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Abstract

Tokamak plasmas display finite macroscopic rotation in standard machine operation. Yet,

the theoretical understanding of stationary states is lacking as compared to static configurations.

In this work, we investigate the magnetohydrodynamic equilibrium and stability properties of

high-beta tokamak plasmas flowing at a significant fraction of the sound speed.

In the equilibrium part, we introduce a new family of analytical solutions of the Grad-

Shafranov-Bernoulli system with diffuse flows in both the toroidal and poloidal directions.

Furthermore, our solution allows finite plasma shaping, making it suitable to model present-day

tokamak devices. The solution strategy consists of a combination of a variational perturbative

scheme in terms of the inverse aspect ratio, a boundary perturbation approach in terms of the

triangularity and the Green’s function method. While the equilibrium solution corresponding

to a circular cross-section is given in closed-form, those for elliptical and D-shaped scenarios

are provided in a series-form in terms of Mathieu functions, even so, they can accommodate

experimentally relevant values for elongation and triangularity. All solutions show excellent

performance when benchmarked against the code FLOW.

As an example of the applicability of our analytical equilibrium for the circular cross-

section, we perform a linear stability analysis focusing on the development of ideal external

kink modes and resistive wall modes for a purely toroidal velocity profile. The stability problem

is expressed as a set of algebraic equations which incorporate a kink mode drive for instabilities

and resistive wall effects, while pressure and shear-flow drives are captured at the eigenmode

equation level. Solutions are found by a multidimensional shooting method for the coupled

side-bands. Results are compared against a sharp-boundary model with a solid body rotation

from the literature. Although, in general, results indicate that the qualitative character of the

instabilities under study in the presence of a diffuse or a solid body rotation are similar, rotation

has a stronger destabilizing effect in the former model. Arguably, this difference is due to a

global shear-flow drive effect.
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Chapter 1

Introduction

1.1 Motivation

The immediate aim of the fusion energy enterprise is to create a reactor where light nuclei

carry out enough fusion reactions to sustain a net positive power output. The thermonuclear

approach to fusion consists in heating up light nuclei until their thermal energies are sufficient

to overcome the Coulomb’s potential barrier in head-on collisions. Among fusion reactions

between light species like deuterium (D), tritium (T ) and Helium-3 (3He), the deuterium-

tritium one:

D + T → 4He(3.5 MeV ) + n(14.1 MeV ), (1.1)

has a larger cross-section over a wide temperature range, making it the most technologically

feasible. In classical energy balance considerations, the fusion energy production has to com-

pensate for losses (Bremsstrahlung and to the reactor walls) and an optimum trade is reached

when the fuel is heated up around 14 keV [1] 1. At such temperature, the fuel becomes an

ionized state dominated by a collective behavior, i.e., a plasma.

Charged particles describe, to a first approximation, helical paths around magnetic field

lines. This principle is the basis for the magnetic-confinement experimental line. Reversed-

field pinches, Z-pinches, magnetic mirrors, stellarators, tokamaks and so on, all use this fact

as the underlying confinement idea. In this thesis, we explore some characteristics of plasma

configurations in tokamaks, one of the front-runners experimental concepts.
1By “optimum trade” we refer to the “ignition condition” where, in steady state, the 4He power heating is

larger than Bremsstrahlung and thermal conduction losses [2]. However, as recently indicated [3], this figure of
merit might be insufficient.
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Tokamak plasmas are typically composed of∼ 1020−1022 charged particles; their statisti-

cal evolution being described by a kinetic model for the electron and ion distribution functions.

Energy transport, plasma heating, and current drive are just some examples of phenomena for

which a kinetic description is necessary. Yet, if the main interest is to evaluate the forces that

keep the bulk of the plasma in place, that is, the overall equilibrium and stability properties, a

simplified model is in order. The magnetohydrodynamic (MHD) model for a plasma constitutes

a fluid-like description of machine size effects (∼ 1 m), for phenomena evolving in the ∼ µs

time scale, with characteristic velocities comparable to the ion thermal speed (∼ 500 km/s). In

general, MHD stability imposes the principal operational limits in tokamaks: maximum current

[4, 5], plasma pressure [6, 7], and pressure gradient [8, 9]; surpassing MHD limits is associated

with the onset of major disruptions [10]. These limits, in turn, constrain the maximum achiev-

able power output, thus their importance. The tokamak equilibrium and stability considerations

presented in this work are based on the MHD model.

In this introductory chapter, we cover some aspects of plasma confinement in tokamaks.

In section 1.2 we introduce tokamak geometric parameters and figures of merit to be used

throughout the rest of the thesis. A brief description of the necessity of a helical magnetic

field in a tokamak and its mathematical description is presented in sections 1.2.2 and 1.2.3,

respectively. The MHD model is introduced in section 1.3. Then, the MHD equilibrium and

stability concepts are covered in sections 1.3.1 and 1.3.2, respectively. Finally, an overview of

the present work is provided in section 1.4.

1.2 Tokamaks

1.2.1 Basic geometric parameters

Tokamaks are toroidally-shaped magnetic confinement devices with a global symmetry in the

toroidal direction. As an instance, a tokamak with a circular cross-section is shown in figure

1.1. In actuality, high-performance experiments posses non-circular cross sections like the one

illustrated in figure 1.2. The shape of the plasma cross-section is determined by reasons related

to equilibrium, stability, and transport. In particular, elongated and “D-shaped” plasmas show
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an improved energy confinement time [11], and an increase in both pressure [6] and density

stability limits (Greenwald density limit) [12]. Still, arbitrarily increasing the elongation has a

detrimental effect on plasma performance due to the onset of vertical MHD instabilities [13].

Coming back to figure 1.1, we introduce two right-handed systems to be used through

this work: (R,ϕ, Z) and (r, ϕ, θ). Here, the Z axis is the major axis, the minor axis is a

circular circuit that runs through the toroid. These axes characterize two basic directions: the

toroidal direction (ϕ) which is parallel to the minor axis and the poloidal direction (θ) which

wraps around the minor axis. R is the radial distance from the major axis, while r is the radial

distance from the minor axis. The major radius (Ro) is the distance between the major axis and

the minor axis, the minor radius (a) is the distance between the minor axis and the plasma edge.

The inverse aspect ratio

ε ≡ a

Ro

, (1.2)

is a figure of merit typically employed as an expansion parameter in analytical theories.

Figure 1.1: Tokamak configuration and standard coordinate systems.
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Figure 1.2 illustrates a D-shaped configuration. Here, κ is the elongation and δ the so-

called triangularity. This shape is parametrized by

R = Ro+ a cos (τ + α sin τ) ,

Z = κ sin τ,

(1.3)

where τ ∈ [0, 2π] and

α ≡ sin−1 δ. (1.4)

This parametrization will be useful in section 2.9.1.

Figure 1.2: D-shape geometry. Based on [14].

1.2.2 The need for a helical magnetic field configuration

The toroidal magnetic field is the dominant component in a tokamak and is produced by a set

of poloidal coils and, from a simple application of Ampère’s law, it follows that its magnitude

decreases as 1/R. Even though particles follow magnetic field lines to a first approximation, the
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inherent curvature and spacial variation of the toroidal field renders it insufficient for particle

confinement. This is explained next.

Let us start by assuming a configuration with purely toroidal magnetic field. From sin-

gle particle dynamical considerations, it is concluded that both the transverse gradient of the

toroidal magnetic field and its curvature produce particle drifts which tend to build-up a vertical

charge separation (in the Z direction). For a particle of mass mj and charge qj , the “∇B-drift”

is

v∇B =
mjv

2
⊥

2qj

Bϕ ×∇Bϕ

B3
ϕ

, (1.5)

the parallel (v‖) and perpendicular (v⊥) velocity projections being taken with respect to the

background magnetic field (Bϕ), while the curvature drift is

vR =
mjv

2
‖

qjB2
ϕ

Rc ×Bϕ

R2
c

, (1.6)

whereRc is a vector which goes from the magnetic field line’s center of curvature to the instan-

taneous particle’s position. Equations 1.5 and 1.6 can be easily derived by considering a test

particle in the presence of external fields, due to their charge dependence, it is clear that parti-

cles with different polarity undergo opposite drifts. Actually, these drifts are directed in the Z

direction, therefore, they generate a vertical separation of charge. As a result, a corresponding

vertical electric field is generated, which, together with the toroidal magnetic field, causes yet

another drift

vE =
E ×Bϕ

B2
ϕ

, (1.7)

but this time independent of the charge polarity and directed outwards. Therefore, a toroidal

magnetic field by itself is unable to avoid the overall movement of a plasma column in the

outward direction and the subsequent loss in confinement when it reaches the material wall.

In a tokamak, a magnetic field in the poloidal direction (Bp) is generated by driving a

toroidal current. The superposition of the toroidal magnetic field with the poloidal one causes

magnetic field lines to twist around the plasma column. In this way, charges that would oth-

erwise be accumulated on opposite sides are mixed together as they move along the helical

5



magnetic field and the spatial separation of charge is avoided. Particles still drift vertically

while traveling in a helical path, yet, the net vertical drift cancels to zero (see, for example,

[15]).

1.2.3 Magnetic surfaces

To a good approximation, tokamaks are symmetric in the toroidal direction (axisymmetry).

This has strong implications in the form of the equilibrium quantities and, in particular, in the

form of the equilibrium helical magnetic field. Mathematically, axisymmetry is expressed as

∂f

∂ϕ
= 0, (1.8)

where f is an arbitrary equilibrium quantity. From the magnetic potential relation

B = ∇×A, (1.9)

and defining the stream function Ψ as a scaled component of the magnetic potential according

to

Ψ(R,Z) ≡ RAϕ(R,Z), (1.10)

it follows that the magnetic field can be written in a very special form

B = ∇Ψ×∇ϕ+Bϕêϕ. (1.11)

The contour labels of Ψ define concentric toruses where the magnetic field lines reside,

i.e., magnetic surfaces. The limiting central torus is just a magnetic field line, i.e., a “magnetic

axis”. The poloidal magnetic flux between the magnetic axis and an arbitrary flux surface is

Ψp = 2πΨ; therefore, Ψ is also referred to as the “poloidal flux”. Any quantity of the form

f = f(Ψ) is referred to as a being a “flux quantity” or “surface quantity”. As will be seen in

section 1.3.1, these quantities play a major role in describing equilibria in tokamaks.
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1.3 The ideal magnetohydrodynamic model

The magnetohydrodynamic (MHD) model of a plasma is a description suited for low-frequency,

long-wavelength macroscopic phenomena. It can formally be obtained from the set of Boltz-

mann equations for electrons and ions together with Maxwell’s equations by taking succes-

sively higher velocity moments, passing through an intermediate two-fluid description, and

then assuming a high collisionality regime, among other approximations [16]. In ideal MHD,

the state of the system is characterized by the plasma velocity (u), the magnetic field (B), the

mass density (ρ), and the kinetic pressure (p). The current density (J ) and the electric field (E)

are regarded as intermediate variables. The resulting model can be thought of as describing the

coupling between a compressible, adiabatic gas with infinite conductivity and pre-Maxwell’s

equations:
∂ρ

∂t
+∇ · (ρu) = 0, (1.12)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ J ×B, (1.13)

d

dt

(
pρ−γ

)
= 0, (1.14)

∂B

∂t
= −∇×E, (1.15)

∇×B = µoJ , (1.16)

∇ ·B = 0, (1.17)

E + u×B = 0, (1.18)

7



where µo is the permeability of free space and γ = 5/3 is the ratio between specific heats.

Among these equations, ideal Ohm’s law (Eq. 1.18) leads to a constraint on the allowed fluid

motion known as the “frozen-in-field” theorem: the magnetic flux across an arbitrary open

surface moving with the fluid remains the same [16], which is a very important feature of ideal

MHD.

1.3.1 MHD axisymmetric equilibrium

As shown before, axisymmetry has strong consequences on the form of the equilibrium mag-

netic field (Eq. 1.11). The same is true for all equilibrium quantities and their governing

equations. In fact, the equilibrium is specified by five flux quantities F (Ψ), S(Ψ), H(Ψ), Ω(Ψ)

and Φ(Ψ) commonly referred to as “free functions”. Once they are given, it is possible to solve

the pair of equations known as the Grad-Shafranov-Bernoulli (GSB) system:

1

µo
∇·
[(

1− Φ2

ρ

)
∇Ψ

R2

]
= − Bϕ

µoR

dF

dΨ
− 1
√
µo
u·B dΦ

dΨ
−ρRuϕ

dΩ

dΨ
−ρdH

dΨ
+

ργ

γ − 1

dS

dΨ
, (1.19)

Φ2B2

2µoρ2
− R2Ω2

2
+
γSργ−1

γ − 1
= H, (1.20)

for the poloidal flux and mass density [17, 18, 19]. This formalism constitutes a non-linear

coupled system of a partial differential equation (PDE) and an algebraic equation. Although Eq.

1.19 is found to be elliptic for standard tokamak operation, it may possess hyperbolic regions

for certain rotation profiles [18, 19, 20]. While the component of the momentum equation

along ∇Ψ gives rise to the Grad-Shafranov equation (1.19), the projection along B leads to

Bernoulli’s equation (1.20). On the other hand, the projection along êϕ sets the form of the

toroidal magnetic field:

Bϕ =
F +
√
µoR

2ΦΩ

R (1− Φ2/ρ)
. (1.21)

A combination of ideal Ohm’s and Faraday’s laws implies that streamlines are tangent to mag-

netic surfaces

u =
ΦB
√
µoρ

+RΩêϕ. (1.22)
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Finally, the kinetic pressure is given by

p = Sργ. (1.23)

The static (u = 0) equilibrium’s description is simpler than the stationary one (u 6= 0).

This is mainly due to the disappearance of hyperbolic regions but also because the problem con-

sists in solving a single PDE instead of a system of equations. In this static regime, equilibrium

configurations are governed by the Grad-Shafranov / Lüst-Schlüter equation [21, 22, 23]:

∇ ·
[
∇Ψ

R2

]
= − F

R2

dF

dΨ
− µo

dp

dΨ
. (1.24)

It depends on only two free functions: F (Ψ), which is proportional to the poloidal current

and p(Ψ), which is the plasma pressure. Much of the theoretical understanding of tokamak

MHD confinement obtained in previous decades has originated by studying the static regime.

Analytic static solutions are abundant [24, 25, 16, 26, 27, 28, 29, 30, 31, 32, 33, 14], and

essentially all fusion laboratories have constructed their own equilibrium solvers.

Tokamak plasmas do present finite equilibrium rotation values, in fact, macroscopic flows

can reach a significant fraction of the sound speed. Rotation is typically induced by plasma

heating as neutral beam injection (NBI) or radio-frequency (RF) heating [34, 35]. Poloidal

rotation shear is related to the transition from low to high modes in confinement (L-H transition)

[36, 37]. As illustrated in [38], failure to self-consistently incorporate the effect of flow at the

equilibrium level can lead to dissimilar results “even at modest flows speeds”. Thus, rotation

is an important effect that should be included in tokamak equilibrium calculations from the

outset.

1.3.2 MHD linear stability

In general, steady-state operation is considered to be an important requirement of future fusion

plants [39, 40]. Currently, record times of continuous operation have been reported to last as

long as 30 s in the high-confinement regime of EAST tokamak [41], similarly, other machines
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routinely operate in the second time scale. In this context, the aim of MHD is not only to

model equilibrium states but, equally important, to determine their stability properties. Given

that the characteristic MHD time (τMHD ∼ a/VT i), as estimated by the minor radius (a) and the

ions thermal velocity (VT i), is of the order of microseconds, the only experimentally realizable

configurations are the ones that, first of all, are robust against macroscopic fluctuations, i.e.,

MHD stable.

In static ideal MHD, instabilities develop either because of pressure gradients or parallel

currents (to the equilibrium magnetic field) [16]. Much of our physical intuition about instabil-

ities in fusion devices comes from the static case, where it can be proved that incompressible

perturbations are the most unstable, but this is not guaranteed to happen in stationary scenarios

anymore. In stationary configurations centrifugal, Doppler, Coriolis, and sheared-flow effects

come into play both at the equilibrium and stability levels.

The most common definition of stability employed in MHD is that of linear stability [42],

although other definitions such as Lyapunov stability [42, 43, 44], are possible. In the MHD

linearization procedure any given quantity Q(r, t) is expressed as a sum of a time-independent

part Q0(r) and a small perturbation Q̃(r, t) about the equilibrium position:

Q(r, t) = Q0(r) + Q̃(r, t), where |Q̃| << |Q0|, (1.25)

next, this decomposition is substituted back into the MHD Eqs. 1.12-1.18 and all terms quadratic

or higher order in the small quantities are neglected. Continuing, it is assumed that

Q̃(r, t) = Q̃(r)e−iωt. (1.26)

In this way, the original problem is cast as a linear system in the small quantities, to be solved

for the characteristic eigenfrequencies (ω). The MHD equilibrium state is said to be exponen-

tially stable if Im{ω} ≤ 0 and exponentially unstable if Im{ω} > 0.
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In the formalism introduced by Frieman and Rotenberg [45] disturbances in the velocity,

the magnetic field, pressure, and density (denoted with a tilde) are expressed in terms of equi-

librium quantities (without a tilde) and the perturbed plasma displacement (ξ) away from the

equilibrium trajectory according to the following expressions:

Ṽ =
∂ξ

∂t
+ V · ∇ξ − ξ · ∇V , (1.27)

B̃ = ∇× (ξ ×B) , (1.28)

p̃ = −γp∇ · ξ − ξ · ∇p, (1.29)

ρ̃ = −ρ∇ · ξ − ξ · ∇ρ. (1.30)

A Fourier decomposition in time (as given by Eq. 1.26) transforms the momentum equation

into the non-linear (in ω) vectorial eigenvalue equation:

G(ξ)− 2ωU(ξ) + ρω2ξ = 0, (1.31)

where the Doppler-Coriolis operator (U ) represents the advection of the plasma perturbation

due to the equilibrium flow

U(ξ) ≡ −iρV · ∇ξ, (1.32)

and the generalized force operator (G) has contributions due to pressure gradients, magnetic

and centrifugal forces, as well as an additional advective term

G(ξ) ≡ −∇p̃+ J × B̃ + J̃ ×B +∇ · (ξρV · ∇V )− ρ (iV · ∇)2 ξ. (1.33)

For the eigenvalue problem 1.31 to be well-defined, it has to be supplied with appropriate

boundary conditions. For the study of fixed-boundary modes (internal modes) it is required that
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the normal component of the plasma perturbation vanishes at the plasma edge

ξn(a) = 0, (1.34)

(where the subscript “n” denotes the component normal to the boundary) while regularity at

r = 0 is also imposed. On the other hand, for the study of free-boundary modes (external

modes) the perturbed value of the total pressure

P̃ ≡ p̃+
BB̃‖
µo

+ ξn∇n

(
p+

B2

2µo

)
, (1.35)

(B̃‖ being the perturbed magnetic field parallel to the equilibrium magnetic field) should be

continuous at the plasma edge [46, 16, 47]:

[[
P̃
]]

a
= 0. (1.36)

Additionally, the normal component of the perturbed magnetic field should also be continuous

at the plasma edge [[
B̃n

]]
a

= 0, (1.37)

and regularity at the origin is required as well. As usual, a double bracket represents a jump of

a given quantity

[[f ]]a ≡ lim
h→0

(f(a+ h)− f(a− h)) . (1.38)

The contributions in 1.35 should make intuitive sense: the first two terms measure the variation

of the total pressure at a fixed position, while the term proportional to the plasma displacement

is what allows the boundary to move. In chapter 3, we will discuss these boundary conditions

in further detail.

Formally, what is done is to endow the linear stability problem with the structure of a

Hilbert space [47] by defining the inner product between arbitrary allowed perturbations ξ and

η as

〈η|ξ〉 ≡ 1

2

∫
ρη∗ξd3r, (1.39)
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and requiring the quantity

I[ξ] ≡ 〈ξ|ξ〉 , (1.40)

to be finite 2, which is to say that the kinetic energy; defined as the quadratic form

K[ξ] ≡ 1

2

∫
ρ
∂ξ∗

∂t
· ∂ξ
∂t
d3r =

|ω|2

2
I[ξ], (1.41)

should be bounded.

The non-linear eigenvalue problem 1.31 is self-adjoint. We recall that the concept of self-

adjointness depends on both the functional space the operator acts on (in this case, the space

of allowed plasma perturbations) and, equally important, on the imposed boundary conditions

[48]. Changing the boundary conditions, in general, destroys the self-adjointness nature of an

operator. Under the inner product 1.39 and either the boundary conditions for internal modes

1.34 or for external modes 1.36-1.37, it is then shown that ρ−1G and ρ−1U are self-adjoint

[45, 47]. Self-adjointness is related to energy conservation, and is the basis for the introduction

of Goedbloed’s Spectral-Web-Method in appendix E.1.

The key difference between static and stationary equilibrium configuration is that in the

former case eigenvalues are either purely real or purely imaginary, while in the latter case

eigenvalues are genuinely complex in general. This is easy to see. By introducing two extra

quadratic forms: one associated with the potential energy

W [ξ] = −1

2

∫
ξ∗ ·G(ξ)d3r, (1.42)

and the other related to the Doppler-Coriolis operator

V [ξ] =
1

2

∫
ξ∗ · U(ξ)d3r, (1.43)

we can cast eigenvalue problem 1.31 as

I[ξ]ω2 − V [ξ]ω −W [ξ] = 0. (1.44)

2This excludes the consideration of the continuum, where eigenvectors are not normalizable.
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The quantitiesW [ξ], V [ξ] and I[ξ] are real for all allowed perturbations. In static configurations

V [ξ] = 0, therefore, ω2 is real, i.e., ω is either purely real or purely imaginary. On the other

hand, in stationary configurations V [ξ] 6= 0 and ω is genuinely complex in the general case.

1.4 Overview of the present work

Magnetically confined plasmas can display significant rotation levels throughout standard ma-

chine operation, for example, a deuterium plasma has reached toroidal velocities of about 40%

the sound speed in the DIII-D tokamak [49,Fig 9] and the National Spherical Torus Experi-

ment (NSTX) has reported toroidal velocities of about half the Alfvén speed [50, p. 641]. On

the other hand, poloidal rotation shear is related to the transition from the low- to the high-

mode in confinement (L-H transition) [51] or the quiescent H-mode (QH-mode) [52]. High

confinement modes facilitate the operation of machines in states of high kinetic pressure (p) rel-

ative the externally imposed magnetic pressure (B2
o/2µo); states referred to as “high-β”, where

βϕ ≡ 2µop/B
2
o , and which intuitively are favorable in terms of confinement performance.

Although our theoretical understanding of stationary configurations under even the sim-

plest plasma model, ideal MHD, is not as comprehensive as our understanding of static sce-

narios, there is significant work done on the subject. Theoretical studies include the effect of

flow or flow shear on interchange modes [53, 54], on ballooning modes [55, 56], toroidal ro-

tation effects on internal modes [57, 38, 58] and on resistive-wall-modes [59, 60], etc. In a

spirit similar to the previous works, we study the stability of external resistive-wall-modes for a

high-β plasma with diffuse flowing profiles at a significant fraction of the sound speed. These

modes represent the most dangerous MHD instability in a tokamak, by causing the movement

of the plasma towards the first wall they lead to the catastrophic termination of the plasma

confinement, a scenario referred to as a “disruption” [16].

This work is organized as follows. In chapter 2, MHD stationary axisymmetric states are

constructed as solutions of the Grad-Shafranov-Bernoulli system which include both rotation

in the toroidal and poloidal direction. We do this by taking advantage of a variational formula-

tion of the equilibrium problem, which is introduced in section 2.3. Under a high aspect ratio

approximation, we reduce the equilibrium problem to a linear PDE in section 2.4, which we
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solve for circular 2.7 and elliptical cross-sections 2.8 by constructing the corresponding Green’s

functions (see appendix A). The end result is a closed-form solution for a circular geometry

and a series solution in terms of Mathieu function for an elliptical geometry, both of which are

then benchmarked against the code FLOW [61] in section 2.6. In section 2.9 the previously

constructed Green’s functions for the elliptical case are used as the basis to obtain a solution

for a D-shaped cross-section. This is done by means of a boundary perturbation technique. As

a first step towards studying external modes in the presence of resistive and ideal walls, we con-

struct a self-consistent vacuum equilibrium (section 3.2). The stability problem is approached

using the Frieman-Rotenberg’s formulation and following Betti’s work [60] (section 3.3). In

fact, we use a modification of the solid toroidal rotation formalism elaborated in [60] as a “first

guess generator” in order to find approximate eigenvalues and eigenmodes for our diffuse equi-

librium. Beta-limits for ideal and resistive walls, for static and toroidally rotating plasmas, are

then given in section 3.6. Finally, appendices D and E deal with other equilibrium and sta-

bility aspects. In two-fluid theory, the ion velocity develops a component normal to magnetic

surfaces which is not present in single-fluid ideal MHD, even though we do not consider its

stability implications, we provide an approximation of such velocity component based on our

single-fluid equilibrium model. In appendix E, we revisit the classical Kelvin-Helmholtz insta-

bility studied by Chandrasekhar [62] and we recover his results using a continuous but strongly

sheared velocity profile instead of a discontinuous one.
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Chapter 2

Construction of a high-beta, analytic axisymmetric equilibrium with poloidal and toroidal
diffuse flow profiles in circular, elliptical and D-shaped scenarios.

2.1 Introduction

We have argued that the equilibrium and stability properties of fusion scenarios must be an-

alyzed in a self-consistent way. If sizable background flows are present in axisymmetric de-

vices, they should be included in the equilibrium formulation by solving the Grad-Shafranov-

Bernoulli (GSB) set of coupled equations 1.19-1.20.

The first numerical effort to solve the Grad-Shafranov-Bernoulli system corresponds to

the CLIO code [63]. Later on, FINESSE [64] was developed for fusion and astrophysical

purposes. It has been employed, for example, for solving the system in different elliptic flow

regimes and under different cross-sections [65]. FINESSE is used as the equilibrium module

in the PHOENIX MHD spectral code [66]. Transonic equilibria, where the poloidal velocity

transitions from values below to above the poloidal sound speed, were studied numerically

as the result of the FLOW code development [61]. FLOW has also been used to investigate

inverted Shafranov-shift scenarios, having a poloidal flow of the order of the poloidal Alfvén

speed [67].

The canonical analytic solution for the static Grad-Shafranov equation (Eq. 1.24) in the

context of fusion was introduced by Solov’ev [24]. Under a simple choice for the pressure

and poloidal current free functions, the equilibrium problem was reduced to an inhomoge-

neous PDE, which was then solved analytically. Since then, plenty of analytic solutions to
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the static problem have been obtained (see, for example, [14] and references therein). In con-

trast, analytic solutions for the stationary problem are scarce, but analytic work has been done

nonetheless [18, 68, 69, 70, 71, 72].

Analytic equilibrium solutions are valuable because they provide simple formulas which

highlight the interrelation between the competing contributions (centrifugal effects, gradients

of pressure, currents, etc.). Analytic solutions can be used as the first stage in a parameter space

scan and they are also valuable for code benchmarking.

Analytic solutions of the GSB system are tailored to explore one or other physical regime.

The simplifying assumptions needed to make analytical progress are the actual form of the

free functions on the poloidal flux and the targeted geometrical boundary. Additionally, a

common practice is to expand the governing equations in terms of an intrinsically occurring

small parameter to obtain a sequence of subproblems, whose solutions should be easier to

compute, and which correspond to successively higher order corrections.

In this chapter, we construct a family of analytic solutions with toroidal and poloidal back-

ground diffuse flows for cross-sections which are relevant to existing experiments. We do this

by a combination of an expansion in terms of the inverse aspect ratio (Eq. 1.2) and another

in terms of the triangularity (Eq. 1.4). The resulting formulation can be implemented in sta-

bility analyses and in fact, that is what we do in the next chapter, where external ideal- and

resistive-wall-modes are analyzed.

The discussion is organized as follows. The physical regime of interest is specified in

section 2.2. In section 2.3, we introduce an alternative formulation of the GSB system, which

is then used as the basis for the large aspect ratio approximation in section 2.4. Solutions for

a circular and elliptical cross-sections are given in sections 2.7 and 2.8, respectively. Some

figures of merit for the circular-cross section are introduced in subsection 2.7.1. Convergence

tests against the FLOW code for these scenarios are presented in section 2.6. A solution method

for a D-shaped cross-section is built upon the elliptical solution; it is explained in section 2.9. .

Results are summarized in 2.10.
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2.2 Ordering: defining the relevant regime

It is advantageous for fusion purposes to confine as much pressure given an externally imposed

magnetic field. Therefore, our aim is to obtain self-consistent solutions of the GSB system for

a high-beta scenario which incorporate both toroidal and poloidal flows.

In high-beta scenarios βϕ ∼ O(ε)1, where the inverse aspect ratio has been defined before

(Eq. 1.2) . We will employ the inverse aspect ratio as an expansion parameter. This is a common

tool to deal with axisymmetric devices. Experiments like ITER (Ro ∼ 6.2m, a ∼ 2m and

ε ∼ 0.32), DIII-D (Ro ∼ 1.68m, a ∼ 0.62m and ε ∼ 0.36), ASDEX Upgrade (Ro ∼ 1.65m,

a ∼ 0.65m and ε ∼ 0.39) and CTH in its tokamak-like operation (Ro ∼ 0.75m, a ∼ 0.29m

and ε ∼ 0.39), all have inverse aspect ratios below unity by definition, so that higher-order

solutions are progressively smaller (εn+1 < εn for n = 1, 2, 3...).

The toroidal velocity will be assumed to scale as Vϕ/Cs ∼ O(ε1/2), where

Cs ≡
√
γpo/ρo, (2.1)

is the sound speed, and po and ρo are the kinetic pressure and mass density at the geometrical

axis, respectively. For the poloidal velocity we assume one order smaller, i.e., Vp ∼ εVϕ.

Finally, the poloidal magnetic field is assumed to scale as Bp/Bo ∼ O(ε), which implies that

the kink safety factor (defined in Eq. 2.37 for a circular cross-section) is of order q∗ ∼ O(1).

2.3 Variational formulation of MHD axisymmetric equilibrium configurations

The GSB system describes equilibrium states with background flow. Additionally, these states

are given as the stationary points of the action G:

G ≡
∫
L(Ψ, ρ,∇Ψ)RdRdZ, (2.2)

1As opposed to a low-beta or ohmically heated scenario, where βϕ ∼ O(ε2) [16].
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where the associated Lagrangian is defined as

L(Ψ, ρ,∇Ψ) ≡
(

1− Φ(Ψ)2

ρ

)
|∇Ψ|2

2R2µo
+
S(Ψ)ργ

γ − 1
−H(Ψ)ρ− 1

2
ρR2Ω(Ψ)2

− 1

2µo

[
F (Ψ)/R +

√
µoRΦ(Ψ)Ω(Ψ)

]2
[1− Φ(Ψ)2/ρ]

,

(2.3)

and the generalized coordinates are taken here as the poloidal flux and the mass density [73].

Indeed, a straightforward application of Euler-Lagrange equations:

∂

∂R

(
∂(RL)

∂
(
∂Ψ
∂R

))+
∂

∂Z

(
∂(RL)

∂
(
∂Ψ
∂Z

)) =
∂(RL)

∂Ψ
, (2.4)

∂

∂R

(
∂(RL)

∂
(
∂ρ
∂R

))+
∂

∂Z

(
∂(RL)

∂
(
∂ρ
∂Z

)) =
∂(RL)

∂ρ
, (2.5)

leads to the GS and Bernoulli’s equations, in that order.

The usefulness of performing an asymptotic analysis of the variational formulation comes

from a theorem proved by Hameiri [74]. In particular, this theorem guarantees that by taking

the asymptotic expansion at the functional level (Eq. 2.2) it is possible to recover the asymptotic

expansion of the GSB system if an appropriate order-by-order variational process is applied.

In this sense, the operations “take the variation” and “perform the asymptotic expansion” are

commutative. The subtlety is that, after performing the asymptotic expansion at the functional

level, it is not immediately clear how to take the variation with respect to the generalized co-

ordinates anymore, since these quantities have been expanded as well. The answer is that the

variation should be taken with respect to the leading order term in their expansion [74]. In

practice, taking the asymptotic expansion first and applying the variational process later, eases

the algebraic manipulations.

2.4 Scaling, notation conventions and asymptotic expansion

As a preamble to carrying out the asymptotic expansion, we introduce scaled quantities. In

general, scaled quantities will be denoted with an overline, an exception being the poloidal

flux; throughout this text, we always use (Ψ) to denote the poloidal flux in SI units and (ψ) to
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Original [SI units] = Scaled × Factor
Ψ ψ a2Bo

ρ ρ ρo
Bp Bp εBo

Bϕ Bϕ Bo

Vp Vp ε2VAo
Vϕ Vϕ εVAo
r r a
Z z a
R R Ro

x x a
∇ ∇ a−1

F (Ψ) F (ψ) RoBo

Ω(Ψ) Ω(ψ) aVAo/R
2
o

Φ(Ψ) Φ(ψ) ε
√
ρo

H(Ψ) H(ψ) εV 2
Ao

S(Ψ) S(ψ) εV 2
Ao/ρ

γ−1
o

L(Ψ, ρ,∇Ψ) L(ψ, ρ,∇ψ) aR2
oB

2
o

Table 2.1: Physical quantities in SI units and associated scaling factors. A given quantity in SI
units is obtained by multiplying the scaled one by its corresponding factor. These factors are
consistent with the ordering established in section 2.2 and are introduced with the philosophy
of ensuring that scaled quantities are not only dimensionless but also of ∼ O(1) in the inverse
aspect ratio. Bo and ρo are the toroidal magnetic field and mass density at the geometrical axis,
respectively; VAo ≡ Bo/

√
ρoµo is the Alfvén velocity. x ≡ R − Ro is a chamber-centered

coordinate. The definition of the scaled free functions involves a change of coordinates from Ψ
to ψ.

denote its dimensionless form:

Ψ(r, θ) = Boa
2ψ (r, θ) . (2.6)

The complete list of scaled quantities and corresponding scaling factors is given in Table 2.1.

These factors are consistent with the ordering established in section 2.2 and are introduced with

the philosophy of ensuring that scaled quantities are not only dimensionless but also of∼ O(1)

in the inverse aspect ratio.

We can then write down expressions for the scaled action

G(ψ, ρ,∇ ψ) =

∫
L(ψ, ρ,∇ ψ) (1 + ε x) d x d z, (2.7)
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and for the Lagrangian of the system

L(ψ, ρ,∇ψ) =
ε2|∇ψ|2

2R
2

[
1− ε2Φ

2

ρ

]
− εHρ

− 1

2

[
F/R + ε2R Φ Ω

]2
1− ε2Φ

2
/ρ

+
εSρ γ

γ − 1
− ε2ρR

2
Ω

2

2
,

(2.8)

where R = 1 + ε x. Proceeding further, we expand all scaled quantities (Q) as

Q = Q0 + ε Q1 + ε2 Q2 + ..., where Qk ∼ O(1) for k = 0, 1, 2, ... (2.9)

The first three contributions in the Lagrangian expansion are

L0 =
1

2
F

2

0, (2.10)

L1 = F 0

(
F
′
0ψ1 − xF 0 + F 1

)
+H0ρ0 −

S0ρ
γ
0

γ − 1
, (2.11)

and

L2 =
1

2
F

2

0

[
Φ

2

0

ρ0

+ 3x2

]
+ F 2F 0 +

1

2
F

2

1 + F 0Φ0Ω0 +
1

2
ψ2

1

[
F
′2
0 + F 0F

′′
0

]
+ ρ1

[
H0 −

γS0ρ
γ−1
0

γ − 1

]
+ ψ1

[
H
′
0ρ0 −

S
′
0ρ
γ
0

γ − 1
+ (F 0F 1)′ − 2xF 0F

′
0

]

+

[
H1 +

1

2
Ω

2

0

]
ρ0 −

S1ρ
γ
0

γ − 1
− 2xF 0F 1 −

|∇ψ0|2

2
.

(2.12)

For the scaled action in Eq. 2.7, the 0-th term is

G0 =

∫
L0 d x d z, (2.13)

and the k-th term is given by

Gk =

∫ (
Lk + x Lk−1

)
d x d z, for k = 1, 2, 3... (2.14)
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Clearly, successive orders of the Lagrangian density (Lk−1 and Lk) appear in this expression

because of the Jacobian’s determinant 1 + ε x in Eq. 2.7.

As pointed out earlier, the generalized coordinates themselves have been expanded. To

recover the Grad-Shafranov-Bernoulli contributions at each order, it is now necessary to take

the variations of equations 2.13-2.14 with respect to the lowest order scaled poloidal flux (ψ0)

and scaled mass density (ρ0) [74]. We now proceed to take the variations.

The variation of Eq. 2.13 with respect to the poloidal flux results in

F 0 = constant, (2.15)

and its variation with respect to the mass density leads to a trivial result. For k = 1, the

variation of Eq. 2.14 with respect to ρ0 leads to a Bernoulli’s equation which can be solved for

the lowest-order mass density:

ρ0(x, z) = ρ0(ψ0) =

(
(γ − 1)H0(ψ0)

γS0(ψ0)

)1/(γ−1)

, (2.16)

and the variation with respect to ψ0 results in a constraint for F 1:

F
′
1 =

ρ0
γS
′
0 − (γ − 1)ρ0H

′
0

(γ − 1)F 0

. (2.17)

These expressions can also be obtained in a straightforward way from the GSB system by a

direct calculation. It is when dealing with higher order terms that using the variational principle

eases the algebraic manipulation. For k = 2, taking the variation of Eq. 2.14 with respect to ρ0

leads to:

ρ1(x, z) = ρ′0(ψ0)ψ1(x, z)− F
2

0Φ0
2ρ−γ0

2γS0

+
ρ2−γ

0

γS0

(
H1 +

Ω
2

0

2

)
− ρ0S1

(γ − 1)S0

. (2.18)
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This signifies that the first-order plasma density is a flux quantity. From the variation with

respect to ψ0 and further algebraic manipulations the outcome is the leading order GS equation:

∇2
ψ0 + F 1F

′
1 + F 0F

′
2 +

F
2

0Φ0Φ
′
0

ρ0

− ρ0S1H
′
0

(γ − 1)S0

+
γS1ρ

γ
0S
′
0

(γ − 1)2S0

+
ρ−γ0 H

′
0

[
ρ2

0

(
2H1 + Ω

2

0

)
− F 2

0Φ
2

0

]
2γS0

−
S
′
0

[
ρ2

0

(
2H1 + Ω

2

0

)
− F 2

0Φ
2

0

]
2(γ − 1)ρ0S0

− ργ0S
′
1

γ − 1
+ F 0(Ω0Φ0)′ + ρ0

[
H
′
1 + Ω0Ω

′
0

]
− 2xF 0F

′
1 = 0.

(2.19)

For an arbitrary choice of the free functions, this PDE is non-linear in the poloidal flux (in

general) and is still difficult to solve in an analytic way.

2.5 Choice of the free functions and simplification to a Helmholtz equation

In order to make analytical progress, we look for a simple yet sufficiently flexible set of free

functions which transform the GS equation into a linear PDE. By assuming a polynomial de-

pendence of the free functions on the poloidal flux

F (ψ) = f0 + ε (f1ψ) + ε2
(
f2ψ +

1

2
f22ψ

2

)
,

S(ψ) = s0ψ + ε

(
s1ψ +

1

2
s11ψ

2

)
,

H(ψ) = h0ψ + ε

(
h1ψ +

1

2
h11ψ

2

)
,

Φ(ψ) = φ0ψ,

Ω(ψ) = ω0ψ,

(2.20)

Eq. 2.19 turns into a two-dimensional inhomogeneous Helmholtz equation:

(∇2
+ λ)ψ = A+ C x, (2.21)
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where the constants A, C and λ are given by:

A = −f0f2 − ρ0h1 +
s1ρ

γ
0

γ − 1
,

C = 2f0f1,

λ = f 2
1 + f0f22 +

(f0φ0 + ρ0ω0)2

ρ0

+ ρ0h11 −
s11ρ

γ
0

γ − 1
.

(2.22)

On the other hand, the leading order mass density in Eq. 2.16 reduces to the constant value

ρ0 =

[
(γ − 1)h0

γs0

]1/(γ−1)

. (2.23)

A lowest-order density and the first-order poloidal flux in Eq. 2.18; which can now be simpli-

fied to

ρ1(ψ0) =
ρ0

2γC
[A+ f0f2 + s1ρ

γ
0 ] +

ψ0

2γs0

[
ρ2−γ

0 (h11 + ω2
0)− f 2

0φ
2
0

ργ0
+
γs11ρ0

1− γ

]
. (2.24)

Several remarks are in order. We have introduced a set of dimensionless constants (the

“free coefficients”): f0, f1, f2, f22, s0, s1, s11, h0, h1, h11, φ0 and ω0 which should be of

∼ O(1). In consistency with Eq. 2.15 the leading order term in F has been chosen to be

constant (f0); this term controls the vacuum toroidal magnetic field. Its diamagnetic depression

(or paramagnetic response in the case, e.g., of a reversed field pinch or possibly an ohmic

tokamak) is determined by f1, f2 and f22. The pressure profile is controlled by a combination

of s0, s1, s11 and mass density according to the closure Eq. 1.23. From Eq. 2.17 we obtain the

leading order term in the diamagnetic depression

f1 =
ρ0h0(1− γ)

γf0

= −p
′
o(ψo)

f0

, (2.25)

where the leading order pressure is a linear function on the poloidal flux

p0(ψ0) = s0ρ
γ
0ψ0 ≡ p0ψ0, (2.26)
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i.e., in this approximation, isobaric surfaces are flux surfaces to lowest order. Clearly, φ0 and

ω0 are scaling factors for the velocity profile. Ultimately, it is the parameters A, C, and λ

which determine the poloidal flux. They will be related to physical quantities for a circular-

cross section in the next section. Finally, notice that the inhomogeneous Helmholtz equation

has been considered before [75, 76] but for scenarios without background flow. The analytical

solutions constructed in this work are more general.

In the following sections, we provide a solution to the inhomogeneous Helmholtz equa-

tion under the Dirichlet condition (ψ0 = 0) and over fusion-relevant cross-sections: circular,

elliptical and D-shaped. The solutions are constructed by the Green’s function method.

2.6 Benchmark against the code FLOW

In this section, we provide a short description of the FLOW code [61], which is used to bench-

mark the analytic approximations we construct throughout this chapter. FLOW computes nu-

merical solutions for the complete Grad-Shafranov-Bernoulli system without any approxima-

tions. Its input is an alternative set of free functions: the quasi-density D(Ψ), quasi-pressure

P (Ψ), quasi-sonic poloidal Mach number Mθ(Ψ), quasi-sonic toroidal Mach number Mϕ(Ψ)

and quasi-toroidal magnetic field Bo(Ψ), which were first introduced in [77]. The relation

between the standard and quasi-physical free functions is given by

(
R2
oΩ

2(Ψ) + 2H(Ψ)
)
D2 − 2γS(Ψ)Dγ+1

γ − 1
= Φ2(Ψ)F 2(Ψ), (2.27)

P = S(Ψ)Dγ, (2.28)

Mθ =
Φ(Ψ)F (Ψ)√

γPD
, (2.29)

Mφ = Mθ +RoΩ(Ψ)

√
D

γP
, (2.30)

Bo =
F (Ψ)

Ro

, (2.31)
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where an MHD closure has been chosen. The alternative set of free functions approaches the

corresponding physical variables in the vanishing flow and infinite aspect ratio limit, in this

respect, it is more useful for practical applications than the original set of free functions.

For a given self-consistent set of free coefficients and geometrical parameters we can then

transform our original free functions profiles given by Eqs. 2.20 to the quasi-physical ones. In

the adiabatic case, where γ = 5/3, Eq. 2.27 defines a fourth order polynomial for D2, which is

trivially solved. The other quasi-physical free functions are obtained in a direct way.

Finally, we define the relative error between the analytical approximation (Ψanalytical) and

the numerical solution (ΨFLOW ) as

E(ΨFLOW ,Ψanalytical) =
||Ψanalytical −ΨFLOW ||

||ΨFLOW ||
× 100%, (2.32)

where ||.|| stands for the usual 2-norm, that is to say, given a matrix X of dimensions M ×N

||X|| ≡

√√√√M,N∑
i,j

(Xij)
2. (2.33)

2.7 Circular solution

To deal with a circular cross-section we use the dimensionless polar coordinates x = r cos(θ),

z = r sin(θ) centered at the geometrical axis (Ro). In order to guarantee that the lowest order

plasma pressure (Eq. 2.26) vanishes at the plasma edge, we choose ψ0(1, θ) = 0 for θ ∈ [0, 2π]

as our boundary condition. We construct two Green’s functions based on an expansion in a

complete set of functions for θ and a piecewise function for r, they correspond to λ being

positive or negative and are given in Appendix A. After integrating the sources over the cross-

section we obtain a closed-form solution for the poloidal flux of the simple form:

ψ0 (r, θ) = ψa(r) + ψb(r) cos(θ), (2.34)
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The first contribution includes Bessel functions of the first kind

ψa(r) =
J0

(√
λ
)
− J0

(
r
√
λ
)

q∗J1

(√
λ
)√

λ
, (2.35)

while the second term depends on Bessel functions of the first kind and second kind, the regu-

larized hypergeometric function and the Meijer-G-function:

ψb(r) =
2νJ1

(√
λ
)
π

q∗ 0F̃1

(
; 3;−λ

4

)
λ

r
2J2

(√
λr
)
Y1

(√
λr
)
− J1

(√
λr
)J2

(√
λ
)
Y1

(√
λ
)

J1

(√
λ
)

−G2,1
2,4

√λ
2
,
1

2
|

0,−1
2

0, 1,−1,−1
2

+

√
λr3

2
G2,1

2,4

r√λ
2

,
1

2
|

−1
2
,−1

−1
2
, 1

2
,−3

2
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.
(2.36)

Details about the Meijer-G-function can be found in [78]. When writing these expressions we

have replaced the constants A and C with two new parameters: q∗ and ν. For a circularly

shaped plasma the kink safety factor is defined as [16, pp. 68-70]:

q∗ =
aBϕ

RoBp

=
2πa2Bo

µoRoI
, (2.37)

where I represents the total toroidal current and the other quantities have been defined before.

On the other hand, the parameter ν is a combination of the kink safety factor, the inverse aspect

ratio and the average value of the plasma beta:

ν ≡ βq2
∗
ε
. (2.38)

In this definition, the average plasma beta is taken over the whole plasma volume (Vp):

β ≡ 2µo〈p〉
B2
o

=
2µo
B2
o

1

Vp

∫
pd3r. (2.39)
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Thus, following Eqs. 2.37-2.39 we can derive

A =

√
λJ0

(√
λ
)

q∗J1

(√
λ
) , (2.40)

and

C =
4νJ1

(√
λ
)

q∗ 0F̃1

(
; 3;−λ

4

)√
λ
. (2.41)

Alternatively, we can construct Green’s functions which involve an expansion in a complete set

of functions in both the θ and r directions. After integrating out the inhomogeneity we obtain

a series representation for both Eq. 2.35 and Eq. 2.36:

ψa(r) =
∞∑
k=1

2
√
λJ0

(√
λ
)
J0 (rj0,k)

q∗J1

(√
λ
)
j0,k (λ− (j0,k) 2) J1 (j0,k)

, (2.42)

ψb(r) =
∞∑
k=1

32νJ1

(√
λ
)
J2 (j1,k) J1 (rj1,k)

q∗
√
λ 0F̃1

(
; 3;−λ

4

)
j1,k

(
λ− (j1,k)

2) (J0 (j1,k)− J2 (j1,k))
2
, (2.43)

where j0,k and j1,k represent the k-th zero of the first and second Bessel function of the first

kind, respectively. The series representation 2.43 might be useful if the Meijer-G-function is

not defined in the programing language of preference.

It is apparent that the points λ = j2
0,k and λ = j2

1,k for k = 1, 2, 3... are problematic.

In fact, our problem does not have a solution for such cases. The reason is that at least one

term in the Fourier-Bessel expansion (needed to deal with the “radial part” of Eq. 2.21 after

separation of variables) would vanish, effectively removing a function from either one of the

complete sets: {J0 (j0,kr)} or {J1 (j1,kr)}. The first zeros of the Bessel functions are j0,k =

2.4048, 5.5201, 8.6537 and j1,k = 3.8317, 7.0156, 10.1735. Since these points are far apart

from each other, the lack of a solution in those cases does not represent a problem.
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Figure 2.1 compares the analytical circular solution against the code FLOW in a typical

case. We observe good flux surfaces with an outward Shafranov-Shift, furthermore, the ana-

lytical solution satisfies boundary conditions exactly (by construction). There is a relative shift

between the analytical and FLOW-generated solution. This is due to the fact that the analyt-

ical solution is the lowest-order approximation in terms of the inverse aspect ratio, while the

numerical solution corresponds to the exact GSB system.

2.0 2.5 3.0 3.5 4.0
R [a.u.]

−1.0

−0.5

0.0

0.5

1.0

Z 
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.u
.]

Ψ− contours, δ=  0, κ=1, ǫ=0.32

Plasma edge Anal tic FLOW code

Figure 2.1: Analytic and FLOW-generated magnetic surfaces for a circular configuration with
ε = 0.32. The analytical poloidal flux vanishes at the plasma edge by construction. The relative
shift between the analytic and numerical solution is explained by the fact that the former is a
large aspect ratio approximation for the GSB system, while the later solves the exact system.
The equilibria correspond to the set of parameters listed as Case II in Table 2.2.

2.7.1 Recovering J. P. Freidberg’s static solution as a limiting case and evaluation of some

figures of merit

As in Freidberg’s high-beta static equilibrium formulation ([16, pp. 154-164]) our solution is

expressed in terms of the kink-safety factor (q∗ ∼ 1) and the parameter ν = βq∗
2/ε. Even

though our stationary (and Freidberg’s static) equilibrium solution is formally derived for high-

beta scenarios (ν ∼ 1), it is possible to explore low-beta configurations (ν << 1) as well. λ
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Variable Case I Case II Case III
f0 1.00 1.00 1.00
f1 -0.75 -0.75 -0.75
f2 0.93 0.64 0.44
f22 -0.09 -0.41 -0.41
s0 4.00 3.00 3.00
s1 1.00 1.00 1.00
s11 -0.50 -0.50 -0.50
h0 0.75 4.31 4.31
h1 1.00 1.00 1.00
h11 1.00 1.00 1.00
ω0 0.50 0.60 0.60
φ0 0.30 0.30 0.30
A -1.00 -0.70 -0.50
C -1.50 -1.50 -1.50
λ 1.50 1.50 1.50
γ 5/3 5/3 5/3
a 1 m 1 m 1 m
Ro 4.5 m varying 3 m
ε 0.22 varying 0.32
κ 1 varying 1.70
δ 0 varying 0.33

Table 2.2: Three sets of parameters defining equilibrium configurations. These parameters
define the equilibrium states in the circular, elliptical and D-shaped cross-sections in figures
2.1-2.7.

is a dimensionless parameter which, in its vanishing limit, leads to Freidberg’s high-beta static

solution [16, Eq. (6.103)] exactly:

lim
λ→0

ψ0(r, θ) =
1

2q∗

[
(r2 − 1) + ν(r3 − r) cos(θ)

]
. (2.44)

As in Solov’ev [24] and other models, the equilibrium current described by our solution under-

goes a discontinuous jump to zero at the plasma edge.

It also instructive to notice that the safety factor at the plasma edge for our diffuse equilib-

rium

qa =
F (ψ)

2π

∮
dl

R2Bp

=
q∗√

1− ν2
, (2.45)

is the same that Freidberg arrives at with his model [16, Eq. (6.114)], i.e., the equilibrium beta-

limit (ν < 1) is independent of the flow strength. Intuitively, this has to be the case, as we
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approach the boundary (where ψ0 = 0 by construction), the Helmholtz equation approaches

the Poisson’s equation Freidberg considers in his formulation, therefore the “plasma-edge”

quantities should be the same. As commonly indicated in the literature, the kink safety factor

and the safety factor at the plasma edge coincide only for low beta-plasmas.

Another important figure of merit is the magnetic shear. This quantity measures the change

of the relative orientation of field lines in neighboring magnetic surfaces. Larger shear is related

to better stability properties, in general. In low-beta, large aspect ratio configurations, where

the poloidal flux is radially dependent (to leading order) a simple expression for the magnetic

shear can be found [16]:

s(r) ≡ r

q

dq

dr
, (2.46)

(not to be confused with the entropy free function) where q(r) is the safety factor defined as

q(r) ≡
(

1

r

dψ

dr

)−1

. (2.47)

We can regard the λ parameter as a measure of the magnetic shear. This is more easily seen by

considering a low-beta approximation first. In that regime, the average value of the magnetic

shear over the cross-section of the plasma (Ap) has a simple form:

〈s〉 ≡ 1

Ap

∫
s(r)d2r = 1− 2 ln

(
J1

(√
λ
))

+ 4

∫ 1

0

r ln
(
J1

(√
λr
))

dr +O(ν). (2.48)

This is to be understood as an implicit definition for λ as a function of the magnetic shear:

λ = λ (〈s〉) . (2.49)

Figure 2.2a shows a monotonic dependence between 〈s〉 and λ. Positive (negative) values for

the average shear correspond to positive (negative) values for λ. Moreover, as the magnetic

shear increases, λ approaches the squared value of a Bessel function’s zero (j2
1,1 = 14.682)

asymptotically. As exemplified in figure 2.2b for a low-beta configuration, the safety factor’s

concavity goes from downward to upward in accordance with the sign of λ, being flat when λ
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vanishes. For high-beta scenarios Eq. 2.48 is not valid anymore. Nevertheless, λ is still a good

measure of the magnetic shear in this regime. We motivate why this is so in connection with

Shafranov-Shift next.

The Shafranov-Shift (∆) refers to the displacement of the magnetic axis away from the

geometrical center (Ro) in a toroidal configuration. In standard cases, this displacement occurs

in the outward direction as a mechanism to provide toroidal force balance by the compression

of the poloidal magnetic field against the conducting wall of the confinement vessel. For a

λ = 0 scenario the Shafranov-Shift is given by

∆/a =

√
3ν2 + 1− 1

3ν
, (2.50)

This is illustrated in figure 2.2c. As expected, a similar dependence on ν is seen when λ 6= 0.

Starting from the shearless scenario in a low-beta configuration (λ = 0), consider an

infinitesimal (quasi-static) increase +dλ. As previously argued, in a low-beta regime λ is a

good measure of the magnetic shear, therefore, this infinitesimal change is accompanied with

a magnetic shear variation (+d〈s〉) which, in turn leads to an extra accumulation of poloidal

magnetic field in the outer region; as a result, a smaller Shafranov-Shift is needed to restore

toroidal force balance and the other way around for an infinitesimal decrease (−dλ). This ex-

plains the relative position of the three curves in the low-beta region of figure 2.2c. In the same

way, an infinitesimal magnetic shear variation (±d〈s〉) in a high-beta configuration induces a

change in the Shafranov-Shift: inward if there is an extra poloidal magnetic field in the outward

region and vice versa. Finally, the relative position of the three curves in figure 2.2c stays the

same all the way up to the high-beta region, therefore, we can extend our identification of λ as

a reasonable measure for the magnetic shear to high-beta configurations as well.

To sum up, the poloidal flux is specified by the kink safety factor (q∗), the plasma-beta

regime (ν) and a measure for the average magnetic shear (λ).
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(d) Shafranov-Shift (∆) induced by a chang-
ing magnetic shear (λ) in a high-beta (ν = 0.9)
scenario.

Figure 2.2: Shafranov-Shift (∆) and average magnetic shear (〈s〉). a) Monotonic increase of
λ with the average magnetic shear (〈s〉). b) Typical profiles for the safety factor for several
values of λ. c) Shafranov-Shift induced by a changing plasma pressure and magnetic shear. d)
High-beta illustration for the Shafranov-Shift at different λ values.
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2.8 Elliptical Solution

The solution’s construction for an elliptical cross-section is similar to the circular one. We build

appropriate Green’s functions and carry out the source term integration. However, the resulting

integrals are difficult to evaluate in a closed-form and the end result is a series-form solution.

We consider a vertical ellipse with semi-minor axis 1 and semi-major axis κ > 1 (the

elongation). The semi-focal distance is given by

f ≡ κ
√

1− κ−2. (2.51)

Points inside the ellipse are specified in terms of the elliptical coordinates (ζ , η), which behave

as a radial and an angular coordinate, respectively. The transformation to the chamber-centered

dimensionless Cartesian coordinate system is

x = f sinh(ζ) sin(η), (2.52)

z = f cosh(ζ) cos(η), (2.53)

where η ∈ [0, 2π] and 0 ≤ ζ ≤ ζo. The boundary of the ellipse occurs at the value ζ = ζo

which is given in terms of the elongation by

ζo = arctanh(κ−1). (2.54)

Therefore, in elliptical coordinates, the homogeneous Dirichlet boundary condition is expressed

as ψ0(ζo, η) = 0 for η ∈ [0, 2π].

From the standard separation of variables

ψ0(ζ, η) = Υ(ζ)χ(η), (2.55)
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the Helmholtz equation leads to the angular and radial Mathieu differential equations:

d2χ

dη2
+ (c− 2Λ cos(2η))χ = 0, χ(η) = χ(η + 2π), (2.56)

d2Υ

dζ2
− (c− 2Λ cosh(2ζ)) Υ = 0, Υ(ζo) = 0, (2.57)

where c is a separation constant and Λ ≡ f
2
λ/4 contains information about the chamber elon-

gation (through f ) and magnetic shear (through λ). The solution of Eq. 2.57 is required to

be regular at the origin. Mathieu functions are well studied [79, 78, 80, 81] and have been

employed in static equilibrium solutions for axisymmetric scenarios before [75, 82].

Solutions of the angular Mathieu functions can be thought of as the generalization of the

sine and cosine trigonometric functions. They are known as the cosine-elliptic and sine-elliptic

functions. The periodicity condition χm(η) = χm(η + 2π) restricts the allowed values of the

separation constant to a discrete set c = cm. These values are discriminated into two classes;

denoted by am(Λ) and bm(Λ), the first class corresponds to the values of the separation con-

stant associated with the cosine-elliptic function, while the second class corresponds to the

sine-elliptic function. In a similar way, the radial Mathieu functions are the generalization of

the Bessel function of the first or second kind: Jm, Nm, Im and Km [81]. For the same char-

acteristic values cm, the radial Mathieu ODE has two pairs of linearly independent solutions,

which are oscillatory (for Λ > 0) or evanescent (for Λ < 0). Table 2.3 summarizes the solutions

of the angular and radial Mathieu functions.

Parity Even Odd
Eigenvalue am(Λ) bm(Λ)
Angular cem (η,Λ) sem (η,Λ)
Radial Jem (ζ,Λ) Jom (ζ,Λ)
Λ > 0 Nem (ζ,Λ) Nom (ζ,Λ)
Radial Iem (ζ,Λ) Iom (ζ,Λ)
Λ < 0 Kem (ζ,Λ) Kom (ζ,Λ)

Table 2.3: The angular and radial Mathieu functions can be interpreted as the generalizations
of the harmonic and Bessel functions.
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In analogy to the procedure to tackle the circular case, we construct Green’s function

which involves an expansion for η in angular Mathieu functions and a piecewise function for

ζ in terms of the radial Mathieu functions. (see in Appendix A). After integrating the source

term we obtain a series solution of the form

elliptical

ψ0(ζ, η) =
∞∑
m=0

[A2m(ζ,Λ)ce2m(η,Λ) + C2m+1(ζ,Λ)se2m+1(η,Λ)]. (2.58)

The functions Am(ζ,Λ) and Cm(ζ,Λ) are integrals in the radial-like direction that have to be

evaluated numerically. For Λ > 0 these are

Am(ζ,Λ) ≡ Af
2
π

4Jem(ζo,Λ)

∫ ζo

0

Jem(ζ<,Λ)JNem(ζ>,Λ)KAm(ζ ′,Λ)dζ ′, (2.59)

Cm(ζ,Λ) ≡ Cf
3
π

4Jom(ζo,Λ)

∫ ζo

0

Jom(ζ<,Λ)JNom(ζ>,Λ)KCm(ζ ′,Λ)dζ ′, (2.60)

The integration is carried out trough the variable ζ ′. (ζ<, ζ>) refer to the minimum or maximum

between the point of observation ζ and the integration variable ζ ′, i.e., for a given point of

interest ζ , the value of ζ< will be equal to the integration variable if ζ ′ < ζ and equal to the

point of interest if ζ < ζ ′, and the opposite for ζ>. Additionally, we have defined JNem and

JNom as an antisymmetric combination of the corresponding radial Mathieu functions (Jem,

Nem, Jom, Nom). This is a standard combination that appears when constructing a Green’s

function using a piecewise function for the radial direction. The combination arises in order

to satisfy the boundary condition Υ(ζo) = 0. Furthermore, the integrals 2.58 and 2.59 involve

extra functions: KAm(ζ,Λ) and KCm(ζ,Λ). They are given by

KAm(ζ,Λ) ≡ 2Dm
0 (Λ) cosh(2ζ)−Dm

2 (Λ), (2.61)

KCm(ζ,Λ) ≡
[
Bm

1 (Λ)

[
1

2
+ cosh(2ζ)

]
− 1

2
Bm

3 (Λ)

]
sinh(ζ). (2.62)
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Dm
0 (Λ), Dm

2 (Λ), Bm
1 (Λ) and Bm

3 (Λ) are Fourier components of the angular Mathieu functions

(see Appendix B). Similar expressions could be constructed for the Λ < 0 case employing the

evanescent radial Mathieu functions instead.

An equilibrium configuration under realistic values of elongation (κ = 1.7) and inverse

aspect ratio (ε = 0.32) is shown in Fig. 2.3. As in the circular case, the analytic solution

satisfies the vanishing poloidal flux condition at the plasma edge by construction. In the test

cases shown here, the analytic approximations underestimate the Shafranov-Shift.
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Figure 2.3: Analytic and FLOW-generated magnetic surfaces for an elliptical (κ = 1.7) config-
uration with ε = 0.32. The analytic poloidal flux vanishes at the plasma edge by construction.
The relative shift between the analytic and numerical solution is explained by the fact that the
former is a large aspect ratio approximation for the GSB system, while the latter solves the
exact system. The equilibria correspond to the set of parameters listed as Case II in Table 2.2.

Figures 2.4 and 2.5 illustrate midplane profiles of several quantities of interest (magnetic

field, pressure, number density and velocity fields) for a standard configuration. In particular,

observe the correct shaping of the density profile in figure 2.4d. In accordance with Eq. 2.24,

this shaping can be calculated without solving for the first-order poloidal flux (ψ1). This feature
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results from our ordering and free function choosing. We have assumed a deuterium plasma

with ion mass md = 3.34 × 10−27kg. Figure 2.5a shows a maximum plasma-beta of the

order βϕ max ∼ O(ε), which corresponds to a high-beta configuration. Figures 2.5c-2.5d show

toroidal and poloidal velocities in the range they are present in experiments.

(a) Toroidal magnetic field (b) Poloidal magnetic field

(c) Pressure (d) Number density

Figure 2.4: Typical midplane equilibrium quantities for a circularly shaped plasma of a small
inverse aspect ratio (ε = 0.22) determined analytically and with the code FLOW. (a) toroidal
magnetic field, (b) poloidal magnetic field, (c) kinetic pressure and (d) number density. The
profiles correspond to the equilibrium parameters listed as Case I in Table 2.2.

All the analytic approximations we have constructed correspond to the lowest-order part

in a power series expansion in terms of the inverse aspect ratio. On the other hand, numerical

solutions can be regarded as exact since FLOW solves the GSB with only numerical approx-

imations. It follows that the relative error between the two should be linear in the expansion

parameter. This trend is confirmed in Fig. 2.6 for the circular and elliptical cases.
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The elliptical solution we have constructed is given in a series-form (Eq. 2.58). As ex-

emplified in figures 2.6a, 2.6b and 2.6c for scenarios with realistic elongations (κ = 1.3 − 2),

convergence is reached by considering a “small” number of terms in the series. Furthermore,

by progressively reducing the elongation (the number of terms in the series-form solution be-

ing fixed) the relative error diminishes, reaching a minimum value for the circular configuration

(which is computed by the closed-form solution in Eqs. 2.35-2.36). This is illustrated in figure

2.6d.

(a) Beta toroidal (b) Poloidal magnetic flux

(c) Toroidal velocity (d) Poloidal velocity

Figure 2.5: Typical midplane equilibrium quantities for a circularly shaped plasma of a small
inverse aspect ratio (ε = 0.22) determined analytically and with the code FLOW. (a) beta
toroidal, (b) poloidal magnetic flux, (c) toroidal velocity and (d) poloidal velocity. The profiles
correspond to the equilibrium parameters listed as Case I in Table 2.2.
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(d) Varying κ.

Figure 2.6: Relative error between the analytical and FLOW-generated poloidal flux as a func-
tion of the inverse aspect ratio for elliptically and circularly shaped configurations. R2 stands
here for the coefficient of determination. For the fixed set of parameters corresponding to Case
II in Table 2.2, figures (a), (b) and (c) illustrate the error for a varying number of terms in the
series-form elliptical solution (Eq. 2.58). The number of considered terms is equal to 2m + 2,
where m is an integer assuming the indicated values. Fig. (d) shows an error comparison for a
varying elongation (with m = 2 fixed) having as the lower-bound the error associated with the
circular solution (κ = 1).

2.9 D-shape solution

The main difficulty when dealing with a tokamak having a D-shaped cross-section is geo-

metrical. For this problem, we employ another solution strategy. The underlying idea is to

successively approximate the D-shape solution with correction terms which are computed by

solving PDE’s over an ellipse and, in this way, trading the D-shape geometrical difficulties to

solve an infinite sequence of simpler problems. Furthermore, we will be able to reutilize the
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Green’s functions in elliptical coordinates constructed in the last section, making the approach

even more economical in terms of extra calculations.

2.9.1 D-shape reparametrization

A D-shape boundary parametrization has been given in Eq. 1.3. A dimensionless representation

in chamber-centered coordinates is

x = cos(τ + α sin(τ)), (2.63)

z = κ sin(τ), (2.64)

where the triangularity (δ) has been defined before in terms of the α parameter. Convex bound-

aries satisfy α ≤ 1. Negative triangularity scenarios are also a possibility. For the cases we

will be interested in we will assume |δ| << 1, and from Eq. 1.4 it follows that δ ∼ α. It is

also clear that if α = 0 the parametrization traces the vertical ellipse of semi-minor axis 1 and

semi-mayor axis κ > 1 we dealt with in section 2.8.

In order to exploit the “elliptical Green’s functions” later on we introduce an alternative

parametrization:

x = f sinh(ζ0) sin (η − α cos(η)) , (2.65)

z = f cosh(ζo) cos(η), (2.66)

where ζo has been defined in Eq. 2.54 and the semi-focal distance (f ) is given by 2.51. Clearly,

η ∈ [0, 2π] is an elliptic-like angular coordinate. From the change of variables τ = η − π/2 it

follows that, up to direction of parametrization Eqs. 2.63-2.64 are equivalent to Eqs. 2.65-2.66.

2.9.2 D-shape solution from a boundary perturbation technique

A comparison of the x coordinate parametrization for the elliptical boundary (Eq. 2.52) against

its parametrization for the D-shape boundary (Eq. 2.65) suggests that we expand the latter in
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terms of the triangularity:

x = f sinh(ζ0)

[
sin(η)− α cos2(η)− α2

2
cos2(η) sin(η) + ...

]
. (2.67)

The first term in this expansion corresponds to Eq. 2.52 and the remaining ones can be thought

of as deviations away from the elliptical boundary. The overall perturbation is denoted by

δx ≡ α δx1 + α2 δx2 + ... , (2.68)

where

δx1 = −f sinh(ζ0) cos2(η),

δx2 = −f sinh(ζ0) cos2(η) sin(η)/2,

(2.69)

and so on. We denote by ∂D and ∂E the exact D-shaped and elliptical boundaries, respectively.

Let us now recall that the problem we need to solve is given by the leading GS equation (Eq.

2.21), which we rewrite here for convenience:

(∇2
+ λ)ψ0 = A+ C x, ψ0|∂D = 0. (2.70)

We recall also that ψ0 denotes the lowest-order poloidal flux in the inverse aspect ratio expan-

sion. To transfer the boundary conditions from ∂D to ∂E in Eq. 2.70 we make use of the

Taylor expansion

ψ0|∂D = ψ0|∂E +
∂ψ0

∂x

∣∣∣∣
∂E

δx+
1

2

∂2ψ0

∂x2

∣∣∣∣
∂E

δx
2

+ ... , (2.71)

It should be stressed that, while the LHS is evaluated at ∂D, the RHS is evaluated at ∂E.

Moving on, we now propose a power series expansion for the lowest-order poloidal flux in

terms of the triangularity:

ψ0 = ψ
(0)
0 + α ψ

(1)
0 + ... (2.72)
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and we substitute it back in the equilibrium problem: both in the partial differential equation

(Eq. 2.70) and in the boundary condition, as given by the Taylor expansion 2.71. In this way, we

end up with a collection of problems corresponding to progressively higher O(αk) corrections,

each one of them with boundary conditions at ∂E.

The O(α0) problem:

(∇2
+ λ)ψ

(0)
0 = A+ C x, ψ

(0)
0

∣∣∣
∂E

= 0, (2.73)

has already been solved in the previous section. Its solution is given by Eq. 2.58. Higher order

corrections obey a homogeneous PDE, with an inhomogeneous Dirichlet boundary condition

dependent upon lower order corrections

(∇2
+ λ)ψ

(i)
0 = 0, ψ

(i)
0

∣∣∣
∂E
6= 0, B.C. depends on ψ

(i−1)
0 , ψ

(i−2)
0 , ...ψ

(0)
0 . (2.74)

In particular, the order O(α) boundary condition is

ψ
(1)
0

∣∣∣
∂E

= −δx1
∂ψ

(0)
0

∂x

∣∣∣∣∣
∂E

, (2.75)

and the O(α2) boundary condition is

ψ
(2)
0

∣∣∣
∂E

= −δx1
∂ψ

(1)
0

∂x

∣∣∣∣∣
∂E

− δx2
∂ψ

(0)
0

∂x

∣∣∣∣∣
∂E

− δx
2

1

2

∂2ψ
(0)
0

∂x2

∣∣∣∣∣
∂E

. (2.76)

The generic solution to the i-th problem in Eq. 2.74 is found by employing the Green’s func-

tions for an elliptic cross-section we constructed in section 2.8. The solution is given by a

contour integral of the boundary condition over ∂E and it can be expressed as a superposition

of the radial and angular Mathieu functions:

D-shape

ψ
(i)
0 (ζ, η) =

∞∑
n=0

C(i)
n Jen(ζ,Λ)cen(η,Λ) +

∞∑
n=1

A(i)
n Jon(ζ,Λ)sen(η,Λ). (2.77)
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Eq. 2.77 has been written in terms of oscillatory radial Mathieu functions by assuming a Λ >

0 scenario. For Λ < 0 it is necessary to employ the evanescent radial Mathieu functions

instead. The first and second-order α-corrections are provided in Appendix C but higher-order

corrections can be constructed using the Green’s function given in Appendix A.

Figure 2.7 exemplifies D-shaped configurations for realistic, ITER-like parameters in elon-

gation (κ = 1.7), inverse aspect ratio (ε = 0.32) and triangularity (δ = 0.23, 0.32). The illus-

trations consider the 1-st and 2-nd order corrections in terms of the triangularity, as well as

FLOW-generated numerical solutions for comparison. In particular, contrary to the elliptical

case, the curve defined by the condition Ψanalytic = 0 matches the plasma edge only if enough

correction terms have been added. In this respect, figure 2.7b shows that the O(α) order cor-

rection “goes beyond” the plasma edge, but the O(α2) “pulls the solution back”, closer to the

correct boundary. Figures 2.7b and 2.7c illustrate more extreme cases for larger values of the

triangularity. In the first case, the curve defined by Ψanalytic = 0 is not even closed to first

approximation, but with the second order correction, the solution “recovers” and approaches

the correct boundary; in the second figure, both the O(α) and O(α2) curves are open near the

boundary. This behavior is not surprising: since the D-shape solution was built by transferring

the boundary conditions from ∂D to ∂E, it calls to reason that a higher order correction is

needed as the triangularity increases.

Finally, figure 2.8 provides the relative error between FLOW-generated solution and the

analytical approximation for different values of the triangularity. Here, we illustrate the O(α0),

O(α) and O(α2) solutions; it is evident that higher order approximations perform better. As in

the circular and elliptical cases, a linear trend between the relative error and the inverse aspect

ratio is observed.

2.10 Summary of results

In this chapter, we have constructed high-beta analytic approximations for axisymmetric equi-

libria with diffuse toroidal and poloidal velocity profiles. The solutions correspond to the

lowest-order part in an inverse aspect ratio approximation of the Grad-Shafranov-Bernoulli
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Figure 2.7: Magnetic surfaces in D-shaped configurations for realistic values of elongation
(κ = 1.7), inverse aspect ratio (ε = 0.32) and triangularities (δ = 0.23 and δ = 0.33). Since
the plasma is of up-down symmetric only the upper half section is shown. Figures (a) and (b)
differ from its triangularity value but otherwise correspond to Case II from Table 2.2 while
Fig. (c) corresponds to Case III from the same table. The plasma edge is determined by
the parametrization in Eqs. 2.65-2.66. The figure show the 1-st and 2-nd order analytical
approximations in terms of the triangularity, as well as the FLOW-generated numerical solution.
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Figure 2.8: Relative error between the analytical and FLOW-generated poloidal flux as a func-
tion of the inverse aspect ratio for D-shaped configurations with realistic values of elongation
κ = 1.7 and triangularity (δ = 0.23, 0.33). We show the O(α0), O(α) and O(α2) approxima-
tions. R2 stands here for the coefficient of determination. Figures (a) and (b) correspond to the
set of parameters referred to as Case II in Table 2.2 while (c) to case III.
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system, and under a polynomial dependence of the free functions on the poloidal flux. More-

over, the analytic solutions are flexible in terms of the cross-section over which they are defined,

being possible to describe circular, elliptical and D-shaped configurations.

Circular and elliptical equilibria are constructed by the Green’s function method. The

result is a closed-form solution for the circular case, which is determined by Bessel functions

and the Meijer-G-function. It is controlled by three parameters whose physical interpretation

is straightforward: the kink safety factor, the plasma beta, and the magnetic shear. For plasmas

with an elliptical cross-section of arbitrary elongation, we have obtained a series-form solution

in terms of Mathieu functions. By construction, both solutions satisfy Ψanalytic = 0 at the

plasma edge.

To deal with the D-shaped cross-section we have applied a boundary perturbation method

which effectively transfers the Dirichlet condition to the elliptical boundary. The method re-

quires an extra power series expansion, this time in terms of the triangularity. In contrast with

the circular and elliptical solutions, the vanishing of the poloidal flux on the boundary is only

approximately satisfied over the D-shaped boundary. However, higher order approximations in

terms of the triangularity result in increased performance, and we have been able to reutilize

the Green’s functions constructed for the elliptical case to obtain such approximations.

The relative error between the FLOW-generated numerical solutions and the analytical

approximations has been shown to linearly decrease as the inverse aspect ratio diminishes. As

exemplified in several test cases (whose specific parameters are given for completeness), the

analytical solutions can deal with experiment-relevant values of elongation, inverse aspect ratio,

and triangularity.
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Chapter 3

Low-n external ballooning-kink modes in the presence of resistive walls and a diffuse toroidal
flow profile

3.1 Introduction

In the present chapter, we carry out a linear stability analysis for the high-beta, stationary, dif-

fuse circular equilibrium model. Our aim is to investigate the behavior of external ballooning-

kink modes under a diffuse toroidal rotation profile. The analysis consists of two parts: in

the first part, the plasma column dynamics is expressed as a set of independent ordinary dif-

ferential equations (eigenmode equations) for the different poloidal harmonics of the plasma

displacement; in the second part, these harmonics are coupled together at the plasma-vacuum

interface and, additionally, ideal or resistive-wall effects are incorporated. The analysis is built

upon Betti’s sharp-boundary, rigid-toroidal-rotation formalism for the study of these instabili-

ties [60]. In Betti’s formalism, the eigenmode equation is solved analytically in a perturbative

way and, ultimately, a set of coupled algebraic equations is cast as a matrix whose determinant

leads to the system’s dispersion relation, which can then be efficiently studied by root-finding

methods. This analysis is possible, in part, due to the simplicity of the inner plasma region,

as described by the sharp-boundary model with solid toroidal rotation. In contrast, the eigen-

mode equation obtained for our diffuse model is not analytically tractable, as a consequence, a

different scheme was implemented. We rely on a multidimensional shooting method as the so-

lution technique. For a given set of equilibrium parameters, the implemented strategy consists

in computing eigenfunctions and eigenvalues with the aid of Betti’s formalism, which are then

used as a first-guess for the shooting method. In practice, this strategy works because there are

regions of parameter space where the sharp-boundary model and the diffuse model resemble
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each other; once a solution has been obtained in these regions, it is possible to progressively

alter the equilibrium parameters and study regions where the two models are not alike.

The present chapter is organized as follows. In section 3.2 we complete the equilibrium

model by specifying the vacuum state. Next, in section 3.3, a scalar eigenmode equation for

the m-th harmonic of the radial plasma displacement is found. In section 3.4, by imposing

matching conditions at the plasma-vacuum interface and at the wall, we obtain a set of coupled

equations which serve as boundary conditions for the eigenmode equations. Next, we present

wall position versus plasma-beta marginal stability curves for an ideal plasma surrounded by

an ideal wall (section 3.6) and a resistive wall (section 3.7). A summary is given in section 3.8.

3.2 Determination of the equilibrium vacuum magnetic field

As a first step towards the stability analysis of external modes, it is mandatory to complete the

specification of the equilibrium configuration by determining quantities in between the plasma

column edge (r = a) and the first wall (r = rw > a). Although some models consider a

“cold-plasma” as a transition medium (see, for example, [83]), a more widely used approach

assumes vacuum. Thus, the problem consists on determining the vacuum magnetic field only.

As with the determination of the plasma equilibrium state in the previous chapter, this is done

to leading order in an inverse aspect ratio expansion.

The equilibrium toroidal and poloidal magnetic fields just inside the circularly shaped

boundary are given by

Bϕ(a, θ) =
Fa

Ro + a cos θ
êφ and Bθ(a, θ) = Bθ(a, θ)êθ, (3.1)

respectively, where the F free function has been specified in Eq. 2.20 and

Fa ≡ F (Ψ(a, θ)) = constant. (3.2)
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Likewise, just outside, from the vacuum side, the magnetic field components are given by

BV ϕ(a, θ) =
FV a

Ro + a cos θ
êφ and BV θ(a, θ) = BV θ(a, θ)êθ, (3.3)

where the constant FV a corresponds to a free function for the vacuum side. Next, matching

conditions at the plasma-vacuum transition must be imposed. The continuity of the normal

component of the magnetic field is trivially satisfied. As for the continuity of the total pressure:

p(a, θ) +
B2(a, θ)

2µo
=
B2
V (a, θ)

2µo
, (3.4)

we observe that the kinetic pressure does not contribute. This happens because the entropy

free function is, to leading order, proportional to the poloidal flux (Eq. 2.20) and the fact that

we have imposed a homogeneous Dirichlet condition (Ψ(a, θ) = 0) when solving the leading

order Grad-Shafranov equation. Therefore, the magnetic pressure is continuous at the plasma-

vacuum interface, a condition which can be cast as

B2
V θ(a, θ) =

F 2
a − F 2

V a

R2
o

(1− 2ε cos θ) +B2
θ (a, θ) +O(ε3B2

o). (3.5)

Here, the first term on the RHS is related to surface poloidal currents at the plasma-vacuum

interface. Although surface currents are a necessity when the kinetic pressure possesses a

finite jump at the plasma plasma-vacuum interface as, for example, in some sharp-boundary

models [60, 84, 85, 86, 87, 88], there is no reason for us to retain this contribution, thus, we

set FV a = Fa. The resulting poloidal magnetic field is continuous and, in particular, at the

transition interface is given by

BV θ(a, θ) =
εBo

q∗
[1 + ν cos θ] . (3.6)

Finally, we construct the quantity:

qV (a, θ) ≡ εBo

BV θ(a, θ)
, (3.7)
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and the averages

〈qV 〉a ≡
1

2π

∫ 2π

0

qV (a, θ)dθ, (3.8)

〈
1

q2
V

〉
a

≡ 1

2π

∫ 2π

0

dθ

qV (a, θ)2
, (3.9)

which will appear at several points during the stability analysis in section 3.4. This completes

the determination of the plasma column and vacuum equilibrium state.

3.3 Scalar eigenmode equation for the radial component of the plasma displacement

For the stability analysis, we employ the standard Frieman-Rotenberg formulation [45], as

introduced in section 1.3.2. In this formulation, the Lagrangian displacement (ξ) and the per-

turbed velocity (ṽ) are related through Eq. 1.27. Next, by a Fourier decomposition in time and

in the toroidal angle

ξ(r, ϕ, θ) = ξ(r, θ)e−i(nϕ+ωt), (3.10)

Eq. 1.27 leads to ṽ = −iω(ψ)ξ, where the flux-surface-dependent, Doppler-shifted frequency

is defined as

ω(ψ) ≡ ω + nΩ(ψ). (3.11)

Here, it should be recalled that the dimensionless poloidal flux is of the form ψ = ψ(r, θ) and,

for a circularly shaped plasma, it is given by equations 2.34-2.36. In fact, keeping track of

this angular dependence makes the subsequent analysis algebraically more involved, even if

conceptually not more complicated than the one carried out in [60].

Then, the linearized momentum equation 1.31 reduces to

F̃ (ξ) = −ρω2ξ − 2iρωΩêZ × ξ − ρ̃Ω2RêR + (2ρRΩξ · ∇Ω)êR, (3.12)

where the standard force operator is given by

F̃ (ξ) = −∇p̃− (∇× B̃)×B
µo

+ J × B̃, (3.13)
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and the remainder perturbed quantities are expressed as function of the plasma displacement

according to equations 1.27-1.30. In particular, we notice that the last term on the RHS of

Eq. 3.12, represents here a finite contribution due to the diffuse nature of the toroidal angular

velocity in our equilibrium model. Now, loosely speaking, the momentum equation is separated

into a “magnetic part” (M ) which depends on the perturbed poloidal magnetic field and in

an “inertial part” (L ) which depends on the perturbed density, velocity and pressure. This

can be accomplished by either taking êϕ · ∇ × ( Eq. 3.12 ) and, subsequently, eliminating

the ∂Z(BϕB̃ϕ) term from the Z component of the momentum equation, as done in [60] or,

equivalently, by applying∇ϕ · ∇ × (R2 Eq. 3.12 ); the end result is

L = M , (3.14)

where the magnetic contribution is

M = −∇ϕ · ∇ ×
[
R2B̃p × êϕJϕ +B ×

(
∇× B̃p

)
R2/µo

]
, (3.15)

and the inertial contribution is given by

L = −∇ ·
(
ρω2Rξ × êϕ

)
+ ∂Z

[
2iρωΩRξϕ + 2ρR2Ωξ · ∇Ω− ρ̃Ω2R2 − 2p̃

]
. (3.16)

Continuing, analytical progress is done by assuming an incompressible plasma response

∇ · ξ = 0, (3.17)

and by expressing the perpendicular component of both the Lagrangian displacement and per-

turbed magnetic field as

ξ⊥(r, θ) =
R2

F
∇Ũ(r, θ)×B, (3.18)

B̃⊥(r, θ) = ∇Ψ̃(r, θ)×∇ϕ, (3.19)
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respectively, where Ũ and Ψ̃ are stream functions. Next, we perform a Fourier decomposition

of all perturbed quantities (Q̃) in the form

Q̃(r, θ) =
∑
m

Q̃m(r)eimθ, (3.20)

naturally, because of periodicity the short way around the torus m should be an integer. Now,

with the purpose of keeping the final expressions as simple as possible, we make the following

critical approximations on the parallel gradient as applied to an arbitrary perturbed quantity:

B · ∇Q̃ =
∑
m

[
Br(r, θ)

dQ̃m(r)

dr
+ i

[
mBθ(r, θ)

r
− nBϕ(r, θ)

R

]
Q̃m(r)

}
ei(mθ−nϕ)

= −
∑
m

[
iBo

Ro

hm(r) +O(ν)

]
[1 +O(ε)] Q̃m(r)ei(mθ−nϕ),

(3.21)

where the factor hm is given by

hm(r) = n−m/q(r), (3.22)

the safety factor being defined in terms the poloidal flux contribution in Eq. 2.35 as

q(r) =

(
ψ′a(r)

r

)−1

. (3.23)

The ε approximation is standard when obtaining a simplified governing eigenmode equations.

Most notably, Wahlberg and collaborators have approached a variety of stationary plasma sce-

narios (e.g., [53, 58, 89, 90, 91, 92]) in a systematic way by means of inverse aspect ratio

expansions obtaining, in each case, a sequence of governing eigenmode equations up to the

required accuracy. On the other hand, an additional approximation in terms of ν has also been

performed. In connection with this, we recall that the equilibrium beta limit sets the upper

bound ν < 1. The plasma beta parameter ν will come into play through the angular velocity

and pressure gradient terms in the final eigenmode equation.
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The Fourier decomposition leads to the m-harmonic for the plasma displacement stream

function

Ũm(r) =
r

imRo

ξr,m(r), (3.24)

and, through Faraday’s law, to

Ψ̃m(r) =
rhmBo

m
ξr,m(r), (3.25)

where ξr,m represents the m-th harmonic for the radial component of the plasma displacement.

Moreover, the m = 0 mode (ξr,0) is easily seen to vanish due to incompressibility, it will

implicitly be excluded from know on.

Putting all these pieces together we arrive at the m-th poloidal harmonic of the eigenmode

equation

Lm = Mm, (3.26)

where the m-th harmonic of the “magnetic term” is the same as in [60]:

Mm =

[
− 1

µo
B · ∇

(
∆∗Ψ̃

)
+∇ϕ×∇(RJϕ) · ∇Ψ̃

]
m

=

(
− Ro

imr

)
B2
o

µoR2
o

{
(1−m2)h2

mξr,m +
1

r

d

dr

[
r3h2

m

dξr,m
dr

]}
,

(3.27)

but the m-th poloidal contribution of the “inertial term” is now

Lm =

(
− Ro

imr

)(
1

r

d

dr

[
ρo
(
Γ2
mr

3 −KRor
2
) dξr,m

dr

]

− ρo
[(
m2 − 1

)(
Γ2
m −

dK

dr
Ro

)
+ Y 2

m

]
ξr,m +

p0

2RoBo

Pm(Ψ̃m)

)
,

(3.28)

where

p0 = −εB
2
o

µo

C(λ, q∗)

2
, (3.29)

C(λ, q∗) being defined by Eq. 2.41.
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The non-trivial expressions for the various terms in the inertial contribution result because

of a number of reasons: toroidicity, the poloidal flux dependence on the Doppler-shifted fre-

quency, the diffuse nature of the equilibrium angular frequency, etc. In what follows, we find

convenient to introduce the radially dependent angular frequencies

Ωa ≡ Ω(ψa(r)), (3.30)

Ωb ≡ Ω(ψb(r)), (3.31)

as well as of the following Doppler-shifted one:

ωa ≡ ω + nΩ(ψa(r)), (3.32)

where the dimensionless poloidal flux contributions ψa(r) and ψb(r) have been defined before

(Eqs. 2.34-2.36). The Γ2
m(r) and Ym(r) terms are a generalization of the ones which appear in

[60]:

Γ2
m(r) ≡

[
ω2
a +

n2Ω2
b

2

] [
1 +

1

h2
m−1

+
1

h2
m+1

]
−
[
2ωaΩa +

nΩ2
b

2

] [
1

hm−1

+
1

hm+1

]
− n2Ω2

b

2hm−1hm+1

,

(3.33)

Ym(r) ≡ r(m− 1)
d

dr

[
1

h2
m+1

(
ω2
a +

n2Ω2
b

2

)
− 2ωaΩa + nΩ2

b

hm+1

]
− r(m+ 1)

d

dr

[
1

h2
m−1

(
ω2
a +

n2Ω2
b

2

)
− 2ωaΩa + nΩ2

b

hm−1

]
− r d

dr

[
ω2
a +

n2Ω2
b

2

]
− r

2

dQm

dr
−m2Qm,

(3.34)

where we have introduced the auxiliary function

Qm ≡ Ω2
bn

(
1

hm+1

+
1

hm−1

− n

hm+1hm−1

)
. (3.35)

On the other hand, both K(r) and Pm(r) represent new contributions. Interestingly,

K(r) ≡ ΩaΩb, (3.36)
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is proportional to ν (throughout the Ωb term); it represents a high-beta, shear-flow effect that

comes into play due to the equilibrium poloidal flux dependence on the angular variable. Fi-

nally, the pressure-gradient drive:

Pm

(
Ψ̃m

)
≡ −m

{
d

dr

[(
1

hm+1

+
1

hm−1

)
ψb
dΨ̃m

dr

]
+
m

r

(
1

hm+1

− 1

hm−1

)
ψb
dΨ̃m

dr
+

−m d

dr

[(
1

hm+1

− 1

hm−1

)
dψb
dr

Ψ̃m

]
− m2

r

(
1

hm+1

+
1

hm−1

)
dψb
dr

Ψ̃m

}
,

(3.37)

has been written in terms of the m-th harmonic for the perturbed poloidal flux.

By equating the inertial and magnetic parts we obtain the governing eigenmode equation.

It is more neatly expressed in dimensionless form instead of the SI units we have dealt with so

far
1

r

d

dr

[(
r3
(

Γ̃2
m − h2

m

)
− r2K̃

ε

)
dξ̃m
dr

]

−

[(
m2 − 1

)(
Γ̃2
m − h2

m −
1

ε

dK̃

dr

)
+ Ỹ 2

m

]
ξ̃m +

β0ϕ

4ε
P̃m(ψ̃m) = 0,

(3.38)

where r ≡ r/a, ξ̃r,m ≡ ξr,m/a, Γ̃2
m ≡ Γ2

m/ω
2
A, K̃ ≡ K/ω2

A, Ỹ 2
m ≡ Y 2

m/ω
2
A, P̃m

(
ψ̃m

)
≡

Pm

(
Ψ̃m

)
/B2

o and ψ̃m ≡ Ψ̃m/(Boa
2). Here, ωA ≡ VAo/Ro is the Alfvén frequency at the

geometrical center, and β0ϕ ≡ 2µop0/B
2
o is the plasma beta as defined with the aid of the

pressure constant in Eq. 3.29.

By setting ψb → 0, ω(ψ) → ω = constant and Ω(ψ0) → Ω = constant we recover,

save for a centrifugal term, the governing eigenmode equation in [60]. In [60], the toroidal

velocity is assumed to scale as Ω/ωA ∼ O(
√
ε), on the other hand, in the present model, it has

been assumed a slower toroidal rotation profile: Ω/ωA ∼ O(ε) (see Table 2.1). The missing

centrifugal contribution (corresponding to the last term in [60, Eq. 61]), is negligible in our

model.

The eigenmode equation controls the evolution of the m-th harmonic for the plasma dis-

placement. Now, poloidal coupling is an inevitable consequence of the angular (θ) dependence

of equilibrium quantities, yet, we have disregarded it when deriving Eq. 3.38. This should be
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understood as an extra assumption. Poloidal coupling will be considered at the plasma-vacuum

transition.

3.4 Matching conditions

The stability analysis continues by recognizing that the perturbed value of the total pressure (as

introduced in Eqs. 1.35, 1.36) is continuous at the movable plasma-vacuum interface:

[[
p̃+

BB̃‖
µo

+ ξn∇n

(
p+

B2

2µo

)]]
a

= 0, (3.39)

where n stands for the normal direction at this interface, that is, for the radial direction given

we are considering a circular plasma edge. Two contributions can be readily recognized in

Eq. 3.39: the “fixed boundary jump” (the first two terms) and the “free boundary jump” (the

term proportional to the normal plasma displacement). The “fixed boundary jump” can be

handled, on the plasma side, by direct manipulation of the linearized eigenmode equation 3.12

and, in the vacuum side, by the introduction of a magnetic scalar potential as explained later

on. On the other hand, the “free boundary jump” can, in turn, be split into two contributions,

one corresponding to a kink mode drive for instabilities and the other one associated with a

ballooning mode drive. In either case, their evaluation requires the computation of the normal

component of the curvature vector both from the plasma and vacuum sides, which are computed

to leading order in an inverse aspect-ratio expansion. Continuing, the kink mode drive appears

as the average magnetic pressure times the jump in the curvature at the interface and can be

cast as a quantity proportional to the difference 〈1/q2
V 〉a − 1/q2

a. Even though the equilibrium

magnetic field is continuous at the plasma-vacuum interface, the kink mode drive is finite due

to the θ dependence of the poloidal vacuum magnetic field, which we constructed in the last

section (see Eq. 3.6). In regard to the ballooning mode drive, this quantity appears as the plasma

pressure times the average curvature across the interface. However, as already argued, the

equilibrium pressure vanishes at the plasma edge, implying that the ballooning drive vanishes.

This is not to say that pressure driven modes are not captured by our model, in fact, the opposite

is true. Contrary to surface current models, where pressure driven modes come into play from
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the evaluation of the “free boundary jump”, our diffuse model incorporates this drive in a

“distributed way” across the plasma column at the differential equation level (as shown in Eqs.

3.37-3.38). As the result of these algebraic manipulations, the m-th Fourier component for the

matching condition 3.39 is written as:

hm(a)aΨ̃′m(a)

m

[
Γ2

2m

ω2
Ah

2
m

− 1

]
a

+ Ψ̃m(a)

[
3ν2

2q2
∗

m

hm
+

Ξ2
m

ω2
Ahm

]
a

= R2
o

[
BV · B̃V

Bo

]
m

∣∣∣∣∣
a

. (3.40)

The terms Γ2
2m and Ξ2

m come from the fixed boundary jump evaluation and are given by the

non-trivial expressions:

Γ2
2m ≡

[
ω2
a +

n2Ω2
b

2

] [
1 +

1

h2
m−1

+
1

h2
m+1

]
−
[
2ωaΩb +

nΩ2
b

2

] [
1

hm−1

+
1

hm+1

]
− RoΩaΩb

ma
,

(3.41)

and

Ξ2
m ≡

[
ω2
a +

n2Ω2
b

2

] [
1

h2
m−1

− 1

h2
m+1

]
+

n2Ω2
b

2hm−1hm+1

+ 2

[
ωaΩa +

nΩ2
b

2

] [
1

hm−1

− 1

hm+1

]
− r

q2hm

dq

dr
Γ2

2m.

(3.42)

The kink mode drive is identified here as the term proportional to ν2/q2
∗ in Eq. 3.40, has a

larger destabilizing influence in high-beta regimes (which is also true in a static scenario [16,

Eqns. 12.137-12.140]). Here, B̃V stands for the perturbed magnetic field in the vacuum region

surrounding the plasma. As done extensively in the literature (e.g., [16]), the remaining stability

analysis consists of incorporating the resistive wall physics into Eq. 3.40 regarding B̃V as an

intermediate quantity.

Vacuum solutions are needed for both the vacuum region in between the plasma and the

wall (a < r < rw) and for the secondary vacuum region outside the wall itself (rw < r <∞).

The wall is assumed to have a finite with (d), which is ordered as d << rw (the so-called “thin-

wall approximation”), and to possess a finite electrical resistivity (ηw), so that the characteristic

wall diffusion time is

τw =
µodrw
ηw

. (3.43)
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Vacuum solutions in each region are coupled by means of appropriate boundary conditions and

then connected to Eq. 3.40 by imposing the continuity of the perturbed normal component of

the magnetic field at the plasma-vacuum transition:

[[B̃r]]|a = 0. (3.44)

Given that the magnetic field is curl-free in vacuum regions, it can be written in terms of a

magnetic potential

B̃V = ∇Ṽ , (3.45)

which obeys Laplace’s equation

∇2Ṽ = 0. (3.46)

By expressing the Laplace’s equation in toroidal coordinates and then employing an inverse as-

pect ratio expansion, the m-th Fourier component for the leading order inner vacuum potential

is easily found to be

Ṽ inner
m =

(
C1,mr̂

|m| + C2,mr̂
−|m|) e−iωt+imθ−inϕ, (3.47)

while the outer contribution is

Ṽ outer
m = C3,mr̂

−|m|e−iωt+imθ−inϕ, (3.48)

where we have used the normalized variable r̂ = r/rw. The thin wall approximation then

translates into jump conditions for the magnetic potentials:

∂Ṽ outer
m

∂r
=
∂Ṽ inner

m

∂r
, (3.49)

∂2Ṽ outer
m

∂r2
=
∂2Ṽ inner

m

∂r2
− iωµod

ηw

∂Ṽ inner
m

∂r
. (3.50)
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After a somewhat lengthy but standard manipulation, the RHS of Eq. 3.40 can be expressed as

the superposition of multiple harmonics for the perturbed poloidal flux

R2
o

[
BV · ∇Ṽ inner

Bo

]
m

∣∣∣∣∣
a

=
∞∑

j=−∞
j 6=0

δ̂m,jΨ̃j(a), (3.51)

the coupling coefficients δ̂m,j are given by the infinite sum

δ̂m,j =
j

hj(a)

∞∑
l=−∞
l 6=0

|l|−1σ̂lG
l
l−j(a)Gl

m−l(a). (3.52)

As expected, they are progressively less significant because of the factor |l|−1. The parameter

Gm
l appears throughout the literature [16, 84] and it is defined by

Gm
l =

1

π

∫ π

0

(
m

qV (a, θ)
− n

)
cos (lθ)dθ, (3.53)

yet, for our equilibrium model, it takes a very simple form

Gm
l =

(
mν

2q∗

)
δ−1,l +

(
m

q∗
− n

)
δ0,l +

(
mν

2q∗

)
δ1,l, (3.54)

here, δi,l stands for the standard Kronecker delta and should not be confused with δ̂i,l , as defined

by Eq. 3.52. Equation 3.54 implies that only a finite number of coupling terms in Eq. 3.52 do

not vanish. That is to say, in our model, the poloidal coupling that enters through the boundary

conditions is “not as extended” as in the sharp-boundary description [60]. Ultimately, this is

because the equilibrium pressure profile vanishes at the plasma edge for the diffuse model.

Additionally, as indicated by the ν dependence in Eq. 3.54, mode coupling is more pronounced

in high-beta scenarios and, for a vanishing beta scenario, it disappears completely. Finally, the

coefficient σ̂l incorporates the resistive wall physics into the problem, it is given by

σ̂l =

2|l|+ iωτw

[
1 +

(
a
rw

)2|l|
]

2|l| − iωτw
[
1−

(
a
rw

)2|l|
] . (3.55)
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Energy dissipation at the resistive wall renders the eigenvalue problem non-selfadjoint. Finally,

ideal walls can be recovered in the τw →∞ limit, where σ̂l takes the form:

σ̂l =
1 +

(
a
rw

)2|l|

1−
(
a
rw

)2|l| . (3.56)

To sum up, each poloidal flux harmonic (Ψ̃m) is coupled with a small number of side-band

components (Ψ̃j) by means of the equation

hm(a)aΨ̃′m(a)

m

[
Γ2

2m

ω2
Ah

2
m

− 1

]
a

+
Ψ̃m(a)

hm(a)

[
3ν2m

2q2
∗

+
Ξ2
m

ω2
A

]
a

=
∞∑

j=−∞
j 6=0

δ̂m,jΨ̃j(a). (3.57)

The formalism incorporates a kink mode drive for instabilities and resistive wall effects. In the

vanishing beta limit, the modes decouple from each other. Pressure and shear-flow drives are

captured by the eigenmode equation 3.38.

3.5 Multidimensional shooting method implementation

For a given collection of side-bandsMmin ≤ m ≤Mmax (withm 6= 0), the eigenvalue problem

at hand consists in determining the solution of Mmax −Mmin + 1 ODE’s of the form 3.38 and

the corresponding complex eigenfrequency ω, which satisfy the coupling boundary conditions

3.57. Additionally, harmonic contributions for the plasma displacement (ξr,m) are required to

be regular at the origin (r = 0). In connection with this, we note that the governing ODE

possesses a regular singularity at the origin. This singularity is easily taken care of and the end

result is that solutions near the origin behave as

ξr,m = cmr
−1+|m|, (3.58)

where the collection of cm’s are arbitrary complex constants. Certainly, one of these constants

can be chosen in an arbitrary way without loss of generality (say, the one corresponding to

m = Mmax). Thus, the eigenvalue problem consists on choosing Mmax −Mmin + 1 complex
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numbers: {ω, cMmin
, cMmin+1,...,cMmax−1} consistent with the boundary conditions 3.57. In

regards to the numerical integration, it is carried out starting at a point ro (with 0 < ro << a)

where continuity of the plasma displacement and its derivative, as computed from 3.58, are

imposed.

The sharp-boundary formalism in [60] is ultimately expressed in terms of a dispersion

relation, which can be solved by a root-finding method over the complex plane. On the other

hand, in a multidimensional shooting method, like the one we have implemented, it is crit-

ical to have good initial guesses for the method to converge. The employed strategy is to

choose equilibrium parameters for which the diffuse model resembles the sharp-boundary one

and to subsequently obtain a good initial guess by solving for the eigenvalues and eigenvec-

tors employing the matrix eigenvalue formalism from [60]. Then, by progressively changing

equilibrium parameters, it is possible to explore regions of parameter space where the models

significantly differ.

3.6 Beta limits of rotating ideal plasmas in the presence an ideal wall

The aim of this section is to study the onset of ideal external kinks modes (IKM’s) in the

presence of an ideal wall and toroidal plasma rotation. For (qualitative) comparison purposes,

we present results corresponding to both our diffuse model and two variations of the sharp-

boundary one.

We consider equilibria with fixed values of the kink safety factor q∗ = 1.6, 1.8, an inverse

aspect ratio of ε = 0.25 and set λ = 0. Beta limits are computed for an ideal wall (τw →∞) by

using the coupling coefficient in Eq. 3.56. Stability boundaries are found for the n = 1 toroidal

mode by retaining the coupling between six poloidal modesm = −1, 1, 2, 3, 4, 5 (as previously

argued, m = 0 does not contribute). Figure 3.1 shows the results of these calculations in sce-

narios with and without plasma flow. These stability curves are found by fixing the wall radius

(rw), progressively increasing β and computing, at each point (rw , β), eigenvector/eigenvalue

pairs. Marginal stability is defined by the condition Im{ω} = 0; however, in practice, as we in-

crease beta, we look for the first point at which Im{ω} is larger than an arbitrarily chosen small

positive number. By setting the plasma rotation to zero and the wall radius to rw/a = 300 we

62



determine the “no-wall” stability boundaries β/ε = 0.0556 and β/ε = 0.1283 corresponding,

respectively, to q∗ = 1.8 and q∗ = 1.6 (only the first of these limiting values being explicitly

shown in the graph). Our study focuses on external kink modes when there are no resonant

surfaces located inside the plasma; in this respect, as computed from Eq. 2.45, figure 3.2 shows

an increase of the edge safety factor (qa) with β/ε when the kink safety factor is constant. To

avoid the onset of the m/n = 2/1 tearing mode, an upper limit qa < 2 should be imposed,

which translates into the β/ε < 0.2422 and β/ε < 0.375 constraints for q∗ = 1.8 and q∗ = 1.6,

respectively. This is the reason why the stability curves in figure 3.1 are broken. For a fixed β

value, below a given marginal curve the ideal wall is sufficiently close to provide stabilization,

but above it IKM’s set in. Before discussing the effect of rotation, let us qualitatively compare

these curves with the ones computed from sharp-boundary models.
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Figure 3.1: Beta limits versus wall position for the n = 1 mode in rotating ideal plasmas with
an ideal wall. For all curves, ε = 0.25 and λ = 0. For each curve, corresponding to a fixed
value of the kink safety factor (q∗), the plasma beta is varied up to the value at which qa = 2
(see figure 3.2). The no-wall limit for the q∗ = 1.8 case is explicitly shown, it corresponds to
β/ε = 0.0556.
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Figure 3.2: Safety factor at the plasma edge as function of β/ε as computed from Eq. 2.45.

In the sharp-boundary formalism introduced in [60], the plasma column is composed of

an inner region with a constant safety factor (“the current channel”) and an outer thin region

(“the edge”) where the safety factor grows quadratically. Tearing mode resonances can be

accommodated at the edge. We consider equilibria with values of the safety factor at the center

and at the edge of q0 = 1.1 and qa = 1.9, respectively, so that internal resonances are avoided.

Figure 3.6 illustrates, for a static scenario with ε = 0.25, how the n = 1 stability curves develop

first and second stability regions as the average safety factor from the vacuum side takes the

values 〈qV 〉a = 2.0, 2.2, 2.5. As is commonly explained in the literature, for certain values of

the wall radius, as β is increased, the plasma transitions from the first stability regime to an

unstable one followed by a second stability window. As previously discussed, in our diffuse

model the plasma pressure profile vanishes at the plasma edge, ultimately implying 〈qV 〉a = qa,

yet, first and second stability regions are clearly seen for the diffuse model in figure 3.1.

The sharp-boundary results presented here have a two-fold purpose, they constitute a sce-

nario the diffuse model can be compared against and, equally important, they are the basis for

the “first-guess-generator”. Coming back to the stability boundaries in figure 3.6, it should

be pointed out that they are approximate; specifically, although correct matching conditions at

the current channel-edge transition have been imposed, we have assumed that the form of the
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eigenfunction at the plasma edge is the same as in the current channel. A more comprehen-

sive, perturbative method, was developed to deal with this region in [60], mainly to incorporate

internal resonances; however, as already pointed out, we exclude them from this work. For

the purposes of building a simple first-guess-generator we have removed the plasma edge from

the sharp-boundary model, i.e., the eigenmode equation and boundary conditions in [60] have

been consistently simplified. The resultant configuration possesses a constant safety factor

across the plasma column. Since the form of the eigenfunctions is analytically known in such

simple scenario, the result is a straightforward “exact” (up to numerical accuracy and number

of poloidal modes included) eigenpair generator. Some benchmarks for the sharp-boundary

numerical codes include: i) recovering the β/ε = 0.21 no-wall stability limit for the static,

current-free plasma with a constant pressure profile from [84, 60] as well as ii) stability curves

for the n = 1, 2, 3 modes appearing in Fig. 4 from [84] and iii) recovering the approximate

stability curves for the n = 1 mode in an ideal plasma with an ideal wall from Fig. 2 in [60].

Figure 3.6 illustrates beta limits versus wall position for the simplified sharp-boundary

model. We have set ε = 0.25 and vary the kink safety factor q∗ = 1.1 − 1.8. In this model

qa = q∗. On the other hand, in spite of the discontinuous character of the sharp boundary

model at the plasma-vacuum transition, it is possible to set 〈qV 〉a = qa as in the diffuse model.

In figure 3.6, it is seen that the stability boundaries associated with q∗ = 1.6 and q∗ = 1.8

maintain the same relative position as in figure 3.1, however, they are “mostly flat” along the β-

window, and display only a relatively narrow second stability region at high-β values. Overall,

the marginal stability curves predicted by means of the diffuse equilibrium lie below the sharp-

boundary ones (with and without the plasma edge), i.e., the stable operational space for the

diffuse model is restricted compared to the one corresponding to a sharp-boundary scenario.

The effect of toroidal rotation is exemplified in figures 3.1 and 3.5 for the diffuse model

and for the sharp-boundary one without the plasma edge, respectively. We consider equilibria

with rotation values of few percent the Alfvén frequency. Angular toroidal rotation is solid for

the sharp-boundary model but depends on the poloidal flux variable for the diffuse equilibrium.

For the diffuse model, we define the average angular toroidal rotation (〈Ω〉) over the plasma
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Figure 3.3: Beta limits versus wall position for the n = 1 mode in ideal plasmas with an ideal
wall under a sharp boundary model. We employ the sharp bundary model on [60], consisting
of a constant safety factor across most of the plasma column, but which grows quadratically in
a thin region at the plasma edge. We have set the central value for the safety factor to q0 = 1.1,
its value at the edge to qa = 1.9 and vary the quantity < qV >. Also, ε = 0.25 and Ω = 0.
Compare the first and second stable regions with the ones in figure 3.1
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Figure 3.4: Beta limits versus wall position for the n = 1 mode in ideal plasmas with an ideal
wall. We employ a sharp boundary model based in [60] with a constant safety factor across the
plasma column. In this model q∗ = qa. To compute these curves, we have set < qV >= qa,
ε = 0.25 and Ω = 0.

volume (Vp) as the quantity

〈Ω〉 ≡ 1

Vp

∫
Ω(ψ(r, θ))d3r. (3.59)
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For the sharp-boundary model, the presence of rotation is slightly destabilizing in the low-beta

region and slightly stabilizing in the high-beta region. However, a meaningful comparison with

the diffuse model can only be done in the low-beta regime and, for this reason, we have limited

the β-window in figure 3.5 to the same one in figure 3.1. It is clear that, for the same rotation

values, rotation has a stronger destabilizing effect for the diffuse model than for the sharp-

boundary one. Plausibly, the stronger destabilizing effect flow has on the diffuse equilibrium

results from a global shear-flow drive, absent in the sharp-boundary model due to its solid body

rotation.
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Figure 3.5: Beta limits versus wall position for the n = 1 mode in rotating ideal plasmas with
an ideal wall. As in figure 3.6, the equilibrum model is a sharp boundary one with a constant
safety factor across the plasma column. We have set < qV >= qa and ε = 0.25. In this
model, the plasma rotation is as a solid body. To ease comparison with the stability curves for
the diffuse model from figure 3.1, we plot the results in the same β/ε window and employ the
same rotation values.

The destabilizing effect of flow is further illustrated in figures 3.6 and 3.7 for the diffuse

equilibrium. At a fixed wall radius of rw/a = 1.1, and parameters q∗ = 1.8, ε = 0.25,
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λ = 0, they illustrate the onset of ideal external kink modes as the pressure increases and the

subsequent transition into the second stability region. It is seen that the growth rates (γ ≡

Im{ω}) are a fraction of the Alfvén frequency. The maximum value of the growth rate slightly

increases with rotation, and the beta limits decrease with it. The destabilizing nature of flow

has been identified before as the combined of centrifugal, Coriolis and (in our case) shear-flow

effects.
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Figure 3.6: Growth rate versus β/ε for the n = 1 mode in rotating ideal plasmas with an ideal
wall. For all curves, q∗ = 1.8, ε = 0.25, λ = 0 and rw = 1.1a. These curves represent ideal
external kink modes (IKM’s).

3.7 Beta limits in the presence of resistive walls

It is well established that the presence of resistive walls allows the perturbed magnetic field to

diffuse across them in the characteristic time τw. Ideal plasmas possessing betas above the no-

wall limit, which originally are stabilized by an ideal wall, will develop slowly growing modes

as the perturbed magnetic flux penetrates the resistive wall. Effectively, a resistive wall reduces

the beta-limits to the no-wall limits.

Figure 3.8 illustrates, for the same parameters employed in figure 3.6: q∗ = 1.8, ε = 0.25,

λ = 0 and rw/a = 1.1, the development of an ideal-plasma-resistive-wall-mode (IPRWM).
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Figure 3.7: Growth rate versus β/ε for the n = 1 mode in rotating ideal plasmas with an ideal
wall. This plot corresponds to zooming into the low-beta regime in figure 3.6, and the same
parameters are employed for all curves: q∗ = 1.8, ε = 0.25, λ = 0 and rw = 1.1a.

Figure 3.8 shows three static equilibria, the first one with an ideal wall and the remaining two

with resistive walls, their characteristic time being equal to τwωA = 2 × 103, 4 × 103. In this

respect, observe that for a deuterium plasma with a minor radius a = 1 m, a major radius

Ro = 4 m and an ion temperature Ti = 3keV , the characteristic Alfvén time is τA = 1/ωA =

1.1×10−5s, moreover, setting rw ∼ a and assuming a d = 1mm thick stainless steel wall with

a resistivity η = 11×10−8Ohmsmwe obtain a resistive time of τw = 1.1×10−2s and a product

τwωA = 1.1 × 103, similar to the cases seen in figure 3.8. Further, from figure 3.8 it is seen

that both resistive curves correctly converge to the β/ε = 0.0556 no-wall limit; additionally,

consistent with standard theory, we note that IPRWM’s destroy the second stability region. The

“restive domes” presented here are similar to the ones in sharp-boundary models seen in Fig. 5

from [60] and Fig. 2 from [88].

The ideal wall case is handled using the coupling coefficient in Eq. 3.56, while resistive

cases use Eq. 3.55. In regards to the numerical solution, due to the complicated fashion in

which the eigenfrequency appears in the coupling coefficient for the resistive case, as compared

to the ideal case, it is intuitive that “IKM domes” are easier to compute than resistive modes.
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Further, as the the diffusion time (τw) increases, computing the resistive tails might become

challenging since their growth rate scales as O(τ−1
w ). However, our code is currently able to

deal with realistic values of the wall diffusion time.
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Figure 3.8: Growth rate versus β/ε for the n = 1 mode in static ideal plasmas with resistive and
ideal walls. The tails of these curves represent ideal-plasma-resistive-wall-modes (IPRWM’s).
For all curves, q∗ = 1.8, ε = 0.25 , λ = 0, rw = 1.1a and < ω >= 0. We have also indicated
the no-wall limit from figure 3.1.

The combined effect of rotation and resistivity is shown in figure 3.9. Here, we have set

q∗ = 1.8, ε = 0.25 , λ = 0, rw/a = 1.1, τwωA = 2×103 and< ω > /ωA = 0, 0.01, 0.025, 0.03.

Solid curves represent IKM’s originally shown in figure 3.7, while dotted lines correspond to

IPRWM’s resultant by the addition of resistivity in the wall. It is seen that the presence of both

rotation and resistivity reduces the beta stability limits to values slightly below the no-wall

(static) limit.
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Figure 3.9: Growth rate versus β/ε for the n = 1 mode in rotating ideal plasmas with ideal and
resistive walls in the low-beta regime. Solid/dotted lines correspond to ideal/resistive walls.
The IKM’s shown here (solid curves), are also presented in figure 3.7. For all curves: q∗ = 1.8,
ε = 0.25, λ = 0 and rw = 1.1a. For the resistive case we consider τwωA = 2 × 103. We have
also indicated the no-wall limit from figure 3.1.

3.8 Summary of results

In this chapter, we have studied the development of ideal external kink modes (IKM’s) and

ideal-plasma-resistive-wall-modes (IPRWM’s) in the presence of a diffuse angular toroidal ro-

tation profile. The stability analysis is built upon the closed-form analytical equilibrium for

a circular cross-section constructed in chapter 2, which incorporates flows in a self-consistent

way.

The linear stability analysis carried out here is standard in the field: it consists of reduc-

ing the Frieman-Rotenberg formulation to a set of scalar second order eigenmode equations,

each one describing the evolution of a given Fourier harmonic, and all of them being coupled

together at the plasma-vacuum transition by means of appropriate matching conditions, which
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in turn incorporate the effect of the resistive wall. The resulting formalism is a generalization

of the sharp-boundary model presented in [60]. While the stability problem for the sharp-

boundary equilibrium model is recast as a matrix eigenvalue problem [60], a possibility arising

from the perturbative way its associated eigenmode equation is solved, the diffuse model is

not tractable in this way. Instead, a multidimensional shooting method has been implemented.

Although, in general, multidimensional shooting methods fail to converge unless a good guess

is provided, the dispersion relation supplied by the sharp-boundary formalism constitutes an

efficient way to generate the necessary first guesses.

The Frieman-Rotenberg formulation reduction to a second order normal mode equation

for the radial displacement is accomplished under a number of assumptions, which are done in

order to make analytical progress. We identify three critical assumptions: i) the plasma per-

turbation is incompressible (even though at the equilibrium level the plasma is compressible),

ii) the parallel component of the wave vector is computed as if the equilibrium poloidal flux

depends on the radial component only and iii) poloidal coupling can be neglected across the

plasma column and enters through the matching conditions at the plasma-vacuum transition

exclusively. Assumption i) is common in the literature, yet, contrary to static situations, where

the most unstable perturbations are incompressible, here, it would require additional justifica-

tion (for a justification of this point, in the context of a solid rotation profile, see Appendix C

in [60]). Assumption ii) is valid in the vanishing ν (beta) limit; in connection with this, we

note that results from sections 3.6-3.7 are focused on the low-beta regime, even if the originally

stated reason we have restricted our study to this region has been to avoid internal resonances.

As a consequence of these approximations, the eigenvalue problem is cast as a set of algebraic

equations which incorporate a kink mode drive for instabilities and resistive wall effects, while

pressure and shear-flow drives are captured by the eigenmode equation 3.38.

Although a full numerical implementation would be beneficial to evaluate the validity of

the approximations previously mentioned, our results are consistent with standard theory, at

least in a qualitative way. In particular, the diffuse model possesses first and second stability

regions. For a fixed wall radius and an ideal wall, as the mean toroidal rotation increments,
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IKM’s growth rate increases and stability boundaries are pushed to lower beta values. In addi-

tion, in the resistive wall case, the low-beta tails corresponding to IPRWM’s in static situations

converge to the no-wall limit and rotation renders these scenarios slightly more unstable. In

general, the qualitative character of IKM’s and IPRWM’s for a diffuse and solid body rotation

profiles are similar. The one important difference between the diffuse and solid body rotation

models is that the beta limits versus wall position stability curves are more strongly affected by

the mean value of the flow (〈Ω〉) in the former case, which is clearly seen by comparing figures

3.1 and 3.5. Presumably, this difference is due to a global shear-flow drive present in the diffuse

model only.

The previous stability analysis has been tailored to study a circular configuration, but it

could be extended to accommodate non-circular cross-sections as well. Such analysis would

be based on the analytic series-form solution for an elliptical or a D-shaped scenario, both of

which were introduced in chapter 2.
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Chapter 4

Summary

In this work, we have explored some characteristics of tokamak plasmas with flows. The analy-

sis consists of a self-consistent construction of a high-beta equilibrium configuration with flows

and a subsequent linear stability analysis of external modes.

In the equilibrium part, starting from the Grad-Shafranov-Bernoulli system, we have ob-

tained a new family of high-beta MHD stationary axisymmetric states. Using a combination of

a variational perturbative scheme in terms of the inverse aspect ratio, a boundary perturbation

approach in terms of the triangularity and the Green’s function method, we find a closed-form

solution for a circular geometry and series solutions in terms of Mathieu functions for ellip-

tical and D-shaped scenarios [93]. The analytical approximations account for diffuse rotation

profiles in both the toroidal and poloidal directions and show excellent performance against

the FLOW code [61]. In particular, we have shown that the poloidal flux solution in a circular

geometry converges to Freidberg’s static counterpart [16] by taking the appropriate limit and

is characterized by a small number of intuitive parameters: the inverse aspect ratio, the mean

magnetic shear, the kink safety factor, and the plasma beta. This economic, closed-form solu-

tion should be useful as the first step in stability analyses which aim to incorporate flow in a

self-consistent way. The series solution for the elliptical and D-shaped cross-sections are able

to accommodate realistic values for the elongation and triangularity. Furthermore, it should

be possible to extend the boundary perturbation method to deal with configurations whose

boundaries deviate slightly from an ellipse as, for example, diverted boundaries with a single

or double X-point. Additionally, the solution for a D-shaped configuration could be used as

74



the starting point of stability analyses for scenarios with negative triangularity, a topic which is

currently drawing attention [94, 95].

In regards to linear stability analyses including toroidal flow, generally, they either con-

sider rigid rotation and are performed in an analytical (or semi-analytical) way or assume a

more realistic, diffuse rotation scenario, and a full numerical approach is taken. Here, we have

performed an analysis “in between” these two approaches: a semi-analytical stability study of

a diffuse toroidal rotation profile. This approach is possible in view of the economic, analytic

equilibrium solutions of the GSB system we have previously constructed. Although the current

analysis is tailored for a circular cross-section, we could extend it to account for finite plasma

shaping.

The stability analysis focuses on the effect a diffuse toroidal rotation profile has on the

development of ideal-plasma-resistive-wall-modes (IPRWM’s) and external ideal kink modes

(IKM’s). The analytical part of the problem is tackled in analogy to the sharp-boundary formal-

ism with a solid body toroidal rotation developed in [60]. Matching conditions are expressed as

a set of algebraic equations which incorporate a kink mode drive for instabilities and resistive

wall effects, while pressure and shear-flow drives are captured at the eigenmode equation level.

The solution method consists of a multidimensional shooting method for the coupled Fourier

harmonics of the plasma displacement. Here, we take advantage of the matrix eigenvalue ap-

proach elaborated in [60] in order to obtain first guesses for the eigenvalues and eigenvectors.

In general, results indicate that the qualitative character of IKM’s and IPRWM’s in the

presence of a diffuse or a solid body rotation are similar. A number of standard results from the

literature are recovered for the diffuse model, indicating the plausibility of our approximations.

In particular, wall position versus beta marginal curves show the presence of first and second

stability regions. For increasing toroidal velocities of few percent the Alfvén frequency, IKM’s

growth rates increase while beta limits decrease. Additionally, the resistive tails, corresponding

to IPRWM’s, correctly converge to the static no-wall limit and second stability regions cease

to exits when walls are resistive. On the other hand, the presence of both flow and resistivity

render the plasma slightly more unstable than it would be in a static state, as indicated by the

resistive tails growing below the no-wall limit when rotation is present. The main difference
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between the diffuse and solid body rotation models is seen in wall position versus plasma

beta marginal stability curves in the presence of an ideal wall, here, rotation has a stronger

destabilizing effect in the former model. Specifically, at a given beta, if instabilities are to be

suppressed by the ideal wall, an increase in the mean value of the toroidal rotation requires the

wall to be significantly closer to the plasma in the diffuse case than in the solid body rotation

scenario. Arguably, this difference is due to a global shear-flow drive effect.
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Appendix A

Green’s functions for the two-dimensional Helmholtz equation over circular and elliptical
geometries

We work with Green’s functions which involve an expansion in a complete set of functions

for the angular variable and a piecewise function for the radial variable. For details on the

constructions of Green’s function by this the method see, for example, [96, section 12.4]. The

Green’s function have the generic form:

g (u, v|u′, v′) = G
∞∑

m=M

f1m (u<) f4m (u>)

f1m (uo)
f3m(v, v′), (A.1)

where u and v represent the radial and angular variables, respectively. (u<, u>) refer to the

minimum or maximum between the point of observation u and the integration variable u′, uo

is the scaled radial variable at the boundary, G is a constant and f4m (u) is an antisymmetric

combination that ensures that the solution vanishes at the boundary:

f4m (u, uo) = f1m(uo)f2m(u)− f1m(u)f2m(uo). (A.2)

To construct the circular or elliptical Green’s functions simply put together the terms in Table

A.1. The elliptical Green’s function is actually a sum of two terms like Eq. (A.1). The two

types of f4m (u) functions for the elliptical case appear in the solution for the poloidal flux in

the elliptical and D-shaped cross sections, so they are given special names:

JNem(ζ,Λ) := Jem(ζo,Λ)Nem(ζ,Λ)− Jem(ζ,Λ)Nem(ζo,Λ), (A.3)
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JNom(ζ,Λ) := Jom(ζo,Λ)Nom(ζ,Λ)− Jom(ζ,Λ)Nom(ζo,Λ). (A.4)

Type uo G M f1 f2 f3

Circle (λ > 0) 1 1/4 −∞ Jm

(√
λ r
)

Nm

(√
λ r
)

cos (m(θ − θ′))

Circle (λ < 0) 1 −1/(2π) −∞ Im

(√
|λ| r

)
Km

(√
|λ| r

)
cos (m(θ − θ′))

Ellipse ζo 1/2 0 Jem(ζ,Λ) Nem(ζ,Λ) cem(η,Λ) cem(η′,Λ)
(Λ > 0) ζo 1/2 1 Jom(ζ,Λ) Nom(ζ,Λ) sem(η,Λ) sem(η′,Λ)
Ellipse ζo −1/π 0 Iem(ζ,Λ) Kem(ζ,Λ) cem(η,Λ) cem(η′,Λ)
(Λ < 0) ζo −1/π 1 Iom(ζ,Λ) Kom(ζ,Λ) sem(η,Λ) sem(η′,Λ)

Table A.1: For the 2D Helmholtz equation defined over circular and elliptical domains, Green’s
functions which involve an expansion in a complete set of functions for the angular variable
and a piecewise function for the radial variable are constructed using the expressions from this
table.

Amplitudem Radialm Integrandm Angularm
κ A′2m(ζo,Λ) δx2 sin(η)J−1(ζo, η) ce2m(η,Λ)

−f 2
κ/2 A′2m(ζo,Λ) δx

2

1 cos(η) sin(η) sin(2η)J−3(ζo, η) ce2m(η,Λ)

−κ3 A′2m(ζo,Λ) δx
2

1 sin2(η)J−3(ζo, η) ce2m(η,Λ)

κ/2 A′2m(ζo,Λ) δx
2

1J
−2(ζo, η) ce2m(η,Λ)

κ2/2 A′′2m(ζo,Λ) δx
2

1 sin2(η)J−2(ζo, η) ce2m(η,Λ)

κ A′2m(ζo,Λ) δx
2

1 cos(η) sin(η)J−2(ζo, η) ce′2m(η,Λ)

κ A
(1)
m+1(Λ)Jo′m+1(ζo,Λ) δx1 sin(η)J−1(ζo, η) sem+1(η,Λ)

1 A
(1)
m+1(Λ)Jom+1(ζo,Λ) δx1 cos(η)J−1(ζo, η) se′m+1(η,Λ)

Table A.2: Building blocks to construct the C(2)
nm(Λ) coefficients for the D-shaped solution.

To compute the A(2)
nm(Λ) coefficients it is necessary to make the replacements A2m(ζo,Λ) →

C2m+1(ζo,Λ), A(1)
m+1(Λ)→ C

(1)
m (Λ) and Jom+1(ζo,Λ)→ Jem(ζo,Λ) in the Radialm functions

and both ce2m(η,Λ)→ se2m+1(η,Λ) and sem+1(η,Λ)→ cem(η,Λ) in the Angularm terms.

Green’s functions which involve an expansion in a complete set of functions for both the

angular radial variables can be also constructed. For a generic method to construct such Green’s

functions see [97, section 7.3.3-2].
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Appendix B

Fourier decomposition of angular Mathieu functions

The Fourier coefficients of the Mathieu functions of integral order are [78]:

D2m
0 (Λ) :=

1

2π

∫ 2π

0

ce2m (η,Λ) dη, (B.1)

D2m
2r (Λ) :=

1

π

∫ 2π

0

ce2m (η,Λ) cos(2rη)dη, r 6= 0, (B.2)

D2m+1
2r+1 (Λ) :=

1

π

∫ 2π

0

ce2m+1 (η,Λ) cos((2r + 1)η)dη, (B.3)

B2m+1
2r+1 (Λ) :=

1

π

∫ 2π

0

se2m+1 (η,Λ) sin((2r + 1)η)dη, (B.4)

B2m+2
2r+2 (Λ) :=

1

π

∫ 2π

0

se2m+2 (η,Λ) sin((2r + 2)η)dη, (B.5)

where m, r = 0, 1, 2, ....
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Appendix C

D-shaped first- and second-order corrections

Integrating the O(α)-inhomogeneity in Eq. (2.75) with the aid of the previously constructed

elliptical Green’s functions we obtain the coefficients C(1)
n (Λ) and A(1)

n (Λ):


C

(1)
n (Λ)

A
(1)
n (Λ)

 = −f cosh(ζo)

π


Je−1

n (ζo,Λ)

Jo−1
n (ζo,Λ)


∞∑
m=0


C ′2m+1(ζo,Λ)

A′2m(ζo,Λ)


×
∫ 2π

0

dη′
δx1 sin(η′)

J(ζo, η′)


se2m+1(η′,Λ)cen(η′,Λ)

ce2m(η′,Λ)sen(η′,Λ)

 ,

(C.1)

where radial derivatives of Cm(ζ,Λ) and Am(ζ,Λ), evaluated at the elliptical boundary, are:

A′m(ζo,Λ) =
Af

2

2Jem(ζo,Λ)

∫ ζo

0

Jem(ζ ′,Λ)KAm(ζ ′,Λ)dζ ′, (C.2)

C ′m(ζo,Λ) =
Cf

3

2Jom(ζo,Λ)

∫ ζo

0

Jom(ζ ′,Λ)KCm(ζ ′,Λ)dζ ′. (C.3)

It is also useful to evaluate the second derivatives:

A′′m(ζo,Λ) =
Af

2

2
KAm(ζo,Λ), (C.4)

C ′′m(ζo,Λ) =
Cf

3

2
KCm(ζo,Λ). (C.5)
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J(ζ, η) is the Jacobian of the elliptical change of coordinates defined in Eqs. (2.52)-(2.53):

J(ζ, η) :=
f

2

2
(cosh(2ζ)− cos(2η)) . (C.6)

From theO(α2)-inhomogeneity in Eq. (2.76) we get the second-order coefficientsC(2)
n (Λ)

and A(2)
n (Λ). Each coefficient is given by a sum:

C(2)
n (Λ) =

∑
m

C(2)
nm(Λ), (C.7)

A(2)
n (Λ) =

∑
m

A(2)
nm(Λ), (C.8)

C
(2)
nm(Λ) and A(2)

nm(Λ) are computed substituting the elements of Table A.2 in the expression:


C

(2)
nm(Λ)

A
(2)
nm(Λ)

 = −Amplitudem
π


Je−1

n (ζo,Λ)

Jo−1
n (ζo,Λ)


∞∑
m=0

[
Radialm

]

×
∫ 2π

0

dη′Integrandm(η′) Angularm(η′)


cen(η′,Λ)

sen(η′,Λ)

 .

(C.9)
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Appendix D

Extension of the single-fluid equilibrium to compute the two-fluid velocity component normal
to magnetic surfaces

In this appendix, we consider an extension of the single-fluid ideal MHD model, constructed

in chapter 2, to deal with two-fluid effects. Specifically, we estimate the two-fluid component

of the velocity which is perpendicular to magnetic surfaces. In the context of axisymmetric

equilibrium scenarios, a single-fluid MHD description guarantees that streamlines are tangent

to magnetic surfaces (Eq. 1.22). Yet, in a two-fluid description, where a distinction between

electrons and ions is made, this constraint disappears. Since the electron mass is negligible

as compared to the ion mass, the macroscopic flow is governed by the velocity of the ions.

Therefore, while electrons are, to a good approximation, still constrained to move on magnetic

surfaces, ions finite inertia “pushes” streamlines away from magnetic surfaces.

Two-fluid axisymmetric scenarios have been studied by several authors [98, 99, 100, 101,

102, 103]. These analyses are analogous to the one presented in chapter 2, where the Grad-

Shafranov and Bernoulli equations were introduced. Two-fluid axisymmetric scenarios are also

determined by a set of free functions, which must be specified from the outset. As expected,

the single-fluid formalism can be recovered from the two-fluid one by an appropriate limiting

procedure [102, 67].

As pointed out in [67], the interest in computing the two-fluid component of the velocity

which is normal to magnetic surfaces originates from the possible effect this component has

on the linear properties of unstable modes localized on magnetic resonant surfaces. Here, we

provide a simple estimation of this component based on the single-fluid, closed-form solution

given by Eqs. 2.34-2.36, for a tokamak with a circular cross-section.
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Let Ψtf and V be the poloidal flux and ion velocity, as determined by two-fluid theory,

respectively. The component of the velocity normal to magnetic surfaces is given by

Vψ ≡ V ·
∇Ψtf

|∇Ψtf |
. (D.1)

Now, in the reduced massless electrons case, the two-fluid ion velocity is given by

V =
φtf (Ψi)

n
∇Ψi ×∇ϕ+ Vϕêϕ, (D.2)

where Ψi is a stream function for the ions, n is the plasma number density, and φtf is a free

function analogous to the single-fluid one (Φ). We recall that the right-handed coordinate

systems (R,ϕ, Z) and (r, ϕ, θ) have been introduced in section 1.2.1. In this model, the poloidal

flux and the ion velocity stream function are related by

Ψi = Ψtf +
miRVϕ
e

, (D.3)

where mi and e correspond, respectively, to the mass and charge of the ions constituting the

plasma. For typical experimental values in confinement devices it turns out that

δΨ ≡ miRVϕ
e

<< Ψtf , (D.4)

that is to say, in practice, two-fluid flux surfaces and stream surfaces differ by a quantity which

is small.

Figure D.1 illustrates, for a rotating deuterium plasma in a configuration with an inverse

aspect ratio ε = 0.25, single- and two-fluid magnetic flux surfaces. They were computed by

means of the single- and two-fluid codes FLOW [61] and FLOW2 [67], respectively. This

figure also shows contours corresponding to the analytical, single-fluid solution, as computed

by Eqs. 2.34-2.36. Continuing, it is clear that single- and two-fluid flux surfaces differ from

each other, and that the difference increases as the magnetic axis is approached. However, for

our purposes, we will regard them as being identical. This approximation, together with the
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Figure D.1: Magnetic surfaces in a circular configuration computed using FLOW2 (two-fluid
code), FLOW (single-fluid code) and an analytical approximation. We are assuming a deu-
terium plasma with a mass mi = 3.34× 10−27kg.

smallness of the term in D.4, allow us to express the normal component of the velocity as

Vψ = − 2miΦ(ψ)Ω(ψ)
√
µoeρ(ψ) [1− Φ2(ψ)/ρ(ψ)]

Bp

Bp

· êR +O(δΨ), (D.5)

all quantities being single-fluid ones. In particular, ψ is given by Eqs. 2.34-2.36. An alternative

expression is

Vψ =
2miΦ(ψ)Ω(ψ)

√
µoeρ(ψ) [1− Φ2(ψ)/ρ(ψ)]

1√
r2
(
∂ψ
∂r

)2
+
(
∂ψ
∂θ

)2

(
r sin θ

∂ψ

∂r
+ cos θ

∂ψ

∂θ

)
. (D.6)

Figure D.2 illustrates both the analytical approximation and FLOW2 results for Vψ as a func-

tion of the angular variable θ. The curves shown there correspond to the magnetic surfaces

illustrated in figure D.1.
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Figure D.2: FLOW2 and analytical approximation calculations for the normal component of
the ion velocity at several magnetic surfaces. They correspond to the same magnetic surfaces
shown in figure D.1.
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Appendix E

A comment on Chandrasekhar’s classical solution for the Kelvin-Helmholtz instability
employing the Spectral-Web-Method

Among the MHD instabilities in the presence of background flow, the one caused by gradients

in the velocity profile is referred to as the Kelvin-Helmholtz instability (KH). In truth, this insta-

bility has a hydrodynamic origin [104, 105]. In an MHD context, the problem is to understand

the interplay between the flow-shear and the magnetic field. In regards to magnetic confine-

ment fusion, the KH instability might become important in future spherical tokamaks, having

larger velocity gradients than the ones present in current experiments [106]. In any case, an

understanding of the KH instability is important since it illustrates a destabilizing mechanism

static scenarios do not possess.

A classical treatment on the KH instability in the presence of a background magnetic

field is due to Chandrasekhar [62]. From his formalism, the main conclusion is that magnetic

field lines are able to provide stabilization against a sheared-background flow. Naturally, the

relative direction between the magnetic and flow fields matters, and the stabilizing effect of the

former is most pronounced when it is aligned with the latter. Chandrasekhar’s derivation is a

slab-geometry case study, where a discontinuous; but otherwise constant, background velocity

profile acts as the source of free energy, and a constant magnetic field in the streaming direction

provides a surface tension-like suppression mechanism. Interestingly, the equilibrium situation

considered by Chandrasekhar is not a self-consistent MHD equilibrium.

Goedbloed has studied some aspects of the KH instability by employing the Spectral-Web

method [107]. In this short appendix, we consider an exact MHD equilibrium consisting of
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a continuous, sheared-velocity profile which we use to recover Chandrasekhar’s results in the

infinite shear limit, and employ Spectral-Web method as a visualization aid.

E.1 The Spectral-Web-Method

The Spectral-Web-Method was introduced by J. P. Goedbloed over a series of papers [108,

107, 109, 110] as a way to exploit the self-adjointness nature of the eigenvalue problem 1.31.

The result is a “connecting structure” (the Spectral-Web) in the complex plane along which

the eigenvalues of the system are distributed. Since this method is not widely used in the

community we provide a description. The interested reader should refer to the original papers

to get the full picture.

The construction of the Spectral-Web starts from recasting the problem at hand. It is

convenient to decompose the quadratic form associated with the potential energy in two contri-

butions:

W [ξ] = Wplasma[ξ] +Wboundary[ξ]. (E.1)

The first contribution is an integral over the plasma volume and it can be shown to be self-

adjoint by a direct calculation [45, 47], which should be the case since there is no mechanism

through which an ideal MHD plasma could dissipate energy. The second contribution corre-

sponds to the energy gained or lost at the plasma boundary (∂V ).

Wboundary[ξ] = −1

2

∫
∂V

ξn[[P̃ (ξ)]]dA, (E.2)

where P̃ is the perturbed total pressure of the system (as defined by Eq. 1.35) and dA is

an element of area. Evidently, under the boundary conditions for internal modes 1.34 or for

external modes 1.36-1.37, the energy interchange term E.2 vanishes. The eigenvalue problem

1.31 can then be cast as

I[ξ]ω2 − V [ξ]ω −Wplasma[ξ] = Wboundary[ξ]. (E.3)
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We now assume that neither the boundary condition for internal modes 1.34 nor for ex-

ternal modes 1.36-1.37 are satisfied. That is, we let the boundary conditions unspecified. As

discussed before, changing the boundary conditions destroys the self-adjointness nature of the

operators in the general case; however, a direct calculation shows that the Doppler-Coriolis

operator is independent of boundary conditions, so it remains self-adjoint. The end result of

“opening up the boundaries” is that the RHS of Eq. E.3 is not zero anymore.

To finish up the description of the Spectral-Web we assume a one-dimensional system. The

associated eigenmode equation is typically a second order homogeneous ordinary differential

equation (ODE). To begin with, we impose the correct left boundary condition (like ξ|r=0 = 0)

but we open up the right boundary. For a given value of ω this equation could be solved if

ξ′|r=0 was specified as well. However, since the ODE in question has been assumed to be

homogeneous we can set this derivative as any finite value without loss of generality. We can

then carry out the integration (numerically) and evaluate the boundary term defined by Eq. E.2,

which, for the one-dimensional system under consideration, has the simpler form

W 1−D
boundary[ξ(a)] = −1

2
ξ(a)[[P̃ (ξ(a))]], (E.4)

where r = a corresponds to the right boundary. If we happen to pick an ω for which Eq.

E.4 vanishes then, by definition, that would correspond to have found an eigenvalue of either

the fixed or the free boundary value problem, which could then be easily discriminated by

direct evaluation of the plasma and total pressure perturbations. The locus of ω’s for which the

real part of E.4 vanishes is named “solution path”, likewise, the curve defined by setting the

imaginary part of E.4 equal to zero is the “conjugate path”. The intersection of these curves

occurs at the eigenvalues of the system. The resulting structure in the complex plane constitutes

the Spectral-Web.

The Spectral-Web has been constructed from the requirement of no energy interchange

at the plasma boundary. But the importance of this connecting structure lies in the fact that it

leads to real and complex oscillations theorems [108] which generalize the static theorems of

node counting to the stationary case. Pragmatically, all we have done is to consider Eq. E.4
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as a target function and compute the contour levels Re{Wboundary} = 0 and Im{Wboundary} =

0. Certainly, for the purposes of determining the eigenvalues, we can come up with other

alternatives such as:

Wtarget,1 = ξ(a), (E.5)

Wtarget,2 = [[P̃ (ξ(a))]], (E.6)

and so on. But the oscillations theorems would not apply in curves defined by these target func-

tions. There are also arguments of improved numerical accuracy when looking for eigenvalues

along the solution and conjugate paths [108]. We will mainly employ the Web-Spectrum as a

visualization tool, so we do not dwell on these important results.

E.2 Obtaining the eigenmode equation

Chandrasekhar’s starting point is the set of MHD equations 1.12-1.18, but where the closure

equation 1.14 is replaced by the incompressibility condition:

∇ · u = 0. (E.7)

The stationary configuration of interest being

u0(r) = u0z(x)êz, (E.8)

B0(r) = B0zêz, (E.9)

ρ0(r) = ρ0(x), (E.10)

p0(r) = p0(x), (E.11)

which corresponds to a constant magnetic field in the direction of streaming, with an equilib-

rium velocity varying in the x-direction. For the stability analysis, perturbed quantities (Q̃) are

Fourier-analyzed in the ignorable coordinates and in time in the usual way:

Q̃(x, y, z, t) = Q̃(x)ei(kzz+kyy−ωt), (E.12)
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so that if Im{ω} > 0 the equilibrium configuration is unstable. After straightforward algebra,

Chandrasekhar reduced the stability problem to an eigenmode equation, which we write in

terms of the perturbed x-component of the velocity (ũx) and magnetic field (B̃x) as:

d

dx

[
ρ0 (kzu0z − ω)

dũx
dx
− kzρ0ũx

du0z

dx

]
− k2ρ0 (kzu0z − ω) ũx −

kzB0z

µo

[
d2B̃x

dx2
− k2B̃x

]
= 0,

(E.13)

where

B̃x =
kzB0z

kzu0z − ω
ũx, (E.14)

and

k2 ≡ k2
z + k2

y. (E.15)

No other assumption has been used to obtain this eigenmode equation. In particular, no as-

sumption has been made in regards to the actual form of the profile u0z(x) so far.

E.3 Boundary conditions: a tight plasma due to incompressibility

Given an arbitrary open surface, it is a standard exercise to show that the following boundary

conditions hold for an incompressible plasma:

[[ρ]] = 0, (E.16)

[[
p+

B2
t

2µo

]]
= 0, (E.17)

ρun [[ut]]−
Bn

µo
[[Bt]] = 0, (E.18)

Bn [[ut]]− un [[Bt]] = 0, (E.19)
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[[un]] = 0, (E.20)

where n and t refer to the normal and tangential components of a given field with respect to the

surface under consideration. It is then easily seen that

(
ρu2

n −
B2
n

µo

)
[[Bt]] = 0, (E.21)

so, unless the open surface is locally moving at the Alfvén-like velocity determined by the nor-

mal component of the magnetic field at that locality, the tangential component of the magnetic

field is continuous:

if un 6=
Bn√
µoρ

=⇒ [[Bt]] = 0, (E.22)

which immediately implies

[[ut]] = 0, (E.23)

and

[[p]] = 0. (E.24)

The “tightness” of the configuration is due to the incompressibility condition, in the sense that it

is the first equation one thinks of modifying when trying to loosen up the system, though there

are other ways to accomplish this: including two-fluid corrections in the momentum equation

or Ohm’s law, etc.

E.3.1 Chandrasekhar’s approximation: a discontinuous change of the velocity

A slightly simpler configuration than the one considered by Chandrasekhar is the case in which

there is a discontinuous jump in the velocity profile at the plane x = 0 [62, pp. 508-511]:

u0z(x) = uo if x > 0 and u0z(x) = −uo if x < 0, (E.25)
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and both the equilibrium density and pressure are regarded as constants:

ρ0(x) = ρo and p0(x) = po. (E.26)

It should be recognized that this situation is in contradiction with the previously derived bound-

ary condition in Eq. E.23 and it is not an MHD equilibrium. In any case, by integrating the

governing Eq. E.13 from x = −ε to x = +ε, and then taking the limit ε→ 0 we obtain:

[[
ρo (kzu0z(x)− ω)

dũx
dx

]]
x=0

− k2
zB

2
0z

µo

[[
1

kzu0z(x)− ω
dũx
dx

]]
x=0

= 0, (E.27)

where we have imposed the continuity condition:

[[
ũx(x)

kzu0z(x)− ω

]]
= 0, (E.28)

at the interface. There are two equally compelling ways to think about this equation. One

way is to notice that the normal component of the magnetic field in equation E.14 should be

continuous:

[[B̃x]] = 0. (E.29)

Alternatively, it is possible to consider an equation for the plasma displacement (δx):

∂

∂t
δx+ u0z

∂

∂z
δx = ũx, (E.30)

from which, after a decomposition into normal modes, the condition under discussion follows:

[[δx]] =

[[
ũx(x)

kzu0z(x)− ω

]]
= 0. (E.31)
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The point here is that the Eulerian variable (ũx) is discontinuous but the Lagrangian one δx is

not. Continuing, the solution for the perturbed velocity in the two regions can be written as

u1x(x) = A1 exp(−kx) if x > 0 and u1x(x) = A2 exp(kx) if x < 0, (E.32)

where A1 and A2 are some as of yet undetermined coefficients. Moreover, we have set the

velocity at infinity equal to zero. Applying the boundary conditions in Eqs. E.27 and E.28

we obtain a system of two equations in two unknowns and, by setting the determinant of the

associated matrix equal to zero, we obtain the dispersion relation

ω = ±kz

√
B2

0z

µoρo
− u2

o = ±kz
√
V 2
a − u2

o, (E.33)

where the Alfvén speed is Va = B0z/
√
µoρo. That is to say, if the jump in the velocity across the

plane of discontinuity is sufficiently large, the configuration is unstable. Clearly, the magnetic

field acts in a stabilizing way.

E.4 Recovering Chandrasekhar’s solution as a strong shear limiting case

As an alternative way to derive Chandrasekhar’s dispersion relation, we consider the exact

MHD equilibrium defined by the continuous velocity profile

u0z =
√

5VA tanh

[
τ

(
x− 1

2

)]
, (E.34)

where τ is a velocity-shear parameter. As illustrated in figure E.1a, the velocity profile develops

an increasingly abrupt transition as τ increases. In the limit of τ being infinitely large we obtain

u0z(x) =
√

5VA if x > 0 and u0z(x) = −
√

5VA if x < 0, (E.35)
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that is, this profile mimics Chandrasekhar’s discontinuous velocity profile. After straightfor-

ward algebra, it is possible to derive an eigenmode equation for the Lagrangian plasma dis-

placement (ξx):
d

dx

[[
x3
(
ω2 − ω2

A

)] dξx
dx

]
− k2

z

[(
ω2 − ω2

A

)]
ξx = 0, (E.36)

where the Doppler-shifted frequency (ω) is given by

ω(x) ≡ ω − kzu0z(x), (E.37)

and the Alfvén frequency is defined in this context as

ωA ≡ kzVA. (E.38)

In regards to the Spectral-Web, consider figure E.2. The meaning of the solution and conju-

gate paths has been explained in section E.1. Due to the symmetric way in which the plasma

displacement and the pressure perturbation appear in equation E.4, the points of intersection of

these paths correspond either to the actual eigenvalues of the system (“true eigenvalues”) or to

points where the pressure perturbation vanishes at the right boundary (“false eigenvalues”). In

particular, figure E.2b, which corresponds to a strongly sheared scenario, has as its eigenvalues

ω ≈ 2VAkzi,

which is consistent with Chandrasekhar’s dispersion relation Eq. E.33. Finally, figures E.3 and

E.4 illustrate real and false eigenmodes, respectively. A distinctive feature of a KH instability

is the localization of the eigenmode around the point of maximum velocity shear.
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(a) Sheared velocity profile.

(b) Marginal stability occurs at τ = 2.8.

Figure E.1: Sheared-velocity profile. (a) Sheared-velocity profile as given by Eq. E.34, (b)
Growth rate as a function of the velocity-shear parameter (τ ).
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(a) Spectral-Web for τ = 5.
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(b) Spectral-Web in Chandrasekar’s limit.

Figure E.2: Spectral-Webs. (a) Spectral-Web for τ = 5, (b) Spectral-Web for τ = 100, which
“effectively” corresponds to Chandrasekhar’s situation.
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(a) Plasma displacement.
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(b) Pressure perturbation.

Figure E.3: True eigenmodes for different values of the velocity shear (τ ). Localization of
(a) the plasma displacement and (b) the pressure perturbation, around the point of maximum
velocity shear. For a true eigenmode, the plasma displacement satisfies boundary conditions.
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(b) Pressure perturbation.

Figure E.4: False eigenmodes for different values of the velocity shear (τ ). (a) The plasma
perturbation fails to vanish at the right boundary, (b) For a false eigenmode, it is the pressure
perturbation which vanishes at the right boundary.
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