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MATLAB programs were developed to compute the elastic constants and damage 

of ceramic matrix composites using ultrasonic wave speed measurements.  The matrix of 

elastic stiffnesses, C, relates the material stresses and strains.  The ultrasonic wave 

velocities are related to the elastic constants through the Christoffel equation.  The 

immersion ultrasonic wave speed measurement method has been used extensively to 

determine elastic constants of anisotropic media.  The computer programs contained 

herein are designed to recover the elastic stiffnesses and damage magnitudes for materials 

of orthotropic symmetry (i.e. having nine independent elastic stiffnesses) from data 

generated from the ultrasonic wave speed measurements.  The elasticity matrix, C, is 

recovered using three methods:  minimization of the least-squares of the Christoffel 

equation, minimization of the sum of squares of the deviations between experimental 

velocities and the solution of the Christoffel equation, and use of the rotation of axes 
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equation for fourth-order tensors. Damage is defined in the macroscopic sense as the 

normalized variation of the elastic stiffnesses under loading. 
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CHAPTER I 

INTRODUCTION

1.1 Background 

 Composite materials hold great promise for future structural applications.  They 

are very attractive for their high strength-to-weight ratio but also exhibit many other 

desirable characteristics, such as heat resistance and hardness.  Composite materials are 

composed of two components:  the reinforcement and the matrix.  The reinforcement 

provides the load carrying capacity for the composite and in many cases is in the form of 

extremely high strength fibers.  The matrix serves as a bond for the reinforcement and 

transfers stresses between fibers.  Both the matrix and fibers may be metallic, polymeric, 

or ceramic; ceramic matrix composites are a relatively recent development in the 

composites field (Chawla 2003) and are the main composite material of interest in this 

study.  The use of composite materials for structural applications has increased greatly in 

the last decade; however, for composite materials to be implemented in structural 

applications with confidence, their behavior under loading must be studied more closely. 

 Damage develops in composite materials through a variety of mechanisms, such 

as matrix cracking, fiber pullout, and fiber-matrix debonding.  These mechanisms 

increase the toughness of composite materials (the process by which this occurs will be 

discussed in Chapter 2), which are often combinations of extremely strong but brittle 

materials.  The development of damage negatively affects the values of the elastic 
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constants of the composite, making a complete description of material properties over a 

range of stresses crucial for design. 

 Ultrasonic testing methods have been used widely to determine the elastic 

constants of materials (Aristegui and Baste 1997, Mouchtachi et al. 2004, Rokhlin and 

Wang 1992).  The advantages of these methods over traditional tensile and flexure tests 

are that ultrasonic tests are nondestructive and that the full set of elastic constants can be 

determined from a single sample, which is especially important for composites whose 

properties may vary significantly due to manufacturing irregularities. 

1.2 Objective 

 In this work, three MATLAB programs have been developed to compute the 

amount of damage and the elastic stiffnesses for materials with orthotropic or higher 

(fewer independent elastic constants) symmetry using data collected from a one-way 

through-transmission ultrasonic test conducted while the specimen is simultaneously 

being subjected to uniaxial tension.  The user inputs time readings, applied stress levels, 

and orientation of the sample; in return, the program calculates the elastic stiffnesses, 

elastic compliances, damage values, and pertinent material constants.  The values are 

recovered using three methods:  minimization of the least-squares of the Christoffel 

equation (Achenbach 1973), minimization of the sum of squares of the deviations 

between experimental velocities and the solutions of the Christoffel equation, and use of 

the rotation of axes equation for fourth-order tensors.
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CHAPTER II 

LITERATURE REVIEW 

2.1 Composite Materials 

A composite material is composed of two or more distinct components, the 

reinforcement and the matrix.  Each constituent may be homogeneous, but the composite 

material is macroscopically heterogeneous (Suhling 2004).  The reinforcement can be 

distributed throughout the matrix as either particles or fibers; several reinforcement 

schemes are shown in Figure 2.1. Typically, the different components of a composite can 

be distinguished visually (Jones 1999). 

 
 

 
Figure 2.1 Types of reinforcement in composites (Warren 1992). 

 
 

 Particulate composite materials are composed of three-dimensional particles 

suspended in a matrix.  Particles with a principally two-dimensional geometry are called 

“flakes” or “platelets” (Jones 1999).  Fibrous reinforcement may exist as either 
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continuous or discontinuous strands, and continuous fibers may be oriented in any 

direction, although unidirectional fibers are the type most often studied for structural 

applications (Suhling 2004).  Discontinuous fibers, also called “whiskers” or “short 

fibers”, are capable of higher strengths than long fibers (Jones 1999), but the strength of a 

fiber is used only if it is aligned in the direction of tensile loading (Wachtman 1989). 

 The reinforcement and matrix constituents of a composite material can be 

metallic, polymeric, or ceramic.  Composites are commonly classified according to their 

matrix material.  Three general classifications of composite materials are polymer matrix 

composites (PMCs), metal matrix composites (MMCs), and ceramic matrix composites 

(CMCs).  Of these, ceramic matrix composites are the most recent entrants into the field 

of composites (Chawla 2003). 

 The main advantage of using composite materials is that they can be designed to 

meet specific design needs.  If well-designed, a composite exhibits qualities of each of its 

constituents as well as unique qualities neither material possesses alone.  Material 

characteristics that may be improved by forming a composite are strength, stiffness, 

corrosion resistance, wear resistance, strength-to-weight ratios, fatigue life, extreme 

temperature response, thermal conductivity, acoustical properties, crack (fracture) 

resistance, cost, and ease of fabrication.  The form, structural arrangement, material 

properties, and interactions of a composite’s constituents determine the behavior and 

properties of that composite material (Suhling 2004). 

As mentioned previously, ceramic matrix composites define a class of composite 

materials.  Ceramics are chemically stable, inorganic, crystalline, non-metallic 

compounds (Warren 1992).  Ceramic materials are desirable for their high strength and 
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hardness, low density, and high resistance to chemicals, wear, and heat, but they are 

limited by their brittleness, or low toughness, which makes ceramic materials highly 

sensitive to flaws.  The primary goal of using ceramic materials in composite form is to 

retain the attractive qualities while increasing the fracture toughness (Chawla 2003).  

Improvements in processing have reduced the size and frequency of defects in ceramics, 

but certain features of composite materials, such as boundaries between constituents, act 

as flaws.  Furthermore, defects formed during service weaken brittle materials (Warren 

1992).  Some specific toughening mechanisms achieved by introducing fiber 

reinforcement to a ceramic material are crack deflection, fiber bridging, fiber pullout, 

microcracking, and debonding at the fiber/matrix interface (Chawla 2003).  These 

processes are illustrated in Figure 2.2. 

 
 

 
Figure 2.2 Toughening mechanisms in composites (Warren 1992). 
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For a fiber reinforced composite material, failure generally occurs by cracking 

and subsequent failure of the matrix followed by failure of the fibers.  In many instances, 

a developing crack may be deflected around a reinforcing strand rather than pass through 

the fiber.  This type of crack deflection produces an apparent toughness increase by 

reducing the stress intensity at the crack tip. 

As cracks grow in the matrix, the stronger fibers remain intact and bridge the gaps 

in the matrix.  Fiber bridging allows the continued loading of the composite even after 

matrix failure.  The energy expended in pulling a fiber from the matrix can increase the 

overall toughness of the composite material.  Bridging fibers that have fractured close to 

a crack will pull out from the matrix rather than fracture again (Warren 1992).  The 

greater the fiber pull-out length, the greater the energy absorbed by the composite.  

A zone of microcracks may form ahead of a growing crack.  This area of 

microcracks contributes to an overall toughness increase by forming a zone of lower 

elastic modulus and absorbing strain release energy.  To be effective, microcrack zones 

should be restricted to individual sites in the composite in order to avoid microcrack 

linkage (Warren 1992). 

Characteristics of the bond between the fibers and the matrix also determine the 

mechanical behavior of composite materials.  If the interfacial bond between the matrix 

and the fiber is sufficiently strong, a crack will propagate through a fiber with little 

obstruction rather than traveling around it (Wachtman 1989).  Debonding of the fiber and 

matrix is an energy-dissipating mechanism that complements processes like crack 

deflection and fiber pullout, leading to an overall toughness increase in the composite.  
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2.2 Specific Types of Ceramic Matrix Composite Materials; Applications 

Structural ceramics are high performance ceramics such as oxides, nitrides, and 

carbides of silicon, aluminum, titanium, and zirconium (Chawla 2003).  Tables 2.1, 2.2, 

and 2.3 list properties of materials that are well-suited for ceramic matrix materials, 

important ceramic reinforcements, and examples of ceramic fiber/ceramic matrix 

composites, respectively.  The most common woven CMCs use carbon (C) fibers or 

silicon carbide (SiC) fibers.  Carbon fibers greatly improve a composite’s toughness, but 

their capacity is limited at high temperatures and by corrosive or oxidizing environments.  

Silicon carbide fibers are more resistant to oxidation and can be used at higher 

temperatures than carbon fibers (Wachtman 1989).   The woven fiber-matrix 

combinations that have been investigated the most are C-C, C-SiC, and SiC-SiC. 

 
 

Table 2.1 Properties of some high performance ceramics (Chawla 2003). 
Material Young's 

Modulus E 
(GPa) 

Poisson's Ratio 
ν 

Coefficient of 
Thermal Expansion 

α (10-6 /oK) 
SiC 420 0.22 4 

Al 2O3 380 0.25 8 
Cordierite 130 0.25 2 
Mullite 215 0.25 4 

Sodalime glass 70 0.23 9 
 
 

Table 2.2 Some important ceramic reinforcements (Chawla 2003). 
Particle Sic, TiC, Al2O3 

Discontinuous Fibers  
(a) Whiskers Sic, TiB2, Al2O3 

(b) Short Fibers Glass, Al2O3, SiC, (Al2O3+SiO2), 
vapor grown carbon fibers 

Continuous Fibers  
(a) Oxide Al2O3, (Al2O3+SiO2), ZrO2, 

silica-based glasses 
(b) Nonoxide B, C, SiC, Si3N4, BN 
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Table 2.3 Examples of ceramic/ceramic composites (Warren 1992). 
Composite type Matrix-Reinforcement 

Particulate Al2O3-ZrO2 
Al 2O3-TiC 
Al 2O3-SiC 
SiC-TiB2 
Si3N4-TiC 
Si3N4-ZrO2 

Platelets Al2O3-SiC 
Si3N4-SiC 

Short random fibers (Whiskers) Al2O3-SiC 
Si3N4-SiC 

Long, parallel fibers Glass-C 
Glass-SiC 

Cross-plied Glass-C 
Glass-SiC 
SiC-SiC 

Woven C-C 
SiC-SiC 

 
 

CMCs are most valued for their high temperature strength and performance 

capabilities as well as for their wear resistance (Warren 1992), and they are studied for 

applications in spacecraft programs as well as for inclusion in fighter planes, missiles, 

and rockets (Chawla 2003).  Low density, high strength composites are very often used in 

numerous aerospace applications in which high strength-to-weight ratios must be 

achieved.  Non-aerospace applications include cutting tool inserts, wear parts in 

machinery, nozzles, valve seals, and bearings.  Other uses of ceramic materials include 

non-structural applications, such as thermal insulation (Warren 1992). 

2.3 Mechanical Behavior 

A composite material may be composed of homogeneous constituents, but it is 

macroscopically heterogeneous.  The material properties of a homogeneous and isotropic 

material are independent of both position in the body and orientation at a point in the 
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body.   Most composite materials are heterogeneous and anisotropic, or nonisotropic.  

The material properties depend on position and orientation of the fibers in the body and 

on orientation with respect to load application (Jones 1999). 

Stress (σ) and strain (ε) components at a point in a body can be represented by 

second-rank tensors, as follows: 

 

















=

333231

232221

131211

σσσ
σσσ
σσσ

σ ,  (2.1) 

 

















=

333231

232221

131211

εεε
εεε
εεε

ε . (2.2) 

For composite materials, the directions 1, 2, and 3 represented by the subscripts 

correspond to the Cartesian coordinate directions x, y, and z.  From Hooke’s law, each 

stress component is proportional to each strain component.  In equation form, the 

constitutive relationships between stress and strain are expressed as: 

 Cij ijkl klσ ε= , (2.3) 

 Sij ijkl klε σ= , (2.4) 

where i, j, k, l = 1, 2, or 3,  

Cijkl   is the matrix of elastic stiffnesses, and 

 Sijkl  is the matrix of elastic compliances. 

Both C and S are fourth-rank tensors, and, as the equations stand, each has eighty-one 

terms. 
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 Due to the symmetry of the stress and strain components ( ,ij ji ij jiσ σ ε ε= = ), the 

maximum number of independent stiffnesses and compliances is reduced to thirty-six.  

Through energy arguments, the number is further reduced to twenty-one.  Thus, in four 

subscript notation for both Cijkl  and Sijkl , ij = ji, kl = lk, and ijkl = klij.  It is more 

convenient to use contracted notation: 

 Cq qr rσ ε= , (2.5) 

 Sq qr rε σ= , (2.6) 

where q, r = 1, 2, 3, 4, 5, or 6 and correspond to ij, kl = 11, 22, 33, 23, 13, or 12. 

In expanded form: 

 

1 11 12 13 14 15 16 1

2 22 23 24 25 26 2

3 33 34 35 36 3

4 44 45 46 4

5 55 56 5

6 66 6

C C C C C C

C C C C C

C C C C

C C C

Sym C C

C

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε

     
     
     
        =     

    
    
    
         

, (2.7) 
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
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
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
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
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5
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2

1
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5655

464544
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6

5
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2

1

σ
σ
σ
σ
σ
σ

ε
ε
ε
ε
ε
ε

S

SSSym

SSS

SSSS

SSSSS
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. (2.8) 

The physical interpretation of the components of the compliance matrix is as follows: 

� S11, S22, and S33 relate an extensional stress in one coordinate direction to an 

extensional strain in the same coordinate direction, and Sqq = 1/Eq, where Eq is the 

Young’s Modulus in the q direction. 
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� S12, S13, and S23 relate an extensional strain to a perpendicular extensional stress; this 

relationship is called extension-extension coupling, and Sqr = -νrq / Er = -νqr / Eq, where 

νqr is Poisson’s ratio in the qr plane. 

� S15, S16, S24, S26, S34, and S35 relate an extensional strain to a shear stress in the same 

plane, also called shear-extension coupling. 

� S14, S25, and S36 relate an extensional strain to a shear stress in a perpendicular plane; 

also called shear-extension coupling. 

� S44, S55, and S66 relate a shear strain to a shear stress in the same plane, and Sqq = 1/Gq, 

where Gq is the shear modulus in the q plane. 

� S45, S46, and S56 relate a shear strain to a shear stress in a perpendicular plane, also 

called shear-shear coupling (Hearmon 1961). 

2.4 Types of Material Symmetry 

 As previously stated, the maximum number of independent elastic constants is 

twenty-one.  This number is reduced if the material has symmetry elements.  There are 

thirty-two classes of symmetry based on three types of symmetry:  planes of reflection 

symmetry, pure rotation axes, and axes of rotary inversion.  These operations are not 

necessarily independent, and only nine different symmetry systems result from the thirty-

two classes of symmetry (Hearmon 1961).  The values for the elastic stiffnesses for 

material symmetry systems are summarized in Tables 2.4 and 2.5.  The first row gives the 

name of the symmetry system, the second row gives the number of independent elastic 

stiffnesses, and the remaining rows list the notations of the elastic stiffnesses. 
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 The types of symmetry most common for composite materials are triclinic (no 

symmetry elements), monoclinic (one plane of reflection), orthotropic (three mutually 

orthogonal planes of reflection), transversely isotropic (one plane of isotropy), and 

isotropic (all planes are planes of reflection).  A plane of reflection converts a point to its 

mirror image.  For example, if the 1-2 plane is a plane of reflection (also called a plane of 

material symmetry) the point (x1, x2, x3) is converted to (x1, x2, -x3).  For a plane of 

isotropy, all planes perpendicular to that plane are planes of reflection.  The other 

symmetry elements and symmetry systems are exhibited in certain types of crystals 

(Suhling 2004). 

 
Table 2.4 Notations of elastic stiffnesses of the triclinic, monoclinic, orthotropic, 

tetragonal, and cubic symmetry systems (Hearmon 1961). 
Triclinic Monoclinic Orthotropic 

(Orthorhombic) 
Tetragonal Cubic 

21 13 13 13 9 7 6 3 
C11 C11 C11 C11 C11 C11 C11 C11 

C12 C12 C12 C12 C12 C12 C12 C12 

C13 C13 C13 C13 C13 C13 C13 C12 

C14 C14 0 0 0 0 0 0 
C15 0 C15 0 0 0 0 0 
C16 0 0 C16 0 C16 0 0 
C22 C22 C22 C22 C22 C11 C11 C11 

C23 C23 C23 C23 C23 C13 C13 C12 

C24 C24 0 0 0 0 0 0 
C25 0 C25 0 0 0 0 0 
C26 0 0 C26 0 -C16 0 0 
C33 C33 C33 C33 C33 C33 C33 C11 

C34 C34 0 0 0 0 0 0 
C35 0 C35 0 0 0 0 0 
C36 0 0 C36 0 0 0 0 
C44 C44 C44 C44 C44 C44 C44 C44 

C45 0 0 C45 0 0 0 0 
C46 0 C46 0 0 0 0 0 
C55 C55 C55 C55 C55 C44 C44 C44 

C56 C56 0 0 0 0 0 0 
C66 C66 C66 C66 C66 C66 C66 C44 
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Table 2.5 Notations of elastic stiffnesses of the triclinic, trigonal, transversely isotropic, 
and isotropic symmetry systems (Hearmon 1961). 

Triclinic Trigonal Transversely 
Isotropic 

(Hexagonal) 

Isotropic 

21 7 6 5 2 
C11 C11 C11 C11 C11 
C12 C12 C12 C12 C12 
C13 C13 C13 C13 C12 
C14 C14 C14 0 0 
C15 C15 0 0 0 
C16 0 0 0 0 
C22 C11 C11 C11 C11 
C23 C13 C13 C13 C12 
C24 -C14 -C14 0 0 
C25 -C15 0 0 0 
C26 0 0 0 0 
C33 C33 C33 C33 C11 
C34 0 0 0 0 
C35 0 0 0 0 
C36 0 0 0 0 
C44 C44 C44 C44 ½ (C11-C12) 
C45 0 0 0 0 
C46 -C15 0 0 0 
C55 C44 C44 C44 ½ (C11-C12) 
C56 C14 0 0 0 
C66 ½ (C11-C12) ½ (C11-C12) ½ (C11-C12) ½ (C11-C12) 

 
 

2.5 Rotation of Axes 

When composite materials are subjected to loads in service conditions, the 

direction of loading does not always coincide with the principal material directions (1, 2, 

3).  In this case, it is necessary to express the stress-strain relations using a new set of 

axes, (x’, y’, z’) (Suhling 2004).  The stiffnesses and the compliances are both fourth-

rank tensors, and on transforming from one set of axes to another: 

 C ' Cijkl im jn ko lp mnopa a a a= , (2.9) 

 S' Sijkl im jn ko lp mnopa a a a= , (2.10) 
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where a  represents a matrix of direction cosines relating one set of axes to another. 

As previously stated, the maximum number of independent elastic constants is 

twenty-one.  When transforming from one set of axes to another, there will be twenty-one 

equations, each containing twenty-one terms.  When the axes undergo a rotation, the 

number of independent constants remains the same, but the number of terms in the 

stiffness and compliance tensors in the new coordinate system (x’, y’, z’) may increase 

(Hearmon 1961). 

2.6 Micromechanics and Macromechanics 

Two basic approaches are used to determine the properties of a composite 

material:  the micromechanical approach and the macromechanical approach.  The goal 

of the micromechanical approach is to determine the material properties of a composite in 

terms of the properties of its constituents.  Micromechanics can be used to predict the 

composite’s stiffnesses and compliances and is used when designing a composite.  

Macromechanics assumes that the composite is homogeneous, and its material behavior 

is based on the average apparent mechanical properties of the composite. The 

macromechanical behavior of a composite is experimentally determined using the 

composite material as a whole, rather than by testing each constituent, and is used in 

design of components utilizing composite materials (Jones 1999). 

2.7 Testing Methods 

Standard material test procedures, such as tensile, flexure, and torsion tests, can 

be used to determine elastic constants of composite materials, but calculation methods 

may need to be modified due to the anisotropy of the material (Hearmon 1961) and the 

further anisotropy induced as the composite experiences damage.  Additionally, 
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fabrication of test samples for the various tests is not always easy due to the hardness of 

many composites and due to the difficulties inherent in manufacturing composites at 

different orientations.  Furthermore, because these tests are destructive, the same sample 

cannot be used for all tests, introducing the possibility of manufacturing irregularities 

among specimens.  Non-destructive techniques, such as vibrational and ultrasonic 

methods, offer the capability to determine all the elastic constants for the same sample 

quickly (Rokhlin and Wang 1992).  Ultrasonic wave methods have been used extensively 

to measure the elastic stiffnesses of anisotropic materials.  Test setups that use ultrasonic 

pulses include single-through transmission, double through-transmission, and point-

source/point-receiver techniques. 

2.8 Ultrasonics 

By combining the stress-strain relationship, 

 klijklij εσ C=  , (2.11) 

and the definition of strain, 

 ( )ijjiij uu ,,2
1 +=ε  , (2.12) 

with the linear momentum balance equation, 

 iijij uf &&ρρσ =+,  , (2.13) 

one can obtain the following relationship 

 ( ) ikjlljkijkl uuuC &&ρ=+ ,,2
1  , (2.14) 

where ρ is the mass density, 

fi are the body forces (assumed to be zero), 

 u is the displacement vector, 
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and the double dot notation denotes differentiation twice with respect to time.  

Combining Equation 2.14 with the equation for a plane harmonic displacement wave: 

 ( )( )tqxidAu ppmm −= ωexp , (2.15) 

gives: 

 ( ) 0=− kikljijkl dqqC δρ , (2.16) 

where A is an independent constant, 

 d is the unit vector defining direction of motion of the particle displaced by the 

plane harmonic wave, 

 i is the imaginary number, 

 ω is the real-valued angular frequency of the plane harmonic wave, 

 x is the position vector, 

 q is the slowness vector (defined below), 

 t is the time variable, 

 δ is Kronecker Delta, and 

 m, p = 1, 2, or 3. 

For a nontrivial solution: 

 .0det =− ikljijkl qqC ρδ  (2.17) 

The components of the slowness vector are defined as: 

 j jq n V= , (2.18) 

where nj are components of the vector of the direction of wave propagation, and V is the 

phase velocity. 
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Equation 2.17 can be rewritten using what are commonly referred to as the 

Christoffel stiffnesses: 

 ik ijkl j lC n nΓ = , (2.19) 

so that: 

 2det 0ik ikVρ δΓ − = , (2.20) 

Equation 2.20 is known as the Christoffel equation.  It can be expressed in expanded 

form as: 

 0
2

332313

23
2

2212

1312
2

11

=
−ΓΓΓ
Γ−ΓΓ
ΓΓ−Γ

V

V

V

ρ
ρ

ρ
, (2.21) 

where  

 325631152116
2

355
2

266
2

11111 C2C2C2CCC nnnnnnnnn +++++=Γ , (2.22) 

 322431462126
2

344
2

222
2

16622 C2C2C2CCC nnnnnnnnn +++++=Γ , (2.23) 

 323431352145
2

333
2

244
2

15533 C2C2C2CCC nnnnnnnnn +++++=Γ , (2.24) 

( ) ( ) ( ) 322546315614216612
2

345
2

226
2

11612 CCCCCCCCC nnnnnnnnn ++++++++=Γ , (2.25) 

( ) ( ) ( ) 324536315513215614
2

335
2

246
2

11513 CCCCCCCCC nnnnnnnnn ++++++++=Γ , (2.26) 

( ) ( ) ( ) 324423314536212546
2

334
2

224
2

15623 CCCCCCCCC nnnnnnnnn ++++++++=Γ , (2.27) 

 .,, 233213311221 Γ=ΓΓ=ΓΓ=Γ  

All of the eigenvalues of Γik are real and positive and their corresponding 

eigenvectors are orthogonal.  The physical interpretation of this is that for a given 

direction of wave propagation there will be three phase velocities and the three 
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corresponding displacement vectors will be orthogonal. In an anisotropic case, the 

displacements are neither truly longitudinal nor truly transverse in character (Achenbach 

1973). 
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CHAPTER III 

DETERMINATION OF ELASTIC CONSTANTS AND DAMAGE IN CERAMIC 

MATRIX COMPOSITES USING ULTRASONIC WAVE SPEED 

MEASUREMENTS

3.1 Ultrasonic Test Methods 

Common ultrasonic pulse methods include point source/point receiver and 

immersion methods.  In the point source/point receiver setup, the specimen is in direct 

contact with the transducers.  The wave velocities can be measured only in a direction 

normal to the face of the sample.  Specimens are required to be cut in several orientations 

to compute the full set of elastic constants.  This method is suitable for crystal but is not 

feasible for many composite materials.  Immersion methods allow the measurement of 

wave velocities over a range of directions.  In the one-way transmission setup, the 

specimen is placed between two ultrasonic transducers, one for transmission and one for 

reception (Markham 1970).  The double through-transmission method uses a single 

transducer that functions as both transmitter and receiver.  The signal passes through the 

sample, reflects off a back plate reflector, and returns to the transmitter/receiver (Rokhlin 

and Wang 1992).  The work in this thesis is based on the one-way through-transmission 

test procedure. 
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Figure 3.1 shows a general view of an ultrasonic immersion tank.  For this 

method, the specimen is placed on a turntable in a tank filled with a liquid, usually water.  

Figure 3.2 shows a schematic of the specimen on the turntable between two ultrasonic 

transducers.  The turntable can be rotated in two directions corresponding to the angles α 

and ψ defined in the figure (Markham 1970). 

 

 
Figure 3.1 General test setup for an ultrasonic immersion test (Markham 1970). 

 
 
 

Figure 3.2 Rotation of sample in order to excite transverse waves.  N is the axis normal to 
the specimen; i is the incidence angle (the angle between the incoming wave and N); α is 
the degree of tilt; ψ is the degree of spin (Markham 1970). 
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Audoin and Baste (1994) combined the ultrasonic immersion technique with a 

uniaxial tension test.  Figure 3.3 shows a schematic of a composite material test sample 

positioned between the transmitting and receiving transducers, as uniaxial tension is 

being applied.  The sample is loaded in the 3 direction, and the transducers can rotate in 

two directions (about the 1 and 2 axes). 

The full set of elastic constants can be determined for each level of tensile load 

applied, and the effects of damage on the sample can be ascertained by noting the 

variation in the values of the elastic constants as damage progresses (Audoin and Baste 

1994).  In order that true plane waves are produced in the sample, the wavelength of the 

ultrasonic transducer should be large compared to the fiber diameter and small compared 

to the dimension of the specimen (Markham 1970). 
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Figure 3.3 Under-load ultrasonic device.  The sample is loaded along direction 3.  The 
transducers are moved by a combination of two rotations, Θ1 and Θ2 (Audoin and Baste 
1994). 
 
 

3.2 The Time Difference between the Group and Phase Velocities  

The phase velocity is needed to compute the elastic constants, as indicated in the 

Christoffel equation (Equation 2.20), but the time measurements used in early immersion 

tests were actually computed for the group velocity.  In anisotropic materials, these two 

velocities generally deviate from each other.  This deviation called into question the 

validity of early immersion test results.  However, Rokhlin and Wang (1992) show that 
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there is no time difference between the group velocity and the phase velocity for an 

arbitrary angle of incidence.  In measurements of this type, T0 is the time it takes for the 

signal to travel from the transmitter to receiver through the reference medium, e.g. water, 

without a test sample in place.  Tp is the total time for the signal to reach the receiver 

when passing through the specimen at a particular phase velocity.  Tg is the total time it 

takes for the signal to reach the receiver when passing through the specimen at a 

particular group velocity.  The times for the group and phase velocity vectors in the 

sample are tg and tp, respectively.  Referring to Figure 3.4, the times can be written as: 

 ,43210 ttttT +++=  (3.1) 

 ,41 tttT gg ++=  (3.2) 

 1 3 4.p pT t t t t= + + +  (3.3) 

In this figure, time progresses from the top of the figure to the bottom.  Boxes showing 

"T" and "R" represent the locations of the transmitting transducer and receiving 

transducer, respectively, and h indicates the thickness of the sample.  The left-most 

vertical line indicates the times associated with Tg (the path taken by the wave associated 

with the group velocity is shown by the path T-O-A-R), the vertical line near the middle 

of the figure indicates the times associated with Tp (the path taken by the wave associated 

with the phase velocity is shown by the path T-O-B-C-R), and the right-most vertical line 

indicates the times associated with T0 (the reference path does not pass through the 

sample).  The times associated with the group and phase velocities can be written as the 

appropriate path length divided by the corresponding velocity (V0, Vg, and Vp are the 
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reference velocity (velocity with no specimen present), group velocity, and phase 

velocity, respectively). 

 

 
Figure 3.4 Representation of the times for different acoustic paths. T0 is the reference 
time; Tp is the time for the phase velocity vector; Tg is the time for the group velocity 
vector. 
 

 

Figure 3.5 gives an alternate view of the test paths shown in Figure 3.4.   It should 

be noted that the phase velocity vector lies in the incident plane (the plane defined by the 

incoming wave and the axis normal to the sample), but the group velocity vector does not 

necessarily lie in this plane.  In Figure 3.5, OA  is the path of the group velocity vector 

through the sample, and OB  is the path of the phase velocity vector through the sample.    

The angle ψ is the angle of deviation between the group and phase velocity vectors.  The 
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angle α is the in-incident-plane component of ψ, β is the out-of-plane component, and 

βαψ coscoscos = . 

 

 
Figure 3.5 Schematic of different acoustic paths for the group and phase velocity 
vectors.  h is the sample thickness; ψ is the angle of deviation between the group and 
phase velocity vectors; α is the in-incident-plane component of ψ; β is the out-of-
plane component of ψ ; iθ is the incident angle; rθ  is the refraction angle (Rokhlin 

and Wang 1992). 
 
 

Considering Figures 3.4 and 3.5, the times specified can be rewritten as: 

 gg VOAt /= , (3.4) 

 pp VOBt /= , (3.5) 

where 
)cos()cos( βθα r

h
OA

+
= , and 

)cos( r

h
OB

θ
= . 
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The quantity ( )stδ  represents the difference between the group velocity and the phase 

velocity in the specimen: 

 pgs ttt −=)(δ . (3.6) 

( )stδ  can be more conveniently expressed through the following development: 

 Snell’s Law (shown below as Equation 3.7) relates the angle of incidence (iθ ), 

the angle of refraction (rθ ), and the velocities outside and inside an interface of two 

substances (pV  and oV  here).  In this case, the angle of refraction corresponds to the 

phase velocity, so: 

 
o

i

p

r

VV

)sin()sin( θθ
= . (3.7) 

Using Snell’s Law and the relationship between the group and phase velocities: 

 ( ) )cos()cos(cos βαψ ggp VVV == , (3.8) 

the time difference between the group and phase velocities in the specimen, ( )stδ , can be 

rewritten as: 
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 (3.9) 

Solving for t3 (as indicated in Figure 3.4) gives: 
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 oVBCt /3 = . (3.10) 

BC  can be written as the difference between the vertical components of the group 

velocity path, OA , and the phase velocity path, OB (both shown in Figure 3.5): 

cos( ) cos( )
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Thus: 

 
)cos()cos(

)sin()sin(
3

rro

i

V

h
t

θαθ
αθ
+

= , (3.12) 

and therefore: 

 stt )(3 δ= . (3.13) 

This result verifies that there is no total time difference between the times associated with 

the group and phase velocities, as shown below in Equation 3.14. 

 
( )

( )
1 3 4 1 4

1 4 1 4 .

p p p s

p p g p g g

T t t t t t t t t

T t t t t t t t t T

δ= + + + = + + +

= + + − + = + + =
 (3.14) 
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3.3 Calculating the Phase Velocity and Refraction Angle 

 To calculate the phase velocity, knowledge of the signal time delay and the length 

of the acoustic path is required.  The time difference between the reference time, T0, and 

Tp is denoted by t∆ and is given by: 

 ppo ttTTt −=−=∆ 2 , (3.15) 

where 
)cos(

)cos(
2

ro

ir

V

h
t

θ
θθ −

= , and 

)cos( rp
p V

h
t

θ
= . 

Substituting these values into Equation 3.15 and using the Snell's Law relationship given 

in Equation 3.7 yields: 
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Using this result yields: 
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, (3.17) 

and noting that Snell’s Law is expressed as: 
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a formulation for the refraction angle,rθ , can be developed using the incidence angle, iθ , 

time difference, t∆ , reference velocity, V0, and sample thickness, h.  Dividing Equation 

3.18 by Equation 3.17 gives: 
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so that:  
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(This expression for the refraction angle includes quantities that are all known or can be 

measured.)  The phase velocity is recovered by substituting this result into Snell’s Law: 
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It is also possible to square and add Equations 3.17 and 3.18: 
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which simplifies to: 

 
( )








 ∆+∆−=
2

2

22

cos211

h

t

hV

t

VV o

i

op

θ
. (3.23) 

Consequently: 
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and the refraction angle,rθ , is recovered by substituting this result into Snell’s Law: 
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3.4 Wave Behavior 

 By changing the angle of incidence of the ultrasonic pulse (via rotation of the 

sample as shown in Figure 3.2 or via rotation of the transducers as shown in Figure 3.3), 

the wave will split by mode conversion on entering the solid, as indicated in Figure 3.6.  

If the incident direction of the wave coincides with an axis of symmetry, only the 

longitudinal wave velocity is transmitted through the sample.  If the incident wave is 

introduced in a plane of symmetry, or principal plane, the incoming wave splits into two 

components:  one quasi-transverse and one quasi-longitudinal.  If it is introduced in a 

non-principal plane, the wave splits into two quasi-transverse modes and a longitudinal 

mode; these are known as the fast shear wave (QT1), the slow shear wave (QT2), and a 

quasi-longitudinal wave (QL).  Each of the three waves travels at a different speed, and 

each arrives at the receiver at a different time (Markham 1970). 
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Figure 3.6 Schematic diagram of waves excited in a non-principal plane.  QL stand for 
quasi-longitudinal mode; QT1 and QT2 stand for fast and slow quasi-transverse modes, 
respectively; the incident plane is defined by the angle ψ; Θi is the incident angle (the 
angle between x1 and the incident wave) (Aristegui and Baste 1997). 
 
 

Often, the composite materials to be tested are very thin in the 1 direction, and 

direct measurements in the 2-3 plane are unavailable (Chu and Rokhlin 1992).  

Measurements are limited to planes perpendicular to the plane of the sample. 

Most ceramic matrix composites are of an orthotropic or higher order of 

symmetry, i.e. they possess fewer than twenty-one independent elastic constants.  

Orthotropic materials have three planes of symmetry and nine independent elastic 

constants.  For measurements in the 1-2 plane, which is a plane of symmetry, the phase 
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velocity vector, n, can be represented as (n1, n2, 0).  The Christoffel equation (Equation 

2.20) reduces to: 
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The 33Γ  term, 2
244

2
155 nCnC + , corresponds to transverse waves polarized in the 1-3 plane, 

which are not produced when scanning in the 1-2 plane. 

 For measurements in the 1-3 plane, the second accessible plane of symmetry, the 

wave vector is (n1, 0, n3), and the Christoffel equation reduces to: 
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The 22Γ , 2
344

2
166 nCnC + , term corresponds to transverse waves polarized in the 1-2 plane, 

which are not produced when scanning in the 1-3 plane. 

 As a result, only seven of the nine independent constants, C11, C22, C33, C55, C66, 

C12, and C13, can be determined from measurements in the two accessible principal 

planes for an orthotropic material.  The remaining constants, C23 and C44, must be 

recovered from measurements taken in a non-principal plane.  Often this plane is referred 

to as 1-2’, where 2’ is at an angle between the 2 and 3 axes, usually 45 degrees.  Figure 

3.7 shows the incoming wave vectors in the three data planes (Mouchtachi et al. 2004). 

 Complications may arise for woven composites.  In this case, if the 1-2’ plane is 

oriented at 45 degrees, the plane may also be a plane of symmetry.  Only one transverse 

wave mode will be produced.  This affects the results of C23 and C44, two constants in the 
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2-3 plane which are not directly measurable.  Measurements in a non-symmetry plane 

may prove to be more useful (Aristegui and Baste 1997). 

 

 
Figure 3.7 Schematic of the composite plate.  Axis 1 is normal to the plate; the angles 
defining the direction of the wave are φ  in plane (1, 2), θ  in plane (1, 2’) and χ  in plane 
(1, 3).  Plane (1, 2’) is an arbitrary non-principal plane defined by angle ψ  (Mouchtachi 
et al. 2004). 
 
 

 

3.5 The Wave Vector 

In order to calculate the elastic constants, knowledge of not only the velocity but 

also the direction of propagation of the wave in the sample is required.  Any rotation 

relating two sets of axes may be described using three rotations (Weisstein).  The 
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rotations may be written individually as rotation matrices B, C, and D, and the final 

rotation matrix A is their product: 

 A = B C D, (3.28) 
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There are many combinations of rotations that may be utilized to reach the same final 

position.  For this study, a choice was made to use the “x y z” (pitch-roll-yaw) 

convention.  D is a rotation around the z-axis, C is a rotation around the y-axis, and B is a 

rotation around the x-axis (Weisstein).  Not all of these rotations are required for 

ultrasonic immersion tests, but they are possible configurations.  In this case, tilt is the 

rotation around the 3 axis, spin is the rotation around the 2 axis, and the in-plane (the 

plane of the sample) rotation is around the 1 axis, as pictured in Figures 3.2 and 3.3.  In 

matrix form: 
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(Though some of the variable nomenclature is the same, the angles indicated here are not 

the same angles as those mentioned in Section 3.3 to describe determination of the phase 

velocity and refraction angle). 

 The product of these three rotation matrices yields a matrix which relates the final 

orientation of the sample to its starting position.  If the (1, 2, 3) directions correspond to 

the coordinate system of the sample in its final position, and the (x, y, z) directions 

correspond to the coordinate system of the sample in its initial position, then: 
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where 
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 The a11 term shown above is equal to the cosine of the angle between the 1 axis 

(normal to the plane of the sample) and the x-axis, which is the direction of the incoming 

wave.  This angle is the incidence angle,iθ , so: 

 ψαθ coscoscos =i . (3.34) 

 The refracted wave lies in the incident plane.  This plane is defined by two 

vectors:  the incoming wave and the plate normal, or the x-axis and the 1-axis.  The cross 

product of these two vectors gives a vector normal to the incident plane, as shown below: 

 ( )αψψ
ψαψψα

sincos,sin,0

sinsincoscoscos

0011 =
−

=×
kji

x . (3.35) 

 Now, a coordinate system (x’, y’, z’) is defined for the refracted wave.  z’ is the 

direction of the refracted wave, x’ lies in the incident plane, and y’ is normal to the 

incident plane.  A rotation matrix relating these two coordinate systems is required.  As 

stated before, the vector ( )αψψ sincos,sin,0  is normal to the incident plane.  Rotation 

around the x axis allows y’ to be defined as this vector.  After this rotation, x’ and z’ will 

be in the incident plane, and the coordinate system may be rotated about the y’ axis until 

z’ is in the direction of wave propagation.  The general form for a rotation matrix around 

the x-axis is: 

 ( ) ( )
( ) ( )

1 0 0

0 cos sin

0 sin cos

 
 
 
 − 

 (3.36) 
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 The direction cosines for the vector( )αψψ sincos,sin,0  must be calculated.  This 

is accomplished by dividing the dot product of the vector and the appropriate unit vector 

by the length of the vector as follows: 

 
( ) ( )

( ) 0
sincos,sin,0

0,0,1sincos,sin,0 =⋅
αψψ

αψψ
 (3.37) 

 
( ) ( )

( ) αψψ
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αψψ
αψψ

222 sincossin
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+
=⋅

 (3.38) 
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( ) αψψ
αψ

αψψ
αψψ

222 sincossin
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+
=⋅

 (3.39) 

The length of the vector can be simplified in the following manner: 
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.sin

cos1

coscos1

cos1cossinsincossin

2

22

222222
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θ
θ

αψ

αψψαψψ

=
−=

−=

−+=+

 (3.40) 

The rotation matrix for rotation around the x-axis then becomes: 

 1

1 0 0

sin cos sin
0

sin sin

cos sin sin
0

sin sin

i i

i i

r
ψ ψ α
θ θ

ψ α ψ
θ θ

 
 
 
 

=  
 
 

− 
 

. (3.41) 

 After this rotation, the y’ axis is normal to the incident plane and the z’ axis is in 

the incident plane.  An appropriate rotation around the y’ axis will align the z’ axis with 

the refracted wave.  Figure 3.8 gives the perspective shown by looking at the incident 

plane with the y’ axis out of the page: 
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Figure 3.8 View of the incident plane.  Axis 1 is normal to the plate;  
Axis 3 is the long axis of the plate; iθ  is the angle of incidence;  

rθ  is the angle of refraction. 
 
 
The angle of rotation necessary to align the z' axis with the refracted wave is 

ri θθπ −+
2

3
. 

The second rotation matrix is thus determined to be: 
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The relationship between the (x, y, z) and (x’, y’, z’) coordinate systems is 

defined as: 
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The matrix A mentioned previously related the (1, 2, 3) and (x, y, z) coordinate systems 

through Equation 3.33.  This relationship can be used to develop the relationship between 

the (x', y', z') coordinate system and the (1, 2, 3) coordinate systems as follows: 

The inverse of a rotation matrix is equal to its transpose.  Therefore: 

 ( ) ( ) ( )
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
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Substituting this relationship into Equation 3.43 gives: 
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 (3.45) 

Equation 3.45, then, defines a rotation matrix, R, relating the coordinate system of the 

sample with that of the refracted wave using input values of degrees of spin, tilt, and in-

plane rotation, and the calculated values of angle of incidence and angle of refraction.  

The components of the matrix R are as follows: 
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 021 =R  (3.46) 

 ( )ψφαφαψθφαθψ sinsinsincoscossincscsinsincsccos2
22 ++= iiR  (3.49) 

 ( )ψφαφαψθφαθψ sincossinsincossincsccossincsccos2
23 +−+= iiR  (3.50) 
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3.6 Solving for the Elastic Stiffnesses, C 

3.6.1 Minimization of Velocities  

 The Christoffel equation (Equation 2.20) can be expanded and rewritten as a 

cubic equation in 2Vρ .  The solution of this equation gives three roots:  the quasi-

longitudinal velocity (VL), the slow transverse mode velocity (VT1), and the fast 

transverse mode velocity (VT2).  The equation can be solved for the particular velocities 

using Cardan’s solution of a cubic equation (Mouchtachi et al. 2004), given by: 
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where 3/ 2arccos ,
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 The elastic constants are recovered by minimizing the sum of squares of the 

deviations between the experimentally measured velocities and Cardan’s solution, as 

follows: 

 ( ) ,
2

1
min

1

2

∑
=

−
m

i

c
i

e
i VV  (3.57) 

where m is the number of measurements, 

e
iV  are the experimental velocities, and 

c
iV  are Cardan’s solutions (Rokhlin and Wang 1992). 

3.6.2 Minimization of the Christoffel Equation 

 An alternative method to that of minimization of the deviations of the velocities 

using Cardan’s solution is minimization of the least-squares of the Christoffel equation 

for each experimental velocity.  For N directions of propagation, the Christoffel equation 

can be expanded to a set of N cubic equations in m unknowns, where m is the number of 

elastic constants to be determined.  Generally, there are many more measurements than 
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elastic constants, and the set of equations is an overdetermined one (Castagnede et al. 

1989).  The recovery of the elastic constants is accomplished by minimizing the 

functional: 

 ( ) ( )( ){ } ,,
1

2∑
=

=
N

p
ijppij CnfCF λ  (3.58) 

where ,2Vp ρλ =  

n is the wave propagation vector, and 

( )( )ijpp Cnf ,λ  is the Christoffel equation. 

 For this method and for the previous one, the wave propagation vector is needed.  

This may be computed using the rotation matrix developed in Section 3.5.  The z’ 

direction corresponds to the refracted wave.  Therefore, the third row of the rotation 

matrix, R, may be used to calculate the wave vector. 

3.6.3 Rotation Method 

 A third method for determining the elastic constants, proposed by Mayer and 

Heidemann (1959), uses the tensor transformation equation for fourth rank tensors: 

 C ' Cijkl im jn ko lp mnopa a a a= , (3.59) 

where a  denotes a matrix of direction cosines relating one set of axes to another. 

In this method, rather than solving the Christoffel equation, the coordinate system 

is rotated such that z’ is in the direction of wave propagation.  If the wave direction is in 

the z’ direction, C’33 correspond to the longitudinal, or quasi-longitudinal, wave velocity.  

For a wave propagating in the z’ direction, C’55 corresponds to the transverse wave 

polarized in the x’ direction, and C’44 corresponds to the transverse wave polarized in the 



 

 43 

y’ direction.  For an orthotropic material, the equations used to determine these three 

values are: 
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 This method produces a system, usually overdetermined, of linear equations, 

rather than a system of higher order equations as produced by the previous two methods.  

For all three methods, measurements in three planes are required to solve for the full set 

of elastic constants for an orthotropic material. 

3.7 Solving the Systems of Equations 

 The numerical minimization procedure used to determine the set of elastic 

constants when optimizing the Christoffel equation or the deviations of the experimental 

and calculated velocities has traditionally been Newton’s algorithm.  This algorithm 

converges rapidly, but for higher-dimensional problems is unreliable unless initialized 

near the exact solution.  Mouchtachi et al. use the Levenberg-Marquardt method (LM 

method), which combines features of the gradient method and Newton’s algorithm.  For 

the same set of data, the LM method and Newton’s algorithm produce different sets of 

elastic constants.  The results of the LM method are more consistent with findings using 
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classical tensile tests (Mouchtachi et al. 2004).  The Levenberg-Marquardt method is 

included in MATLAB and is used in this study to optimize the Christoffel equation and 

the deviations of velocities. 

3.7.1 The Levenberg-Marquardt Method 

 The Levenberg-Marquardt method is a numerical scheme used for nonlinear least 

squares minimization.  It combines the advantages of Newton’s algorithm and the 

gradient descent method.  The gradient descent method is updated by adding the negative 

of the scaled gradient at each iteration as shown below: 

 fxx ii ∇−=+ λ1 . (3.63) 

Newton’s algorithm can be expressed as: 

 ( )( ) ( )iiii xfxfxx ∇∇−= −
+

12
1 , (3.64) 

where ( )( )ixf2∇  is the Hessian matrix (H) evaluated at ix . 

The gradient method is accurate but slow to converge.  Newton’s algorithm converges 

rapidly but is sensitive to starting location.  The Levenberg-Marquardt method combines 

the advantages of these methods and is expressed as: 

 [ ]( ) ( )iii xfHdiagHxx ∇+−= −
+

1
1 λ . (3.65) 

The Levenberg-Marquardt method uses the following update procedure: 

1. Execute the algorithm above. 

2. Evaluate the error. 

3. If the error has increased, retract the step, increaseλ , and return to step 1. 

4. If the error has decreased, accept the step, and decreaseλ . 
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The Levenberg-Marquardt method performs well for systems with hundreds of 

parameters and achieves convergence much faster than the gradient descent method 

(Ranganathan 2004). 

 MATLAB solves nonlinear least-square problems using the LM method with the 

lsqnonlin command with the “LargeScale” option set to “off.”  The command: 

 x = lsqnonlin(fun, x0), (3.66) 

minimizes the sum of squares of the function fun with initialization at x0. 

3.7.2 Least Squares Solution 

 When solving for the set of elastic constants using the rotation method, a solution 

to an overdetermined system of linear equations is required.  Given a general set of 

overdetermined set of equations written in matrix form: 

 Ax =b, (3.67) 

MATLAB solves for the values of the vector x in the least squares sense using the left 

division command: 

 x = A\ b. (3.68) 

 (Palm 2001). 

3.8 Damage 

 The micromechanical description of damage uses the parameters of cracks, 

characteristic length, and characteristic spacing of constituents, as well as other factors, to 

predict the macroscopic behavior of the composite.  In the past, this approach to 

describing damage progression has required that all the damage mechanisms be known a 

priori and that the geometry and distribution of cracks be simple and regular.  This is 
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rarely true for real materials.  A direct measure of damage that can be experimentally 

measured is the change in the elastic stiffness constants as damage progresses. 

 Under any load, an elastic stiffness can be represented as: 

 0C C CC= − , (3.69) 

where C0 is the elastic stiffness of the uncracked material, and Cc is the loss of stiffness 

due to damage.  The resulting change in the stiffness tensor, ωij, is selected as a variable 

representing the current state of damage of the material, as shown in Equation 3.70 

below: 

 0C Cij ij ijω = −     i, j = 1 to 6. (3.70) 

 In many previous models used to describe damage, a scalar damage parameter has 

been defined to be zero for an undamaged state and to be one at failure.  This type of 

description is inadequate for describing the tensorial nature of damage progression. 

The normalized damage variable used in this study, D, is defined as the relative 

change in the elastic stiffnesses.  The terms on the diagonal of the elasticity matrix are 

equal to zero at failure: 

 C 0ii = . (3.71) 

So the limit of the damage variable is: 

 lim 0Cii iiω = . (3.72) 

For the off-diagonal terms, the maximum value corresponds to a zero value of a minor of 

the elasticity tensor (Baste and Audoin 1991), expressed as: 

 2C C C 0ij ii jj ijM = − = . (3.73) 

Hence: 
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 lim 0C C Cij ij ii jjω = ± ,        .6,...,1, jiji ≠=  (3.74) 

In this equation, the sign ± depends on the change in Cij, which can increase or decrease.  

The components of the normalized damage tensor, D, are then given by: 
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 (3.76) 

The components of the damage tensor are measurable, have an identifiable physical 

meaning, and form a finite set of data (Baste and Audoin 1991). 
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CHAPTER IV 

DESCRIPTION OF MATLAB PROGRAMS

4.1 Introduction 

The programs included were developed using MATLAB 7.0.4.  The user begins 

by inputting the number of samples to be evaluated.  For each specimen, the user inputs 

preliminary data:  density (g/cm3), thickness (mm), reference velocity (m/s), reference 

time (s), and a list of stress levels (MPa) that the sample is subjected to.  The user then 

inputs the rotation angles of the sample, and the resulting longitudinal and transverse 

wave time values corresponding to these stress levels, as lists.  A list of data is input in 

brackets with a space between each value.  For a set of readings: 

 time readings = [ ]1 2 3 ... nt t t t , 

 spin = [ ]1 2 3 ... nα α α α , 

 tilt = [ ]1 2 3 ... nψ ψ ψ ψ , 

 in-plane rotation = [ ]nφφφφ ...321 . 

The ith entry of each list forms a group describing one orientation and time reading.  For 

measurements in the 1-2 plane, only the angle of tilt is used.  In the 1-3 plane only the 

angle of spin is used.  For a test in a non-principal plane, 1-2’, the angle of in-plane 

rotation is constant and is equal to the angle between the 2’ and 2 axes.  The angle of tilt 

is then equal to the incidence angle. 
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Figure 4.1 shows the initial setup for the ultrasonic immersion test.  The 

ultrasonic transmitter, T, and the receiver, R, are positioned on the 1 axis.  The 2 and 3 

axes define the plane of the sample, with the 3 axis in the long direction. 

 

 
Figure 4.1 Initial orientations of sample and ultrasonic transmitter and receiver. 

 
 

When using the minimization of velocities solution method, one must distinguish 

the character of the transverse waves.  Usually, the transverse waves in the 1-3 plane are 

considered to be fast transverse waves, and those produced in the 1-2 plane are 

considered slow transverse waves.  Waves polarized in the fiber direction are faster than 

the waves polarized perpendicular to the fiber direction (Rokhlin and Wang 1992).  

However, for the minimization of the Christoffel equation, only the time readings and 

corresponding angle measures are necessary.  For the solution of rotation equations 

method, one must distinguish between the types of polarization in a non-principal plane.  

The fast transverse waves are considered as having in-plane polarization, and the slow 
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transverse waves have out-of-plane polarization.  For the minimization of the velocities 

and Christoffel equation methods, the user is also prompted to input a list of estimated 

initial values for the nine elastic stiffnesses, C11, C22, C33, C44, C55, C66, C12, C13, and C23, 

for the Levenberg-Marquardt method. 

After the angle measures and time readings are input for each stress level, the 

programs output tables of the elastic stiffnesses, C, elastic compliances, S, material 

constants, E, G, and υ, and damage, D, for each stress level.  Plots of each elastic 

stiffness, elastic compliance, and damage variable versus the applied stress levels are also 

created. 

4.2 Minimization of the Christoffel Equation 

The MATLAB 7.0.4 program developed for the minimization of the Christoffel 

equation is presented in Appendix A. 

4.3 Minimization of the Variation between Experimental and Calculated Velocities 

The MATLAB 7.0.4 program developed for the minimization of the variation 

between the experimental and calculated velocities is presented in Appendix B. 

4.4 Least Squares Solution using Rotation of Axes 

The MATLAB 7.0.4 program developed for the rotation of axes equation is 

presented in Appendix C.
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CHAPTER V 

COMPARISON OF MATLAB PROGRAMS

5.1 Reconstruction of Velocity Data 

The three MATLAB programs presented in Appendices A, B, and C were tested 

using a set of velocity values back-calculated from ultrasonic immersion tests conducted 

on a 1-D (unidirectional fiber) SiC-SiC ceramic matrix composite using data reported by 

Aristegui and Baste (1997).  The velocities were calculated in three data planes:  the 1-2 

plane, the 1-3 plane, and the 1-45o plane.  The 45o axis is in the 2-3 plane and is forty-five 

degrees from the 2 and 3 axes.  

 
Figure 5.1 Unidirectional fiber composite showing the axes  
defining the three planes of measurement:  1-2, 1-3, and 1- 2’. 

 
 
  

The mass density of the composite material was 2.5 g/cm3, the sample thickness 

was 3 mm, and the values of the nine independent elastic stiffnesses, determined from 
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experimental ultrasonic measurements similar to those described in this report, and 

reported by Aristegui and Baste, are summarized in Table 5.1. 

 

Table 5.1 Values of elastic stiffnesses for 1-D SiC-SiC (GPa) (Aristegui and Baste 1997). 
C11 C22 C33 C44 C55 C66 C12 C13 C23 
76 134 396 81 37.4 24.6 29 35 98 

 
 

Figure 5.2 shows the measured data points and the slowness curves reconstructed 

from the nine elastic stiffnesses in three planes of measurement (Aristegui and Baste 

1997).  The graphs in Figure 5.2 are polar plots of the slowness, pV1 , versus the 

refraction angle, rθ , in the three data planes.  The longitudinal wave velocities are closest 

to the origin, and the slow transverse wave velocities are farthest from the origin.  The 

data in Tables 5.2, 5.3, and 5.4 roughly correspond to the data points in Figure 5.2. 

 

 
Figure 5.2 Reconstructed slowness curves and experimentally measured data points for a 
1-D SiC-SiC composite in the (a) 1-2, (b) 1-3, and (c) 1-45o planes (Aristegui and Baste 
1997). 
 
 
 

Because Aristegui and Baste reported only the set of elastic constants determined 

from the experimental measurements, and not the actual longitudinal and transverse wave 
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time data, a set of experimental velocity measurements for the orthotropic material was 

simulated to check the validity of the MATLAB programs using the known values of the 

elastic stiffnesses. 

For the matrix 

 


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
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







ΓΓΓ
ΓΓΓ
ΓΓΓ

332313

232212

131211

, 

where 2
355

2
266

2
11111 CCC nnn ++=Γ , 

2
344

2
222

2
16622 CCC nnn ++=Γ ,  

2
333

2
244

2
15533 CCC nnn ++=Γ ,  

( ) 21661212 CC nn+=Γ ,  

( ) 31551313 CC nn+=Γ ,  

( ) 32442323 CC nn+=Γ , and 

1n , 2n , and 3n  are the components of the wave vector, n ,  

the three eigenvalues are equal to 2LVρ , 2
1TVρ , and 2

2TVρ , where ρ  is the density of the 

composite, LV  is the velocity of the quasi-longitudinal wave, 1TV  is the velocity of the 

slow transverse wave, and 2TV  is the velocity of the fast transverse wave.  The maximum 

eigenvalue is equal to 2
LVρ , the minimum eigenvalue is equal to 2

1TVρ , and the middle 

eigenvalue is equal to 2
2TVρ .  These velocities were calculated in three planes for the 1-D 

SiC-SiC ceramic matrix composite every 2o over a range of refraction angles,rθ , from 0o 

to 80o.  The incidence angle,iθ , for each wave was calculated using Snell’s Law: 
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o
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Vθθ sinarcsin  

where the reference velocity, oV , was taken equal to 1450 m/s. 

For measurements in the 1-2, 1-3, and 1-45o planes, the incidence angle is equal 

to the degree of tilt, degree of spin, and degree of tilt, respectively.  In the 1-45o plane, 

the in-plane rotation is equal to 45o for all velocities.  The set of velocities and angles 

used in the three MATLAB programs represents a typical range of measurements of data 

for an ultrasonic immersion test, as suggested by the data points shown in Figure 5.2.  

The velocities, input angles, and refraction angles input into the MATLAB programs are 

summarized in Tables 5.2, 5.3, and 5.4. 
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Table 5.2 Simulated velocity and angle measurements for quasi-longitudinal waves. 
Quasi-longitudinal wave 

velocity, VL (km/s) Degree of tilt Degree of spin 
Degree of in-
plane rotation Refraction angle 

5.51362 0 0 0 0 
5.513821 0.525852 0 0 2 
5.514463 1.050984 0 0 4 
5.515655 1.574645 0 0 6 
5.517582 2.096013 0 0 8 
5.520505 2.614164 0 0 10 
5.524759 3.128038 0 0 12 
5.530757 3.63641 0 0 14 
5.538983 4.137865 0 0 16 
5.549982 4.630782 0 0 18 
5.564348 5.11334 0 0 20 
5.5827 5.583537 0 0 22 

5.605644 6.039249 0 0 24 
5.633735 6.478313 0 0 26 
5.667429 6.898643 0 0 28 
5.51362 0 0 0 0 
5.517954 0 0.525458 0 2 
5.53143 0 1.04776 0 4 
5.555493 0 1.563351 0 6 
5.592631 0 2.067874 0 8 
5.646376 0 2.555848 0 10 
5.721062 0 3.020606 0 12 
5.82108 0 3.45482 0 14 
5.949656 0 3.851803 0 16 
6.107671 0 4.207147 0 18 
6.293336 0 4.519724 0 20 
6.502908 0 4.791426 0 22 
5.51362 0 0 45 0 
5.515885 0.525655 0 45 2 
5.5229 1.049379 0 45 4 

5.535335 1.569046 0 45 6 
5.554343 2.082135 0 45 8 
5.5816 2.58553 0 45 10 

5.619303 3.075358 0 45 12 
5.670077 3.546944 0 45 14 
5.736694 3.99502 0 45 16 
5.821587 4.414295 0 45 18 
5.926249 4.800325 0 45 20 
6.050806 5.150363 0 45 22 
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Table 5.3 Simulated velocity and angle measurements for fast transverse waves. 
Fast transverse wave 
velocity, VT2 (km/s) Degree of tilt Degree of spin 

Degree of in-
plane rotation Refraction angle 

4.35504 0 4.620025 0 14 
4.436949 0 5.168129 0 16 
4.503251 0 5.710394 0 18 
4.5527 0 6.253684 0 20 

4.586332 0 6.801757 0 22 
4.606323 0 7.356026 0 24 
4.615083 0 7.916548 0 26 
4.614779 0 8.482751 0 28 
4.607199 0 9.053836 0 30 
4.593754 0 9.628949 0 32 
4.575552 0 10.20724 0 34 
4.553468 0 10.78788 0 36 
4.528203 0 11.37001 0 38 
4.50033 0 11.95277 0 40 
4.470334 0 12.53521 0 42 
4.414405 6.450419 0 45 20 
4.461921 6.992343 0 45 22 
4.497133 7.535655 0 45 24 
4.520775 8.082787 0 45 26 
4.534332 8.63439 0 45 28 
4.5396 9.189815 0 45 30 

4.538427 9.747472 0 45 32 
4.532615 10.30499 0 45 34 
4.523924 10.85918 0 45 36 
4.514128 11.40594 0 45 38 
4.505067 11.94001 0 45 40 
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Table 5.4 Simulated velocity and angle measurements for slow transverse waves. 
Slow transverse wave 

velocity, VT1 (km/s) Degree of tilt Degree of spin 
Degree of in-
plane rotation Refraction angle 

3.637803 10.78521 0 0 28 
3.670122 11.39321 0 0 30 
3.696181 11.99847 0 0 32 
3.715556 12.60484 0 0 34 
3.728078 13.21545 0 0 36 
3.733817 13.83269 0 0 38 
3.733043 14.4582 0 0 40 
3.726173 15.0929 0 0 42 
3.713735 15.73712 0 0 44 
3.696317 16.39062 0 0 46 
3.674538 17.05266 0 0 48 
3.649026 17.72208 0 0 50 
3.620398 18.39734 0 0 52 
3.589253 19.07647 0 0 54 
3.556167 19.75713 0 0 56 
3.52169 20.43658 0 0 58 
3.48635 21.11166 0 0 60 
3.450647 21.77881 0 0 62 
3.41506 22.43399 0 0 64 
3.380046 23.07279 0 0 66 
3.346039 23.69034 0 0 68 
3.313451 24.28144 0 0 70 
3.282671 24.84055 0 0 72 
3.254062 25.36195 0 0 74 
3.227962 25.83982 0 0 76 
3.204678 26.26836 0 0 78 
3.184486 26.64204 0 0 80 
4.465526 0 12.54893 0 42 
4.438631 0 13.11634 0 44 
4.405591 0 13.69506 0 46 
4.371547 0 14.27014 0 48 
4.336808 0 14.84025 0 50 
4.301664 0 15.4039 0 52 
4.266389 0 15.95947 0 54 
4.231248 0 16.50516 0 56 
4.196496 0 17.03902 0 58 
3.939178 14.81517 0 45 44 
3.953095 15.29891 0 45 46 
3.957615 15.79969 0 45 48 
3.953035 16.31932 0 45 50 
3.940427 16.85631 0 45 52 
3.921286 17.40689 0 45 54 
3.897177 17.96616 0 45 56 
3.869516 18.52896 0 45 58 
3.839503 19.09025 0 45 60 
3.808127 19.64523 0 45 62 
3.776201 20.18926 0 45 64 
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5.2 Results 

From Table 5.5 below, it is clear that the results of the elastic stiffness values 

delivered from the MATLAB programs are an excellent match with those reported by 

Aristegui and Baste in two cases.  The minimization of the Christoffel equation and the 

minimization of the variation of the experimental and computed velocities provide 

superior results compared to those obtained by the method of solving a system of rotation 

equations.  Certainly this outcome suggests that the latter solution method is not as well-

suited to problems of this type as are the former two solution methods. 

The solution method that utilizes minimization of the Christoffel equation shows 

advantages compared to the other two methods presented.  Specifically, for this method, 

no knowledge of the direction of polarization is required.  A misinterpretation of the type 

of polarization may lead to erroneous results when minimizing the velocities or solving 

the system of rotation equations (i.e., when using the programs containing the other 

solution methods). 

Furthermore, the rotation solution method assumes an axis system for the input 

wave that defines the direction of the wave, z’, and two orthogonal axes, x’ and y’.  

However, the refracted waves are nearly, but not exactly, longitudinal or transverse.  The 

orthogonal coordinate system (x’, y’, z’) approximates these quasi-longitudinal and 

quasi-transverse waves as truly longitudinal or transverse, and it is therefore not exact.  

The effects of these approximations are evident in the poor solutions given by the results 

from the third method, reported in Table 5.5. 
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Computation of the damage variable was not performed as part of this check, as 

only one set of velocities (corresponding to the response at only one stress level) was 

calculated, since only one set of data was available for comparison. 

 
 

Table 5.5 Comparison of results of MATLAB programs and Aristegui and Baste data. 
 C11 C22 C33 C44 C55 C66 C12 C13 C23 

Data from 
Aristegui and 
Baste, 1997 

76 134 396 81 37.4 24.6 29 35 98 

Minimization of 
Christoffel 
equation 

76 134 396 81 37.4 24.6 29 35 98 

Minimization of 
experimental 
velocities and 

Cardan’s 
solution 

76 134 396 81 37.4 24.6 29 35 98 

Solution of 
system of 
rotation 

equations 

75.2 128 253 88.8 53.6 24.5 33.1 66.2 116 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions 

 Three MATLAB programs have been written that can compute the full 

complement of nine elastic constants for an orthotropic composite material, given a set of 

experimental data collected from a series of ultrasonic immersion tests performed on a 

composite sample that is simultaneously subjected to uniaxial tension.  The data 

necessary as input to the programs are a set of transit times corresponding to tests at 

varying stress levels, and at varying orientations of the ultrasonic transducers with respect 

to the composite specimen.  The three programs differ only by their numerical solution 

method; they each compute the same set of elastic constants.  Each program also 

computes a value indicating the amount of progressive damage imparted to the composite 

sample due to the increasing uniaxial tensile stress. 

 By comparison with the set of experimentally determined elastic constants 

reported by Aristegui and Baste (1997), it was shown that the programs can accurately 

determine the nine elastic constants pertinent for an orthotropic material.   Unfortunately, 

there was no experimental data available for comparison of damage values. 

 When using the solution scheme that utilizes the minimization of velocities, the 

solutions given for longitudinal, slow transverse, and fast transverse waves in Equations 

3.54, 3.55, and 3.56 correspond to the maximum, minimum, and median eigenvalues.  
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For measurements made in a non-principal plane, all three waves are produced, and 

identifying each wave type is straightforward.  For measurements made in a principal 

plane, only one transverse wave is produced, the character of which is unknown.  For a 

unidirectional composite, the transverse waves in the 1-2 plane are typically slow 

transverse waves, and the transverse waves in the 1-3 plane are typically fast transverse 

waves.  However, as seen in Figure 5.2 (b), in a principal plane, the character of the 

transverse wave may change from a fast transverse wave to a slow transverse wave as 

indicated by the crossover of the slowness curves.  Using simulated velocity data (as was 

done to check the accuracy of the programs for calculating elastic constants), it was 

simple to correctly identify the angle at which the wave changed from the fast transverse 

wave to the slow transverse wave in the 1-3 plane.  For an actual ultrasonic immersion 

test, if and when the transverse wave changes character is unknown and thus correct 

characterization is difficult.  

6.2 Recommendations 

It is recommended that for future study, the solution method of minimizing the 

Christoffel equation should be expanded to include all possible types of symmetry, i.e. up 

to twenty-one independent elastic constants.  This would not only increase the range of 

materials suitable for testing, but would also allow for a complete description of the 

damage variable.  A comparison of the MATLAB programs with experimental damage 

data should also be performed.  

Additionally, for the study conducted herein, it was assumed the composite 

material maintains its class of symmetry during loading.  This condition is satisfied if the 

direction of crack growth coincides with the planes of symmetry of the composite, but 
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this may not always be the case (Audoin and Baste 1994).  Modification of the program 

to account for a change in symmetry class with loading is recommended. 

Furthermore, further investigation using the minimization of the Christoffel 

equation solution method should include a study to investigate how the number of 

velocity readings, the range of refraction angles, and the change in initial estimates using 

the Levenberg-Marquardt method affects the accuracy of the method.
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APPENDIX A 

Minimization of the Christoffel Equation 

%This program develops and solves a system of nonlinear equations  

%based on the Christoffel equation of an orthotropic composite 

%Solves for nine elastic stiffnesses using Levenberg-Marquardt method 

 %Valid for incident waves on 2-3 plane, plane of the sample 

%3 is the long axis, for unidirectional fiber composites 3 is the axis of fiber direction 

%1 is the out-of-plane axis 

%degrees of spin, tilt, rotation only valid up to 90 degrees 

 N = input('Enter the number of test specimens '); 

disp('Input a list of data as  [# # # #]'); 

for i = 1:N 

    disp('For sample');disp(i) 

    density = input('Input density of sample (g/cm^3) '); 

    density=1000*density;%Convert g/cm^3 to kg/m^3 

    h = input('Input sample thickness (cm) '); 

    h=h/100;%Convert cm to m     

    To = input('Input reference time (sec) '); 

    Vo = input('Input velocity of incident wave (velocity in immersion medium)(m/s) '); 

    stress = input('Input a list of stress levels (MPA) '); 

    for j = 1:length(stress) 

        disp('For stress level');disp(stress(j)); 

        %Enter velocities and angles for each type of wave 

        disp('For measurements in the 1-2 plane, only tilt will be used') 
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        disp('For measurements in the 1-3 plane, only spin will be used') 

         

        disp('For the longitudinal (quasi-longitudinal) waves:'); 

        psi1 = input('Input a list of degrees of spin (around 2 axis)(rad) '); 

        alpha1 = input('Input a list of degrees of tilt (around 3 axis)(rad) '); 

        phi1 = input('Input a list of in-plane rotation angles (around 1 axis) (rad) '); 

        t1 = input('Input a list of time readings for longitudinal waves (quasi-longitudinal waves)(sec) 

'); 

                 

        disp('For the transverse (shear) waves:'); 

        psi2 = input('Input a list of degrees of spin (around 2 axis)(rad) '); 

        alpha2 = input('Input a list of degrees of tilt (around 3 axis)(rad) '); 

        phi2 = input('Input a list of in-plane rotation angles (around 1 axis) (rad) '); 

        t2 = input('Input a list of time readings for the transverse (shear) waves (sec) '); 

                 

        %Calculate the time difference for each wave         

        T1 = To-t1; 

        T2 = To-t2; 

        %Calculate incidence angle for each wave 

        theta1 =acos(cos(psi1).*cos(alpha1)); 

        theta2 =acos(cos(psi2).*cos(alpha2)); 

        %Calculate the refraction angle for each wave         

        r1 =atan(sin(theta1)./(cos(theta1)-(T1*Vo/h))); 

        r2 =atan(sin(theta2)./(cos(theta2)-(T2*Vo/h)));         

        %Calculate the phase velocity for each wave         

        V1 =Vo*sin(r1)./sin(theta1); 

        V2 =Vo*sin(r2)./sin(theta2);         
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        %For an incidence angle of zero (wave on 1 axis), correct values of V, r, and theta 

        for k=1:length(t1) 

            if psi1(k)==0 & alpha1(k)==0 

                V1(k)=Vo*h/(h-Vo*T1(k)); 

                r1(k)=0; 

                theta1(k)=0; 

            end 

        end 

        %Square velocities, multiply by density, combine into one list 

        lambda1 = density*V1.*V1; 

        lambda2 = density*V2.*V2;         

        lambda = [lambda1 lambda2]; 

        %Combine refraction, tilt, spin, inplane, and incidence angles for the three waves 

        r=[r1 r2]; 

        psi = [psi1 psi2]; 

        phi=[phi1 phi2]; 

        alpha = [alpha1 alpha2]; 

        theta=[theta1 theta2];         

        %The wave propagation vector for each wave 

        a1=[-cos(alpha).*cos(r-theta).*cos(psi)+cos(psi).^2.*csc(theta).*sin(alpha).^2.*sin(r-

theta)+csc(theta).*sin(r-theta).*sin(psi).^2]; 

        a2=[-cos(psi).*csc(theta).*sin(r-theta).*sin(phi).*sin(psi)-cos(r-theta).*(-

cos(phi).*sin(alpha)+cos(alpha).*sin(phi).*sin(psi))+cos(psi).*csc(theta).*sin(alpha).*sin(r-

theta).*(cos(alpha).*cos(phi)+sin(alpha).*sin(phi).*sin(psi))]; 

        a3=[-cos(phi).*cos(psi).*csc(theta).*sin(r-theta).*sin(psi)-cos(r-

theta).*(sin(alpha).*sin(phi)+cos(alpha).*cos(phi).*sin(psi))+cos(psi).*csc(theta).*sin(alpha).*sin(r-

theta).*(-cos(alpha).*sin(phi)+cos(phi).*sin(alpha).*sin(psi))]; 

        %Correct values for incidence angle=0 
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        for q=1:length(r) 

            if alpha(q)==0 & psi(q)==0 

                a1(q)=1;a2(q)=0;a3(q)=0; 

            end 

        end 

        %Create function F 

        %Christoffel equation for orthotropic symmetry 

        %the (c) variables are %C11  C22  C33 C44  C55  C66  C12  C13  C23 

        F= @ (c) 

(a1.*a3.*c(8)+a1.*a3.*c(5)).*((a2.*a3.*c(9)+a2.*a3.*c(4)).*(a1.*a2.*c(7)+a1.*a2.*c(6))-

(a1.*a3.*c(8)+a1.*a3.*c(5)).*(a2.^2.*c(2)+a3.^2.*c(4)+a1.^2.*c(6)-lambda))-

(a2.*a3.*c(9)+a2.*a3.*c(4)).*(-

1*(a1.*a3.*c(8)+a1.*a3.*c(5)).*(a1.*a2.*c(7)+a1.*a2.*c(6))+(a2.*a3.*c(9)+a2.*a3.*c(4)).*(a1.^2.*c1

1+a3.^2.*c(5)+a2.^2.*c(6)-lambda))+(-

1*(a1.*a2.*c(7)+a1.*a2.*c(6)).^2+(a2.^2.*c(2)+a3.^2.*c(4)+a1.^2.*c(6)-

lambda).*(a1.^2.*c(1)+a3.^2.*c(5)+a2.^2.*c(6)-lambda)).*(a3.^2.*c(3)+a2.^2.*c(4)+a1.^2.*c(5)-

lambda); 

         

        %For first stress level, user inputs initial values of C as a list 

        %For subsequent stresses, program uses previous solution x 

        if j==1 

            xo=input('input initial values for [C11 C22 C33 C44 C55 C66 C12 C13 C23] in Pa'); 

        else xo=x; 

        end 

        %Sets the lsqnonlin command to run LM method 

        options = optimset('LargeScale','off'); 

        %Nonlinear least squares optimization of Christoffel equation using LM method 
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        x=lsqnonlin(F,xo) 

        %store values in C table 

        %each row is for a different stress level 

        C(j,:)=x;         

    end 

    %Convert Pa to GPa 

    C=C/1000000000; 

    %Put values from completed C table into 6x6xstress array 

    for m=1:length(stress) 

        C6(1,1,m)=C(m,1); 

        C6(2,2,m)=C(m,2); 

        C6(3,3,m)=C(m,3); 

        C6(4,4,m)=C(m,4); 

        C6(5,5,m)=C(m,5); 

        C6(6,6,m)=C(m,6); 

        C6(1,2,m)=C(m,7); 

        C6(1,3,m)=C(m,8); 

        C6(2,3,m)=C(m,9); 

        C6(2,1,m)=C(m,7); 

        C6(3,1,m)=C(m,8); 

        C6(3,2,m)=C(m,9); 

        %Solve for elastic compliances 

        %S = inverse C         

        S6(:,:,m) = inv(C6(:,:,m)); 

        %Store S values from 6x6xstress array in table 

        S(m,1)=S6(1,1,m); 

        S(m,2)=S6(2,2,m); 

        S(m,3)=S6(3,3,m); 
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        S(m,4)=S6(4,4,m); 

        S(m,5)=S6(5,5,m); 

        S(m,6)=S6(6,6,m); 

        S(m,7)=S6(1,2,m); 

        S(m,8)=S6(1,3,m); 

        S(m,9)=S6(2,3,m);         

    end 

    %Compute damage variable 

    for p=1:length(stress) 

        D6(:,:,p)=1-C6(:,:,p)./C6(:,:,1); 

    end 

    %Compute off-diagonal damage terms 

    for k=1:length(stress) 

        for i=1:6 

            for j=1:6 

                if i~=j 

                    D6(i,j,k)=(C6(i,j,1)-C6(i,j,k))./(C6(i,j,1)+sign(C6(i,j,1)-C6(i,j,k)).*(C6(i,i,1).*(1-

D(i,i,k)).*C6(j,j,1).*(1-D(j,j,k))).^(1/2)); 

                end 

            end 

        end 

    end 

    %Store damage terms in table D 

    for m=1:length(stress) 

        D(m,1)=D6(1,1,m); 

        D(m,2)=D6(2,2,m); 

        D(m,3)=D6(3,3,m); 

        D(m,4)=D6(4,4,m); 
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        D(m,5)=D6(5,5,m); 

        D(m,6)=D6(6,6,m); 

        D(m,7)=D6(1,2,m); 

        D(m,8)=D6(1,3,m); 

        D(m,9)=D6(2,3,m); 

    end 

    %Compute Young's moduli, Shear moduli, Poisson's ratios 

    E1=1./S(:,1); 

    E2=1./S(:,2); 

    E3=1./S(:,3);     

    G23=1./S(:,4); 

    G13=1./S(:,5); 

    G12=1./S(:,6);     

    pr12 = -E1.*S(:,7); 

    pr21 = -E2.*S(:,7); 

    pr13 = -E1.*S(:,8); 

    pr31 = -E3.*S(:,8); 

    pr23 = -E2.*S(:,9); 

    pr32 = -E3.*S(:,9); 

    %Display results 

    disp('     Stress     C11     C22     C33     C44     C55     C66     C12     C13     C23') 

    disp([stress' C]) 

    disp('     Stress     S11     S22     S33     S44     S55     S66     S12     S13     S23') 

    disp([stress' S]) 

    disp('     Stress      E1      E2      E3     G23     G13     G12    pr12    pr21    pr13    pr31    pr23    

pr32') 

    disp([stress' E1 E2 E3 G23 G13 G12 pr12 pr21 pr13 pr31 pr23 pr32]) 
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    disp('For sample');disp(i); 

    plot(stress,C),legend('C11','C22','C33','C44','C55','C66','C12','C13','C23'); 

    figure 

    plot(stress,S),legend('S11','S22','S33','S44','S55','S66','S12','S13','S23'); 

    %Plot grid of elastic stiffnesses versus stress graphs 

    figure 

    subplot(331);plot(stress,C(:,1)),xlabel('Stress (MPa)'),ylabel('C11 (GPa)'); 

    subplot(332);plot(stress,C(:,2)),xlabel('Stress (MPa)'),ylabel('C22 (GPa)'); 

    subplot(333);plot(stress,C(:,3)),xlabel('Stress (MPa)'),ylabel('C33 (GPa)'); 

    subplot(334);plot(stress,C(:,4)),xlabel('Stress (MPa)'),ylabel('C44 (GPa)'); 

    subplot(335);plot(stress,C(:,5)),xlabel('Stress (MPa)'),ylabel('C55 (GPa)'); 

    subplot(336);plot(stress,C(:,6)),xlabel('Stress (MPa)'),ylabel('C66 (GPa)'); 

    subplot(337);plot(stress,C(:,7)),xlabel('Stress (MPa)'),ylabel('C12 (GPa)'); 

    subplot(338);plot(stress,C(:,8)),xlabel('Stress (MPa)'),ylabel('C13 (GPa)'); 

    subplot(339);plot(stress,C(:,9)),xlabel('Stress (MPa)'),ylabel('C23 (GPa)'); 

    figure 

    %Plot grid of elastic compliances versus stress graphs 

    subplot(331);plot(stress,S(:,1)),xlabel('Stress (MPa)'),ylabel('S11 (GPa-1)'); 

    subplot(332);plot(stress,S(:,2)),xlabel('Stress (MPa)'),ylabel('S22 (GPa-1)'); 

    subplot(333);plot(stress,S(:,3)),xlabel('Stress (MPa)'),ylabel('S33 (GPa-1)'); 

    subplot(334);plot(stress,S(:,4)),xlabel('Stress (MPa)'),ylabel('S44 (GPa-1)'); 

    subplot(335);plot(stress,S(:,5)),xlabel('Stress (MPa)'),ylabel('S55 (GPa-1)'); 

    subplot(336);plot(stress,S(:,6)),xlabel('Stress (MPa)'),ylabel('S66 (GPa-1)'); 

    subplot(337);plot(stress,S(:,7)),xlabel('Stress (MPa)'),ylabel('S12 (GPa-1)'); 

    subplot(338);plot(stress,S(:,8)),xlabel('Stress (MPa)'),ylabel('S13 (GPa-1)'); 

    subplot(339);plot(stress,S(:,9)),xlabel('Stress (MPa)'),ylabel('S23 (GPa-1)'); 



 

 73 

    figure 

    %Plot grid of damage versus stress graphs 

    subplot(331);plot(stress,D(:,1)),xlabel('Stress (MPa)'),ylabel('D11'); 

    subplot(332);plot(stress,D(:,2)),xlabel('Stress (MPa)'),ylabel('D22'); 

    subplot(333);plot(stress,D(:,3)),xlabel('Stress (MPa)'),ylabel('D33'); 

    subplot(334);plot(stress,D(:,4)),xlabel('Stress (MPa)'),ylabel('D44'); 

    subplot(335);plot(stress,D(:,5)),xlabel('Stress (MPa)'),ylabel('D55'); 

    subplot(336);plot(stress,D(:,6)),xlabel('Stress (MPa)'),ylabel('D66'); 

    subplot(337);plot(stress,D(:,7)),xlabel('Stress (MPa)'),ylabel('D12'); 

    subplot(338);plot(stress,D(:,8)),xlabel('Stress (MPa)'),ylabel('D13'); 

    subplot(339);plot(stress,D(:,9)),xlabel('Stress (MPa)'),ylabel('D23');    

end
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Appendix B 

Minimization of the Variation between Experimental and Calculated Velocities 

%This program develops and solves a system of nonlinear equations  

%based on the variation of the experimental velocities and Cardan's solution of the cubic 

Christoffel equation 

%for an orthotropic composite 

%Solves for nine elastic stiffnesses using Levenberg-Marquardt method 

 

%Valid for incident waves on 2-3 plane, plane of the sample 

%3 is the long axis, for unidirectional fiber composites 3 is the axis of fiber direction 

%1 is the out-of-plane axis 

%degrees of spin, tilt, rotation only valid up to 90 degrees 

  

N = input('Enter number of test specimens '); 

disp('Input a list of data as  [# # # #]'); 

for i = 1:N 

    disp('For sample');disp(i) 

    density = input('Input density of sample (g/cm^3) '); 

    density=1000*density;%Convert g/cm^3 to kg/m^3 

    h = input('Input sample thickness (mm) '); 

    h=h/1000;%Convert cm to m 

    To = input('Input reference time (sec) '); 

    Vo = input('Input velocity of incident wave (velocity in immersion medium)(m/s) '); 

    stress = input('Input a list of stress levels (MPA) '); 
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    for j = 1:length(stress) 

        disp('For stress level');disp(stress(j)); 

        %Enter velocities and angles for each type of wave 

        disp('For measurements in the 1-2 plane, only tilt will be used') 

        disp('For measurements in the 1-3 plane, only spin will be used') 

                 

        disp('For the longitudinal (quasi-longitudinal) waves:'); 

        psi1 = input('Input a list of degrees of spin (around 2 axis)(rad) '); 

        alpha1 = input('Input a list of degrees of tilt (around 3 axis)(rad) '); 

        phi1 = input('Input a list of in-plane rotation angles (around 1 axis) (rad) '); 

        t1 = input('Input a list of time readings for longitudinal waves (quasi-longitudinal waves)(sec) 

'); 

                 

        disp('For the fast transverse (shear) waves:'); 

        psi2 = input('Input a list of degrees of spin (around 2 axis)(rad) '); 

        alpha2 = input('Input a list of degrees of tilt (around 3 axis)(rad) '); 

        phi2 = input('Input a list of in-plane rotation angles (around 1 axis) (rad) '); 

        t2 = input('Input a list of time readings for fast transverse (shear) waves (sec) '); 

                 

        disp('For the slow transverse (shear) waves:'); 

        psi3 = input('Input a list of degrees of spin (around 2 axis)(rad) '); 

        alpha3 = input('Input a list of degrees of tilt (around 3 axis)(rad) '); 

        phi3 = input('Input a list of in-plane rotation angles (around 1 axis) (rad) '); 

        t3 = input('Input a list of time readings for slow transverse (shear) waves (sec) '); 

         

        %Calculate the time difference for each wave 

        T1 = To-t1; 
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        T2 = To-t2; 

        T3 = To-t3; 

        %Calculate the incidence angle for each wave 

        theta1 =acos(cos(psi1).*cos(alpha1)) 

        theta2 =acos(cos(psi2).*cos(alpha2)) 

        theta3 =acos(cos(psi3).*cos(alpha3)) 

        %Calculate the refraction angle for each wave 

        r1 =atan(sin(theta1)./(cos(theta1)-(T1*Vo/h))); 

        r2 =atan(sin(theta2)./(cos(theta2)-(T2*Vo/h))); 

        r3 =atan(sin(theta3)./(cos(theta3)-(T3*Vo/h))); 

        %Calculate the phase velocity for each wave 

        V1 =Vo*sin(r1)./sin(theta1); 

        V2 =Vo*sin(r2)./sin(theta2); 

        V3 =Vo*sin(r3)./sin(theta3); 

        %For an incidence angle of zero (wave on 1 axis), correct values of V, r, and theta 

        for k=1:length(t1) 

            if psi1(k)==0 & alpha1(k)==0 

                V1(k)=Vo*h/(h-Vo*T1(k)); 

                r1(k)=0; 

                theta1(k)=0; 

            end 

        end 

        %Square velocities, multiply by density, combine into one list 

        lambda1 = density*V1.*V1; 

        lambda2 = density*V2.*V2; 

        lambda3 = density*V3.*V3; 

        lambda = [lambda1 lambda2 lambda3]; 
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        %longitudinal wave vectors 

        La1=[-cos(alpha1).*cos(r1-

theta1).*cos(psi1)+cos(psi1).^2.*csc(theta1).*sin(alpha1).^2.*sin(r1-theta1)+csc(theta1).*sin(r1-

theta1).*sin(psi1).^2]; 

        La2=[-cos(psi1).*csc(theta1).*sin(r1-theta1).*sin(phi1).*sin(psi1)-cos(r1-theta1).*(-

cos(phi1).*sin(alpha1)+cos(alpha1).*sin(phi1).*sin(psi1))+cos(psi1).*csc(theta1).*sin(alpha1).*sin(

r1-theta1).*(cos(alpha1).*cos(phi1)+sin(alpha1).*sin(phi1).*sin(psi1))]; 

        La3=[-cos(phi1).*cos(psi1).*csc(theta1).*sin(r1-theta1).*sin(psi1)-cos(r1-

theta1).*(sin(alpha1).*sin(phi1)+cos(alpha1).*cos(phi1).*sin(psi1))+cos(psi1).*csc(theta1).*sin(alp

ha1).*sin(r1-theta1).*(-cos(alpha1).*sin(phi1)+cos(phi1).*sin(alpha1).*sin(psi1))]; 

        %fast shear wave vectors 

        Qa1=[-cos(alpha2).*cos(r2-

theta2).*cos(psi2)+cos(psi2).^2.*csc(theta2).*sin(alpha2).^2.*sin(r2-theta2)+csc(theta2).*sin(r2-

theta2).*sin(psi2).^2]; 

        Qa2=[-cos(psi2).*csc(theta2).*sin(r2-theta2).*sin(phi2).*sin(psi2)-cos(r2-theta2).*(-

cos(phi2).*sin(alpha2)+cos(alpha2).*sin(phi2).*sin(psi2))+cos(psi2).*csc(theta2).*sin(alpha2).*sin(

r2-theta2).*(cos(alpha2).*cos(phi2)+sin(alpha2).*sin(phi2).*sin(psi2))]; 

        Qa3=[-cos(phi2).*cos(psi2).*csc(theta2).*sin(r2-theta2).*sin(psi2)-cos(r2-

theta2).*(sin(alpha2).*sin(phi2)+cos(alpha2).*cos(phi2).*sin(psi2))+cos(psi2).*csc(theta2).*sin(alp

ha2).*sin(r2-theta2).*(-cos(alpha2).*sin(phi2)+cos(phi2).*sin(alpha2).*sin(psi2))]; 

        %slow shear wave vectors 

        Ta1=[-cos(alpha3).*cos(r3-

theta3).*cos(psi3)+cos(psi3).^2.*csc(theta3).*sin(alpha3).^2.*sin(r3-theta3)+csc(theta3).*sin(r3-

theta3).*sin(psi3).^2]; 
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        Ta2=[-cos(psi3).*csc(theta3).*sin(r3-theta3).*sin(phi3).*sin(psi3)-cos(r3-theta3).*(-

cos(phi3).*sin(alpha3)+cos(alpha3).*sin(phi3).*sin(psi3))+cos(psi3).*csc(theta3).*sin(alpha3).*sin(

r3-theta3).*(cos(alpha3).*cos(phi3)+sin(alpha3).*sin(phi3).*sin(psi3))]; 

        Ta3=[-cos(phi3).*cos(psi3).*csc(theta3).*sin(r3-theta3).*sin(psi3)-cos(r3-

theta3).*(sin(alpha3).*sin(phi3)+cos(alpha3).*cos(phi3).*sin(psi3))+cos(psi3).*csc(theta3).*sin(alp

ha3).*sin(r3-theta3).*(-cos(alpha3).*sin(phi3)+cos(phi3).*sin(alpha3).*sin(psi3))]; 

        %Correct values for incidence angle=0 

        for q=1:length(t1) 

            if alpha1(q)==0 & psi1(q)==0 

                La1(q)=1;La2(q)=0;La3(q)=0; 

            end 

        end 

        %The coefficients (c) in order 

        %C11  C22  C33 C44  C55  C66  C12  C13  C23 

        %Compute Cardan's solution in terms of elastic stiffnesses (c) for longitudinal waves 

        LG11 = @ (c) c(1)*La1.^2 + c(6)*La2.^2 + c(5)*La3.^2; 

        LG22 = @ (c) c(6)*La1.^2 + c(2)*La2.^2 + c(4)*La3.^2; 

        LG33 = @ (c) c(5)*La1.^2 + c(4)*La2.^2 + c(3)*La3.^2; 

        LG12 = @ (c) La1.*La2.*(c(7)+c(6)); 

        LG13 = @ (c) La1.*La3.*(c(8)+c(5)); 

        LG23 = @ (c) La2.*La3.*(c(9)+c(4)); 

         

        Ldelta = @ (c) -LG11(c)-LG22(c)-LG33(c); 

        Lbeta = @ (c) -LG12(c).^2-LG13(c).^2-

LG23(c).^2+LG11(c).*LG22(c)+LG11(c).*LG33(c)+LG22(c).*LG33(c); 

        Lgamma = @ (c) -LG11(c).*LG22(c).*LG33(c)-

2*LG12(c).*LG13(c).*LG23(c)+LG11(c).*LG23(c).^2+LG22(c).*LG13(c).^2+LG33(c).*LG12(c).^2; 
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        La=@ (c) (Ldelta(c).^2)/3-Lbeta(c); 

        Lb=@ (c) Lgamma(c)-Ldelta(c).*Lbeta(c)/3+2*(Ldelta(c)/3).^3; 

         

        Lpsic = @(c) acos(-Lb(c)./(2*(La(c)/3).^(3/2))); 

         

        Vc1=@ (c) 2*cos(Lpsic(c)/3).*(La(c)/3).^(1/2)-Ldelta(c)/3; 

         

        %Compute Cardan's solution in terms of elastic stiffnesses (c) for fast shear waves 

        QG11 = @ (c) c(1)*Qa1.^2 + c(6)*Qa2.^2 + c(5)*Qa3.^2; 

        QG22 = @ (c) c(6)*Qa1.^2 + c(2)*Qa2.^2 + c(4)*Qa3.^2; 

        QG33 = @ (c) c(5)*Qa1.^2 + c(4)*Qa2.^2 + c(3)*Qa3.^2; 

        QG12 = @ (c) Qa1.*Qa2.*(c(7)+c(6)); 

        QG13 = @ (c) Qa1.*Qa3.*(c(8)+c(5)); 

        QG23 = @ (c) Qa2.*Qa3.*(c(9)+c(4)); 

         

        Qdelta = @ (c) -QG11(c)-QG22(c)-QG33(c); 

        Qbeta = @ (c) -QG12(c).^2-QG13(c).^2-

QG23(c).^2+QG11(c).*QG22(c)+QG11(c).*QG33(c)+QG22(c).*QG33(c); 

        Qgamma = @ (c) -QG11(c).*QG22(c).*QG33(c)-

2*QG12(c).*QG13(c).*QG23(c)+QG11(c).*QG23(c).^2+QG22(c).*QG13(c).^2+QG33(c).*QG12(c)

.^2; 

         

        Qa=@ (c) (Qdelta(c).^2)/3-Qbeta(c); 

        Qb=@ (c) Qgamma(c)-Qdelta(c).*Qbeta(c)/3+2*(Qdelta(c)/3).^3; 
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        Qpsic = @(c) acos(-Qb(c)./(2*(Qa(c)/3).^(3/2))); 

         

        Vc2=@ (c) 2*cos((Qpsic(c)-2*pi)/3).*(Qa(c)/3).^(1/2)-Qdelta(c)/3; 

                 

        %Compute Cardan's solution in terms of elastic stiffnesses (c) for slow shear waves 

        TG11 = @ (c) c(1)*Ta1.^2 + c(6)*Ta2.^2 + c(5)*Ta3.^2; 

        TG22 = @ (c) c(6)*Ta1.^2 + c(2)*Ta2.^2 + c(4)*Ta3.^2; 

        TG33 = @ (c) c(5)*Ta1.^2 + c(4)*Ta2.^2 + c(3)*Ta3.^2; 

        TG12 = @ (c) Ta1.*Ta2.*(c(7)+c(6)); 

        TG13 = @ (c) Ta1.*Ta3.*(c(8)+c(5)); 

        TG23 = @ (c) Ta2.*Ta3.*(c(9)+c(4)); 

         

        Tdelta = @ (c) -TG11(c)-TG22(c)-TG33(c); 

        Tbeta = @ (c) -TG12(c).^2-TG13(c).^2-

TG23(c).^2+TG11(c).*TG22(c)+TG11(c).*TG33(c)+TG22(c).*TG33(c); 

        Tgamma = @ (c) -TG11(c).*TG22(c).*TG33(c)-

2*TG12(c).*TG13(c).*TG23(c)+TG11(c).*TG23(c).^2+TG22(c).*TG13(c).^2+TG33(c).*TG12(c).^2

; 

         

        Ta=@ (c) (Tdelta(c).^2)/3-Tbeta(c); 

        Tb=@ (c) Tgamma(c)-Tdelta(c).*Tbeta(c)/3+2*(Tdelta(c)/3).^3; 

         

        Tpsic = @(c) acos(-Tb(c)./(2*(Ta(c)/3).^(3/2))); 

         

        Vc3=@ (c) 2*cos((Tpsic(c)+2*pi)/3).*(Ta(c)/3).^(1/2)-Tdelta(c)/3; 
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        %Combine the computed velocities for each wave 

        Vc=@ (c)[Vc1(c) Vc2(c) Vc3(c)]; 

        %Create function of difference between experimental and computed velocities 

        F=@ (c) lambda-Vc(c); 

        %For first stress level, user inputs initial values of C as a list 

        %For subsequent stresses, program uses previous solution x 

        if j==1 

            xo=input('input initial values for [C11 C22 C33 C44 C55 C66 C12 C13 C23]'); 

        else xo=x; 

        end 

        %Sets the lsqnonlin command to run LM method 

        options = optimset('LargeScale','off'); 

        %Minimize sum of squares of the deviations between experimental and Cardan's solution 

velocities using LM method 

        x=lsqnonlin(F,xo); 

        %store values in C table 

        %each row is for a different stress level 

        C(j,:)=x; 

    end 

    %Convert Pa to GPa 

    C=C/1000000000; 

    %Put values from completed C table into 6x6xstress array 

    for m=1:length(stress) 

        C6(1,1,m)=C(m,1); 

        C6(2,2,m)=C(m,2); 

        C6(3,3,m)=C(m,3); 

        C6(4,4,m)=C(m,4); 

        C6(5,5,m)=C(m,5); 
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        C6(6,6,m)=C(m,6); 

        C6(1,2,m)=C(m,7); 

        C6(1,3,m)=C(m,8); 

        C6(2,3,m)=C(m,9); 

        C6(2,1,m)=C(m,7); 

        C6(3,1,m)=C(m,8); 

        C6(3,2,m)=C(m,9); 

        %Solve for elastic compliances 

        %S = inverse C         

        S6(:,:,m) = inv(C6(:,:,m)); 

        %Store S values from 6x6xstress array in table 

        S(m,1)=S6(1,1,m); 

        S(m,2)=S6(2,2,m); 

        S(m,3)=S6(3,3,m); 

        S(m,4)=S6(4,4,m); 

        S(m,5)=S6(5,5,m); 

        S(m,6)=S6(6,6,m); 

        S(m,7)=S6(1,2,m); 

        S(m,8)=S6(1,3,m); 

        S(m,9)=S6(2,3,m); 

        end 

    %Compute damage variable 

    for p=1:length(stress) 

        D6(:,:,p)=1-C6(:,:,p)./C6(:,:,1); 

    end 

    %Compute off-diagonal damage terms 

    for k=1:length(stress) 

        for i=1:6 
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            for j=1:6 

                if i~=j 

                    D6(i,j,k)=(C6(i,j,1)-C6(i,j,k))./(C6(i,j,1)+sign(C6(i,j,1)-C6(i,j,k)).*(C6(i,i,1).*(1-

D(i,i,k)).*C6(j,j,1).*(1-D(j,j,k))).^(1/2)); 

                end 

            end 

        end 

    end 

    %Store damage terms in table D 

    for m=1:length(stress) 

        D(m,1)=D6(1,1,m); 

        D(m,2)=D6(2,2,m); 

        D(m,3)=D6(3,3,m); 

        D(m,4)=D6(4,4,m); 

        D(m,5)=D6(5,5,m); 

        D(m,6)=D6(6,6,m); 

        D(m,7)=D6(1,2,m); 

        D(m,8)=D6(1,3,m); 

        D(m,9)=D6(2,3,m); 

    end 

    %Compute Young's moduli, Shear moduli, Poisson's ratios 

    E1=1./S(:,1); 

    E2=1./S(:,2); 

    E3=1./S(:,3); 

     

    G23=1./S(:,4); 

    G13=1./S(:,5); 
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    G12=1./S(:,6); 

     

    pr12 = -E1.*S(:,7); 

    pr21 = -E2.*S(:,7); 

    pr13 = -E1.*S(:,8); 

    pr31 = -E3.*S(:,8); 

    pr23 = -E2.*S(:,9); 

    pr32 = -E3.*S(:,9); 

    %Display results 

    disp('     Stress     C11     C22     C33     C44     C55     C66     C12     C13     C23') 

    disp([stress' C]) 

    disp('     Stress     S11     S22     S33     S44     S55     S66     S12     S13     S23') 

    disp([stress' S]) 

    disp('     Stress      E1      E2      E3     G23     G13     G12    pr12    pr21    pr13    pr31    pr23    

pr32') 

    disp([stress' E1 E2 E3 G23 G13 G12 pr12 pr21 pr13 pr31 pr23 pr32]) 

     

        disp('For sample');disp(i);    

    plot(stress,C),legend('C11','C22','C33','C44','C55','C66','C12','C13','C23') 

    figure 

    plot(stress,S),legend('S11','S22','S33','S44','S55','S66','S12','S13','S23') 

    %Plot grid of elastic stiffnesses versus stress graphs 

    figure 

    subplot(331);plot(stress,C(:,1)),xlabel('Stress (MPa)'),ylabel('C11 (GPa)'); 

    subplot(332);plot(stress,C(:,2)),xlabel('Stress (MPa)'),ylabel('C22 (GPa)'); 

    subplot(333);plot(stress,C(:,3)),xlabel('Stress (MPa)'),ylabel('C33 (GPa)'); 

    subplot(334);plot(stress,C(:,4)),xlabel('Stress (MPa)'),ylabel('C44 (GPa)'); 
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    subplot(335);plot(stress,C(:,5)),xlabel('Stress (MPa)'),ylabel('C55 (GPa)'); 

    subplot(336);plot(stress,C(:,6)),xlabel('Stress (MPa)'),ylabel('C66 (GPa)'); 

    subplot(337);plot(stress,C(:,7)),xlabel('Stress (MPa)'),ylabel('C12 (GPa)'); 

    subplot(338);plot(stress,C(:,8)),xlabel('Stress (MPa)'),ylabel('C13 (GPa)'); 

    subplot(339);plot(stress,C(:,9)),xlabel('Stress (MPa)'),ylabel('C23 (GPa)'); 

    figure 

    %Plot grid of elastic compliances versus stress graphs 

    subplot(331);plot(stress,S(:,1)),xlabel('Stress (MPa)'),ylabel('S11 (GPa-1)'); 

    subplot(332);plot(stress,S(:,2)),xlabel('Stress (MPa)'),ylabel('S22 (GPa-1)'); 

    subplot(333);plot(stress,S(:,3)),xlabel('Stress (MPa)'),ylabel('S33 (GPa-1)'); 

    subplot(334);plot(stress,S(:,4)),xlabel('Stress (MPa)'),ylabel('S44 (GPa-1)'); 

    subplot(335);plot(stress,S(:,5)),xlabel('Stress (MPa)'),ylabel('S55 (GPa-1)'); 

    subplot(336);plot(stress,S(:,6)),xlabel('Stress (MPa)'),ylabel('S66 (GPa-1)'); 

    subplot(337);plot(stress,S(:,7)),xlabel('Stress (MPa)'),ylabel('S12 (GPa-1)'); 

    subplot(338);plot(stress,S(:,8)),xlabel('Stress (MPa)'),ylabel('S13 (GPa-1)'); 

    subplot(339);plot(stress,S(:,9)),xlabel('Stress (MPa)'),ylabel('S23 (GPa-1)'); 

    figure 

    %Plot grid of damage versus stress graphs 

    subplot(331);plot(stress,D(:,1)),xlabel('Stress (MPa)'),ylabel('D11'); 

    subplot(332);plot(stress,D(:,2)),xlabel('Stress (MPa)'),ylabel('D22'); 

    subplot(333);plot(stress,D(:,3)),xlabel('Stress (MPa)'),ylabel('D33'); 

    subplot(334);plot(stress,D(:,4)),xlabel('Stress (MPa)'),ylabel('D44'); 

    subplot(335);plot(stress,D(:,5)),xlabel('Stress (MPa)'),ylabel('D55'); 

    subplot(336);plot(stress,D(:,6)),xlabel('Stress (MPa)'),ylabel('D66'); 

    subplot(337);plot(stress,D(:,7)),xlabel('Stress (MPa)'),ylabel('D12'); 

    subplot(338);plot(stress,D(:,8)),xlabel('Stress (MPa)'),ylabel('D13'); 

    subplot(339);plot(stress,D(:,9)),xlabel('Stress (MPa)'),ylabel('D23');     

end 
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Appendix C 

Least Squares Solution using Rotation of Axes 

%This program uses the rotation of axes equation for fourth rank tensors 

%to develop and solve a system of linear equations with the nine unknown elastic constants 

%of an orthotropic composite 

 

%Valid for incident waves on 2-3 plane, plane of the sample 

%3 is the long axis, for unidirectional fiber composites 3 is the axis of fiber direction 

%1 is the out-of-plane axis 

%degrees of spin, tilt, rotation only valid up to 90 degrees 

  

N = input('Enter number of test specimens '); 

disp('Input a list of data as  [# # # #]'); 

for i = 1:N 

    disp('For sample');disp(i) 

    density = input('Input density of sample (g/cm^3) '); 

    density=1000*density;%Convert g/cm^3 to kg/m^3 

    h = input('Input sample thickness (mm) '); 

    h=h/1000;%Convert cm to m 

    To = input('Input reference time (sec) '); 

    Vo = input('Input velocity of incident wave (velocity in immersion medium)(m/s) '); 

    stress = input('Input a list of stress levels (MPA) '); 

    for j = 1:length(stress) 

        disp('For stress level');disp(stress(j)); 
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        disp('For principal planes only'); 

        disp('For measurements in the 1-2 plane, only tilt will be used'); 

        disp('For measurements in the 1-3 plane, only spin will be used'); 

         

        disp('For the longitudinal (quasi-longitudinal) waves:'); 

        psi1p = input('Input a list of degrees of spin (around 2 axis)(rad) '); 

        alpha1p = input('Input a list of degrees of tilt (around 3 axis)(rad) '); 

        t1p = input('Input a list of time readings for longitudinal waves (quasi-longitudinal 

waves)(sec) '); 

                 

        disp('For the slow transverse (shear) waves:'); 

        psi3p = input('Input a list of degrees of spin (around 2 axis)(rad) '); 

        alpha3p = input('Input a list of degrees of tilt (around 3 axis)(rad) '); 

        t3p = input('Input a list of time readings for transverse (shear) waves (sec) '); 

                 

        disp('For non-principal planes only'); 

                 

        disp('For the longitudinal (quasi-longitudinal) waves:'); 

        psi1np = input('Input a list of degrees of spin (around 2 axis)(rad) '); 

        alpha1np = input('Input a list of degrees of tilt (around 3 axis)(rad) '); 

        phi1np = input('Input a list of in-plane rotation angles (around 1 axis) (rad) '); 

        t1np = input('Input a list of time readings for longitudinal waves (quasi-longitudinal 

waves)(sec) '); 

                 

        disp('For the fast transverse (shear) waves:'); 
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        psi2 = input('Input a list of degrees of spin (around 2 axis)(rad) '); 

        alpha2 = input('Input a list of degrees of tilt (around 3 axis)(rad) '); 

        phi2 = input('Input a list of in-plane rotation angles (around 1 axis) (rad) '); 

        t2 = input('Input a list of time readings for transverse (shear) waves with polarization out of 

the incident plane(sec) '); 

                 

        disp('For the slow transverse (shear) waves:'); 

        psi3np = input('Input a list of degrees of spin (around 2 axis)(rad) '); 

        alpha3np = input('Input a list of degrees of tilt (around 3 axis)(rad) '); 

        phi3np = input('Input a list of in-plane rotation angles (around 1 axis) (rad) '); 

        t3np = input('Input a list of time readings for transverse (shear) waves with polarization in the 

incident plane(sec) '); 

         

        t1=[t1p t1np]; 

        t3=[t3p t3np]; 

         

        psi1=[psi1p psi1np]; 

        alpha1=[alpha1p alpha1np]; 

        phi1=phi1np; 

         

        psi3=[psi3p psi3np]; 

        alpha3=[alpha3p alpha3np]; 

        phi3=phi3np; 

         

        %Calculate the time difference for each wave 

        T1 = To-t1; 

        T2 = To-t2; 
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        T3 = To-t3; 

        %Calculate the incidence angle, theta, for each wave 

        theta1 =acos(cos(psi1).*cos(alpha1)); 

        theta2 =acos(cos(psi2).*cos(alpha2)); 

        theta3 =acos(cos(psi3).*cos(alpha3)); 

        %Calculate the refraction angle, r, for each wave 

        r1 =atan(sin(theta1)./(cos(theta1)-(T1*Vo/h))); 

        r2 =atan(sin(theta2)./(cos(theta2)-(T2*Vo/h))); 

        r3 =atan(sin(theta3)./(cos(theta3)-(T3*Vo/h))); 

        %Calculate phase velocity of each wave, m/s 

        V1 =Vo*sin(r1)./sin(theta1); 

        V2 =Vo*sin(r2)./sin(theta2); 

        V3 =Vo*sin(r3)./sin(theta3); 

         

        %For an incidence angle of zero (wave on 1 axis), correct values of V, r, and theta 

        for k=1:length(t1) 

            if psi1(k)==0 & alpha1(k)==0 

                V1(k)=Vo*h/(h-Vo*T1(k)); 

                r1(k)=0; 

                theta1(k)=0; 

            end 

        end 

         

        %Combine velocities, square and multiply by density 

        V=[V1 V2 V3]; 

        lambda = (density*V.*V)'; 
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        %List of rotation matrix values for longitudinal waves 

        La11=-cos(r1-theta1).*cos(psi1).^2.*csc(theta1).*sin(alpha1).^2-

cos(alpha1).*cos(psi1).*sin(r1-theta1)-cos(r1-theta1).*csc(theta1).*sin(psi1).^2; 

        La12=cos(r1-theta1).*cos(psi1).*csc(theta1).*sin(phi1).*sin(psi1)-sin(r1-theta1).*(-

cos(phi1).*sin(alpha1)+cos(alpha1).*sin(phi1).*sin(psi1))-cos(r1-

theta1).*cos(psi1).*csc(theta1).*sin(alpha1).*(cos(alpha1).*cos(phi1)+sin(alpha1).*sin(phi1).*sin(p

si1)); 

        La13=cos(r1-theta1).*cos(phi1).*cos(psi1).*csc(theta1).*sin(psi1)-sin(r1-

theta1).*(sin(alpha1).*sin(phi1)+cos(alpha1).*cos(phi1).*sin(psi1))-cos(r1-

theta1).*cos(psi1).*csc(theta1).*sin(alpha1).*(-

cos(alpha1).*sin(phi1)+cos(phi1).*sin(alpha1).*sin(psi1)); 

        La21=0; 

        

La22=cos(psi1).^2.*csc(theta1).*sin(alpha1).*sin(phi1)+csc(theta1).*sin(psi1).*(cos(alpha1).*cos(

phi1)+sin(alpha1).*sin(phi1).*sin(psi1)); 

        La23=cos(phi1).*cos(psi1).^2.*csc(theta1).*sin(alpha1)+csc(theta1).*sin(psi1).*(-

cos(alpha1).*sin(phi1)+cos(phi1).*sin(alpha1).*sin(psi1)); 

        La31=-cos(alpha1).*cos(r1-

theta1).*cos(psi1)+cos(psi1).^2.*csc(theta1).*sin(alpha1).^2.*sin(r1-theta1)+csc(theta1).*sin(r1-

theta1).*sin(psi1).^2; 

        La32=-cos(psi1).*csc(theta1).*sin(r1-theta1).*sin(phi1).*sin(psi1)-cos(r1-theta1).*(-

cos(phi1).*sin(alpha1)+cos(alpha1).*sin(phi1).*sin(psi1))+cos(psi1).*csc(theta1).*sin(alpha1).*sin(

r1-theta1).*(cos(alpha1).*cos(phi1)+sin(alpha1).*sin(phi1).*sin(psi1)); 

        La33=-cos(phi1).*cos(psi1).*csc(theta1).*sin(r1-theta1).*sin(psi1)-cos(r1-

theta1).*(sin(alpha1).*sin(phi1)+cos(alpha1).*cos(phi1).*sin(psi1))+cos(psi1).*csc(theta1).*sin(alp

ha1).*sin(r1-theta1).*(-cos(alpha1).*sin(phi1)+cos(phi1).*sin(alpha1).*sin(psi1)); 

        %List of rotation matrix values for out-of-plane polarization waves 
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        Qa11=-cos(r2-theta2).*cos(psi2).^2.*csc(theta2).*sin(alpha2).^2-

cos(alpha2).*cos(psi2).*sin(r2-theta2)-cos(r2-theta2).*csc(theta2).*sin(psi2).^2; 

        Qa12=cos(r2-theta2).*cos(psi2).*csc(theta2).*sin(phi2).*sin(psi2)-sin(r2-theta2).*(-

cos(phi2).*sin(alpha2)+cos(alpha2).*sin(phi2).*sin(psi2))-cos(r2-

theta2).*cos(psi2).*csc(theta2).*sin(alpha2).*(cos(alpha2).*cos(phi2)+sin(alpha2).*sin(phi2).*sin(p

si2)); 

        Qa13=cos(r2-theta2).*cos(phi2).*cos(psi2).*csc(theta2).*sin(psi2)-sin(r2-

theta2).*(sin(alpha2).*sin(phi2)+cos(alpha2).*cos(phi2).*sin(psi2))-cos(r2-

theta2).*cos(psi2).*csc(theta2).*sin(alpha2).*(-

cos(alpha2).*sin(phi2)+cos(phi2).*sin(alpha2).*sin(psi2)); 

        Qa21=0; 

        

Qa22=cos(psi2).^2.*csc(theta2).*sin(alpha2).*sin(phi2)+csc(theta2).*sin(psi2).*(cos(alpha2).*cos(

phi2)+sin(alpha2).*sin(phi2).*sin(psi2)); 

        Qa23=cos(phi2).*cos(psi2).^2.*csc(theta2).*sin(alpha2)+csc(theta2).*sin(psi2).*(-

cos(alpha2).*sin(phi2)+cos(phi2).*sin(alpha2).*sin(psi2)); 

        Qa31=-cos(alpha2).*cos(r2-

theta2).*cos(psi2)+cos(psi2).^2.*csc(theta2).*sin(alpha2).^2.*sin(r2-theta2)+csc(theta2).*sin(r2-

theta2).*sin(psi2).^2; 

        Qa32=-cos(psi2).*csc(theta2).*sin(r2-theta2).*sin(phi2).*sin(psi2)-cos(r2-theta2).*(-

cos(phi2).*sin(alpha2)+cos(alpha2).*sin(phi2).*sin(psi2))+cos(psi2).*csc(theta2).*sin(alpha2).*sin(

r2-theta2).*(cos(alpha2).*cos(phi2)+sin(alpha2).*sin(phi2).*sin(psi2)); 

        Qa33=-cos(phi2).*cos(psi2).*csc(theta2).*sin(r2-theta2).*sin(psi2)-cos(r2-

theta2).*(sin(alpha2).*sin(phi2)+cos(alpha2).*cos(phi2).*sin(psi2))+cos(psi2).*csc(theta2).*sin(alp

ha2).*sin(r2-theta2).*(-cos(alpha2).*sin(phi2)+cos(phi2).*sin(alpha2).*sin(psi2)); 

        %List of rotation matrix values for in-plane polarization waves 

        Ta11=-cos(r3-theta3).*cos(psi3).^2.*csc(theta3).*sin(alpha3).^2-

cos(alpha3).*cos(psi3).*sin(r3-theta3)-cos(r3-theta3).*csc(theta3).*sin(psi3).^2; 
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        Ta12=cos(r3-theta3).*cos(psi3).*csc(theta3).*sin(phi3).*sin(psi3)-sin(r3-theta3).*(-

cos(phi3).*sin(alpha3)+cos(alpha3).*sin(phi3).*sin(psi3))-cos(r3-

theta3).*cos(psi3).*csc(theta3).*sin(alpha3).*(cos(alpha3).*cos(phi3)+sin(alpha3).*sin(phi3).*sin(p

si3)); 

        Ta13=cos(r3-theta3).*cos(phi3).*cos(psi3).*csc(theta3).*sin(psi3)-sin(r3-

theta3).*(sin(alpha3).*sin(phi3)+cos(alpha3).*cos(phi3).*sin(psi3))-cos(r3-

theta3).*cos(psi3).*csc(theta3).*sin(alpha3).*(-

cos(alpha3).*sin(phi3)+cos(phi3).*sin(alpha3).*sin(psi3)); 

        Ta21=0; 

        

Ta22=cos(psi3).^2.*csc(theta3).*sin(alpha3).*sin(phi3)+csc(theta3).*sin(psi3).*(cos(alpha3).*cos(

phi3)+sin(alpha3).*sin(phi3).*sin(psi3)); 

        Ta23=cos(phi3).*cos(psi3).^2.*csc(theta3).*sin(alpha3)+csc(theta3).*sin(psi3).*(-

cos(alpha3).*sin(phi3)+cos(phi3).*sin(alpha3).*sin(psi3)); 

        Ta31=-cos(alpha3).*cos(r3-

theta3).*cos(psi3)+cos(psi3).^2.*csc(theta3).*sin(alpha3).^2.*sin(r3-theta3)+csc(theta3).*sin(r3-

theta3).*sin(psi3).^2; 

        Ta32=-cos(psi3).*csc(theta3).*sin(r3-theta3).*sin(phi3).*sin(psi3)-cos(r3-theta3).*(-

cos(phi3).*sin(alpha3)+cos(alpha3).*sin(phi3).*sin(psi3))+cos(psi3).*csc(theta3).*sin(alpha3).*sin(

r3-theta3).*(cos(alpha3).*cos(phi3)+sin(alpha3).*sin(phi3).*sin(psi3)); 

        Ta33=-cos(phi3).*cos(psi3).*csc(theta3).*sin(r3-theta3).*sin(psi3)-cos(r3-

theta3).*(sin(alpha3).*sin(phi3)+cos(alpha3).*cos(phi3).*sin(psi3))+cos(psi3).*csc(theta3).*sin(alp

ha3).*sin(r3-theta3).*(-cos(alpha3).*sin(phi3)+cos(phi3).*sin(alpha3).*sin(psi3)); 

         

        %The coefficients in order 

        %C11  C22  C33 C44  C55  C66  C12  C13  C23 
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        %C'33 

        A1=[La31.^4; 

            La32.^4; 

            La33.^4; 

            4.*La32.^2.*La33.^2; 

            4.*La31.^2.*La33.^2; 

            4.*La31.^2.*La32.^2; 

            2.*La31.^2.*La32.^2; 

            2.*La31.^2.*La33.^2; 

            2.*La32.^2.*La33.^2]; 

         

        %C'44 

        A2=[Qa21.^2.*Qa31.^2; 

            Qa22.^2.*Qa32.^2; 

            Qa23.^2.*Qa33.^2; 

            (Qa23.*Qa32+Qa22.*Qa33).^2; 

            (Qa23.*Qa31+Qa21.*Qa33).^2; 

            (Qa22.*Qa31+Qa21.*Qa32).^2; 

            2.*Qa21.*Qa22.*Qa31.*Qa32; 

            2.*Qa21.*Qa23.*Qa31.*Qa33; 

            2.*Qa22.*Qa23.*Qa32.*Qa33]; 

         

        %C'55 

        A3=[Ta11.^2.*Ta31.^2; 

            Ta12.^2.*Ta32.^2; 

            Ta13.^2.*Ta33.^2; 

            (Ta13.*Ta32+Ta12.*Ta33).^2; 
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            (Ta13.*Ta31+Ta11.*Ta33).^2; 

            (Ta12.*Ta31+Ta11.*Ta32).^2; 

            2.*Ta11.*Ta12.*Ta31.*Ta32; 

            2.*Ta11.*Ta13.*Ta31.*Ta33; 

            2.*Ta12.*Ta13.*Ta32.*Ta33]; 

        %Correct values in A1 for incidence angle of zero 

        for k=1:length(lambda) 

            if psi(k)==0 & alpha(k)==0 

                A1(:,k)=0; 

                A1(1,k)=1; 

            end 

        end 

        %Combines the transpose of A1,A2,A3 into one matrix A 

        A=[A1';A2';A3']; 

                 

        %Solve for  %C11  C22  C33 C44  C55  C66  C12  C13  C23 in the least squares sense 

        X=A\lambda; 

        %store values in C table 

        %each row is for a different stress level 

        C(j,:)=X'; 

    end 

    %Convert Pa to GPa 

    C=C/1000000000; 

    %Put values from completed C table into 6x6xstress array 

    for m=1:length(stress) 

        C6(1,1,m)=C(m,1); 

        C6(2,2,m)=C(m,2); 



 

 95 

        C6(3,3,m)=C(m,3); 

        C6(4,4,m)=C(m,4); 

        C6(5,5,m)=C(m,5); 

        C6(6,6,m)=C(m,6); 

        C6(1,2,m)=C(m,7); 

        C6(1,3,m)=C(m,8); 

        C6(2,3,m)=C(m,9); 

        C6(2,1,m)=C(m,7); 

        C6(3,1,m)=C(m,8); 

        C6(3,2,m)=C(m,9); 

        %Solve for elastic compliances 

        %S = inverse C 

        S6(:,:,m) = inv(C6(:,:,m)); 

        %Store S values from 6x6xstress array in table 

        S(m,1)=S6(1,1,m); 

        S(m,2)=S6(2,2,m); 

        S(m,3)=S6(3,3,m); 

        S(m,4)=S6(4,4,m); 

        S(m,5)=S6(5,5,m); 

        S(m,6)=S6(6,6,m); 

        S(m,7)=S6(1,2,m); 

        S(m,8)=S6(1,3,m); 

        S(m,9)=S6(2,3,m);      

    end 

    %Compute damage variable 

    for p=1:length(stress) 

        D6(:,:,p)=1-C6(:,:,p)./C6(:,:,1); 

    end 
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    %Compute off-diagonal damage terms 

    for k=1:length(stress) 

        for i=1:6 

            for j=1:6 

                if i~=j 

                    D6(i,j,k)=(C6(i,j,1)-C6(i,j,k))./(C6(i,j,1)+sign(C6(i,j,1)-C6(i,j,k)).*(C6(i,i,1).*(1-

D(i,i,k)).*C6(j,j,1).*(1-D(j,j,k))).^(1/2)); 

                end 

            end 

        end 

    end 

    %Store damage terms in table D 

    for m=1:length(stress) 

        D(m,1)=D6(1,1,m); 

        D(m,2)=D6(2,2,m); 

        D(m,3)=D6(3,3,m); 

        D(m,4)=D6(4,4,m); 

        D(m,5)=D6(5,5,m); 

        D(m,6)=D6(6,6,m); 

        D(m,7)=D6(1,2,m); 

        D(m,8)=D6(1,3,m); 

        D(m,9)=D6(2,3,m); 

    end 

    %Compute Young's moduli, Shear moduli, Poisson's ratios 

    E1=1./S(:,1); 

    E2=1./S(:,2); 

    E3=1./S(:,3); 
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    G23=1./S(:,4); 

    G13=1./S(:,5); 

    G12=1./S(:,6); 

     

    pr12 = -E1.*S(:,7); 

    pr21 = -E2.*S(:,7); 

    pr13 = -E1.*S(:,8); 

    pr31 = -E3.*S(:,8); 

    pr23 = -E2.*S(:,9); 

    pr32 = -E3.*S(:,9); 

    %Display results 

    disp('     Stress     C11     C22     C33     C44     C55     C66     C12     C13     C23') 

    disp([stress' C]) 

    disp('     Stress     S11     S22     S33     S44     S55     S66     S12     S13     S23') 

    disp([stress' S]) 

    disp('     Stress      E1      E2      E3     G23     G13     G12    pr12    pr21    pr13    pr31    pr23    

pr32') 

    disp([stress' E1 E2 E3 G23 G13 G12 pr12 pr21 pr13 pr31 pr23 pr32]) 

         

    disp('For sample');disp(i) 

     

    plot(stress,C),legend('C11','C22','C33','C44','C55','C66','C12','C13','C23') 

    figure 

    plot(stress,S),legend('S11','S22','S33','S44','S55','S66','S12','S13','S23') 

    %Plot grid of elastic stiffnesses versus stress graphs 

    figure 
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    subplot(331);plot(stress,C(:,1)),xlabel('Stress (MPa)'),ylabel('C11 (GPa)'); 

    subplot(332);plot(stress,C(:,2)),xlabel('Stress (MPa)'),ylabel('C22 (GPa)'); 

    subplot(333);plot(stress,C(:,3)),xlabel('Stress (MPa)'),ylabel('C33 (GPa)'); 

    subplot(334);plot(stress,C(:,4)),xlabel('Stress (MPa)'),ylabel('C44 (GPa)'); 

    subplot(335);plot(stress,C(:,5)),xlabel('Stress (MPa)'),ylabel('C55 (GPa)'); 

    subplot(336);plot(stress,C(:,6)),xlabel('Stress (MPa)'),ylabel('C66 (GPa)'); 

    subplot(337);plot(stress,C(:,7)),xlabel('Stress (MPa)'),ylabel('C12 (GPa)'); 

    subplot(338);plot(stress,C(:,8)),xlabel('Stress (MPa)'),ylabel('C13 (GPa)'); 

    subplot(339);plot(stress,C(:,9)),xlabel('Stress (MPa)'),ylabel('C23 (GPa)'); 

    figure 

    %Plot grid of elastic compliances versus stress graphs 

    subplot(331);plot(stress,S(:,1)),xlabel('Stress (MPa)'),ylabel('S11 (GPa-1)'); 

    subplot(332);plot(stress,S(:,2)),xlabel('Stress (MPa)'),ylabel('S22 (GPa-1)'); 

    subplot(333);plot(stress,S(:,3)),xlabel('Stress (MPa)'),ylabel('S33 (GPa-1)'); 

    subplot(334);plot(stress,S(:,4)),xlabel('Stress (MPa)'),ylabel('S44 (GPa-1)'); 

    subplot(335);plot(stress,S(:,5)),xlabel('Stress (MPa)'),ylabel('S55 (GPa-1)'); 

    subplot(336);plot(stress,S(:,6)),xlabel('Stress (MPa)'),ylabel('S66 (GPa-1)'); 

    subplot(337);plot(stress,S(:,7)),xlabel('Stress (MPa)'),ylabel('S12 (GPa-1)'); 

    subplot(338);plot(stress,S(:,8)),xlabel('Stress (MPa)'),ylabel('S13 (GPa-1)'); 

    subplot(339);plot(stress,S(:,9)),xlabel('Stress (MPa)'),ylabel('S23 (GPa-1)'); 

    figure 

    %Plot grid of damage versus stress graphs 

    subplot(331);plot(stress,D(:,1)),xlabel('Stress (MPa)'),ylabel('D11'); 

    subplot(332);plot(stress,D(:,2)),xlabel('Stress (MPa)'),ylabel('D22'); 

    subplot(333);plot(stress,D(:,3)),xlabel('Stress (MPa)'),ylabel('D33'); 

    subplot(334);plot(stress,D(:,4)),xlabel('Stress (MPa)'),ylabel('D44'); 

    subplot(335);plot(stress,D(:,5)),xlabel('Stress (MPa)'),ylabel('D55'); 

    subplot(336);plot(stress,D(:,6)),xlabel('Stress (MPa)'),ylabel('D66'); 
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    subplot(337);plot(stress,D(:,7)),xlabel('Stress (MPa)'),ylabel('D12'); 

    subplot(338);plot(stress,D(:,8)),xlabel('Stress (MPa)'),ylabel('D13'); 

    subplot(339);plot(stress,D(:,9)),xlabel('Stress (MPa)'),ylabel('D23');     

end 


