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Abstract 

 

 

 Proteins are essential parts of organisms and participate in virtually every process within 

the cells. The function of a protein is closely related to its structure than to its amino acid sequence. 

Hence, the study of the protein’s structure can give us valuable information about its functions. 

Due to the complex and expensive nature of the experimental techniques, computational methods 

are often the only possibility to obtain structural information of a protein. Major advancements in 

the field of protein structure prediction have made it possible to generate a large number of models 

for a given protein in a short amount of time. Hence, to assess the accuracy of any computational 

protein structure prediction method, evaluation of the similarity between the predicted protein 

models and the experimentally determined native structure is one of the most important tasks. 

Existing approaches in model quality assessment suffer from two key challenges: (1) difficulty in 

efficiently ranking and selecting optimal models from a large number of protein structures (2) lack 

of a similarity measure that takes into consideration the side-chain orientation along with main 

chain Carbon alpha (Cα) and Side-Chain (SC) atoms for comparing two protein structures.  

This thesis attempts to address these challenges by (1) developing a rapid protein decoy clustering 

algorithm, called clustQ, that employs a multi-model pairwise comparison approach for model 

quality assessment, based on weighted internal distance comparisons and (2) developing a 

Superposition-based Protein Embedded Cα-SC (SPECS) score, that integrates the high accuracy 

version of the Global Distance Test (GDT-HA) metric, and side-chain distance and orientation in 

a singular framework for protein structure comparison. We show that our methods outperform 

many traditional and state-of-the-art model quality assessment approaches and similarity measures 

in terms of accuracy, speed and robustness. In particular, the clustQ method was ranked 6th among 

the model quality estimators in the 13th edition of the Critical Assessment of Techniques for Protein 
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Structure Prediction.  All of these methods are freely available to the scientific community in the 

form of software and web-servers. 
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CHAPTER 1: INTRODUCTION 

 

 In this chapter, we will give an overview of the protein model quality assessment problem 

that we will consider in the thesis. We also describe some of the issues faced in the existing 

approaches for protein model quality assessment and protein structure comparison that we will try 

to address and give an outline for the rest of this thesis. 

 

1.1 Protein Model Quality Assessment Problem 

1.1.1. Overview of Proteins 

Proteins are large, complex molecules that are responsible for doing most of the work in the cells. 

They are required for the structure, function, and regulation of the body’s tissues and organs [1]. 

They are made up of hundreds or thousands of smaller units called amino acids, which are attached 

to one another in long chains. There are 20 different types of amino acids that can be combined to 

make a protein. The sequence of amino acids determines each protein’s unique 3-D structure and 

its specific function. 

 

1.1.2. Protein Structure Prediction 

The function of a protein is closely related to its structure and its study can give us valuable 

information about its function. Hence, protein structure prediction is one of the most important 

problems in bioinformatics, drug design and in the design of novel enzymes. Protein structure 

prediction is the inference of the three-dimensional structure of a protein from its amino acid 

sequence.  

 Massive amounts of protein sequence data are being produced using the next generation 

sequencing technologies and this has led to a major gap between the available sequences and the 
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experimentally determined structures. The existing experimental techniques for protein structure 

prediction like X-ray crystallography or NMR spectroscopy are both time-consuming as well as 

expensive. Hence, there is an increasing emphasis on the development of computational protein 

structure prediction methods, that are much cheaper and faster than the experimental methods.  

 

1.1.3. Protein Structure Comparison 

The advancements in computational protein structure prediction methods have led to a growth in 

the number of structures being determined. Structural comparison methods are thus highly 

desirable for comparing three-dimensional structures of proteins. A large number of similarity 

measures have been developed to compare the models with their natives. The aim of these 

measures is to quantify the correctness of the computationally determined models when compared 

to the actual native structures.  

 There are two types of similarity measures for protein structure comparison, namely 

superposition-based and superposition free similarity measures. Most of the existing similarity 

measures like GDT-TS, GDT-HA [2] and TMScore [3] are superposition based i.e. they are based 

on the structural alignment of the proteins. In these measures, an optimal alignment of the protein 

structures which results in the lowest RMSD is obtained and then the similarity is measured using 

the distances between the aligned residues. Some of the challenges of superposition-based 

similarity measures are time-consuming alignment process, not so efficient in case of Free 

Modeling targets, strongly influenced by domain motions and do not assess the accuracy of local 

atomic details in the model. Whereas superposition free similarity measures like LDDT [4] and 

CAD [5] doesn’t need any structural alignment and hence are less time consuming and are well 

suited to assess local model quality. 
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1.1.4 Model Quality Assessment of Protein Models 

The existing computational methods for protein structure prediction have made it possible to 

generate a large number of models in a short period of time. Therefore, it becomes critical to be 

able to judge and rank these models based on their quality. This has led to the development of 

Model Quality Assessment Programs (MQAPs), for evaluating the correctness of predicted protein 

models. 

 In general, there are two different kinds of protein quality assessment (QA) methods: 

single-model quality assessment like ProQ2 [6], QAcon [7] and consensus/multi-model quality 

assessment like clustQ [8], MUFOLD-WQA [9]. The multi-model QA methods rank and select 

models using pairwise comparison between all the models in a pool, predicted by different protein 

structure prediction methods. The single-model QA methods determine protein model quality 

based on a single model itself, without using the information of other models.  

 

1.2 Existing Approaches and Challenges in Protein Model Quality Assessment and Protein 

Structure Comparison  

The ability to reliably estimate the quality of computationally predicted protein models without 

comparing them with the native structure, is called the Quality Assessment Problem. The 

tremendous rise in the computational power has made it possible to produce tens of thousands of 

models from a single sequence in a day. The availability of thousands of models for a given protein, 

has made the ability of ranking and selecting optimal models, a challenging task for the MQAPs. 

The most popular approach is to employ a clustering based multi-model QA program to estimate 

quality of the models by using pairwise comparisons between the candidate structures available in 

the pool of predicted models. However, a major challenge faced by the clustering based multi-
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model QA programs is that they can be time consuming, which can hinder their ability to be applied 

to large datasets containing thousands of predicted models. 

Most of the existing model-native similarity scores use by default either the main chain Cα 

or side-chain atoms for quantitating structural similarity. However, protein side-chains play a 

major role in defining its biologically relevant conformation. Therefore, quantifying the side chain 

similarities or differences can improve the sensitivities of model-native similarity metrics. In most 

of the cases, the similarity measures like RMSD, GDT-TS, GDT-HA and TMScore only reflect 

the confirmation of protein backbone and not the rotameric states of the side chains. There are 

some similarity metrics like Global Distance Calculation for Side-Chains (GDC-SC) [13] which 

determines the correctness of the side chain positioning. Although, the GDC-SC measure 

quantifies the positioning of the side-chain, it only takes into consideration the distances between 

the side-chain atoms and not their orientation with respect to the backbone. Therefore, there is a 

lack of a similarity measure, which considers the main chain Cα atoms, SC atoms as well as their 

orientation for comparing two protein structures. Development of methods capable of tacking these 

two problems is, therefore, a crucial step forward for solving protein model quality assessment 

problem and more generally, towards the improvement of computational protein structure 

prediction. 

 

1.3 Thesis Outline and Contributions 

The remainder of this thesis is structured as follows. In chapter 2, we begin by attempting to 

address the first challenge associated with protein model quality assessment – the need for an 

efficient protein decoy clustering algorithm. We propose a rapid protein decoy clustering 

algorithm, called clustQ, that employs a multi-model pairwise comparison approach for model 
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quality assessment, based on weighted internal distance comparisons. The contents of Chapter 2 

are mostly from the manuscript published as: 

 Alapati, R., Bhattacharya, D. “clustQ: Efficient Protein Decoy Clustering Using 

Superposition-free Weighted Internal Distance Comparisons”, In Proceedings of the 2018 ACM 

International Conference on Bioinformatics, Computational Biology, and Health Informatics, 

pp. 307-314., ACM, 2018. 

 

In chapter 3, we discuss the performance of clustQ in CASP13 Quality Assessment category. As 

per the official results released by CASP13 assessors, clustQ was ranked 6th among the model 

accuracy estimators from all over the world. The contents of Chapter 3 are mostly from the official 

results released by the assessors of CASP13. 

 

In chapter 4, we turn our attention to address the second challenge associated with protein structure 

comparison – the need for a similarity measure that takes into consideration the main chain Cα and 

SC atoms along with their orientation for comparing two protein structures. We propose a 

Superposition-based Protein Embedded Cα-SC score, that integrates the high accuracy version of 

the Global Distance Test (GDT-HA) metric, and side-chain distance and orientation in a singular 

framework for protein structure comparison. The contents of Chapter 4 are mostly from the 

manuscript submitted as: 

 Alapati, R., Bhattacharya, D. “SPECS: Integration of side-chain orientation and global 

distance-based measures for improved evaluation of protein structural models”, Proteins: 

Structure, Function, and Bioinformatics, 2019. 
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Finally, in Appendix A, we provide a brief overview of the freely available software and web-

services developed based on the aforementioned methods for the scientific community. These 

freely available software and web servers would allow researchers from around the world to apply 

these methods to their own data and these fully automated and computationally inexpensive 

systems provide a suitable framework for high-throughput proteomics and protein engineering 

projects. 

 

To summarize, the contributions of this thesis are two-fold: (1) attempting to address two key 

issues in existing approaches of protein model quality assessment and protein structure comparison 

– lack of an efficient protein decoy clustering method and lack of a similarity measure that takes 

into consideration both the Cα and SC atoms along with their orientation for comparing two protein 

structures and (2) providing the scientific community with access to fast, reliable and freely 

available software and web-services to facilitate biomedical research. 
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CHAPTER 2:  

 

clustQ: Efficient Protein Decoy Clustering Using Superposition-free Weighted Internal 

Distance Comparisons 

 

2.1 ABSTRACT 

Structure of a protein largely determines its functional properties. Hence, the knowledge of the 

protein’s 3D structure is an important aspect in determining solutions to fundamental biological 

problems. Structure prediction algorithms generally employ clustering algorithm to select the 

optimal model for a target from a large number of predicted confirmations (a.k.a. decoy). Despite 

significant advancement in clustering-based optimal decoy selection methods, these approaches 

often cannot deliver high performance in terms of the time taken to cluster large number of protein 

structures owing to the computational cost associated with pairwise structural superpositions. 

Here, we propose a superposition-free approach to protein decoy clustering, called clustQ, based 

on weighted internal distance comparisons. Experimental results suggest that the novel weighing 

scheme is helpful in both reproducing the decoy-native similarity score and estimating pairwise 

clustering based predicted quality score in a computationally efficient manner. clustQ attains 

performance comparable to the state-of-the-art multi-model decoy quality estimation methods 

participating in the latest Critical Assessment of protein Structure Prediction (CASP) experiments 

irrespective of target difficulty. Moreover, clustQ predicted score offers a unique way to reliably 

estimate target difficulty without the knowledge of the experimental structure.  

clustQ is freely available at http://watson.cse.eng.auburn.edu/clustQ/. 

 

 

 

http://watson.cse.eng.auburn.edu/clustQ/
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2.2 INTRODUCTION 

Knowledge of the three-dimensional (3D) structure of a protein molecule provides crucial insights 

for addressing fundamental problems in biomedical research. Due to the rapid progress in 

sequencing technologies, we already have far more sequences than experimental structures, and 

this gap is likely to grow with the development of next generation sequencing. Hence, there is an 

increasing emphasis on the development of computational protein structure prediction methods in 

bioinformatics and computational biology that are much cheaper and faster than the experimental 

methods. To assess the accuracy of any computational protein structure prediction method, 

evaluation of the similarity between the predicted protein models and the experimentally 

determined native structure is one of the most important tasks. 

Global Distance Test (GDT-TS) [2], a structural superposition-based approach, is a widely used 

measure of evaluating model-native similarity and has been a major assessment metric over the 

last several Critical Assessment of protein Structure Prediction (CASP) experiments [10–13], 

particularly for evaluating high-accuracy Template Based Modeling (TBM) category. However, 

in case of moderate to low accuracy Free Modeling (FM) targets, GDT-TS often does not correlate 

well with the true model-native similarity that is otherwise apparent through visual inspection. 

Hence, the assessors had to rely on alternative ways by including visual assessments to determine 

the best model [15]. To overcome the shortcomings of GDT-TS, an alternative metric named Q-

score was developed in CASP8 [13] to directly compare the internal distances of a model to its 

experimentally determined native structure without requiring any structural superposition. The 

superposition-free nature of Q-score makes the comparison computationally efficient. 

In the absence of the native structure, reliably estimating quality of computationally predicted 

protein models without comparing them with the native structure, the so-called Quality 
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Assessment (QA) problem is another key challenge in protein structure prediction. One way to 

tackle this problem is to employ clustering based multi-model QA approach to estimate quality of 

the models by using pairwise comparisons between the candidate structures available in the pool 

of predicted models (a.k.a. decoy). Intuitively, structural superposition based multi-model QA 

approaches [16–22] can be time consuming, hindering the ability to be applied to large datasets 

containing thousands of decoys. 

Here, we first develop an extended version of the original Qscore, called WQ-score, based on 

weighted internal distance comparisons at four different sequence separations in a superposition-

free way. When benchmarked on popular Rosetta [23], I-TASSER [24] and Modeller [25] decoy 

datasets, WQ-score shows high correlations with most existing model-native similarity metrics 

[26-28], particularly GDT-TS score [2]. Second, we employ WQ-score based multi-model 

pairwise comparisons for model quality estimation to develop a rapid protein decoy clustering 

algorithm called clustQ. Unlike, ModFOLDclustQ [26] which is a multi-model pairwise 

comparison approach employing the original Q-score for model comparisons, clustQ uses WQ-

score that captures both short and long range intra-residue interactions weighted by sequence 

separation. When benchmarked on CASP 10, 11 and 12 targets, clustQ and the state of the art of 

the model-native similarity measures show similar correlation with superposition-based metrics 

such as GDT-TS and GDT-HA [2], with the added advantage of clustQ being computationally 

much more efficient, particularly when there are large number of decoys. Third, we propose a way 

to reliably estimate whether a given protein target belongs to the TBM or FM category directly 

from the result of clustQ without the knowledge of the native structure. Finally, clustQ, delivers 

comparable performance with the state-of-the-art multi-model QA methods [16–18, 27, 28] 
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participating in CASP12 [10] as well as model selection approach used in the popular Zhang [30] 

and QUARK [31] pipelines during CASP10 [12] and CASP11 [11]. 

 

2.3 METHODS 

2.3.1 WQ-score 

Most of the existing model-native similarity metrics, such as GDT-TS, are based on structural 

alignment i.e. superposition of proteins to perform protein structure comparison. However, GDT-

TS performs poorly in case of moderate to low accuracy FM targets [15]. To overcome the 

limitation, Q-score was introduced during CASP8 as an alternative to accurately highlight the 

successes and failures of the FM predictions. Qscore estimates the structural similarity between 

two given protein structures based on comparing their internal distances, thereby overcoming the 

need for structural alignment. Originally, Q-score is calculated based on the weighted internal 

distance comparisons at two different sequence separations namely, Qshort and Qlong. The internal 

distances are calculated between the Cα atom of each residue i and all N-1 other Cα atoms in the 

protein, obtaining a matrix {rij}. The matrix for the target is designated as {rij
0}. For each pair of 

residues (i-j > 0), Qij is calculated as in (1). 

𝑄𝑖𝑗 = exp⁡[−(𝑟𝑖𝑗 −⁡𝑟𝑖𝑗
0)2]     (1) 

Thus, for a very good prediction, [(rij – rij
0)] = 0, and Qij = 1. For a very poor prediction, [(rij –rij

0)] 

>> 0, and Qij = 0 [7]. Qshort measure of a given prediction is calculated by averaging the Qij, when 

the best pair and 20, 40, 60, 80 and 100 percent of the ranked pairs that satisfy |i-j| <= 20 were 

included. Qlong was similarly calculated on the lines of Qshort for all the pairs that satisfy |i-j| > 20. 

Qshort and Qlong indicate the quality of the secondary and tertiary structure of the prediction. WQ-

score extends the concept of internal distance comparisons at two different sequence separations 
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in Q-score to four different sequence separations. It is calculated based on the weighted internal 

distance comparisons at four different sequence separations namely Qnarrow, Qshort, Qmedium and 

Qlong. Qnarrow, Qshort, Qmedium and Qlong are obtained by averaging the Qij for each pair of residues i, 

j that satisfy |i-j| < 6, 6 ≤ |i-j| < 12, 12 ≤ |i-j| < 24 and 24 ≤ |i-j| respectively. The weights are assigned 

as 1, 2, 4 and 8 for Qnarrow, Qshort, Qmedium and Qlong respectively. Higher weights are assigned to 

residues far away from each other in the sequence because such long-range interactions carry more 

information about the overall protein fold than local shortrange interactions. The WQ-score is 

calculated as in (2). 

𝑊𝑄 − 𝑆𝑐𝑜𝑟𝑒 = ⁡
1.0∗𝑄𝑛𝑎𝑟𝑟𝑜𝑤+2.0∗𝑄𝑠ℎ𝑜𝑟𝑡+⁡4.0∗𝑄𝑚𝑒𝑑𝑖𝑢𝑚+8.0∗𝑄𝑙𝑜𝑛𝑔

15.0
  (2) 

 

2.3.2 clustQ 

clustQ is a rapid protein decoy clustering algorithm that employs a WQ-score based multi-model 

pairwise comparison approach for model quality assessment. In clustQ method, we carry out all 

against all comparisons of server models in order to determine predicted model WQ-scores for 

individual models. clustQ assigns a score to individual decoy in the pool, on the basis of the 

average pairwise WQ-score of a decoy when compared against all other decoys. Consequently, 

clustQ scores range between 0 and 1. 
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2.4 RESULTS AND DISCUSSION 

2.4.1 Comparison between WQ-score and other model-native similarity metrics 

We compared WQ-score on the popular Modeller [25], I-TASSER [24] and Rosetta [23] decoy 

datasets, to determine its correlation with the existing popular model-native similarity metrics. The 

Modeller decoy set consists of 20 protein targets, each consisting of 300 decoys of 51 to 568 

residues in length. The I-TASSER decoy set consists of 56 non-homologous small proteins, each 

consisting of 300-500 decoys of 47 to 118 residues in length. The Rosetta decoy set consists of 32 

proteins, each consisting of 100 decoys of 32 to 85 residues in length. The average Pearson and 

Spearman correlation coefficients in the Figure 2.1, indicate high correlations between WQ-score 

and most of the existing model-native similarity metrics. 

 

When benchmarked on I-TASSER and Rosetta datasets, WQ-score exhibits high correlation with 

all the model-native similarity metrics namely TMScore [3], MaxSub [29], GDT-HA [2], LDDT 

[4] especially GDT-TS [15] except CAD [5]. Whereas when benchmarked on Modeller decoy 

dataset, interestingly WQ-score exhibits high correlation with both superposition-based and 

superposition-free model-native similarity measures [2, 26]. Due to high correlation with GDT-

TS and similarity with Q-Score, WQ-score can be used as a reliable measure for model-native 

similarity in case of both high-accuracy TBM Targets and moderate to low accuracy FM Targets. 
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Figure 2.1. Comparisons between WQ-score (horizontal axis) and existing model-native 

similarity metrics (vertical axis) using Modeller, I-TASSER and Rosetta models. Average 

Pearson (P) and Spearman (S) correlation coefficients are shown for each plot. 
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2.4.2 Performance of clustQ in CASP10, 11, 12 datasets 

 To test the effectiveness of clustQ in scoring and ranking decoys, we benchmarked it on CASP 

10 [12], 11 [11] and 12 [10] Stage 1 and Stage 2 targets. The CASP 10 Stage 2 decoy set consists 

of 113 protein targets, each consisting of 150 decoys. The CASP 11 Stage 2 decoy set consists of 

98 protein targets, each consisting of 150 decoys. The CASP 12 Stage 2 decoy set consists of 86 

protein targets, each consisting of 150 decoys. We carried out all against all comparisons of server 

models i.e. pairwise clustering in order to determine predicted model similarity scores like 

TMScore, GDT-TS, GDT-HA, LDDT and CAD Score for individual models. We compared clustQ 

and the existing model-native similarity metrics with the True GDT-TS and GDT-HA scores.  

 

Figure 2.2 shows that the clustQ score and the state of the art model-native similarity measures 

show similar correlation with superposition-based metrics such as GDT-TS and GDT-HA, even 

though the nature of the scores is different. GDT-HA is a more stringent version of GDT-TS score. 

Like GDT-TS, GDT-HA is also derived from 4 independent superposition-based scores, but their 

threshold distances of 0.5, 1, 2 and 4 Å are half the size of those used for GDT-TS. Notably, this 

is true for both Pearson’s correlation coefficient, which depends on the linear relationship between 

the two scores and also on the Spearman’s rank correlation, which indicates the extent to which 

ranking by True GDT-TS or GDT-HA agrees with ranking by clustQ score without the assumption 

of the linear relationship between the two scores. Surprisingly, the correlation between the True 

GDT-TS and CAD is very low, even though LDDT, a superposition free model-native similarity 

metric like CAD, is highly correlated with True GDT-TS. The low correlation of CAD Score with 

True GDT-TS and GDT-HA can be attributed to the way CAD score treats the missing residues in 
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the model. Both the failure to include the residue into the model and the failure to predict all of its 

contacts are treated identically by the CAD Score.  

 

Furthermore, we compared the performance of clustQ with the existing model-native similarity 

metrics, in terms of time taken to rank the decoys. We tracked the average time taken by clustQ 

and other model-native similarity metrics to compare a decoy with all the other decoys in the 

protein target. We observed that in case of CASP10, 11, 12 Stage 1 datasets, on an average clustQ 

is 4.8 times faster than TMScore, 264 times faster than LDDT and 173 times faster than CAD 

Score. The performance difference becomes even more pronounced in case of CASP10, 11, 12 

Stage 2 datasets (as shown in Figure 2.3), on an average clustQ is 5.2 times faster than TMScore, 

291 times faster than LDDT and 168 times faster than CAD Score. Hence, clustQ is 

computationally much more efficient when compared to others, particularly when there are large 

number of decoys. This premise holds true in case of 16,950 decoys in CASP10 dataset, 14,700 

decoys in CASP11 dataset and 7,500 decoys in CASP12. Collectively, the results demonstrate that 

clustQ is rapid offering orders of magnitude speedup compared to TMScore, CAD and lDDT. 
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Figure 2.2. Comparisons between True GDT-TS Score (vertical axis) and clustQ as well as 

pairwise clustering using other similarity metrics (horizontal axis) in CASP 10, 11 and 12 

Stage 2. Average Pearson (P) and Spearman (S) correlation coefficients are shown for each 

plot. 
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Figure 2.3. Comparisons between clustQ and pairwise clustering using other similarity 

metrics in terms of time taken in CASP 10, 11 and 12 Stage 2 datasets. 
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2.4.3 Predicting target difficulty using clustQ  

We further investigated the possibility of applying clustQ in classifying a given target as TBM or 

FM without the knowledge of its native structure, using CASP 10, 11 and 12 Stage 2 targets. When 

the best predicted clustQ score for a given target is greater than a specified threshold value, it is 

predicted as TBM. To determine the threshold value for target classification, we varied the 

threshold from 0.3 to 0.6 in step size of 0.1. For each threshold value, we calculated the True 

Positives (TP), True Negatives (TN), False Positives (FP), False Negatives (FN), Precision, Recall 

and Accuracy. A classification is considered as TP if both CASP and clustQ term it as “EASY”, 

as TN if both CASP and clustQ term it as “HARD”, as FN if CASP terms it as “EASY” and clustQ 

terms it as “HARD” and as FP if CASP terms it as “HARD” and clustQ terms it as “EASY”.  

 

Precision, Recall and Accuracy are calculated as in (3).  

Precision = TP / (TP + FP)  

Recall = TP / (TP + FN)        (3)  

Accuracy = (TP + TN) / (TP + FP + TN + FN)  

 

As shown in Figure 2.4, threshold values greater than 0.4 result in a precision of 1. Increasing 

threshold values results in lower recall and accuracies. We therefore, predict that a target to be 

TBM if clustQ score is greater than 0.4, otherwise FM. The results demonstrate that the top clustQ 

score is a reliable estimate for target difficulty without the knowledge of native structure. 
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Figure 2.4. Effect of threshold on clustQ score in target difficulty classification in CASP 10, 

11 and 12 datasets. 
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2.4.4 Comparison between clustQ and top multi model QA methods participating in CASP12  

We benchmarked the performance of clustQ against top performing multi-model QA approaches 

participating in CASP12 [10] namely, Meshi_con server, Pcomb_domain, ModFoldclust2 and 

Pcons [16–18, 27, 28]. Pcomb_domain, ModFoldclust2 and Pcons are consensus methods that are 

highly accurate in identifying good models over bad models and in reliably predicting regions of 

models. The quasi-single methods from the ModFOLD 6 family being the next best choice [27]. 

Meshi_con server is less dependent on the dataset composition than that of other clustering 

methods [27]. 

 

We selected the top model ranked by each of these QA methods and calculated its True GDT-TS 

and GDT-HA scores [2] by comparing each decoy against its native. Then we calculated the 

average True GDT-TS and GDT-HA scores [2] of top models ranked by each of these QA methods 

over all the targets in CASP 12 Stage 2 and compared them against the average True GDT-TS and 

GDT-HA scores of top models ranked by clustQ. 

 

Table 2.1 shows that clustQ delivers a comparable performance with the state of the art QA 

methods and is also better than Meshi_con and Pcons QA methods. The performance of clustQ is 

consistent across both the GDT-TS and GDT-HA scores [2]. 
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Table 2.1: Comparison between clustQ and state of art QA Methods in CASP 12. Average 

GDT-TS and GDT-HA comparison between clustQ and state of the art QA Methods 

participating in CASP 12 

 

QA Method Average GDT-TS Average GDT-HA 

Pcomb_domain 0.5098725 0.3652375 

ModFoldclust2 0.4968475 0.3572975 

clustQ 0.4761375 0.3395075 

Meshi_con 0.332503571 0.239453571 

Pcons 0.3304925 0.232665 

 

 

2.4.5 Performance of clustQ in Zhang and QUARK CASP decoy dataset  

We evaluated the performance of clustQ in Zhang [30] and QUARK [31] decoy datasets and 

compared it directly with the model selection approach used in Zhang [30] and QUARK [31] 

pipelines. The Zhang and QUARK decoy set for single domain targets in CASP 10 consists of 43 

protein targets, each consisting of 145-825 decoys of 67 to 540 residues in length. The Zhang and 

QUARK decoy set for single domain targets in CASP 11 consists of 64 protein targets, each 

consisting of 170-1550 decoys of 44 to 525 residues in length.  

 

We selected the decoy pool ranked by the Zhang and QUARK pipelines during CASP 10 and 11. 

Then, we applied clustQ to the rank the decoys in Zhang and QUARK datasets. We selected the 

top models ranked by each of the Zhang and QUARK pipelines and calculated its True GDT-TS 

and GDT-HA scores by comparing it against its native. We also calculated the True GDT-TS and 

GDT-HA score of top model selected by clustQ, by comparing it against its native. Then, we 
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calculated the average of the True GDT-TS and GDT-HA scores of top models selected by clustQ, 

Zhang and QUARK pipelines over all the protein targets. We performed the above experiment by 

dividing the targets based on their difficulty. Finally, we compared the average True GDT-TS and 

GDT-HA scores of top models selected by Zhang and QUARK pipelines with that of the top 

models selected by clustQ to determine the performance of clustQ as a model selection approach.  

 

As shown in Table 2.2, for “Trivial”, “Easy”, “Hard”, and “Very Hard” target categories, clustQ 

attaints similar performance when compared to the QA methods employed in Zhang and QUARK 

pipelines, while outperforming them in few cases. To investigate the statistical significance of the 

performance difference between clustQ versus Zhang and QUARK. We performed “one sample 

T-test” against Zhang and QUARK versus clustQ with the null hypothesis that the GDT-TS score 

difference between the top model selected by clustQ and Zhang or QUARK is zero. As shown in 

Table 2.3, clustQ is statistically indistinguishable compared to Zhang and QUARK at 95% 

confidence level, warranting the comparable performance. 
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Table 2.2: Comparison between clustQ and state of art QA Methods used in Zhang, Quark 

Pipelines. Average GDT-TS and GDT-HA comparison between clustQ and state-of-the-art 

QA Methods used in Zhang, Quark pipelines for Easy, Trivial, Hard and Very Hard Targets  

 

 

 

 

EASY Targets 

 

 

CASP10 

QA Method GDT-TS GDT-HA 

clustQ 0.6737 0.4897 

Zhang 0.6736 0.4903 

QUARK 0.6728 0.4901 

 

CASP11 

clustQ 0.5420 0.3951 

Zhang 0.5451 0.3940 

QUARK 0.5363 0.3874 

 

 

 

Trivial Targets 

 

 

CASP10 

clustQ 0.7851  0.5932  

Zhang 0.7889  0.5989  

QUARK 0.7846  0.5908  

 

CASP11 

clustQ 0.7618  0.5795  

Zhang 0.7523  0.5687  

QUARK 0.7494  0.5653  

 

 

 

Hard Targets 

 

 

CASP10 

clustQ 0.4059  0.2723  

Zhang 0.3963  0.2585  

QUARK 0.3869  0.2480  

 

CASP11 

clustQ 0.4659  0.3042  

Zhang 0.4651  0.3130  

QUARK 0.5044  0.3409  
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Very Hard 

Targets 

 

 

CASP10 

clustQ 0.3371 0.1954 

Zhang 0.3584 0.2036 

QUARK 0.3200 0.1832 

 

CASP11 

clustQ 0.2769 0.1633 

Zhang 0.2724 0.1653 

QUARK 0.2644 0.1606 

 

 

Table 2.3: Statistical significance test. One Sample t-test for CASP 10 and 11 Zhang and 

QUARK Targets. 

 

 

 

Zhang 

CASP round t-value 

 

p-value 

 

CASP10 -0.36643 0.7159 

CASP11 1.1417 0.2586 

 

QUARK 

CASP10 0.70359  0.4856  

CASP11 0.19091  0.8493  

 

 

2.5 CONCLUSION 

We developed a decoy clustering method clustQ that employs a WQ-score based pairwise 

comparison approach to rank the decoys. WQ-score is calculated based on weighted internal 

distance comparisons at four different sequence separations. Higher weights are assigned to 

residues far away from each other in the sequence because such long-range interactions carry more 

information about the overall protein fold than local short-range interactions. The experimental 

results suggest that WQ-score is highly correlated with the existing model-native similarity 
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metrics, especially the GDT-TS with the added advantage of clustQ being computationally much 

more efficient, particularly when there are a large number of decoys. clustQ delivers comparable 

performance with the state of the art QA methods participating in the recent CASP experiments 

(CASP10, 11, 12) in addition to being comparable to the decoy selection method employed in the 

popular Zhang and QUARK pipelines in CASP10 and CASP11. Moreover, clustQ offers a unique 

way to reliably estimate difficulty of a target without knowledge of the native. Collectively, these 

results demonstrate that clustQ is an important addition to protein decoy clustering in particular 

and protein structure modeling in general. 
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CHAPTER 3:  

 

clustQ’s Assessment in CASP13 

 

In this chapter, we present an evaluation of the performance of clustQ in CASP13 quality 

assessment experiment. 

 

3.1 INTRODUCTION 

Critical Assessment of protein Structure Prediction (CASP) [10-13], is a community-wide, 

worldwide experiment for protein structure prediction that takes place once every two years. It 

provides researchers with an opportunity to objectively test their structure prediction methods and 

delivers an independent assessment of the state of the art methods in protein structure modeling to 

the research community. The main aim of CASP is to help advance the methods of identifying 

protein three-dimensional structure from its amino acid sequence.  

Model Quality Assessment Programs (MQAPs) [6-9] are developed in order to rank and select the 

computationally predicted protein models. The increase in the number of protein structure 

prediction methods, has necessitated the need for MQAPs that can rapidly assign a quality 

accuracy to each computationally predicted model. This quality accuracy can then be used to 

estimate the accuracy of a specific model and to rank many alternative models to select the most 

accurate model. MQAPs can be divided into two categories based on the information they use. 

Consensus based methods use pairwise comparison between all the models in a pool, to estimate the 

quality of the models, whereas the single-model QA methods use various features calculated from 

the structure.  

Estimation of Model Accuracy (EMA, a.k.a. QA) category in CASP, evaluates the ability of 

MQAPs in providing useful accuracy estimates for the overall accuracy of models. 
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3.2 Performance of clustQ in CASP13 

The consensus based QA method, clustQ [8], was first blindly tested in CASP13 QA experiment, 

2018 with the group name Bhattacharya-ClustQ (Server group 014). Here, we perform a 

comparative analysis of clustQ against all the groups participating in CASP13 QA category. A 

total of fifty  methods participated in CASP13 QA experiment including both seventeen consensus 

based and thirty three single-model QA methods. All the fifty QA methods were given three days 

per target to rank the models of sixty four targets. 

In the recent community-wide experiment, CASP13, clustQ was ranked sixth among the forty 

eight QA groups as per the official assessment of CASP13 experiment. In Table 3.1, we summarize 

the rankings of the forty eight groups participating in CASP13 based on the average  difference in 

accuracy between the models predicted to be the best and the actual best according to the GDT_TS 

score [2]. For each group, the differences are averaged over all predicted targets for which at least 

one structural model had a GDT_TS score above 40. 

 

Table 3.1: Rankings of CASP13 QA methods based on the Average difference in accuracy 

between the models predicted to be the best and the actual best according to the GDT_TS 

score over best150 dataset 

 

Rank Group Number of 

Targets 

Avg.GDT_TS 

1 MULTICOM_CLUSTER 64 5.162 

2 UOSHAN 63 5.555 

3 MUFoldQA_M 64 6.264 

4 MULTICOM-CONSTRUCT 64 6.865 

5 Davis-EMAconsensus 64 6.888 

6 Bhattacharya-ClustQ 64 7.071 

7 ModFOLDclust2 64 7.178 

8 ModFOLD7_rank 64 7.525 

9 MUfoldQA_T 64 7.536 

10 RaptorX-DeepQA 60 7.595 

11 SBROD-plus 60 7.875 
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12 ProQ3D 64 8.259 

13 SBROD-server 60 8.345 

14 SBROD 57 8.394 

15 CPClab 60 8.639 

16 Wallner 63 8.657 

17 ProQ3 64 8.843 

18 Grudinin 57 8.963 

19 ProQ3D-lDDT 64 9.132 

20 Pcomb 64 9.136 

21 MESHI 62 9.21 

22 MESHI-enrich-server 64 9.311 

23 FaeNNz 64 9.355 

24 Pcons 64 9.495 

25 ProQ3D-TM 64 9.986 

26 ModFOLD7 64 10.589 

27 VoroMQA-B 64 10.742 

28 MUFold_server 64 10.782 

29 Bhattacharya-SingQ 64 10.799 

30 FALCON-QA 59 10.821 

31 ProQ3D-CAD 64 10.951 

32 ModFOLD7_cor 64 10.989 

33 MULTICOM-NOVEL 64 11.016 

34 ProQ4 64 11.323 

35 VoroMQA-A 64 11.506 

36 MASS1 64 11.749 

37 Bhattacharya-Server 64 11.99 

38 LamoureuxLab 62 12.383 

39 Kiharalab 64 12.527 

40 MASS2 64 12.984 

41 ProQ2 63 13.018 

42 SASHAN 63 13.33 

43 3DCNN 46 13.566 

44 MUfoldQA_S2 64 14.123 

45 PLU-AngularQA 64 14.765 

46 Jagodzinski-Cao-QA 64 17.585 

47 MESHI-server 60 20.882 

48 PLU-TopQA 64 21.443 
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From Table 3.1, it can be noted that clustQ shows a relatively good performance when compared 

to all the single-model QA methods. To further analyze the performance of clustQ on individual 

targets, we calculated the Pearson and Spearman correlations between the scores assigned by 

clustQ, GDT-TS and GDT-HA. In the Figure 3.1, we present the per-target Pearson and Spearman  

correlation for clustQ with respect to GDT-TS and GDT-HA for 34 targets whose natives could 

be identified as of writing this chapter. It shows that clustQ is well correlated with both GDT-TS 

and GDT-HA (average per-target Pearson correlation ~ 0.88 and Spearman correlation ~ 0.87).  

 

 

Figure 3.1. Performance of multi-model QA method clustQ for 34 CASP13 targets. (A) Per-

target Pearson correlation with respect to GDT-TS and GDT-HA, (B) Per-target Spearman 

correlation with respect to GDT-TS and GDT-HA. 
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3.3 CONCLUSION 

In this chapter, we systematically analyze the performance of a rapid protein decoy clustering 

algorithm, clustQ in a completely blind mode on the targets issued for model accuracy estimation 

in recently concluded CASP13 experiment. When compared with the state-of-the-art QA methods 

participating in CASP13, clustQ is observed to perform more consistently than the all single-model 

QA methods and most of the consensus based QA methods. 
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CHAPTER 4:  

 

SPECS: Integration of side-chain orientation and global distance-based measures for 

improved evaluation of protein structural models 

 

4.1 ABSTRACT 

Protein structure prediction is an important yet highly challenging open problem in structural 

bioinformatics. Significant advancements in the field of protein structure prediction, have 

necessitated the need for accurate, reliable and efficient protein structure comparison methods. 

Despite its apparent simplicity, evaluation of protein models against its native structure is quite 

complex and non-trivial in nature. A number of protein structure similarity measures proposed till 

date, either consider the backbone Cα atoms or the Side-Chain atoms for comparing a model 

against its native. However, the true nativity of a protein model can only be determined based on 

both the backbone and side-chain conformations. Here, we propose a superposition-based 

evaluation measure, called SPECS, which determines the similarity of two protein structures by 

comparing both the backbone and side-chain atoms. Experimental results show that SPECS is a 

reliable measure for model-native similarity in case of both regular domain models and high 

accuracy refined models. In addition to high correlations with TMScore and GDT-HA score, 

SPECS also demonstrates a strong affinity in promoting the physical realism of structural models.  

When benchmarked on a special monomer dataset, SPECS is found to be a reliable model-native 

similarity measure for side-chain conformations. Moreover, our study illustrates that the usage of 

both the backbone and the side-chain conformations improves protein structure comparison. 

SPECS web server is freely available at http://watson.cse.eng.auburn.edu/SPECS/. 

 

 

 

 

http://watson.cse.eng.auburn.edu/SPECS/
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4.2 INTRODUCTION 

The biological function of a protein is determined from its three dimensional structure. The 

knowledge of the three dimensional structure of a protein helps us in understanding its function, 

and also helps us in modifying and controlling it. However, from an experimental standpoint 

determining the three dimensional structure of a protein is expensive, time consuming and requires 

high levels of expertise. Due to these challenges and the rate at which new protein sequences are 

being discovered, it is practically impossible to solve the structures of all the proteins 

experimentally [44]. The high demand for protein structures has given rise to the development of 

a large number of protein structure prediction methods, which computationally predict the three 

dimensional structures of proteins. These computationally predicted three dimensional protein 

structures are used in many areas of biomedicine, ranging from approximate family assignments 

to precise drug screening. 

The cheaper and the computationally efficient protein structure prediction methods predict a large 

number of protein models for a given protein. This increase in the number of computationally 

predicted models has placed the protein structure comparison methods, the only way to determine 

the accuracy of the predicted models, at an unprecedented critical position [45]. The protein 

structure comparison methods assess the protein models against their experimentally determined 

native structure and helps us in identifying the predicted models which are useful for biomedical 

research. Despite its complex and non-trivial nature, many protein structure evaluation measures 

have been developed over the last few years and till date it still continues to be an important yet 

challenging line of research [46]. 

Most of the existing model-native similarity measures either superposition-based or superposition 

free are distance-based measures [2-4, 47, 48], which determine the level of similarity between 
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two protein models based on the distance between either the backbone Cα atoms or the side-chain 

atoms. Root Mean Square Deviation (RMSD) [49] is the most commonly used superposition-based 

model-native similarity score.  It is the measure of the average distance between the backbone Cα 

atoms of the superimposed proteins. The lower the RMSD, the better the model is in comparison 

to the native. RMSD between two sets of superimposed atomic coordinates t and u, is defined as 

follows: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑀𝑆𝐷(𝑡, 𝑢) = ⁡√
1

𝑛
∑((𝑡𝑖𝑥 −⁡𝑢𝑖𝑥)2 + (𝑡𝑖𝑦 −⁡𝑢𝑖𝑦)

2
+ (𝑡𝑖𝑧 −⁡𝑢𝑖𝑧)2)⁡

𝑛

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

where n is the total number of superimposed atoms. 

One major drawback of the RMSD, is that it is heavily dependent on the quality of the 

superposition of the protein structures and is also sensitive to the outlier regions created by poor 

modeling of the individual loop regions in the structures [46].  

Global Distance Test (GDT) [2], a structural superposition-based approach and a widely used 

assessment metric in Critical Assessment of protein Structure Prediction (CASP) [50, 51], is a 

more accurate measurement than RMSD [46]. It is defined as the largest set of amino acid residue’s 

backbone Cα atoms in the model falling within a defined distance cutoff of their position in the 

native. Here, multiple superpositions of two protein structures, each including the largest set of 

superimposable atoms are considered and the maximal residue set for each cutoff is selected, 

followed by averaging over several predetermined cutoffs. For GDT-TS [2] measure, 

predetermined cutoffs of 1, 2 , 4 and 8 Å are considered for calculation of the maximal residue set. 

The high accuracy version of the GDT measure, GDT-HA [48], uses smaller cutoffs of 0.5, 1, 2 

and 4 Å for the calculation of the maximal residue set. The range of GDT-TS and GDT-HA 

measures are from 0 to 1, higher the score, the better the model is in comparison to the native.  
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All the above mentioned standard model-native similarity measures only consider the backbone 

Cα atoms for determining the structural similarity. However, it is also known that the protein side-

chains play a major role in protein-protein interactions and are closely related to their biological 

function. Therefore, quantifying the side-chain variations can improve our understanding of the 

side-chain conformations, which in turn will help improve the quality of protein structure 

prediction methods [52]. Global distance calculation for sidechains (GDC-SC) [53] is a measure, 

which determines the correctness of the side-chain positioning. GDC-SC metric is similar to GDT-

TS, while backbone Cα atoms are used in GDT-TS calculation, a single reference atom from each 

sidechain is used in GDC-SC calculation. Like GDT-TS, GDC-SC will first determine the optimal 

superposition between the backbone Cα atoms of the model and native, and then the distance 

between the side-chain reference atoms in model and native is calculated. Finally, the distances 

are assigned to ten different bins ranging from 0.5 Å to 5.0 Å with a step size of 0.5 Å. GDC-SC 

measure is calculated as follows: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐺𝐷𝐶 − 𝑠𝑐 = ⁡
200⁡∑ (𝑘 − 𝑖 + 1)𝑃𝑖

10
𝑖=1

𝑘(𝑘 + 1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

where k = 10 is the number of bins and Pi is the fraction of reference atoms assigned to bin i. The 

range of GDC-SC measure is from 0 to 100, higher the score, lower the distance between the atoms 

in the model and native. 

Although, the GDC-SC measure quantifies the positioning of the side-chain, it only takes into 

consideration the distances between the side-chain atoms and not their orientation with the 

backbone atoms. Orientation also plays a major role in the positioning of the side-chain and the 

backbone Cα atoms and the structure of a protein model is only accurate, when the orientation 

between the backbone and side-chain atoms in the model matches with that in the native [52]. 

Hence, model-native similarity measures which takes into consideration the backbone Cα atoms, 
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the side-chain atoms and their orientations are the right choice for determining the true nativity of 

a computationally predicted protein model. 

Here, we develop a superposition-based model-native similarity measure, Superposition-based 

Protein Embedded CA SC (SPECS) score, which extends the concept of GDT-HA score, GDC-

SC score and also quantifies the backbone side-chain orientations in model and native structures. 

Firstly, SPECS is highly correlated with both backbone Cα based and side-chain based model-

native similarity metrics. When benchmarked on the CASP 12, 13 regular domain targets and the 

CASP 12, 13 high accuracy refinement targets [54], SPECS shows high correlations with both the 

backbone Cα based and side-chain based model-native similarity metrics [2-4, 48, 53, 55], 

particularly the GDT-TS, GDT-HA and GDC-SC scores. Secondly, SPECS is fairly sensitive to 

structural features such as steric clashes or deviations in residue geometries [56]. When compared 

with GDT-HA score and TMScore using MolProbity [57] as a structure quality evaluation suite, 

SPECS is more consistent with the physical realism of the models in the 3D Robot set [58]. 

Thirdly, SPECS also acts as a reliable evaluation metric, for determining the correctness of the 

side-chain positioning. When benchmarked on the monomer proteins side-chain positions 

predicted by three most widely used side-chain conformation prediction programs [59], SPECS is 

moderately correlated with their angular RMSDs, when all the backbone Cα based scores are 

perfect.  
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4.3 MATERIALS AND METHODS  

4.3.1 Parameterization of united-residue model of superimposed protein structures 

We use the united-residue representation in Figure 1, to parameterize the backbone Cα atoms and 

the side-chain reference atoms in a protein structure. The protein structure consists of a sequence 

of Cα atoms and the side-chain reference atoms which are attached to the Cα atoms. All the atoms 

in the protein structure are connected using virtual bonds which are denoted by a thick black line 

in Figure 4.1. The Cα position of the residue i in the protein is represented by Cαi and the 

corresponding side-chain reference atom attached to Cαi is represented by SCi. 

 

 

Figure 4.1. Parameterization of united-residue model of a protein structure. United-residue 

model parameterized using virtual lengths for backbone and side-chain. 
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Now, we use our united-residue model (Figure 4.2) [60, 61], to represent the superimposed protein 

structures, in which the C-alpha (Cα)⁡and side-chain reference atoms (SC) are linked by virtual 

bonds. A side-chain reference atom is obtained by computing the centroid of all the atoms in the 

side-chain cloud. We parameterize the backbone Cα position of the residue i in the model as Cαi 

and the residue j in the native as Cαj. The corresponding side-chain reference atom i in the model 

is represented as SCi and the reference atom j in the native is represented as SCj. The distance 

between the side-chain reference atoms is denoted using rij and r⃗ij is a vector which determines the 

relative position of the side-chain reference atoms and also links them. ûij
(1), ûij

(2) are the unit 

vectors which represent the direction of the Cα and SC virtual bonds in the model and native, 

respectively. θij
(1) is the virtual planar angle between ûij

(1) and r⃗ij in the model and θij
(2) is the virtual 

planar angle between ûij
(2) and r⃗ij in the native. Φij is the virtual angle of counterclockwise rotation 

between ûij
(2) and r⃗ij in the plane defined by ûij

(1) and r⃗ij. 

 

Figure 4.2. Parameterization of united-residue model of superimposed protein structures. 

United-residue model parameterized using virtual lengths and virtual angle pairs for 

backbone and side-chain. 
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4.3.2 SPECS : Superposition-based Protein Embedded CA SC score 

SPECS extends the concept of GDT-HA score [48], GDC-SC score [53] and also quantifies the 

backbone side-chain orientations in the model and native structures. It consists of two distance 

based components which quantify the positioning of the CA and SC atoms in the model and native 

and three angle based components which quantify the orientations of backbone and side-chain in 

the model and native. By quantifying both the backbone and side-chain conformations of the model 

against the native, SPECS is highly accurate in determining the true native among a set of 

computationally predicted models.   

For computing the CA component of SPECS, all the possible superpositions of two protein 

structures, each including the largest set of superimposable atoms are considered and for each 

possible superposition, distances between the aligned backbone Cα atoms are calculated. Then the 

distances are assigned to four different distance thresholds of 0.5, 1, 2 and 4 Å. Finally, from all 

the residue sets generated from different superpositions, the maximal residue set for each cutoff is 

selected, followed by averaging the proportion of residues in four different distance thresholds as 

shown below: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑆𝑃𝐸𝐶𝑆𝐶𝐴 =⁡
𝑝𝑑𝐶𝐴_05 +⁡𝑝𝑑𝐶𝐴_1⁡⁡ +⁡𝑝𝑑𝐶𝐴_2 ⁡+ ⁡𝑝𝑑𝐶𝐴_4

4.0
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

where pdCA_05, pdCA_1, pdCA_2 and pdCA_4  are the proportions of the maximal set of residues which 

belong to the 0.5, 1, 2 and 4 Å distance thresholds, respectively. 

For computing the remaining four components of SPECS, we determine the optimal superposition 

between the backbone Cα atoms of the model and native. Now for the SC component of SPECS, 

the distances between the aligned side-chain reference atoms in model and native, rij, are 

calculated. Then, these distances, rij, are assigned to ten different bins ranging from 0.5 Å to 5.0 Å 
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with a step size of 0.5 Å, followed by averaging the proportion of residues in ten different bins as 

shown below: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑆𝑃𝐸𝐶𝑆𝑆𝐶 = ⁡
2⁡∑ (𝑘 − 𝑖 + 1)𝑝𝑟𝑠𝑐𝑖

10
𝑖=1

𝑘(𝑘 + 1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

where k = 10 is the number of bins and prSCi is the fraction of reference atoms assigned to bin i. 

Now, we divide the θij
(1) and θij

(2) planar angles into four bins of [0°, 30°], (30°,⁡60°], (60°,⁡90°] 

and (90°,⁡120°], followed by averaging the proportion of residues in four different bins as shown 

below: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑆𝑃𝐸𝐶𝑆𝜃(1) =⁡
2⁡∑ (𝑘 − 𝑖 + 1)𝑝𝜃(1) 𝑖

4
𝑖=1

𝑘(𝑘 + 1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

where k = 4 is the number of bins and pθ
(1)

i is the fraction of residues assigned to bin i. 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑆𝑃𝐸𝐶𝑆𝜃(2) =⁡
2⁡∑ (𝑘 − 𝑖 + 1)𝑝𝜃(2) 𝑖

4
𝑖=1

𝑘(𝑘 + 1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

where k = 4 is the number of bins and pθ
(2)

i is the fraction of residues assigned to bin i. 

Then, we divide the Φij dihedral angle into ten bins of [0°, 30°], (30°,⁡60°], (60°,⁡90°],  (90°,⁡120°], 

(120°, 150°], (150°,⁡180°], (180°,⁡210°], (210°,⁡240°], (240°,⁡270°] and (270°,⁡300°], followed 

by averaging the proportion of residues in ten different bins as shown below: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑆𝑃𝐸𝐶𝑆∅ =⁡
2⁡∑ (𝑘 − 𝑖 + 1)𝑝∅𝑖

10
𝑖=1

𝑘(𝑘 + 1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

 

where k = 10 is the number of bins and pΦi is the fraction of residues assigned to bin i. 

Finally, SPECS is calculated as a weighted average of the two distance based and three angle based 

components as shown below: 

⁡⁡⁡⁡⁡⁡𝑆𝑃𝐸𝐶𝑆 = ⁡
4 ∗ ⁡𝑆𝑃𝐸𝐶𝑆𝐶𝐴 + ⁡𝑆𝑃𝐸𝐶𝑆𝑆𝐶 + ⁡𝑆𝑃𝐸𝐶𝑆𝜃(1) ⁡+ ⁡𝑆𝑃𝐸𝐶𝑆𝜃(2) + ⁡𝑆𝑃𝐸𝐶𝑆∅⁡

8.0
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 
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4.4 RESULTS AND DISCUSSION 

4.4.1 Comparison between SPECS and other model-native similarity scores on regular 
single domain targets 

 

We compared SPECS on the regular single domain targets in CASP 12 [54] and 13, to determine 

its correlation with the existing backbone Cα based model-native similarity metrics. The CASP 12 

decoy set consists of 55 single domain protein targets and the CASP 13 decoy set consists of 32 

single domain protein targets. The targets were divided into template-based (TBM), free modeling 

(FM) and unresolved (TBM/FM) categories as defined by the assessors, to understand the density 

of the models in different categories. GDT-TS [2], TMScore [3] and Sphere Grinder (SPGR) score 

[55] were taken from the data archive of the Prediction Center (http://www.predictioncenter.org/), 

whereas SPECS was calculated as described in Materials and Methods. The plots displaying the 

relationship between SPECS and GDT-TS, TMScore, Sphere Grinder (SPGR) score are shown in 

Figure 4.3. From the average Pearson and Spearman correlation coefficients in the Figure 4.3, it is 

evident that there is a strong correlation between SPECS and superposition-based scores like GDT-

TS, TMScore and local model accuracy scores like SPGR. The high Pearson’s correlation 

coefficients show the existence of a linear relationship between SPECS and the popular backbone 

Cα based similarity measures. The high Spearman’s correlation coefficients indicate the high level 

of agreement in ranking by SPECS and ranking by  GDT-TS, TMScore and Sphere Grinder score. 

The high correlations with SPGR score show that, SPECS can also be used as reliable measure for 

analyzing the local accuracy of protein models [55]. 

 

http://www.predictioncenter.org/
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Figure 4.3. Comparisons between SPECS (horizontal axis) and existing model-native 

similarity metrics namely GDT-TS, TMScore and SPGR (vertical axis) using models in 

CASP 12 (A-C) and 13 (D-F) regular single domain targets. Average Pearson (P) and Spearman 

(S) correlation coefficients are shown for each plot. Blue, red, and green colors represent models 

assessed in template-based (TBM), free modeling (FM) and unresolved (TBM/FM) categories 

respectively. Higher color intensity reflects higher density of models. 

 

4.4.2. Comparison between SPECS and other model-native similarity scores on high 
accuracy refinement targets 

 

To further test the performance of SPECS on high accuracy models, we decided to compare SPECS 

with GDT-HA score [48], CAD-AA (all atoms) score [5], GDC-SC score [53] and LDDT score 

[4] on CASP 12 [54] and 13 refinement targets. On the whole in CASP 12 and 13, there are 37 

refinement targets. GDT-HA score, CAD-AA score, GDC-SC score and LDDT score were taken 

from the data archive of the Prediction Center (http://www.predictioncenter.org/), whereas SPECS 

was calculated as described in Materials and Methods. The plots displaying the relationship 

between SPECS and GDT-HA, CAD-AA, GDC-SC, LDDT scores are shown in Figure 4.4. From 

the average Pearson and Spearman correlation coefficients in the Figure 4.4, it is evident that there 

http://www.predictioncenter.org/
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is a strong correlation between SPECS and superposition-based scores like GDT-HA, GDC-SC 

and superposition-free scores like CAD-AA and LDDT. From the results shown in Figure 4.4, it 

can be noted that SPECS is highly correlated with backbone Cα based similarity metric like GDT-

HA, side-chain based similarity metric like GDC-SC, and all atom based similarity metrics like 

CAD-AA and LDDT.  

 

 

Figure 4.4. Comparisons between SPECS (horizontal axis) and existing model-native 

similarity metrics namely GDT-HA (A), GDC-SC (B), LDDT (C) and CAD-AA (D) (vertical 

axis) using models in CASP 12 and 13 refinement targets. Average Pearson (P) and Spearman 

(S) correlation coefficients are shown for each plot. 
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This shows the all-round ability of the SPECS score. The high Spearman’s correlation coefficients 

indicate the high level of agreement in ranking between SPECS and all the other similarity scores. 

The all-round performance of SPECS on refinement targets and on regular single domain targets, 

shows that SPECS is a reliable measure for model-native similarity in case of both highly accurate 

refined predictions and low/moderately accurate predictions. 

4.4.3. SPECS as a reliable Model Variation score 

 

To test the effectiveness of SPECS in differentiating between models with correct and distorted 

stereochemical features, we benchmarked it on 3D Robot Decoy set [58]. The 3D Robot Decoy 

set consists of 200 protein targets, each consisting of 300 models. We further divided the 60000 

protein models into three bins namely [0 – 2) Å, [2 – 6) Å and [6-12] Å based on their RMSD 

scores when compared against their natives. The division of the models into three bins, helped us 

analyze the effectiveness of SPECS as a Model Variation score on high accuracy, medium 

accuracy and low accuracy protein models. To understand the relationship between the SPECS 

score assigned to a model and its physical realism, we analyzed pairs of models for which SPECS 

and TMScore [3] were in conflict, for example, in a pair consisting of model_1 and model_2, 

SPECS assigned better score to model_1 and TMScore assigned better score to model_2. Now, in 

these conflicting pairs of models, we compared the consistency of the SPECS and TMScore with 

the physical realism of the models. We selected MolProbity score [57] to help us in assessing the 

variation of stereochemical features in the models. MolProbity consists of four components namely 

clash score, rotamer outlier score, Ramachandran outlier score and Ramachandran favored score 

to evaluate the correctness of protein structures. Like TMScore and GDT-HA score [48], 

MolProbity doesn’t determine the true nativity of a protein model, instead it evaluates the structural 

quality of the model. From the pie charts in Figure 4.5, it is evident that there is a high level of 
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agreement in the ranking between SPECS and MolProbity scores. Hence, when compared to 

TMScore, SPECS is a reliable measure of variation in the models from all the three bins. We 

repeated this experiment, using SPECS and GDT-HA scores, to compare the performance of 

SPECS against a high accuracy and stringent metric like GDT-HA. From the pie charts in Figure 

4.5, it can be observed that SPECS is a better measure of variation in the models from the high 

accuracy bin. Therefore, it is clear that a model’s SPECS score and its physical realism are directly 

proportional to each other. 

 
 

 

Figure 4.5. Pairs of 3DRobot models with conflicting ranking by SPECS and TMScore, 

SPECS and GDT-HA score. The 3DRobot models are divided to three bins based on their RMSD 

scores. Pie charts represent the MolProbity score agreement with rankings by SPECS and 

TMScore (A-C), SPECS and GDT-HA score (D-F). The ranges of the bins are indicated above 

each chart. 
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4.4.4. Evaluating Side-Chain Conformations using SPECS 

 

To analyze the performance of SPECS as an evaluation measure for side-chain positioning, we 

considered the side-chain conformations of the monomeric proteins, predicted by three most 

widely used side-chain prediction methods. The monomeric protein dataset consists of 231 

proteins and 33461 residues. The backbone Cα atoms of the proteins in the monomeric dataset are 

perfectly aligned with those in the natives, hence all the backbone Cα based similarity scores are 

1. The side-chain conformations were predicted by RASP [62], Rosetta [63] and SCWR4L [64].  

Then, the prediction accuracy of the three methods was evaluated in terms of the Angular RMSD 

of the χ1 side-chain torsion angle. The χ1 angle is the dihedral angle between the planes defined 

by the atoms N, Cα, Cβ, and Cγ [59]. Initially, the χ1 angle was calculated for each residue using 

the PDB module [65] of the Biopython package [66]. Then, the Angular RMSD values were 

calculated at the target level, from the corresponding χ1 angles [67]. The relationship between the 

ranking of side-chain prediction methods by Angular RMSD and the χ1 angle was determined 

using a boxplot as shown in Figure 4.6. From Figure 4.6, it is evident that the ranking of the three 

methods matches exactly with the ranking mentioned in Peterson L, Et al [59]. For evaluating the 

side-chain conformations predicted by the three methods using SPECS, we decided to determine 

its correlations with the Angular RMSD values of the methods. From Table 4.1, it can be observed 

that the SPECS score is moderately correlated with the angular RMSD values of the methods, 

when the backbone Cα based similarity scores are all perfect. Hence, it is clear that SPECS is a 

reliable measure for evaluating side-chain conformations. 
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Figure 4.6. Prediction Accuracy by method using Angular RMSD. Lower and upper hinges: 

1st and 3rd quartile. Whisker length: 1.5 times the interquartile range.  

 

 

Table 4.1. Spearman Correlations between SPECS and the Angular RMSDs of side-chain 

conformation prediction methods. 

 

 

Prediction Method Spearman Correlation 

RASP 0.4216 

SCWR4L 0.3105 

ROSETTA 0.3041 
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4.5. CONCLUSION 

We develop a superposition-based model-native similarity score, which considers both the protein 

backbone and side-chain conformations for determining the true nativity of a model. SPECS is 

calculated as a weighted average of the two distance based components which quantify the 

positioning of the CA and SC atoms in the model and native and three angle based components 

which quantify the orientations of backbone and side-chain in the model and native. The 

experimental results suggest that SPECS is a reliable measure for model-native similarity in case 

of both highly accurate refined predictions and low/moderately accurate predictions. SPECS is 

highly correlated with superposition-based scores like GDT-HA, GDT-TS, GDC-SC and              

TMScore, superposition-free scores like CAD-AA and LDDT, and local model accuracy scores 

like SPGR.  SPECS is also highly correlated with backbone Cα based similarity metric like GDT-

HA, GDT-TS, TMScore, side-chain based similarity metric like GDC-SC, and all atom based 

similarity metrics like CAD-AA, LDDT and SPGR. In addition to being highly correlated with 

TMScore and GDT-HA, SPECS displays a stronger emphasis on the physical realism of models. 

Moreover, SPECS acts as a robust measure for evaluating side-chain conformations when the 

backbone Cα based similarity scores are all perfect. Collectively, these results demonstrate that 

SPECS is a valuable addition to protein structure comparison in particular and protein structure 

prediction in general.  
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Appendix A:  

 

Software and Web-services 

 

In this chapter, we provide a brief overview of the freely available software and web-servers 

developed based on the aforementioned methods for the scientific community. In particular, we 

developed a freely available web-server named clustQ based on the methods presented in Chapter 

2. Finally, a publicly accessible web-server named SPECS based on the methods presented in 

Chapter 4 is made available. 

 

A.1. clustQ 

 

A.1.1. Overview 

 

clustQ is a webservice for rapid protein decoy clustering. It is a consensus based QA method, that 

employs a WQ-score based multi-model pairwise comparison approach for model quality 

assessment. The goal of clustQ is to rank and select models in a time efficient manner, using 

pairwise comparison between all the models in a pool. 

 

A.1.2. Availability 

 

http://watson.cse.eng.auburn.edu/clustQ/ 

 

 

A.1.3. Input 

 

The input to clustQ server must be a target protein sequence, a decoy tarball and a job name of 

user’s choice. When the user provides the target protein sequence and decoy tarball for estimating 

the model accuracy estimation, the server validates the user entries. If successful, the job is queued. 

http://watson.cse.eng.auburn.edu/clustQ/


 57 

Otherwise the user is a shown an error message. The user needs to ensure that the decoy tarball is 

either a zip or a tar.gz file. 

 

A.1.4. Output 

 

clustQ server automatically redirects the user about the status of the current submission. After the 

job is completed, the decoys in the tarball will be displayed in the descending order of their  quality 

scores assigned by clustQ. The user can download a text file consisting of the decoy rankings and 

their corresponding scores. The user can bookmark the results page to view the results later. In 

case the user has provided an email address, the decoy ranking along with the quality scores 

assigned by clustQ will be emailed immediately after the job is complete. 

 

A.1.5. Software Architecture 

 

clustQ is developed in C++. Source code, executable and example data of clustQ for Linux are 

freely available to non-commercial users. 

 

A.2. SPECS 

 

A.2.1. Overview 

 

SPECS is a webservice for protein structure comparison. It is a superposition based model-native 

similarity measure, that integrates the high accuracy version of the Global Distance Test (GDT-

HA) metric, and side-chain distance and orientation in a singular framework. The goal of SPECS 

is to compare two protein structures by taking into consideration their main chain Cα atoms, SC 

atoms along with their orientation and assign a similarity score in the range of 0 to 1, higher the 

better. 
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A.2.2. Availability 

 

http://watson.cse.eng.auburn.edu/SPECS/  

 

 

A.2.3. Input 

 

The input to SPECS server must be two protein structural files in PDB format. When the user 

provides the model and native files for structure comparison, the server validates the user entries. 

If successful, the job is queued. Otherwise the user is a shown an error message. The user needs to 

ensure that the protein structural files are in PDB format. 

 

A.2.4. Output 

 

SPECS server automatically redirects the user about the status of the current submission. After the 

job is completed, the results of the structural comparison consisting of SPECS score, TMScore, 

MaxSub score, GDT-TS and GDT-HA scores will be displayed. The user can bookmark the results 

page to view the results later.  

 

A.2.5. Software Architecture 

 

SPECS is developed in C++. Source code, executable and example data of SPECS for Linux are 

freely available to non-commercial users. 

 

http://watson.cse.eng.auburn.edu/SPECS/

