 {

_Error_Handler(__FILE__ , __LINE__);

532 }

534 sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;

sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;

536 sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;

sConfigIC.ICFilter = 0;

538 i f (HAL_TIM_IC_ConfigChannel (&htim4 , &sConfigIC , TIM_CHANNEL_1) !=

HAL_OK)

{

540 _Error_Handler(__FILE__ , __LINE__);

}

542

}

544

/* TIM5 init function */

546 static void MX_TIM5_Init(void)

{

146

548

TIM_ClockConfigTypeDef sClockSourceConfig;

550 TIM_MasterConfigTypeDef sMasterConfig;

TIM_OC_InitTypeDef sConfigOC;

552

htim5.Instance = TIM5;

554 htim5.Init.Prescaler = 0;

htim5.Init.CounterMode = TIM_COUNTERMODE_UP;

556 htim5.Init.Period = 4024;

htim5.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

558 i f (HAL_TIM_Base_Init (&htim5) != HAL_OK)

{

560 _Error_Handler(__FILE__ , __LINE__);

}

562

sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

564 i f (HAL_TIM_ConfigClockSource (&htim5 , &sClockSourceConfig) != HAL_OK)

{

566 _Error_Handler(__FILE__ , __LINE__);

}

568

i f (HAL_TIM_OC_Init (&htim5) != HAL_OK)

570 {

_Error_Handler(__FILE__ , __LINE__);

572 }

574 sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

576 i f (HAL_TIMEx_MasterConfigSynchronization (&htim5 , &sMasterConfig) !=

HAL_OK)

{

578 _Error_Handler(__FILE__ , __LINE__);

}

147

580

sConfigOC.OCMode = TIM_OCMODE_TIMING;

582 sConfigOC.Pulse = 0;

sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

584 sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

i f (HAL_TIM_OC_ConfigChannel (&htim5 , &sConfigOC , TIM_CHANNEL_2) !=

HAL_OK)

586 {

_Error_Handler(__FILE__ , __LINE__);

588 }

590 }

592 /* TIM6 init function */

static void MX_TIM6_Init(void)

594 {

596 TIM_MasterConfigTypeDef sMasterConfig;

598 htim6.Instance = TIM6;

htim6.Init.Prescaler = 0;

600 htim6.Init.CounterMode = TIM_COUNTERMODE_UP;

htim6.Init.Period = 56366;

602 i f (HAL_TIM_Base_Init (&htim6) != HAL_OK)

{

604 _Error_Handler(__FILE__ , __LINE__);

}

606

sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

608 sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

i f (HAL_TIMEx_MasterConfigSynchronization (&htim6 , &sMasterConfig) !=

HAL_OK)

610 {

148

_Error_Handler(__FILE__ , __LINE__);

612 }

614 }

616 /* USART2 init function */

static void MX_USART2_UART_Init(void)

618 {

620 huart2.Instance = USART2;

huart2.Init.BaudRate = 9600;

622 huart2.Init.WordLength = UART_WORDLENGTH_8B;

huart2.Init.StopBits = UART_STOPBITS_1;

624 huart2.Init.Parity = UART_PARITY_NONE;

huart2.Init.Mode = UART_MODE_TX_RX;

626 huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;

huart2.Init.OverSampling = UART_OVERSAMPLING_16;

628 i f (HAL_UART_Init (& huart2) != HAL_OK)

{

630 _Error_Handler(__FILE__ , __LINE__);

}

632

}

634

/**

636 * Enable DMA controller clock

*/

638 static void MX_DMA_Init(void)

{

640 /* DMA controller clock enable */

__HAL_RCC_DMA2_CLK_ENABLE ();

642

/* DMA interrupt init */

149

644 /* DMA2_Stream0_IRQn interrupt configuration */

HAL_NVIC_SetPriority(DMA2_Stream0_IRQn , 0, 0);

646 HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);

648 }

650 /** Configure pins as

* Analog

652 * Input

* Output

654 * EVENT_OUT

* EXTI

656 */

static void MX_GPIO_Init(void)

658 {

660 GPIO_InitTypeDef GPIO_InitStruct;

662 /* GPIO Ports Clock Enable */

__HAL_RCC_GPIOC_CLK_ENABLE ();

664 __HAL_RCC_GPIOA_CLK_ENABLE ();

__HAL_RCC_GPIOB_CLK_ENABLE ();

666

/* Configure GPIO pin Output Level */

668 HAL_GPIO_WritePin(GPIOA , LD2_Pin|DecodedOutput_Pin|DebugOutput_Pin ,

GPIO_PIN_RESET);

670 /* Configure GPIO pin Output Level */

HAL_GPIO_WritePin(FeedOut_GPIO_Port , FeedOut_Pin , GPIO_PIN_RESET);

672

/* Configure GPIO pin Output Level */

674 HAL_GPIO_WritePin(TimerOut_GPIO_Port , TimerOut_Pin , GPIO_PIN_RESET);

150

676 /* Configure GPIO pin : B1_Pin */

GPIO_InitStruct.Pin = B1_Pin;

678 GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;

GPIO_InitStruct.Pull = GPIO_NOPULL;

680 HAL_GPIO_Init(B1_GPIO_Port , &GPIO_InitStruct);

682 /* Configure GPIO pin : LD2_Pin */

GPIO_InitStruct.Pin = LD2_Pin;

684 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_NOPULL;

686 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

HAL_GPIO_Init(LD2_GPIO_Port , &GPIO_InitStruct);

688

/* Configure GPIO pin : FeedOut_Pin */

690 GPIO_InitStruct.Pin = FeedOut_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

692 GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;

694 HAL_GPIO_Init(FeedOut_GPIO_Port , &GPIO_InitStruct);

696 /* Configure GPIO pins : DecodedOutput_Pin DebugOutput_Pin */

GPIO_InitStruct.Pin = DecodedOutput_Pin|DebugOutput_Pin;

698 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_NOPULL;

700 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;

HAL_GPIO_Init(GPIOA , &GPIO_InitStruct);

702

/* Configure GPIO pin : TimerOut_Pin */

704 GPIO_InitStruct.Pin = TimerOut_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

706 GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

708 HAL_GPIO_Init(TimerOut_GPIO_Port , &GPIO_InitStruct);

151

710 /* EXTI interrupt init*/

HAL_NVIC_SetPriority(EXTI15_10_IRQn , 0, 0);

712 HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);

714 }

716 /* USER CODE BEGIN 4 */

void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)

718 {

i f (htim ->Instance == TIM4)

720 {

switch(EdgeFlag)

722 {

case INPUT_RISE:

724 RiseTimestamp = __HAL_TIM_GET_COMPARE (&htim4 , TIM_CHANNEL_1);

TIM_RESET_CAPTUREPOLARITY (&htim4 , TIM_CHANNEL_1);

726 TIM_SET_CAPTUREPOLARITY (&htim4 , TIM_CHANNEL_1 ,

TIM_ICPOLARITY_FALLING);

break;

728 case INPUT_FALL:

FallTimestamp = __HAL_TIM_GET_COMPARE (&htim4 , TIM_CHANNEL_1);

730 TIM_RESET_CAPTUREPOLARITY (&htim4 , TIM_CHANNEL_1);

TIM_SET_CAPTUREPOLARITY (&htim4 , TIM_CHANNEL_1 ,

TIM_ICPOLARITY_RISING);

732 FilteredSignal = PulseSymbolValidation(RiseTimestamp ,

FallTimestamp);

// i f (SerialModeFlag == 0){

734 switch(FilteredSignal)

{

736 case 0:

i f (ZeroCounter > 40) //weirdness , just reset everything

738 {

152

start = 0;

740 ZeroCounter = 0;

OnesCounter = 0;

742 arrayPos = 8;

}

744 i f (start == 0)

{

746 HAL_GPIO_WritePin(DecodedOutput_GPIO_Port , DecodedOutput_Pin

, GPIO_PIN_RESET);

}

748 e l se

{

750 // HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_SET);

}

752 // i f (OnesCounter != 0)

// {

754 // HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_RESET);

// }

756 // i f (start == 0)

// {

758 // // HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_RESET);

// }

760 // ZeroCounter ++;

i f ((OnesCounter <= 16) && (start == 0)) //this is a case where

some noise might have gotten through

762 {

OnesCounter= 0;

764 //// // HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_RESET); //show normal/test zero

}

153

766 i f ((OnesCounter > 5) && (ZeroCounter > 3) && (start == 0)) //this

is when the ones and zeros are both high enough to signify the

start sequence

{ // counts up

how many ONE pulses from matched f i l t e r and ZERO pulses after

to determine start sequence

768 // // i f ((htim5.Instance ->CR1 && TIM_CR1_CEN) == 0)

// altered to accept 1-0 start

sequence

// // HAL_TIM_Base_Start_IT (& htim5);

770 // // RUNONCEFLAG ++;

start = 1;

772 OnesCounter = 0; //keep the Ones count of the start

sequence from messing with the first data bit

// OnesCounter = 0;

774 // ZeroCounter = 0;

// // HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_SET);

776 }

// e l se i f ((start == 1) && (databegin == 1)) // i f data is

being received -- this should be entered when the first return to zero

happens.

778 // {

// i f (arrayPos > 0) //data value received is between 1 and

8

780 // {

i f (ZeroCounter == 0 && start == 1)

782 {

784 i f (start == 1 && arrayPos > 1)

{

786 // HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_SET);

154

i f (OnesCounter > 24)

788 {

HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_RESET); // received 1-1-0,

go low

790 SerialSequenceReceived[arrayPos - 1] = 0;

}

792 e l se

{

794 HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_SET); // received 1-0, go

high

SerialSequenceReceived[arrayPos - 1] = 1;

796 }

OnesCounter = 0;

798 ZeroCounter ++;

arrayPos --;

800 }

e l se i f (start == 1 && arrayPos == 1)

802 {

i f (OnesCounter > 24)

804 {

// HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_RESET); // received 1-1-0,

go low

806 SerialSequenceReceived[arrayPos - 1] = 0;

}

808 e l se

{

810 // HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_SET); // received 1-0, go

high

SerialSequenceReceived[arrayPos - 1] = 1;

155

812 }

arrayPos = 8;

814 start = 0;

OnesCounter = 0;

816 HAL_GPIO_WritePin(DecodedOutput_GPIO_Port , DecodedOutput_Pin ,

GPIO_PIN_SET); // little blip to show transmission

OutputSymbol (); // after 8 bits received , send to COM port

818 ZeroCounter ++;

}

820 e l se i f (start == 0)

{

822 // HAL_GPIO_WritePin(DecodedOutput_GPIO_Port , DecodedOutput_Pin

, GPIO_PIN_RESET);

ZeroCounter ++;

824 }

e l se

826 {

ZeroCounter ++;

828 }

}

830 e l se

{

832 ZeroCounter ++;

}

834

// OnesCounter = 0;

836 // ZeroCounter = 0;

// arrayPos --; // prepare for next data bit

838 // }

// e l se //end of 8 bits of data

840 // {

// OutputSymbol (); // finished receiving 8 bits , output

the data

156

842 // databegin = 0; // reset begin and start to wait for

start sequence again

// start = 0;

844 // arrayPos = 8; // reset array position to be ready for

next set of data

// OnesCounter = 0;

846 // ZeroCounter = 0;

// // HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_RESET);

848 // }

// }

850 break;

852

case 1:

854 i f (OnesCounter > 12 && start == 1)

{

856 // HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_SET);

}

858 e l se

{

860 // HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_RESET);

}

862

// i f (start == 1 && databegin == 0) //this should be the

first "1" after the start sequence is verified

864 // {

// databegin = 1; //show that data is starting to be

received

866 // OnesCounter = 0; // reset to make sure of an accurate

count

157

// ZeroCounter = 0;

868 // }

// e l se

870 // {

// i f (start == 0)

872 // {

// // HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_RESET); //show the high of the start

sequence or a test case

874 // }

// e l se

876 // {

// // HAL_GPIO_WritePin(DecodedOutput_GPIO_Port ,

DecodedOutput_Pin , GPIO_PIN_RESET); //go low when getting a high data

pulse

878 // }

OnesCounter ++;

880 ZeroCounter = 0;

// }

882 break;

// }

884 }

break;

886 }

}

888 }

890 void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc){

892 CurrentConvertedValue = ADCValue [0];

894 EdgeFlag = EdgeDetect(PastConvertedValue , CurrentConvertedValue , &

EdgeDetectFlag);

158

i f (EdgeDetectFlag == 1){

896 EdgeDetectFlag = 0;

switch(EdgeFlag){

898 case INPUT_RISE:

HAL_GPIO_WritePin(FeedOut_GPIO_Port , FeedOut_Pin , GPIO_PIN_SET);

// detected rising edge , flipped to RESET for inverter effect

900 break;

case INPUT_FALL:

902 HAL_GPIO_WritePin(FeedOut_GPIO_Port , FeedOut_Pin , GPIO_PIN_RESET);

//see above

break;

904 }

}

906 PastConvertedValue = CurrentConvertedValue;

}

908

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin){

910 // SerialModeFlag = 1;

// HAL_TIM_IC_Stop_IT (&htim4 , TIM_CHANNEL_1);

912 // HAL_TIM_Base_Stop_IT (& htim6);

// __HAL_TIM_SET_COUNTER (&htim4 , 0);

914 // __HAL_TIM_SET_COUNTER (&htim6 , 0);

// RiseTimestamp = 0;

916 // FallTimestamp = 0;

// TIM_RESET_CAPTUREPOLARITY (&htim4 , TIM_CHANNEL_1);

918 // TIM_SET_CAPTUREPOLARITY (&htim4 , TIM_CHANNEL_1 , TIM_ICPOLARITY_RISING);

// HAL_TIM_IC_Start_IT (&htim4 , TIM_CHANNEL_1);

920 }

922

// uncomment the period elapsed callback function i f you want to do

midpoint sampling

924

159

//void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim){

926 // i f (htim ->Instance == TIM5){

928 // i f (OverSampleCounter < 17){ // change this in accordance with

conditional statement below

// OverSampleCounter ++;

930 // } e l se {

// SymbolCounter ++;

932 // OverSampleCounter = 0;

// }

934 //

// i f (OverSampleCounter == 16){ // CHANGE THIS TO CHANGE SAMPLING

LOCATION

936 //

// // What does this do? Shows output

938 // HAL_GPIO_TogglePin(DebugOutput_GPIO_Port , DebugOutput_Pin);

940 // SerialSequenceReceived[SerialIndex -1] = FilteredSignal;

// SerialIndex --;

942 // i f (SerialIndex == 0){

// SerialIndex = 8; // changed to 16 for Manchester

944 // StartFlag = 0;

// OnesCounter = 0;

946 // ZeroCounter = 0;

// SymbolCounter = 0;

948 // OverSampleCounter = 0;

//

950 // // What does this do? STOPS the midpoint timer

// while(HAL_TIM_Base_Stop_IT (&htim5) != HAL_OK); //stop the

midpoint timer after 8 samples

952 //

// OutputSymbol ();

954 //

160

// for (int i = 0; i<8; i++){ // changed to 16 for manchester

956 // SerialSequenceReceived[i] = 0;

// }

958 //

// }

960 // }

// }

962 //}

964

966 void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim){

968 }

970 /* EdgeDetect

* Looks at 2 sequential values to determine whether a valid

972 * edge transistion has occured.

*

974 * Outputs R or F to show whether edge was fall or rise ,

* and sets a 1 using a pointer to a f l ag .

976 */

uint8_t EdgeDetect(uint32_t past_val , uint32_t curr_val , uint32_t* f l ag){

978 uint8_t edge = 0;

980 i f ((past_val >= MIDPOINT) && (curr_val <= MIDPOINT)){

edge = INPUT_FALL; // falling edge

982 * f l ag = 1;

} e l se i f ((past_val <= MIDPOINT) && (curr_val >= MIDPOINT)){

984 edge = INPUT_RISE; // Rising edge

* f l ag = 1;

986 }

161

988 return edge;

}

990

/* PulseSymbolValidation

992 * Calculates a pulse length , then determines whether the length was

* within a valid threshold to be a valid transmission.

994 *

* Returns a f l ag to indicate a symbol was recieved , and writes a 1

996 * (only valid symbol pulses denote) to an address.

*/

998 uint32_t PulseSymbolValidation(uint32_t rise_time , uint32_t fall_time){

uint32_t f l ag = 0;

1000 //____ ----_____

i f (rise_time < fall_time){ // difference calculation

1002 difference = fall_time - rise_time;

} e l se i f (rise_time > fall_time){

1004 difference = ((0 xffff - rise_time) + fall_time);

}

1006 i f (difference <= ZEROPULSE){ // determining symbol

f l ag = 1;

1008 }

return f l ag ;

1010 }

1012

void OutputSymbol (void){

1014 /* OutputSymbol

* This function toggles an output pin to indicate whether a

1016 * 1 or 0 has been received.

* It also writes 1 or 0 to the UART (seen through USB COM Port

1018 */

int p=0;

1020 uint8_t buffer [100];

162

uint8_t compressedsequence = 0;

1022

// p = spr int f ((char *)buffer , "TESTING\r\n");

1024 // HAL_UART_Transmit (&huart2 , buffer , p,50);

1026 for (int i = 0; i<8; i++){

compressedsequence += SerialSequenceReceived[i] << (7-i);

1028 }

i f (compressedsequence == 0){ // i f a nul l received

1030 p = spr int f ((char *)buffer , "%c", compressedsequence);

dbg2 = HAL_UART_Transmit (&huart2 , buffer , p,50);

1032 } e l se { // otherwise it’s temperature data

p = spr int f ((char *)buffer , "%d", compressedsequence);

1034 dbg2 = HAL_UART_Transmit (&huart2 , buffer , p,50);

}

1036

// HAL_TIM_IC_Start_IT (&htim4 ,TIM_CHANNEL_1);

1038 }

1040 /* USER CODE END 4 */

1042 /**

* @brief This function is executed in case of error occurrence.

1044 * @param None

* @retval None

1046 */

void _Error_Handler(char * file , int l ine)

1048 {

/* USER CODE BEGIN Error_Handler_Debug */

1050 /* User can add his own implementation to report the HAL error return

state */

while (1)

1052 {

163

}

1054 /* USER CODE END Error_Handler_Debug */

}

1056

#ifdef USE_FULL_ASSERT

1058

/**

1060 * @brief Reports the name of the source file and the source l ine number

* where the assert_param error has occurred.

1062 * @param file: pointer to the source file name

* @param l ine : assert_param error l ine source number

1064 * @retval None

*/

1066 void assert_failed(uint8_t* file , uint32_t l ine)

{

1068 /* USER CODE BEGIN 6 */

/* User can add his own implementation to report the file name and l ine

number ,

1070 ex: printf (" Wrong parameters value: file %s on line %d\r\n", file,

line) ∗/

/* USER CODE END 6 */

1072

}

1074

#endif

1076

/**

1078 * @}

*/

1080

/**

1082 * @}

*/

164

1084

/************************ (C) COPYRIGHT STMicroelectronics ***** END OF

FILE ****/

165

