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Abstract 
 

 
 Parametrically excited linear systems with oscillatory coefficients have been 

generally modeled by Mathieu or Hill equations (periodic coefficients) because their stability and 

response can be determined by Floquét theory. However, in many cases the parametric excitation 

is not periodic but consists of frequencies that are incommensurate, making them quasi-periodic. 

Unfortunately, there is no complete theory for linear dynamic systems with quasi-periodic 

coefficients. Motivated by this fact, in this work, an approximate approach has been proposed to 

determine the stability and response of quasi-periodic systems. It is suggested here that a quasi-

periodic system may be replaced by a periodic system with an appropriate large principal period 

and thus making it suitable for an application of the Floquét theory. Based on this premise, a 

systematic approach has been developed and applied to three typical quasi-periodic systems. The 

approximate boundaries in stability charts obtained from the proposed method are very close to 

the exact boundaries of original quasi-periodic equations computed numerically using maximal 

Lyapunov exponents. Further, the frequency spectra of solutions generated near approximate and 

exact boundaries are found to be almost identical ensuring a high degree of accuracy. In addition, 

state transition matrices are also computed symbolically in terms of system parameters using 

Chebyshev polynomials and Picard iteration method. The coefficients of parametric excitation 

terms are not necessarily small in all cases.  

A detailed analysis of ‘instability pockets’ appearing in stability diagrams of parametrically 

excited systems is also discussed. The alterations in ‘instability pockets’ and stability diagrams, in 



 iii 

general, due to addition of damping is systematically studied. In particular, the results for some 

typical cases of Mathieu, Meissner, three-frequency Hill and Quasi-Periodic Hill equations are 

presented in detail. 

A methodology to control general nonlinear systems to desired periodic or quasi-periodic 

motions is also presented.  The desired motion could be a periodic orbit, a quasi-periodic motion 

or a fixed point and does not need to be a solution of the nonlinear system. The applicability of the 

approach is demonstrated by controlling chaotic systems to desired motions. The controller design 

is achieved using a combination of a nonlinear feedforward controller and a linear feedback 

controller. 
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Chapter 1 

 
 

Introduction 
 
 

1.1 Motivation 
 

Linear ordinary differential equations with time-periodic coefficients have a wide 

range of applications in various fields of science and engineering. Some of their 

applications include structures subjected to periodic loads [1], helicopter rotor blades in 

forward flight [2], asymmetric rotor bearing systems [3], robots performing repetitive tasks 

[4], ship dynamics [5], attitude stability of satellites [6], heart rhythms [7] and quantum 

mechanics [8], among others. These systems are also called ‘parametrically excited 

systems’ since system parameters in mathematical models are no longer constants but 

become periodic functions of time. These periodic functions can cause instability known 

as ‘parametric resonance’. 

In 1883, Gaston Floquét developed a complete theory [9] (now known as the 

‘Floquét Theory’) that determines stability and response of linear ordinary differential 

equations with periodic coefficients. Since then several numerical, analytical and symbolic 

techniques have been developed to compute stability and response of periodic systems 

using the Floquét theory. Some authors approximated the periodic coefficient matrix 

(periodic functions) by piecewise constant, linear and quadratic matrix (functions) [10, 11] 

in order to generate approximate solutions. Using Hammond’s improved integration 

scheme [12], Friedmann et al. [13] employed Hsu’s approach and suggested a numerically 
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efficient method that requires only a single integration pass scheme. Analytical techniques 

such as perturbation [14] & averaging [15] have been used by a number of authors to 

determine stability of periodic systems. However, their effectiveness is restricted by the 

requirement of existence of a small parameter and a generating solution. To overcome the 

above limitations, Sinha and his associates developed an efficient technique to compute the 

state transition matrix of such systems in semi-analytical [16] as well as in symbolic forms 

[17, 18]. Design of control systems to drive arbitrary unstable or chaotic motions to a 

periodic orbit also utilizes Floquét theory [19, 20].  

As far as applications are concerned, numerous contributions exist in the literature. 

In most cases, systems have been modeled by Mathieu or Hill equations because one is 

able to predict their stability and response by the use of Floquét Theory. However, in many 

cases these are oversimplified models since in reality the parametric excitation is not 

periodic but consists of frequencies that are incommensurate, making it quasi-periodic. For 

example, parametric excitation occurs when a ship is sailing in longitudinal waves i.e., sea 

waves are along the length of the ship. Assuming the vertical force due to sea waves as a 

periodic force, the equation of motion turns out to be a Mathieu/Hill equation. However, 

sea waves are not periodic in nature, instead contain incommensurate frequencies. Like the 

sea waves, the motion of Basilar Membrane (BM) in cochlea of the inner ear and the motion 

of a heart are some other examples where the parametric forcing terms may not be assumed 

to be periodic. An appropriate modeling of the heart can be helpful in detecting any 

irregularities/diseases. The dynamics of BM inside cochlea of inner ear has been a mystery 

for a long time. Lately, some authors [21-23] have established the fact that BM undergoes 

parametric excitation and in case of a single tone (frequency) stimuli, dynamic analysis 
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could be performed using the Floquét theory. However, the structure of sound (speech 

signal) is generally complex and to understand the dynamics under complex stimuli, study 

of two or three tone dynamics has to be studied first. Robles et al. [24] and Ruggero et al. 

[25] investigated the response of BM to two tone stimuli and established the presence of 

distortion products (combination of tones). The origin of quasi-periodic solution can also 

be traced back to Hopf bifurcation of a fixed point that leads to a periodic solution (limit 

cycle) whose subsequent bifurcation, generally known as the Secondary Hopf bifurcation 

(or Neimark-Sacker bifurcation), gives birth to either a periodic or a quasi-periodic motion. 

In order to study the stability of resulting quasi-periodic motion, one has to construct the 

variational equation about this motion which gives rise to a quasi-periodic Hill equation. 

The control of instabilities in these systems is as much important as the 

determination of stable/unstable regions. In order to design a proper control system, it is 

imperative to take into account the quasi-periodic behavior of these parametrically excited 

systems. Control systems are also used during heart surgery to reduce the motion of a part 

of beating heart over which surgery has to be performed [26, 27]. All these problems 

require a theoretical framework to understand their dynamics and control, but unfortunately 

there is no complete theory for linear differential equations with quasi-periodic 

coefficients. In this work, an attempt has been made to provide an approximate 

methodology that can be used for a general class of quasi-periodic systems arising in 

engineering applications. 

1.2 Quasi-Periodic (QP) Hill Equation and Related Work 

One of the simplest forms of linear differential equations with quasi-periodic coefficients 

can be represented by a modified damped Mathieu/Hill equation given by 
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                      1 1 2 2cos cos 0x d x a b t b t x                                             (1.1) 

where, 1  and 2  are the two parametric frequencies such that 1 2  is an irrational 

number (incommensurate), 1 2, , anda b b d  are system parameters and t  is the time. Stability 

of this type of system has been studied by various authors in the past. In 1980, Davis and 

Rosenblat [28] studied the QP Hill equation using multiple scale technique and computed 

the stability boundaries. According to them, stability boundaries arise from ‘ a ’ axis for 

two sets of families,  2

1 1 4a k  and  2

2 2 4a k  , where 1 2, 0,1, 2,k k    . Johnson 

and Moser [29] showed that in the spectral gaps, the rotation number    of an almost 

periodic function is related to the frequency module  M , 2 M  . This relationship is 

valid in the entire parametric space. Since rotation number is independent of the particular 

solution and is equal to a  when 1 2 0b b  , it has been used by several authors to plot 

the stability diagrams. Zounes and Rand [30] used the results of Johnson and Moser [29] 

and investigated the QP Hill equation both numerically and analytically. First, the stability 

diagrams were developed by direct numerical integration and computation of Lyapunov 

exponents. Later in their paper, expressions for transition curves were derived using regular 

perturbation and a technique similar to Hill’s method of infinite determinants and a good 

agreement between analytical and numerical solutions was reported. According to them, 

regions of instability in a b  plane originate from ‘ a ’ axis at 

 2

1 1 2 2 1 24 ; , 0,1, 2,...a k k k k    where main regions of instability arise from 

2
1 1 24 ( 1, 0 )a k k      and 2

2 1 24 ( 0, 1)a k k     . They also mentioned that the 

higher order resonances are more affected by the damping as compared to the lower order 
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resonances. Broer and Simó [31] numerically explored the QP Hill equation with two 

parametric frequencies:  1 21 and 5 1 2    . They numerically examined the 

stability boundaries for relatively large values of parameter (as compared to Zounes and 

Rand [30]) using maximal Lyapunov exponent and rotation number. In 2011, Puig and 

Simó [32] investigated the stability boundaries in a QP Hill’s equation with three 

parametric frequencies  1 2 31, 2 and 3      and plotted the boundaries using 

rotation number and maximal Lyapunov exponent. 

Perturbation and averaging techniques require existence of small parameters and 

generating solutions, while the application of the Hill’s infinite determinants method to QP 

Hill equation becomes progressively tedious with higher order systems and with larger 

number of terms in the generalized Fourier series. Moreover, it is known that the Hill’s 

infinite determinants do not converge in all cases [1, 33]. Stability charts can be plotted 

using rotation number and Lyapunov exponents, however, they require extensive 

computational power and do not provide analytical insight. To overcome the shortcomings 

of the above techniques and due to the unavailability of a rigorous theory for quasi-periodic 

systems, an approximate technique has been presented here. The basic premise is based on 

the suggestion that a quasi-periodic system may be approximately replaced by a periodic 

system with an appropriate large principal period and thus making it suitable for an 

application of the Floquét theory. Apart from establishing the proof of concept via 

numerical integration, a symbolic technique is also presented that is accurate for a wide 

range of system parameters.  
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1.3 Instability Pockets and Effect of Damping in Parametrically Excited Systems 

Parametrically excited systems have been the subject of investigations since 1868, 

when Mathieu [34] first encountered a second order linear differential equation with 

periodic coefficients while studying the wave motions of an elliptical lake. Since then, the 

study of parametrically excited systems has found applications in various fields of science 

and engineering.  

In most applications, parametric excitation is periodic or can be modeled to be 

periodic as an approximation to the true excitation. An equation of this form is known as 

Hill equation and it is named after G.W. Hill who came across such a differential equation 

while investigating the motion of the moon’s perigee [35]. A special case of Hill equation 

is the Mathieu equation in which excitation is sinusoidal. These equations have been used 

to model several physical systems [1,2,6,36,37]. In general, it is difficult to find closed 

form solutions of time-periodic systems (periodic coefficients). However, there are some 

special types of Hill equations that have exact solutions [36]. In 1918, Meissner [38] 

published a paper on the instability in connecting rods of locomotives based on a model in 

which excitation was assumed to be a rectangular periodic wave function.  This equation 

is commonly known as Meissner equation & it has an exact solution. A rectangular 

waveform is also used to model time-periodic variation in mesh stiffness in powertrain and 

gearing applications [39]. MEMS parametric resonators described by Meissner equation 

can be used in sensing and clocking applications [40]. Gasparetto & Gazzola [41] recently 

investigated the stability of the Hill equation where the periodic coefficient is an elliptic 

cosine function. They showed that for certain values of parameters exact solutions can be 

determined in terms of Jacobi elliptic functions. 
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Ships sailing in longitudinal sea waves, motion of a heart and Basilar membrane in 

cochlea of the inner ear are some of the examples where parametric excitation consists of 

frequencies that are incommensurate, thus making it quasi-periodic.   

In general, stability diagrams of Hill & Quasi-Periodic (QP) Hill equations contain 

strange geometric features that are formed by the intersections of stability boundaries. 

These closed sub-regions in the parametric space are commonly known as ‘Instability 

pockets’ or ‘Instability loops’. Such pockets do not exist in the stability diagram of Mathieu 

equation [42]. In 1995, Broer & Levi [43] provided a geometric explanation for instability 

pockets in Hill equations using singularity theory. Their work was further extended by 

Broer & Simó [44] in which they concluded that at the thk order resonance, any number of 

instability pockets (not exceeding 1k  ) can be generated.  In 1998, Broer & Simó [31] 

examined instability pockets in QP Hill equations using the averaging method. However, 

since instability pockets exist for relatively large amplitudes of parametric excitation, 

techniques such as averaging & perturbation have limited value in such analyses. Gan & 

Zhang [45] studied the global structure of instability pockets in Meissner equation with 

two step potentials using the rotation number approach. But this method cannot be 

extended to such an equation with three step potentials. Recently, Franco & Collado [46] 

introduced a concept of maximum growth rate in order to characterize the coexistence 

points (where instability boundaries intersect) & determined the minimum damping 

required for an instability pocket to vanish. However, growth rate of solutions were 

numerically determined.  

Damping plays a significant role in engineering applications. Generally speaking, 

damping has a stabilizing effect & this idea constitutes the main basis in the design of 
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control systems. However, in certain situations damping could induce instability. In 1875, 

Thomson & Tait [47] studied gyroscopic systems where the addition of damping destroyed 

stability. Ziegler [48] was probably the first who pointed out the destabilizing effect of 

damping in nonconservative systems. The phenomenon of destabilization due to damping 

is also observed in periodic systems where instability occurs due to the predominant effect 

of combination resonance [49]. From these studies, it can be concluded that such an 

instability can be demonstrated only for systems with two degrees of freedom, or higher. 

Recently, Franco & Collado [50] presented a numerical study of one degree of freedom 

systems with time-periodic coefficients & showed the destabilizing effect of damping in 

Mathieu & Meissner equations.  

Although numerical methods can always be employed to explore relatively larger 

parametric region, they require extensive computation effort and, more importantly, they 

do not provide analytical insight into the problem. To overcome these shortcomings, a 

symbolic approach developed by Sinha & Butcher [17], has been utilized to investigate 

instability pockets in several parametrically excited systems. Influence of damping on 

stability diagrams, in general, and on instability pockets has also been explored using the 

symbolic technique. 

1.4 Control of Nonlinear Systems to Desired Motions 

Generally speaking, nonlinear systems have much richer and more complex 

dynamics than linear systems and some of the interesting behaviors include multiple 

equilibrium solutions, limit cycles (periodic motions), bifurcations, and chaos, among 

others. These behaviors may be desirable in some cases but, undesirable in many others. 

For instance, assembly robots in several manufacturing processes require periodic motions 
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and it could be realized by a limit cycle of a nonlinear system with low energy consumption 

[51]. On the other hand, a limit cycle with large amplitude caused by the interaction of 

aerodynamic forces and structural vibrations in an aircraft wing can be dangerous. 

Similarly, chaos is desirable in industrial mixing processes and encrypting communications 

while it is considered undesirable for sensors as it restricts their signal strength and output 

energy [52]. These desirable/ undesirable dynamics can be controlled with the help of 

linear or nonlinear active controllers. 

The problem of driving nonlinear systems to desired motions leads to equations 

with time-dependent coefficients. Active control systems can be designed by using existing 

control techniques applicable to time-varying systems. Pole placement approach for state 

feedback control design for time-varying systems was first introduced by Follinger [53]. 

The technique requires either special canonical transformations or iterative schemes [54, 

55].  In 1988, Alfhaid and Lee [56] suggested the use of a transformation matrix to convert 

the time-varying problem into time-invariant form. However, all the examples were 

restricted to the class of commutative systems.  Optimal control theory can also be used for 

controller design but, it requires the solution of a time-varying matrix Riccati equation [57].  

In 1994, Sinha & Joseph [58] introduced a technique based on Floquet theory for the design 

of controllers for linear dynamical systems with periodic coefficients. Using Lyapunov-

Floquet transformation, they reduced the time-periodic system to a time-invariant form to 

which standard time-invariant methods of control theory can be applied. Due to the 

presence of generalized inverse in the expression of control law, asymptotic stability cannot 

be guaranteed by Sinha & Joseph method [59, 60]. In 1988, Middleton & Goodwin [61] 

presented global and robust BIBS (bounded input and bounded state) stability theory for 
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adapting controllers applied to time-varying linear systems. In 2006, Zhang & Sinha [62] 

generalized the idea of feedback linearization for systems with periodic coefficients. Their 

control scheme was based on Lyapunov-Floquet transformation & normal forms.  

One of the applications of control of desirable/ undesirable behaviors of nonlinear 

systems is chaos control.  Pettini [63] first provided the theoretical understanding of the 

suppression of chaos in Duffing-Holmes oscillator using parametric excitation. Some open 

problems regarding this approach can be found in Lima and Pettini [64]. In 1989, Hübler 

& Lüscher [65] presented an open loop strategy to drive chaos to periodic orbits that do 

not lie in the basin of the strange attractor. However, their methodology is not capable of 

controlling all chaotic systems or controlling to all periodic orbits [66]. One of the most 

popular approaches for controlling chaos is Ott-Grebogi-Yorke (OGY) method [67]. This 

method utilizes the Poincaré map of the system. The control scheme is restricted to the 

unstable periodic orbits that are embedded in the chaotic attractor and only those unstable 

periodic orbits can be stabilized whose largest Lyapunov exponent is small compared to 

the reciprocal of the time interval between which parameter changes [68]. In 1992, Pyragas 

[68] showed that unstable periodic orbits can be stabilized by delayed feedback controller 

and in contrast to the OGY method his approach was noise resistant. Jackson & Grosu [16] 

and Chen [69] independently suggested the use of an open loop (Hübler type) and a closed 

loop (feedback) actions. Unlike traditional OGY control and Pyragas delayed feedback 

control, Chen’s dual control methodology allows control of chaotic systems to any desired 

motions. However, Chen incorrectly guaranteed the asymptotic stability of the controlled 

system by using the eigenvalues of time-varying Jacobian.   In 2000, Sinha & Henrichs 

[70] used the concept of dual control and developed a general approach for local control of 
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chaotic systems to desired periodic orbits. In their approach, the control law was a 

combination of a nonlinear feedforward component and a linear feedback component. They 

designed the feedback controller using Sinha & Joseph method [9] and hence, the 

asymptotic stability cannot be guaranteed. Sinha et al. [71] circumvented this problem by 

utilizing the symbolic computational technique developed by Sinha & Butcher [17]. They 

computed the state transition matrix of the feedback system in terms of unknown control 

gains and guaranteed asymptotic stability by placing Floquet multipliers at desired 

locations inside the unit circle using a method similar to ‘Pole placement’ approach. 

Although control of chaos has been under detailed investigation for almost last 

three decades, however, to the authors’ best knowledge none of these researches considered 

the control of chaos to quasi-periodic motions. There are several physical systems that 

inherent quasi-periodic behaviors, such as motion of a heart & motion of the basilar 

membrane in the cochlea of the inner ear. The chaotic motion of heart during cardiac 

arrhythmia could be fatal and hence, a control system is required to drive this irregular 

behavior to the regular quasi-periodic motion of the heart.  

In the present work, a combination of feedforward and feedback controllers is 

utilized to control chaotic systems to desired periodic or quasi-periodic motions. The 

design of linear feedback controllers may require a guarantee of stability of ordinary linear 

differential equations with quasi-periodic coefficients (quasi-periodic systems). An 

approximate approach proposed in this work is employed to analyze the stability of quasi-

periodic systems. The linear feedback controllers are designed using the symbolic 

technique presented in Ref. [17].  
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Chapter 2 
 
 

Stability Analysis of Quasi-Periodic Systems 
 
 

2.1 Introduction 
 
 
Parametrically excited linear systems with oscillatory coefficients have been generally 

modeled by Mathieu or Hill equations (periodic coefficients) because their stability and 

response can be determined by Floquét theory. However, in many cases the parametric 

excitation is not periodic but consists of frequencies that are incommensurate, making them 

quasi-periodic. Unfortunately, there is no complete theory for linear dynamic systems with 

quasi-periodic coefficients. Motivated by this fact, in this chapter, an approximate 

approach has been proposed to determine the stability and response of quasi-periodic 

systems. It is suggested here that a quasi-periodic system may be replaced by a periodic 

system with an appropriate large principal period and thus making it suitable for an 

application of the Floquét theory. Based on this premise, a systematic approach has been 

developed and applied to three typical quasi-periodic systems. In addition, state transition 

matrices are also computed symbolically in terms of system parameters using Chebyshev 

polynomials and Picard iteration method. The coefficients of parametric excitation terms 

are not necessarily small in all cases. First some basic results of Floquét theory are 

summarized in the following. 
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2.2 Some basic results of Floquet theory  
 

Floquét theory predicts the stability and response of linear ordinary differential 

equations with periodic coefficients [72]. Consider 

                        ( )x A t x                   0(0)x x                                        (2.1) 

where, nx  , +t , ( )A t  is an n n  periodic matrix with the principal period T . Let 

( )t  be the state transition matrix (STM) such that it satisfies the above linear equation 

with (0) I  ; then the solution of Eq. (2.1) can be written as 

                        0( ) ( )x t t x             0 t T                                         (2.2)                                    

 For t T , it can be calculated by 

   0( ) ( ) ( )sx t sT t T x               0 t T               1,2,3,s             (2.3) 

where, ( )T is the Floquét transition matrix (FTM) or the monodromy matrix. The stability 

criteria for periodic systems depends upon the eigenvalues of ( )T , called the ‘Floquét 

multipliers’ and the system is stable if all ‘Floquét multipliers’ lie on or inside the unit 

circle, otherwise it is unstable. 

According to the Lyapunov-Floquét theorem [73], STM can be expressed as 

                ( ) ( ) Ctt L t e                         ( ) n nL t  ,  n nC     0t                           (2.4) 

or ,          ( ) ( ) Rtt Q t e                       ( ) n nQ t  ,  n nR      0t                            (2.5) 

where,  ( )L t  is T periodic and ( )Q t is 2T  periodic. ( )L t and ( )Q t  are known as Lyapunov-

Floquét (L-F) transformations. Using the transformations, ( ) x L t z  or ( ) x Q t z ,             

Eq. (2.1) can be reduced to equations with constant coefficients 

                           z Cz  or z Rz   , respectively,                                    (2.6) 
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where C  and R  are time-invariant matrices.  

A specific form of Eq. (2.1) is the well-known Mathieu equation given by 

                            1cos 0x a b t x                                                       (2.7) 

where, na   is the natural frequency of the system (with 0b  ) and 1  is the 

parametric excitation frequency. In a b  plane, stability boundaries cross 0b   line or 

originate from 

          
2

1

2

K
a

   
 

               
0, 2, 4, periodic

1,3,5, 2 periodic

T
K

T


 





                            (2.8) 

2.3 Proposition and a General Methodology 

The general linear ordinary differential equations with quasi-periodic coefficients 

may be represented by 

                 ( , ) ;
d

x A x
dt

            0(0, )  x x                                (2.9) 

where, ( , ) nx    , ( , )A    is an n n  matrix that is 2  periodic in  1 2, , , m    

and is a continuous function of a set of control parameters  ;  1 2, , , m
m       is 

the frequency vector of ( , )A   and t  is the time. When ( , )A    has finite ( 2m  ) 

incommensurate frequencies, then, ( , )A   is quasi-periodic.  

A simple form of Eq. (2.9) is the damped QP Hill equation given by  

                                            
1

 cos 0
m

i i
i

x d x a b t x


     
 

                                     (2.10) 

Equation (2.10) can be rewritten in the state space form as 
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 

1

0 1

 cos
m

i i
i

x x
a b t d



 
          


                                       (2.11) 

where,  1 2

T
x x x  and  1 2, , , m     is the frequency basis of the coefficient 

matrix.  

The stability of Eq. (2.10) (or Eq. (2.11)) cannot be investigated by Floquét theory 

since the ‘principal period’ for such a system tends to infinity. However, an approximate 

period can always be defined such that for every 0  , there exists a length of time ( )T   

that contains a number, ( )aT   for which ( ( )) ( )aA t T A t    . For a given   , ( )aT   can 

be determined by truncating the frequency module of ( , )A t   defined as 

1 1 2 2 m mk k k     ; 1 20,1,2, and 0i mk k k k       . Frequency module can 

be truncated by fixing the upper limit on ik . The ‘minimum frequency’, min in the 

truncated frequency module can be chosen to define the approximate principal period, aT   

of the parametric quasi-periodic term. Thus, the following parameters are defined as 

        min 1 1 2 2 m mMin k k k              ;     min 0     and  min2aT           (2.12) 

min depends on a particular set of values of ik used in Eq. (2.12). For example, if 

the coefficient matrix, ( , )A t   in Eq. (2.11) consists of two incommensurate frequencies 

1   and 2 7.0   in the frequency basis, then Eq. (2.12) can be written as 

 1 1 2 2Min k k  . If  1k  and 2k  vary from 0 to 14, then  min 0.274334   and 

22.9034aT  . This min is observed when 1 9k   and 2 4k   but is a minimum up to the 
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maximum value of 1 2, 19k k  . Once min and aT  have been calculated, the original quasi-

periodic system, Eq. (2.11) is replaced by the following periodic system.  

                          
 

1

0 1

 cos
m

i i
i

x x
a b t d



 
          


                                      (2.13) 

where, i  in Eq. (2.11) has been approximated by i  such that i  are integral multiples 

of min , the minimum frequency of the approximate system. From Eq. (2.12) this translates 

into the principal period min2aT   . Due to the periodic nature of approximate system, 

its stability and response can be determined by the Floquét theory (c.f., section 2.2) and it 

is expected that the solution of Eq. (2.13) is the approximate solution of the original quasi-

periodic system, Eq. (2.11). 

As the approximate system is a periodic system with the principal period aT , aT  and 

2 aT  stability boundaries can be obtained like the Mathieu equation as described in section 

2.2 and hence expressions for a  when 0 ; 1,...,ib i m   should be similar to Eq. (2.8). 

Thus, the stability boundaries in the approximate system would originate from 

        
2

min ;
2

K
a

   
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0, 2,4, periodic

1,3,5, 2 periodic
a

a

T
K

T


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




                      (2.14) 

Using  aT   as the principal period of the system, the STM of the approximate system can 

be computed and subsequently stability chart can be plotted using the following 

expressions [74] 

             ( , ) 2aTr T                  (Undamped system, 0d   )                            (2.15) 

and         ( , ) 0aDet T                (Damped system, 0d   )                              (2.16) 
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The development of such an approximate theory for quasi-periodic systems also allows 

one to construct Lyapunov-Perron (L-P) transformation matrices that reduce the linear 

quasi-periodic systems to systems with time-invariant coefficients.  

2.4 Computational Details and Stability Charts for Some Typical Cases 

Three cases are studied in this work. It includes two cases in which ( , )A t   in           

Eq. (2.11) consists of two frequencies and for the last case ( , )A t   contains three 

frequencies. The two frequency cases are the simplest examples of QP Hill equations. In 

the first case study, the two frequencies are selected as 1  and 2 7.0  . This set is 

chosen as a possible representative of systems where 1  and 2  are relatively apart. In 

such cases finding min could possibly involve a large number of 1 2andk k  in Eq. (2.12) as 

compared to frequency pairs with smaller differences between them. Also, in the 

corresponding periodic cases with excitation frequencies 1  and 2 , the main parametric 

resonance regions would be away from each other and the other unstable regions in 

between main parametric resonances (due to combination of frequencies), will also be apart 

making the stability chart possibly less complicated. For the second case study 1 1.0   

and  2 1 5 2    (known as golden ratio), where the difference between the two 

frequencies is 0.618034, much smaller as compared to 3.85841 in Case Study 1. Existence 

of an ‘instability loop’ in one of the main instability regions is the typical feature of this 

case. This case has also been investigated by Broer and Simó [31] using rotation number 

and maximal Lyapunov exponent. The results obtained from the proposed method have 

been compared with those given in reference in [31]. In the third case, the coefficient 

matrix, ( , )A t   in Eq. (2.11) contains three frequencies: 1 1.0  , 2 3   and          
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3 11  . The difference between the frequencies ( 2 1 0.732051   , 3 2 1.58457    

and 3 1 2.31662   ) are relatively smaller than the Case Study 1. A number of 

instability loops are observed in the parametric space.  

2.4.1 Case Study 1: 1 2and 7.0      

The damped QP Hill equation, Eq. (2.10) reduces to Eq. (1.1) which can be 

represented in the state space form using Eq. (2.11) as 

 1 2

0 1

cos cos7
x x

a b t b t d
 

      
                                      (2.17) 

As a first step, a set of minimum frequencies ( min ) are calculated using Eq. (2.12) over a 

range of values of 1k  and 2k  and is listed with their corresponding approximate periods            

( aT ) in Table 2.1. It should be observed that min is defined for a set of maximum values 

of 1k  and 2k .  For example, as shown in Table 2.1, minω 0.168147 is minimum in the 

range 1 2, 0 to 28k k   and it occurs for 1 20k   and 2 9k  . As 1k  and 2k are increased 

further, a frequency smaller than minω 0.168147 is obtained for 1 29k   and 2 13k  . This 

new minω  ( 0.106187 ) remains minimum up to 1 2, 48k k   as seen in Table 2.1.  

Table 2.1: Minimum frequencies ( min ) with their corresponding periods ( aT ) and the 
frequencies of the approximate (periodic) system. (Case Study 1) 

Entry 
Number 
(E. No.) 

Range of 

1 2,k k

values 

min  

( min 0  ) min2aT    Total number of 
frequencies        1  2  

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 
1 0 to 1 3.14159 2.0 4 3.14159000 6.28318000 
2 0 to 8 0.716815 8.76542 144 2.86726000 6.45133500 
3 0 to 19 0.274334 22.9034 760 3.01767400 7.13268400 
4 0 to 28 0.168147 37.3672 1624 3.19479300 7.06217400 
5 0 to 48 0.106187 59.1709 4704 3.07942300 7.00834200 
6 0 to 77 0.061960 101.407 12012 3.15996000 7.00148000 
7 0 to 126 0.0442270 142.067 32004 3.14011700 6.98786600 
8 0 to 331 0.0177330 354.323 219784 3.13874100 7.00453500 
9 0 to 790 0.00876099 717.178 1249780 3.14519541 7.00003101 
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In order to approximate the quasi-periodic system, Eq. (2.17) by a periodic system, 

the frequencies 1   and 2 7   are replaced by 1  and 2 , respectively, which are the 

integral multiples of minω . Equation (2.13) reduces to the form 

 1 1 2 2

0 1

cos cos
x x

a b t b t d 
 

      
                                 (2.18) 

Columns 6 and 7 in Table 2.1 show 1  and 2  for various min . For instance, when 

minω 0.168147 (E. No. 4 in Table 2.1), 1 min 18.6836    and 2 min 41.6302   . The 

nearest integers are 19 and 42 and therefore, 1 min19 3.194793    and 

2 min42 7.062174   . Since the greatest common divisor (GCD) of 19 and 42 is 1, the 

min remains as a minimum frequency in the approximate system. In case of

minω 0.106187  (E. No. 5 in Table 2.1), 1 min 29.5855   and 2 min 65.9214   and 

thus we can set  1 min30 3.18561   and 2 min66 7.008342   . As the GCD of 30 

and 66 is 6, the minimum frequency of the approximate system has changed to min6 which 

implies that the period of the approximate system is not the same as the approximate period 

of the quasi-periodic system that is computed by truncating the frequency module of 

coefficient matrix. In order to avoid this situation, we can change one of the integers or 

both such that the GCD becomes 1. In this particular case, the frequencies of the 

approximate system could be represented by 1 min29 3.079423    and 

2 min66 7.008342   . 

Once an approximate system has been defined (c.f., Eq. (2.18)), the STM, ( , )t   

can be calculated numerically using Floquét theory. Setting 1 2b b b  (for convenience) 
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and using MATHEMATICA, ( , , , )t a b d of the approximate system was computed and 

stability charts were plotted in the a b  plane utilizing Eqs. (2.15) and (2.16). All 

computations in this work were performed on a laptop computer with a 2.50 GHz i7-

4710MQ 4-core processor and 24 GB of RAM. 

A note of interest: As indicated in section 2.2, a linear periodic system can be reduced to a 

system with constant coefficients by using L-F transformations. A similar result, known as 

Lyapunov-Perron (L-P) transformations, exists for quasi-periodic systems that reduces the 

linear quasi-periodic systems to systems with constant coefficients. Denoting ( , )P t   as 

the L-P transformation, the change of variable ( , )x P t z   reduces Eq. (2.9) to the 

following system [75, 76]. 

                                                          0 ( )z A z                                                           (2.19)                                                          

where 0 ( )A  is a time-invariant matrix. It should be noted that the frequency basis of L-P 

transformation, ( , )P t  is same as the coefficient matrix, ( , )A t  . Since in the proposed 

methodology the minimum frequency min is computed by truncating the frequency module 

of ( , )A t  , the frequency module of the ( , )P t  will be same as the truncated frequency 

module of ( , )A t  . Column 5 in Table 2.1 shows the total number of frequencies that 

could be present in ( , )P t  for a particular min  and it can be calculated using 

  2 1 1 2
m

j    where, m  is  the  number  of  frequencies  in  the frequency basis and j  

is the largest value of ; 1, 2,ik i   . 
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2.4.1.1 The Undamped System ( 0d  ) 

In this section, the undamped QP equation is investigated and stability charts are 

plotted for various values of minimum frequencies in order to ascertain the largest value of 

min  that would yield stability boundaries up to a desired accuracy. As a guideline, it is to 

be noted that for the periodic case of 1  , the stability boundaries of main parametric 

instability region arise from 2
1 4 2.46740a   , while for 2 7.0  , these arise from 

2
2 4 12.25a   and both are 2T  periodic. This is easily verified by Eq. (2.8). For the QP 

Hill equation as well, Zounes and Rand [30] reported that stability boundaries of main 

instability regions arise from same values of a . A careful examination of stability charts 

(see Fig. 2.1 through Fig. 2.3) leads us to the following observations. 

For a given min , say min 0.274334  , a number of aT  and 2 aT  stability boundaries stem 

from the a  axis in the a b  plane, as anticipated (see Fig. 2.1). The aT  and 2 aT  unstable 

regions are either due to primary frequencies  ( 1  and 2 ) or due to various combinations 

of 1  and 2 .  From Fig. 2.1 through 2.3, it could be observed that as min decreases, the 

number of unstable regions increases in the parametric space and the prominent regions of 

instability become clearly visible. The bifurcation points on a axis are aT  and 2 aT  periodic 

and can be computed using Eq. (2.14). It is observed that the two main instability regions 

stem approximately from 2.5a   and  12.50a  .  
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                              (i)                                                                       (ii)                                                       

                                                                    (iii)                                                                                       

Figure 2.1: Stability diagram of the QP Hill equation with .

; Solid: periodic, Dashed: periodic 
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                              (i)                                                                       (ii)                                                       

                                                                    (iii)                                                                                       

Figure 2.2: Stability diagram of the QP Hill equation with .

; Solid: periodic, Dashed: periodic 
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Figure 2.3: Stability diagram of the QP Hill equation with . 

; Red/Solid: periodic, Blue/Dashed: periodic 

                              (i)                                                                       (ii)                                                       

                                                              (iii)                                                                                       
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For minω 0.0442270 , the main instability regions start from 2.46508a   and 

12.2076a   and are 2 aT  and aT  periodic, respectively. In periodic systems the main 

parametric resonance (2:1) is 2T  periodic and occurs at 2.46740a   for 1   and at 

12.25a   for 2 7.0  (c.f., Eq. (2.8)) which are close to the values obtained from               

Eq. (2.14).  Using the concept of winding number, Zounes and Rand [30] reported that all 

stability boundaries arise from  2

1 1 2 2 4 ; 0,1, 2,a k k k     and the main instability 

regions stem from 2.46740a   1 2( 1 and 0)k k    and 12.25a  1 2( 0 and 1)k k   

which are identical to the Floquét theory. In fact, this expression is same as Eq. (2.14) if 

minK  is replaced by 1 1 2 2k k  . However, since 1k and 2k  are finite by definition of min

, it is a subset of results given in [30]. A prominent instability region is also observed near 

the T  periodic unstable region (1:1) of periodic system that emanates from 9.86960a   

for the excitation frequency 1   (see Fig. 2.3). For min 0.0442270   this instability 

region is aT  periodic and it stems from 9.86033a   that is close to the exact bifurcation 

point 9.86960a   calculated using Zounes and Rand [30] expression with

1 22 and 0k k  .  

The selection of min could involve a number of trials but this problem is 

circumvented by performing a convergence study of the bifurcation points. Since the main 

instability regions in the quasi-periodic system arise from 2
1 4a  and 2

2 4a  , a 

convergence study of these bifurcation points is used as a guideline in the selection of          

min . Figure 2.4 demonstrates the convergence of bifurcation points of the main instability 

regions as the approximate period, aT  increases ( min decreases). The y axis denotes the 
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difference between the exact  ea  and approximate  aa  bifurcation points, e aa a  and 

the x axis is represented by the expression,  1
10log a aT T  where 1

aT  is the smallest aT  in 

Table 2.1 i.e., 2.0. A non-uniform convergence is observed. It is expected that with a 

decrease in min , the accuracy of the proposed method would increase. However, as min

is made smaller, aT  increases and hence it would require longer computation time. Keeping 

the computational time reasonable, minω 0.0442270  is used in further investigations. 

This results in , 1 min71 3.140117    and 2 min158 6.987866   . 

 
2.4.1.1A  Poincaré Maps and Spectral Analysis 

In order to check the accuracy of the stability boundaries, Poincaré maps of 

approximate solutions (c.f., Eq. (2.18)) constructed by Floquét theory using 

min2 142.067aT     and numerical (so-called ‘exact’) solutions of the original system 

given by Eq. (2.17) are compared at some typical points close to the stability boundaries. 

142.067aT 

Figure 2.4: Convergence diagram of bifurcation points of the main instability regions of QP Hill 
equation with . 
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These points are denoted by A, B, C, D, F and G in Fig. 2.3. Approximate and exact 

(numerical) Poincaré maps constructed at these points are shown in Fig. 2.5. It is observed 

that the maps are qualitatively similar, however, there are significant differences between 

the amplitudes of approximate (left column) and exact (right column) solutions. The 

differences in amplitudes of approximate and exact solutions are due to slight discrepancies 

between the location of approximate and exact stability boundaries in the parametric space.  

For instance, if point B is assumed near the exact boundary by changing parameter ‘ a ’ 

from 0.356044a   to 0.358719a   keeping ‘ b ’ constant ( 3.6b  ), a stable exact 

solution of large amplitude is obtained (see Fig. 2.6) which is much closer to the 

approximate Poincaré map for point B (see Fig. 2.5(ii)). After all, the boundaries constitute 

the most sensitive portion of the stability chart. The ‘exact’ ( ,a b ) values corresponding to 

the boundary near these points are determined by computing the maximal Lyapunov 

exponent via numerical integration. In Table 2.2, column 3 shows the ‘ b ’ values 

corresponding to these points, while columns 4 and 5 show the corresponding ‘ a ’ values 

obtained by the proposed approximate method and by computing the maximal Lyapunov 

exponents, respectively. Figure 2.5(vii) shows the Poincaré maps constructed at one of the 

typical stable points (point H in Fig. 2.3) and it could be observed that the exact and 

approximate maps match qualitatively and quantitively. Maps at other stable points also 

show similar patterns but are omitted for brevity.  

To further ensure that aT  or 2 aT  stability boundaries constructed using Floquét 

theory with min2 142.067aT     are accurate representations of exact stability 

boundaries, spectral analysis using Discrete Fourier Transform (DFT) is performed on  



 28

 

(i) Point A
 

(ii) Point B
 

(iii) Point C
 

(iv) Point D 
 

(vi) Point G
 

(v) Point F
 

(vii) Point H 
 

Figure 2.5: Poincaré maps of approximate and exact solutions constructed at a few typical 
points in the stability diagram of QP Hill equation with  (
; see Fig. 2.3). Left column: Approximate system (Eq. (2.18), Right Column: Original QP 
system, Eq. (2.17). 
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approximate and exact solutions. The solutions are generated for points marked A through 

G in Fig. 2.3. In Table 2.2, columns 3 and 4 specify the locations of these points in the 

parametric space. Columns 6 indicates the dominant frequency in the frequency spectrum 

of approximate solutions ( aaf ) near the boundaries that are computed using Floquét theory. 

As an example consider point B ( 0.356044a  and 3.6b  ) near the main instability 

region arising from 2.46508a  . At this point the approximate dominant frequency,

1.56934aaf  . If point B is assumed near the exact stability boundary ( 0.358719a   and 

3.6b  ), the exact dominant frequency, 1.5708oef   which is close to aaf . Figure 2.7 

shows the frequency spectrum of the solutions at/near point B. Other frequencies in the 

frequency spectrum are the integral multiples of min 2  and they represent the influence 

of other harmonics on the stability boundaries. From columns 6 and 7, it is observed that 

aa oef f  which implies that the approximate stability boundaries constructed using 

Floquét theory with 142.067aT   are accurate representations of exact stability boundaries. 

 

Figure 2.6: Poincaré map of an exact solution computed near the exact stability boundary           
(  ) of QP system with .  
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As the number of instability regions change with a change in min , the 

characteristic nature of the stability boundaries ( aT  periodic or 2 aT  periodic) representing a 

particular unstable region in the parametric space can change as well. For instance, consider 

point C1 ( 3.9792a   and 2.5b  ) in the stability chart corresponding to min 0.0619600   

(see Fig. 2.2). Point C1 lies near the aT  periodic stability boundary of the prominent 

instability region that arises from 3.68932a  . As shown in Fig. 2.8(i) & 2.8(ii), the shape 

of the Poincaré maps constructed at this point for approximate and exact solutions are 

similar. The DFT of the solutions shows that 1.92076aaf   (see Fig. 2.8(iii)). If min is 

reduced further to 0.0442270 , the same unstable region is bounded by 2 aT  periodic 

boundaries and it arises from 3.70129a  . Point C ( 3.97649 and 2.5a b  ; see Fig. 

2.3), which is close to point C1, is now near the 2 aT  periodic stability boundary and the 

approximate dominant frequency, 1.92387aaf  while near the exact boundary 

1.92855oef  . The aaf  of points C and C1 are close to oef  suggesting that both minimum 

                              (i)                                                                            (ii)                                                       

Figure 2.7: Frequency spectrum of solutions. (i) Approximate solution generated at Point 
B ( ; see Fig. 2.3) using Floquét theory with . 
(ii) Exact solution generated near the exact boundary ( ). 
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frequencies i.e., min 0.0619600 and 0.0442270  could be used in the proposed method. 

DFT is also helpful in identifying the frequency combinations that cause the 

parametric resonances. Seven prominent instability regions, R1 through R7, as shown in 

Fig. 2.3, are investigated and the dominant frequencies at/near points A-G are identified 

and shown in columns 6 and 7 of Table 2.2. The error depends upon the proximity of a 

point to the exact boundary and the quality of the DFT software. For periodic systems the 

periodicity of the bifurcation points on the a  axis in a b  plane is same as the periodicity 

of the stability boundaries originating from them. In the case of quasi-periodic systems, 

Figure 2.8: (i) and (ii) Poincaré maps of approximate and exact solutions, respectively 
constructed at point C1 in Fig. 2.2 with  and . .  (iii) 
Frequency spectrum of the approximate solution generated at Point C1. 

                                    (i)                                                                     (ii)                                                       

                                                                       (iii)                                                                                       
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since the bifurcation points are given by [30]  2

1 1 2 2 4a k k   , the frequency content 

of the boundaries may be expressed as   1 1 2 2 2k k   . With this observation, the 

general forms of aaf  and oef  listed in columns 6 and 7 (Table 2.2) may be expressed as 

             
   1 1 2 2 1 1 2 2

2 2aa oe

k k k k
f f

      
                                       (2.20) 

For instance, point D ( 5.5560 and 4.5 a b  ) near the stability boundary of R4 (see             

Fig. 2.3) has 2.27769aaf   and 2.28640oef  (see Fig. 2.9). Then
 1 23 2

2aa oef f
  

   

2.2876  suggests that unstable region, R4 is formed due to frequency combination 

 1 23 2   . The parametric resonances due to combination of excitation frequencies as 

shown in Table 2.2 are different from combination resonances in periodic systems with 

multiple degrees of freedom where they occur when the excitation frequency is a 

combination of natural frequencies of different modes of the system.  

 

                                (i)                                                                            (ii)                                                       

Figure 2.9: Frequency spectrum of solutions. (i) Approximate solution generated at 
Point D ( ; see Fig. 2.3) using Floquét theory with 
. (ii) Exact solution generated near the exact boundary ( ). 
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In between the prominent instability regions, a bunch of narrow strips of unstable 

regions are observed between R2 and R3 in Fig. 2.3. These instability regions arise due to 

various combinations of frequencies 1 2and   and their number increases with smaller 

and smaller min (c.f., Eq. (2.14)). The order of resonance 1 2k k of prominent instability 

regions may be calculated using column 9 of Table 2.2. From Fig. 2.3, it is observed that 

the width of prominent instability regions decreases with an increase in the order of 

resonance. These narrow strips of unstable regions are of higher order as compared to the 

prominent regions of instability. The bifurcation points of these narrow strips may not be 

close to the exact bifurcation points as opposed to the prominent regions of instability that 

move closer to exact locations and correct widths with a decrease in min . It may be 

conjectured that with further reduction in ‘minimum frequency,’ these narrow strips of 

unstable regions will also attain appropriate widths and locations in the parametric space. 

In section 2.4.1.2, it is shown that in presence of damping, these instability regions 

disappear for smaller values of b .           

In Fig. 2.10, instability regions of quasi-periodic system are compared with periodic 

systems with excitation frequencies,   and 7.0 . Although, the main instability regions in 

the quasi-periodic system originate from same bifurcation points on the a  axis as in the 

periodic systems (c.f., section 2.4.1.1), the extensions of the boundaries are a bit different 

from the periodic systems. For smaller values of b ( 1b  ), the boundaries of main 

instability regions are close to each other, however, quasi-periodic boundaries start 

deviating as b  increases. For the quasi-periodic system, in Fig. 2.3(ii), instability region 

R6 starts near 10.0a  which is similar for periodic case with excitation  as shown in            

Fig. 2.10(i). The deviation of quasi-periodic boundaries from periodic boundaries could 
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possibly be the influence of other harmonics on a particular instability region. In the 

following, a technique similar to the Hill’s method of infinite determinants is used to 

investigate the influence of harmonics on the stability boundaries. 

 

 
2.4.1.1B Generalized Hill’s Infinite Determinants Method  

As discussed earlier, the frequency contents of the stability boundaries can be 

expressed as  1 1 2 2 2k k     (c.f., Eq. (2.20)) implying that the corresponding solution 

may be written in the form of a generalized Fourier series as 

             
1 2 1 2

1 2

1 1 2 2 1 1 2 2

, 0

( ) cos sin
2 2

j

k k k k
k k

k k k k
x t H t L t

   



               
                    (2.21) 

Thus, an approach similar to the Hill’s method of infinite determinants may be applied to 

compute the stability boundaries for quasi-periodic systems. Substituting Eq. (2.21) in            

                              (i)                                                                         (ii)                                                       

Figure 2.10: Comparison of instability regions of the QP system ( ,
) with periodic systems. (i) QP system versus periodic system with 

(ii) QP system versus periodic system  
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Eq. (2.17) for the undamped case and equating the coefficients of sin ( )  and cos ( )  leads 

to a set of linear homogenous algebraic equations in terms of 
1 2k kH and

1 2k kL . Approximate 

analytical expressions for stability boundaries can be computed by setting the determinants 

of coefficient matrices to zero for a finite value of j  in Eq. (2.21). Zounes and Rand [30] 

used the same approach to plot the stability diagram of a QP Hill equation. However, in 

their investigation the amplitude of parametric forcing term was kept rather small                            

( 0.1b  ). In Fig. 2.11, the stability boundaries of main instability regions obtained from 

the proposed method using Floquét theory with 142.067aT  are compared with the 

stability boundaries computed using the Hill’s approach. It is observed that with an increase 

in the number of terms in the generalized Fourier series (i.e., j ), the stability boundaries 

obtained from Hill’s type approach move towards the boundaries obtained from the 

proposed method.  

Figure 2.11: Comparison between the stability boundaries of the main instability regions 
computed using Floquét theory ( ) and Hill’s type approach. 

 

                                  (i)                                                                     (ii)                                                       
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Although, the Hill’s type approach provides analytical expressions for the stability 

boundaries, for larger values of j , the dimensions of coefficient matrices increase making 

this approach computationally inefficient. For example, when 4j  , the dimension of the 

coefficient matrix is 41 41  and in addition, the convergence of this method cannot always 

be guaranteed [1, 33]. In order to overcome these shortcomings, a symbolic technique for 

the computation of STM is presented in section 2.5 and stability diagrams are obtained. 

Nevertheless, the Hill’s approach clearly shows the influence of harmonics on the 

stability boundaries, which in turn explains the presence of a number of peaks in the 

frequency spectrum of solutions. For example, Fig. 2.7 shows the frequency spectrum of 

solutions generated at point B (Fig. 2.3(i)) near the stability boundary of instability region 

R2. A number of peaks corresponding to frequencies 0.853538, 1.5708, 4.71239, and 

5.42965 are observed in the DFT of the original equation near the exact boundary (see         

Fig. 2.7(ii)) and these frequencies can be expressed as  1 25 2 2  , 1 2 , 13 2  and 

 2 12 2  , respectively. As the original quasi-periodic system is approximated by a 

periodic system with excitation frequencies 1 3.140117  and 2 6.987866  , the exact 

peaks in the frequency spectrum are approximately represented by the frequencies 

0.863138, 1.56934, 4.71088 and 5.41851 (see Fig. 2.7(i)). Since the stability boundaries 

are 2 aT  periodic, these frequencies are integral multiples of min 2 . Using Eq. (2.20) these 

frequencies may also be expressed as  1 25 2 2  , 1 2 , 13 2 and  2 12 2  , 

respectively. These are identical to the frequency combinations obtained for the original 

quasi-periodic system. 
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2.4.1.2 The Damped system ( 0d  ) 

In this section, influence of damping ( d ) on the stability diagram of QP Hill 

equation (Eq. (2.17)) is studied. Following the procedure described in section 2.4.1 stability 

charts are plotted for the damped system using Eq. (2.16). Figure 2.12 shows the stability 

chart for min 0.0442270   and 0.1d  . It is observed that only some of the prominent 

instability regions persist in the parametric region defined by 0 to 15a  and 0 to 4b  .   

                               (i)                                                                         (ii)                                                      

Figure 2.12: Stability diagram of the damped QP Hill equation with .
and . 

(iii) 
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Stability boundaries from the proposed method are compared with the exact 

boundaries obtained using Lyapunov exponents and Poincaré maps. Since maximal 

Lyapunov exponent is negative for a stable damped system and positive for an unstable 

system, the exact stability boundaries can be plotted by detecting the critical values of 

system parameters where the maximal Lyapunov exponent changes from positive to 

negative or vice versa. For the unstable region R2, the exact stability boundaries obtained 

from maximal Lyapunov exponent lie on the approximate boundaries computed using 

Floquét theory with 142.067aT   ( min 0.0442270  ). A slight variation between 

approximate and exact boundaries can be observed in case of other prominent instability 

regions. Poincaré maps at some typical points viz., Â through Ĥ (Fig. 2.12) are constructed 

and shown in Figs. 2.13(i)-(viii). For the unstable region R2, the Poincaré maps of 

approximate and exact solutions at  point  Â  ( 2.467a   0.315b   and 0.1d  ) and point 

B̂ ( 2.467 0.313a b   and 0.1d  ) agree with each other. The solutions (approximate 

and exact) are unstable and stable at points Â and B̂ , respectively. It is important to note 

that there is a very small difference between these points and the stability boundary lies in 

between them. Now, consider Poincaré maps constructed at points F̂  ( 11.230 2.2a b   

and 0.1d  ), Ĝ ( 11.250 2.2a b   and 0.1d  ) and Ĥ  ( 11.280a   2.2b  and          

0.1d  ). Although the growth/decay rate of solutions are not the same, the qualitative 

behaviors of exact and approximate solutions match at points F̂  and Ĥ . However, a 

disagreement is observed at point Ĝ since the exact solution is found to be stable while the 

approximate solution is unstable. This discrepancy is expected as the approximate 

bifurcation point, 12.2076aa   lies before the exact point, 12.25ea   on the axisa . A 
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disagreement at point D̂  ( 4.130 3.2a b   and  0.1d  ) can also be explained similarly. 

The general behavior of solutions is similar to each other at points Ĉ  ( 4.120a   3.2b   

and  0.1d  )   and Ê   ( 4.140 3.2a b  and  0.1d  ).  

(iii) Point : , and 
 

(ii) Point : , and  (i) Point : , and  

(iv) Point : , and  

(v) Point : , and  

(vii) Point : , and  (viii) Point : , and  

Figure 2.13: Poincaré maps of the approximate and the exact solutions of the damped QP 
Hill equation with . (see Fig. 2.12). 
 

(vi) Point : , and  
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In Fig. 2.14, stability boundaries of main instability regions are plotted using three 

approaches: maximal Lyapunov exponent, proposed method using Floquét theory with 

142.067aT  and Hill’s type approach with 1j   in Eq. (2.21). A good agreement among 

all three approaches is observed near crb , the minimum amplitude of parametric forcing 

term required for instability. In Hill’s type approach, a better approximation can be 

achieved by including more terms in the generalized Fourier series (c.f., Eq. (2.21)). 

However, no such attempts were made. 

 

Thus far, 1b  and 2b  in Eq. (2.17) have been assumed to have the same values for 

the sake of convenience. Figure 2.15 shows the effect of 2b  on the main instability region, 

R2 (see Fig. 2.3). When 2 0b   , the approximate stability boundary constructed using 

Figure 2.14: Comparison between the stability boundaries of the main instability regions 
of the damped QP Hill equation ( ) computed using three approaches: 
maximal Lyapunov exponent, proposed method using Floquét theory ( ) and
Hill’s type approach. 
 

                                 (i)                                                                     (ii)                                                       
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Floquét theory with 142.067aT   (or min 0.0442270   1 3.140117   ) lies 

almost on the stability boundary of the main instability region of periodic system with 

excitation frequency 1  , as anticipated. As the value of  2b  increases, the instability 

region R2 moves toward the vertical axis, 0a  implying that with the increase in 2b  more 

unstable regions are squeezed into the parametric space. It should be noted that by changing 

the value of 2b  an unstable point can be stabilized and the bifurcation point can also be 

moved.   

 

2.4.2 CASE STUDY 2: 1 1.0  and  2 1 5 2    

In this case, the frequencies form the ‘golden ratio’ that is well known for its 

interesting history and irrationality. In contrast to the previous case study, the frequencies  

 

 

Figure 2.15: Effect of  on the main instability region corresponding to i.e., R1 in 
the damped QP Hill equation with . . 
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Table 2.3: Minimum frequencies ( min ) with their corresponding periods ( aT ) and the 
frequencies of the approximate (periodic) system. (Case Study 2) 
 

 

1 and 2  are smaller in magnitudes and also the difference between them is relatively 

small i.e., 0.618034 instead of 3.85841 in Case Study 1. Due to the proximity of the 

frequencies, it is anticipated that more instability regions will be squeezed into a smaller 

region, and thus the stability chart could be quite intricate.  

The damped QP Hill equation is similar to Eq. (2.17) with excitation frequencies 

1.0 and  1 5 2 . Following the procedure discussed in section 2.4.1, min is computed 

over a range of  1k  and 2k and are tabulated in Table 2.3 along-with their corresponding 

periods,  aT . It is important to note that min 0.0212862  (E. No. 8 in Table 2.3) is almost 

one half of the min 0.0442270  (minimum frequency used in Case Study 1, see E. No. 7 

in Table 2.1) but it is obtained for relatively smaller value of 1k  and 2k ( 1 34k  and         

2 21k  ). This occurs due to the smaller difference between the frequencies.  

Once min has been fixed, the approximate system can be defined using columns 6 

and 7 of Table 2.3. The selection of min was based on a convergence study of the 

bifurcation points of the main instability regions stemming from a axis corresponding to 

Entry 
Number 
(E. No.) 

Range of 

1 2,k k

values 

min  

( min 0  ) min2aT    Total number 
of frequencies       1  2  

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 
1 0 to 1 0.618034 10.1664 4 1.23606800 1.85410200 
2 0 to 2 0.381966 16.4496 12 1.14589800 1.52786400 
3 0 to 4 0.236068 26.616 40 0.94427200 1.65247600 
4 0 to 7 0.145898 43.0656 112 1.02128600 1.60487800 
5 0 to 12 0.0901699 69.6816 312 0.99186890 1.62305820 
6 0 to 20 0.0557281 112.747 840 1.00310580 1.61611490 
7 0 to 33 0.0344419 182.429 2244 0.99881510 1.61876930 
8 0 to 54 0.0212862 295.176 5940 1.00045140 1.61775120 
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1 1.0  and  2 1 5 2    . Figure 2.16 shows the convergence study of two bifurcation 

points and it can be observed that for minω 0.0901699 , the difference between the exact 

( ea ) and approximate ( aa ) bifurcation points of main instability regions (i.e., e aa a )  are  

relatively small.  For  minω 0.0557281 ,  e aa a   is  -0.001555 and +0.001552 for regions 

R1 and R2 (see Fig. 2.17), respectively. The difference e aa a  decreases with a decrease 

in min ; however, this causes aT  to increase and as a compromise, minω 0.0557281                                 

( 112.747aT  ) was selected as the minimum frequency for further investigations (see               

Table 2.3).  

 

For this value of min , the approximate system can be defined by replacing 1 1.0 

and  2 1 5 2    by 1 1.00310580   and 2 1.61611490  (c.f., Table 2.3) and thus 

it takes the form 

 1 2

0 1

cos1.00310580 cos1.61611490
x x

a b t b t d

 
      
                        (2.22) 

Figure 2.16: Convergence diagram of bifurcation points of the main instability regions of 
QP Hill equation with . 
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In the following, the STM is computed numerically using Floquét theory with 112.747aT   

for undamped and damped systems and stability charts are plotted.  For the sake of 

convenience, all computations are performed by setting 1 2b b b  . 

 

2.4.2.1 The Undamped System ( 0d  ) 

Figure 2.17 shows the stability diagram for the undamped system corresponding to 

minω 0.0557281 (or 112.747aT  ). As anticipated, the stability chart is quite complicated 

as compared to the Case Study 1. The investigation is restricted to the parametric space of  

1.0 5.0a    and 0.0 4.0b   and prominent instability regions are marked as R1 

through R11. 

The main instability regions R1 and R2 stem from 0.251555a   and 0.652957a   

in the a b  plane and are aT  and 2 aT  periodic, respectively. According to reference [30], 

Figure 2.17: Stability diagram of the QP Hill equation with .

; Red: periodic, Blue:  periodic 
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the main instability regions arise from  0.25a  1 2( 1 and 0)k k   and  0.654508a 

1 2( 0 and 1)k k  .  It is to be noted that the approximate bifurcation points calculated 

using Floquét theory with 112.747aT   are extremely close to the exact bifurcations that are 

computed using the concept of winding number. In case of periodic system with excitation 

frequency 1 ( 2 ), the main instability region arises from  0.25a  (  0.654508a  ) and is 

2T  periodic where T  the is the period corresponding to excitation frequency 1 ( 2 ). The 

Approximate and exact bifurcation points of other prominent instability regions, marked 

as R3 through R11 in Fig. 2.17 are listed in the last two rows of Tables 2.4a and 2.4b and 

a good agreement between them can be observed.  

This case has also been studied by Broer and Simó [31] using rotation number and 

maximal Lyapunov exponent. They numerically plotted the stability diagram in the a b  

plane defined by 0.25 to 1.0a   and 0.0 to 1.0b  . In Fig. 2.18, the approximate stability 

boundaries computed using the Floquét theory with 112.747aT   are compared with the 

numerically computed boundaries reported in reference [31]. The comparison is made at 

some typical points (marked as black dots) and it is clear that there is an excellent 

agreement between the two results in the main instability regions. 

One of the special features of this case is the presence of an ‘instability loop’ in the main 

instability region, R2 (see Fig. 2.17). The ‘instability loops’ or ‘instability pockets’ [43, 44] 

are known to appear in periodic cases where the parametric forcing term has two or more 

commensurate frequencies. These pockets also exist in Meissner’s equation [77]. Broer 

and Simó [31] were unable to capture this feature since their investigation was restricted  
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to a smaller parametric region. These loops also exist in other unstable regions (for 

instance, R6 in Fig. 2.17). 

  
The accuracies of the stability boundaries were also checked by constructing 

Poincaré maps of the approximate and exact (numerical solution of Eq. (2.11) with 1 1.0 

,  2 1 5 2    and 0d  ) solutions at some typical points (marked A through K in Fig. 

2.17) in the stability chart. The exact and approximate maps were found to be qualitatively 

similar at all these points. For the sake of brevity, these maps are not shown here.  

In order to check the frequency contents of approximate and exact boundaries, DFT 

analyses were performed at points A through K. The results are listed in Tables 2.4a & 2.4b 

and it can be observed that aa oef f  at all points implying that the boundaries computed 

using the Floquét theory are accurate representations of the exact boundaries. The dominant 

frequencies in approximate solutions are further used to identify the frequency 

Figure 2.18: Comparison between the stability boundaries computed using Floquét theory
( ) and those computed by Broer and Simo [31]. 
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combinations causing parametric resonances and the results are also listed in Tables 2.4a 

& 2.4b. 

2.4.2.2 The Damped System ( 0d  ) 

The approximate stability chart obtained from Eq. (2.22) with 0.1d  is shown in 

Fig. 2.19. Only a few prominent instability regions remain in the parametric space defined 

by  0 to 5 and 0 to 1a b  . The approximate boundaries are compared with the exact 

boundaries computed using the maximal Lyapunov exponent and an excellent agreement 

is observed. Further, no instability boundaries were detected in the range of 

2.5 5.0 and 0.0 1.0a b    .The qualitative behaviors of solutions near the 

approximate boundaries are also studied by constructing the Poincaré maps and found to 

be similar. Once again, these are not included. 

 

Figure 2.19: Stability diagram of the damped QP Hill equation with  and

. ( and .) 
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2.4.3 CASE STUDY 3: 1 1.0  , 2 3   and 3 11   

This case is included to demonstrate the viability of the proposed methodology 

when the frequency basis of the coefficient matrix, ( , )A t   has more than two 

frequencies. The differences between the frequencies ( 2 1 0.732051   , 

3 2 1.58457    and 3 1 2.31662   ) are relatively small and thus a complicated 

structure of the stability chart should be expected.  

The damped QP Hill equation for this case can be written in the state space form 

using Eq. (2.11). In order to fix min , a convergence study was once again performed on 

the bifurcation points of the main instability regions and the diagram is shown in Fig. 2.20. 

Using min 0.0216711  , the approximate system is defined by replacing the frequencies 

of the original quasi-periodic system with new frequencies 1 0.99687060  ,

2 1.73368800   and 3 3.31567830   and the approximate system takes the form. 

 1 2 3

0 1

cos0.99687060 cos1.73368800 cos3.31567830
x x

a b t b t b t d

 
       
   (2.23) 

Figure 2.20: Convergence diagram of bifurcation points of the main instability regions of 
QP Hill equation with  (See Fig. 2.21). 
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This is a periodic system with 289.934aT  and the stability diagram for the undamped 

case is plotted in the following section using Floquét theory. Once again, for the sake of 

convenience all computations are performed assuming 1 2 3b b b b   .  

2.4.3.1 The Undamped System ( 0d  ) 

The stability diagram for this case is plotted for 1.0 5.0a    and 0.0 2.2b   

using Floquét theory with 289.934aT   and is shown in Fig. 2.21. Due to the presence of 

three frequencies and relatively smaller min , the stability diagram is quite complicated as 

compared to the previous cases. Ten prominent instability regions are observed and are 

marked as R1 through R10 in Fig. 2.21, where R1, R2 and R6 are the main parametric 

resonance regions corresponding to frequencies 1 1.0  , 2 3   and 3 11  , 

respectively. 

The main instability regions R1, R2 and R6 stem from 

0.248438,0.751419 and 2.74843a  , respectively and are aT  , aT  and 2 aT periodic, 

respectively. Using the expression given in reference [30], the main instability regions R1,  

R2 and R6   arise  from  1 2 30.25( 1 and 0)a k k k    ,   2 1 30.75( 1 and 0)a k k k     

and 3 1 22.75( 1 and 0)a k k k    , respectively. Once again, it should be noted that 

these points are identical to those predicted by Floquét theory for Mathieu equations with 

parametric excitation frequencies of 1 1.0  , 2 3   and 3 11  , respectively. 

Approximate and exact bifurcation points corresponding to all prominent instability 

regions (R1- R10) are tabulated in Tables 2.5a & 2.5b and an excellent agreement can be 

observed. A number of instability loops can also be seen in the stability diagram (Fig 2.21). 

In the following section, a symbolic technique has been presented and found to be very 
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useful in obtaining a more detailed picture of the stability chart in the region 1.0 1.0a    

and 0.0 2.2b  (see Fig. 2.24) since it is not very clear in Fig. 2.21. 

Similar to previous case studies, Poincaré maps of approximate and exact solutions 

were constructed at points A-J (marked in Fig. 2.21) near the stability boundaries and they 

were found to be qualitatively similar (not shown). Results of DFT performed at these 

points are tabulated in Tables 2.5a & 2.5b and it can be observed that for all prominent 

instability regions aa oef f  implying that the approximate boundaries are accurate 

representations of the exact boundaries. As before, the DFT is also used to identify the 

frequency combinations that cause parametric resonances as listed in these tables. The 

actual DFT diagrams have been omitted for brevity. 

Figure 2.21: Stability diagram of the QP Hill equation with .
; Red: periodic, Blue:  periodic 
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2.5 Symbolic Computation of STM  

In section 2.4, the stability charts for the quasi-periodic systems were numerically 

studied using the Floquét theory. However, once a quasi-periodic system has been 

approximated by a periodic system, it is possible to obtain the state transition matrix (STM) 

in a symbolic form. In 1997, Sinha and Butcher [17] developed a symbolic technique for 

computing the STM of a linear time-periodic system of arbitrary dimension via Picard 

iterations and shifted Chebyshev polynomials. In the following their technique is briefly 

outlined for completeness. 

 2.5.1 A Brief Outline of the Symbolic Technique [17] 

Consider a linear time periodic system 

               ( , ) ( , ) ( , )x t A t x t                      0(0, )x x                          (2.24) 

where, ( , ) nx t    , +t ,   is a set of system parameters and ( , )A t   is an n n  periodic 

matrix that can be written as 1 1 2 2( , ) ( ) ( ) ( ) ( ) ( ) ( )r rA t A f t A f t A f t       . 

( ) ; 1,...,iA i r  contain coefficients of periodic functions ( )if t  with period i  i.e., 

( ) ( )i i if t f t   . In case of commensurate frequencies, the principal period, T  of the 

system matrix ( , )A t   is the lowest positive number such that i ip T   where ip  .  If 

( , )t  is the STM of Eq. (2.24), then 

                        0( , ) ( , )x t t x            0 t T                                        (2.25)                                    

Note that the Eq. (2.24) is equivalent to the integral equation 

                                  0

0

( , ) ( , ) ( , )
t

x t x A x d                                                     (2.26) 



 55

Assuming the zeroth approximation of Eq. (2.26) as 0(0, )x x  , the first approximation 

can be written as  

    1 0 0 0 0 0 0 0 0

0 0

( , ) ( , ) ( , ) ( , )
t t

x t x A x d I A d x        
 

    
 

                           (2.27) 

where 0 is a dummy variable. With each iteration, a better approximation is achieved and 

the ( 1)thp  approximation is given by 

         

1

1 0

0

1 1

0 0 0

0 0 0

0 0

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

p

t

p p p p p

t t

p p p p p p

t

p p

x t x A x d

I A d A A d d

A A d d x





     

        

     



 

 


   



 





  

 



 

                  (2.28) 

where 0 , , p  are the dummy variables. A truncated version of this series of integrals 

yields an approximation to ( , )t  . In general, the symbolic computation of ( , )t   via 

Eq. (2.28) leads to a complicated expression and is inefficient when 1r   due to repeated 

integration by parts.  

Following Sinha and Butcher [17], first, the transformation t T is applied to     

Eq. (2.24) which normalizes the system’s principal period to 1. Thus, Eq. (2.24) takes the 

form 

                 ( , ) ( , ) ( , )x A x                          0(0, )x x                             (2.29) 
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where ( , )
dx

x
d

 


  , [0,1]   and ( , ) ( 1, )A A     . The ( , )A    is expressed as  

1 1 2 2( , ) ( ) ( ) ( ) ( ) ( ) ( )r rA A f A f A f            where ( ) ( 1)i if f    and

( ) ( )i iA TA  . 

The normalized system matrix is expanded in cm  shifted Chebyshev polynomials of first 

kind and can be written as 

                                     ˆ( , ) ( ) ( )TA T D                                                   (2.30) 

where ˆ( )T   and ( )D  are cnm n matrices defined as 

    *ˆ( ) ( )nT I T                           
1

( ) ( )
r

i i
i

D A d 


                         (2.31) 

In the above equation, id  are the 1cm  column vectors that contain known coefficients of 

the Chebyshev expansions of the one-periodic functions, *( )T   are the shifted Chebyshev 

polynomials of first kind and  represents the Kronecker product.  

Using the integration operational matrix ( G ) and product operational matrix (
idQ ), an 

expression for the STM can be obtained as [17] 

                1( , )

1

ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( )c

p
sp m T T

s

T I L P T B      



 
    

 
                     (2.32) 

where ˆ {1 0 0 0}

c

T
n

m

I I   . ( )B  contains the Chebyshev coefficients of the elements of 

( , )   and is expressed in terms of ( )L  and ( )P  . The ( )L  and ( )P   are c cnm nm

and cnm n matrices defined as 

         
1

( ) ( )
i

r
T

i d
i

L A G Q 


                   
1

( ) ( )
r

T
i i

i

P A G d 


                      (2.33) 
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Equation (2.32) is valid only in the interval 0 1  and solution for 1  can be computed 

using Eq. (2.3). The expression for ( , )   is in normalized time and could be transformed 

to real time by the substitution /t T  . 

The computation of STM via Eq. (2.32) is very efficient and approximation to a 

desired degree of accuracy can be obtained by selecting the number of Picard iterations, p  

and the number of Chebyshev polynomials, cm . The number of Chebyshev polynomials 

required for convergence can be reduced by dividing the principal period into a number of 

sub-intervals. Following the methodology described above, the STM for each sub-interval 

can be computed and combined, using the semigroup property of the transition matrix [78], 

to determine the STM valid over the principal period and is given by 

                      0 1
1

( , , ) ( , , )
N

N N si N si
si

t t t t   


                                        (2.34) 

where N  represents the number of sub-intervals ( si ). 

2.5.2 Symbolic Computation of STM for Case Study 2 

In order to demonstrate the applicability of this approach, the STM for Case            

Study 2 ( 1 1.0   and  2 1 5 2   ) is computed in terms of system parameters ,a b  

and time t . This particular case is more convenient since 112.747aT   is the smallest 

among the three case studies requiring relatively lower number of Chebyshev polynomials 

and sub-intervals. 

As shown in section 2.4.2, the original QP system is approximated by the periodic 

system, Eq. (2.22) with 112.747aT  ( min 0.0557281  ), and thus the periodic matrix 

( , )A t  can be represented as 1 1 2 2 3 3( , ) ( ) ( ) ( ) ( ) ( ) ( )A t A f t A f t A f t       
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where  1

0 1
( )A

a d


 
    

    ;   2
1

0 0
( )

0
A

b


 
   

    ;    3
2

0 0
( )

0
A

b


 
   

 ;    (2.35)   

1( ) 1f t          ;        2 ( ) cos1.0031058f t t          ;      3 ( ) cos1.6161149f t t          (2.36) 

To reduce the number of Chebyshev polynomials, the principal period, aT  was 

divided into 30 equal sub-intervals such that the length of each sub-interval, 30a aT T  . 

Next, the transformation ( 1) ; 1 30a at si T T si to      , [0,1]   was applied to    

Eq. (2.22) to normalize the period of the system matrix to 1 in each sub-interval. The initial 

condition in each sub-interval was set to (0) I   and system parameters were selected as 

1 2b b b   and 0.0d   for convenience. 

Using the methodology described in section 2.5.1, STM for each subinterval was 

calculated with varying number of cm  (Chebyshev polynomials) and p  (Picard iterations) 

and the STM over the principal period, aT  was obtained using Eq. (2.34). For conciseness, 

only one element of FTM for one of the subintervals; the third subinterval ( 3si  ), in terms 

of system parameters is shown in the Appendix A. Using the symbolic FTM and Eq. (2.15), 

the stability chart can be plotted in the a b plane. Two charts are presented here to show 

the influence of cm  (number of Chebyshev polynomials) and p (number of Picard 

iterations) on the accuracy and convergence of this technique. Figure 2.22 shows the 

stability chart obtained with 15cm  and 20p  , whereas 20cm  and 30p   were used 

for the chart in Fig. 2.23. It is seen from Fig. 2.22 that for 2.5a  , the diagram is 

incomplete/inaccurate reflecting the lower number of  cm and p used in the computation. 

However, Fig. 2.23 is identical to Fig. 2.17 demonstrating the capability of the symbolic 

approach. Plotting the stability diagram requires a large amount of memory due to very 
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long expression of  ( , , )aTr T a b .  This problem was circumvented by calculating the 

 ( , , )aTr T a b  at a grid of equally spaced sampling points.  ‘ListContourPlot’ command 

in MATHEMATICA was used for plotting the stability diagrams. 

Figure 2.22: Stability diagram of the QP Hill equation with  and 

using symbolic FTM ( , and ) . Solid: periodic, Dashed: 
periodic 

Figure 2.23: Stability diagram of the QP Hill equation with  and 

using symbolic FTM ( , and ) . Solid: periodic, Dashed: 
periodic 



 60

It is important to note that unlike perturbation and averaging methods, this symbolic 

technique does not require existence of a small parameter or a generating solution. All 

system parameters are treated equally in the symbolic technique. Existence of an instability 

loop in one of the main instability regions, R2, is an important feature of the stability 

diagram for this case (see Fig. 2.23) and it could easily be missed if techniques such as 

perturbation and averaging are used.  

The symbolic technique is also employed for Case Study 3 ( 1 1.0  , 2 3   and

3 11  ) in order to show the details of the stability diagram in the parametric region 

defined by 1.0 1 .0a    and 0 .0 2 .2b   since it is not very clear in Fig. 2.21.          

Figure 2.24 shows the stability diagram plotted using 40si  , 25cm   and 35p  . The 

successful application of symbolic technique to the three-frequency case also demonstrates 

its viability for multi-frequency systems. 
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Chapter 3 
 
 

Instability Pockets and Influence of Damping in Parametrically Excited Systems 
 
 

3.1 Introduction 
 
 
In most parametrically excited systems stability boundaries cross each other at several 

points to form closed unstable sub-regions commonly known as ‘Instability Pockets’. The 

first aspect of this study explores some general characteristics of these instability pockets 

and their structural modifications in the parametric space as damping is induced in the 

system. Secondly, the possible destabilization of undamped systems due to addition of 

damping in parametrically excited systems has been investigated. The study is restricted to 

SDF systems that can be modeled by Hill and Quasi-Periodic Hill equations. Three typical 

cases of Hill equation, e.g., Mathieu, Meissner and three-frequency Hill equations are 

analyzed. Locations of the intersections of stability boundaries (commonly known as 

coexistence points), are determined using the property that two linearly independent 

solutions coexist at these intersections. In the second part of the study, the 

symbolic/analytic forms of state transition matrices are used to compute the minimum 

values of damping coefficients required for instability pockets to vanish from the 

parametric space. The phenomenon of destabilization due to damping, previously observed 

in systems with two degrees of freedom or higher, is also demonstrated in systems with 

one degree of freedom.  
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3.2 Results 
 

The study covers two types of parametrically excited systems that can be modeled 

by Hill and QP Hill equations. To investigate these systems, the following form is 

considered. 

 ( ) 0x d x a b p t x                                                    (3.1) 

where, ( )p t is the parametric excitation, , &a b d  are the system parameters and t  is the 

time.  

Three typical cases of Hill equation are examined in the present study. It includes 

Mathieu, Meissner and three-frequency Hill equations. Since these equations have periodic 

coefficients, Floquet theory can be applied to analyze them. The QP Hill equation is 

explored using the approximate method proposed in chapter 2. The approach utilizes 

Floquet theory to determine an approximate response and stability of the original quasi-

periodic system. Instability pockets are seen in the stability diagrams of Meissner, three-

frequency Hill and QP Hill equations. These pockets are observed for relatively larger 

amplitudes ( b ) of parametric excitations. In the case of Meissner equation with a square 

wave coefficient, simple expressions for the number and locations of instability pockets in 

parametric space are developed. Destabilization effect of damping is also investigated in 

the stability diagrams of all four equations. 

3.2.1 Mathieu Equation 

The damped Mathieu equation (Eq. (3.1) with ( ) cosp t t ) can be represented in 

the state space form as 

 
0 1

cos
x x

a b t d
 

     
                                            (3.2) 
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where,   is the parametric frequency and 2T    is the principal period of the system.  

The initial condition was set to (0) I  & 1 . Following the procedure described in 

Sec. 2.5, the STM of Eq. (3.2) was computed in symbolic form as a function of system 

parameters ( , &a b d ) and time, t . Utilizing the symbolic FTM & the following expression 

[72], stability charts were plotted in a b  plane for a set of damping values, d . 

                  ( , ) (1 )TdTr T e                                               (3.3) 

Figure 3.1 shows the stability diagram of Eq. (3.2) for 0d   and 0.5  as obtained with 28 

Chebyshev expansion terms and 40 Picard iterations. A numerical computation produced 

an identical diagram. Regions of stability and instability are separated by periodic 

boundaries that are either T  or 2T  periodic and the unstable regions lie in between the 

boundaries of same period. For 0d  , the boundaries of an unstable region do not intersect 

to form instability pockets in the parametric space as stated in Ref. [42]. 

Figure 3.1: Stability diagram of damped Mathieu equation (3.2) with  and . 
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From Fig. 3.1, it is observed that, due to damping both unstable regions (except the first T  

periodic boundary that stems from 0a  ) are lifted up from the a  axis in the parametric 

space and hence, parametric resonances for small amplitudes of excitation  ( b ) is almost 

impossible. For 1.9b  (approximately), the 2T periodic region of instability of the 

damped Mathieu equation ( 0.5d  ) lies inside the instability region of the undamped 

equation ( 0d  ) implying that stability is unchanged below this value of b by the addition 

of damping. However, it is seen that the first T  periodic boundary of the damped system 

that arises from 0a   encloses the boundary of the undamped system thereby expanding 

the unstable area, and thus it can be concluded that the system becomes unstable due to the 

presence of damping. Equation (3.2) can also be analyzed in a d plane keeping ‘ b ’ 

constant and the stability diagram is shown in Fig. 3.2 for 0.5b  . It is observed that only 

the width of the first unstable region is increasing with an increase in damping which  

 

Figure 3.2: Stability diagram of damped Mathieu equation (9) in  plane ( ).  
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implies that for 0.5b   a damped system could become unstable if system parameters are 

close to the first T  periodic boundary. For instance, when 0.1a    & 0.5b   (point A in 

Figs. 3.1 and 3.2) the system becomes unstable if the value of ‘ d ’ is beyond a critical 

damping value. Widths of the other two unstable regions in Fig. 3.2 are decreasing with an 

increase in damping implying that of destabilization due to damping is not possible near 

these regions for 0.5b  . However, these unstable regions depict destabilization 

phenomenon for large amplitudes of parametric excitation (see point B in Fig. 3.1 and point 

C in Fig. 3.3) and it could easily be missed if techniques such as perturbation and averaging 

are used (for instance, see Fig. 2 in Ref. [79]). Damping causes unstable regions to move 

to the right from the b axis, thereby causing a cross over between undamped and damped 

instability boundaries which leads to destabilization. The movement of unstable regions  

 

 

Figure 3.3: Stability diagram of damped Mathieu equation (9) with & .  
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towards the right is expected and can be demonstrated by applying the transformation, 

/2d ty x e  to Eq. (3.1) (with ( ) cosp t t ). The transformed equation takes the form  

  cos 0y a b t y          ;         2 4a a d                                             (3.4)  

which is similar to a Mathieu equation (Eq. (3.1) with ( ) cosp t t  and 0d  ) except the 

constant stiffness parameter, a  has been modified to a . Due to this change, the bifurcation 

points of the transformed equation have moved to larger values of a  on the a  axis which 

explains the movement of unstable regions to the right in the damped system. It should be 

noted that for a given d  the unstable regions of Eq. (3.2) in a b plane lie inside the 

unstable regions of Eq. (3.4) drawn in a b plane [1].  

Equation (3.3) can also be used to determine crd , the critical value of damping at which a 

cross over between damped and undamped boundaries occurs. In Fig. 3.4, Eq. (3.3) is 

plotted as a function of d for points B ( 0.47a  and 2.5b  ; see Fig. 1) and C ( 1.937a 

and 5.0b  ; see Fig. 3.3). The dual functions (1 )Tde   are represented by the black 

curves while the gray curves (solid and dashed) represent  ( , , , )Tr T a b d . Equation 

(3.2) exhibits stable behavior if the system parameters are such that the  ( , , , )Tr T a b d

of Eq. (3.2) lies in-between the black curves. The intersections of curves are denoted by 

crd and due to the symbolic form of  ( , , , )Tr T a b d , Eq. (3.3) can be numerically 

solved for crd if a and b  are given. For instance, crd  0.22315 & 1.18059 for point B 

and destabilization occurs if d lies between these critical values as shown in Fig. 3.4.  
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3.2.2 Meissner Equation 

Meissner equation is a time-periodic parametrically excited system with a rectangular 

waveform coefficient. An example of such a waveform is shown in Fig. 3.5 where 1T is the 

length of the positive segment. For 1 0.5T T , the average value of ( ) 0q t  ; however, 

( )q t can always be normalized to have a zero average.  Then, Eq. (3.1) takes the following 

form  

   1 1

1 1 0

2 1 0
( ) 0 ; ( ) and ( ) 0

2

TT T t T
x dx a b p t x p t p t

T T T t T

   
     

  
   (3.5) 

Figure 3.4: Critical values of damping for points B and C. 

Figure 3.5: Unit rectangular waveform coefficient in the damped Meissner equation. 
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Since ( )p t  is piecewise constant, Eq. (3.5) can be viewed as a system of equations with 

constant coefficients whose exact STM can be computed in terms of 

trigonometric/hyperbolic functions. For positive coefficients, an exact expression for STM 

is obtained and the FTM may be written as 

0.5 0.5
11 12

0.5 0.5 0.5 0.5
21 11 22 12

( , , , )
0.5 0.5

Td Td

Td Td Td Td

y e y e
T a b d

y e dy e y e dy e

 

   

 
     

                (3.6) 

where,                   
 

 
11 1 1 1 1

1 1 1 1

cos cos ( ) sin sin ( )

0.5 (1/ )sin cos ( ) (1/ )cos sin ( )

y T T T T T T

d T T T T T T

     

     

      
  

 

                               12 1 1 1 1(1 / ) sin cos ( ) (1 / ) cos sin ( )y T T T T T T          

                          
 

 
21 1 1 1 1

1 1 1 1

sin cos ( ) cos sin ( )

0.5 cos cos ( ) ( / )sin sin ( )

y T T T T T T

d T T T T T T

     

     

     

  
 

                            22 1 1 1 1cos cos ( ) ( / ) sin sin ( )y T T T T T T          

 

                  12 1a b T T     and 
12a b T T    

Since the stability of the Meissner equation depends on 1T  (c.f. Eq. (3.6)), stability 

diagrams are constructed using Eqs. (3.3) and (3.6) for two typical values of ‘ c ’ as shown 

in Fig. 3.6 where, 1T cT , 2T  and 0 1c  . From these figures, it can be observed that 

symmetry of the stability diagram about the a axis is affected by 1T . The diagram is 

symmetric if stability condition (see Eq. (3.3)) is not affected by the substitution b b   

(for example, in the case of 0.5c  ). It should also be noted that instability boundaries in 

Fig. 3.6 intersect to form closed sub-regions known as ‘Instability pockets’ or ‘Instability 

loops’ and their location and number in the parametric space are affected by the parameter 

1T  (see Fig. 3.6 and Ref. [45]). 
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3.2.2.1  Analysis of Instability pockets 

At the intersections of stability boundaries, two linearly independent solutions of period  

T or 2T coexist and thus named as coexistence points [80].  For example, in Fig. 3.6(ii) 

the T periodic unstable region that arises from a4 (on the a axis)  has two instability 

pockets whose coexistence points are  a4 & b  0 , a5 & b  4 and a5 & b  -4. 

Since solutions are linearly independent and Floquet multipliers are +1 ( T periodic) or -1 

( 2T  periodic) on stability boundaries, i.e., ( , )T I   or I , respectively, at these 

points. Therefore, at these points, the off-diagonal elements of symbolic ( , )T   can be 

set to zero to obtain a pair of nonlinear algebraic equations containing system’s parameters. 

These equations can be simultaneously solved using numerical techniques to produce 

coexistence points. For the case of undamped Meissner equation 12 ( )T , 21( )T and d  are 

set to zero in Eq. (3.6) to yield 

                                     (i)                                                                   (ii) 

Figure 3.6: Stability diagrams of Meissner equation for . 
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 
 

12 1 1 1 1

21 1 1 1 1

( , , ,0) (1/ )sin cos ( ) (1/ )cos sin ( ) 0

( , , ,0) sin cos ( ) cos sin ( ) 0

T a b T T T T T T

T a b T T T T T T

     

     

     

      
         (3.7) 

In this case, the expressions for 12 ( , , ,0)T a b and 21( , , ,0)T a b  are simple and can be 

simultaneously solved to derive the following algebraic relation. 

      24 2 2 2 2 216 2 0 ; , an integer.k X Y k X Y k                   (3.8) 

where,  2 22 (1 )X a b c c   ,  2 22 (1 )Y a bc c    and  1k  is the thk unstable region. 

The curve traced by Eq. (3.8) passes through all coexistence points. For the special case of 

square wave coefficient, 0.5c  , and Eq. (3.8) reduces to the following simpler form 

  2 2 4 4ak b k                                                  (3.9) 

The above equation is drawn in Fig. 3.6(ii) for 1 to 7k  and it can be observed that it 

passes through all coexistence points. Franco and Collado [46] used a concept of maximum 

growth rate of solution and developed an approximate analytical expression for maximum 

energy lines in unstable regions of Meissner equation. First, they set 

 ( , , , 0) 0Tr T a b a    and using the assumption 2      they derived the 

expression 2 2 4 4ak b k   for the maximum energy lines that pass-through coexistence 

points. However, using   and   from Eq. (3.6), it can easily be checked that 

2      is only true when 0b  ! Further, it can be easily shown that 

 ( , , , 0) 0Tr T a b a    and Eq. (3.9) represent two different curves in the parametric 

space. Coexistence points in parametric space can be located by substituting Eq. (3.9) in 

 ( , , ,0) 2Tr T a b   (Eq. 3.3 with 0d  ). The substitution leads to the following values 

of b . 
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1,3,..., 2 if k is odd
0 and ( 0) and

2,4,..., 2 if k is even2

m kkm
b b b m k

m k

 
      

   (3.10) 

Once b is known a  can be calculated using Eq. (3.9). Table 3.1 shows the location of 

coexistence points in the stability diagram of Meissner equation ( 0.5c  ). The total 

number of coexistence points depends upon the parameter ‘ k ’ and the number of pockets 

in the thk  unstable region of Meissner equation with a square wave coefficient can be 

calculated by using the following expression. 

1 if is odd
Number of instability pockets

2 if is even

k k

k k


  

                 (3.11) 

The same expression has also been computed by Gan and Zhang [45] using the rotation 

number approach. Equations (3.9) - (3.11) can be useful as the number of instability 

pockets and their locations in the parametric space can be determined a priori without 

plotting the stability diagram. For the general case of rectangular waveform  ( 0.5c  ), an  

 
 
Table 3.1: Location of coexistence points in the stability diagram of Meissner equation              
( 0.5c  ).            
 

k  System 
parameters 

Location of coexistence points in parametric space 

0b   0b   
1m   2m   3m   4m   5m   

1 
b  0 - - - - - 
a  0.25 - - - - - 

2 
b  0 - - - - - 
a  1.0 - - - - - 

3 
b  0  1.5 - - - - 
a  2.25 2.5 - - - - 

4 
b  0 -  4 - - - 
a  4.0 - 5 - - - 

5 
b  0  2.5 -  7.5 - - 
a  6.25 6.5 - 8.5 - - 

6 
b  0 -  6 -  12 - 
a  9 - 10 - 13 - 

7 
b  0  3.5 -  10.5 -  17.5 
a  12.25 12.5 - 14.5 - 18.5 
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algebraic relation for the coexistence of solutions is not as simple and, in these situations, 

 ( , , , 0) 2Tr T a b    and Eq. (3.8) can be simultaneously solved using numerical 

techniques to obtain the coexistence points.  

3.2.2.2 Influence of damping 

In this section, the influence of damping on instability pockets and stability diagram, in 

general, is investigated. Figure 3.7 shows the effect of damping on the instability pockets 

of Meissner equation with a square wave coefficient. It is observed that with an increase in 

damping the ‘instability pockets’ start turning into ‘instability islands’. An instability 

pocket does disappear if a certain minimum amount of damping is added to the system. In  

time-periodic systems the growth rate of a solution depends on Floquet multipliers (or 

characteristic exponents) which in turn depend on damping ‘ d ’ and the trace of FTM. 

Since the trace of FTM is known in terms of system parameters, an expression relating the 

trace of FTM and damping coefficient ‘ d ’ is established in order to determine the 

minimum amount of damping required for an instability pocket to vanish.  

Applying the transformation /2d ty x e  to Eq. (3.5) yields an equation similar to Eq. (3.4) 

that has solutions of the form  

ln
( ) ( ) 1,2

n
t

T
n ny t t e n


                                     (3.12) 

where, ( ) ( )n nt t T    and n is the thn  Floquet multiplier. Then, the solution of         

Eq. (3.4) is given by 

1
ln arg

2( ) ( ) ; ( ) ( )
n n

d tt i
T T

n n n nx t t e t t e
 

  
                        (3.13) 

The solution ( )nx t  is bounded if  2 1 ln nd T   and can be rewritten in terms of 

 ( , , )Tr T a b as   
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 1
cosh ( , , )

2 2

dT
Tr T a b                                     (3.14) 

which is a transcendental inequality.   

Due to the analytical form of  ( , , , 0)Tr T a b , it’s maximum/ minimum value can be 

easily calculated using ‘Maximize’ / ‘Minimize’ command available in MATHEMATICA 

                                  (i)                                                                     (ii) 

                                                                      (iii) 

Figure 3.7: Effect of damping on instability pockets of Meissner equation with a square 
wave coefficient. 
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software. Once the maximum/ minimum value of  ( , , , 0)Tr T a b  inside a pocket is 

known, Inequality (3.14) can be numerically solved to determine the minimum damping 

required for the pocket to vanish. For instance, in instability pocket 5MP  the maximum value 

of  ( , , ,0) 2.15649Tr T a b   and it corresponds to 9.41577a  and 3.90382b  . 

Using this value of the  ( , , ,0)Tr T a b  in Inequality (3.14), a numerical solution yields 

0.125114d  . Figure 3.8 shows the stability diagram of damped Meissner equation for 

0.125114d  and clearly the instability pocket 5MP  (as seen Fig. 3.6(ii)) has disappeared. 

Even if the damping is reduced by a very small amount, say 0.125113d  , a small unstable 

region corresponding to the pocket 5MP  reappears in the parametric space (see Fig. 3.8(ii)). 

For other instability pockets, minimum damping can be calculated in a similar manner and 

are tabulated in Table 3.2.  

 

                                   (i)                                                                    (ii) 

Figure 3.8: Effect of damping on instability pocket .  
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Table 3.2: Minimum damping required for instability pockets to vanish from the stability diagram 
of Meissner equation with a square wave coefficient (shown in Fig. 3.6(ii)). 

 
The phenomenon of destabilization due to damping found in Mathieu equation (see Sec. 

3.2.1) is also observed in Meissner equation. Figure 3.9 shows the destabilizing effect of 

damping in Meissner equation ( 0.5c  ).  

 

 

Entry 
No. 

Instability 
pocket 

Maximum

 ( , , ,0)Tr T a b  

a  corresponding 
to maximum 

 ( , , ,0)Tr T a b  

b  corresponding to 
maximum 

 ( , , ,0)Tr T a b  

Minimum damping 
coefficient 

(Inequality (3.14)) 

1 
1MP  2.05873 2.32394 0.831455 0.076953 

2 
2MP  2.37641 4.41411 2.62657 0.192350 

3 
3MP  2.02067 6.32462 1.37524 0.045720 

4 
4MP  2.87334 7.43608 5.52681 0.287587 

5 
5MP  2.15649 9.41577 3.90382 0.125114 

6 
6MP  3.44933 11.4433 9.48040 0.363184 

7 
7MP  2.01048 12.3248 1.92124 0.032573 

8 
8MP  2.39691 13.4376 7.68648 0.197361 

9 
9MP  4.06340 16.4465 14.4561 0.424966 

 

Figure 3.9: Destabilizing effect of damping in Meissner equation ( ). 
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3.2.3 Three-Frequency Hill Equation 

In this section, the following form of damped Hill equation is studied. 

  cos cos 2 cos 3 0x d x a b t t t x                                 (3.15) 

Equation (3.15) is similar to Eq. (3.1) with ( ) cos cos2 cos3p t t t t    and for 

convenience, the coefficients of cos 2t  and cos 3t  are assumed to be identical and 

represented by  .  

The symbolic technique described in Sec. 2.5 was employed to compute the FTM of              

Eq. (3.15) in terms of system parameters , , anda b d   using 40 Chebyshev polynomials 

and 58 Picard iterations. Utilizing the symbolic FTM and Eq. (3.3), a stability chart was 

plotted in the a b  plane for 0 and 1d    as shown in Fig. 3.10 and it is observed that 

this diagram is asymmetrical about the a axis. Instability pockets observed in the case of 

Meissner equation are also observed in the unstable regions R1 and R2. Once again, the 

coexistence points for these unstable regions can be calculated by setting the off-diagonal 

terms of the symbolic FTM to zero (see Sec. 3.2.2.1). The resulting nonlinear algebraic 

equations are simultaneously solved using numerical techniques to determine the 

coordinates  ˆˆ,a b  of coexistence points. It is found that  and 

{(2.25,0),(2.57748,2.43895)} are the coexistence points in regions R1 and R2, 

respectively. 

Figure 3.11 shows the stability diagrams for two typical values of 0.53 and 0.6   . A 

comparison of Fig. 3.10 with Fig. 3.11 reveals that the number of instability pockets in 

region R1 remains unchanged for all three values of  . However, the instability pocket in  

 

{(1,0),(1.71522,2.93723)}
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region R2 opens up when   is changed from 1 to 0.53 and another pocket is formed for 

0.6  (see Fig. 3.11(ii)). The coexistence points corresponding to region R2 ( 0.6  ) are 

found to be (2.25,0), (2.66909,2.94640)and (3.69754,6.2884) . Using the symbolic form 

of  ( , , , 0, )Tr T a b  in Inequality (3.14), the minimum values of damping d  were 

calculated for instability pockets to vanish in Fig. 3.11(ii) which corresponds to 0.6  . 

From the results shown in Table 3.3, it should be noted that   ( , , , 0,0.6)Max Tr T a b

of 3HP is less than 2HP implying that 3HP  vanishes before 2HP which is not true for the 

Meissner equation. Similar to Mathieu and Meissner’s equations, the phenomenon of 

destabilization due to damping is also observed in three-frequency Hill equation. For the 

sake of brevity, it is not presented here.  

Figure 3.10: Stability diagram of three-frequency Hill equation (3.15) with . 
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Table 3.3: Minimum damping required for instability pockets to vanish from the stability 
diagram of three-frequency Hill equation (3.15) with 0.6  . 

 

3.2.4 Quasi-Periodic Hill Equation 

One of the simplest forms of damped QP Hill equation can be represented by  

   1 1 2 2cos cos 0x d x a b t b t x                                         (3.16) 

where, 1  and 2  are the two parametric excitation frequencies such that 1 2  is an 

irrational number. Generally speaking, Floquet theory cannot be applied as the principal 

period of these systems tends to infinity. Nevertheless, Chapter 2 proposed a general 

approximate method based on Floquet theory to analyze quasi-periodic systems. In this 

                                   (i)                                                                    (ii) 

Figure 3.11: Stability diagram of three-frequency Hill equation (3.15) with 
and . 

E. 
No. 

Instability 
pocket 

Maximum
 ( , , , 0,0.6)Tr T a b  

a  corresponding to 
maximum 

 ( , , , 0,0.6)Tr T a b  

b  corresponding 
to maximum 
 ( , , , 0,0.6)Tr T a b  

Minimum 
damping coefficient  
(Inequality (3.14)) 

1 
1HP  2.14515 1.10937 0.809069 0.120548 

2 
2HP  2.11975 2.36155 1.20602 0.109607 

3 
3HP  2.05820 3.12859 4.60363 0.076608 
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method, the quasi-periodic system is replaced by a periodic system with an appropriate 

large principal period to which Floquet theory can be applied to determine approximate 

stability and response of the original quasi-periodic system. In the following, one of the 

case studies is used to explore instability pockets and influence of damping in quasi-

periodic systems. 

Consider a damped quasi-periodic system with excitation frequencies 1 1.0   & 

 2 1 5 2    and thus Eq. (3.16) can be rewritten in the state space form as  

  1 2

0 1

cos cos 1 5 2
x x

a b t b t d

 
 
      

                           (3.17) 

In order to determine approximate stability and response, Eq. (3.17) is replaced by the 

following approximate system (see Chapter 2 for details). 

  
 1 2

0 1

cos1.00310580 cos1.61611490
x x

a b t b t d

 
      
               (3.18) 

Equation (3.18) is periodic with principal period, 1 1 2 .7 4 7T   and it can be analyzed 

using Floquet theory. For convenience, all computations are performed by setting  

1 2b b b   and 0d  . 

The symbolic technique described in Sec. 2.5 was employed to compute the FTM of Eq. 

(3.18) using 30 subintervals with 20 Chebyshev terms and 30 Picard iterations in each 

interval (see Chapter 2 for details). Figure 3.12 shows the stability chart where two 

instability pockets are identified in unstable regions R1 and R2 for analysis purposes. The 

coexistence points for unstable regions R1 and R2 are found to be {(0.6529570,0), 

(0.7284645, 2.3208767)} and {(2.2639978, 0), (2.8279853, 2.6537764)}, respectively 

(truncated at seven decimals). These coordinates represent approximate locations of 
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coexistence points of the original quasi-periodic system represented by Eq. (3.17). Since 

the bottommost coexistence points are the bifurcation points of unstable regions R1 and 

R2 on the a axis, their exact locations can be computed and are given by (0.6545085,0) 

and (2.25,0), respectively. At the top coexistence point of R1 ( 0.7284645a  and 

2.3208767b  ), the off-diagonal terms of the FTM are zero but, the diagonal terms are not 

exactly equal to -1. A large variation in FTM for a very small change in system parameters 

is observed in region R1 and it could be the main source of error in the computation of 

FTM and the coexistence point. Minimum values of damping required for the pockets in 

regions R1 and R2 to vanish were computed to be d  0.613229 and 0.0623459, 

respectively. The phenomenon of destabilization due to damping is also observed in QP 

Hill equation, however, for conciseness, figure depicting this phenomenon is not shown. 

 

 

Figure 3.12: Stability diagram of QP Hill equation with  and . 

Solid:  periodic, Dashed:  Periodic 
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Chapter 4 
 
 

Control of Nonlinear Systems to Desired Periodic or Quasi-Periodic Motions 
 
 

4.1 Introduction 
 
 
A novel method in the design of controllers to drive general nonlinear systems to desired 

periodic or quasi-periodic motions is presented in this chapter. The viability of the 

approach is demonstrated by controlling chaotic systems to desired motions. The proposed 

control system consists of a combination of a nonlinear feedforward controller and a linear 

feedback controller. The control gains for the feedback controller are determined by 

performing the stability analysis of the closed-loop systems that contain periodic or quasi-

periodic coefficients. For the case of periodic coefficients, stability is determined using the 

well-known Floquet theory. Since there is no rigorous mathematical theory for the analysis 

of quasi-periodic systems, the approximate technique proposed in chapter 2 has been 

applied to determine the stability where the coefficients turned out to be quasi-periodic. In 

this approach, a quasi-periodic system is replaced by an approximate periodic system with 

an appropriate large principal period such that Floquet theory can be applied. Stability 

diagrams are used to select control gains to guarantee asymptotic stability of the feedback 

systems. Three examples of chaotic systems are studied in order to show applicability to a 

diverse class of problems. In the first case, the chaotic motion of a forced Duffing oscillator 

is driven to a two-frequency quasi-periodic square wave and a fixed point. In the control 
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to a fixed point, the system is constrained to follow a logarithmic spiral trajectory. The 

second case involves the control of the chaotic attractor of a parametrically forced Lorenz 

system to a periodic orbit whose frequency is irrationally related to the parametric 

excitation frequency.  In the last case, the chaotic behavior of a Mathieu-Duffing oscillator 

is successfully driven to a two-frequency quasi-periodic motion.  

 
4.2 Controller Design for Nonlinear Systems Exhibiting Undesirable Behavior 

Consider a general nonlinear system, 

( , )tx = f x                                                             (4.1) 

which has a chaotic (or an undesirable) response, ( )tx  for a given set of parameter values. 

Here, x is a 1n   state vector,  f   is a 1n   nonlinear vector function and t  is the time. 

With the control law,  tu  Eq. (4.1) can be rewritten as 

 ( , )t tx =f x +u                                                      (4.2) 

In order to drive the chaotic response to the desired orbit,  ty , consider the control law, 

 t f tu = u + u                                                       (4.3) 

where, fu is a nonlinear feedforward control and tu  is a linear time-varying feedback 

control. fu and tu are defined as 

  tfu = y - f y,             ;               ttu = K x - y                             (4.4) 

where,  tK is a time-varying state feedback matrix. If the error between the actual 

(chaotic) and the desired trajectory is defined as e = x - y , Eq. (4.2) can be rewritten in the 

following form using Eq. (4.3). 

  ( , )t te = g e + u                                                  (4.5) 
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It should be noted that the new dynamical system with e  as the state vector and g  as the 

nonlinear vector function has an equilibrium state at ( e = 0 , tu = 0 ) and this is true 

regardless  ty is a solution of Eq. (4.1). In the case when  ty is a solution of Eq. (4.1), 

the feedforward control, fu = 0 . It is noteworthy that the incorporation of feedforward 

control has reduced the tracking problem to the stabilization problem.  

It is known that under certain conditions a nonlinear system behaves very similarly to its 

linearized approximation. Let ( , ) 0t t g 0 = 0  where g( ) is a 1C function. A Taylor 

series expansion of Eq. (4.5) around the equilibrium point  ( e = 0 , tu = 0 ) leads to 

( ) ( , )t t te = A e + h e + u                                            (4.6) 

where, ( , ) ( , ) ( )t t th e = g e - A e  and 
( , )

( )
t

t
t

 
  

t

e=0
u =0

g e
A = . If the condition,  

0 0

( )
lim 0

t

t
sup

 

   
  e

h e,

e                                               (4.7) 

is met, the system 

 ( )t te = A e + u                                                  (4.8) 

is the linearization of Eq. (4.5) around the equilibrium ( e = 0 , tu = 0 ) [81]. Through the 

selection of an appropriate tu , the error dynamics, e  in Eq. (4.8) may be driven to zero 

and the global asymptotic stability of Eq. (4.8) guarantees the local stability of the 

nonlinear system i.e., Eq. (4.5). 

In Eq. (4.8), ( )tA could be a constant or a time-varying matrix and it depends upon the 

original nonlinear system, Eq. (4.1) and the desired motion,   ty . For instance, if the 
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original system is autonomous and  ty  is a fixed point, ( )tA is a constant matrix. 

However, in the case when  ty is a function of time, ( )tA is a time-varying matrix. In this 

paper, the investigation is restricted to the cases where ( )tA  is a constant, a periodic or a 

quasi-periodic function of time. 

When ( )tA  is time-invariant, stability can be easily guaranteed by several well-known 

methods. If ( )tA  is periodic, Floquet theory [9, 72] can be used to predict the stability and 

response of the system. According to Floquet theory, the stability of periodic systems 

depends upon the eigenvalues of the Floquet transition matrix (FTM), commonly known 

as ‘Floquet multipliers’. The FTM is the state transition matrix (STM) computed at the end 

of the principal period. The periodic system is stable if all Floquet multipliers lie on or 

inside the unit circle, otherwise it is unstable. Unlike time-periodic systems, there is no 

complete mathematical theory for the analysis of linear ordinary differential equations with 

quasi-periodic coefficients (quasi-periodic systems). Floquet theory cannot be directly 

applied to quasi-periodic systems as their principal period tends to infinity. However, the 

approximate approach proposed in Chapter 2 can be employed to analyze quasi-periodic 

systems. In this approach, the quasi-periodic system is replaced by an approximate periodic 

system with an appropriate large principal period to which Floquet theory can be applied 

to determine approximate stability and response of the quasi-periodic system.  

 
4.3 Applications to Chaotic Systems 

In the following, the effectiveness of the control strategy is demonstrated by investigating 

three typical chaotic systems. In these examples, the chaotic systems and the desired 

motions are selected such that each example represents a distinct class of problems. In the 
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first example, chaos in a forced Duffing oscillator is controlled to a two-frequency quasi-

periodic square wave with frequencies, 1 1  and  2 1 5 2   . Linearization of the 

feedforward controlled system around the desired square wave yields a quasi-periodic 

system with 1 and 2 in its frequency basis.  The chaotic attractor of forced Duffing 

oscillator is also driven to a fixed point through a logarithmic spiral trajectory. In this case, 

a time-varying equation is obtained after linearization. The second example concerns a 

parametrically forced Lorenz system that is used to model convective cooling for heat 

removal in various engineering systems [82]. The chaotic behavior of the system is driven 

to a periodic orbit whose frequency,  2 1 5    is irrationally related to the parametric 

excitation frequency, 1 2  . Due to the incommensurate ratio between these 

frequencies, the linearization around the desired periodic orbit leads to a two-frequency 

quasi-periodic system. Sinha et al. [71] also studied the control of chaos in parametrically 

forced Lorenz system to a periodic orbit. However, in their investigation frequencies were 

commensurate ( 1 2 2    ).  In the last example, a Mathieu-Duffing oscillator is 

successfully driven to a two-frequency quasi-periodic motion. Frequencies of the quasi-

periodic motion, 2 2  and 3 7   are irrationally related to the parametric excitation 

frequency, 1 2  of the Mathieu-Duffing equation.  Contrary to other two examples, 

linearization of the feedforward controlled system around the quasi-periodic motion 

resulted in a three-frequency quasi-periodic system whose frequency basis consists of 1 , 

 3 2  and  2 3  . 
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4.3.1   Forced Duffing Oscillator: Control to a quasi-periodic square wave & a fixed point 

A forced Duffing oscillator with linear damping is described by the equation 

 3 sinx x x x F t                                                     (4.9) 

where,   is the viscous damping coefficient,   is the stiffness parameter,   is the 

coefficient of nonlinear restoring force, F and are the amplitude and the frequency of the 

external input. For 1   , 1  , 0.4  , 0.4F  and 1  , Eq. (4.9) possesses a 

chaotic attractor as shown in Fig. 4.1.  

 
4.3.1A    Control to a quasi-periodic square wave 

In order to control the chaotic response, the system is subject to the control  u t  and is 

represented by 

 30.4 0.4 sinx x x x t u t                                          (4.10) 

where,  u t  is defined by Eq. (4.3). Let the desired motion be a quasi-periodic square 

wave,    1 20.1 0.25 cos 0.8cosy t sgn t t     where, 1 1   and  2 1 5 2    as 

shown in Fig. 4.2. Here, [ ( )] 1sgn p t   for ( ) 0p t   and [ ( )] 1sgn p t    for ( ) 0p t  . 

Fig. 4.1: Chaotic behavior of the uncontrolled forced Duffing oscillator in the phase 
plane. 
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Using Eq. (4.4), the feedforward control can be written as  

30.4 0.4 sinfu y y y y t                                              (4.11) 

Defining e x y  , the linearized equation of the feedforward controlled system is given 

by 

 20.25 3 1 te e y e u                                            (4.12) 

where,

   2
1 2 1 2 1 20.01 0.0625 0.82 0.5cos 2 0.32cos 2 0.8cos 0.8cosy sgn t t t t                    

             1 20.05 cos 0.8cossgn t t    

and 1 2tu k e k e     ; 1k  and 2k  being the unknown control gains. The damping term may 

be removed by applying the change of variable,  2Exp 0.4e z k t      to yield  

 2 20.25 3 0z a d y z                                           (4.13) 

where,  1 1a k   and 20.4d k  . 

 

Fig. 4.2: Quasi-periodic square wave,  

where  and . 
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Table 4.1: Minimum frequencies ( min ) with their corresponding periods ( aT ) and the 
frequencies of the approximate system (periodic system). 
 

 

In Eq. (4.13), the frequency basis of the coefficient consists of incommensurate 

frequencies, 1 1  and  2 1 5 2   . Thus, the approximate approach presented in 

Chapter 2 is utilized to analyze the stability of Eq. (4.13) such that 1k  and 2k  can be 

determined. As a first step, minimum frequencies ( min ) and their corresponding 

approximate principal periods ( aT ) are calculated over the range of 1j  & 2j  and are listed 

in Table 4.1. In order to construct the approximate system (periodic system) , the 

frequencies, 1 1  and  2 1 5 2   in Eq. (4.13) are replaced with 1  and 2 , 

respectively, which are integral multiples of min .    Cols. 5 and 6 in Table 4.1 show 1  

and 2 for various min . For example, when min 0.145898   (E. No. 4 in Table 4.1), 

1 min 6.85410   and 2 min 11.0902   . The nearest integers are 7 & 11 and hence, 

1 min7 1.021286   and   2 min11 1.604878   . There are two main instability 

regions for Eq. (4.13). These two instability regions correspond to frequencies 1 & 2 and 

originate from the bifurcation points 2
1 4a  & 2

2 4a  , respectively where, 

20.25 0.03a a d   . It should be noted that in a periodic system with excitation 

Entry 
Number 
(E. No.) 

Range of 

1 2,j j values 
min  

( min 0  ) min2aT    1  2  

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 
1 0 to 1 0.618034 10.1664 1.23606800 1.85410200 
2 0 to 2 0.381966 16.4496 1.14589800 1.52786400 
3 0 to 4 0.236068 26.616 0.94427200 1.65247600 
4 0 to 7 0.145898 43.0656 1.02128600 1.60487800 
5 0 to 12 0.0901699 69.6816 0.99186890 1.62305820 
6 0 to 20 0.0557281 112.747 1.00310580 1.61611490 
7 0 to 33 0.0344419 182.429 0.99881510 1.61876930 
8 0 to 54 0.0212862 295.176 1.00045140 1.61775120 
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frequency, 1 or 2  the main instability region also arise from the same bifurcation point, 

2
1 4a   or 2

2 4a  .   Since the main instability regions in quasi-periodic and periodic 

systems arise from same bifurcation points, the minimum frequency can be selected by 

performing the convergence study for these bifurcation points. Figure 4.3 depicts the 

convergence of bifurcation points of main instability regions as aT  increases (or min

decreases). The y  axis represents the difference between exact,  2 2
1 24 4ea and   

and approximate  2 2
1 24 and 4aa    bifurcation points,  e aa a   while the x  axis is 

denoted by the expression,  1
10log a aT T  where, 1

aT  is the smallest aT  in Table 4.1 i.e., 

10.1664. From Fig. 4.3 it can be observed that as aT  increases or min decreases, the 

difference between the bifurcation points converges to zero. Larger aT increases the 

computation time and therefore, as a compromise, min 0.0557281  is selected for further 

investigation. 

Fig. 4.3: Convergence diagram of bifurcation points of main instability regions of 
linearized error equation (4.13). 
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For min 0.0557281  , the approximate system is defined by replacing the frequencies

1 1  and  2 1 5 2    with 1 1.00310580  and 2 1.61611490  , respectively. 

Then, Eq. (4.13) reduces to the form 

 2 20.25 3 0z a d y z                                           (4.14) 

where,    0.1 0.25 cos1.00310580 0.8cos1.61611490y t sgn t t     . Equation (4.14) is 

a periodic system with the principal period, 112.747aT   and hence, it can be analyzed 

using Floquet theory. From the form of  2y t over the principal period, aT , it is evident 

that Eq. (4.14) can be viewed as a set of ordinary differential equations with constant 

coefficients for which solutions can be expressed in terms of trigonometric or hyperbolic 

functions. An exact expression for the FTM of Eq. (4.14) in the original domain ( e ) is 

given by 

   
11 12 12-0.5

1 2
21 22 11 12 22 12

0.5
, ,

0.5 0.5 0.5 0.5
adT

a

d
T k k e

d d d d

  

     

 
 

     
Φ =              (4.15) 

  where,     11 12
1

121 22

, 0 ,
N

a N s N s
s

T t t
 
    



 
  

 
  . For positive coefficients of Eq. (4.14), 

       
   

1 1
1

1 1

cos 1 sin
,

sin cos
N s N s N s N s

N s N s
N s N s N s N s

t t t t
t t

t t t t

  
  

     
  

     

  
     

              (4.16) 

In the case of negative coefficients, trigonometric functions in Eq. (4.16) are replaced by 

hyperbolic functions. If 1 2cos 0.8cos 0t t   , then   . Otherwise,   . Here, 

20.25 0.3675a d    ,
20.25 0.0675a d    , and 41N   represents the total 

number of steps created due to the form of  y t over the principal period, aT . N depends 
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upon the min and its value increases as min decreases. Once the FTM is known in terms 

of control gains 1k and 2k , approximate stability diagram can be plotted for Eq. (4.12) using  

    20.4
1 2, , 1 ak T

aTr T k k e     Φ  as shown in Fig. 4.4. For a typical set of 1k and 2k  

selected from the stable region, 0e   as t    and therefore, x y . With 1 0.95k 

and 2 0.1k   , the chaos in Eq. (4.10) is controlled to the quasi-periodic square wave  y t

as shown in Fig. 4.5.   

 

 

Fig. 4.4: Approximate stability diagram of linearized error equation (4.12) in  

plane. 
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4.3.1B     Control to a fixed point through a logarithmic spiral trajectory 

 
Consider a desired trajectory, 

   
 

 
 

4

4

1 1 2 3

2 5 2 3

cos

sin

c t

c t

y t c c c t e
t

y t c c c t e





                
y                                      (4.17) 

where, ( 1c , 5c ) are the coordinates of the fixed point in the parametric space, 3c is the 

frequency of the motion, 4c  is the decay rate and 2c  accounts for the amplitude of the time-

varying term. The logarithmic spiral trajectory is defined by setting 2 0.5c  , 3 7c  and 

4 0.18c  . For the desired trajectory,  ty , the controlled system is defined in the state 

space form as 

1 2 1

3
2 1 1 2 20.4 sin

f

f t

x x u

x x x x t u u

 

     




                                 (4.18) 

Fig. 4.5: Controlled motion of the chaotic forced Duffing oscillator to a quasi-

periodic square wave  where  and

. 
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where, 1 1 2fu y y  and 3
2 2 1 1 20.4 sinfu y y y y t     . Following the procedure 

described in section 4.2, the linearized error equation is given by 

2
1

0 1 0

1 3 0.4 1y

   
       

te e u                                     (4.19) 

where,   1 2 1 2

T
k k e e tu Ke . Equation (4.19) is a time-varying equation and 

stability theorems proposed by Infante [83] can be used to analyze Eq. (4.19). Infante’s 

theorems are applicable to linear systems with stochastic and deterministic temporal 

variations in parameters.  It should be noted that the necessary condition for the stability 

theorems of Infante to hold is that the eigenvalues of the constant matrix have negative real 

parts.  Equation (4.19) consists of three unknown parameters ( 1c , 1k and 2k ) and these 

parameters can be utilized in numerous ways to satisfy the necessary condition. In the 

following two typical cases are discussed. 

In the first case, parameters 1k and 1c are  selected to satisfy the necessary condition and 

stability bounds on 2k are determined  using Infante’s approach. The closed-loop form of 

Eq. (4.19) can be rearranged as  

    20.18 0.182
1 21 1

0 00 1
( )

3 0.5cos 7 cos 71 3 0.4 t tt
t e c t e kk c  

                    
e e e

A0 At

 

 (4.20) 

The shaded region in Fig. 4.6 represents the values of  1k and 1c for which the constant 

matrix 0A has eigenvalues with negative real parts. According to Infante’s stability 

theorem, Eq. (4.20) is almost sure asymptotically stable if the following condition holds. 

    max 0E     
T -1

0 t 0 tA + A +P A + A P                              (4.21) 
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where,  E  is the expectation operator, max is the maximum real eigenvalue of the matrix 

pencil     
 

T -1
0 t 0 tA + A + P A + A P  and P is the solution of the Lyapunov equation, 

T
0 0A P + PA = -I . For 1 2.5k  and 1 0.5c   , the eigenvalues of 0A are 0.2 1.48661i   

and  
13189 1680 2 21

2 21 125 84

 
  
 

P . Using tA  from  Eq. (4.20), inequality (4.21) produces 

 2 2 2 4
2 2 2 1 2 1 10.4 0.316738 0.395865 1.00663 2.14922 0.323308 3.94031 0E k k k y k y y          (4.22) 

 which can be rewritten as  

 2 2 2 4
2 2 1 2 1 1 20.316738 0.395865 1.00663 2.14922 0.323308 3.94031 0.4E k k y k y y k           (4.23) 

Using the Schwarz’s inequality,      E X Y E X E Y ,  

       22 2 2 4
2 2 1 2 1 1 20.872762 0.365555 1.0662 2.14922 0.323308 3.94031 0.4k k E y k E y E y k        

(4.24) 

Fig. 4.6: Values of and for which the constant matrix of Eq. (4.20) has 

eigenvalues with negative real parts (shaded area). 
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Since  2 2
1 1E y c  and  4 4

1 1E y c , inequality (4.24) yields  

20.275882 73.4009k                                                   (4.25) 

Taking 5 1.25c  and selecting 2 2.5k  , the system is controlled to the fixed point                  

(-0.5,1.25) through the chosen logarithmic spiral trajectory as shown in Fig. 4.7. 

 
The same procedure can also be applied to examine the second case where parameters 1k

and 2k are kept in the constant matrix to satisfy the necessary condition of Infante’s stability 

theorem and then, stability bounds are calculated on 1c . The shaded area in Fig. 4.8 depicts 

the range of  1k and 2k for which the constant matrix has eigenvalues with negative reals 

parts. Choosing the control gains 1 3.5k  & 2 2.5k  and using the inequality (4.21) yields 

  2 4
1 12.9 4.33933 4.8848 2.13456 0E y y                                (4.26) 

Fig. 4.7: Control of chaotic behavior of forced Duffing oscillator to a fixed point                     
(-0.5,1.25) through a logarithmic spiral trajectory. 
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An application of Schwarz’s inequality leads to 

11.71395 1.71395c                                             (4.27) 

If 1 0c   and 5 1c   , the coordinates of the fixed point are (0, -1) and the controlled 

dynamics is shown in Fig. 4.9. 

Fig. 4.8: Values of and for which the constant matrix has eigenvalues with 

negative real parts. (shaded area). 

Fig. 4.9: Control of chaotic behavior of forced Duffing oscillator to a fixed point            
(0, -1) through a logarithmic spiral trajectory. 
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4.3.2 Parametrically Forced Lorenz System: Control to a desired periodic orbit 

The dynamics of the flow in convective layers is represented by Lorenz equations. In many 

cases, the heat source/ sink may have time-dependence (periodic or quasi-periodic) which 

modifies the Lorenz equations to parametrically forced Lorenz equations [82] given by 

                               (i)  projection                                                                

Fig. 4.10: The ‘shaken butterfly’ chaotic attractor of the parametrically forced Lorenz 
equations. 

 (ii) projection 
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 0 1 1

( ) ( ) ( )

( ) cos ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t x t y t

y t t x t y t x t z t

z t x t y t bz t

 
  

  

   

 





                                     (4.28) 

 The convection loops display a chaotic behavior when 2  , 0 26.5  , 1 5  , 0.6b  and 

1 2  as shown in Fig. 4.10. The controlled system with the feedforward control, fu  and 

the feedback control, tu  is assumed to be 

   
1

1 2

3

( ) 2 ( ) 2 ( )

( ) 26.5 5cos ( ) ( ) ( ) ( )

( ) ( ) ( ) 0.6 ( )

f

f t

f

x t x t y t u

y t t x t y t x t z t u u

z t x t y t z t u



   

     

  





                     (4.29) 

If the desired orbit is selected as 

1 2

2 2

3 2

( ) Sin

( ) Sin

( ) 20 cos

y t t

y t t

y t t





   
      
      

,                                              (4.30) 

the feedforward controls are given by 

    
1 2 2

2 2 2 2 2 1 2 1 2

3 2 2 2 2

cos

cos 5.5sin 0.5sin 2 2.5 sin sin

11.5 0.6cos sin 0.5cos 2
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 
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   



        
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      (4.31) 

The linearized error dynamic e  can be represented by 

 
1 1

2 1 2 2 2

3 32 2

( ) 2 2 0 ( ) 0

( ) 26.5 5cos 20cos 1 sin ( ) 1

( ) ( ) 0sin sin 0.6

t

e t e t

e t t t t e t u

e t e tt t
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 

      
                   

            





        (4.32) 

Equation (4.32) represents a periodic (quasi-periodic) system if the frequencies, 1 and 2  

are commensurate (incommensurate). In 2005, Sinha et al. controlled the chaos in a 

parametrically forced Lorenz equations to a periodic orbit. Their problem was simple as 

the periodic orbit had the same frequency as the parametric frequency. In the present 
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investigation  2 1 5    which is irrationally related to the parametric frequency, 

1 2  .  

First, the transformation, 1t t  is applied to normalize the frequencies of the coefficient 

matrix to 1 and  1 5 2 . Assuming   1 2 3 1 2 3

T
k k k e e e   tu Κe , Eq. (4.32) 

takes the form 

 
1 1

2 2
2 1 2 3 2

1 1 1
3 3

2 2

1 1

2 2 0
( ) ( )

1
( ) 26.5 5cos 20cos 1 sin ( )
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e t e t

e t k t t k k t e t

e t e t

t t

 
  
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 
                       
         
 
  

                

(4.33) 

where, ( )t d dt e e . The frequency basis of Eq. (4.33) is the same as the frequency basis 

of linearized error equation in the section 4.3.1A (see Eq. (4.12)). min over the range of 1j

& 2j can be found in Table 4.1. Since Eq. (4.33) is a third order system, a relatively higher 

min is required in order to keep the computation time reasonable. If the upper limit of 1 2,j j  

is fixed to 12, min 0.0901699  and 68.6816aT  (see Table 4.1). Using min 0.0901699 

, the approximate system is defined by replacing the frequencies, 1 &  1 5 2  in              

Eq. (4.33) with 0.99186890 & 1.62305820, respectively.  Then, the approximate system 

takes the form 

   ( )e t A t e t                                                (4.34) 

where,         1 2 3

T
e t e t e t e t  and  
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 1
1

2 3

2
1

( ) 26.5 5cos 0.99186890 20cos1.62305820

sin1.62305820

2 0

1 sin1.62305820

sin1.62305820 0.6

A t k t t

t

k k t

t



 


     




    
 

  

This is a periodic system with the principal period 68.6816aT   and its stability can be 

determined using Floquet theory. For convenience, computations are performed by setting 

3 0k  . 

The symbolic technique described in Section 2.5 is used to compute the FTM of Eq. (4.34) 

in terms of the control gains 1k & 2k . In order to reduce the number of shifted Chebyshev 

polynomials, the principal period, 68.6816aT   is divided into 20 sub-intervals. FTM of 

each sub-interval is calculated using 10 shifted Chebyshev polynomials and 15 Picard 

iterations and the FTM over the principal period is computed using semigroup property of 

state transition matrices. The symbolic FTM obtained here is a relatively high degree 

polynomial in 1k & 2k and hence, computation of eigenvalues of the FTM for determining 

stability is not a trivial task even through the use of Schur-Cohen criteria [84, 85].  The 

problem can be circumvented by expressing the characteristic polynomial of the FTM as 

     
   

1 2
1 2 1 1 2 2 1 2

1
1 1 2 1 2

Det , , , ,

( 1) , ( 1) ,

n n n
a

n n
n n

k k T a k k a k k

a k k a k k

   



 




      
  

I Φ 


       (4.35) 

where,  1 2,ia k k is the sum of thi order principal minors of  1 2, , ak k TΦ . By introducing 

the complex fractional transformation,     1 1     , the unit circle in the complex 

plane can be mapped to the left half plane. The transformed expression is a polynomial in  
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  to which Routh Hurwitz stability criteria can be applied to determine the desired set of 

values of 1k & 2k . The shaded area in Fig. 4.11 represents the region in the parametric 

space of 1k & 2k for which the equilibrium point of Eq. (4.34) is asymptotically stable. The 

null solution of Eq. (4.34) or (4.32) is unstable in the absence of 1k & 2k . Selecting an 

arbitrary set of ( 1k , 2k ) (4.6,1) , from the stable region, the chaotic dynamics in Eq. (4.28) 

can be controlled to the desired periodic orbit, Eq. (4.30) as shown in Fig. 4.12. 

4.3.3 A Mathieu-Duffing Oscillator: Control to a two-frequency quasi-periodic motion  

Mathieu Duffing equation is one of the variants of nonlinear Mathieu equation and is used 

to explore the dynamics of parametrically excited Micro and Nano systems [86]. In this 

paper, the following form of Mathieu-Duffing equation is studied. 

3
12 ( sin ) 0x x t x x                                          (4.36) 

The system undergoes chaotic motion for 0.125  , 1  , 5.3  , 1  and 1 2  as 

shown in Fig. 4.13. Chaos is considered undesirable for MEMS/NEMS devices as it 

restricts the signal strength and the output energy. Also, it limits the stable operating range 

of actuators.   Therefore, the control of chaotic dynamics to a general periodic or quasi- 

 

Fig. 4.11: Stability diagram of linearized error equation (39) in 1 2k k  plane. 
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Fig. 4.12: Control of chaotic behavior of parametrically forced Lorenz equations to a 
periodic orbit. 

(i)  projection 

(ii) projection 
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periodic motion may be necessary. With a feedforward control, fu  and a linear feedback 

control, tu  , the controlled system can be written in the state space form as 

 
1 2 1

3
2 1 1 2 1 21 5.3sin 0.25

f

f t

x x u

x t x x x u u

 

     




                         (4.37) 

where,  1 1 2fu y y  , 3
2 2 1 1 2 1(1 5.3sin ) 0.25fu y t y y y     and let the desired two-

frequency quasi-periodic motion, ( )ty  be defined as  

 1 2 3

2 2

( ) cos cos
( )

( ) sin

y t t t
t

y t t

 

   

    
   

y                                         (4.38) 

with 2 2  and 3 7  . The linearized error equation can be shown to be 

 

Fig. 4.13: Chaotic behavior of the uncontrolled Mathieu-Duffing oscillator in the phase 
plane. 
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(4.39) 

where,   1 1 2 1 2sin
T

k t k e e   tu Ke .  It is to be noted that unlike the previous 

cases, K is assumed to be a function of the parametric frequency 1 .  Since 1 , 2 and 3  

are irrationally related, Eq. (4.39) is a quasi-periodic system with 1 , 2 3  and 3 2   

forming the frequency basis of the coefficient matrix.  

Following the methodology described in Chapter 2, various minimum frequencies, min

are calculated over a range of 1 2,j j & 3j and are listed in Table 4.2. In order to select min

, convergence study of bifurcation points of main unstable regions corresponding to 

frequencies 1 ,  3 2  and  2 3   is performed as shown Fig. 4.14.    

min 0.0222059  ( 282.951aT  )  is selected as the minimum frequency for further 

investigation. For this value of min , the approximate system is constructed by replacing  

the frequencies of Eq. (44) with frequencies, 1 1.998531  ,  3 2 1.2213245    

 
Table 4.2: Minimum frequencies ( min ) with their corresponding periods ( aT ) and the 
frequencies of the approximate system (periodic system).  
 

Entry 
Number 
(E. No.) 

Range of 

1 2 3, &j j j

values 

min  

( min 0  ) min2aT    1  3 2   
 

2 3   

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 7 Col. 6 
1 0 to 1 0.768462 8.17631 2.30538600 1.53692400 3.84231000 
2 0 to 4 0.0599649 104.781 1.97884170 1.25926290 4.07761320 
3 0 to 9 0.0222059 282.951 1.99853100 1.22132450 4.06367970 
4 0 to 11 0.0155531 403.983 2.00634990 1.22869490 4.05935910 
5 0 to 18 0.00556239 1129.58 2.00246040 1.22928819 4.06054470 
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and  2 3 4.0636797   . Thus, the approximate closed-loop system takes the form 

   ( )e t A t e t                                                  (4.40) 

where       1 2

T
e t e t e t and 

   1

2

( )

0

2 (5.3 )sin1.998531 1.5 cos2.8423552 cos5.2850042 3 cos4.0636797 cos1.2213245

1

0.25

A t

k t t t t t

k




      


  

 

Eq. (4.40) is a periodic system with principal period 282.951aT  and its stability diagram 

can be plotted using Floquet theory. The symbolic technique presented in Section 2.5 is 

utilized to compute the FTM of Eq. (4.40) using 80 sub-intervals with 30 shifted 

Chebyshev polynomials and 40 Picard iterations in each interval. Stability chart can be 

plotted using the expression,     20.25
1 2, , 1 ak T

aTr T k k e     Φ  but it requires a large 

amount of memory due to the very long expression of  1 2, ,aTr T k k  Φ . This problem 

Fig. 4.14: Convergence diagram of bifurcation points of main instability regions of the 
linearized error equation (4.39). 
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could be overcome by computing  1 2, ,aTr T k k  Φ  and   20.251 ak Te  separately at 

equally spaced sampling points using a grid. Figure 4.15 shows the stability diagram of  

Eq. (4.40) in 1 2k k  plane in which the shaded area represents the stable region. Isolated 

stable regions are also observed in the unstable area and they occur due to the presence of 

instability pockets. It should be noted that in the absence of 1k and 2k  i.e., 1 2 0k k  ,         

Eq. (4.40) is unstable. In the case of 1 1.5k   and 2 1k  , error e  tends to zero and the 

chaotic behavior of Eq. (4.36) is controlled to the desired quasi-periodic motion (see 

Eq.(4.38)) as shown in Fig. 4.16. 

 
 

 
 
 
 

Fig. 4.15: Stability diagram of linearized error equation (4.40) in  plane. 
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Fig. 4.16: Control of chaotic behavior of Mathieu-Duffing oscillator to a quasi-periodic 
motion with frequencies and . 
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Chapter 5 
 
 

Discussion and Conclusions 
 
 

This dissertation proposes techniques to analyze and control dynamical systems 

with quasi-periodic systems. An approximate approach is proposed to determine the 

stability and response of quasi-periodic systems. Although Floquét theory is applicable 

only to periodic systems, it is suggested here that a quasi-periodic system may be replaced 

by a periodic system with an appropriately large principal period and thus making it 

suitable for an application of the Floquét theory. Based on this premise, a systematic 

approach has been developed and applied to three typical quasi-periodic systems. The 

approximate stability charts show excellent agreement with numerical results. A detailed 

analysis of ‘instability pockets’ appearing in stability diagrams of parametrically excited 

systems is also presented. In addition to this, the alterations in ‘instability pockets’ and 

stability diagrams, in general, due to addition of damping is systematically investigated. A 

control technique to drive nonlinear systems to desired periodic or quasi-periodic motions 

is also discussed in this work. Unlike perturbation and averaging, the techniques presented 

here are not restricted by an existence of a generating solution or a small parameter.  

An approximate approach to determine stability and response of quasi-periodic 

systems has been presented in Chapter 2. The methodology is based on the proposition that 

a quasi-periodic system may be replaced by a periodic system with a ‘suitable’ large 

principal period to which Floquét theory can be applied. First, the ‘minimum frequency’, 
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min , in the truncated frequency module of coefficient matrix, ( , )A t   is defined to 

determine a ‘suitable’ principal period, aT  ( min2  ) of the parametric quasi-periodic 

term. This is achieved by performing a convergence study of the bifurcation points of main 

parametric instability regions. Once min has been selected, the original quasi-periodic 

system is approximated by a periodic system with principal period aT . Excitation 

frequencies in the periodic system (approximate system) are integral multiplies of min and 

are close to respective excitation frequencies in the original quasi-periodic system. Due to 

the periodic nature of the approximate system its stability and response can be determined 

using the well-known Floquét theory.  

Stability charts are plotted for three typical cases using the proposed technique 

based on Floquét theory. In case of undamped systems, a number of aT and 2 aT  unstable 

regions stem from a  axis in the a b plane. These unstable regions occur because of 

individual excitation frequencies or due to various combinations of excitation frequencies 

present in the system and their number increases with a decrease in min . In between the 

prominent instability regions, narrow strips of unstable regions are also observed (For 

instance, between R2 and R3 in Fig. 2.3). These narrow strips disappear for smaller values 

of b  if damping is present in the system. Therefore, in engineering applications, these 

instability zones may not be important.  Poincaré maps of approximate and exact solutions 

generated near the approximate stability boundaries are found to be qualitatively similar. 

Computations of maximal Lyapunov exponents and frequency spectra of the solutions 

demonstrate that the approximate boundaries are very close to the exact boundaries. The 

dominant frequencies in the frequency spectra of solutions are further used to identify 
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frequency combinations causing parametric resonances in the quasi-periodic systems 

considered here. The proposed approximate technique is able to capture the existence of 

‘instability loops’ or ‘instability pockets’ in the stability diagrams of Case Study 2                      

( 1 1.0  and  2 1 5 2   ) and Case Study 3 ( 1 1.0  , 2 3   and 3 11  ). Such 

results have not been reported in the past.  

A symbolic computation of state transition matrix (STM) in terms of system 

parameters is also presented in section 2.5. For Case Study 2, the STM was symbolically 

computed in terms of a and b and subsequently stability chart is plotted in the a b  plane 

using the symbolic Floquét transition matrix (FTM).  Using sufficient number of 

subintervals ( 30si  ), Picard iterations ( 30p  ) and Chebyshev polynomials ( 20cm  ), 

the symbolic method produces a stability chart (Fig. 2.23) that is identical to Fig. 2.17 

plotted using numerical computation. The symbolic form of STM would be extremely 

helpful in controller design and bifurcation analysis of nonlinear quasi-periodic systems. 

It is understood that the accuracy of the proposed methodology depends upon the 

choice of min . Smaller min implies larger aT  resulting in more accurate solutions. This is 

quite obvious since for a quasi-periodic system aT  . However, larger periods require 

longer computation time.  In some cases, the minimum frequencies could be so small that 

it would be practically impossible to use them, especially on a laptop computer that was 

used here. Nevertheless, this should not be considered a drawback as one can always use 

the processing power of supercomputers. It should also be noted that the selection of the 

min  for a problem depends upon the type of investigation to be performed.  For instance, 

a relatively larger min could be used in the presence of damping for control problems as 
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opposed to bifurcation studies. Control system designs generally require approximate 

location of stable/unstable regions in the parametric space. On the contrary, bifurcation 

studies require exact locations of stability boundaries in the parametric space.  

Two features of parametrically excited linear systems have been investigated in 

chapter 3. Firstly, a detailed analysis of ‘instability pockets’ appearing in stability diagrams 

of such systems is presented. Secondly, the alterations in ‘instability pockets’ and stability 

diagrams, in general, due to addition of damping is systematically studied. In particular, 

the results for some typical cases of Mathieu, Meissner, three-frequency Hill and Quasi-

Periodic Hill equations are presented in detail. 

Instability pockets are observed in the stability charts of Meissner, three-frequency Hill 

and Quasi-Periodic Hill equations. These pockets do not exist for Mathieu equation. Since 

the instability pockets are formed by the intersections of boundary curves in the instability 

zones, two linearly independent solutions exist at these intersections, commonly known as 

‘coexistence points’. Therefore, the off-diagonal terms of Floquet transition matrix, FTM 

(or monodromy matrix) are set to zero to yield a pair of independent equations which are 

simultaneously solved to obtain the coexistence points. Since the FTMs are computed using 

a symbolic technique, the matrix elements are complicated algebraic expressions in terms 

of system parameters and therefore, numerical methods are used to determine these points. 

In the special case of Meissner equation with a square wave coefficient, simple expressions 

are generated for the number and locations of coexistence points in the parametric space.  

In the second part of study, the effect of damping on these systems is investigated. 

With an increase in damping, instability pockets start turning into instability islands and 

eventually disappear from the parametric space when damping coefficient equals a critical 
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value. An expression relating the trace of FTM and damping coefficient is constructed to 

compute the minimum values of damping required for instability pockets to vanish from 

the parametric space. 

The unexpected outcome of destabilization due to damping is also observed in all 

four systems. Under the influence of damping, unstable regions shift in the parametric 

space causing a crossover between damped and undamped boundaries, which leads to 

destabilization.  The phenomenon of instability caused by damping is known to occur in 

parametrically excited systems with two degrees of freedom or higher. However, the 

present investigation shows that such a destabilization is very much possible in systems 

with one degree of freedom.   

In Chapter 4, a methodology to control general nonlinear systems to desired 

motions is presented.  The desired motion could be a periodic orbit, a quasi-periodic motion 

or a fixed point and does not need to be a solution of the nonlinear system. The applicability 

of the approach is demonstrated by controlling chaotic systems to desired motions. 

The controller design is achieved using a combination of a nonlinear feedforward controller 

and a linear feedback controller. The feedforward component reduces the nonlinear control 

problem to a nonlinear stabilization problem which is linearized around the desired motion 

to yield a linear ordinary differential equation with time-varying coefficients. Depending 

upon the original chaotic system & the desired motion, the coefficients could be constant, 

periodic, or quasi-periodic functions of time. The resulting linear system obtained is 

stabilized using the full state feedback controller.  

In the case of periodic coefficients, the well-known Floquet theory is utilized to 

compute the control gains via stability analysis of the system. An approximate technique 
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proposed in Chapter 2 is employed to compute the gains when the coefficients are quasi-

periodic. In this approximate approach, the quasi-periodic system is replaced by a periodic 

system with an appropriate large principal period. Due to the periodic nature of the 

approximate system, its stability can be determined using the Floquet theory. The symbolic 

technique developed by Sinha and Butcher [17] is used to compute state transition matrices 

of these systems in terms of unknown control gains ( 1 2, , , ik k k ) using shifted Chebyshev 

polynomials and Picard iterations. Symbolic STMs are used to plot stability diagrams in 

the 1 2k k  plane (restricted to two gains) and by choosing the appropriate values of 1k and 

2k the system is stabilized. The symbolic technique is useful in the design of controllers as 

it guarantees the asymptotic stability of the feedback system for all possible values of 

control gains. Also, it is not restricted by the existence of a small parameter and a 

generating solution.  

Successful applications of the control strategy are demonstrated by examining three 

typical chaotic systems. In these illustrative examples, the chaotic systems and the desired 

orbits are chosen in such a manner that each case represents a distinct class of problems. 

In the first case, chaos in a forced Duffing oscillator is driven to a two-frequency quasi-

periodic square wave and a fixed point.  Linearization of the feedforward-controlled system 

around the quasi-periodic square wave yielded a two-frequency quasi-periodic system 

which is analyzed using the technique discussed in Chapter 2. In the control to a fixed 

point, the controlled system is constrained to follow a logarithmic spiral trajectory. Due to 

this restriction, a linear ordinary differential equation with a time-varying coefficient is 

obtained whose stability is determined using Infante’s stability theorems [83]. In the second 

case, the chaotic attractor of a parametrically forced Lorenz equation is controlled to a 



 114

periodic orbit whose frequency is irrationally related to the parametric excitation 

frequency. Although the dynamical system represents a periodic system and the desired 

motion is a periodic orbit, the linearized equation is a linear ordinary differential equation 

with quasi-periodic coefficients. In the last case, the chaotic behavior of a Mathieu-Duffing 

oscillator is driven to a two-frequency quasi-periodic motion. The frequencies of the quasi-

periodic motion are irrationally related to the parametric frequency of the Mathieu-Duffing 

oscillator. In this case, linearization of the feedforward-controlled system resulted in a 

three-frequency quasi-periodic system. It should be noted that the control strategy is not 

limited to nonlinear systems exhibiting chaos.  
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Chapter 6 
 
 

Future work 
 
 

There are several opportunities to extend the work presented here beyond its current 

precincts and some of those are highlighted here. 

A) Construction of Lyapunov-Perron transformation matrices 

1.0  Introdcution 

 Parametrically excited systems have applications in every field of science and 

engineering. Some of the examples include structures subjected to periodic loads, 

asymmetric rotor bearing systems, ship dynamics, robots performing repetitive tasks, and 

cardiac dynamics, among others. Mathematically, parametrically excited systems are 

represented by linear/ nonlinear ordinary differential equations with time-varying 

coefficients.  

 There are several mathematical methods to analyze linear dynamical systems with 

periodic coefficients (so-called periodic systems). Hill’s method of infinite determinants 

[1] is suitable for determining the stability boundaries of such systems. Hill’s infinite 

determinants do not converge always, and the method is not computationally efficient for 

large order systems. Analytical techniques such as perturbation [14] and averaging [15] are 

restricted by the existence of a generating solution and a small parameter. In 1977, 

Friedmann et al. [13] employed Hsu’s approach [10] and suggested a numerically efficient 

method that requires only a single integration pass scheme to calculate state transition 
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matrices (STMs). Sinha and his associates utilized shifted Chebyshev polynomials in 

conjunction with Floquet theory [9, 72] to compute STMs of periodic systems in semi-

analytical [16] and symbolic forms [17].  

 Another way to deal with periodic systems is to use Lyapunov-Floquet theorem [49]. 

According to this theorem, a linear periodic system can be reduced to a time-invariant 

system using Lyapunov-Floquet (L-F) transformation.  For special cases of periodic 

systems, called the commutative systems, L-F transformations can be computed in closed 

forms [87, 88]. In 1996, Sinha et al. [89] developed a technique for the computation of L-

F transformation matrices for general periodic systems. They first computed the STM in 

the semi-analytical form using Ref. [16] and then, eigenanalysis is performed to the 

resulting STM to determine L-F transformation matrix.  In 2009, Butcher et al. [90] 

attempted to calculate L-F transformation matrices in the symbolic form using Magnus 

expansions. Although their approach does not require the symbolic computation of STMs, 

it suffers from convergence issues even for relatively smaller values of system parameters. 

Recently, Kirkland and Sinha [18] presented a methodology for the symbolic computation 

of L-F transformations in terms of system parameters. Unlike Ref. [90], this approach is 

computationally efficient and convergent over a wide parametric space.   

 For linear ordinary differential equations with quasi-periodic coefficients (so-called 

quasi-periodic systems), a similar kind of transformations exists and are known as 

Lyapunov-Perron (L-P) transformations.  These transformations reduce linear quasi-

periodic systems to systems with constant coefficients. Several authors [75, 76, 91-93] have 

reported the existence of L-P transformations but, to this date, no one is able to compute 

them even in the approximate form. Unavailability of rigorous mathematical theory for 
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linear quasi-periodic systems could be one of the reasons for the absence of any attempt 

towards the computation of L-P transformations.    

 Very recently, Sharma and Sinha [94] proposed an approximate approach to analyze 

linear quasi-periodic systems. They replaced a quasi-periodic system by a periodic system 

with an appropriately large principal period to which Floquet theory can be applied. Their 

technique is novel in the sense that it allows the construction of the approximate STM of a 

quasi-periodic system which can be utilized to generate approximate stability diagrams, 

responses and L-P transformations. In this paper, an attempt has been made to develop 

approximate L-P transformations for quasi-periodic systems using Lyapunov-Floquet 

theorem and the symbolic STM computed by employing the methodology presented in   

Ref. [94]. First, L-F and L-P transformations are briefly outlined for completeness. 

2.0 REDUCIBILITY OF PERIODIC AND QUASI-PERIODIC SYSTEMS 
 

Consider a linear ordinary differential equation of the form 

           0, ; ( , )
d

x A x x x
dt

                                       (6.1) 

where, ( , ) nx    ,  ,A    is an n n  matrix that is 2  periodic in  1 2, , , m    

and is a continuous function of a set of control parameters  ;  1 2, , , m     (Unit: 

/rad s ) is the frequency basis of  ,A   and t  is the time in seconds. For the sake of 

brevity, units of frequency, i  and time, t  are omitted from the rest of the paper.       

Equation (6.1) is said to be reducible if a linear time-varying change of variable, 

 ,x S z   transforms Eq. (6.1) to the following form. 

 0z A z                                                            (6.2) 
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where,          1
0 , , , ,A S A S S            

  is a constant matrix.  

2.1 Lyapunov-Floquet transformation 

In the case of 1m  ,  ,A    in Eq. (6.1) is a periodic matrix with the principal 

period 12T   and thus, Eq. (6.1) is a linear periodic system and can be analyzed using 

Floquet theory. Let ( , )t   be the STM such that it satisfies Eq. (6.1) with (0, ) I  ; 

then the solution can be written as 

  0( , ) ( , )x t t x               0 t T                                          (6.3)    

For t T , the solution can be calculated using 

     0( , ) ( , ) ( , )sx t sT t T x             1,2,3,s                                (6.4) 

where, 0 t T  and ( , )T  is the Floquet transition matrix (FTM) or the monodromy 

matrix. The stability criteria for periodic systems depend upon the eigenvalues of ( , )T 

, called the ‘Floquet multipliers’ and the system is stable if all Floquet multipliers lie on or 

inside the unit circle, otherwise it is unstable. 

According to the Lyapunov-Floquet theorem [49], the STM can be expressed as 

 ( , ) ( , ) C tt L t e           , n nL t    ,     n nC                            (6.5) 

or,    

 ( , ) ( , ) R tt Q t e           , n nQ t    ,    n nR                            (6.6) 

 

where,  ,L t   and  ,Q t   are T periodic and 2T  periodic, respectively.  ,L t   and 

 ,Q t   are known as Lyapunov-Floquet (L-F) transformations. Using  ,x L t z or 

 ,x Q t z , Eq. (6.1) (with 1m  ) can be reduced to  
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    z C z     or     z R z   ,respectively,                              (6.7) 

where  C   and  R   are time-invariant matrices and can be expressed as 

   1
ln ,C T

T
       and       1

ln 2 ,
2

R T
T

                        (6.8) 

where, according to the semigroup property of the STM    22 , ,T T     [22]. 

A note of interest: If one of the Floquet multipliers lie in the left-half of the plane,  ,Q t   

is 2T  periodic. On the other hand, if all the Floquet multipliers lie in the right half of the 

complex plane, the complex and real L-F transformations coincide, both are T periodic 

and real.  

2.2 Lyapunov-Perron transformation    

When the coefficient matrix,  ,A    has finite ( 2m  ) incommensurate 

frequencies, Eq. (6.1) represents a linear quasi-periodic system. Unfortunately, there is no 

complete theory for the analysis of quasi-periodic systems and they cannot be analyzed 

using Floquet theory.  

Linear quasi-periodic systems can also be reduced to systems with constant 

coefficients using Lyapunov-Perron (L-P) transformations. If  ,P    is a L-P 

transformation, the change of variable  ,x P z   reduces Eq. (1) (with 2m  ) to the 

following system [75, 76]. 

 z B z                                                       (6.9) 
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where,  B  is a time-invariant matrix and is real for real  ,P   . It should be noted that 

the frequency basis of L-P transformation,  ,P   is the same as the frequency basis of 

the coefficient matrix,  ,A   . 

3.0 PROPOSED METHODOLOGY 

A simple form of Eq. (6.1) (with 2m  ) is the damped quasi-periodic Hill equation 

given by  

    
1

 cos 0
m

i i
i

x d x a b t x


     
 

                                         (6.10) 

Equation (6.10) can be rewritten in the state space form as 

       
 

1

0 1

 cos
m

i i
i

x x
a b t d



 
          


                                        (6.11) 

where,  1 2

T
x x x  and  1 2, , , m     is the frequency basis of the coefficient 

matrix.  

Equation (6.11) cannot be directly analyzed using Floquet theory since the principal 

period of the coefficient matrix tends to infinity. However, an approximate principal 

period, aT  can be determined by truncating the frequency module of ( , )A t   defined as 

1 1 2 2 m mk k k     ; 0,1,ik  and 1 2 0mk k k    . The frequency module can 

be truncated by fixing the upper limit on ik  and the minimum frequency, ‘ min ’  in the 

truncated frequency module can be used to compute the approximate principal period of 

the quasi-periodic matrix function. min and aT are defined as 
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 min 1 1 2 2 min

min

Min ; 0

and

2

m m

a

k k k

T

    

 

    





                     (6.12) 

Various min  (or aT ) can be computed over a range of values of ik . The selection 

of min depends upon the convergence study of bifurcation points of main instability 

regions [94]. Once min and aT have been selected, the original quasi-periodic system, Eq. 

(6.11) can be replaced by a periodic system given by  

 
1

0 1

 cos
m

i i
i

x x
a b t d



 
          


                                 (6.13) 

where, i  in Eq. (6.11) has been approximated by i  such that i  are integer multiples of 

min , the minimum frequency of the approximate system. As Eq. (6.13) represents a 

periodic system, its stability and response can be determined by the Floquet theory. Ref. 

[94] demonstrates the feasibility of this approximate approach. They showed that the 

solutions of Eq. (6.13) are the approximate solutions of Eq. (6.11) and the accuracy of the 

approach depends upon the selection of minimum frequency. Readers are advised to see 

Ref. [94] for additional details. 

In 1997, Sinha and Butcher [17] developed a symbolic technique that utilizes 

shifted Chebyshev polynomials of the first kind and Picard iterations to compute STMs of 

linear periodic systems. Their technique is used in this investigation to compute the STM 

of Eq. (6.13) in terms of system parameters and time, t . The symbolic approach is 

summarized in the next section for completeness. 
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Once the STM, ( , )t   is known, Eq. (6.8) can be utilized to compute constant 

matrices  C  and  R  . In this paper, only the real L-F transformation is considered. 

The constant matrix,  R  is the approximation of  B   and as min 0  ,   ( )R B 

.  R  can be substituted back in Eq. (6.6) to calculate the approximate L-P transformation, 

( , )Q t  . 

Investigation of nonlinear quasi-periodic systems requires 1( , )Q t  . ( , )Q t  can be 

inverted by defining the adjoint system to Eq. (6.13) as 

 ,Tw A t w                                                (6.14) 

where,  ,A t  is the coefficient matrix of Eq. (6.13). If ( , )t  and  ,t  are the STMs 

of Eqs. (6.13) and (6.14), respectively, according to Ref. [49], the following relationship 

holds. 

    1 , ,Tt t                                               (6.15) 

Using Eq. (6.6), 1( , )Q t  can be written as 

   1 1( , ) ( , ) ( , )R t R t TQ t e t e t                                     (6.16) 

4.0 SYMBOLIC COMPUTATION OF STM 

First, the principal period of Eq. (6.13) is normalized to 1 using the transformation      

at T  . Then, the normalized system’s matrix is expanded in cm  shifted Chebyshev 

polynomials of the first kind expressed in the interval [0,1] as    ˆ, ( )TA T D    where 

ˆ( )T  and  D   are Chebyshev polynomial and Chebyshev coefficient matrices, 

respectively. An approximation to the true solution can be obtained by using the integral 

form of Eq. (6.13) and Picard iterative process. With the help of integration ( G ) and 
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product (
idQ ) operation matrices associated with Chebyshev polynomials, an expression 

for the STM can be obtained as  

  -1( , )

1

ˆ ˆ( , ) ( ) ( ) ( )c

p
sp m T

s

T I H V    


 
   

 
                       (6.17) 

where,  ˆ 1 0 0 0

c

T

n

m

I I  
,  

1

( ) ( )
i

r
T

i d
i

H A G Q 


  ,  
1

( ) ( )
r

T
i i

i

V A G d 


   and 

  denotes the Kronecker product (see Ref. [17] for more details). p and cm  are the 

number of Picard iterations and Chebyshev polynomials employed in the approximation. 

The FTM can be obtained in terms of system parameters by substituting 1   in Eq. (6.17). 

In the case of periodic systems with relatively large principal periods, the number of shifted 

Chebyshev polynomials and Picard iterations required for the computation of symbolic 

FTM can be reduced by dividing the principal period into several sub-intervals. FTM for 

each sub-interval can be calculated by following the procedure described above and can be 

combined using the semigroup property of state transition matrix [78] to obtain FTM over 

the principal period and is given by  

0 1- -
1

( , , ) ( , , )
N

N N s N s
s

t t t t 


                                    (6.18) 

where, N  is the total number of sub-intervals.  

5.0  AN ILLUSTRATIVE EXAMPLE 

The damped quasi-periodic Hill equation with excitation frequencies 1 1   and 

 2 1 5 2    can be represented in the state space form using Eq. (6.11) as 
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 1 1 2 2

0 1

cos cos
x x

a b t b t d 
 

      
                             (6.19) 

As a first step, minimum frequencies are computed using Eq. (6.12) over a range 

of 1k  and 2k  and are tabulated in Table 6.1 along-with their corresponding periods,  aT . In 

order to approximate Eq. (6.19) by a periodic system, the original frequencies, 1 1   and 

 2 1 5 2    are replaced by 1  and 2 , respectively, which are integer multiples of 

min . Equation (6.19) reduces to the form 

 1 1 2 2

0 1

cos cos
x x

a b t b t d 
 

      
                           (6.20) 

Cols. 5 and 6 of Table 6.1 show 1 and 2  for various values of min . According 

to Refs. [94] and [30], there are two main instability regions in the stability diagram of Eq. 

(6.19) and they correspond to frequencies 1 1   and  2 1 5 2   .  These regions stem 

from the bifurcation points,  2
1 4a   and 2

2 4a  on the a axis. It is well-known that 

Table 6.1: Minimum frequencies ( min ) with their corresponding periods ( aT ) and 

the frequencies of the approximate system (periodic system). 

Entry 
Number 
(E. No.) 

Range of 

1 2,k k

values 

min  

( min 0  ) min2aT    1  2  

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 
1 0 to 1 0.618034 10.1664 1.23606800 1.85410200 
2 0 to 2 0.381966 16.4496 1.14589800 1.52786400 
3 0 to 4 0.236068 26.616 0.94427200 1.65247600 
4 0 to 7 0.145898 43.0656 1.02128600 1.60487800 
5 0 to 12 0.0901699 69.6816 0.99186890 1.62305820 
6 0 to 20 0.0557281 112.747 1.00310580 1.61611490 
7 0 to 33 0.0344419 182.429 0.99881510 1.61876930 
8 0 to 54 0.0212862 295.176 1.00045140 1.61775120 
9 0 to 88 0.0131556 477.605 0.99982560 1.61813880 
10 0 to 143 0.00813062 772.781 1.00006626 1.61799338 
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in a periodic system with excitation frequency  1  or 2  the main instability region 

originates from 2
1 4a  or 2

2 4a  . Since the bifurcation points of main instability 

regions in quasi-periodic and periodic systems are the same, the convergence study of these 

bifurcation points can be used for the selection of min . Figure 6.1 shows the convergence 

study of bifurcation points of the main instability regions of Eqs. (6.19) and (6.20). The 

y axis denotes the difference between the exact   2 2
1 24 and 4e ea a   and 

approximate  2
1 4aa   and 2

2 4aa   bifurcation points, while the xaxis is 

represented by the expression,  1
10log a aT T  where, 1

aT  is the smallest aT  in Table 6.1 i.e., 

10.1664. From Fig. 6.1, it can be observed that for minω 0.0901699 , the difference  

 e aa a is relatively small and as aT increases (or min decreases) the difference 

converges to zero. Larger aT  causes an increase in computation time and hence, as a 

compromise, minω 0.0557281 ( 112.747aT  ) is selected as the minimum frequency for 

further investigations.  

 

Fig. 6.1: Convergence diagram of bifurcation points of the main 
instability regions of Eqs. (6.19) and (6.20). 
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 For minω 0.0557281 , the approximate system is defined by substituting 

1 1.00310580  and 2 1.61611490   in Eq. (6.20).  Since Eq. (6.20) is a periodic system 

with the principal period, 112.747aT  , it can be analyzed using Floquet theory. For the sake 

of convenience, all computations are performed by setting 1 2b b b  . The symbolic 

technique described in Section 4 is used to compute the STM, ( , , , )t a b d  of Eq. (6.20) in 

terms of system parameters  , ,a b d  and t . In order to reduce the number of shifted 

Chebyshev polynomials of the first kind, the principal period, 112.747aT  is divided into 30 

sub-intervals. STM in each sub-interval is determined in the symbolic form using 25 shifted 

Chebyshev polynomials and 35 Picard iterations. These STMs are combined using            

Eq. (6.18) to compute the STM over the principal period, aT . All computations in this work 

are performed on a laptop computer with a 2.50 GHz i7-4710MQ 4-core processor and 32 

GB of RAM.  

 Approximate L-P transformations are inverted by constructing an adjoint system to           

Eq. (6.20) (see Section 3.0) and is given by 

 

 1 1 2 20 cos cos

1

a b t b t
w w

d

    
   
                               (6.21) 

The symbolic technique presented in Section 4 is once again utilized to calculate the STM, 

( , , , )t a b d  of Eq. (6.21) in terms of system parameters and time using 30 sub-intervals, 

25 shifted Chebyshev polynomials and 35 Picard iterations.  In the following, approximate 

L-P transformations and their inverses are computed for three cases: Stable, Unstable and 

Critical.  
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5.1 Stable case 

The stability of the approximate system i.e., Eq. (6.20) is predicted by Floquet 

multipliers while the maximal Lyapunov exponent is computed to determine the stability 

of the quasi-periodic system, Eq. (6.19). For 0.04a  , 0.21b   and 0.1d  , Floquet 

multipliers are 0.000801826 0.00347088 i   and maximal Lyapunov exponent is 

negative. Hence, both the approximate system and the original quasi-periodic system are 

stable for these parameters. As multipliers lie in the left half of the complex plane, the 

approximate L-P transformation, ( )Q t  is 2 aT  periodic. Using ( , , , )aT a b d and Eq. (6.8), 

the constant real matrix R  can be calculated and is given by 

0.0691969 0.384229

0.00132882 0.0308031
R

  
   

                                 (6.22) 

It should be noted that R  is the approximated form of B (see Eq. (6.9)).  Once R is known, 

the approximate L-P transformation can be computed using the following expressions. 

 

   

1

1

1 1
1

1 1
1

( , ) ( , )

( , ) ( , )

N s N s

N s N s

N
R t t

N s N s N s N s
s

N
R t t

a N s a N s N s N s a
s

Q t t t t e

Q T t T t t t Q T e

  

  

 
     



 
     



 
  
 

 
    

 




              (6.23) 

where, 0 N s at T   and 10 N s at T   . In Fig. 6.2, all four elements of ( )Q  are plotted 

against normalized time.  

Due to a very long expression of 1( , )N s N sQ t t    it is impractical to invert it through 

MATHEMATICA and thus, an adjoint system defined by Eq. (6.21) is used to determine 

1( )Q t .  At first, ( , , , )t a b d  is explicitly expressed in terms of time, t   for 0.04a  ,  

0.21b    and  0.1d  . Then,  1( )Q t  in each sub- interval can be calculated using 
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 

   
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  
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     
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     
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 
  

 
 

    
 




               (6.24)  

 
and are plotted against normalized time as shown in Fig. 6.3.  

From Eqs. (6.23) and (6.24), it is clear that there is no single expression for  ( )Q t  

or 1( )Q t that is valid over the principal period, aT . This may pose a problem while dealing 

with nonlinear quasi-periodic systems. However, it could be circumvented by exploiting 

the periodic nature of ( )Q t  and 1( )Q t and expressing them in the form of Fourier series 

as 

 1
0

1

ˆ ˆ( ) or ( ) 2 cos sin
j r

j j
j

Q t Q t a a j t b j t 






                          (6.25) 

                                 (i)                                                                        (ii)                                                      

Fig. 6.2: Elements of for the stable case. 

                                (iii)                                                                         (iv)                                           
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where,  min min
ˆ or 2    if ( )Q t  and 1( )Q t is  or 2a aT T  periodic. With min

ˆ 2   

in Eq. (6.25), Fourier coefficients are determined for ( )Q t  and 1( )Q t for different values 

of r .  The truncation of the Fourier series depends upon the relationship, 1( ) ( )Q t Q t I 

which ensures that ( )Q t  and 1( )Q t consist of enough number of frequencies to get a 

constant real matrix, R . Figures 6.4 and 6.5 show all four elements of  1( ) ( )Q Q   for 

100 and 125r  , respectively. It is observed that for both values of r , off-diagonal 

elements are almost zero. However, for diagonal elements, the error between the maximum 

amplitude and 1 is relatively small ( 0.5% ) when 125r  . This error can be reduced to 

                                   (iii)                                                                   (iv) 

Fig. 6.3: Elements of for the stable case. 

                                  (i)                                                                      (ii)             
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approximately 0.02% by choosing r as 150. For the sake of brevity, 1( ) ( )Q Q   plot for 

150r  is not included. The truncated Fourier series of  ( )Q t  and 1( )Q t  with 125r  are 

found to be in close agreement with ( )Q t  and 1( )Q t obtained from Eqs. (6.23) and (6.24), 

respectively.  

 

5.2 Unstable case 

For the parameter set 2.85a  , 1.4b   and 0.1d  , the approximate system (see                

Eq. (6.20)) produces Floquet multipliers  61.70167, 7.457 10  and the original quasi-

periodic system (see Eq. (6.19)) has a positive maximal Lyapunov exponent. Thus, both 

systems are unstable.  Since Floquet multipliers lie in the right half of the complex plane, 

Fig. 6.4: Elements of  for . 

                                  (i)                                                                         (ii)                                                      

                                  (iii)                                                                         (iv)                                                      
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( )Q t  is aT  periodic and the constant real matrix can be calculated using

   1 ln ,a aR T T    (see Eq. (6.8)). R evaluates to 

 

0.0483396 0.0336694

0.0888338 0.0516604
R

 
   

                                   (6.26) 

Utilizing this R and the first expression of Eq. (6.23), approximate L-P 

transformation is determined over the principal period, aT . The approximate L-P 

transformation is inverted with the help of the adjoint system i.e., Eq. (6.21). Using 

2.85a  , 1.4b   and 0.1d  , the STM of Eq. (6.21) is determined in terms of t  and 

substituted in the first expression of    Eq. (6.24) to compute 1( )Q t . Plots of ( )Q t and 

1( )Q t are not included. 

Fig. 6.5: Elements of  for . 

                                    (i)                                                                     (ii)          

                                    (iii)                                                                     (iv)          
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Single expressions for ( )Q t  and 1( )Q t  over the principal period, aT  are obtained 

by expressing them in Fourier series. Since ( )Q t and 1( )Q t  are aT periodic, Fourier 

coefficients are determined with min̂  in Eq. (6.25). The relationship, 1( ) ( )Q t Q t I   is 

utilized to determine the value of r  in Eq. (6.25). It is found that for  100r  , off-diagonal 

elements are almost zero and for diagonal elements the error between the maximum 

amplitude and 1 is approximately 0.2% . A plot of 1( ) ( )Q t Q t  for 100r   is omitted for 

brevity. The truncated Fourier series of ( )Q t  and 1( )Q t  with 100r  are found to be in 

good agreement with those obtained using Eqs. (6.23) and (6.24). 

5.3 Critical case 

The present sub-section discusses the construction of an approximate L-P 

transformation for a resonance condition. In contrast to stable and unstable cases, for the 

critical case it is important that the approximate and exact stability boundaries of an 

unstable region are very close. According to Ref. [94], the difference between the 

boundaries can be reduced by choosing relatively smaller min .  Due to computational 

limitation, min 0.0212862   (see E. No. 8 in Table 6.1) is selected here.  

For min 0.0212862  , 295.176aT  , 1 1.00045140   and 2 1.61775120  . 

Assuming 1 2b b b  (for convenience) in    Eq. (6.20), once again, the symbolic technique 

discussed in Section 4 is employed to calculate ( , , , )t a b d  of Eq. (6.20) using 60 sub-

intervals with 30 shifted Chebyshev polynomials and 35 Picard iterations in each interval. 

With 0.911986672a  , 0.5b   and 0.03d  , Floquet multipliers of Eq. (6.20) are found 

to be  0.9999998777,0.0001426267  indicating a resonance condition. For the same 
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values of b and d , it is found that the maximal Lyapunov exponent for the original quasi-

periodic system i.e., Eq. (6.19) is positive at  0.912155a  and negative at 0.912156a   

implying that the exact stability boundary lies between these two values of a . It should be 

noted that the difference between the approximate and exact boundaries is of the order of 

410 . This difference can be of the order of 510  if min 0.00813062   (see E. No. 10 in 

Table 6.1) is chosen. However, this value of min is not used due to restrictive 

computational power. 

Floquet multipliers indicate that ( )Q t  is aT  periodic and the constant real matrix, R  

evaluates to 

0.0148778 0.000409736

0.549098 0.0151222
R

  
    

                                   (6.27) 

Substitution of R  and ( ,0.911986672,0.5,0.03)t in the first expression of Eq. 

(6.23) yields ( )Q t over the principal period,  aT . In order to construct 1( )Q t , first, the 

STM, ( , , , )t a b d  of the adjoint system (see Eq. (6.21)) is computed using 60 sub-intervals 

with 30 shifted Chebyshev polynomials and 35 Picard iterations. Then, 

( ,0.911986672,0.5,0.03)t  and R  are substituted in the first expression of Eq. (6.24) to 

obtain 1( )Q t . Once again, plots of ( )Q t and 1( )Q t are not included. 

In order to generate single expressions for ( )Q t and 1( )Q t , they are expressed in Fourier 

series. With min̂  in Eq. (6.25), Fourier coefficients are calculated and the series is 

truncated using the relationship, 1( ) ( )Q t Q t I  . The truncated Fourier series obtained with 

175r   are found to be in excellent agreement with ( )Q t and 1( )Q t computed using       

Eqs. (6.23) and (6.24), respectively.  



 134

6.0 DISCUSSION AND CONCLUSIONS 

A methodology to compute approximate Lyapunov-Perron (L-P) transformations 

has been presented. These transformations reduce linear quasi-periodic systems to systems 

with constant coefficients. Very recently, Sharma and Sinha [94] proposed an approximate 

approach to analyze quasi-periodic systems using the well-known Floquet theory. Their 

technique allows the computation of approximate state transition matrices (STMs) for 

general quasi-periodic systems which can be used to construct stability diagrams, responses 

and L-P transformations.  

This paper utilizes the methodology presented in Ref. [94] to compute the STM of 

a quasi-periodic system and uses it further to calculate approximate L-P transformations 

with the help of Lyapunov-Floquet theorem. First, the minimum frequency, min  in the 

truncated frequency module of the coefficient matrix of a quasi-periodic system is 

determined to calculate the principal period, min2aT   . A ‘suitable’ principal period is 

selected based on the convergence study of bifurcation points of main instability regions.  

Once min and aT have been selected, the original quasi-periodic system is replaced by a 

periodic system in which the excitation frequencies are integer multiples of   min . Since 

the approximate system is periodic in nature, it can be analyzed using Floquet theory. The 

symbolic technique presented in Section 4 is utilized to compute the STM,  ,t   of the 

periodic system in the symbolic form. According to the Lyapunov-Floquet theorem, the 

STM can be expressed in terms of a periodic matrix and a time-invariant matrix. The 

constant real matrix,  R   can be computed using Eq. (6.8). Substitution of  R   in Eq. 

(6.6) yields an approximate L-P transformation, ( )Q t . 1( )Q t  which is important for the 
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analysis of nonlinear quasi-periodic systems can be obtained by constructing an adjoint 

system to the periodic system i.e., Eq. (6.20). A two-frequency quasi-periodic system with 

excitation frequencies 1 1   and  2 1 5 2    is investigated in this paper and ( )Q t and 

1( )Q t  are computed for stable, unstable and critical cases. A relatively smaller min is 

chosen for the critical case to make sure that the approximate and exact stability boundaries 

of an unstable region are very close to each other. The periodic nature of ( )Q t and 1( )Q t  

is utilized to express approximate L-P transformations in the form of truncated Fourier 

series for all three cases.  

In summary, Lyapunov-Perron transformations have been computed for the first 

time. The proposed methodology is applicable to general quasi-periodic systems and is not 

limited by the existence of a generating solution and a small parameter.  These 

transformations can be helpful in the design of controllers using time-invariant methods. 

Also, L-P transformations would serve as a powerful tool in the bifurcation studies of 

nonlinear quasi-periodic systems. 

B.  Normal forms for nonlinear quasi-periodic systems 

Study of nonlinear quasi-periodic systems requires the development of normal 

forms theory and it could be done by following the procedure given below. 

Consider a nonlinear quasi-periodic system of the form, 

       1

2 , , ,
k

kx A t x f x t f x t O x t
                                          (6.4) 

where,  A t  and  ,kf x t  are quasi-periodic functions. Using the approximate technique 

proposed in this work, Eq. (6.4) can be approximated by a periodic system. Application of 
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Lyapunov-Perron transformation and modal transformation reduce this periodic system to 

the following form. 

     1

2 , , ,
k

kz Jz f z t f z t z t
                                        (6.5) 

where, the linear term is time-invariant and has Jordan canonical form, J . Due to the time-

independent form of the linear term, a near-identity transformation,  ,rz v h v t  can be 

applied to obtain the homological equation which can be solved to yield solvability 

condition. 

C)  Birfurcation analysis of nonlinear quasi-periodic systems 

There are only a few studies related to the bifurcation analysis of quasi-periodic 

systems and those studies are either numerical or involve small parameter techniques such 

as perturbation and averaging. The approximate approach presented in this work allows 

symbolic computation of state transition matrices in terms of systems parameters and 

enable bifurcation analysis at any point in the parametric space. The investigation requires 

the application of Lyapunov-Perron transformation, center manifold theory and normal 

form theory. Bifurcation point obtained through the approximate technique is the 

approximate bifurcation point and its closeness to the exact bifurcation point depends upon 

the value of minimum frequency. As the value of minimum frequency decreases, the 

difference between the exact and approximate bifurcation point decreases.  

D)  Applications 

Once nonlinear techniques to analyze quasi-periodic systems have been developed 

(Points 1 through 3), they can be applied to solve problems associated with ship dynamics, 

wind turbines, ion traps, MEMS, etc. 
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Appendix A 
 
 

The symbolic computation of FTM for Case Study 2 ( 1 1.0  and  2 1 5 2   ) is 

presented in section 2.5. Approximate principal period, 112.747aT   was divided into 30 

equal sub-intervals and then, FTM over the approximate principal period, 112.747aT   is 

computed using Eq. (2.34) with 30 Picard iterations and 20 Chebyshev polynomials in each 

sub-interval. For brevity, only one element of the FTM for the third sub-interval is shown 

below.  

(30,20)
11 3 2( , , , )t t a b  1. -7.06216 a+8.31235 a2-3.91354 a3+0.987073 a4-0.154908 

a5+0.0165755 a6-0.00128636 a7+0.0000757042 a8-3.49435*10-6 a9+1.29882*10-7 a10-

3.97078*10-9 a11+1.01602*10-10 a12-2.20779*10-12 a13+4.12481*10-14 a14-6.69677*10-16 

a15+2.57727 b-7.71097 a b+5.81431 a2 b-2.01022 a3 b+0.400073 a4 b-0.05181 a5 

b+0.0047167 a6 b-0.000318433 a7 b+0.0000165802 a8 b-6.86127*10-7 a9 b+2.31097*10-8 

a10 b-6.45863*10-10 a11 b+1.52189*10-11 a12 b-3.06429*10-13 a13 b+5.32817*10-15 a14 b-

2.04847 b2+0.349669 a b2+0.402521 a2 b2-0.188342 a3 b2+0.0384945 a4 b2-0.00478743 

a5 b2+0.000409623 a6 b2-0.0000258172 a7 b2+1.25376*10-6 a8 b2-4.84605*10-8 a9 

b2+1.52819*10-9 a10 b2-4.01051*10-11 a11 b2+8.9231*10-13 a12 b2-1.72963*10-14 a13 b2-

1.46636 b3+0.788637 a b3-0.167801 a2 b3+0.0176971 a3 b3-0.000770441 a4 b3-

0.0000359646 a5 b3+8.0592*10-6 a6 b3-6.55484*10-7 a7 b3+3.51141*10-8 a8 b3-

1.40316*10-9 a9 b3+4.40618*10-11 a10 b3-1.13087*10-12 a11 b3+2.73084*10-14 a12 b3-  
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Appendix B 
 
 

Computer Codes 
 

B.1    Mathematica code for convergence diagram of bifurcation points. 

B.2    Mathematica code for Discrete Fourier Transform of a quasi-periodic system. 

B.3    Mathematica code for plotting Poincaré maps of a quasi-periodic system. 

B.4   Mathematica code for symbolic computation of the state transition matrix of an 

approximate periodic system.  

B.5    Mathematica code containing supporting functions for B.4 

B.6    Mathematica code to drive Duffing’s oscillator to a quasi-periodic square wave. 

Note: Mathematica code for symbolic computation of feedback gains to drive the chaotic 

behavior of a Mathieu-Duffing oscillator to a two-frequency quasi-periodic motion 

is not included here for the sake of brevity. The code goes over 40 pages and one 

could utilize B.4 to write this code.   
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B.1 
 
 
ClearAll["Global`*"] 
SetDirectory[NotebookDirectory[]] 
 
w1 = 1.; w2 = (1/2)*(Sqrt[5] + 1);  
 
wmin = {0.618034, 0.381966, 0.236068, 0.145898, 0.0901699, 0.0557281, 0.0344419, 
0.0212862};  
 
ta = {10.1664, 16.4496, 26.616, 43.0656, 69.6816, 112.747, 182.429, 295.176};  
tan = ta/10.1664;  
 
i1 = {2, 3, 4, 7, 11, 18, 29, 47};  
i2 = {3, 4, 7, 11, 18, 29, 47, 76};  
 
w1n = SetPrecision[Table[i1[[i]]*wmin[[i]], {i, 1, Length[wmin]}], 16];  
w2n = SetPrecision[Table[i2[[i]]*wmin[[i]], {i, 1, Length[wmin]}], 16];  
 
ae1 = SetPrecision[(w1*w1)/4, 16];  
ae2 = SetPrecision[(w2*w2)/4, 16];  
aa1 = (w1n*w1n)/4;  
aa2 = (w2n*w2n)/4;  
 
err1 = ae1 - aa1;  
err2 = ae2 - aa2;  
xaxis = Log10[tan];  
 
ListLinePlot[Table[Table[{xaxis[[i]], f[[i]]}, {i, 1, Length[wmin]}], {f, {err1, err2}}], 
PlotTheme -> "Monochrome", Frame -> True, MaxPlotPoints -> Infinity, PlotStyle -> 
{Black, Dashed}, PlotRange -> All, PlotLegends -> Placed[{"Bifurcation point of region 
R1", "Bifurcation point of region R2"}, {0.5, 0.5}], FrameLabel -> 
{Style[TraditionalForm[HoldForm[Log10[Subscript[T, a]/Subscript[T, a1]]]], FontSize -
> 20, Black], Style[HoldForm[Subscript[a, e] - Subscript[a, a]], FontSize -> 20, Black]}, 
FrameTicksStyle -> Directive[Black, 22], PlotMarkers -> {{●, 18}, {▲, 18}}] 
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B.2 
 
 
ClearAll["Global`*"] 
SetDirectory[NotebookDirectory[]] 
 
toi = 58505;  
a = 1.01977;  
b = 0.25;  
d = 0.;  
w1 = 1;  
w2 = Sqrt[3];  
w3 = Sqrt[11];  
 
A1 = {{0., 1.}, {-a, -d}};  
A2 = {{0., 0.}, {(-b)*Cos[w1*y], 0.}};  
A3 = {{0., 0.}, {(-b)*Cos[w2*y] - b*Cos[w3*y], 0.}};  
A = A1 + A2 + A3 
 
si = 0.001;  
sf = 1/si;  
st = 53928;  
 
xsol = NDSolve[{Derivative[1][x1][y] == A[[1,1]]*x1[y] + A[[1,2]]*x2[y], 
Derivative[1][x2][y] == A[[2,1]]*x1[y] + A[[2,2]]*x2[y], x1[0] == 0.1, x2[0] == 0.1}, 
{x1, x2}, {y, 0, toi}, InterpolationOrder -> All, MaxSteps -> Infinity];  
 
tdata = Flatten[Table[t, {t, 0, st - si, si}]];  
x1data = Flatten[Table[x1[y] /. xsol, {y, 0, st - si, si}]];  
x1datan = Flatten[Table[(x1[y] /. xsol)*HannWindow[(y - st/2)/st], {y, 0, st - si, si}]];  
y1 = Length[x1datan];  
x1data = Flatten[Join[x1datan]];  
x1four = Chop[Flatten[2*2*(Length[x1data]/y1)*Abs[Fourier[x1data, FourierParameters 
-> {-1, 1}]]], 10^(-6)];  
x1data1 = Take[x1four, Length[x1four]/2];  
freq1 = Flatten[Table[(sf/Length[x1data])*2*Pi*z, {z, 0, Length[x1data1] - 1, 1}]];  
nqfreq = N[2*Pi*(sf/2)];  
Print["Nyquist frequency is  ", nqfreq];  
 
ListLinePlot[Table[{freq1[[i]], x1data1[[i]]}, {i, 1, Length[freq1]}], PlotRange -> {{0, 
10}, All}, PlotStyle -> {Black}, Frame -> True, FrameLabel -> 
{Style[HoldForm[Frequency], FontSize -> 22, Black], Style[HoldForm[Amplitude], 
FontSize -> 22, Black]}, FrameTicksStyle -> Directive[Black, 22]] 
sot2 = Sort[x1data1, Greater];  
pp2 = Position[x1data1, sot2[[1]]];  
N[(pp2 - 1)*((sf/Length[x1data])*2*Pi)] 
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B.3 
 
 
ClearAll["Global`*"] 
SetDirectory[NotebookDirectory[]] 
 
toi = 91*289.934 + 5;  
a = 0.19589 
b = 0.1 
d = 0.;  
w = 0.0216711;  
w1 = 46*w;  
w2 = 80*w;  
w3 = 153*w;  
P = N[2*(Pi/w)] 
P = 289.934;  
Print[Style["Period is ", 15, Black, Bold], Style[P, 15, Black, Bold], Style[" seconds ", 
15, Black, Bold]];  
 
A1 = {{0., 1.}, {-a, -d}};  
A2 = {{0., 0.}, {(-b)*Cos[1*y], 0.}};  
A3 = {{0., 0.}, {(-b)*Cos[Sqrt[3]*y] - b*Cos[Sqrt[11]*y], 0.}};  
A = A1 + A2 + A3;  
 
top = toi 
int = 1. 
xsol = NDSolve[{Derivative[1][x1][y] == A[[1,1]]*x1[y] + A[[1,2]]*x2[y],  
         Derivative[1][x2][y] == A[[2,1]]*x1[y] + A[[2,2]]*x2[y], x1[0] == 0.1, x2[0] == 
0.1}, {x1, x2}, {y, 0, toi}, InterpolationOrder -> All, MaxSteps -> Infinity];  
 
xT = Flatten[{x1[y] /. xsol, x2[y] /. xsol}];  
Edata = Table[xT, {y, 0, top, int}];  
 
p1 = ListPlot[Edata, PlotRange -> All, PlotStyle -> {PointSize[0.01], Black}, 
PlotMarkers -> {Automatic, Tiny}, Frame -> True, PlotLegends -> 
Placed[{Style[HoldForm["Original system"], FontSize -> 18, Black]}, {0.9, 0.8}]];  
 
xplot1 = Plot[Evaluate[x1[y] /. xsol], {y, 0., top}, PlotRange -> All, PlotStyle -> {Black, 
Dashed}] 
vplot1 = Plot[Evaluate[x2[y] /. xsol], {y, 0., top}, PlotRange -> All, PlotStyle -> {Black, 
Dashed}] 
 
nop = Quotient[toi, P] 
an = a;  
bn = b;  
dn = d;  
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B1 = {{0., 1.}, {-an, -dn}};  
B2 = {{0., 0.}, {(-bn)*Cos[w1*y], 0.}};  
B3 = {{0., 0.}, {(-bn)*Cos[w2*y] - bn*Cos[w3*y], 0.}};  
B = B1 + B2 + B3;  
 
icϕ = {{1., 0.}, {0., 1.}};  
icx = {{0.1}, {0.1}};  
 
ϕsol1 = NDSolve[{Derivative[1][ϕ11][y] == B[[1,1]]*ϕ11[y] + B[[1,2]]*ϕ21[y],  
         Derivative[1][ϕ21][y] == B[[2,1]]*ϕ11[y] + B[[2,2]]*ϕ21[y], ϕ11[0] == 
icϕ[[All,1]][[1]], ϕ21[0] == icϕ[[All,1]][[2]]}, {ϕ11, ϕ21}, {y, 0, toi}, MaxSteps -> 
Infinity, InterpolationOrder -> All];  
ϕsol2 = NDSolve[{Derivative[1][ϕ12][y] == B[[1,1]]*ϕ12[y] + B[[1,2]]*ϕ22[y],  
         Derivative[1][ϕ22][y] == B[[2,1]]*ϕ12[y] + B[[2,2]]*ϕ22[y], ϕ12[0] == 
icϕ[[All,2]][[1]], ϕ22[0] == icϕ[[All,2]][[2]]}, {ϕ12, ϕ22}, {y, 0, toi}, MaxSteps -> 
Infinity, InterpolationOrder -> All];  
 
eT = Flatten[{ϕ11[y] /. ϕsol1 /. y -> P, ϕ12[y] /. ϕsol2 /. y -> P, ϕ21[y] /. ϕsol1 /. y -> P,  
         ϕ22[y] /. ϕsol2 /. y -> P}];  
et = Flatten[{ϕ11[y] /. ϕsol1, ϕ12[y] /. ϕsol2, ϕ21[y] /. ϕsol1, ϕ22[y] /. ϕsol2}];  
ϕT = {{eT[[1]], eT[[2]]}, {eT[[3]], eT[[4]]}} 
ϕt = {{et[[1]], et[[2]]}, {et[[3]], et[[4]]}};  
 
Eigenvalues[ϕT] 
Abs[Eigenvalues[ϕT]] 
 
ϕδ[n_] := ϕt . MatrixPower[ϕT, n - 1];  
figure1[n_] := ListPlot[Table[Flatten[ϕδ[n] . icx], {y, 0, P, int}], PlotRange -> All,  
       PlotStyle -> {PointSize[0.01], Black}, PlotMarkers -> {Automatic, Tiny}, Frame -> 
True];  
xplot2[n_] := Plot[Evaluate[(ϕδ[n] . icx)[[1,1]] /. y -> t - (n - 1)*P], {t, (n - 1)*P, n*P}, 
PlotRange -> All, PlotStyle -> {Red, Dashed}, AxesOrigin -> {0, 0}];  
vplot2[n_] := Plot[Evaluate[(ϕδ[n] . icx)[[2,1]] /. y -> t - (n - 1)*P], {t, (n - 1)*P, n*P}, 
PlotRange -> All, PlotStyle -> {Red, Dashed}, AxesOrigin -> {0, 0}];  
 
x = ListPlot[Table[Flatten[ϕt . icx], {y, 0, P, int}], PlotRange -> All, PlotStyle -> 
{PointSize[0.01], Black}, PlotMarkers -> {Automatic, Tiny}, Frame -> True,  
       PlotLegends -> Placed[{Style[HoldForm["Approximate system"], FontSize -> 18, 
Black]}, {0.8, 0.8}]];  
 
xplot = Plot[(ϕt . icx)[[1,1]], {y, 0, P}, PlotRange -> All, PlotStyle -> {Red, Dashed}];  
vplot = Plot[(ϕt . icx)[[2,1]], {y, 0, P}, PlotRange -> All, PlotStyle -> {Red, Dashed}];  
 
For[i = 2, i <= nop, i++, x = Show[figure1[i], x, PlotRange -> All];  
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    xplot = Show[xplot2[i], xplot, PlotRange -> All]; vplot = Show[vplot2[i], vplot, 
PlotRange -> All]; ] 
 
Show[x, p1, PlotRange -> All, FrameLabel -> {Style[HoldForm[x1], FontSize -> 22, 
Black], Style[HoldForm[x2], FontSize -> 22, Black]}, FrameTicksStyle -> 
Directive[Black, 22], AxesOrigin -> {0, 0}] 
 
Show[xplot, xplot1, PlotRange -> All] 
 
Show[vplot, vplot1, PlotRange -> All] 
 
Show[x, PlotRange -> All, FrameLabel -> {Style[HoldForm[x1], FontSize -> 22, Black],  
       Style[HoldForm[x2], FontSize -> 22, Black]}, FrameTicksStyle -> Directive[Black, 
22], AxesOrigin -> {0, 0}] 
 
Show[p1, PlotRange -> All, FrameLabel -> {Style[HoldForm[x1], FontSize -> 22, 
Black], Style[HoldForm[x2], FontSize -> 22, Black]}, FrameTicksStyle -> 
Directive[Black, 22], AxesOrigin -> {0, 0}] 
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B.4 
 
 
ClearAll["Global`*"] 
ClearSystemCache[] 
SetDirectory[NotebookDirectory[]] 
 
Get["subfunctions2`"] 
 
w=0.0557281; 
(* Frequencies present in a system *) 
w1=18*w;w2=29*w; 
(*a11=1.8; 
b11=0.72; 
d11=0.1;*) 
ch=20; 
pc=30; 
 
(*Period of quasi periodic system *) 
P=112.747; 
 
 
(* Sub-Intervals *) 
nos=30; 
P0=0/nos; 
P1=P/nos;P2=2P/nos;P3=3P/nos;P4=4P/nos;P5=5P/nos;P6=6P/nos;P7=7P/nos; 
P8=8P/nos;P9=9P/nos;P10=10 P/nos;P11=11 P/nos;P12=12 P/nos;P13=13 P/nos; 
P14=14 P/nos;P15=15 P/nos;P16=16 P/nos;P17=17P/nos;P18=18P/nos;P19=19P/nos; 
P20=20 P/nos;P21=21P/nos;P22=22P/nos;P23=23P/nos;P24=24P/nos;P25=25P/nos; 
P26=26P/nos;P27=27P/nos;P28=28P/nos;P29=29P/nos;P30=30 P/nos;(*P31=31 P/nos;*) 
 
(* τ1 , τ2 , τ3 varies from 0 to 1 *) 
y1=P0+(P1-P0)*τ1;y2=P1+(P2-P1)*τ2;y3=P2+(P3-P2)*τ3;y4=P3+(P4-P3)*τ4; 
y5=P4+(P5-P4)*τ5;y6=P5+(P6-P5)*τ6;y7=P6+(P7-P6)*τ7;y8=P7+(P8-P7)*τ8; 
y9=P8+(P9-P8)*τ9;y10=P9+(P10-P9)*τ10;y11=P10+(P11-P10)*τ11; 
y12=P11+(P12-P11)*τ12;y13=P12+(P13-P12)*τ13;y14=P13+(P14-P13)*τ14; 
y15=P14+(P15-P14)*τ15;y16=P15+(P16-P15)*τ16;y17=P16+(P17-P16)*τ17; 
y18=P17+(P18-P17)*τ18;y19=P18+(P19-P18)*τ19;y20=P19+(P20-P19)*τ20; 
y21=P20+(P21-P20)*τ21;y22=P21+(P22-P21)*τ22;y23=P22+(P23-P22)*τ23; 
y24=P23+(P24-P23)*τ24;y25=P24+(P25-P24)*τ25;y26=P25+(P26-P25)*τ26; 
y27=P26+(P27-P26)*τ27;y28=P27+(P28-P27)*τ28;y29=P28+(P29-P28)*τ29; 
y30=P29+(P30-P29)*τ30;(*y31=P30+(P31-P30)*τ31;*) 
 
eqsubw1τ1=Chop[TrigExpand[N[Cos[w1 y1]]]]; 
eqsubw1τ2=Chop[TrigExpand[N[Cos[w1 y2]]]]; 
eqsubw1τ3=Chop[TrigExpand[N[Cos[w1 y3]]]]; 
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eqsubw1τ4=Chop[TrigExpand[N[Cos[w1 y4]]]]; 
eqsubw1τ5=Chop[TrigExpand[N[Cos[w1 y5]]]]; 
eqsubw1τ6=Chop[TrigExpand[N[Cos[w1 y6]]]]; 
eqsubw1τ7=Chop[TrigExpand[N[Cos[w1 y7]]]]; 
eqsubw1τ8=Chop[TrigExpand[N[Cos[w1 y8]]]]; 
eqsubw1τ9=Chop[TrigExpand[N[Cos[w1 y9]]]]; 
eqsubw1τ10=Chop[TrigExpand[N[Cos[w1 y10]]]]; 
eqsubw1τ11=Chop[TrigExpand[N[Cos[w1 y11]]]]; 
eqsubw1τ12=Chop[TrigExpand[N[Cos[w1 y12]]]]; 
eqsubw1τ13=Chop[TrigExpand[N[Cos[w1 y13]]]]; 
eqsubw1τ14=Chop[TrigExpand[N[Cos[w1 y14]]]]; 
eqsubw1τ15=Chop[TrigExpand[N[Cos[w1 y15]]]]; 
eqsubw1τ16=Chop[TrigExpand[N[Cos[w1 y16]]]]; 
eqsubw1τ17=Chop[TrigExpand[N[Cos[w1 y17]]]]; 
eqsubw1τ18=Chop[TrigExpand[N[Cos[w1 y18]]]]; 
eqsubw1τ19=Chop[TrigExpand[N[Cos[w1 y19]]]]; 
eqsubw1τ20=Chop[TrigExpand[N[Cos[w1 y20]]]]; 
eqsubw1τ21=Chop[TrigExpand[N[Cos[w1 y21]]]]; 
eqsubw1τ22=Chop[TrigExpand[N[Cos[w1 y22]]]]; 
eqsubw1τ23=Chop[TrigExpand[N[Cos[w1 y23]]]]; 
eqsubw1τ24=Chop[TrigExpand[N[Cos[w1 y24]]]]; 
eqsubw1τ25=Chop[TrigExpand[N[Cos[w1 y25]]]]; 
eqsubw1τ26=Chop[TrigExpand[N[Cos[w1 y26]]]]; 
eqsubw1τ27=Chop[TrigExpand[N[Cos[w1 y27]]]]; 
eqsubw1τ28=Chop[TrigExpand[N[Cos[w1 y28]]]]; 
eqsubw1τ29=Chop[TrigExpand[N[Cos[w1 y29]]]]; 
eqsubw1τ30=Chop[TrigExpand[N[Cos[w1 y30]]]]; 
(*eqsubw1τ31=Chop[TrigExpand[N[Cos[w1 y31]]]];*) 
 
eqsubw2τ1=Chop[TrigExpand[N[Cos[w2 y1]]]]; 
eqsubw2τ2=Chop[TrigExpand[N[Cos[w2 y2]]]]; 
eqsubw2τ3=Chop[TrigExpand[N[Cos[w2 y3]]]]; 
eqsubw2τ4=Chop[TrigExpand[N[Cos[w2 y4]]]]; 
eqsubw2τ5=Chop[TrigExpand[N[Cos[w2 y5]]]]; 
eqsubw2τ6=Chop[TrigExpand[N[Cos[w2 y6]]]]; 
eqsubw2τ7=Chop[TrigExpand[N[Cos[w2 y7]]]]; 
eqsubw2τ8=Chop[TrigExpand[N[Cos[w2 y8]]]]; 
eqsubw2τ9=Chop[TrigExpand[N[Cos[w2 y9]]]]; 
eqsubw2τ10=Chop[TrigExpand[N[Cos[w2 y10]]]]; 
eqsubw2τ11=Chop[TrigExpand[N[Cos[w2 y11]]]]; 
eqsubw2τ12=Chop[TrigExpand[N[Cos[w2 y12]]]]; 
eqsubw2τ13=Chop[TrigExpand[N[Cos[w2 y13]]]]; 
eqsubw2τ14=Chop[TrigExpand[N[Cos[w2 y14]]]]; 
eqsubw2τ15=Chop[TrigExpand[N[Cos[w2 y15]]]]; 
eqsubw2τ16=Chop[TrigExpand[N[Cos[w2 y16]]]]; 
eqsubw2τ17=Chop[TrigExpand[N[Cos[w2 y17]]]]; 
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eqsubw2τ18=Chop[TrigExpand[N[Cos[w2 y18]]]]; 
eqsubw2τ19=Chop[TrigExpand[N[Cos[w2 y19]]]]; 
eqsubw2τ20=Chop[TrigExpand[N[Cos[w2 y20]]]]; 
eqsubw2τ21=Chop[TrigExpand[N[Cos[w2 y21]]]]; 
eqsubw2τ22=Chop[TrigExpand[N[Cos[w2 y22]]]]; 
eqsubw2τ23=Chop[TrigExpand[N[Cos[w2 y23]]]]; 
eqsubw2τ24=Chop[TrigExpand[N[Cos[w2 y24]]]]; 
eqsubw2τ25=Chop[TrigExpand[N[Cos[w2 y25]]]]; 
eqsubw2τ26=Chop[TrigExpand[N[Cos[w2 y26]]]]; 
eqsubw2τ27=Chop[TrigExpand[N[Cos[w2 y27]]]]; 
eqsubw2τ28=Chop[TrigExpand[N[Cos[w2 y28]]]]; 
eqsubw2τ29=Chop[TrigExpand[N[Cos[w2 y29]]]]; 
eqsubw2τ30=Chop[TrigExpand[N[Cos[w2 y30]]]]; 
(*eqsubw2τ31=Chop[TrigExpand[N[Cos[w2 y31]]]];*) 
 
(* Angles for expansion *) 
 
xw11=N[w1(P1-P0)];xw12=N[w1(P2-P1)];xw13=N[w1(P3-P2)];xw14=N[w1(P4-P3)]; 
xw15=N[w1(P5-P4)];xw16=N[w1(P6-P5)];xw17=N[w1(P7-P6)];xw18=N[w1(P8-P7)]; 
xw19=N[w1(P9-P8)];xw110=N[w1(P10-P9)];xw111=N[w1(P11-P10)]; 
xw112=N[w1(P12-P11)];xw113=N[w1(P13-P12)];xw114=N[w1(P14-P13)]; 
xw115=N[w1(P15-P14)];xw116=N[w1(P16-P15)];xw117=N[w1(P17-P16)]; 
xw118=N[w1(P18-P17)];xw119=N[w1(P19-P18)];xw120=N[w1(P20-P19)]; 
xw121=N[w1(P21-P20)];xw122=N[w1(P22-P21)];xw123=N[w1(P23-P22)]; 
xw124=N[w1(P24-P23)];xw125=N[w1(P25-P24)];xw126=N[w1(P26-P25)]; 
xw127=N[w1(P27-P26)];xw128=N[w1(P28-P27)];xw129=N[w1(P29-P28)]; 
xw130=N[w1(P30-P29)];(*xw131=N[w1(P31-P30)];*) 
 
 
xw21=N[w2(P1-P0)];xw22=N[w2(P2-P1)];xw23=N[w2(P3-P2)];xw24=N[w2(P4-P3)]; 
xw25=N[w2(P5-P4)];xw26=N[w2(P6-P5)];xw27=N[w2(P7-P6)];xw28=N[w2(P8-P7)]; 
xw29=N[w2(P9-P8)];xw210=N[w2(P10-P9)];xw211=N[w2(P11-P10)]; 
xw212=N[w2(P12-P11)];xw213=N[w2(P13-P12)];xw214=N[w2(P14-P13)]; 
xw215=N[w2(P15-P14)];xw216=N[w2(P16-P15)];xw217=N[w2(P17-P16)]; 
xw218=N[w2(P18-P17)];xw219=N[w2(P19-P18)];xw220=N[w2(P20-P19)]; 
xw221=N[w2(P21-P20)];xw222=N[w2(P22-P21)];xw223=N[w2(P23-P22)]; 
xw224=N[w2(P24-P23)];xw225=N[w2(P25-P24)];xw226=N[w2(P26-P25)]; 
xw227=N[w2(P27-P26)];xw228=N[w2(P28-P27)];xw229=N[w2(P29-P28)]; 
xw230=N[w2(P30-P29)];(*xw231=N[w2(P31-P30)];*) 
 
α=0.0; 
β=1.0; 
γ1=(β+α)/2; 
γ2=(β-α)/2; 
ξ=(2.0*τ-α-β)/(β-α); 
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(* m = Number of chebyshev terms *) 
m=ch; 
If[EvenQ[m]==True, 
 n1=(m)/2; 
 n2=n1-1;, 
 n1=(m+1)/2; 
 n2=n1-2; 
 ] 
 
cosxτ[x_]:=Simplify[Cos[γ1*x]*(Sum[2*(((-1)^n)*BesselJ[2*n,γ2*x]*T[2*n]),{n,1,n1-
1}])+Cos[γ1*x]*BesselJ[0,γ2*x]*T[0]-Sin[γ1*x]*2*(Sum[(((-
1)^n)*BesselJ[2*n+1,γ2*x]*T[2*n+1]),{n,0,n2}])]; 
sinxτ[x_]:=Simplify[(Cos[γ1 x]*2*Sum[(((-
1)^n)*BesselJ[2*n+1,γ2*x]*T[2*n+1]),{n,0,n2}])+Sin[γ1 
x]*BesselJ[0,γ2*x]*T[0]+Sin[γ1 x]*2*Sum[(((-
1)^n)*BesselJ[2*n,γ2*x]*T[2*n]),{n,1,n1-1}]]; 
 
eqw11=Simplify[eqsubw1τ1/.{Cos[xw11 τ1]->cosxτ[xw11],Sin[xw11 τ1]  
 ->sinxτ[xw11]}]; 
eqw12=Simplify[eqsubw1τ2/.{Cos[xw12 τ2]->cosxτ[xw12],Sin[xw12 τ2]  
 ->sinxτ[xw12]}]; 
eqw13=Simplify[eqsubw1τ3/.{Cos[xw13 τ3]->cosxτ[xw13],Sin[xw13 τ3]   
 ->sinxτ[xw13]}]; 
eqw14=Simplify[eqsubw1τ4/.{Cos[xw14 τ4]->cosxτ[xw14],Sin[xw14 τ4]  
 ->sinxτ[xw14]}]; 
eqw15=Simplify[eqsubw1τ5/.{Cos[xw15 τ5]->cosxτ[xw15],Sin[xw15 τ5]  
 ->sinxτ[xw15]}]; 
eqw16=Simplify[eqsubw1τ6/.{Cos[xw16 τ6]->cosxτ[xw16],Sin[xw16 τ6]  
 ->sinxτ[xw16]}]; 
eqw17=Simplify[eqsubw1τ7/.{Cos[xw17 τ7]->cosxτ[xw17],Sin[xw17 τ7]  
 ->sinxτ[xw17]}]; 
eqw18=Simplify[eqsubw1τ8/.{Cos[xw18 τ8]->cosxτ[xw18],Sin[xw18 τ8]  
 ->sinxτ[xw18]}]; 
eqw19=Simplify[eqsubw1τ9/.{Cos[xw19 τ9]->cosxτ[xw19],Sin[xw19 τ9]  
 ->sinxτ[xw19]}]; 
eqw110=Simplify[eqsubw1τ10/.{Cos[xw110 τ10]->cosxτ[xw110],Sin[xw110 τ10] 
 ->sinxτ[xw110]}]; 
eqw111=Simplify[eqsubw1τ11/.{Cos[xw111 τ11]->cosxτ[xw111],Sin[xw111 τ11]
 ->sinxτ[xw111]}]; 
eqw112=Simplify[eqsubw1τ12/.{Cos[xw112 τ12]->cosxτ[xw112],Sin[xw112 τ12]
 ->sinxτ[xw112]}]; 
eqw113=Simplify[eqsubw1τ13/.{Cos[xw113 τ13]->cosxτ[xw113],Sin[xw113 τ13]
 ->sinxτ[xw113]}]; 
eqw114=Simplify[eqsubw1τ14/.{Cos[xw114 τ14]->cosxτ[xw114],Sin[xw114 τ14]
 ->sinxτ[xw114]}]; 
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eqw115=Simplify[eqsubw1τ15/.{Cos[xw115 τ15]->cosxτ[xw115],Sin[xw115 τ15]
 ->sinxτ[xw115]}]; 
eqw116=Simplify[eqsubw1τ16/.{Cos[xw116 τ16]->cosxτ[xw116],Sin[xw116 τ16]
 ->sinxτ[xw116]}]; 
eqw117=Simplify[eqsubw1τ17/.{Cos[xw117 τ17]->cosxτ[xw117],Sin[xw117 τ17]
 ->sinxτ[xw117]}]; 
eqw118=Simplify[eqsubw1τ18/.{Cos[xw118 τ18]->cosxτ[xw118],Sin[xw118 τ18]
 ->sinxτ[xw118]}]; 
eqw119=Simplify[eqsubw1τ19/.{Cos[xw119 τ19]->cosxτ[xw119],Sin[xw119 τ19]
 ->sinxτ[xw119]}]; 
eqw120=Simplify[eqsubw1τ20/.{Cos[xw120 τ20]->cosxτ[xw120],Sin[xw120 τ20]
 ->sinxτ[xw120]}]; 
eqw121=Simplify[eqsubw1τ21/.{Cos[xw121 τ21]->cosxτ[xw121],Sin[xw121 τ21]
 ->sinxτ[xw121]}]; 
eqw122=Simplify[eqsubw1τ22/.{Cos[xw122 τ22]->cosxτ[xw122],Sin[xw122 τ22]
 ->sinxτ[xw122]}]; 
eqw123=Simplify[eqsubw1τ23/.{Cos[xw123 τ23]->cosxτ[xw123],Sin[xw123 τ23]
 ->sinxτ[xw123]}]; 
eqw124=Simplify[eqsubw1τ24/.{Cos[xw124 τ24]->cosxτ[xw124],Sin[xw124 τ24]
 ->sinxτ[xw124]}]; 
eqw125=Simplify[eqsubw1τ25/.{Cos[xw125 τ25]->cosxτ[xw125],Sin[xw125 τ25]
 ->sinxτ[xw125]}]; 
eqw126=Simplify[eqsubw1τ26/.{Cos[xw126 τ26]->cosxτ[xw126],Sin[xw126 τ26]
 ->sinxτ[xw126]}]; 
eqw127=Simplify[eqsubw1τ27/.{Cos[xw127 τ27]->cosxτ[xw127],Sin[xw127 τ27]
 ->sinxτ[xw127]}]; 
eqw128=Simplify[eqsubw1τ28/.{Cos[xw128 τ28]->cosxτ[xw128],Sin[xw128 τ28]
 ->sinxτ[xw128]}]; 
eqw129=Simplify[eqsubw1τ29/.{Cos[xw129 τ29]->cosxτ[xw129],Sin[xw129 τ29]
 ->sinxτ[xw129]}]; 
eqw130=Simplify[eqsubw1τ30/.{Cos[xw130 τ30]->cosxτ[xw130],Sin[xw130 τ30]
 ->sinxτ[xw130]}]; 
 
 
eqw21=Simplify[eqsubw2τ1/.{Cos[xw21 τ1]->cosxτ[xw21],Sin[xw21 τ1]  
 ->sinxτ[xw21]}]; 
eqw22=Simplify[eqsubw2τ2/.{Cos[xw22 τ2]->cosxτ[xw22],Sin[xw22 τ2]  
 ->sinxτ[xw22]}]; 
eqw23=Simplify[eqsubw2τ3/.{Cos[xw23 τ3]->cosxτ[xw23],Sin[xw23 τ3]  
 ->sinxτ[xw23]}]; 
eqw24=Simplify[eqsubw2τ4/.{Cos[xw24 τ4]->cosxτ[xw24],Sin[xw24 τ4]  
 ->sinxτ[xw24]}]; 
eqw25=Simplify[eqsubw2τ5/.{Cos[xw25 τ5]->cosxτ[xw25],Sin[xw25 τ5]   
 ->sinxτ[xw25]}]; 
eqw26=Simplify[eqsubw2τ6/.{Cos[xw26 τ6]->cosxτ[xw26],Sin[xw26 τ6]  
 ->sinxτ[xw26]}]; 
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eqw27=Simplify[eqsubw2τ7/.{Cos[xw27 τ7]->cosxτ[xw27],Sin[xw27 τ7]  
 ->sinxτ[xw27]}]; 
eqw28=Simplify[eqsubw2τ8/.{Cos[xw28 τ8]->cosxτ[xw28],Sin[xw28 τ8]  
 ->sinxτ[xw28]}]; 
eqw29=Simplify[eqsubw2τ9/.{Cos[xw29 τ9]->cosxτ[xw29],Sin[xw29 τ9]  
 ->sinxτ[xw29]}]; 
eqw210=Simplify[eqsubw2τ10/.{Cos[xw210 τ10]->cosxτ[xw210],Sin[xw210 τ10]
 ->sinxτ[xw210]}]; 
eqw211=Simplify[eqsubw2τ11/.{Cos[xw211 τ11]->cosxτ[xw211],Sin[xw211 τ11]
 ->sinxτ[xw211]}]; 
eqw212=Simplify[eqsubw2τ12/.{Cos[xw212 τ12]->cosxτ[xw212],Sin[xw212 τ12]
 ->sinxτ[xw212]}]; 
eqw213=Simplify[eqsubw2τ13/.{Cos[xw213 τ13]->cosxτ[xw213],Sin[xw213 τ13]
 ->sinxτ[xw213]}]; 
eqw214=Simplify[eqsubw2τ14/.{Cos[xw214 τ14]->cosxτ[xw214],Sin[xw214 τ14]
 ->sinxτ[xw214]}]; 
eqw215=Simplify[eqsubw2τ15/.{Cos[xw215 τ15]->cosxτ[xw215],Sin[xw215 τ15]
 ->sinxτ[xw215]}]; 
eqw216=Simplify[eqsubw2τ16/.{Cos[xw216 τ16]->cosxτ[xw216],Sin[xw216 τ16]
 ->sinxτ[xw216]}]; 
eqw217=Simplify[eqsubw2τ17/.{Cos[xw217 τ17]->cosxτ[xw217],Sin[xw217 τ17]
 ->sinxτ[xw217]}]; 
eqw218=Simplify[eqsubw2τ18/.{Cos[xw218 τ18]->cosxτ[xw218],Sin[xw218 τ18]
 ->sinxτ[xw218]}]; 
eqw219=Simplify[eqsubw2τ19/.{Cos[xw219 τ19]->cosxτ[xw219],Sin[xw219 τ19]
 ->sinxτ[xw219]}]; 
eqw220=Simplify[eqsubw2τ20/.{Cos[xw220 τ20]->cosxτ[xw220],Sin[xw220 τ20]
 ->sinxτ[xw220]}]; 
eqw221=Simplify[eqsubw2τ21/.{Cos[xw221 τ21]->cosxτ[xw221],Sin[xw221 τ21]
 ->sinxτ[xw221]}]; 
eqw222=Simplify[eqsubw2τ22/.{Cos[xw222 τ22]->cosxτ[xw222],Sin[xw222 τ22]
 ->sinxτ[xw222]}]; 
eqw223=Simplify[eqsubw2τ23/.{Cos[xw223 τ23]->cosxτ[xw223],Sin[xw223 τ23]
 ->sinxτ[xw223]}]; 
eqw224=Simplify[eqsubw2τ24/.{Cos[xw224 τ24]->cosxτ[xw224],Sin[xw224 τ24]
 ->sinxτ[xw224]}]; 
eqw225=Simplify[eqsubw2τ25/.{Cos[xw225 τ25]->cosxτ[xw225],Sin[xw225 τ25]
 ->sinxτ[xw225]}]; 
eqw226=Simplify[eqsubw2τ26/.{Cos[xw226 τ26]->cosxτ[xw226],Sin[xw226 τ26]
 ->sinxτ[xw226]}]; 
eqw227=Simplify[eqsubw2τ27/.{Cos[xw227 τ27]->cosxτ[xw227],Sin[xw227 τ27]
 ->sinxτ[xw227]}]; 
eqw228=Simplify[eqsubw2τ28/.{Cos[xw228 τ28]->cosxτ[xw228],Sin[xw228 τ28]
 ->sinxτ[xw228]}]; 
eqw229=Simplify[eqsubw2τ29/.{Cos[xw229 τ29]->cosxτ[xw229],Sin[xw229 τ29]
 ->sinxτ[xw229]}]; 
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eqw230=Simplify[eqsubw2τ30/.{Cos[xw230 τ30]->cosxτ[xw230],Sin[xw230 τ30]
 ->sinxτ[xw230]}]; 
 
ptable=Table[T[i],{i,0,m}]; 
tst=Table[ChebyshevT[i,ξ],{i,0,m}]; 
sol=Solve[ptable-tst==0,ptable]; 
 
x11=Cos[w1 y]; 
x22=Cos[w2 y]; 
 
yw11=N[(eqw11/.sol)/.τ->((y-P0)/(P1-P0))]; 
yw12=N[(eqw12/.sol)/.τ->((y-P1)/(P2-P1))]; 
yw13=N[(eqw13/.sol)/.τ->((y-P2)/(P3-P2))]; 
yw14=N[(eqw14/.sol)/.τ->((y-P3)/(P4-P3))]; 
yw15=N[(eqw15/.sol)/.τ->((y-P4)/(P5-P4))]; 
yw16=N[(eqw16/.sol)/.τ->((y-P5)/(P6-P5))]; 
yw17=N[(eqw17/.sol)/.τ->((y-P6)/(P7-P6))]; 
yw18=N[(eqw18/.sol)/.τ->((y-P7)/(P8-P7))]; 
yw19=N[(eqw19/.sol)/.τ->((y-P8)/(P9-P8))]; 
yw110=N[(eqw110/.sol)/.τ->((y-P9)/(P10-P9))]; 
yw111=N[(eqw111/.sol)/.τ->((y-P10)/(P11-P10))]; 
yw112=N[(eqw112/.sol)/.τ->((y-P11)/(P12-P11))]; 
yw113=N[(eqw113/.sol)/.τ->((y-P12)/(P13-P12))]; 
yw114=N[(eqw114/.sol)/.τ->((y-P13)/(P14-P13))]; 
yw115=N[(eqw115/.sol)/.τ->((y-P14)/(P15-P14))]; 
yw116=N[(eqw116/.sol)/.τ->((y-P15)/(P16-P15))]; 
yw117=N[(eqw117/.sol)/.τ->((y-P16)/(P17-P16))]; 
yw118=N[(eqw118/.sol)/.τ->((y-P17)/(P18-P17))]; 
yw119=N[(eqw119/.sol)/.τ->((y-P18)/(P19-P18))]; 
yw120=N[(eqw120/.sol)/.τ->((y-P19)/(P20-P19))]; 
yw121=N[(eqw121/.sol)/.τ->((y-P20)/(P21-P20))]; 
yw122=N[(eqw122/.sol)/.τ->((y-P21)/(P22-P21))]; 
yw123=N[(eqw123/.sol)/.τ->((y-P22)/(P23-P22))]; 
yw124=N[(eqw124/.sol)/.τ->((y-P23)/(P24-P23))]; 
yw125=N[(eqw125/.sol)/.τ->((y-P24)/(P25-P24))]; 
yw126=N[(eqw126/.sol)/.τ->((y-P25)/(P26-P25))]; 
yw127=N[(eqw127/.sol)/.τ->((y-P26)/(P27-P26))]; 
yw128=N[(eqw128/.sol)/.τ->((y-P27)/(P28-P27))]; 
yw129=N[(eqw129/.sol)/.τ->((y-P28)/(P29-P28))]; 
yw130=N[(eqw130/.sol)/.τ->((y-P29)/(P30-P29))]; 
 
yw21=N[(eqw21/.sol)/.τ->((y-P0)/(P1-P0))]; 
yw22=N[(eqw22/.sol)/.τ->((y-P1)/(P2-P1))]; 
yw23=N[(eqw23/.sol)/.τ->((y-P2)/(P3-P2))]; 
yw24=N[(eqw24/.sol)/.τ->((y-P3)/(P4-P3))]; 
yw25=N[(eqw25/.sol)/.τ->((y-P4)/(P5-P4))]; 
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yw26=N[(eqw26/.sol)/.τ->((y-P5)/(P6-P5))]; 
yw27=N[(eqw27/.sol)/.τ->((y-P6)/(P7-P6))]; 
yw28=N[(eqw28/.sol)/.τ->((y-P7)/(P8-P7))]; 
yw29=N[(eqw29/.sol)/.τ->((y-P8)/(P9-P8))]; 
yw210=N[(eqw210/.sol)/.τ->((y-P9)/(P10-P9))]; 
yw211=N[(eqw211/.sol)/.τ->((y-P10)/(P11-P10))]; 
yw212=N[(eqw212/.sol)/.τ->((y-P11)/(P12-P11))]; 
yw213=N[(eqw213/.sol)/.τ->((y-P12)/(P13-P12))]; 
yw214=N[(eqw214/.sol)/.τ->((y-P13)/(P14-P13))]; 
yw215=N[(eqw215/.sol)/.τ->((y-P14)/(P15-P14))]; 
yw216=N[(eqw216/.sol)/.τ->((y-P15)/(P16-P15))]; 
yw217=N[(eqw217/.sol)/.τ->((y-P16)/(P17-P16))]; 
yw218=N[(eqw218/.sol)/.τ->((y-P17)/(P18-P17))]; 
yw219=N[(eqw219/.sol)/.τ->((y-P18)/(P19-P18))]; 
yw220=N[(eqw220/.sol)/.τ->((y-P19)/(P20-P19))]; 
yw221=N[(eqw221/.sol)/.τ->((y-P20)/(P21-P20))]; 
yw222=N[(eqw222/.sol)/.τ->((y-P21)/(P22-P21))]; 
yw223=N[(eqw223/.sol)/.τ->((y-P22)/(P23-P22))]; 
yw224=N[(eqw224/.sol)/.τ->((y-P23)/(P24-P23))]; 
yw225=N[(eqw225/.sol)/.τ->((y-P24)/(P25-P24))]; 
yw226=N[(eqw226/.sol)/.τ->((y-P25)/(P26-P25))]; 
yw227=N[(eqw227/.sol)/.τ->((y-P26)/(P27-P26))]; 
yw228=N[(eqw228/.sol)/.τ->((y-P27)/(P28-P27))]; 
yw229=N[(eqw229/.sol)/.τ->((y-P28)/(P29-P28))]; 
yw230=N[(eqw230/.sol)/.τ->((y-P29)/(P30-P29))]; 
 
 
h11=Plot[x11,{y,0,P},PlotRange->All,PlotStyle->{Black}]; 
hw12=Plot[{yw11},{y,P0,P1},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw13=Plot[{yw12},{y,P1,P2},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw14=Plot[{yw13},{y,P2,P3},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw15=Plot[{yw14},{y,P3,P4},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw16=Plot[{yw15},{y,P4,P5},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw17=Plot[{yw16},{y,P5,P6},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw18=Plot[{yw17},{y,P6,P7},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw19=Plot[{yw18},{y,P7,P8},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw110=Plot[{yw19},{y,P8,P9},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw111=Plot[{yw110},{y,P9,P10},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw112=Plot[{yw111},{y,P10,P11},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw113=Plot[{yw112},{y,P11,P12},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw114=Plot[{yw113},{y,P12,P13},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw115=Plot[{yw114},{y,P13,P14},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw116=Plot[{yw115},{y,P14,P15},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw117=Plot[{yw116},{y,P15,P16},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw118=Plot[{yw117},{y,P16,P17},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw119=Plot[{yw118},{y,P17,P18},PlotRange->All,PlotStyle->{Red,Dashed}]; 
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hw120=Plot[{yw119},{y,P18,P19},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw121=Plot[{yw120},{y,P19,P20},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw122=Plot[{yw121},{y,P20,P21},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw123=Plot[{yw122},{y,P21,P22},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw124=Plot[{yw123},{y,P22,P23},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw125=Plot[{yw124},{y,P23,P24},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw126=Plot[{yw125},{y,P24,P25},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw127=Plot[{yw126},{y,P25,P26},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw128=Plot[{yw127},{y,P26,P27},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw129=Plot[{yw128},{y,P27,P28},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw130=Plot[{yw129},{y,P28,P29},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw131=Plot[{yw130},{y,P29,P30},PlotRange->All,PlotStyle->{Red,Dashed}]; 
 
 
h22=Plot[x22,{y,0,P},PlotRange->All,PlotStyle->{Black}]; 
hw22=Plot[{yw21},{y,P0,P1},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw23=Plot[{yw22},{y,P1,P2},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw24=Plot[{yw23},{y,P2,P3},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw25=Plot[{yw24},{y,P3,P4},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw26=Plot[{yw25},{y,P4,P5},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw27=Plot[{yw26},{y,P5,P6},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw28=Plot[{yw27},{y,P6,P7},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw29=Plot[{yw28},{y,P7,P8},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw210=Plot[{yw29},{y,P8,P9},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw211=Plot[{yw210},{y,P9,P10},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw212=Plot[{yw211},{y,P10,P11},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw213=Plot[{yw212},{y,P11,P12},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw214=Plot[{yw213},{y,P12,P13},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw215=Plot[{yw214},{y,P13,P14},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw216=Plot[{yw215},{y,P14,P15},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw217=Plot[{yw216},{y,P15,P16},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw218=Plot[{yw217},{y,P16,P17},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw219=Plot[{yw218},{y,P17,P18},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw220=Plot[{yw219},{y,P18,P19},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw221=Plot[{yw220},{y,P19,P20},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw222=Plot[{yw221},{y,P20,P21},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw223=Plot[{yw222},{y,P21,P22},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw224=Plot[{yw223},{y,P22,P23},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw225=Plot[{yw224},{y,P23,P24},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw226=Plot[{yw225},{y,P24,P25},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw227=Plot[{yw226},{y,P25,P26},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw228=Plot[{yw227},{y,P26,P27},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw229=Plot[{yw228},{y,P27,P28},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw230=Plot[{yw229},{y,P28,P29},PlotRange->All,PlotStyle->{Red,Dashed}]; 
hw231=Plot[{yw230},{y,P29,P30},PlotRange->All,PlotStyle->{Red,Dashed}]; 
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Show[h11,hw12,hw13,hw14,hw15,hw16,hw17,hw18,hw19,hw110,hw111,hw112,hw113
,hw114,hw115,hw116,hw117,hw118,hw119,hw120,hw121,hw122,hw123,hw124,hw125,
hw126,hw127,hw128,hw129,hw130,hw131(*,hw132*)] 
Show[h22,hw22,hw23,hw24,hw25,hw26,hw27,hw28,hw29,hw210,hw211,hw212,hw213
,hw214,hw215,hw216,hw217,hw218,hw219,hw220,hw221,hw222,hw223,hw224,hw225,
hw226,hw227,hw228,hw229,hw230,hw231(*,hw232*)] 
 
 
(* ------------------------------------------ STM CALCULATION ---------------------------------
------ *) 
(* Length of sub-intervals *) 
l1=P1-P0; 
l2=P2-P1; 
l3=P3-P2; 
l4=P4-P3; 
l5=P5-P4; 
l6=P6-P5; 
l7=P7-P6; 
l8=P8-P7; 
l9=P9-P8; 
l10=P10-P9; 
l11=P11-P10; 
l12=P12-P11; 
l13=P13-P12; 
l14=P14-P13; 
l15=P15-P14; 
l16=P16-P15; 
l17=P17-P16; 
l18=P18-P17; 
l19=P19-P18; 
l20=P20-P19; 
l21=P21-P20; 
l22=P22-P21; 
l23=P23-P22; 
l24=P24-P23; 
l25=P25-P24; 
l26=P26-P25; 
l27=P27-P26; 
l28=P28-P27; 
l29=P29-P28; 
l30=P30-P29; 
(*l31=P31-P30;*) 
 
l77={l1,l2,l3,l4,l5,l6,l7,l8,l9,l10,l11,l12,l13,l14,l15,l16,l17,l18,l19,l20,l21,l22,l23,l24,l25
,l26,l27,l28,l29,l30(*,l31*)}; 
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l88={P0,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,P16,P17,P18,P19,P20,P
20,P21,P22,P23,P24,P25,P26,P27,P28,P29,P30(*,P31*)}; 
 
eqw1={eqw11,eqw12,eqw13,eqw14,eqw15,eqw16,eqw17,eqw18,eqw19,eqw110,eqw11
1,eqw112,eqw113,eqw114,eqw115,eqw116,eqw117,eqw118,eqw119,eqw120,eqw121,eq
w122,eqw123,eqw124,eqw125,eqw126,eqw127,eqw128,eqw129,eqw130(*,eqw131*)}; 
eqw2={eqw21,eqw22,eqw23,eqw24,eqw25,eqw26,eqw27,eqw28,eqw29,eqw210,eqw21
1,eqw212,eqw213,eqw214,eqw215,eqw216,eqw217,eqw218,eqw219,eqw220,eqw221,eq
w222,eqw223,eqw224,eqw225,eqw226,eqw227,eqw228,eqw229,eqw230(*,eqw231*)}; 
 
(*a=a11; 
b=b11; 
d=0.1;*) 
 
 
stm[u1_]:= 
 Block[{u=u1}, 
  Ac={{0,1},{-a,-d}}; 
  Ap1={{0,0},{-b,0}}; 
  Ap2={{0,0},{-b,0}}; 
  (* 'A' matrix in state space form - with normalization *) 
  A1=l77[[u]]*Ac; 
  A2=l77[[u]]*Ap1; 
  A3=l77[[u]]*Ap2; 
   
  (*Coefficients of shifted chebyshev polynomials*) 
  d1=UnitVector[m,1]; 
  d2=Coefficient[eqw1[[u]],Variables[eqw1[[u]]]]; 
  d3=Coefficient[eqw2[[u]],Variables[eqw2[[u]]]]; 
   
  (*Transpose of Integration Opertaional Matrix*) 
  Gt=Transpose[Iom[m]]; 
   
  (*Product Matrix*) 
  Qd1=pqmat[m,d1]; 
  Qd2=pqmat[m,d2]; 
  Qd3=pqmat[m,d3]; 
  (*Calculation for P[a]*) 
  
Pa=Simplify[KroneckerProduct[A1,Gt.Transpose[{d1}]]+KroneckerProduct[A2,Gt.Tran
spose[{d2}]]+KroneckerProduct[A3,Gt.Transpose[{d3}]]]; 
   
  (*Calculation for L[a]*) 
  
La=Simplify[KroneckerProduct[A1,Gt.Qd1]+KroneckerProduct[A2,Gt.Qd2]+Kronecker
Product[A3,Gt.Qd3]]; 
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  (*----------------------------------------------------------------------------------------------------*) 
  (*Calculation for B*) 
  n=Length[A1]; 
  i=IdentityMatrix[n*m]; 
  Ihat=KroneckerProduct[IdentityMatrix[n],Transpose[{d1}]]; 
   
  (*Performing iterations on La*) 
  p=pc; 
  For[k=2;s=i;s1=i,k<=p,k++, 
   Lk=Expand[s.La]; 
   s1=Expand[s1+Lk]; 
   s=Lk 
   ]; 
   
   ba=s1.Pa+Ihat; 
  (*----------------------------------------------------------------------------------------------------*) 
  (*Calculation for That*) 
  Tstar=Transpose[{Table[ChebyshevT[i,ξ],{i,0,m-1}]}]; 
  That=KroneckerProduct[IdentityMatrix[n],Tstar]; 
   
  (*Determine STM-------------------------------------------------*) 
  Print["start"]; 
  stm1=((Transpose[That].ba)/.τ->1.0); 
  stm111=HornerForm[stm1[[1,1]]]; 
  stm112=HornerForm[stm1[[1,2]]]; 
  stm121=HornerForm[stm1[[2,1]]]; 
  stm122=HornerForm[stm1[[2,2]]]; 
  stm1={{stm111,stm112},{stm121,stm122}} 
   
  ] 
stmt1=(*(stm[31]).*)(stm[30]).(stm[29]).(stm[28]).(stm[27]).(stm[26]); 
stmt2=(stm[25]).(stm[24]).(stm[23]).(stm[22]).(stm[21]); 
stmt3=(stm[20]).(stm[19]).(stm[18]).(stm[17]).(stm[16]); 
stmt4=(stm[15]).(stm[14]).(stm[13]).(stm[12]).(stm[11]); 
stmt5=(stm[10]).(stm[9]).(stm[8]).(stm[7]).(stm[6]); 
stmt6=(stm[5]).(stm[4]).(stm[3]).(stm[2]).(stm[1]); 
stmt7=stmt1.stmt2.stmt3; 
stmt8=stmt4.stmt5.stmt6; 
stmt9=stmt7.stmt8; 
tr=Tr[stmt9]; 
stmt10=Chop[stmt9,10^-30]; 
 
Export["habdftmp30m20.txt",stmt9] 
Export["habdftmp30m20chop-30.txt",stmt10] 
Export["habdtrp30m20.txt",tr] 



 164

B.5 
 
 
BeginPackage["subfunctions2`"] 
 
schebycoeff::usage="schebycoeff returns the coefficient of shidfted chebyT where fun_ is 
put in form Cos[2 Pi #]& " 
 
pqmat::usage="Product Matrix" 
 
Iom::usage="Integration Operational Matrix" 
 
Begin["`Private`"] 
 
schebycoeff[fun_,m1_]:= 
 Module[{m=m1}, 
  f[t]=fun[t];   (*f[t]= function which is to be expanded using chebyshev polynomials*) 
  w[t]=1/Sqrt[t-t^2];    (*w[t]=Weight function*) 
  Tn[t]=ChebyshevT[n,2*t-1]; (*Tn[t]=Shifted chebyshev Polynomial of order n *) 
  c=Table[Chop[ParallelNIntegrate[f[t]*Tn[t]*w[t], {t, 0, 1}]/(Pi/2),10^-20], {n, 0, m - 
1}]; (*c= coefficient  of Tn[t]*) 
  c[[1]]=c[[1]]/2; (*Replace (1,1) to its half in order to apply orthogonality rule*) 
  c 
  ] 
 
pqmat[x0_,y0_]:= 
  Module[{m=x0,c=y0}, 
    mult[i_,j_]:=mult[i,j]=(tstar[Abs[i-j]]+tstar[i+j-2])/2;  (*function to form 
symmetric matrix which is a matrix multiplication of Transpose[T] and [T]*) 
    cofmat=Table[Coefficient[Table[Sum[g[i-
1]*mult[i,j],{i,m}],{j,m}][[y]],tstar[i-1],1],{y,m},{i,m}]//Transpose; (*Give you the 
Product Matrix*) 
 
  nwcofmat=cofmat/.Table[g[i]->c[[i+1]],{i,0,m-1}]  (*replace the elements of cofmat 
matrix by the coefficients calculated in package schebycoeff*) 
  ] 
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B.6 
 
 
ClearAll["Global`*"] 
 
c1=0.1;c2=0.25;c3=0.8; 
yt=(c1+c2*Sign[(Cos[18*0.0557281*t]+c3*Cos[29*0.0557281*t])])^2; 
 
T[0]=0; 
T[1]=N[1.2331020534858776`]; 
T[2]=N[3.7898309275289983`]; 
T[3]=N[8.339927384996278`]; 
T[4]=N[10.809644287801543`]; 
T[5]=N[13.30851559066226`]; 
T[6]=N[17.90543280792838`]; 
T[7]=N[20.387532387012143`]; 
T[8]=N[22.864216245005764`]; 
T[9]=N[27.453305983532445`]; 
T[10]=N[29.965162181751648`]; 
T[11]=N[32.43289449546345`]; 
T[12]=N[35.12087555086121`]; 
T[13]=N[35.77048072012568`]; 
T[14]=N[36.94080881938995`]; 
T[15]=N[39.54082733801231`]; 
T[16]=N[42.007408699287005`]; 
T[17]=N[44.53741157850583`]; 
T[18]=N[49.111952667679496`]; 
T[19]=N[51.58459616643635`]; 
T[20]=N[54.07388491152966`]; 
T[21]=N[58.6732804714564`]; 
T[22]=N[61.16256921654972`]; 
T[23]=N[63.635212715306565`]; 
T[24]=N[68.20975380448023`]; 
T[25]=N[70.73975668369906`]; 
T[26]=N[73.20633804497375`]; 
T[27]=N[75.80635656359611`]; 
T[28]=N[76.97668466286046`]; 
T[29]=N[77.62628983212484`]; 
T[30]=N[80.31427088752261`]; 
T[31]=N[82.78200320123442`]; 
T[32]=N[85.29385939945362`]; 
T[33]=N[89.8829491379803`]; 
T[34]=N[92.35963299597393`]; 
T[35]=N[94.84173257505768`]; 
T[36]=N[99.43864979232407`]; 
T[37]=N[101.93752109518452`]; 
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T[38]=N[104.40723799798978`]; 
T[39]=N[108.95733445545707`]; 
T[40]=N[111.51406332950019`]; 
T[41]=112.747; 
 
ϕ1[s_]:={{Cos[al*(T[42-s]-T[41-s])],(1/al)*Sin[al*(T[42-s]-T[41-s])]},{-
al*Sin[al*(T[42-s]-T[41-s])],Cos[al*(T[42-s]-T[41-s])]}}; 
ϕ2[s_]:={{Cos[bt*(T[42-s]-T[41-s])],(1/bt)*Sin[bt*(T[42-s]-T[41-s])]},{-
bt*Sin[bt*(T[42-s]-T[41-s])],Cos[bt*(T[42-s]-T[41-s])]}}; 
 
aftm1=ϕ1[1].ϕ2[2].ϕ1[3].ϕ2[4].ϕ1[5].ϕ2[6].ϕ1[7].ϕ2[8].ϕ1[9].ϕ2[10]; 
aftm2=ϕ1[11].ϕ2[12].ϕ1[13].ϕ2[14].ϕ1[15].ϕ2[16].ϕ1[17].ϕ2[18].ϕ1[19].ϕ2[20]; 
aftm3=ϕ1[21].ϕ2[22].ϕ1[23].ϕ2[24].ϕ1[25].ϕ2[26].ϕ1[27].ϕ2[28].ϕ1[29].ϕ2[30]; 
aftm4=ϕ1[31].ϕ2[32].ϕ1[33].ϕ2[34].ϕ1[35].ϕ2[36].ϕ1[37].ϕ2[38].ϕ1[39].ϕ2[40].ϕ1[41]; 
aftm=aftm1.aftm2.aftm3.aftm4; 
 
tr1=(aftm[[1,1]]+aftm[[2,2]])*Exp[-0.5*d*T[41]]; 
tr2=tr1/.{al->Sqrt[k1-1-0.25*d*d+3*0.1225],bt->Sqrt[k1-1-0.25*d*d+3*0.0225]}; 
tr3=tr2/.{d->(0.4+k2)}; 
 
plo1=ContourPlot[{tr3==(1+Exp[-(0.4+k2)*T[41]]),tr3==-(1+Exp[-
(0.4+k2)*T[41]])},{k1,-0.2,1.5},{k2,-0.4,0.4},PlotRange->{{-0.2,1.5},{-
0.4,0.4}},PlotPoints->200,ContourStyle-
>{Directive[Black,Bold,Thickness[0.006]],Directive[Gray,Bold,Thickness[0.006]]},Axe
s->True,AxesStyle->Directive[Gray, Thin],FrameLabel-
>{Style[Subscript[k,1],Black],Style[Subscript[k,2],Black]},LabelStyle-
>Directive[20,Black,Bold]] 
 
 
ClearAll["Global`*"] 
SetDirectory[NotebookDirectory[]] 
 
P=112.747;toi=85*P;k1=0.95;k2=-0.1;c1=0.1;c2=0.25;c3=0.8; 
 
yt=c1+c2*(Cos[1*t]+c3*Cos[((1+Sqrt[5])/2)*t]); 
yte=c1+c2*Sign[(Cos[1*t]+c3*Cos[((1+Sqrt[5])/2)*t])]; 
 
plo4=Plot[{yte},{t,0,150},PlotStyle-
>Directive[Black,Bold,Thickness[0.005]],FrameLabel->{t,HoldForm[y 
"(t)"]},LabelStyle->Directive[25,Black,Bold],Frame->True,PlotPoints->2200,PlotRange-
>{{0,80},All},Exclusions->None,FrameStyle->Directive[Black]]; 
 
sol=NDSolve[{e''[t]+(0.4+k2)*e'[t]+(3*yte*yte+k1-
1)*e[t]+3*yte*e[t]*e[t]+e[t]*e[t]*e[t]==0,e[0]==-0.25,e'[0]==0.5},e,{t,0,toi}]; 
x=yte+(e[t]/.sol); 
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plo5=Plot[{x,yte},{t,0,150},PlotStyle-
>{Directive[Gray,Bold,Thickness[0.005]],Directive[Black,Bold,Thickness[0.005]],Red},
FrameLabel->{t,HoldForm[x "(t),y(t)"]},LabelStyle->Directive[25,Black,Bold],Frame-
>True,PlotLegends->Placed[{HoldForm[x "(t)"],HoldForm[y "(t)"]},{Scaled[{0.5,0.0}], 
{0.5, 0.0}}],PlotPoints->3200,PlotRange->{{0,120},All}] 
 
 
 
 
 
 
 


