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THESIS ABSTRACT
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Chad Matthew Spurlock

Master of Science, December 15, 2006
(B.S., Mathematics, Mississippi State University03)

110 Typed Pages
Directed by Mary L. Hughes

MATLAB programs were developed to compute the @laginstants and damage
of ceramic matrix composites using ultrasonic wspeed measurements. The matrix of
elastic stiffnesses, C, relates the material stseand strains. The ultrasonic wave
velocities are related to the elastic constantsuthin the Christoffel equation. The
immersion ultrasonic wave speed measurement mé¢iiwtbeen used extensively to
determine elastic constants of anisotropic medli@ae computer programs contained
herein are designed to recover the elastic stifeeand damage magnitudes for materials
of orthotropic symmetry (i.e. having nine indepemidelastic stiffnesses) from data
generated from the ultrasonic wave speed measuteme&he elasticity matrix, C, is
recovered using three methods: minimization ofiélast-squares of the Christoffel
eqguation, minimization of the sum of squares ofdbeiations between experimental

velocities and the solution of the Christoffel etjioia, and use of the rotation of axes
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equation for fourth-order tensors. Damage is defineghe macroscopic sense as the

normalized variation of the elastic stiffnessesarridading.
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CHAPTER I
INTRODUCTION

1.1 Background

Composite materials hold great promise for fuitractural applications. They
are very attractive for their high strength-to-weigatio but also exhibit many other
desirable characteristics, such as heat resistart@ardness. Composite materials are
composed of two components: the reinforcementla@dnatrix. The reinforcement
provides the load carrying capacity for the comfgoand in many cases is in the form of
extremely high strength fibers. The matrix ser@es bond for the reinforcement and
transfers stresses between fibers. Both the matidxfibers may be metallic, polymeric,
or ceramic; ceramic matrix composites are a reditivecent development in the
composites field (Chawla 2003) and are the mainpmmite material of interest in this
study. The use of composite materials for stradtapplications has increased greatly in
the last decade; however, for composite matemaktetimplemented in structural
applications with confidence, their behavior unid@ding must be studied more closely.

Damage develops in composite materials througdriaty of mechanisms, such
as matrix cracking, fiber pullout, and fiber-matdgbonding. These mechanisms
increase the toughness of composite materialgpftheess by which this occurs will be
discussed in Chapter 2), which are often combinataf extremely strong but brittle

materials. The development of damage negativédcts the values of the elastic



constants of the composite, making a complete getgor of material properties over a
range of stresses crucial for design.

Ultrasonic testing methods have been used widetietermine the elastic
constants of materials (Aristegui and Baste 199@udhtachi et al. 2004, Rokhlin and
Wang 1992). The advantages of these methods iadtional tensile and flexure tests
are that ultrasonic tests are nondestructive aaickiie full set of elastic constants can be
determined from a single sample, which is espsaciaiportant for composites whose
properties may vary significantly due to manufactyirregularities.

1.2 Objective

In this work, three MATLAB programs have been deped to compute the
amount of damage and the elastic stiffnesses feenmaks with orthotropic or higher
(fewer independent elastic constants) symmetrygudata collected from a one-way
through-transmission ultrasonic test conductedemtiié specimen is simultaneously
being subjected to uniaxial tension. The usertmpime readings, applied stress levels,
and orientation of the sample; in return, the paogcalculates the elastic stiffnesses,
elastic compliances, damage values, and pertinatdrial constants. The values are
recovered using three methods: minimization ofi¢last-squares of the Christoffel
equation (Achenbach 1973), minimization of the safrequares of the deviations
between experimental velocities and the solutidriee Christoffel equation, and use of

the rotation of axes equation for fourth-order teas



CHAPTER I
LITERATURE REVIEW
2.1 Composite M aterials
A composite material is composed of two or mordirtis components, the
reinforcement and the matrix. Each constituent bb@mjniomogeneous, but the composite
material is macroscopically heterogeneous (Sulld@y). The reinforcement can be
distributed throughout the matrix as either pagsabr fibers; several reinforcement
schemes are shown in Figure 2.1. Typically, theedsht components of a composite can

be distinguished visually (Jones 1999).
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Figure 2.1 Types of reinforcement in composites 1(\&@1992).

Particulate composite materials are composedreéttdimensional particles
suspended in a matrix. Particles with a principsailo-dimensional geometry are called

“flakes” or “platelets” (Jones 1999). Fibrous ifeircement may exist as either

3



continuous or discontinuous strands, and continfibess may be oriented in any
direction, although unidirectional fibers are thipa most often studied for structural
applications (Suhling 2004). Discontinuous fibetisp called “whiskers” or “short

fibers”, are capable of higher strengths than lodogrs (Jones 1999), but the strength of a
fiber is used only if it is aligned in the direatiof tensile loading (Wachtman 1989).

The reinforcement and matrix constituents of a posite material can be
metallic, polymeric, or ceramic. Composites arsagwnly classified according to their
matrix material. Three general classificationg@iposite materials are polymer matrix
composites (PMCs), metal matrix composites (MM@s}] ceramic matrix composites
(CMCs). Of these, ceramic matrix composites agentlost recent entrants into the field
of composites (Chawla 2003).

The main advantage of using composite materidlsaitsthey can be designed to
meet specific design needs. If well-designed,rapmmsite exhibits qualities of each of its
constituents as well as unique qualities neitheens possesses alone. Material
characteristics that may be improved by formingimgosite are strength, stiffness,
corrosion resistance, wear resistance, strengtetght ratios, fatigue life, extreme
temperature response, thermal conductivity, accaigbroperties, crack (fracture)
resistance, cost, and ease of fabrication. Thm,fetructural arrangement, material
properties, and interactions of a composite’s ¢tuesits determine the behavior and
properties of that composite material (Suhling 2004

As mentioned previously, ceramic matrix compositefine a class of composite
materials. Ceramics are chemically stable, inagganystalline, non-metallic
compounds (Warren 1992). Ceramic materials areates for their high strength and

4



hardness, low density, and high resistance to ate@syiwear, and heat, but they are
limited by their brittleness, or low toughness, gfhmakes ceramic materials highly
sensitive to flaws. The primary goal of using cei@materials in composite form is to
retain the attractive qualities while increasing tracture toughness (Chawla 2003).
Improvements in processing have reduced the siddéraquency of defects in ceramics,
but certain features of composite materials, ssdhoaindaries between constituents, act
as flaws. Furthermore, defects formed during serweaken brittle materials (Warren
1992). Some specific toughening mechanisms acthieyentroducing fiber
reinforcement to a ceramic material are crack dafig, fiber bridging, fiber pullout,
microcracking, and debonding at the fiber/matriberface (Chawla 2003). These

processes are illustrated in Figure 2.2.

%@NG (b) PULL-OUT

>§
o ~
(c) DEFLECTION (d) MICROCRACKING &

Figure 2.2 Toughening mechanisms in composites (@er992).




For a fiber reinforced composite material, failgenerally occurs by cracking
and subsequent failure of the matrix followed biufa of the fibers. In many instances,
a developing crack may be deflected around a regimfg strand rather than pass through
the fiber. This type of crack deflection produeesapparent toughness increase by
reducing the stress intensity at the crack tip.

As cracks grow in the matrix, the stronger fibemain intact and bridge the gaps
in the matrix. Fiber bridging allows the contindedding of the composite even after
matrix failure. The energy expended in pullingkeef from the matrix can increase the
overall toughness of the composite material. Bnddibers that have fractured close to
a crack will pull out from the matrix rather thamadture again (Warren 1992). The
greater the fiber pull-out length, the greaterghergy absorbed by the composite.

A zone of microcracks may form ahead of a growiragk. This area of
microcracks contributes to an overall toughneseesse by forming a zone of lower
elastic modulus and absorbing strain release enérgybe effective, microcrack zones
should be restricted to individual sites in the posite in order to avoid microcrack
linkage (Warren 1992).

Characteristics of the bond between the fibersthadnatrix also determine the
mechanical behavior of composite materials. Ifitherfacial bond between the matrix
and the fiber is sufficiently strong, a crack vptbpagate through a fiber with little
obstruction rather than traveling around it (Wacmm989). Debonding of the fiber and
matrix is an energy-dissipating mechanism that dempnts processes like crack

deflection and fiber pullout, leading to an ovetalighness increase in the composite.



2.2 Specific Types of Ceramic Matrix Composite Materials; Applications

Structural ceramics are high performance ceranick as oxides, nitrides, and
carbides of silicon, aluminum, titanium, and zireon (Chawla 2003). Tables 2.1, 2.2,
and 2.3 list properties of materials that are saited for ceramic matrix materials,
important ceramic reinforcements, and example®idroic fiber/ceramic matrix
composites, respectively. The most common woverCE€Mse carbon (C) fibers or
silicon carbide (SiC) fibers. Carbon fibers greathprove a composite’s toughness, but
their capacity is limited at high temperatures bBpdorrosive or oxidizing environments.
Silicon carbide fibers are more resistant to oxataaind can be used at higher
temperatures than carbon fibers (Wachtman 198%)e woven fiber-matrix

combinations that have been investigated the mesteC, C-SiC, and SiC-SiC.

Table 2.1 Properties of some high performance desa(@hawla 2003).

Material Young's Poisson's Ratio Coefficient of
Modulus E v Thermal Expansion
(GPa) a (10° /°K)
SiC 420 0.22 4
Al,O3 380 0.25 8
Cordierite 130 0.25 2
Mullite 215 0.25 4
Sodalime glass 70 0.23 9

Table 2.2 Some important ceramic reinforcementa{@ 2003).

Particle Sic, TiC, AIO3
Discontinuous Fibers
(a) Whiskers Sic, TiB2, AD;
(b) Short Fibers Glass, A3, SIC, (AbOs+SiOy),

vapor grown carbon fibers

Continuous Fibers

(a) Oxide AbO3, (A|203+Si02), ZrO;,
silica-based glasses
(b) Nonoxide B, C, SiC, g4, BN




Table 2.3 Examples of ceramic/ceramic compositear(§v 1992).
Composite type Matrix-Reinforcement
Particulate AlOs-ZrO,
Al,05-TiC
Al,0O3-SiC
SiC-TiB;
SigN4-TiC
Si3N4-Zr02
Platelets AJOs-SiC
SigN4-SiC
Short random fibers (Whiskers) A)s-SiC
SigN4-SiC
Long, parallel fibers Glass-C
Glass-SiC
Cross-plied Glass-C
Glass-SiC
SiC-SiC
Woven Cc-C
SiC-SiC

CMCs are most valued for their high temperaturengjth and performance
capabilities as well as for their wear resistatwarfen 1992), and they are studied for
applications in spacecraft programs as well agnidusion in fighter planes, missiles,
and rockets (Chawla 2003). Low density, high gitercomposites are very often used in
numerous aerospace applications in which high gtheto-weight ratios must be
achieved. Non-aerospace applications includergutbol inserts, wear parts in
machinery, nozzles, valve seals, and bearingser@es of ceramic materials include
non-structural applications, such as thermal insrgWarren 1992).

2.3 Mechanical Behavior

A composite material may be composed of homogenemustituents, but it is

macroscopically heterogeneous. The material ptiggesf a homogeneous and isotropic

material are independent of both position in théyoand orientation at a point in the
8



body. Most composite materials are heterogenandsnisotropic, or nonisotropic.
The material properties depend on position anchtaten of the fibers in the body and

on orientation with respect to load applicatiomn@® 1999).

Stress @) and straing) components at a point in a body can be repreddayte

second-rank tensors, as follows:

=0 0Opn 0Oy, (2.1)

& € i3
E=|Ey Epn &y (2.2)
€31 €3 €33

For composite materials, the directions 1, 2, anelbBesented by the subscripts
correspond to the Cartesian coordinate directipgsandz. From Hooke’s law, each
stress component is proportional to each strainpoom@nt. In equation form, the
constitutive relationships between stress andrstiag expressed as:
Oy = Cijkl‘gkl J (2.3)
£ =SS0y (2.4)
wherei, j, k1 =1, 2, or 3,

Cyu Is the matrix of elastic stiffnesses, and

S

1S the matrix of elastic compliances.

Both C and S are fourth-rank tensors, and, asgbat®ns stand, each has eighty-one

terms.



Due to the symmetry of the stress and strain copis @, =0, £, =¢;), the

maximum number of independent stiffnesses and damg#s is reduced to thirty-six.

Through energy arguments, the number is furtharaed to twenty-one. Thus, in four

subscript notation for botlt;,, andS,,, ij =ji, kl =1k, andijkl =kKlij. It is more

convenient to use contracted notation:

0,=C,¢,,
£, =5,0,,

whereq,r =1, 2, 3, 4, 5, or 6 and correspondji&l = 11, 22, 33, 23, 13, or 12.

In expanded form:

0, Cu Cp Ci Cyu Cpi Cy e
0, Cio Cp Gy Cys Cyl €
O3 - Cis Cay Gy Gyl &4
g, Cu Cis Cul|&, ’
Os Sym Gs Gl |€s
O L Cos | |6
& _811 S S Sy S5 S | g,
& Sy Si Su S Sk |0
&3 - S Sy Sk S0
& Su Sis Sus | | T4
&s Sym S5 S| |05
&g L S66 1%

(2.5)

(2.6)

2.7)

(2.8)

The physical interpretation of the components efdbmpliance matrix is as follows:

s Si1, S, and Ssrelate an extensional stress in one coordinagetilin to an

extensional strain in the same coordinate direcaod §q = 1/E;, where Eis the

Young's Modulus in the direction.

10



S, Si3, and 3 relate an extensional strain to a perpendicultaresxonal stress; this
relationship is called extension-extension couplany G = v,/ E = v / Ey, where
Vqr IS Poisson’s ratio in ther plane.

Sis, Sier 4, S8, S34, and s relate an extensional strain to a shear stretfeisame
plane, also called shear-extension coupling.

Si4, S5, and g relate an extensional strain to a shear streaperpendicular plane;
also called shear-extension coupling.

Su, S5, and Qs relate a shear strain to a shear stress in the plame, and @ = 1/G,

where G is the shear modulus in thglane.

Su5, Su6, and G relate a shear strain to a shear stress in andiquéar plane, also

called shear-shear coupling (Hearmon 1961).

2.4 Typesof Material Symmetry

As previously stated, the maximum number of indeleait elastic constants is

twenty-one. This number is reduced if the matdrésl symmetry elements. There are

thirty-two classes of symmetry based on three tyfesymmetry: planes of reflection

symmetry, pure rotation axes, and axes of rotargrgion. These operations are not

necessarily independent, and only nine differentragtry systems result from the thirty-

two classes of symmetry (Hearmon 1961). The vdinethe elastic stiffnesses for

material symmetry systems are summarized in Tabeand 2.5. The first row gives the

name of the symmetry system, the second row ghesdamber of independent elastic

stiffnesses, and the remaining rows list the notetiof the elastic stiffnesses.
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The types of symmetry most common for compositeenads are triclinic (no
symmetry elements), monoclinic (one plane of reifbex), orthotropic (three mutually
orthogonal planes of reflection), transverselyrigpic (one plane of isotropy), and
isotropic (all planes are planes of reflection) plane of reflection converts a point to its
mirror image. For example, if the 1-2 plane idanp of reflection (also called a plane of
material symmetry) the point {xx, X3) is converted to (X xo, -X3). For a plane of
isotropy, all planes perpendicular to that plaree@anes of reflection. The other
symmetry elements and symmetry systems are extiiiviteertain types of crystals
(Suhling 2004).

Table 2.4 Notations of elastic stiffnesses of ti@inic, monoclinic, orthotropic,
tetragonal, and cubic symmetry systems (Hearmoni)196

Triclinic Monoclinic Orthotropic Tetragonal Cubic
(Orthorhombic)

21 13 13 13 9 7 6 3
Cut Cu1 Cu1 Cu1 Cu Cut Cu1 Cut
Cu2 Cu2 Ci2 Cu2 Cu2 Cu2 Ci2 Cu2
Ciz Ciz Ciz Ciz Ciz Ciz Ciz C2
Cus Cus 0 0 0 0 0 0
Cis 0 Cis 0 0 0 0 0
Cis 0 0 Gs 0 Cis 0 0
Ca Ca Ca2 Ca Ca Cu Cu Cu
Cos Cos Cos Cas Cas Cis Cis Cr
Cos Cos 0 0 0 0 0 0
Cys 0 Cxs 0 0 0 0 0
Coe 0 0 Ges 0 -Ci6 0 0
Css Css Css Css Css Css Css Cu
Cas Cas 0 0 0 0 0 0
Css 0 GCss 0 0 0 0 0
Css 0 0 Gs 0 0 0 0
Caa Caa Cuaa Caa Caa Caa Caa Caa
Cus 0 0 Cs 0 0 0 0
Cue 0 Css 0 0 0 0 0
Css Css Css Css Css Cus Cas Cus
Cse Cse 0 0 0 0 0 0
Ces Ces Ces Ces Ces Ces Ces Cus

12



Table 2.5 Notations of elastic stiffnesses of tiwinic, trigonal, transversely isotropic,

and isotropic symmetry systems (Hearmon 1961).

Triclinic Trigonal Transversely | sotropic
| sotropic
(Hexagonal)

21 7 6 5 2
Cu Cu Cu1 Cu1 Cu1
Cr Ci2 Ci2 Cr2 Cri2
Cis Ci3 Ci3 Ci3 Cr2
Cua Cua Cua 0 0
Cis Cis 0 0 0
Cis 0 0 0 0
Ca Cu1 Cu1 Cu1 Cu1
Cas Cis Cis Ci3 Cr2
Caa -Cia -Cia 0 0
Cys -Cs5 0 0 0
Cos 0 0 0 0
Css Css Css Css Cu1
Cas 0 0 0 0
Css 0 0 0 0
Css 0 0 0 0
Caa Cua Cua Cua Y2 (G11-Cr2)
Cus 0 0 0 0
Cue -Cs5 0 0 0
Css Cua Cua Cuas Y2 (G1-C12)
Cse Cus 0 0 0
Ces Y2 (Gi1-Cyo) | 2 (G1-Cyo) Yo (G11-Cyr2) Y2 (G11-Cy2)

2.5 Rotation of Axes

When composite materials are subjected to loadsnvice conditions, the
direction of loading does not always coincide vtk principal material directions (1, 2,
3). In this case, it is necessary to expressttiessstrain relations using a new set of
axes, (x', Y, ') (Suhling 2004). The stiffnessa®d the compliances are both fourth-

rank tensors, and on transforming from one seke$ & another:
c:'ijkl = aimajnakoalp Crmop ’ (29)

S;jkl = a1'ma'jnakoaip Smop ! (210)
13



wherea represents a matrix of direction cosines relating set of axes to another.

As previously stated, the maximum number of indelpan elastic constants is
twenty-one. When transforming from one set of aremnother, there will be twenty-one
equations, each containing twenty-one terms. Wheraxes undergo a rotation, the
number of independent constants remains the sam#dnumber of terms in the
stiffness and compliance tensors in the new coatdiaystem (X', y’, z’) may increase
(Hearmon 1961).

2.6 Micromechanics and M acromechanics

Two basic approaches are used to determine thepiegpof a composite
material: the micromechanical approach and theonaechanical approach. The goal
of the micromechanical approach is to determinaribterial properties of a composite in
terms of the properties of its constituents. Mmsezhanics can be used to predict the
composite’s stiffnesses and compliances and is wbet designing a composite.
Macromechanics assumes that the composite is hamaogs, and its material behavior
is based on the average apparent mechanical piexgpeftthe composite. The
macromechanical behavior of a composite is experiafly determined using the
composite material as a whole, rather than byrtgs&ach constituent, and is used in
design of components utilizing composite materfaéses 1999).

2.7 Testing Methods

Standard material test procedures, such as tefistere, and torsion tests, can
be used to determine elastic constants of compuositerials, but calculation methods
may need to be modified due to the anisotropy efntlaterial (Hearmon 1961) and the
further anisotropy induced as the composite expeeie damage. Additionally,

14



fabrication of test samples for the various testsat always easy due to the hardness of
many composites and due to the difficulties inhenemanufacturing composites at
different orientations. Furthermore, because thests are destructive, the same sample
cannot be used for all tests, introducing the fl#tsn of manufacturing irregularities
among specimens. Non-destructive techniques, asiefbrational and ultrasonic
methods, offer the capability to determine all ¢estic constants for the same sample
quickly (Rokhlin and Wang 1992). Ultrasonic wavethods have been used extensively
to measure the elastic stiffnesses of anisotropiternals. Test setups that use ultrasonic
pulses include single-through transmission, dothreugh-transmission, and point-
source/point-receiver techniques.
2.8 Ultrasonics
By combining the stress-strain relationship,
0; =Cyy & » (2.11)
and the definition of strain,
& :%(Ui,i +uj,i) , (2.12)
with the linear momentum balance equation,
o, +pf=pl, (2.13)
one can obtain the following relationship
Ciju %(uk,lj U ) =pl , (2.14)
wherep is the mass density,
fi are the body forces (assumed to be zero),

u is the displacement vector,
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and the double dot notation denotes differentiatvane with respect to time.
Combining Equation 2.14 with the equation for anpl&aarmonic displacement wave:
u, = Ad, expiolx,q, -t)), (2.15)
gives:
(Ci g, a9 - 00 )d, =0, (2.16)
whereA is an independent constant,
d is the unit vector defining direction of motiontbk particle displaced by the
plane harmonic wave,
i is the imaginary number,
wis the real-valued angular frequency of the plasw@nonic wave,
x is the position vector,
g is the slowness vector (defined below),
t is the time variable,
0 is Kronecker Delta, and
mp=1, 2, or3.
For a nontrivial solution:
de(Cijk,qj q - pdik‘ =0. (2.17)
The components of the slowness vector are defiaed a
q,=n,/V, (2.18)
where nare components of the vector of the direction a¥evpropagation, and V is the

phase velocity.
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Equation 2.17 can be rewritten using what are conmyn@ferred to as the

Christoffel stiffnesses:
M =Cyenift, (2.19)
so that:
detll, - pV23,| = 0, (2.20)

Equation 2.20 is known as the Christoffel equatitircan be expressed in expanded

form as:
r11 - :OV ? r12 r13
M, M, - ,0V2 [ =0, (2.21)
I_13 r23 I_33 - ,OV ?
where
r11 = Cnn12 + C66n22 + Cssns2 + 2016”1”2 + 2C15n1n3 + 2056”2”3’ (2-22)
rzz = Cesn12 + sznz2 + szns2 + 2026”1”2 + 2C46n1n3 + 2C24n2n3 ) (2-23)
r33 = CSSnLZ + C44”22 + C33n32 + 2045”1”2 + 2035“1”3 + 2034”2”3' (2-24)

M, = Cl6n12 + Czsn22 + C45”32 + (Clz + Cee)nlnz + (C14 + Css)nlna + (C46 + C25)n2n3 ' (2.25)
M3 = Cagly” + Cyh,” + Cagy” +(Cuy + CooJum, + (s + Cog)uns +(Ca + Cg)ny, (2.26)
— 2 2 2
r23 - C56nl + CZ4n2 + C34n3 + (C46 + C25)n1n2 + (036 + C45)nln3 + (C23 + C44)n2n3 ' (227)
r21 = I_12’ I_31 = rlS' r32 = r23'
All of the eigenvalues dfk are real and positive and their corresponding

eigenvectors are orthogonal. The physical integbian of this is that for a given

direction of wave propagation there will be thréage velocities and the three

17



corresponding displacement vectors will be orth@dom an anisotropic case, the
displacements are neither truly longitudinal nahtitransverse in character (Achenbach

1973).
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CHAPTER 111
DETERMINATION OF ELASTIC CONSTANTSAND DAMAGE IN CERAMIC
MATRIX COMPOSITESUSING ULTRASONIC WAVE SPEED

MEASUREMENTS

3.1 Ultrasonic Test Methods

Common ultrasonic pulse methods include point s&/paint receiver and
immersion methods. In the point source/point nemesetup, the specimen is in direct
contact with the transducers. The wave veloctasbe measured only in a direction
normal to the face of the sample. Specimens apgnes to be cut in several orientations
to compute the full set of elastic constants. Théthod is suitable for crystal but is not
feasible for many composite materials. Immersiathods allow the measurement of
wave velocities over a range of directions. Indahe-way transmission setup, the
specimen is placed between two ultrasonic transduoae for transmission and one for
reception (Markham 1970). The double through-tm@iasion method uses a single
transducer that functions as both transmitter acdiver. The signal passes through the
sample, reflects off a back plate reflector, artdrres to the transmitter/receiver (Rokhlin
and Wang 1992). The work in this thesis is basethe one-way through-transmission

test procedure.
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Figure 3.1 shows a general view of an ultrasonimérsion tank. For this
method, the specimen is placed on a turntablegamlafilled with a liquid, usually water.
Figure 3.2 shows a schematic of the specimen otuth&ble between two ultrasonic
transducers. The turntable can be rotated in ivextions corresponding to the angles

andy defined in the figure (Markham 1970).

Height control Azimuth

Horizontat
alignment

Angle of incidence
control

Figure 3.1 General test setup for an ultrasonicénsion test (Markham 1970).

Figure 3.2 Rotation of sample in order to excitmsverse waves. N is the axis normal to
the specimen;is the incidence angle (the angle between theminmog wave and N)y is
the degree of tilty is the degree of spin (Markham 1970).
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Audoin and Baste (1994) combined the ultrasonic érsion technique with a
uniaxial tension test. Figure 3.3 shows a schenwdta composite material test sample
positioned between the transmitting and receiviagdducers, as uniaxial tension is
being applied. The sample is loaded in the 3 torcand the transducers can rotate in
two directions (about the 1 and 2 axes).

The full set of elastic constants can be determinedach level of tensile load
applied, and the effects of damage on the sampldeascertained by noting the
variation in the values of the elastic constantdasage progresses (Audoin and Baste
1994). In order that true plane waves are prodiutd#ue sample, the wavelength of the
ultrasonic transducer should be large compareleditber diameter and small compared

to the dimension of the specimen (Markham 1970).
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Figure 3.3 Under-load ultrasonic device. The sanmloaded along direction 3. The
transducers are moved by a combination of twoimntai®; and®, (Audoin and Baste
1994).

3.2 The Time Difference between the Group and Phase Vel ocities

The phase velocity is needed to compute the elestistants, as indicated in the
Christoffel equation (Equation 2.20), but the timeasurements used in early immersion
tests were actually computed for the group velocityanisotropic materials, these two
velocities generally deviate from each other. Tasiation called into question the

validity of early immersion test results. Howevenkhlin and Wang (1992) show that
22



there is no time difference between the group vgl@nd the phase velocity for an
arbitrary angle of incidence. In measurementsigftype, 1 is the time it takes for the
signal to travel from the transmitter to receiv@ough the reference medium, e.g. water,
without a test sample in place, i§ the total time for the signal to reach the reee

when passing through the specimen at a partichiasgvelocity. Jis the total time it
takes for the signal to reach the receiver whesipgghrough the specimen at a
particular group velocity. The times for the gram phase velocity vectors in the

sample aregtand §, respectively. Referring to Figure 3.4, the timaa be written as:

T, =t +t, +t; +t,, (3.1)
T, =t +t, +t,, (3.2)
Tp =t +tp+iz+t, (3.3)

In this figure, time progresses from the top offilgere to the bottom. Boxes showing

"T" and "R" represent the locations of the transimgttransducer and receiving
transducer, respectively, and h indicates the tiask of the sample. The left-most
vertical line indicates the times associated wiltfie path taken by the wave associated
with the group velocity is shown by the path T-ORA-the vertical line near the middle

of the figure indicates the times associated wi{tfie path taken by the wave associated
with the phase velocity is shown by the path T-@H), and the right-most vertical line
indicates the times associated with(the reference path does not pass through the
sample). The times associated with the group &agevelocities can be written as the

appropriate path length divided by the correspamailocity (Mo, Vg, and 4 are the
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reference velocity (velocity with no specimen pregegroup velocity, and phase

velocity, respectively).

tl

Voltc4

N
R
Figure 3.4 Representation of the times for diffemoustic paths.glis the reference

time; T,is the time for the phase velocity vectogidthe time for the group velocity
vector.

Figure 3.5 gives an alternate view of the testpatiown in Figure 3.4. It should
be noted that the phase velocity vector lies intticglent plane (the plane defined by the

incoming wave and the axis normal to the sampl&)the group velocity vector does not
necessarily lie in this plane. In Figure 3®A is the path of the group velocity vector

through the sample, ar@B is the path of the phase velocity vector throughdample.

The angla) is the angle of deviation between the group araselvelocity vectors. The
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anglea is the in-incident-plane componentyff is the out-of-plane component, and

COSY = COSaCcosps.

h cos(&r-8i)
cos{@r)

h cos(Br +a-Bi)

cos(Er+o)

Figure 3.5 Schematic of different acoustic patiglie group and phase velocity
vectors. h is the sample thicknegss the angle of deviation between the group and
phase velocity vectors is the in-incident-plane componentysf3 is the out-of-

plane component af ; 8 is the incident angled, is the refraction angle (Rokhlin

and Wang 1992).

Considering Figures 3.4 and 3.5, the times spekcdan be rewritten as:
t, = OA/V,, (3.4)
t,=0B/V,, (3.5)

h

where OA = , and
cosi@ +86,)cos(B)

oB=_"
cos@,)
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The quantity(5 t)s represents the difference between the group \tglaod the phase
velocity in the specimen:
(ot) =t , —t,. (3.6)
(a't)S can be more conveniently expressed through thewolg development:
Snell’'s Law (shown below as Equation 3.7) relabesangle of incidence),
the angle of refractiond, ), and the velocities outside and inside an interfaf two
substances\(, andV, here). In this case, the angle of refractionesponds to the

phase velocity, so:

sin@) _sin@)

3.7

v. v, (3.7)
Using Snell's Law and the relationship betweengtaip and phase velocities:

V, =V, cody) =V, cos@) cos(B) , (3.8)

the time difference between the group and phaseitiels in the specimef{Jt)_, can be

rewritten as:

@), = i oo
V, cos@ +86,)cos(B) V,cosg,)
hcoda)cod) ~  h

"V, cos@ +6,)cos(f) V,cos@,)

_ hsin@) cos@g) 1

V,sin@,) (cos@ +6) cos@r)]

_ hsin(@) ( cos@)cos@,) —cosi)cos@, ) +sin(@)sin(,)

- V,sin@,) ( cos@ +6,)cos@.) j
hsin(@ )sin(a)

- V, cos@.)cos@ +6,)

(3.9)

Solving for g (as indicated in Figure 3.4) gives:
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t,=BC/V,. (3.10)
BC can be written as the difference between theaadrtiomponents of the group

velocity path,OA, and the phase velocity patBB (both shown in Figure 3.5):

hcos@, +a-6 ) hcosg -6 )

8= cos@ +a) cosg, )
_[cos +a)cosh ), sing +a )sif ) cof( Jedh( ) s )
cos@ +a) cos@ +a ) co#| ) co§( )
—h sin(@, +a)sin@ )cos@, y sif )si]l )co§(+a )
cos@ +a)cos@ )
(sin(@, ) cos@r }+ cosk, )sint )) sil] )cod( )
—h cos@ +a)cosg )
- sin(@, )sin@ ) cosg, )cost ¥ sig{ )sio())
cos@ +a)cosg )
—h sin(a)sin@ )cod @ ¥ sing )si] )sing
cos@ +a)cos@ )
_ hsin(a)sin@ )
cos@, +a)cosg ) (3.12)
Thus:
hsin@ ) sin(a) (3.12)

* "\, cos@,)cos@ +6,)’
and therefore:
t, = (dt),. (3.13)
This result verifies that there is no total tim#etience between the times associated with
the group and phase velocities, as shown belowguaion 3.14.

T =t +t +t+t, =t +t +(Jt)_+t, 3.1
T, =t +t, +(t, =t ) +t, =t +t, +t,=T,.
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3.3 Calculating the Phase Velocity and Refraction Angle
To calculate the phase velocity, knowledge ofdiigaal time delay and the length
of the acoustic path is required. The time diffeebetween the reference timeg, dnd

T, is denoted byAt and is given by:

AM=T,-T, =t, -t,, (3.15)
h -6
Wheret2 :M' and
v, cos6,)
h
=
V, cos@,)

Substituting these values into Equation 3.15 amigubie Snell's Law relationship given

in Equation 3.7 yields:

At _ cos@,)cos@)) +sin(g,)sin@) 1

h V, cos@.) V, cos@,)
_ cos@) N sin(@,)sin(@) _ 1

\ V, cos@,) V, cos@,)

_cos@) , sin®(8,) -1
V, V, cos@,)

0

_Ccos@) _cos@)
V, \

0 p

(3.16)

Using this result yields:

cos@.) _ cos@) _ At
\Y \Y) h

P (o]

, (3.17)

and noting that Snell’s Law is expressed as:

sin@.) _sin@)
v, Vv

o] o

(3.18)
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a formulation for the refraction ang#, can be developed using the incidence angle,

time difference At, reference velocity, §/ and sample thickness, h. Dividing Equation

3.18 by Equation 3.17 gives:

V,sin@)
tan@,) = Vo = S'”(giitv , (3.19)
v (cos@) _AtJ cos@) - 2V
v, h 7 h
so that:

6. =arcta sin@) (3.20)

AtV

cos@) - H °

(This expression for the refraction angle inclugeantities that are all known or can be
measured.) The phase velocity is recovered bytisutirsg this result into Snell’s Law:

P en@) (3.21)

It is also possible to square and add Equations &l 3.18:

(cos(&r)Jz +(sin(a)]2 {cos@) _ g}z {L@)] (3.22)

\Y, \Y, \Y/ h V

p p 0 o]

which simplifies to:

1 1 2codd )At At
WZ[W_ cohsf/.) +h2J, (3.23)
p o] o
Consequently:
1 2codg)at atz)”
A :(W_ h5£/ ) + o J , (3.24)
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and the refraction anglé,, is recovered by substituting this result into IBsi&aw:

(V,sin(@)
6 = arcsw{v—j. (3.25)

0
3.4 Wave Behavior

By changing the angle of incidence of the ultras@ulse (via rotation of the
sample as shown in Figure 3.2 or via rotation efttansducers as shown in Figure 3.3),
the wave will split by mode conversion on entetting solid, as indicated in Figure 3.6.
If the incident direction of the wave coincideswan axis of symmetry, only the
longitudinal wave velocity is transmitted throudife tsample. If the incident wave is
introduced in a plane of symmetry, or principal@athe incoming wave splits into two
components: one quasi-transverse and one quagtddmal. If it is introduced in a
non-principal plane, the wave splits into two gttagnsverse modes and a longitudinal
mode; these are known as the fast shear wave (§EL3low shear wave (QT2), and a
quasi-longitudinal wave (QL). Each of the threevestravels at a different speed, and

each arrives at the receiver at a different timartiam 1970).
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Figure 3.6 Schematic diagram of waves excitednoraprincipal plane. QL stand for
guasi-longitudinal mode; QT1 and QT2 stand for &ast slow quasi-transverse modes,
respectively; the incident plane is defined bydhgley; ®; is the incident angle (the
angle betweenpand the incident wave) (Aristegui and Baste 1997).

Often, the composite materials to be tested angthén in the 1 direction, and
direct measurements in the 2-3 plane are unavail@itu and Rokhlin 1992).
Measurements are limited to planes perpendicultreé@lane of the sample.

Most ceramic matrix composites are of an orthotrapihigher order of
symmetry, i.e. they possess fewer than twenty-ndegendent elastic constants.
Orthotropic materials have three planes of symmatiy nine independent elastic

constants. For measurements in the 1-2 planehwhia plane of symmetry, the phase
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velocity vectorn, can be represented as, (2, 0). The Christoffel equation (Equation

2.20) reduces to:

Clln12 + C66n22 -pV ? (Clz + C66 )nlnz 0
(C +Ceedun,  Ceenf +Cyon - pV? 0 =0. (3.26)
0 0 C55"]12 + C44"15 - ,OVZ

The I, term,Cn/ +C,,n>, corresponds to transverse waves polarized in-@lane,

which are not produced when scanning in the 1-Bepla
For measurements in the 1-3 plane, the secondsibteplane of symmetry, the

wave vector isr, 0,ng), and the Christoffel equation reduces to:

Clln12 + Cssn§ -pV 2 0 (Cls + Css)n1n3
0 CesN +C,uns — pV 2 0 =0. (3.27)
(C13 + C55)n1n3 0 C55r‘12 + Cssns2 -pV ?

TheT,,, C,n>+C,nZ, term corresponds to transverse waves polarizétein-2 plane,

which are not produced when scanning in the 1-Bepla
As a result, only seven of the nine independenstmts, @, Gy, Css, Css, Ces,
Ci12, and G3, can be determined from measurements in the teesaible principal
planes for an orthotropic material. The remairgogstants, & and G4, must be
recovered from measurements taken in a non-prinplpae. Often this plane is referred
to as 1-2’, where 2’ is at an angle between thed®3axes, usually 45 degrees. Figure
3.7 shows the incoming wave vectors in the threéa planes (Mouchtachi et al. 2004).
Complications may arise for woven compositesthis case, if the 1-2’ plane is
oriented at 45 degrees, the plane may also bena plasymmetry. Only one transverse

wave mode will be produced. This affects the tissofl Gz and G4, two constants in the
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2-3 plane which are not directly measurable. Measents in a non-symmetry plane

may prove to be more useful (Aristegui and Bas@7)1.9

1

e ey ——— - ——

2!

Figure 3.7 Schematic of the composite plate. Axis normal to the plate; the angles
defining the direction of the wave agein plane (1, 2)£ in plane (1, 2’) andy in plane
(1, 3). Plane (1, 2’) is an arbitrary non-prindipkne defined by angl¢g (Mouchtachi

et al. 2004).

3.5 TheWave Vector
In order to calculate the elastic constants, kndgeeof not only the velocity but
also the direction of propagation of the wave i slample is required. Any rotation

relating two sets of axes may be described usiregtiotations (Weisstein). The
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rotations may be written individually as rotatiomtmces B, C, and D, and the final

rotation matrix A is their product:

A=BCD, (3.28)
Q; A, 4

A=la, a, ay]. (3.29)
a31 a32 a33

There are many combinations of rotations that neaytbized to reach the same final
position. For this study, a choice was made tothigéx y z” (pitch-roll-yaw)

convention. D is a rotation around the z-axiss @ rotation around the y-axis, and B is a
rotation around the x-axis (Weisstein). Not altlodse rotations are required for
ultrasonic immersion tests, but they are possibidigurations. In this case, tilt is the
rotation around the 3 axis, spin is the rotatiavuad the 2 axis, and the in-plane (the

plane of the sample) rotation is around the 1 adgictured in Figures 3.2 and 3.3. In

matrix form:
coda) sin(a) 0
tilt =| -sin(a) coda) 0|, (3.30)
0 0o 1

cody) 0 -sinly)
spin={ O 1 0 : (3.31)

sinp) 0 cody)

1 0 0
in - planerotation={ 0 cos(qo) sin(go) : (3.32)
0 -sin(p) cody)
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(Though some of the variable nomenclature is tihees@he angles indicated here are not
the same angles as those mentioned in Sectioo 8&stribe determination of the phase
velocity and refraction angle).

The product of these three rotation matrices gi@lanatrix which relates the final
orientation of the sample to its starting positidhthe (1, 2, 3) directions correspond to
the coordinate system of the sample in its finaligpan, and the (X, y, z) directions

correspond to the coordinate system of the sampts initial position, then:

1 X
2t = (in - plang(spin)(tilt } y
3 z
: (3.33)
=A y
z
&, ad, a5
whereA =|a,, a,, a,|and
a31 a32 a33

a,, =Ccosa cog ,

a, =cosy sinr ,

a,; =—siny,

a,, = —Cos@ sinx + co® Sip sy
a,, =C0Sa Cop+ Sim Sip Sy |,
a,, =Ccosy sing,

a,, =sina sing+ coxr cop sig
a,, = —COSa Sinp+ cop sior sig

a,; = COS@ CO¥ .
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Thea;; term shown above is equal to the cosine of théedmggween the 1 axis
(normal to the plane of the sample) and the x-axisch is the direction of the incoming

wave. This angle is the incidence an§leso:
c0sf, = cosa cosy . (3.34)

The refracted wave lies in the incident planeisTtane is defined by two
vectors: the incoming wave and the plate nornrahe x-axis and the 1-axis. The cross
product of these two vectors gives a vector notméhe incident plane, as shown below:

[ ] k
xx1= 1 0 0 |=(0,sing,cosysina). (3.35)
cosacosy cogysina  —siny

Now, a coordinate system (X', y’, z') is defineat the refracted wave. z’is the
direction of the refracted wave, X’ lies in theighent plane, and y’ is normal to the
incident plane. A rotation matrix relating thes®tcoordinate systems is required. As
stated before, the vect{®,siny, cosy sina) is normal to the incident plane. Rotation
around the x axis allows y’ to be defined as tlastor. After this rotation, x’ and z’ will
be in the incident plane, and the coordinate systey be rotated about the y’ axis until
z’ is in the direction of wave propagation. Thexgel form for a rotation matrix around
the x-axis is:

1 0 0
0 coy ) sif) (3.36)
0 -sin( ) cog )
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The direction cosines for the vecBysing, cosy sina) must be calculated. This

is accomplished by dividing the dot product of Yeetor and the appropriate unit vector

by the length of the vector as follows:

(0,sing, cosy sina) 1(1,0,0)

|(0,sing, cogy sina) =0 (3:37)
(0,sing, cosysina)1(010) _ sing (3.38)
|(0,sing, cosy sina) JSin? i +cog ysin? a
(0,sing, cosysina)1(0,01) _ cosy sina (3.39)
(0sing, cosysinar) JSin? @ +cos ysin® a '

The length of the vector can be simplified in tbBdwing manner:

\/sinzt// +cos ysin®a = \/sinzt// +cos t,a(l—cos2 a)
= J1-cogycos a

(3.40)
=,/1-cos’ @
=sing, .
The rotation matrix for rotation around the x-atkien becomes:
1 0 0
n=lo ¥ cogf simr | (3.41)
sing singd
0 - cosy sinxy siny
| sing singd

After this rotation, the y’ axis is normal to tmeident plane and the z’ axis is in

the incident plane. An appropriate rotation arotively’ axis will align the z’ axis with

the refracted wave. Figure 3.8 gives the perspestiown by looking at the incident

plane with the y’ axis out of the page:
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Figure 3.8 View of the incident plane. Axis 1 mrmal to the plate;
Axis 3 is the long axis of the platé, is the angle of incidence;

6. is the angle of refraction.

The angle of rotation necessary to align the = a#ih the refracted wave is

37
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The second rotation matrix is thus determined to be
cos{%ﬂ+6’i _H’J 0 —sin[?’—”+6?i —Hrj

2
r, = 0 1 0
sin(%r+6?i—6rj 0 CO{%‘*@‘Q)

(3.42)

The relationship between the (X, y, z) and (X’,zy),coordinate systems is

defined as:
X X
y'e=(n)rnhy (3.43)
z z
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The matrix A mentioned previously related the (13Rand (X, y, z) coordinate systems
through Equation 3.33. This relationship can bedus develop the relationship between
the (X', y', z') coordinate system and the (1,)Zd®rdinate systems as follows:

The inverse of a rotation matrix is equal to isgpose. Therefore:

1 1
yr=AT 20 =(tilt)" (spin)’ (in — plang'< 2+ . (3.44)
z 3 3

Substituting this relationship into Equation 3.43eg:

= (r,) (r,)(titt )T (spin)T (in- plan@T

3
(3.45)

N < X N < X

Equation 3.45, then, defines a rotation matrixidRgting the coordinate system of the
sample with that of the refracted wave using inflties of degrees of spin, tilt, and in-
plane rotation, and the calculated values of aofjlecidence and angle of refraction.

The components of the matrix R are as follows:

R, =—cod8, -8 )cos’ y csad, sin® a - cosa cogysin(6, - 8) (3.46)
-cod8, -6 )cscf, sin®w -

R, = cod8, -8 )cosy csch, singsiny
—sin(8, - 8 )(- cospsina + cosa singsiny) (3.47)
—cod8, - 8 )cosy csch, sina(cosa cosp+ sina singsing )

R, = 005(49r -6, )cos¢ cosy cscl, siny
—sin(@, - 8 )(singsina + cosa cospsiny) (3.48)
—cod6, — 8 )cosy csch, sina(- cosa sing+ sina cospsiny)
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R, =0 (3.46)
R,, = COS (Y csch, sina sing+ csch, sinw(cosa cosp+ sinasinqosinw) (3.49)
R,; = COS ¢ cScd, sina cosg+ €sch), sin(//(— cosasing+ sinacosrpsinz//) (3.50)

R,, = —cosacodd, -6 )cosy +cos ycsch, sin asin(6, - 6)

3.51
+csch, sin(@, - 8 )sin*y (3.51)

R,, = —cosy cscd, sin(6, - 6, )singsiny
—cod8, - 8 )(- cosgsina + cosa singsiny) (3.52)
+ cosyy csod, sinasin(6, — 6, )(cosa cosp+ sina singsing)

R,; = —cosy csch, sin(@r -6 )cos¢sinw
—cod6, - 8 )singsina + cosa cospsiny) (3.53)
+cosy csch, sinasin(@, - 8 )(- cosa sing+ sina cospsiny)

3.6 Solving for the Elastic Stiffnesses, C
3.6.1 Minimization of Velocities

The Christoffel equation (Equation 2.20) can bpagxled and rewritten as a
cubic equation ipV *>. The solution of this equation gives three rodte quasi-

longitudinal velocity (V), the slow transverse mode velocityr()/ and the fast
transverse mode velocity {%. The equation can be solved for the particuddoeities

using Cardan’s solution of a cubic equation (Moacht et al. 2004), given by:

oV = 21/% co{%) —%; (3.54)
W+27r\ a

vz =29 cos{ j——; 3.55

V5, 3 3 3 (3.55)

Y-2r\ «a
v2 =29 co -=: 3.56
PNtz =24 3 { 3 j 3 ( )
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where W =arcco

a

a=—-p,
3 B
3
ap a
b=y-L+2( L],
"3 (3j
=—(|_11+|_22+|_33),

—(rf2+|_f3+|_223—|_11_ 2Tkl 4 g and

a
14
4 _(r11r22r33+2r1; bl 1E223—|_ £2§|— gsz )2

The elastic constants are recovered by minimittiegsum of squares of the
deviations between the experimentally measureccitede and Cardan’s solution, as

follows:
min%i(\/ie ~vef, (3.57)
—

where m is the number of measurements,

V¢ are the experimental velocities, and

V© are Cardan’s solutions (Rokhlin and Wang 1992).

3.6.2 Minimization of the Christoffel Equation

An alternative method to that of minimization bétdeviations of the velocities
using Cardan’s solution is minimization of the kesguares of the Christoffel equation
for each experimental velocity. For N directiofiggmpagation, the Christoffel equation
can be expanded to a set of N cubic equationsunknowns, where m is the number of

elastic constants to be determined. Generallyetaee many more measurements than
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elastic constants, and the set of equations ivardetermined one (Castagnede et al.
1989). The recovery of the elastic constants ée@mplished by minimizing the

functional:
F(Cii): z{fp(/]p(n)’ Cij )}2’ (3-58)

—_ 2
whereA, = pV*©,
nis the wave propagation vector, and

f.(A,(n).C; ) is the Christoffel equation.

For this method and for the previous one, the waepagation vector is needed.
This may be computed using the rotation matrix tgpex in Section 3.5. The Z’
direction corresponds to the refracted wave. Thesethe third row of the rotation
matrix, R, may be used to calculate the wave vector
3.6.3 Rotation Method

A third method for determining the elastic constaproposed by Mayer and
Heidemann (1959), uses the tensor transformatiaatem for fourth rank tensors:

Cii = 8By Cnop (3.59)
wherea denotes a matrix of direction cosines relating eteof axes to another.

In this method, rather than solving the Christoffgelation, the coordinate system
is rotated such that z’ is in the direction of wawepagation. If the wave direction is in
the z’ direction, Gzcorrespond to the longitudinal, or quasi-longitadinvave velocity.
For a wave propagating in the z’ directiongg€orresponds to the transverse wave

polarized in the x’ direction, and &’corresponds to the transverse wave polarizecein th
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y' direction. For an orthotropic material, the atjans used to determine these three

values are:

CI33 = a;lcll + a;ZCZZ + a§3033
+ 4a§2a§3044 + 4a§1a§3c55 + 4a§1a§2066 (360)

+ 2a’§1a322C12 + 2a§1a§3013 + 2a322a’§3023

T A2 42 2 52 2 52
C 44 = a21a3lCll + a22a'32C22 + a23a33033

+ (a23a32 + a22a83)2C44 + (a23a81 + a21a33)2 C55 + (a22a31 + a21a32)2C66 (361)
+ 2a21a22a31a32012 + 2a21a23a31a33C13 + 2a22a23a32a33c23

CI55 = a:l.zlaﬁzlcll + a:l.22a322C22 + a:l.23a§3c33
+ (@585, +81,85;)°Cyy + (585 +8,385) Cos + (81585, + 8,85,)°Cos (3.62)
+ 2a11a12a’31a32C12 + 2a11a13a’31a33C13 + 2a12a13a32a33023

This method produces a system, usually overdeteahniof linear equations,
rather than a system of higher order equationsaduped by the previous two methods.
For all three methods, measurements in three pkneeequired to solve for the full set
of elastic constants for an orthotropic material.

3.7 Solving the Systems of Equations

The numerical minimization procedure used to daeiree the set of elastic
constants when optimizing the Christoffel equatiothe deviations of the experimental
and calculated velocities has traditionally beemida’s algorithm. This algorithm
converges rapidly, but for higher-dimensional peoi is unreliable unless initialized
near the exact solution. Mouchtachi et al. usd_theenberg-Marquardt method (LM
method), which combines features of the gradierthotkand Newton’s algorithm. For
the same set of data, the LM method and Newtogerdéhm produce different sets of

elastic constants. The results of the LM meth@dnaore consistent with findings using
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classical tensile tests (Mouchtachi et al. 200@)e Levenberg-Marquardt method is
included in MATLAB and is used in this study to opize the Christoffel equation and
the deviations of velocities.
3.7.1 The Levenberg-Marquardt Method
The Levenberg-Marquardt method is a numericalrmehesed for nonlinear least
squares minimization. It combines the advantag&tewton’s algorithm and the
gradient descent method. The gradient descentomiéthupdated by adding the negative
of the scaled gradient at each iteration as shaiaowb
X, =X —AOf . (3.63)

Newton'’s algorithm can be expressed as:

X,y = X —(D2 f(x ))_1Df (x), (3.64)
where0?f (x)) is the Hessian matrix (H) evaluatedsat

The gradient method is accurate but slow to corezefdewton’s algorithm converges
rapidly but is sensitive to starting location. Thevenberg-Marquardt method combines
the advantages of these methods and is expressed as
X., =% —(H +Adiag[H])"Of (x ). (3.65)

The Levenberg-Marquardt method uses the followipdatie procedure:

1. Execute the algorithm above.

2. Evaluate the error.

3. If the error has increased, retract the step, asgé, and return to step 1.

4. If the error has decreased, accept the step, andate! .
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The Levenberg-Marquardt method performs well f@tems with hundreds of
parameters and achieves convergence much fasteththgradient descent method
(Ranganathan 2004).

MATLARB solves nonlinear least-square problems gshre LM method with the
Isgnonlin command with the “LargeScale” option teetoff.” The command:

X = Isgnonlin(fun, x0), (3.66)

minimizes the sum of squares of the function futhwnitialization at x0.
3.7.2 Least Squares Solution

When solving for the set of elastic constants gigive rotation method, a solution
to an overdetermined system of linear equationsgaired. Given a general set of
overdetermined set of equations written in matopxaf:

Ax =b, (3.67)
MATLAB solves for the values of the vector x in tleast squares sense using the left
division command:
x =A\b. (3.68)

(Palm 2001).
3.8 Damage

The micromechanical description of damage usepdh@meters of cracks,
characteristic length, and characteristic spacfrgpostituents, as well as other factors, to
predict the macroscopic behavior of the compoditethe past, this approach to
describing damage progression has required thteatlamage mechanisms be known a

priori and that the geometry and distribution afats be simple and regular. This is
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rarely true for real materials. A direct measurdamage that can be experimentally
measured is the change in the elastic stiffnesstants as damage progresses.
Under any load, an elastic stiffness can be reptes as:
c=C,-C., (3.69)
where G is the elastic stiffness of the uncracked mateaiadl C is the loss of stiffness
due to damage. The resulting change in the ssifftensor;;, is selected as a variable
representing the current state of damage of thenmgtas shown in Equation 3.70

below:

@ =C/-C, i,j=1to6. (3.70)

ij

In many previous models used to describe damaggglar damage parameter has
been defined to be zero for an undamaged stateodmelone at failure. This type of
description is inadequate for describing the taataature of damage progression.

The normalized damage variable used in this stidis defined as the relative
change in the elastic stiffnesses. The terms ewlitgonal of the elasticity matrix are
equal to zero at failure:

C. =0. (3.72)
So the limit of the damage variable is:

W" =C. (3.72)
For the off-diagonal terms, the maximum value csomds to a zero value of a minor of

the elasticity tensor (Baste and Audoin 1991), egped as:
M; =C,C; - 02ij =0 (3.73)
Hence:
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Jr=Ccl+fCC, i,j=1.6 iz#] (3.74)
In this equation, the sign *+ depends on the chan@g, which can increase or decrease.
The components of the normalized damage tensatexhen given by:

w C,

D, :(d”;;n :1—a, i=1t086, (3.75)
“ G -G
Dy =—r = :
" Cl+sign(@- G )/ G(+D,) G( D) (3.76)
i,j=1..6 iz].

The components of the damage tensor are measunablke an identifiable physical

meaning, and form a finite set of data (Baste ando#n 1991).
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CHAPTER IV
DESCRIPTION OF MATLAB PROGRAMS

4.1 Introduction

The programs included were developed using MATLARZ. The user begins
by inputting the number of samples to be evaluatéat. each specimen, the user inputs
preliminary data: density (g/chn thickness (mm), reference velocity (m/s), refiee
time (s), and a list of stress levels (MPa) thatgsample is subjected to. The user then
inputs the rotation angles of the sample, andékalting longitudinal and transverse
wave time values corresponding to these stressslea®lists. A list of data is input in

brackets with a space between each value. Fdrad smadings:

time readings §t, t, t,...t,],
spin =[a, a, a;...a,]
tilt = [‘//1 ¥, l/’s‘//n] ,

in-plane rotation =[¢1 7/ 1) qon]
The {" entry of each list forms a group describing onerdation and time reading. For
measurements in the 1-2 plane, only the angldta$ tused. In the 1-3 plane only the
angle of spin is used. For a testin a non-priaigtane, 1-2’, the angle of in-plane
rotation is constant and is equal to the angle betwhe 2’ and 2 axes. The angle of tilt

is then equal to the incidence angle.
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Figure 4.1 shows the initial setup for the ultrasammersion test. The
ultrasonic transmitter, T, and the receiver, R,positioned on the 1 axis. The 2 and 3

axes define the plane of the sample, with the 8 exihe long direction.

iy

1

LT]

Figure 4.1 Initial orientations of sample and wdtic transmitter and receiver.

When using the minimization of velocities solutimethod, one must distinguish
the character of the transverse waves. Usuakytrinsverse waves in the 1-3 plane are
considered to be fast transverse waves, and throdeiged in the 1-2 plane are
considered slow transverse waves. Waves polanzggk fiber direction are faster than
the waves polarized perpendicular to the fiberatiom (Rokhlin and Wang 1992).
However, for the minimization of the Christoffeluegion, only the time readings and
corresponding angle measures are necessary. d-solilition of rotation equations
method, one must distinguish between the type®lairization in a non-principal plane.
The fast transverse waves are considered as hiavplgne polarization, and the slow
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transverse waves have out-of-plane polarizatiaor. tike minimization of the velocities
and Christoffel equation methods, the user is ptempted to input a list of estimated
initial values for the nine elastic stiffnesses;, ©;,, Csz, Cas, Css, Cos, Ci2, Ci3, and Gg,
for the Levenberg-Marquardt method.

After the angle measures and time readings ard fopeach stress level, the
programs output tables of the elastic stiffnes€eglastic compliances, S, material
constants, E, G, ang and damage, D, for each stress level. Plotadi elastic
stiffness, elastic compliance, and damage variadisus the applied stress levels are also
created.

4.2 Minimization of the Christoffel Equation

The MATLAB 7.0.4 program developed for the minintina of the Christoffel
equation is presented in Appendix A.

4.3 Minimization of the Variation between Experimental and Calculated Velocities

The MATLAB 7.0.4 program developed for the minintina of the variation
between the experimental and calculated veloagigsesented in Appendix B.

4.4 Least Squar es Solution using Rotation of Axes
The MATLAB 7.0.4 program developed for the rotatmraxes equation is

presented in Appendix C.
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CHAPTER YV
COMPARISON OF MATLAB PROGRAMS
5.1 Reconstruction of Velocity Data
The three MATLAB programs presented in Appendice8Aand C were tested

using a set of velocity values back-calculated frdtrasonic immersion tests conducted
on a 1-D (unidirectional fiber) SiC-SiC ceramic npatomposite using data reported by
Aristegui and Baste (1997). The velocities welewated in three data planes: the 1-2
plane, the 1-3 plane, and the 1%g%ane. The 45axis is in the 2-3 plane and is forty-five

degrees from the 2 and 3 axes.

2!

1

Figure 5.1 Unidirectional fiber composite showihg tixes
defining the three planes of measurement: 1-2,dr8 1- 2'.

The mass density of the composite material wag/215, the sample thickness
was 3 mm, and the values of the nine independastielstiffnesses, determined from
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experimental ultrasonic measurements similar tsehaescribed in this report, and

reported by Aristegui and Baste, are summarizeéihalvle 5.1.

Table 5.1 Values of elastic stiffnesses for 1-D-SIC (GPa) (Aristegui and Baste 1997).

Cu1 Ca Css Cas Css Ces Cp2 Ciz Cas
76 134 396 81 37.4 24.6 29 35 98

Figure 5.2 shows the measured data points andaWwaass curves reconstructed
from the nine elastic stiffnesses in three plarfes@asurement (Aristegui and Baste

1997). The graphs in Figure 5.2 are polar plothefslownessl/V, , versus the

refraction anglef , in the three data planes. The longitudinal waslecities are closest

to the origin, and the slow transverse wave vdkxiare farthest from the origin. The

data in Tables 5.2, 5.3, and 5.4 roughly corresporite data points in Figure 5.2.

0 1 1 1 Al 1 J 1 1 1 1 1 Ul 1
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
(a) S mm-! xi0! (b) S mm-! x10°! (© uS mm-1 x10°!

Figure 5.2 Reconstructed slowness curves and empetally measured data points for a
1-D SiC-SiC composite in the (a) 1-2, (b) 1-3, écid1-45 planes (Aristegui and Baste
1997).

—X>

Because Aristegui and Baste reported only thefsalastic constants determined

from the experimental measurements, and not theblangitudinal and transverse wave
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time data, a set of experimental velocity measurgsi®r the orthotropic material was
simulated to check the validity of the MATLAB pragns using the known values of the
elastic stiffnesses.

For the matrix

I—ll 12 r13

I—‘ﬂ |—\_I
w N
=1 1 T
NN
®w N
-1 "1
N
w

33
wherel, = C,,n,> +C.n,” +Cn.”,

[, = Cen,’ +C,n,° +C,un.°,

[, =Cgn’+C,n,° +C,n°,

r12 = (C12 + C66 )nan’

M = (Cp + Cog s,

r23 = (C23 + C44)n2n3’ a‘nd

n, n,, andn, are the components of the wave vectoy,
the three eigenvalues are equajgd®, pV., and pV/,, where p is the density of the
compositeV, is the velocity of the quasi-longitudinal wawg, is the velocity of the
slow transverse wave, aMg, is the velocity of the fast transverse wave. fteximum
eigenvalue is equal j@v,>, the minimum eigenvalue is equaldd, and the middle
eigenvalue is equal j9v,5,. These velocities were calculated in three pldoethe 1-D
SiC-SiC ceramic matrix composite evefyder a range of refraction anglés, from @

to 8. The incidence anglé,, for each wave was calculated using Snell's Law:

53



6 = arcsir(sin@r V—°j
VP

where the reference velocity, , was taken equal to 1450 m/s.

For measurements in the 1-2, 1-3, and pl&nes, the incidence angle is equal
to the degree of tilt, degree of spin, and degfd#torespectively. In the 1-45lane,
the in-plane rotation is equal to4®r all velocities. The set of velocities and sy
used in the three MATLAB programs represents acipgiange of measurements of data
for an ultrasonic immersion test, as suggestedhéylata points shown in Figure 5.2.
The velocities, input angles, and refraction angiesit into the MATLAB programs are

summarized in Tables 5.2, 5.3, and 5.4.
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Table 5.2 Simulated velocity and angle measurenfentguasi-longitudinal waves.

Quasi-longitudinal wave Degree of in-
velocity, V (km/s) Degree of tilt | Degree of spin | plane rotation | Refraction angle

5.51362 0 0 0 0
5.513821 0.525852 0 0 2
5.514463 1.050984 0 0 4
5.515655 1.574645 0 0 6
5.517582 2.096013 0 0 8
5.520505 2.614164 0 0 10
5.524759 3.128038 0 0 12
5.530757 3.63641 0 0 14
5.538983 4.137865 0 0 16
5.549982 4.630782 0 0 18
5.564348 5.11334 0 0 20

5.5827 5.583537 0 0 22
5.605644 6.039249 0 0 24
5.633735 6.478313 0 0 26
5.667429 6.898643 0 0 28
5.51362 0 0 0 0
5.517954 0 0.525458 0 2
5.53143 0 1.04776 0 4
5.555493 0 1.563351 0 6
5.592631 0 2.067874 0 8
5.646376 0 2.555848 0 10
5.721062 0 3.020606 0 12
5.82108 0 3.45482 0 14
5.949656 0 3.851803 0 16
6.107671 0 4.207147 0 18
6.293336 0 4.519724 0 20
6.502908 0 4.791426 0 22
5.51362 0 0 45 0
5.515885 0.525655 0 45 2

5.5229 1.049379 0 45 4
5.535335 1.569046 0 45 6
5.554343 2.082135 0 45 8

5.5816 2.58553 0 45 10
5.619303 3.075358 0 45 12
5.670077 3.546944 0 45 14
5.736694 3.99502 0 45 16
5.821587 4.414295 0 45 18
5.926249 4.800325 0 45 20
6.050806 5.150363 0 45 22
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Table 5.3 Simulated velocity and angle measurenfentfast transverse waves.

Fast transverse wave Degree of in-
velocity, V1, (km/s) Degree of tilt | Degree of spin | plane rotation | Refraction angle

4.35504 0 4.620025 0 14
4.436949 0 5.168129 0 16
4.503251 0 5.710394 0 18

4.5527 0 6.253684 0 20
4.586332 0 6.801757 0 22
4.606323 0 7.356026 0 24
4.615083 0 7.916548 0 26
4.614779 0 8.482751 0 28
4.607199 0 9.053836 0 30
4.593754 0 9.628949 0 32
4.575552 0 10.20724 0 34
4.553468 0 10.78788 0 36
4.528203 0 11.37001 0 38
4.50033 0 11.95277 0 40
4.470334 0 12.53521 0 42
4.414405 6.450419 0 45 20
4.461921 6.992343 0 45 22
4.497133 7.535655 0 45 24
4.520775 8.082787 0 45 26
4.534332 8.63439 0 45 28

4.5396 9.189815 0 45 30
4.538427 9.747472 0 45 32
4.532615 10.30499 0 45 34
4.523924 10.85918 0 45 36
4.514128 11.40594 0 45 38
4.505067 11.94001 0 45 40
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Table 5.4 Simulated velocity and angle measurenfentdow transverse waves.

Slow transverse wave Degree of in-
velocity, V11 (km/s) Degree of tilt | Degree of spin | plane rotation | Refraction angle
3.637803 10.78521 0 0 28
3.670122 11.39321 0 0 30
3.696181 11.99847 0 0 32
3.715556 12.60484 0 0 34
3.728078 13.21545 0 0 36
3.733817 13.83269 0 0 38
3.733043 14.4582 0 0 40
3.726173 15.0929 0 0 42
3.713735 15.73712 0 0 44
3.696317 16.39062 0 0 46
3.674538 17.05266 0 0 48
3.649026 17.72208 0 0 50
3.620398 18.39734 0 0 52
3.589253 19.07647 0 0 54
3.556167 19.75713 0 0 56
3.52169 20.43658 0 0 58
3.48635 21.11166 0 0 60
3.450647 21.77881 0 0 62
3.41506 22.43399 0 0 64
3.380046 23.07279 0 0 66
3.346039 23.69034 0 0 68
3.313451 24.28144 0 0 70
3.282671 24.84055 0 0 72
3.254062 25.36195 0 0 74
3.227962 25.83982 0 0 76
3.204678 26.26836 0 0 78
3.184486 26.64204 0 0 80
4.465526 0 12.54893 0 42
4.438631 0 13.11634 0 44
4.405591 0 13.69506 0 46
4.371547 0 14.27014 0 48
4.336808 0 14.84025 0 50
4.301664 0 15.4039 0 52
4.266389 0 15.95947 0 54
4.231248 0 16.50516 0 56
4.196496 0 17.03902 0 58
3.939178 14.81517 0 45 44
3.953095 15.29891 0 45 46
3.957615 15.79969 0 45 48
3.953035 16.31932 0 45 50
3.940427 16.85631 0 45 52
3.921286 17.40689 0 45 54
3.897177 17.96616 0 45 56
3.869516 18.52896 0 45 58
3.839503 19.09025 0 45 60
3.808127 19.64523 0 45 62
3.776201 20.18926 0 45 64
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5.2 Results

From Table 5.5 below, it is clear that the resaftthe elastic stiffness values
delivered from the MATLAB programs are an excellpratch with those reported by
Aristegui and Baste in two cases. The minimizatbthe Christoffel equation and the
minimization of the variation of the experimentatlacomputed velocities provide
superior results compared to those obtained bynitidod of solving a system of rotation
equations. Certainly this outcome suggests tlealatiter solution method is not as well-
suited to problems of this type as are the formergolution methods.

The solution method that utilizesinimization of the Christoffel equation shows
advantages compared to the other two methods pieeseBpecifically, for this method,
no knowledge of the direction of polarization igueed. A misinterpretation of the type
of polarization may lead to erroneous results wina@rimizing the velocities or solving
the system of rotation equations (i.e., when ugiiegprograms containing the other
solution methods).

Furthermore, the rotation solution method assumesxa system for the input
wave that defines the direction of the wave, z{ amo orthogonal axes, x’ and y'.
However, the refracted waves are nearly, but nat#y longitudinal or transverse. The
orthogonal coordinate system (X', y’, ') approxiemthese quasi-longitudinal and
guasi-transverse waves as truly longitudinal ardvarse, and it is therefore not exact.
The effects of these approximations are evidethi@npoor solutions given by the results

from the third method, reported in Table 5.5.
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Computation of the damage variable was not perfdrasepart of this check, as

only one set of velocities (corresponding to thepomse at only one stress level) was

calculated, since only one set of data was availédslcomparison.

Table 5.5 Comparison of results of MATLAB prograarsl Aristegui and Baste data.

Cu

Cx

Css

Caa

Css

Ces

C2

Ciz

Cas

Data from
Aristegui and 76
Baste, 1997

134

396

81

37.4

24.6

29

35

98

Minimization of
Christoffel 76
equation

134

396

81

37.4

24.6

29

35

98

Minimization of
experimental
velocities and 76
Cardan’s
solution

134

396

81

37.4

24.6

29

35

98

Solution of
system of
rotation
equations

75.2

128

253

88.8

53.6

24.5

33.1

66.2

116

59



CHAPTER VI
CONCLUSIONSAND RECOMMENDATIONS

6.1 Conclusions

Three MATLAB programs have been written that campate the full
complement of nine elastic constants for an ortptrcomposite material, given a set of
experimental data collected from a series of ulinasimmersion tests performed on a
composite sample that is simultaneously subjecethiaxial tension. The data
necessary as input to the programs are a setrsitttanes corresponding to tests at
varying stress levels, and at varying orientatiohthe ultrasonic transducers with respect
to the composite specimen. The three programerdfily by their numerical solution
method; they each compute the same set of elasigtants. Each program also
computes a value indicating the amount of progvessamage imparted to the composite
sample due to the increasing uniaxial tensile stres

By comparison with the set of experimentally deti@ed elastic constants
reported by Aristegui and Baste (1997), it was ghtvat the programs can accurately
determine the nine elastic constants pertinenafoorthotropic material. Unfortunately,
there was no experimental data available for corsparof damage values.

When using the solution scheme that utilizes th@mmization of velocities, the
solutions given for longitudinal, slow transveraad fast transverse waves in Equations

3.54, 3.55, and 3.56 correspond to the maximumimuim, and median eigenvalues.
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For measurements made in a non-principal plan¢hraé waves are produced, and
identifying each wave type is straightforward. Ro¥asurements made in a principal
plane, only one transverse wave is produced, theacter of which is unknown. For a
unidirectional composite, the transverse wavebanlt2 plane are typically slow
transverse waves, and the transverse waves in3hadne are typically fast transverse
waves. However, as seen in Figure 5.2 (b), inrecal plane, the character of the
transverse wave may change from a fast transvease t0 a slow transverse wave as
indicated by the crossover of the slowness curidsing simulated velocity data (as was
done to check the accuracy of the programs foutatiag elastic constants), it was
simple to correctly identify the angle at which thave changed from the fast transverse
wave to the slow transverse wave in the 1-3 pldf@.an actual ultrasonic immersion
test, if and when the transverse wave changesdaata unknown and thus correct
characterization is difficult.
6.2 Recommendations

It is recommended that for future study, the solutnethod of minimizing the
Christoffel equation should be expanded to inclaiipossible types of symmetry, i.e. up
to twenty-one independent elastic constants. Wbisld not only increase the range of
materials suitable for testing, but would alsowalfor a complete description of the
damage variable. A comparison of the MATLAB pragsawith experimental damage
data should also be performed.

Additionally, for the study conducted herein, itsnssumed the composite
material maintains its class of symmetry duringling. This condition is satisfied if the
direction of crack growth coincides with the plamésymmetry of the composite, but
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this may not always be the case (Audoin and B&8%d)1 Modification of the program
to account for a change in symmetry class withilogts recommended.

Furthermore, further investigation using the miraation of the Christoffel
equation solution method should include a studpvestigate how the number of
velocity readings, the range of refraction angesl the change in initial estimates using

the Levenberg-Marquardt method affects the accuohtlye method.
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APPENDIX A

Minimization of the Christoffel Equation

%This program develops and solves a system of nonlinear equations
%based on the Christoffel equation of an orthotropic composite
%Solves for nine elastic stiffnesses using Levenberg-Marquardt method
%Valid for incident waves on 2-3 plane, plane of the sample
%3 is the long axis, for unidirectional fiber composites 3 is the axis of fiber direction
%1 is the out-of-plane axis
%degrees of spin, tilt, rotation only valid up to 90 degrees
N = input('Enter the number of test specimens *);
disp(Input a list of data as [# # # #]);
fori=1:N

disp('For sample’);disp(i)

density = input('Input density of sample (g/cm”3) );

density=1000*density;%Convert g/cm”3 to kg/m”3

h = input('Input sample thickness (cm) *);

h=h/100;%Convert cm to m

To = input('Input reference time (sec) ");

Vo = input('Input velocity of incident wave (velocity in immersion medium)(m/s) ;

stress = input('Input a list of stress levels (MPA) );

for j = 1:length(stress)

disp('For stress level’);disp(stress(j));
%Enter velocities and angles for each type of wave

disp('For measurements in the 1-2 plane, only tilt will be used’)
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disp('For measurements in the 1-3 plane, only spin will be used’)

disp('For the longitudinal (quasi-longitudinal) waves:');

psil = input('Input a list of degrees of spin (around 2 axis)(rad) ‘);

alphal = input(Input a list of degrees of tilt (around 3 axis)(rad) ");

phil = input('Input a list of in-plane rotation angles (around 1 axis) (rad) );

t1 = input('Input a list of time readings for longitudinal waves (quasi-longitudinal waves)(sec)

disp('For the transverse (shear) waves:");

psi2 = input('Input a list of degrees of spin (around 2 axis)(rad) ‘);

alpha2 = input('Input a list of degrees of tilt (around 3 axis)(rad) ");

phi2 = input('Input a list of in-plane rotation angles (around 1 axis) (rad) ;

t2 = input('Input a list of time readings for the transverse (shear) waves (sec) );

%Calculate the time difference for each wave
T1 =To-t1,;

T2 =To-t2;

%Calculate incidence angle for each wave
thetal =acos(cos(psil).*cos(alphal));

theta2 =acos(cos(psi2).*cos(alpha2));
%Calculate the refraction angle for each wave
rl =atan(sin(thetal)./(cos(thetal)-(T1*Vo/h)));
r2 =atan(sin(theta2)./(cos(theta2)-(T2*Vo/h)));
%Calculate the phase velocity for each wave
V1 =Vo*sin(rl)./sin(thetal);

V2 =Vo*sin(r2)./sin(theta?);
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%For an incidence angle of zero (wave on 1 axis), correct values of V, r, and theta
for k=1:length(tl)
if psil(k)==0 & alphal(k)==0
V1(k)=Vo*h/(h-Vo*T1(k));
r1(k)=0;
thetal(k)=0;
end
end
%Square velocities, multiply by density, combine into one list
lambdal = density*V1.*V1;
lambda2 = density*V2.*V2;
lambda = [lambdal lambda2];
%Combine refraction, tilt, spin, inplane, and incidence angles for the three waves
r=[r1 r2];
psi = [psil psi2];
phi=[phil phi2];
alpha = [alphal alphaZ2];
theta=[thetal theta2];
%The wave propagation vector for each wave

al=[-cos(alpha).*cos(r-theta).*cos(psi)+cos(psi).*2.*csc(theta).*sin(alpha).”2.*sin(r-

theta)+csc(theta).*sin(r-theta).*sin(psi).”2];

a2=[-cos(psi).*csc(theta).*sin(r-theta).*sin(phi).*sin(psi)-cos(r-theta).*(-

cos(phi).*sin(alpha)+cos(alpha).*sin(phi).*sin(psi))+cos(psi).*csc(theta).*sin(alpha).*sin(r-

theta).*(cos(alpha).*cos(phi)+sin(alpha).*sin(phi).*sin(psi))];

a3=[-cos(phi).*cos(psi).*csc(theta).*sin(r-theta).*sin(psi)-cos(r-

theta).*(sin(alpha).*sin(phi)+cos(alpha).*cos(phi).*sin(psi))+cos(psi).*csc(theta).*sin(alpha).*sin(r-

theta).*(-cos(alpha).*sin(phi)+cos(phi).*sin(alpha).*sin(psi))];

%Correct values for incidence angle=0
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for g=1:length(r)
if alpha(q)==0 & psi(q)==0
al(g)=1;a2(q)=0;a3(q)=0;
end
end
%Create function F
%Christoffel equation for orthotropic symmetry
%the (c) variables are %C11 C22 C33 C44 C55 C66 C12 C13 C23
F= @ (c)
(al.*a3.*c(8)+al.*a3.*c(5)).*((a2.*a3.*c(9)+a2.*a3.*c(4)).*(al.*a2.*c(7)+al.*a2.*c(6))-
(al.*a3.*c(8)+al.*a3.*c(5)).*(a2./2.*c(2)+a3.”2.*c(4)+al.”2.*c(6)-lambda))-
(a2.*a3.*c(9)+a2.*a3.*c(4)).*(-
1*(al.*a3.*c(8)+al.*a3.*c(b)).*(al.*a2.*c(7)+al.*a2.*c(6))+(a2.*a3.*c(9)+a2.*a3.*c(4)).*(al.”2.*c1l
1+a3.72.*c(5)+a2./2.*c(6)-lambda))+(-
1*(al.*a2.*c(7)+al.*a2.*c(6))."2+(a2./2.*c(2)+a3.72.*c(4)+al."2.*c(6)-
lambda).*(al./2.*c(1)+a3./2.*c(5)+a2.2.*¢c(6)-lambda)).*(a3.22.*c(3)+a2./2.*c(4)+al.”2.*c(5)-

lambda);

%For first stress level, user inputs initial values of C as a list
%For subsequent stresses, program uses previous solution x
if j==1
xo=input('input initial values for [C11 C22 C33 C44 C55 C66 C12 C13 C23]in Pa");
else xo=x;
end
%Sets the Isgnonlin command to run LM method
options = optimset('LargeScale','off");

%Nonlinear least squares optimization of Christoffel equation using LM method
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x=lsgnonlin(F,xo)
%store values in C table
%each row is for a different stress level
C(,)=x;
end
%Convert Pa to GPa
C=C/1000000000;
%Put values from completed C table into 6x6xstress array
for m=1:length(stress)
C6(1,1,m)=C(m,1);
C6(2,2,m)=C(m,2);
C6(3,3,m)=C(m,3);
C6(4,4,m)=C(m,4);
C6(5,5,m)=C(m,5);
C6(6,6,m)=C(m,6);
C6(1,2,m)=C(m,7);
C6(1,3,m)=C(m,8);
C6(2,3,m)=C(m,9);
C6(2,1,m)=C(m,7);
C6(3,1,m)=C(m,8);
C6(3,2,m)=C(m,9);
%Solve for elastic compliances
%S = inverse C
S6(:,:,m) = inv(C6(:,:,m));
%Store S values from 6x6xstress array in table
S(m,1)=S6(1,1,m);
S(m,2)=S6(2,2,m);

S(m,3)=S6(3,3,m);
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S(m,4)=S6(4,4,m);
S(m,5)=S6(5,5,m);
S(m,6)=S6(6,6,m);
S(m,7)=S6(1,2,m);
S(m,8)=S6(1,3,m);
S(m,9)=S6(2,3,m);
end
%Compute damage variable
for p=1:length(stress)
D6(:,:,p)=1-C6(:,:,p)./C6(:,:,1);
end
%Compute off-diagonal damage terms
for k=1:length(stress)
for i=1:6
for j=1:6
if i~=j
D6(i,j,k)=(C6(i,j,1)-C6(i,j,k))./(C6(i,j,1)+sign(C6(i,j,1)-C6(i,j,k)).*(C6(i,i, 1).*(1-
D(i,i,k)).*C6(j,j,1).*(1-D(j,j,k))).~(1/2));
end
end
end
end
%Store damage terms in table D
for m=1:length(stress)
D(m,1)=D6(1,1,m);
D(m,2)=D6(2,2,m);
D(m,3)=D6(3,3,m);

D(m,4)=D6(4,4,m);
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D(m,5)=D6(5,5,m);
D(m,6)=D6(6,6,m);
D(m,7)=D6(1,2,m);
D(m,8)=D6(1,3,m);
D(m,9)=D6(2,3,m);
end
%Compute Young's moduli, Shear moduli, Poisson's ratios
E1=1./S(:,1);
E2=1./S(:;,2);
E3=1./S(:,3);
G23=1./S(:,4);
G13=1./S(:,5);
G12=1./S(:,6);
pri2 = -E1.*S(:,7);
pr2l = -E2.*S(:,7);
prl3 = -E1.*S(;,8);
pr31 = -E3.*S(;,8);
pr23 = -E2.*S(:,9);
pr32 = -E3.*S(;,9);
%Display results
disp( Stress Cl11 C22 C33 C44 C55 C66 C12 C13 C(C23)
disp([stress' C])
disp( Stress S11 S22 S33 S44 S5 S66 S12 S13  S23)
disp([stress' S])
disp( Stress E1 E2 E3 G23 G13 G12 prl2 pr21 prl3 pr3l pr23
pr32"

disp([stress' E1 E2 E3 G23 G13 G12 pr12 pr21 prl13 pr31 pr23 pr32])
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disp('For sample");disp(i);
plot(stress,C),legend('C11','C22','C33','C44','C55','C66','C12','C13','C23");
figure
plot(stress,S),legend('S11','S22','S33','S44','S55','S66','S12','S13','S23");
%Plot grid of elastic stiffnesses versus stress graphs

figure

subplot(331);plot(stress,C(:,1)),xlabel('Stress (MPa)"),ylabel('C11 (GPa)";
subplot(332);plot(stress,C(:,2)),xlabel('Stress (MPa)"),ylabel('C22 (GPa)";
subplot(333);plot(stress,C(:,3)),xlabel('Stress (MPa)"),ylabel('C33 (GPa)";
subplot(334);plot(stress,C(:,4)),xlabel('Stress (MPa)"),ylabel('C44 (GPa)";
subplot(335);plot(stress,C(:,5)),xlabel('Stress (MPa)"),ylabel('C55 (GPa)";
subplot(336);plot(stress,C(:,6)),xlabel('Stress (MPa)"),ylabel('C66 (GPa)";
subplot(337);plot(stress,C(:,7)),xlabel('Stress (MPa)"),ylabel('C12 (GPa)";
subplot(338);plot(stress,C(:,8)),xlabel('Stress (MPa)"),ylabel('C13 (GPa)";
subplot(339);plot(stress,C(:,9)),xlabel('Stress (MPa)"),ylabel('C23 (GPa)";
figure

%Plot grid of elastic compliances versus stress graphs
subplot(331);plot(stress,S(;,1)),xlabel('Stress (MPa)'),ylabel('S11 (GPa-1)";
subplot(332);plot(stress,S(;,2)),xlabel('Stress (MPa)'),ylabel('S22 (GPa-1)";
subplot(333);plot(stress,S(:,3)),xlabel('Stress (MPa)'),ylabel('S33 (GPa-1)";
subplot(334);plot(stress,S(:,4)),xlabel('Stress (MPa)'),ylabel('S44 (GPa-1)";
subplot(335);plot(stress,S(:,5)),xlabel('Stress (MPa)'),ylabel('S55 (GPa-1)";
subplot(336);plot(stress,S(;,6)),xlabel('Stress (MPa)'),ylabel('S66 (GPa-1)";
subplot(337);plot(stress,S(;,7)),xlabel('Stress (MPa)'),ylabel('S12 (GPa-1)";
subplot(338);plot(stress,S(;,8)),xlabel('Stress (MPa)'),ylabel('S13 (GPa-1)";

subplot(339);plot(stress,S(:,9)),xlabel('Stress (MPa)'),ylabel('S23 (GPa-1)");
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figure

%Plot grid of damage versus stress graphs
subplot(331);plot(stress,D(:,1)),xlabel('Stress (MPa)"),ylabel('D11");
subplot(332);plot(stress,D(:,2)),xlabel('Stress (MPa)"),ylabel('D22");
subplot(333);plot(stress,D(:,3)),xlabel('Stress (MPa)"),ylabel('D33");
subplot(334);plot(stress,D(:,4)),xlabel('Stress (MPa)"),ylabel('D44");
subplot(335);plot(stress,D(:,5)),xlabel('Stress (MPa)"),ylabel('D55");
subplot(336);plot(stress,D(:,6)),xlabel('Stress (MPa)"),ylabel('D66");
subplot(337);plot(stress,D(:,7)),xlabel('Stress (MPa)"),ylabel('D12";
subplot(338);plot(stress,D(:,8)),xlabel('Stress (MPa)"),ylabel('D13");
subplot(339);plot(stress,D(:,9)),xlabel('Stress (MPa)"),ylabel('D23");

end
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Appendix B
Minimization of the Variation between Experimental and Calculated Velocities

%This program develops and solves a system of nonlinear equations

%based on the variation of the experimental velocities and Cardan's solution of the cubic
Christoffel equation

%for an orthotropic composite

%Solves for nine elastic stiffnesses using Levenberg-Marquardt method

%Valid for incident waves on 2-3 plane, plane of the sample
%3 is the long axis, for unidirectional fiber composites 3 is the axis of fiber direction
%1 is the out-of-plane axis

%degrees of spin, tilt, rotation only valid up to 90 degrees

N = input('Enter number of test specimens );
disp(Input a list of data as [# # # #]);
fori=1:N
disp('For sample’);disp(i)
density = input('Input density of sample (g/cm”3) ");
density=1000*density;%Convert g/cm”3 to kg/m”3
h = input('Input sample thickness (mm) ");
h=h/1000;%Convert cm to m
To = input('Input reference time (sec) ');
Vo = input(Input velocity of incident wave (velocity in immersion medium)(m/s) );

stress = input('Input a list of stress levels (MPA) ');
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for j = 1:length(stress)
disp('For stress level’);disp(stress(j));
%Enter velocities and angles for each type of wave
disp('For measurements in the 1-2 plane, only tilt will be used’)

disp('For measurements in the 1-3 plane, only spin will be used’)

disp('For the longitudinal (quasi-longitudinal) waves:');

psil = input('Input a list of degrees of spin (around 2 axis)(rad) );

alphal = input('Input a list of degrees of tilt (around 3 axis)(rad) ");

phil = input('Input a list of in-plane rotation angles (around 1 axis) (rad) );

t1 = input(Input a list of time readings for longitudinal waves (quasi-longitudinal waves)(sec)

disp('For the fast transverse (shear) waves:");

psi2 = input('Input a list of degrees of spin (around 2 axis)(rad) );

alpha2 = input('Input a list of degrees of tilt (around 3 axis)(rad) ");

phi2 = input('Input a list of in-plane rotation angles (around 1 axis) (rad) );

t2 = input(Input a list of time readings for fast transverse (shear) waves (sec) ;

disp('For the slow transverse (shear) waves:');

psi3 = input('Input a list of degrees of spin (around 2 axis)(rad) );

alpha3 = input('Input a list of degrees of tilt (around 3 axis)(rad) ");

phi3 = input('Input a list of in-plane rotation angles (around 1 axis) (rad) );

t3 = input('Input a list of time readings for slow transverse (shear) waves (sec) );

%Calculate the time difference for each wave
T1l=To-t1;
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T2 =To-t2;
T3 =To-t3;
%~ Calculate the incidence angle for each wave
thetal =acos(cos(psil).*cos(alphal))
theta2 =acos(cos(psi2).*cos(alpha?))
theta3 =acos(cos(psi3).*cos(alpha3))
%Calculate the refraction angle for each wave
rl =atan(sin(thetal)./(cos(thetal)-(T1*Vo/h)));
r2 =atan(sin(theta2?)./(cos(theta2)-(T2*Vo/h)));
r3 =atan(sin(theta3)./(cos(theta3)-(T3*Vo/h)));
%~Calculate the phase velocity for each wave
V1 =Vo*sin(rl)./sin(thetal);
V2 =Vo*sin(r2)./sin(theta2);
V3 =Vo*sin(r3)./sin(theta3);
%For an incidence angle of zero (wave on 1 axis), correct values of V, r, and theta
for k=1:length(t1)
if psil(k)==0 & alphal(k)==

V1(k)=Vo*h/(h-Vo*T1(k));

r1(k)=0;

thetal(k)=0;

end

end
%Square velocities, multiply by density, combine into one list
lambdal = density*V1.*V1;
lambda2 = density*V2.*V2;
lambda3 = density*V3.*V3;

lambda = [lambdal lambda2 lambda3j;
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%longitudinal wave vectors

Lal=[-cos(alphal).*cos(r1-
thetal).*cos(psil)+cos(psil).”2.*csc(thetal).*sin(alphal).”2.*sin(r1-thetal)+csc(thetal).*sin(r1-
thetal).*sin(psil).*2];

La2=[-cos(psil).*csc(thetal).*sin(rl-thetal).*sin(phil).*sin(psil)-cos(rl-thetal).*(-
cos(phil).*sin(alphal)+cos(alphal).*sin(phil).*sin(psil))+cos(psil).*csc(thetal).*sin(alphal).*sin(
rl-thetal).*(cos(alphal).*cos(phil)+sin(alphal).*sin(phil).*sin(psil))];

La3=[-cos(phil).*cos(psil).*csc(thetal).*sin(rl-thetal).*sin(psil)-cos(rl-
thetal).*(sin(alphal).*sin(phil)+cos(alphal).*cos(phil).*sin(psil))+cos(psil).*csc(thetal).*sin(alp
hal).*sin(r1-thetal).*(-cos(alphal).*sin(phil)+cos(phil).*sin(alphal).*sin(psil))];

%fast shear wave vectors

Qal=[-cos(alpha2).*cos(r2-
theta2).*cos(psi2)+cos(psi2).”2.*csc(theta2).*sin(alpha2).”2.*sin(r2-theta2)+csc(theta2).*sin(r2-
theta?2).*sin(psi2).*2];

Qa2=[-cos(psi2).*csc(theta?).*sin(r2-theta?2).*sin(phi2).*sin(psi2)-cos(r2-theta2).*(-
cos(phi2).*sin(alpha2)+cos(alpha?2).*sin(phi2).*sin(psi2))+cos(psi2).*csc(theta?).*sin(alpha2).*sin(
r2-theta2).*(cos(alpha?).*cos(phi2)+sin(alpha2).*sin(phi2).*sin(psi2))];

Qa3=[-cos(phi2).*cos(psi2).*csc(theta2).*sin(r2-theta2).*sin(psi2)-cos(r2-
theta2).*(sin(alpha2).*sin(phi2)+cos(alpha2).*cos(phi2).*sin(psi2))+cos(psi2).*csc(theta2).*sin(alp
ha2).*sin(r2-theta?2).*(-cos(alpha2).*sin(phi2)+cos(phi2).*sin(alpha2).*sin(psi2))];

%slow shear wave vectors

Tal=[-cos(alpha3).*cos(r3-
theta3).*cos(psi3)+cos(psi3).”2.*csc(theta3).*sin(alpha3).”2.*sin(r3-theta3)+csc(theta3).*sin(r3-

theta3).*sin(psi3). 2];
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Ta2=[-cos(psi3).*csc(theta3).*sin(r3-theta3).*sin(phi3).*sin(psi3)-cos(r3-theta3).*(-
cos(phi3).*sin(alpha3)+cos(alpha3).*sin(phi3).*sin(psi3))+cos(psi3).*csc(thetal).*sin(alpha3).*sin(
r3-theta3).*(cos(alpha3).*cos(phi3)+sin(alpha3).*sin(phi3).*sin(psi3))];

Ta3=[-cos(phi3).*cos(psi3).*csc(thetal).*sin(r3-theta3).*sin(psi3)-cos(r3-
theta3).*(sin(alpha3).*sin(phi3)+cos(alpha3).*cos(phi3).*sin(psi3))+cos(psi3).*csc(thetal).*sin(alp
ha3).*sin(r3-theta3).*(-cos(alpha3).*sin(phi3)+cos(phi3).*sin(alpha3).*sin(psi3))];

%Correct values for incidence angle=0

for g=1:length(t1)

if alphal(q)==0 & psi1(q)==0
Lal(g)=1;La2(q)=0;La3(q)=0;
end

end

%The coefficients (c) in order

%C11 C22 C33C44 C55 C66 Cl1l2 C13 C23

%Compute Cardan's solution in terms of elastic stiffnesses (c) for longitudinal waves

LG11 = @ (c) c(1)*Lal."2 + c(6)*La2.72 + c(5)*La3."2;

LG22 = @ (c) c(6)*Lal.”2 + c(2)*La2."2 + c(4)*La3."2;

LG33 = @ (c) c(5)*Lal.”2 + c(4)*La2.”"2 + c(3)*La3."2;

LG12 = @ (c) Lal.*La2.*(c(7)+c(6));

LG13 = @ (c) Lal.*La3.*(c(8)+c(5));

LG23 = @ (c) La2.*La3.*(c(9)+c(4));

Ldelta = @ (c) -LG11(c)-LG22(c)-LG33(c);
Lbeta = @ (c) -LG12(c).~2-LG13(c)."2-
LG23(c)."2+LG11(c).*LG22(c)+LG11(c).*LG33(c)+LG22(c).*LG33(c);
Lgamma = @ (c) -LG11(c).*LG22(c).*LG33(c)-

2*LG12(c).*LG13(c).*LG23(c)+LG11(c).*LG23(c)."2+LG22(c).*LG13(c).A2+LG33(c).*LG12(c) "2;
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La=@ (c) (Ldelta(c).”2)/3-Lbeta(c);

Lb=@ (c) Lgamma(c)-Ldelta(c).*Lbeta(c)/3+2*(Ldelta(c)/3)."3;

Lpsic = @(c) acos(-Lb(c)./(2*(La(c)/3).”(3/2)));

Vcl=@ (c) 2*cos(Lpsic(c)/3).*(La(c)/3).~(1/2)-Ldelta(c)/3;

9%Compute Cardan's solution in terms of elastic stiffnesses (c) for fast shear waves
QG11 = @ (c) c(1)*Qal."2 + c(6)*Qa2."2 + ¢(5)*Qa3. 2;

QG22 = @ (c) c(6)*Qal."2 + c(2)*Qa2. 2 + c(4)*Qa3. 2;

QG33 = @ (c) ¢(5)*Qal."2 + c(4)*Qa2."2 + ¢(3)*Qa3."2;

QG12 = @ (c) Qal.*Qaz.*(c(7)+c(6));

QG13 = @ (c) Qal.*Qa3.*(c(8)+c(5));

QG23 = @ (c) Qa2.*Qa3.*(c(9)+c(4));

Qdelta = @ (c) -QG11(c)-QG22(c)-QG33(c);

Qbeta = @ (c) -QG12(c)."2-QG13(c)."2-
QG23(c).~2+QG11(c).*QG22(c)+QG11(c).*QG33(c)+QG22(c).*QG33(c);

Qgamma = @ (c) -QG11(c).*QG22(c).*QG33(c)-
2*QG12(c).*QG13(c).*QG23(c)+QG11(c).*QG23(c).A2+QG22(c).*QG13(c).A2+QG33(c). *QG12(c)

N2;

Qa=@ (c) (Qdelta(c).”2)/3-Qbeta(c);
Qb=@ (c) Qgamma(c)-Qdelta(c).*Qbeta(c)/3+2*(Qdelta(c)/3)."3;
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Qpsic = @(c) acos(-Qb(c)./(2*(Qa(c)/3).(3/2)));

Ve2=@ (c) 2*cos((Qpsic(c)-2*pi)/3).*(Qa(c)/3).(1/2)-Qdelta(c)/3;

%Compute Cardan's solution in terms of elastic stiffnesses (c) for slow shear waves
TG11 = @ (c) c(1)*Tal.~ 2 + c(6)*Ta2.”2 + c(5)*Ta3./2;

TG22 = @ (c) c(6)*Tal."2 + c(2)*Ta2.”2 + c(4)*Ta3./2;

TG33 = @ (c) ¢(5)*Tal.”2 + c(4)*Ta2.”2 + c(3)*Ta3.2;

TG12 = @ (c) Tal.*Ta2.*(c(7)+c(6));

TG13 = @ (c) Tal.*Ta3.*(c(8)+c(5));

TG23 = @ (c) Ta2.*Ta3.*(c(9)+c(4));

Tdelta = @ (c) -TG11(c)-TG22(c)-TG33(c);

Theta = @ (c) -TG12(c)."2-TG13(c)."2-
TG23(c)."2+TG11(c).*TG22(c)+TG11(c).*TG33(c)+TG22(c).*TG33(c);

Tgamma = @ (c) -TG11(c).*TG22(c).*TG33(c)-

2*TG12(C).*TG13(c).*TG23(c)+TG11(c).*TG23(C).A2+TG22(C). *TG13(c)."2+TG33(c) . *TG12(c).A2

Ta=@ (c) (Tdelta(c)."2)/3-Theta(c);

Th=@ (c) Tgamma(c)-Tdelta(c).*Tbeta(c)/3+2*(Tdelta(c)/3).3;

Tpsic = @(c) acos(-Th(c)./(2*(Ta(c)/3).M(3/2)));

Ve3=@ (c) 2*cos((Tpsic(c)+2*pi)/3).*(Ta(c)/3).(1/2)-Tdelta(c)/3;
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%Combine the computed velocities for each wave
Ve=@ (c)[Vel(c) Ve2(c) Ve3(c)];
%Create function of difference between experimental and computed velocities
F=@ (c) lambda-Vc(c);
%For first stress level, user inputs initial values of C as a list
%For subsequent stresses, program uses previous solution x
if j==
xo=input(input initial values for [C11 C22 C33 C44 C55 C66 C12 C13 C23]);
else xo=x;
end
%Sets the Isgnonlin command to run LM method
options = optimset('LargeScale','off");
%Minimize sum of squares of the deviations between experimental and Cardan's solution
velocities using LM method
x=Isgnonlin(F,xo);
%store values in C table
%each row is for a different stress level
C(,))=x;
end
%Convert Pa to GPa
C=C/1000000000;
%Put values from completed C table into 6x6xstress array
for m=1:length(stress)
C6(1,1,m)=C(m,1);
C6(2,2,m)=C(m,2);
C6(3,3,m)=C(m,3);
C6(4,4,m)=C(m,4);

C6(5,5,m)=C(m,5);
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C6(6,6,m)=C(m,6);
C6(1,2,m)=C(m,7);
C6(1,3,m)=C(m,8);
C6(2,3,m)=C(m,9);
C6(2,1,m)=C(m,7);
C6(3,1,m)=C(m,8);
C6(3,2,m)=C(m,9);
%Solve for elastic compliances
%S = inverse C
S6(:,;,m) = inv(C6(:,:,m));
%Store S values from 6x6xstress array in table
S(m,1)=S6(1,1,m);
S(m,2)=S6(2,2,m);
S(m,3)=S6(3,3,m);
S(m,4)=S6(4,4,m);
S(m,5)=S6(5,5,m);
S(m,6)=S6(6,6,m);
S(m,7)=S6(1,2,m);
S(m,8)=S6(1,3,m);
S(m,9)=S6(2,3,m);
end

%Compute damage variable

for p=1:length(stress)
D6(:,:,p)=1-C6(:,:,p)./C6(:,:,1);

end

%Compute off-diagonal damage terms

for k=1:length(stress)

for i=1:6
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for j=1:6
if i~=j
D6(i,j,k)=(C6(i,j,1)-C6(i.j,k))./(C6(i,j,1)+sign(C6(i,j,1)-C6(i.j,k)).*(C6(i,i,1).*(1-
D(i,i,k)).*C6(j,j,1).*(1-D(j,j,k))).N(1/2));
end
end
end
end
%Store damage terms in table D
for m=1:length(stress)
D(m,1)=D6(1,1,m);
D(m,2)=D6(2,2,m);
D(m,3)=D6(3,3,m);
D(m,4)=D6(4,4,m);
D(m,5)=D6(5,5,m);
D(m,6)=D6(6,6,m);
D(m,7)=D6(1,2,m);
D(m,8)=D6(1,3,m);
D(m,9)=D6(2,3,m);
end
%Compute Young's moduli, Shear moduli, Poisson's ratios
E1=1./S(;,1);
E2=1./S(:,2);

E3=1./S(:,3);

G23=1./S(:,4);

G13=1./S(:,5);
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G12=1./S(;,6);

pri2 = -E1.*S(;,7);

pr21 = -E2.*S(:,7);

pri3 = -E1.*S(:,8);

pr31 = -E3.*S(:,8);

pr23 = -E2.*S(:,9);

pr32 = -E3.*S(:,9);

%Display results

disp( Stress Cl11 C22 C33 C44 C55 C66 C12 C13 C(C23)

disp([stress' C])

disp( Stress S11 S22 S33 S44 S55 S66 S12 S13  S23)

disp([stress' S])

disp( Stress E1 E2 E3 G23 G13 G12 prl2 pr21 prl3 pr31 pr23
pr32"

disp([stress' E1 E2 E3 G23 G13 G12 pr12 pr21 prl13 pr31 pr23 pr32])

disp('For sample’);disp(i);
plot(stress,C),legend('C11','C22','C33','C44','C55','C66','C12','C13','C23")
figure
plot(stress,S),legend('S11','S22','S33",'S44','S55','S66','S12','S13",'S23")
%Plot grid of elastic stiffnesses versus stress graphs
figure
subplot(331);plot(stress,C(:,1)),xlabel('Stress (MPa)"),ylabel('C11 (GPa)";
subplot(332);plot(stress,C(:,2)),xlabel('Stress (MPa)"),ylabel('C22 (GPa)";
subplot(333);plot(stress,C(:,3)),xlabel('Stress (MPa)"),ylabel('C33 (GPa)";

subplot(334);plot(stress,C(:,4)),xlabel('Stress (MPa)"),ylabel('C44 (GPa)";
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subplot(335);plot(stress,C(:,5)),xlabel('Stress (MPa)"),ylabel('C55 (GPa)";
subplot(336);plot(stress,C(:,6)),xlabel('Stress (MPa)"),ylabel('C66 (GPa)";
subplot(337);plot(stress,C(:,7)),xlabel('Stress (MPa)"),ylabel('C12 (GPa)";
subplot(338);plot(stress,C(:,8)),xlabel('Stress (MPa)"),ylabel('C13 (GPa)";
subplot(339);plot(stress,C(:,9)),xlabel('Stress (MPa)"),ylabel('C23 (GPa)";
figure

%Plot grid of elastic compliances versus stress graphs
subplot(331);plot(stress,S(;,1)),xlabel('Stress (MPa)'),ylabel('S11 (GPa-1)";
subplot(332);plot(stress,S(:,2)),xlabel('Stress (MPa)'),ylabel('S22 (GPa-1)";
subplot(333);plot(stress,S(:,3)),xlabel('Stress (MPa)'),ylabel('S33 (GPa-1)";
subplot(334);plot(stress,S(:,4)),xlabel('Stress (MPa)'),ylabel('S44 (GPa-1)";
subplot(335);plot(stress,S(;,5)),xlabel('Stress (MPa)'),ylabel('S55 (GPa-1)";
subplot(336);plot(stress,S(;,6)),xlabel('Stress (MPa)'),ylabel('S66 (GPa-1)";
subplot(337);plot(stress,S(:,7)),xlabel('Stress (MPa)'),ylabel('S12 (GPa-1)";
subplot(338);plot(stress,S(:,8)),xlabel('Stress (MPa)'),ylabel('S13 (GPa-1)");
subplot(339);plot(stress,S(:,9)),xlabel('Stress (MPa)'),ylabel('S23 (GPa-1)";
figure

%Plot grid of damage versus stress graphs
subplot(331);plot(stress,D(;,1)),xlabel('Stress (MPa)"),ylabel('D11");
subplot(332);plot(stress,D(:,2)),xlabel('Stress (MPa)"),ylabel('D22");
subplot(333);plot(stress,D(:,3)),xlabel('Stress (MPa)"),ylabel('D33");
subplot(334);plot(stress,D(:,4)),xlabel('Stress (MPa)"),ylabel('D44");
subplot(335);plot(stress,D(:,5)),xlabel('Stress (MPa)"),ylabel('D55");
subplot(336);plot(stress,D(:,6)),xlabel('Stress (MPa)"),ylabel('D66");
subplot(337);plot(stress,D(;,7)),xlabel('Stress (MPa)"),ylabel('D12";
subplot(338);plot(stress,D(:,8)),xlabel('Stress (MPa)"),ylabel('D13");
subplot(339);plot(stress,D(:,9)),xlabel('Stress (MPa)"),ylabel('D23");

end

85



Appendix C
L east Squar es Solution using Rotation of Axes

%This program uses the rotation of axes equation for fourth rank tensors
%to develop and solve a system of linear equations with the nine unknown elastic constants

%o0f an orthotropic composite

%Valid for incident waves on 2-3 plane, plane of the sample
%3 is the long axis, for unidirectional fiber composites 3 is the axis of fiber direction
%1 is the out-of-plane axis

%degrees of spin, tilt, rotation only valid up to 90 degrees

N = input('Enter number of test specimens );
disp(Input a list of data as [# # # #]);
fori=1:N
disp('For sample’);disp(i)
density = input('Input density of sample (g/cm”3) *);
density=1000*density;%Convert g/cm”3 to kg/m”3
h = input('Input sample thickness (mm) *);
h=h/1000;%Convert cm to m
To = input('Input reference time (sec) ');
Vo = input('Input velocity of incident wave (velocity in immersion medium)(m/s) ;
stress = input('Input a list of stress levels (MPA) );
for j = 1L:length(stress)

disp('For stress level’);disp(stress(j));
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disp('For principal planes only');
disp('For measurements in the 1-2 plane, only tilt will be used");

disp('For measurements in the 1-3 plane, only spin will be used');

disp('For the longitudinal (quasi-longitudinal) waves:');

psilp = input('Input a list of degrees of spin (around 2 axis)(rad) ');

alphalp = input('Input a list of degrees of tilt (around 3 axis)(rad) ");

tlp = input('Input a list of time readings for longitudinal waves (quasi-longitudinal

waves)(sec) V;

disp('For the slow transverse (shear) waves:");
psi3p = input('Input a list of degrees of spin (around 2 axis)(rad) );
alpha3p = input('Input a list of degrees of tilt (around 3 axis)(rad) ";

t3p = input('Input a list of time readings for transverse (shear) waves (sec) ‘);

disp('For non-principal planes only");

disp('For the longitudinal (quasi-longitudinal) waves:');

psilnp = input('Input a list of degrees of spin (around 2 axis)(rad) );

alphalnp = input('Input a list of degrees of tilt (around 3 axis)(rad) );

philnp = input(Input a list of in-plane rotation angles (around 1 axis) (rad) *);

tlnp = input('Input a list of time readings for longitudinal waves (quasi-longitudinal

waves)(sec) V;

disp('For the fast transverse (shear) waves:");
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psi2 = input('Input a list of degrees of spin (around 2 axis)(rad) );

alpha2 = input('Input a list of degrees of tilt (around 3 axis)(rad) );

phi2 = input('Input a list of in-plane rotation angles (around 1 axis) (rad) );

t2 = input('Input a list of time readings for transverse (shear) waves with polarization out of

the incident plane(sec) );

disp('For the slow transverse (shear) waves:');

psi3np = input('Input a list of degrees of spin (around 2 axis)(rad) ");

alpha3np = input('Input a list of degrees of tilt (around 3 axis)(rad) ");

phi3np = input('Input a list of in-plane rotation angles (around 1 axis) (rad) ‘);

t3np = input('Input a list of time readings for transverse (shear) waves with polarization in the

incident plane(sec) 9;

t1=[t1lp tlnp];

t3=[t3p t3np];

psil=[psilp psilnp];
alphal=[alphalp alphalnp];

phil=philnp;

psi3=[psi3p psi3np];
alpha3=[alpha3p alpha3np];

phi3=phi3np;

%Calculate the time difference for each wave
T1 =To-t1;

T2 =To-t2;
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T3 =To-t3;

%Calculate the incidence angle, theta, for each wave
thetal =acos(cos(psil).*cos(alphal));

theta2 =acos(cos(psi2).*cos(alpha2));

theta3 =acos(cos(psi3).*cos(alpha3));
%Calculate the refraction angle, r, for each wave
rl =atan(sin(thetal)./(cos(thetal)-(T1*Vo/h)));

r2 =atan(sin(theta2)./(cos(theta2)-(T2*Vo/h)));

r3 =atan(sin(theta3)./(cos(theta3)-(T3*Vo/h)));
%~Calculate phase velocity of each wave, m/s

V1 =Vo*sin(rl)./sin(thetal);

V2 =Vo*sin(r2)./sin(theta2);

V3 =Vo*sin(r3)./sin(theta3);

%For an incidence angle of zero (wave on 1 axis), correct values of V, r, and theta
for k=1:length(t1)
if psil(k)==0 & alphal(k)==0
V1(k)=Vo*h/(h-Vo*T1(k));
r1(k)=0;
thetal(k)=0;
end

end

%Combine velocities, square and multiply by density
V=[V1V2 V3]

lambda = (density*V.*V)'";
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%List of rotation matrix values for longitudinal waves

Lall=-cos(rl-thetal).*cos(psil).”2.*csc(thetal).*sin(alphal). 2-
cos(alphal).*cos(psil).*sin(rl-thetal)-cos(rl-thetal).*csc(thetal).*sin(psil)."2;

Lal2=cos(r1-thetal).*cos(psil).*csc(thetal).*sin(phil).*sin(psil)-sin(rl-thetal).*(-
cos(phil).*sin(alphal)+cos(alphal).*sin(phil).*sin(psil))-cos(rl-
thetal).*cos(psil).*csc(thetal).*sin(alphal).*(cos(alphal).*cos(phil)+sin(alphal).*sin(phil).*sin(p
si1));

Lal3=cos(rl1-thetal).*cos(phil).*cos(psil).*csc(thetal).*sin(psil)-sin(rl-
thetal).*(sin(alphal).*sin(phil)+cos(alphal).*cos(phil).*sin(psil))-cos(r1-
thetal).*cos(psil).*csc(thetal).*sin(alphal).*(-
cos(alphal).*sin(phil)+cos(phil).*sin(alphal).*sin(psil));

La21=0;

La22=cos(psil).*2.*csc(thetal).*sin(alphal).*sin(phil)+csc(thetal).*sin(psil).*(cos(alphal).*cos(
phil)+sin(alphal).*sin(phil).*sin(psil));

La23=cos(phil).*cos(psil)."2.*csc(thetal).*sin(alphal)+csc(thetal).*sin(psil).*(-
cos(alphal).*sin(phil)+cos(phil).*sin(alphal).*sin(psil));

La31=-cos(alphal).*cos(rl-
thetal).*cos(psil)+cos(psil).”2.*csc(thetal).*sin(alphal).”2.*sin(r1-thetal)+csc(thetal).*sin(rl-
thetal).*sin(psil).”2;

La32=-cos(psil).*csc(thetal).*sin(r1-thetal).*sin(phil).*sin(psil)-cos(rl-thetal).*(-
cos(phil).*sin(alphal)+cos(alphal).*sin(phil).*sin(psil))+cos(psil).*csc(thetal).*sin(alphal).*sin(
rl-thetal).*(cos(alphal).*cos(phil)+sin(alphal).*sin(phil).*sin(psil));

La33=-cos(phil).*cos(psil).*csc(thetal).*sin(rl-thetal).*sin(psil)-cos(rl-
thetal).*(sin(alphal).*sin(phil)+cos(alphal).*cos(phil).*sin(psil))+cos(psil).*csc(thetal).*sin(alp
hal).*sin(r1-thetal).*(-cos(alphal).*sin(phil)+cos(phil).*sin(alphal).*sin(psil));

%List of rotation matrix values for out-of-plane polarization waves
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Qall=-cos(r2-theta2).*cos(psi2).”"2.*csc(theta2).*sin(alpha2)./2-
cos(alpha2).*cos(psi2).*sin(r2-theta2)-cos(r2-theta2).*csc(theta).*sin(psi2)."2;

Qal2=cos(r2-theta2).*cos(psi2).*csc(theta2).*sin(phi2).*sin(psi2)-sin(r2-theta2).*(-
cos(phi2).*sin(alpha2)+cos(alpha?2).*sin(phi2).*sin(psi2))-cos(r2-
theta?2).*cos(psi2).*csc(theta?).*sin(alpha?2).*(cos(alpha?2).*cos(phi2)+sin(alpha2).*sin(phi2).*sin(p
si2));

Qal3=cos(r2-theta2).*cos(phi2).*cos(psi2).*csc(theta2).*sin(psi2)-sin(r2-
theta2).*(sin(alpha2).*sin(phi2)+cos(alpha2).*cos(phi2).*sin(psi2))-cos(r2-
theta?2).*cos(psi2).*csc(theta?).*sin(alpha2).*(-
cos(alpha?2).*sin(phi2)+cos(phi2).*sin(alpha?2).*sin(psi2));

Qa21=0;

Qa22=cos(psi2).”2.*csc(theta2).*sin(alpha2).*sin(phi2)+csc(theta2).*sin(psi2).*(cos(alpha2).*cos(
phi2)+sin(alpha?2).*sin(phi2).*sin(psi2));

Qa23=cos(phi2).*cos(psi2)."2.*csc(theta?).*sin(alpha2)+csc(theta?).*sin(psi2).*(-
cos(alpha?2).*sin(phi2)+cos(phi2).*sin(alpha?2).*sin(psi2));

Qa31=-cos(alpha2).*cos(r2-
theta2).*cos(psi2)+cos(psi2).”2.*csc(theta2).*sin(alpha2).”2.*sin(r2-theta2)+csc(theta2).*sin(r2-
theta2).*sin(psi2).”2;

Qa32=-cos(psi2).*csc(theta?).*sin(r2-theta?).*sin(phi2).*sin(psi2)-cos(r2-theta?2).*(-
cos(phi2).*sin(alpha2)+cos(alpha?2).*sin(phi2).*sin(psi2))+cos(psi2).*csc(theta?).*sin(alpha2).*sin(
r2-theta?).*(cos(alpha2).*cos(phi2)+sin(alpha2).*sin(phi2).*sin(psi2));

Qa33=-cos(phi2).*cos(psi2).*csc(theta2).*sin(r2-theta2).*sin(psi2)-cos(r2-
theta2).*(sin(alpha2).*sin(phi2)+cos(alpha2).*cos(phi2).*sin(psi2))+cos(psi2).*csc(theta2).*sin(alp
ha2).*sin(r2-theta2).*(-cos(alpha2).*sin(phi2)+cos(phi2).*sin(alpha2).*sin(psi2));

%List of rotation matrix values for in-plane polarization waves

Tall=-cos(r3-theta3).*cos(psi3)."2.*csc(theta3).*sin(alpha3).”2-

cos(alpha3).*cos(psi3).*sin(r3-theta3)-cos(r3-theta3).*csc(theta3).*sin(psi3)."2;
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Tal2=cos(r3-theta3).*cos(psi3).*csc(thetald).*sin(phi3).*sin(psi3)-sin(r3-theta3).*(-
cos(phi3).*sin(alpha3)+cos(alpha3).*sin(phi3).*sin(psi3))-cos(r3-
theta3).*cos(psi3).*csc(thetal).*sin(alpha3).*(cos(alpha3).*cos(phi3)+sin(alpha3).*sin(phi3).*sin(p
si3));

Tal3=cos(r3-theta3).*cos(phi3).*cos(psi3).*csc(theta3).*sin(psi3)-sin(r3-
theta3).*(sin(alpha3).*sin(phi3)+cos(alpha3).*cos(phi3).*sin(psi3))-cos(r3-
theta3).*cos(psi3).*csc(thetal).*sin(alpha3).*(-
cos(alpha3).*sin(phi3)+cos(phi3).*sin(alpha3).*sin(psi3));

Ta21=0;

Ta22=cos(psi3)."2.*csc(theta3).*sin(alpha3).*sin(phi3)+csc(theta3).*sin(psi3).*(cos(alpha3).*cos(
phi3)+sin(alpha3).*sin(phi3).*sin(psi3));

Ta23=cos(phi3).*cos(psi3)."2.*csc(theta3).*sin(alpha3)+csc(theta3).*sin(psi3).*(-
cos(alpha3).*sin(phi3)+cos(phi3).*sin(alpha3).*sin(psi3));

Ta31=-cos(alpha3).*cos(r3-
theta3).*cos(psi3)+cos(psi3)."2.*csc(theta3).*sin(alpha3).”2.*sin(r3-theta3)+csc(theta3).*sin(r3-
theta3).*sin(psi3)."2;

Ta32=-cos(psi3).*csc(theta3).*sin(r3-theta3).*sin(phi3).*sin(psi3)-cos(r3-theta3).*(-
cos(phi3).*sin(alpha3)+cos(alpha3).*sin(phi3).*sin(psi3))+cos(psi3).*csc(thetal).*sin(alpha3).*sin(
r3-theta3).*(cos(alpha3).*cos(phi3)+sin(alpha3).*sin(phi3).*sin(psi3));

Ta33=-cos(phi3).*cos(psi3).*csc(theta3).*sin(r3-theta3).*sin(psi3)-cos(r3-
theta3).*(sin(alpha3).*sin(phi3)+cos(alpha3).*cos(phi3).*sin(psi3))+cos(psi3).*csc(thetal).*sin(alp

ha3).*sin(r3-theta3).*(-cos(alpha3).*sin(phi3)+cos(phi3).*sin(alpha3).*sin(psi3));

%The coefficients in order

%C11 C22 C33C44 C55 C66 Cl12 C13 C23
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%C'33

Al=[La31.74;
La32.74,
La33.74,
4.*La32.22.*La33.M2;
4.*La31.22.*La33."2;
4.*La31.22.*La32.72;
2.*La31.”2.*La32.72;
2.*La31.22.*La33.”2;

2.*La32./2.*La33."2];

%C'44

A2=[Qa21./2.*Qa31.2;
Qa22./2.*Qa32.72;
Qa23./2.*Qa33./2;
(Qa23.*Qa32+Qa22.*Qa33)."2;
(Qa23.*Qa31+Qa21.*Qa33)."2;
(Qa22.*Qa31+Qa21.*Qa32)."2;
2.*Qa21.*Qa22.*Qa31.*Qa32;
2.*Qa21.*Qa23.*Qa31.*Qa33;

2.*Qa22.*Qa23.*Qa32.*Qa33];

%C'55
A3=[Tall.*2.*Ta31.72;
Tal2.~2.*Ta32."2,
Tal3.”2.*Ta33."2,

(Tal3.*Ta32+Tal2.*Ta33).”2;
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(Tal3.*Ta31+Tall.*Ta33).”2;
(Tal2.*Ta31+Tall.*Ta32).”2;
2.*Tall.*Tal2.*Ta31.*Ta32;
2.*Tall.*Tal3.*Ta31.*Ta33;
2.*Tal2.*Tal3.*Ta32.*Ta33];
%Correct values in Al for incidence angle of zero
for k=1:length(lambda)
if psi(k)==0 & alpha(k)==0
Al(:,k)=0;
AL(1,k)=1;
end
end
%Combines the transpose of A1,A2,A3 into one matrix A

A=[A1";,A2';A37;

%Solve for %C11 C22 C33 C44 C55 C66 C12 C13 C23in the least squares sense
X=A\lambda;
%store values in C table
%each row is for a different stress level
C(.:)=X"
end
%Convert Pa to GPa
C=C/1000000000;
%Put values from completed C table into 6x6xstress array
for m=1:length(stress)
C6(1,1,m)=C(m,1);

C6(2,2,m)=C(m,2);
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C6(3,3,m)=C(m,3);
C6(4,4,m)=C(m,4);
C6(5,5,m)=C(m,5);
C6(6,6,m)=C(m,6);
C6(1,2,m)=C(m,7);
C6(1,3,m)=C(m,8);
C6(2,3,m)=C(m,9);
C6(2,1,m)=C(m,7);
C6(3,1,m)=C(m,8);
C6(3,2,m)=C(m,9);
%Solve for elastic compliances
%S = inverse C
S6(:,:,m) = inv(C6(:,:,m));
%Store S values from 6x6xstress array in table
S(m,1)=S6(1,1,m);
S(m,2)=S6(2,2,m);
S(m,3)=S6(3,3,m);
S(m,4)=S6(4,4,m);
S(m,5)=S6(5,5,m);
S(m,6)=S6(6,6,m);
S(m,7)=S6(1,2,m);
S(m,8)=S6(1,3,m);
S(m,9)=S6(2,3,m);

end

%Compute damage variable

for p=1:length(stress)
D6(:,:,p)=1-C6(:,:,p)./C6(:,:,1);

end
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%Compute off-diagonal damage terms
for k=1:length(stress)
for i=1:6
for j=1:6
if i~=j
D6(i,j,k)=(C6(i,j,1)-C6(i,},k))./(C6(i,j,1)+sign(C6(i,j,1)-C6(i,j,k)).*(C6(i,i,1).*(1-
D(i,i,k)).*C6(j,j,1).*(1-D(j,j,k))).~(1/2));
end
end
end
end
%Store damage terms in table D
for m=1:length(stress)
D(m,1)=D6(1,1,m);
D(m,2)=D6(2,2,m);
D(m,3)=D6(3,3,m);
D(m,4)=D6(4,4,m);
D(m,5)=D6(5,5,m);
D(m,6)=D6(6,6,m);
D(m,7)=D6(1,2,m);
D(m,8)=D6(1,3,m);
D(m,9)=D6(2,3,m);
end
%Compute Young's moduli, Shear moduli, Poisson's ratios
E1=1./S(:,1);
E2=1./S(:,2);

E3=1./S(;,3);
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G23=1./S(:,4);
G13=1./S(;,5);

G12=1./S(;,6);

pri2 = -E1.*S(:,7);

pr21 = -E2.*S(:,7);

pri3 = -E1.*S(;,8);

pr3l = -E3.*S(;,8);

pr23 = -E2.*S(:,9);

pr32 = -E3.*S(:,9);

%Display results

disp( Stress Cl11 C22 (C33 C44 C55 C66 Cl12 C13 C23)

disp([stress' C])

disp(' Stress S11 S22 S33 S44 S55 S66 S12 S13 S23)

disp([stress' S])

disp( Stress E1 E2 E3 G23 G13 G12 prl2 pr21 prl3 pr31l pr23
pr32’)

disp([stress' E1 E2 E3 G23 G13 G12 prl12 pr21 prl13 pr31 pr23 pr32])

disp('For sample');disp(i)

plot(stress,C),legend('C11','/C22','C33','C44','C55','C66','C12','C13",'C23)
figure
plot(stress,S),legend('S11','S22','S33','S44','S55','S66','S12','S13','S23")
%Plot grid of elastic stiffnesses versus stress graphs

figure
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subplot(331);plot(stress,C(:,1)),xlabel('Stress (MPa)"),ylabel('C11 (GPa)";
subplot(332);plot(stress,C(:,2)),xlabel('Stress (MPa)"),ylabel('C22 (GPa)";
subplot(333);plot(stress,C(:,3)),xlabel('Stress (MPa)"),ylabel('C33 (GPa)";
subplot(334);plot(stress,C(:,4)),xlabel('Stress (MPa)"),ylabel('C44 (GPa)";
subplot(335);plot(stress,C(:,5)),xlabel('Stress (MPa)"),ylabel('C55 (GPa)";
subplot(336);plot(stress,C(:,6)),xlabel('Stress (MPa)"),ylabel('C66 (GPa)";
subplot(337);plot(stress,C(:,7)),xlabel('Stress (MPa)"),ylabel('C12 (GPa)";
subplot(338);plot(stress,C(:,8)),xlabel('Stress (MPa)"),ylabel('C13 (GPa)";
subplot(339);plot(stress,C(:,9)),xlabel('Stress (MPa)"),ylabel('C23 (GPa)";
figure

%Plot grid of elastic compliances versus stress graphs
subplot(331);plot(stress,S(;,1)),xlabel('Stress (MPa)'),ylabel('S11 (GPa-1)";
subplot(332);plot(stress,S(;,2)),xlabel('Stress (MPa)'),ylabel('S22 (GPa-1)";
subplot(333);plot(stress,S(:,3)),xlabel('Stress (MPa)'),ylabel('S33 (GPa-1)");
subplot(334);plot(stress,S(:,4)),xlabel('Stress (MPa)'),ylabel('S44 (GPa-1)";
subplot(335);plot(stress,S(:,5)),xlabel('Stress (MPa)'),ylabel('S55 (GPa-1)";
subplot(336);plot(stress,S(;,6)),xlabel('Stress (MPa)'),ylabel('S66 (GPa-1)";
subplot(337);plot(stress,S(;,7)),xlabel('Stress (MPa)'),ylabel('S12 (GPa-1)";
subplot(338);plot(stress,S(;,8)),xlabel('Stress (MPa)'),ylabel('S13 (GPa-1)";
subplot(339);plot(stress,S(:,9)),xlabel('Stress (MPa)'),ylabel('S23 (GPa-1)");
figure

%Plot grid of damage versus stress graphs
subplot(331);plot(stress,D(:,1)),xlabel('Stress (MPa)"),ylabel('D11");
subplot(332);plot(stress,D(;,2)),xlabel('Stress (MPa)"),ylabel('D22");
subplot(333);plot(stress,D(:,3)),xlabel('Stress (MPa)"),ylabel('D33");
subplot(334);plot(stress,D(:,4)),xlabel('Stress (MPa)"),ylabel('D44");
subplot(335);plot(stress,D(:,5)),xlabel('Stress (MPa)"),ylabel('D55");

subplot(336);plot(stress,D(:,6)),xlabel('Stress (MPa)"),ylabel('D66");
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subplot(337);plot(stress,D(:,7)),xlabel('Stress (MPa)"),ylabel('D12";
subplot(338);plot(stress,D(:,8)),xlabel('Stress (MPa)"),ylabel('D13");
subplot(339);plot(stress,D(:,9)),xlabel('Stress (MPa)"),ylabel('D23");

end
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