
Pedestrian Navigation using Particle Filtering and a priori Building Maps

by

Tanner Norman Ray

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
August 3, 2019

Keywords: Pedestrian Dead Reckoning, Indoor Positioning, Particle Filtering, Kalman
Filtering, Inertial Measurement Unit, Map-matching

Copyright 2019 by Tanner Norman Ray

Approved by

David Bevly, Chair, Professor of Mechanical Engineering
Scott Martin, Assistant Research Professor of Mechanical Engineering

Michael Zabala, Assistant Professor of Mechanical Engineering

Abstract

This thesis presents a new particle filter (PF) weight update method that improves the

performance of indoor positioning systems. In standalone inertial pedestrian-dead-reckoning

(PDR) systems, the position error grows with time due to the inertial measurement unit’s (IMU)

sensor errors. Often external measurements from GPS or radio networks (e.g. wireless local

area network (WLAN), ultra-wide-band (UWB), Bluetooth low energy (BLE) etc.) are used to

restrict the error growth. External measurements from infrastructure-based systems have inher-

ent high costs and deployment time, thus they are not easily implemented. The presented work

focuses on the development of a standalone wearable navigation system that does not depend

on physical infrastructure. Therefore, to constrain error growth without external measurements,

other techniques have been developed that utilize building map information as a measurement.

One method uses the building to provide heading measurements to reduce the drift in the head-

ing solution. This is based upon the fact that pedestrians typically walk straight when walking

in building corridors. Another method constrains the error based upon the knowledge that

pedestrian motion is limited by building floorplans, (e.g. walls, floors, and other features). This

technique uses PF estimation to fuse standalone PDR with map measurements to perform ac-

curate pedestrian localization. These techniques along with the current PDR techniques and

underlying algorithms are discussed in detail. Lastly, this work presents a comparison of PFs

that utilize different particle propagation and weight update methods for indoor positioning

systems. A new type of weight update is also introduced that provides more accurate localiza-

tion. A performance evaluation of the new weight update method is shown with both simulated

and experimental data. The conclusions drawn from the evaluation results are discussed and a

summary is provided.

ii

Acknowledgments

First and foremost, I would like to thank my parents Kim and Joan for their constant love

and support and many words of wisdom. Without them, the completion of this degree would

not have been possible. I hope that oneday I will be able to repay them for the love they have

shown me. This thesis is dedicated to them. I would also like to thank my siblings Cameron,

Caroline, and Gannon, for each helping shape me into the person I am today. Gannon should

receive special thanks for always answering his phone at any time of day or night to talk about

the topics of the day.

A person who deserves huge thanks is my Honors Precalculus and AP Calculus AB teacher

Mrs. Amanda Bittinger. She is a huge source of inspiration to me because of her passion for

teaching and her students. She truly changed my life for the better when she fostered enjoyment

of both mathematics and learning in me.

I must mention the many coworkers I have had the pleasure to work with during my time

in the GAVLAB. They are what make a graduate program a rich experience. The first person I

must thank is Amos Smith, he was the first person to work with me when I entered the lab, and

provided me much help. A debt of gratitude goes to Dan Pierce for his many hours of help and

advice. Without it, this work would surely not have been possible. Similarly, I would like to

thank Grant Apperson for his help, willingness to share his knowledge, and similar appreciation

of tools. I would also like to mention Stephen Geiger, Thomas ‘Troupe’ Tabb, Ethan Edwards,

and Joe Selikoff for being true friends I value considerably. The other lads (Patrick Smith,

Luke Kamrath, Robert Brothers) that made up the ‘Siberia’ office also deserve thanks for the

many interesting discussions and helpful input that always made work fun. Lasty, my friend

and fellow name bearer Tanner Watts, deserves mention for the interesting discussions about

the topics of the day, GPS, and the NFL.

Dr. Howard Chen and Dr. Mark Schall both also deserve thanks, as they were always

willing to lend equipment and help me in my research. I would also like to thank the members

iii

of my committee Dr. Michael Zabala and Dr. Scott Martin for reviewing this document and

providing me with helpful and encouraging comments.

I would like to thank my favorite YouTube channels PewDiePie and MrBeast for their

humorous content that helped lighten the mood when the completion of this thesis seemed

miles away.

I also would like to thank Dr. David Bevly for the opportunity to work in his lab as it has

changed the course of my life for the better. I have had the chance to work on many interesting

projects and learn about topics, I would not have been able to otherwise. This opportunity

precipitated from taking his MECH 3140 class, which I have had the pleasure of continually

being involved with through teaching a recitation session.

“For I know the plans I have for you, declares the LORD, plans for welfare and not for

evil, to give you a future and a hope.” – Jeremiah 29:11. I am deeply gladdened by the fact

that God’s plans for my life are not my own as I never would have pictured myself where I am

today. I am also deeply thankful for God’s provision for sinners like myself that we may be

saved and know Jesus Christ as our Savior and Lord. “By grace you have been saved through

faith; and that not of yourselves, it is the gift of God; not as a result of works that no one should

boast” – Ephesians 2:8-9

iv

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Acronyms . xii

1 Introduction . 1

1.1 Background and Motivation . 1

1.2 Research Aims and Objectives . 3

1.3 Thesis Outline . 4

2 Coordinate Frames and Transformations . 5

2.1 Introduction . 5

2.2 Coordinate Frames . 5

2.2.1 Inertial Frame . 5

2.2.2 Body Frame . 6

2.2.3 Local Navigation Frame . 7

2.2.4 Pedestrian Frame . 8

2.3 Coordinate Frame Transformations . 9

2.3.1 Transformation from the Local Navigation Frame to the Body Frame . . 11

2.3.2 Transformation from the Body Frame to the Local Navigation Frame . . 11

2.4 Relationship between Euler Angles and Coordinate Transform Matrices 12

2.4.1 Local Navigation Frame to Body Frame CTM 12

v

2.4.2 Body Frame to Local Navigation Frame CTM 13

2.4.3 Euler Angle Computation Issues . 13

3 Pedestrian Dead Reckoning: An INS Approach . 14

3.1 Introduction . 14

3.2 Pedestrian Gait Cycle . 15

3.3 PDR-INS Systems . 16

3.3.1 Inertial Measurement Unit Error Model 17

3.3.2 Gait Monitoring . 18

3.3.3 Straight Walking Detection . 25

3.3.4 The Discrete-Time Linear Kalman Filter 25

3.3.5 Extended Kalman Filter . 28

3.3.6 Error-State Kalman Filter . 28

3.3.7 INS Mechanization . 40

4 Pedestrian Dead Reckoning: A Step Detection Approach 45

4.1 Introduction . 45

4.2 PDR-SD Systems . 45

4.3 Step Detection . 45

4.3.1 The Effects of IMU Location on Step Detection 52

4.4 Step Length Determination . 57

4.4.1 Linear Least Squares Estimation . 61

4.4.2 Empirical Step Length Formula Comparison 64

4.5 Heading Determination . 71

4.5.1 Magnetometer Heading . 71

4.5.2 Heading from a Single Gyroscope . 72

4.5.3 Gyro + Magnetometer Heading . 74

vi

4.5.4 Attitude Heading Reference Systems 75

4.6 Navigation System Update . 75

5 Particle Filtering for Indoor Positioning Systems . 77

5.1 Introduction . 77

5.2 Estimation Framework . 77

5.3 Particle Filtering . 77

5.3.1 Initialization . 80

5.3.2 Propagation with PDR . 81

5.3.3 Propagation with PDR + Map . 86

5.3.4 Update . 86

5.3.5 Resampling . 89

5.4 Particle Inbounds Check . 91

5.5 Particle Filters . 93

5.5.1 Collision Particle Filter (PFc) . 94

5.5.2 Map-based measurement likelihood (PFw) 94

5.6 New Weight Update . 94

5.7 Performance Evaluation . 99

5.7.1 Error Statistics . 99

5.7.2 Simulated Data Generation . 101

5.7.3 Simulated Results . 101

5.7.4 Experimental Data Collection . 104

5.7.5 Experimental Results . 105

6 Summary, Conclusions, and Future Work . 108

6.1 Summary . 108

6.2 Conclusions . 110

vii

6.3 Future Work . 110

References . 112

viii

List of Figures

2.1 Body Frame (Foot) . 7

2.2 Body Frame (Torso) . 7

2.3 Local Navigation Frame (NED) [41] . 8

2.4 Pedestrian Coordinate Frame . 9

2.5 Euler Angle Rotations . 10

3.1 Walking Gait Cycle [25] . 15

3.2 Step Versus Stride [25] . 16

3.3 Gyro Output during Stance and Swing Phase 19

3.4 Zero-Velocity Detection . 21

3.5 Still Detection . 22

3.6 Stride Detection . 24

3.7 Position Estimates with ZVU Method . 37

3.8 Position Estimates with ZVU+ZARU Method 38

3.9 Position Estimates with ZVU+HDR Method 38

3.10 Position Estimates with ZVU+ZARU+CHAIN Method 39

4.1 Raw Accelerometer Measurements During Walking 47

4.2 Basic Step Detection [3, 47, 49, 51] . 48

4.3 Step Detection . 49

4.4 Possible fixed IMU locations on pedestrian body [3] 52

4.5 MVN Awinda System (Image courtesy of Auburn Univ. Industrial Eng. Dept.) . 54

4.6 Test #1 Step Detection . 55

ix

4.7 Test #1 Step Detection . 55

4.8 Test #2 Step Detection Head . 56

4.9 Test #2 Step Detection Pelvis . 56

4.10 Pedestrian Path Used for Estimation of Step Length 69

5.1 Indoor Positioning System Estimation Framework 78

5.2 Two states represented with a bivariate Gaussian distribution using a mean and
covariance (left), and a set of particles (right) [3] 79

5.3 Particle Filter Steps [3] . 79

5.4 Particle Inbounds Check [13] . 92

5.5 PFc Error in Corridor . 95

5.6 PFc Error in Room . 96

5.7 Inbounds Particle Filter . 97

5.8 Environment Animation . 101

5.9 User Path of a Simulated Pedestrian . 101

5.10 Position Errors . 102

5.11 Position RMS Error . 103

5.12 Test #1 User Path . 106

5.13 Test #1 Position Error . 106

5.14 Test # 2 User Path . 107

5.15 Test # 2 Position Error . 107

x

List of Tables

3.1 Discrete-Time Linear Kalman Filter . 27

4.1 Algorithm 1 Parameter Definitions . 50

4.2 SL3 Definition . 58

4.3 OLS Estimates . 69

4.4 WLS Estimates . 70

4.5 Step Length RMS Error . 70

5.1 Test # 1 and # 2 RMS Error . 106

xi

List of Acronyms

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

AoA Angle of Arrival

BF Bootstrap Filter

BLE Bluetooth Low Energy

CHAIN Cardinal Heading Aided for Inertial Navigation

CTM Coordinate Transform Matrix

DoF Degree of Freedom

DR Dead Reckoning

ECI Earth Centered Inertial

EKF Extended Kalman Filter

ENU East North Up

ESKF Error State Kalman Filter

GAVLAB GPS and Vehicle Dynamics Lab

GNSS Global Navigation Satellite Systems

GPS Global Positioning System

HDR Heuristic Drift Reduction

xii

IMU Inertial Measurement Unit

INS Inertial Navigation System

JOSM Java Open Street Map

KF Kalman Filter

MEMS Micro-Electromechanical Systems

NED North East Down

OLS Ordinary Least Squares

OSM Open Street Map

PDF Probability Density Function

PDR Pedestrian Dead Reckoning

PDR-INS Pedestrian Dead Reckoning, INS approach

PDR-SD Pedestrian Dead Reckoning, SD approach

PF Particle Filter

PFc Collision Particle Filter

PFci Collision Inbounds Particle Filter

PFi Inbounds Particle Filter

PPP Precise Point Positioning

RFID Radio Frequency Indentification

RLS Recursive Least Squares

RMSE Root Mean Square Error

RSS Received Signal Strength

xiii

RTK Real Time Kinematic

SD Step Detection

SL Step Length

TDCP Time Differenced Carrier Phase

ToF Time of Flight

UWB Ultra Wide Band

WLAN Wireless Local Area Network

WLS Weighted Least Squares

ZARU Zero Angular Rate Update

ZVU Zero Velocity Update

xiv

Chapter 1

Introduction

This chapter begins with a brief background on the current state of pedestrian navigation

systems. The current challenges of the field are discussed and some of the solutions proposed

to solve them. Next, the remaining chapters are outlined.

1.1 Background and Motivation

The problem of determining where we are is not a new matter of concern. Since roughly 3000

BC, sailors have used positioning techniques to navigate the open seas [1]. The American Prac-

tical Navigator defines navigation as, “A field of study that focuses on the process of monitoring

and controlling the movement of a craft or vehicle from one place to another” [2]. This defini-

tion, albeit outdated, has two distinct parts that are still extremely relevant today. The first part

is concerned with the position determination of a moving body with respect to a well-defined

reference frame. This is a subset of navigation that is known as positioning [3]. Note the term

localization is often used synonymously with positioning in many works. Localization is more

appropriately defined as indoor positioning (i.e. knowing your location indoors). The second

part refers to the determination of the desired path of travel from one location to another. This

other branch of navigation is called guidance, which is not discussed further in this work.

Reliable and accurate positioning is needed for many applications such as orbit determina-

tion of satellites, pedestrian navigation, autonomous vehicles, and guided munitions. Pedestrian

navigation has received a lot of interest in the research community in recent years for three rea-

sons. The first is the increase of processing power of mobile computing platforms. The second

is the availability of sensors that have a reduced size, weight, and power requirements. Lastly, it

has many useful applications which include, but are not limited to: geolocation of dismounted

soldiers, navigating the blind and visually impaired, and tracking first responders [3, 4]. In the

1

next section, the current techniques of the field and the challenges that are still faced will be

discussed.

The most common application of pedestrian navigation seen today is navigation in urban

areas using smartphones. Smartphones contain a global positioning system (GPS) receiver,

which provides users with reliable ubiquitous positioning as GPS has long term stability and its

position error does not grow unbounded with time. Despite this, obstacles still exist in navigat-

ing pedestrians within challenging environments. Examples of challenging environments are:

inside buildings, urban canyons, areas with dense foliage, or hostile warzones where jamming

may occur. Global navigation satellite systems (GNSS) (e.g. GPS, GLONASS, Galileo, and

Beidou) and other long-range radio navigation signals are either degraded or are completely

unavailable as the power levels of these signals are extremely weak [5]. GPS for instance has

a received signal power of 1× 10−16 W [5, 6]. These conditions are why pedestrian naviga-

tion is one of the most challenging applications of navigation science today, presenting various

problems that are nontrivial to solve.

The constraint of having to navigate in GNSS denied environments resulted in the devel-

opment of foot and body mounted inertial pedestrian-dead-reckoning (PDR) systems. These

were made possible with the advent of micro-electromechanical systems (MEMS) technology.

MEMS sensors are small and light and exhibit high shock tolerance along with low power

consumption. This is highly practical for being used as a body worn sensor. Moreover, they

are mass produced which makes them low cost and widely available [3]. An inertial based

system is considered to be a self-positioning system as it does not depend upon external mea-

surements, except when initializing the system. The main drawback of an INS is unbounded

error growth with time due to the inertial measurement unit (IMU) sensor errors. This is es-

pecially true for MEMS IMUs as they are low cost. Note that all of the IMUs used in this

work are tactical grade IMUs as specified by Groves in [3]. In place of GNSS measurements,

many use external measurements from other infrastructure-based systems to restrict the INS

error growth. Examples of such systems are short-range radio networks (e.g. wireless local

area network (WLAN), ultra-wide-band (UWB) radios, bluetooth low energy (BLE) etc.) and

radio-frequency identification (RFID). BLE, WLAN, and UWB radios can use the strategies

2

of received signal strength (RSS), time of flight (ToF), or angle of arrival (AoA) to determine

the location of the transmitting node [3, 4, 7–10]. With three or more locations of transmitting

nodes known in regard to the receiving node, an estimate of its location can be found with either

trilateration or triangulation. RFID systems leverage the knowlege of the RFID tag locations,

therefore when a user is in proximity to a tag, the position is said to be near the position of the

tag [3]. These systems have inherent high costs and deployment time, thus they are not easily

implemented. The work presented in this thesis, focuses on the development of a standalone

wearable navigation system that does not depend on physical infrastructure.

In order to constrain error growth without external measurements, other techniques must

be utilized. One technique that has been popularized uses an a priori building map as a mea-

surement [3,4,8–18]. This is based upon the knowledge that indoor pedestrian motion is limited

by building floorplans, (e.g. walls, floors, and other features). The techniques that use building

map information will be explored and improved within this thesis.

1.2 Research Aims and Objectives

The goals that this thesis aims to complete are listed below.

• Provide a thorough background on pedestrian-dead-reckoning methods, including INS

and step detection methods.

• Investigate current methods of fusing a priori building map information with PDR sys-

tems.

• Introduce a new particle filtering weight update method that improves the performance

of indoor positioning systems.

• Propose a new method of obtaining experimental data to evaluate indoor positioning

systems using an accurate external reference.

3

1.3 Thesis Outline

This thesis has five remaining chapters. Chapter 2 discusses the coordinate frames used and

how to transform between different coordinate frames. Chapter 3 discusses pedestrian-dead-

reckoning methods that utilize an INS approach. The following chapter investigates pedestrian

dead reckoning using the newer step detecting method. Chapter 5 discusses the steps of particle

filters applied to indoor positioning systems. Next, the current methods and the new weight up-

date method are introduced. These methods are compared in a detailed analysis that shows that

the new weight update provides improved performance. The final chapter includes a summary,

conclusions, and future work.

4

Chapter 2

Coordinate Frames and Transformations

2.1 Introduction

Navigation systems require various frames of reference and the transformations between them

in order to produce a navigation solution. For instance, an INS uses an IMU to measure the

changes of the body (i.e. acceleration and angular velocity) relative to the inertial frame. The

changes on their own are not particulary useful for navigation purposes, therefore they need to

be transformed to a navigation frame. The remainder of this chapter will discuss the coordinate

frames used in this thesis and how to convert values between the different frames.

2.2 Coordinate Frames

This section describes the coordinate frames and the associated notation used in this thesis.

Note that the body and local navigation coordinate frames are all right-handed orthogonal

Cartesian systems.

2.2.1 Inertial Frame

The inertial frame is a reference frame that is non-accelerating. This is the fundamental as-

sumption that Newton’s laws are based upon. For global navigation, the most popular solution

is to define an inertial frame at a given initial time that is coincident with the earth’s center of

mass. This frame is called earth centered inertial (ECI). Inertial measurements of the body of

interest are taken with respect to the inertial reference frame. The symbol i is used to denote

the inertial frame.

5

2.2.2 Body Frame

The body frame is attached to the object of interest that the navigation solution refers to. The

term body frame is ambiguously used in navigation literature, as it is used to describe different

things. In vehicle navigation for example, body frame can be referring to the vehicle frame

or the sensor (instrument) frame of the IMU that is mounted to the vehicle. In this work, it

is used to describe the sensor frame of the IMU (i.e. the sensor’s sensitive axes). Note that

these axes remain fixed with respect to the body. The most common convention is adopted in

this work where the x-axis is in the forward direction (i.e. in the direction of travel), the y-axis

is to the right, and the z-axis is in the downward direction. Note that the x-axis direction is

commonly referred to as the longitudinal direction and the y-axis direction is referred to as the

lateral direction. For angular motion, the rotation about the x-axis is known as roll (φ), the

rotation about the y-axis is known as pitch (θ), and the rotation about the z-axis is known as

yaw (ψ). The right hand rule applies such that if the axis is pointing away then the positive

rotation direction is clockwise. The symbol b is used to denote the body frame.

An IMU’s accelerometers measure specific force and its gyroscopes (gyros) measure the

angular velocity of the body to which it is attached. The specific force readings for the x, y, and

z axes are {f̃ bib,x, f̃ bib,y, f̃ bib,z}, respectively. The subscript ib should be read as the specific force

of the body frame (b) with respect to the inertial frame (i). The superscript is the resolving

frame (i.e. the frame the measurements are in), in this case, the body frame (b). Similarly,

the angular velocity readings for the x, y, and z axes are {ω̃bib,x, ω̃bib,y, ω̃bib,z}, respectively. The

subscript ib should be read as the angular velocity of the body with respect to the inertial frame.

The superscript is the resolving frame, which in this case it is again the body frame (b).

The IMU in this thesis is either located on the user’s torso near the sternum or on top of

the user’s shoe. This location is dependent upon which pedestrian-dead-reckoning technique

is used, which is discussed at length in Chapter 4. The body frame of a shoe-mounted IMU is

illustrated by Figure 2.1. The body frame the torso mounted IMU is shown in Figure 2.2.

6

Figure 2.1: Body Frame (Foot)

Figure 2.2: Body Frame (Torso)

2.2.3 Local Navigation Frame

The local navigation frame has a fixed origin on the Earth, most commonly a point on the sur-

face. This frame is found by fitting a tangent plane to the geodetic reference ellipsoid (e.g.

7

WGS84) at a point of interest [19]. The point of interest is a location convenient for local mea-

surements and is the origin of the local tangent plane. This plane is used for local navigation,

with applications such as indoor positioning and aircraft landing [3]. The two most popular

coordinate conventions for local navigation frames are East-North-Up (ENU) and North-East-

Down (NED). For this work, the NED convention is used where the x-axis points towards

North, the y-axis points East, and the z-axis points Down. When this frame is aligned with

the topographic directions (i.e. North and East) it is also be referred to as the local geodetic

frame or topcentric frame [3]. Figure 2.3 illustrates the local navigation frame with the NED

convention. The symbol n is used to denote the local navigation frame.

Equator

Prime Meridian

y − East

x− North

z−Down

Figure 2.3: Local Navigation Frame (NED) [41]

2.2.4 Pedestrian Frame

The three axes of motion for an individual can be seen in Figure 2.4, where the origin is at the

pedestrian’s center of gravity. This is the true frame of a pedestrian. This frame is not used

in this thesis as a frame of reference, but will be referred to in discussion of IMU location in

Section 4.3.1.

8

Figure 2.4: Pedestrian Coordinate Frame

2.3 Coordinate Frame Transformations

Coordinate transformations are needed to transform both measured and computed values be-

tween various frames of reference [19]. The relative angular orientation of two coordinate

frames is known as attitude, it can be represented by an orthonormal coordinate transform

matrix (CTM) [20, 21]. The CTM can be broken down into three successive rotations about

different axes, with each axis orthogonal to the previous and or following axis. A transfor-

mation from a coordinate frame to a new coordinate frame is as follows: rotate by angle ψ

about the current z-axis, rotate by angle θ about the new y-axis, and rotate by angle φ about

the new x-axis. These three angles are known as Euler angles (pronounced “oiler”), where

{ψ, θ, φ} are known as yaw, pitch, and roll, respectively. This representation is popular as it

is the most intuitive way to represent attitude. Note that Euler angles exhibit singularity errors

at ±90° pitch causing the solution for roll and yaw to be indeterminate. This problem is fur-

ther discussed in Section 2.4.3. The three rotations for an Euler attitude representation can be

9

expressed mathematically in Equations (2.1-2.3).

rotation about the z-axis,C1 =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.1)

rotation about the y-axis,C2 =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (2.2)

rotation about the x-axis,C3 =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 (2.3)

Each of these rotations are illustrated by Figure 2.5. The axes denoted with a prime symbol (′),

are the coordinates after the rotation has occured.

Figure 2.5: Euler Angle Rotations

10

2.3.1 Transformation from the Local Navigation Frame to the Body Frame

The rotation from the local navigation frame to the body frame is the multiplication of the three

rotation matrices (C1, C2, C3) as shown in Equations (2.4-2.5).

Cb
n = C3C2C1 (2.4)

Cb
n =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




cosψ sinψ 0

− sinψ cosψ 0

0 0 1



=


cos θ cosψ cos θ sinψ − sin θ

− cosφ sinψ + sinφ sin θ cosψ cosφ cosψ + sinφ sin θ sinψ sinφ cos θ

sinφ sinψ + cosφ sin θ cosψ − sinφ cosψ + cosφ sin θ sinψ cosφ cos θ


(2.5)

The term Cb
n is the CTM that represents the inverse of the attitude matrix. The subscript in-

dicates the “from” frame and the superscript indicates the “to” frame. Note that the order of

the rotation matrices is critical and they must be applied in the correct order as the Euler angle

matrices are not commutative. An example transformation of an arbitrary (3× 1) vector x from

the local navigation frame to the body frame is shown in Equation (2.6).

xb = Cb
nxn (2.6)

2.3.2 Transformation from the Body Frame to the Local Navigation Frame

In similar fashion, the inverse transformation from the body to the local navigation frame is

given by in Equations (2.7-2.8).

Cn
b = CbT

n = CT
1 CT

2 CT
3 (2.7)

11

Cn
b =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




1 0 0

0 cosφ − sinφ

0 sinφ cosφ



=


cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ


(2.8)

The term Cn
b is the CTM that represents attitude. It is equivalent to the transpose of the CTM

representing the rotation from the local navigation frame to the body frame
(
CbT
n

)
. The super-

script T , represents the matrix transpose. An example transformation of an arbitrary (3 × 1)

vector x from the body frame to the local navigation frame is shown in Equation (2.9).

xn = Cn
b xb (2.9)

2.4 Relationship between Euler Angles and Coordinate Transform Matrices

2.4.1 Local Navigation Frame to Body Frame CTM

The Euler angles can be computed from the rotation matrix Cb
n as follows

φ = arctan2(Cb
n(2, 3),Cb

n(3, 3)) (2.10)

θ = − arcsin(Cb
n(1, 3)) (2.11)

ψ = arctan2(Cb
n(1, 2),Cb

n(1, 1)) (2.12)

where the term Cb
n(row, column) is read as the row and column entry of the CTM. The angles

{φ, θ, ψ} are again the roll, pitch, and yaw, respectively, and term arctan2 is the four-quadrant

inverse tangent and arcsin is the inverse sine.

12

2.4.2 Body Frame to Local Navigation Frame CTM

Similarly the Euler angles can be computed from the attitude representation (Cn
b) in Equations

(2.13-2.15).

φ = arctan2(Cn
b (3, 2),Cn

b (3, 3)) (2.13)

θ = − arcsin(Cn
b (3, 1)) (2.14)

ψ = arctan2(Cn
b (2, 1),Cn

b (1, 1)) (2.15)

2.4.3 Euler Angle Computation Issues

When θ approaches±90°, Equations (2.10), (2.12), (2.13), and (2.15) become indeterminate as

the numerator and the denominator approach zero simultaneously [21]. If this problem occurs

alternate representations of attitude should be used, such as quaternion parameters or direction

cosines. Note that this work used direction cosines for its attitude representation which is

further discussed in Section 3.3.7. For further discussion of attitude representations, readers

are referred to [3, 21, 41].

13

Chapter 3

Pedestrian Dead Reckoning:

An INS Approach

3.1 Introduction

Dead reckoning (DR) is traditionally defined as integrating a measurement of velocity or mea-

suring the change in position and adding it to the previous position to compute ones current

position [3]. This technique has been used since as early as 3000 BC to navigate polyne-

sian vessels and was also used to measure the distance traveled by Roman chariots around 23

BC [1, 3]. DR is still used today, albeit now with computers and more advanced sensors. As

stated above, DR systems estimate the change in positon of the user and the new position is

found by adding the change in position to the previously known position. DR systems use

sensors mounted on the user to estimate the relative position and not the absolute position.

Therefore, the initial position of the user must be known to initialize a DR system. DR is an

alternative way to provide positioning information when external references are unavailable.

Inertial based pedestrian-dead-reckoning (PDR) systems are a topic of huge interest, as

MEMS sensors are now sufficiently small and accurate to enable the practical tracking of pedes-

trians. PDR systems in their most general form can be broken into three steps:

1. Gait Monitoring.

2. Estimation of change in position and heading of the user.

3. Navigation system update.

Note that the term PDR is ambiguously used by authors [4]. Some authors use PDR to describe

a system that performs step detection and estimates step length and heading of the pedestrian

[3, 22]. Others use the term PDR to describe a foot-mounted inertial navigation approach with

zero-velocity-updates (ZVUs), which are also called ‘ZUPTs’ by some authors [23,24]. A foot-

mounted INS estimates the full 3D trajectory of the sensor at all moments in time. Therefore, in

14

order to differentiate the two PDR methods, the foot or shoe mounted approach will be referred

to as PDR-INS while the step detection (SD) method will be called PDR-SD.

In the next section, the gait cycle and the terms step and stride are formally defined. In

the following sections, the PDR-INS methods will be discussed. PDR-SD methods will be

discussed in the next chapter.

3.2 Pedestrian Gait Cycle

Gait cycle monitoring is highly dependent upon the assumption that a pedestrian will exhibit

ambulatory motion. Gait is the pedestrian’s manner of ambulation or locomotion, while ambu-

lation is the alternating pushing up of the body over each stiffened leg each time a pedestrian

steps. The gait cycle can be broken into two phases, namely the stance phase and the swing

phase. The stance phase is defined as the period from initial contact of the foot (i.e. heel strike)

with the floor to the toe-off (i.e. lift off or peel off of foot). More intuitively, the stance phase

can be thought of as the period that the foot is in contact with the ground. This can occur while

walking or standing stationary. These two phases are illustrated in Figure 3.1 [25, 26]. The

swing phase is the period from the toe-off to the heel strike of the same foot. The swing phase

intuitively is the period in which the foot is ‘swinging’ in the air and is not in contact with the

ground. The transition point from swing phase to stance phase is referred to as footfall by some

authors [4, 24].

Figure 3.1: Walking Gait Cycle [25]

15

What is referred to as a step in publications is often ambiguous and not well defined by

authors within the pedestrian navigation community. A step is defined as the period between

heel strikes of the opposite foot [4,25,27]. This is not to be confused with a stride, which is the

period between footfalls of the same foot. Steps and strides are illustrated in both Figure 3.1

and 3.2.

Right Stride

Step

Step

Left Stride

Step

Figure 3.2: Step Versus Stride [25, 27]

3.3 PDR-INS Systems

This section describes performing pedestrian dead reckoning (PDR) with a PDR-INS approach.

This approach is popular, as it takes advantage of the IMU location on the pedestrian’s foot. An

INS mechanizes a foot-mounted IMU by the double and single integration of the IMU acceler-

ations and rotation rates, respectively. This produces a 6 degree-of-freedom (DoF) navigation

solution of the device that includes position, velocity, and attitude [3]. An error-state Kalman

Filter (ESKF) is then used to intelligently combine the inertial navigation system (INS) with

pseudo measurements in the form of zero-velocity updates (ZVUs) and zero-angular-rate up-

dates (ZARUs). This is done to estimate and correct the errors in the localization solution.

Other pseudo measurements can also be created using the assumption of straight walking and

known directions of building corridors. The first method is presented by Jiménez et al., which

is based upon work by Borenstein et al. and is termed heuristic drift reduction (HDR) [23, 28].

16

It uses the assumption of straight walking to create a pseudo measurement of heading error to

reduce the heading drift. The second method uses the known building corridor directions (i.e.

cardinal directions) to create a heading measurement. This technique created by Abdulrahim

et. al. is termed cardinal heading aided for inertial navigation (CHAIN) [29, 30]. These mea-

surement updates allow for the estimation of internal IMU errors (e.g. sensor biases). The INS

states are then corrected, using the estimated errors which significantly reduces the error drift

of the navigation solution. In order to apply the ZVU, ZARU, HDR, and CHAIN measure-

ment updates, the zero-velocity, still, and straight-walking points of the pedestrian gait cycle

must first be detected. The remainder of this chapter is organized as follows. The next section

will introduce the IMU error model used, and the next section introduces and quantitatively

describes what zero-velocity, still, and straight-walking points are and how they are detected.

Lastly, the next sections will introduce a brief overview of the Kalman filter and error-state

Kalman filter framework used in this thesis.

3.3.1 Inertial Measurement Unit Error Model

Inertial measurement units typically contain accelerometer and gyro triads, which measure

the specific force and angular rates of the unit, respectively. A triad has three axes mounted

orthogonally to one another. The IMU measurements can be modeled as

f̃
b

ib = (I3 + Ma)fbib + ba + wa (3.1)

ω̃bib = (I3 + Mg)ω
b
ib + Ggfbib + bg + wg (3.2)

where {̃fbib, ω̃bib} are the measured specific force and angular rate, and {fbib, ωbib} are the true

values of specific force and angular rate, respectively [3]. The terms {Ma,Mg} are (3 × 3)

matrices that represent misalignment between axes, and I3 is a (3 × 3) identity matrix. The

term Gg accounts for the gyro sensitivity (g-sensitivity) to specific force and {wa,wg} are the

white noise of the accelerometers and gyros, respectively. These models are often simplified

for MEMS IMUs to be

ω̃bib = ωbib + bg + wg (3.3)

17

f̃
b

ib = fbib + ba + wa (3.4)

where both the misalignment and the g-sensitivity errors have been neglected, as they have

been removed by the manufacturer through calibration.

The accelerometer and the gyro biases are not static in time. This work models them as

the following random walk processes

ḃa = wba (3.5)

ḃg = wbg (3.6)

where {wba ,wbg} are the driving noise of the accelerometer bias and gyro bias, respectively.

3.3.2 Gait Monitoring

Gait Monitoring has three parts, the first part is determining the zero-velocity points within the

stance phase. The second part is determining the still periods that occur when the pedestrian

is stationary in the stance phase. The third part is determining when the pedestrian’s strides

occur. The three parts will be discussed in the order that they were introduced.

When the foot is planted on the ground during the stance phase, the velocity of the foot

is approximately zero. The foot is never detected to have exactly zero velocity, due to sensor

errors and the fact that the foot is never perfectly still. This makes stance detection a nontrivial

problem. Zero-velocity detection can be performed using different sensors with the most popu-

lar choices being either the magnitude of accelerometer or gyro signals [23,24,31]. This thesis

used gyros, as they provide better performance by being less noisy. The magnitude of the gyros

is calculated by finding the Euclidean norm of the measurements which is

∥∥∥ω̃bib∥∥∥ =
√

(ω̃bib,x)
2 + (ω̃bib,y)

2 + (ω̃bib,z)
2 (3.7)

where {ω̃bib,x, ω̃bib,y, ω̃
b
ib,z} are the angular rate measurements of the x, y, and z axes, respec-

tively. The stance and swing phase along with strides are identified qualitatively using the gyro

magnitude in Figure 3.3.

18

Figure 3.3: Gyro Output during Stance and Swing Phase

The stance phase begins with the heel strike which causes a short period of oscillations.

Next, the foot can be seen to be still for a period of approximately 0.5 seconds. The swing phase

follows this and then the heel strike begins the next stance phase. The technique for detecting

the zero-velocity points is a thresholding method. This is based upon methods developed by

Pierce [32] and Jiménez et al. [23]. The two conditions that must be true for the foot to be at

zero-velocity are:

1. The norm (i.e. magnitude) of the gyros must be below a certain threshold (THzv = 0.7

(rad/s)). Note that some other methods use a maximum and minimum threshold, only

a maximum threshold is needed as the norm is always positive. The first condition for

zero-velocity detection written mathematically is

C1 =

{
1, ∼any

(∥∥∥ω̃bib,window∥∥∥ > THzv

)
0, otherwise

(3.8)

19

where the term ∼ is a logical NOT and the function any() determines if any of the vector

elements are nonzero. The conditional statement can be more intuitively thought of as,

if none of the gyro norm measurements in the window are above the threshold than the

conditional statement is true. A window length of 21 samples was used, with a sample

rate of 100 Hz.

2. The local standard deviation of the signal is also taken into consideration. The second

condition for zero-velocity detection written mathematically is

C2 =

{
1,

(∥∥∥ω̃bib,k∥∥∥− µwindow) < 1.5 · σwindow

0, otherwise
(3.9)

where
∥∥∥ωbib,k∥∥∥, is the gyro magnitude at the current step in time (tk) and µwindow is the

mean of the current window. The term σwindow is the standard deviation of the current

window. A window length of 21 samples was also used, with a sample rate of 100 Hz.

The result of these conditional statements is shown in a plot in Figure 3.4.

A still is defined as when the user is standing still and not moving. Still detection has

the added constraint that the pedestrian must also be stationary. The foot of the pedestrian is

never measured to be perfectly stationary due to the pedestrian never being perfectly still and

the errors in the sensor measurements. The two conditions that must be true for the foot to be

still are:

1. The norm (i.e. magnitude) of the gyros must be below a certain threshold (THstill = 0.2

(rad/s)). Notice that this is a much lower threshold than the zero-velocity threshold. The

first condition for still detection written mathematically is

C3 =

{
1, ∼any

(∥∥∥ω̃bib,window∥∥∥ > THstill

)
0, otherwise

(3.10)

where the term ∼ is a logical NOT and the function any() determines if any of the vector

elements are nonzero. The conditional statement can be more intuitively thought of as,

if none of the gyro norm measurements in the window are above the threshold than the

20

Figure 3.4: Zero-Velocity Detection

conditional statement is true. A window length of 21 samples was used, with a sample

rate of 100 Hz.

2. The local standard deviation of the signal is also taken into consideration. The second

condition for still detection written mathematically is

C4 =

{
1,

(∥∥∥ω̃bib,k∥∥∥− µwindow) < 2 · σwindow

0, otherwise
(3.11)

where
∥∥∥ωbib,k∥∥∥, is the gyro magnitude at the current step in time (tk) and µwindow is the

mean of the current window. The term σwindow is the standard deviation of the current

window. A window length of 21 samples was also used. The result of these conditional

statements is shown in a plot in Figure 3.5.

21

Figure 3.5: Still Detection

A new stride formally begins when footfall of the same foot occurs. As it occurs there is

a period of high oscillations as the foot experiences a high amount of acceleration. Because

of this, the point at which a stride begins is difficult to detect with a foot-mounted IMU, thus

this work makes the approximation of saying a stride begins at the first moment that the foot

is detected to be at zero velocity. The three conditions that must be true for there to be a stride

detected are:

1. For there to be a stride at the moment in time the foot must be at zero velocity, thus

conditions {C1, C2} must both be true. The first condition for stride detection written

mathematically is

C5 =

{
1, C1 & C2

0, otherwise
(3.12)

where the term & is a logical AND operator.

22

2. The time between strides must be above a certain threshold (tmin). Therefore, the second

condition for stride detection written mathematically is

C6 =

{
1, ts > tmin

0, otherwise
(3.13)

where ts is the time of the current position minus the time at the epoch 1 when a previous

stride was detected. The minimum time between strides was defined as tmin = 0.5 (s).

3. The stride length must be above a certain threshold (stridemin) or the change in heading

above a certain threshold (∆ψmin). This results in the following condition for stride

detection as

C7 =

{
1, stride > stridemin || ∆ψs > ∆ψmin

0, otherwise
(3.14)

where the term || is a logical OR operator and stride is the distance between the current

position and the epoch where a previous stide was detected. The term ∆ψs is the change

in heading between the current heading and the heading where a previous stride was

detected. The result of these conditional statements is shown in a plot in Figure 3.6.

1An epoch is defined as single moment in time (tk).

23

Figure 3.6: Stride Detection

24

3.3.3 Straight Walking Detection

Buildings often have corridors or paths that are straight. When a pedestrian walks inside a

building they often follow these straight line paths in a predictable manner. Knowledge of this

behavior can be taken advantage of and used as a measurement to help reduce the heading drift.

This section will highlight how to detect when a pedestrian is walking straight. The method

presented here is based upon a method presented by Jiménez et al. [23]. The direction of the

pedestrian is quantified by computing

∆ψ = ψk − (ψks + ψks−1)/2 (3.15)

where ψk is the current heading, ψks is the heading at the previous stride detected, and ψks−1

is the heading at stride detected one previous to the one at tks. The term ∆ψ must be below a

certain threshold (TH∆ψ) for the pedestrian to be walking staight. This condition for straight

walking is

C8 =

{
1, ∆ψ < TH∆ψ

0, otherwise
(3.16)

where THΨ = 10°.

3.3.4 The Discrete-Time Linear Kalman Filter

The Kalman filter (KF) was first introduced in the 1960’s by Rudolf E. Kálmán in his landmark

publication [33]. Its optimization criterion is the minimization of the mean-square error. The

KF and its variants are widely used in many fields today, some of which include navigation

systems, economic time series analysis, and weather forecasting. The application of this thesis

is estimating INS errors. As practical applications are implemented using a digital computer,

the discrete form of the linear Kalman filter is presented. The system model of a discrete system

with only stochastic inputs is

xk = Φk−1xk−1 + wd,k−1, wd,k−1 ∼ N
(
0,Qd,k−1

)
(3.17)

25

where xk is the (n× 1) state vector at time tk and Φk−1 is the (n× n) state transition matrix at

time tk−1. The term wd,k−1 is the (n×1) discrete process noise vector at time tk−1. The process

noise (wk−1) is zero mean Gaussian noise with a covariance matrix of Qd,k−1. The discrete

process noise covariance matrix (Qd,k−1) is defined as

Qd,k−1 = E[wd,k−1wT
d,k−1] (3.18)

The discrete-time linear measurement (observation) model is

yk = Hkxk + vk, vk ∼ N(0,Rk) (3.19)

where yk is the (m×1) measurement vector at time tk. The term Hk is the (m×n) measurement

matrix, that models the measurements as a linear function of the true state vector at time tk.

Lastly, vk is the (m × 1) measurement noise vector at time tk. The measurement noise vk is

modeled as zero mean Gaussian noise with a covariance matrix of Rk. The measurement noise

covariance matrix Rk is a (m×m) matrix defined by Equation (3.20).

Rk = E[vkvTk] (3.20)

The Kalman filter has three distinct steps: initialization, time update, and the measurement

update. The KF is first initialized with an initial state and error covariance matrix. The time

update uses the system model to produce a state estimate of the current state using the previ-

ous state estimate. Next, the state estimate is corrected using the measurement update, which

optimally weights the measurement and the current state estimate using the Kalman gain. The

Kalman filter is recursive, therefore the time and measurement update steps theoretically can

repeat forever. Below in Table 3.1, the equations for the discrete-time linear KF are listed. A

full derivation and further explanation of the Kalman filter and its applications are available in

many texts [3, 34–36].

26

Table 3.1: Discrete-Time Linear Kalman Filter

Initialization
x̂0 = x̂t0

P0 = E[x̂0x̂T0]

Time Update
x̂−k = Φk−1x̂k−1

P−k = Φk−1Pk−1Φ
T
k−1 + Qd,k−1

Measurement Update
Kk = P−k HT

k (HkP−k HT
k + Rk)

−1

x̂k = x̂−k + Kk(yk −Hkx̂−k)
Pk = (I−KkHk)P−k

27

3.3.5 Extended Kalman Filter

A Kalman filter requires that the system and the measurement models both be linear. An

extended Kalman filter (EKF) allows for the use of nonlinear system and measurement models.

Consider the following nonlinear system and measurement models

ẋ(t) = f
(
x(t),w(t)

)
(3.21)

ẏ(t) = h
(
x(t), v(t)

)
(3.22)

where f
(
x(t),w(t)

)
and h

(
x(t), v(t)

)
are both assumed to be continuously differentiable func-

tions. If the system and measurement models are nonlinear, the extended Kalman filter lin-

earizes the nonlinear functions about the current state estimate. This is done by performing a

Taylor series expansion and truncating to the first term. This first term is a matrix of partial

derivatives as shown in Equations (3.23) and (3.24) is referred to as the Jacobian.

F =
∂f
∂x

∣∣∣∣
x=x̂

(3.23)

H =
∂h
∂x

∣∣∣∣
x=x̂

(3.24)

The models are linearlized in order to calculate the covariance matrix (P) and the Kalman gain

(K) which allows the measurement update to be performed. Note that linearizations need to be

accurate or else the EKF will suffer from stability problems [3, 19, 34].

3.3.6 Error-State Kalman Filter

The method presented in this thesis has been shown by Pierce et al. in [37]. It is based upon the

INS-EKF-ZVU (IEZ) framework developed by Jiménez et al. [23] and work by Foxlin [38]. A

similar framework is presented by Rajagopal [24]. The approach uses a discrete-time error-state

Kalman filter (ESKF). An error-state or indirect formulation is one in which the system model

and measurement model are a function of error states and not the actual states themselves.

Estimators that estimate the actual state (i.e. position, velocity, and attitude) are known as total

28

state or direct formulations. If a total state approach had been used, an EKF would be needed

as the system model is nonlinear [3, 32]. For the ESKF, error is defined as δx = x̂ − x, where

x̂ is the estimated state and x is the true state. The following sections will introduce the system

model and the measurement model for the ESKF.

I. System Model

The continuous-time inertial navigation error equations for navigating in the local navigation

frame are

δṙ = δv (3.25)

δv̇ = −S(an)δϕ+ Cn
b (ba + wa) (3.26)

δϕ̇ = Cn
b (bg + wg) (3.27)

where δr is the position error vector, δv is the velocity error vector, and δϕ is the attitude error

vector. The term S(an) is the (3× 3) skew symmetric matrix for accelerations in the navigation

frame. It is defined as

S(an) =


0 −az ay

az 0 −ax

−ay ax 0

 (3.28)

where an is the bias corrected acceleration that has been transformed into the navigation frame.

The terms {wa,wg} are the white noise terms of the accelerometers and gyros, respectively.

Lastly, the term Cn
b is the CTM from the body to the navigation frame. Note that the Coriolis

and gravity error terms have been neglected from the navigation error equations. The Coriolis

error term can be neglected as it is much smaller than the other terms and the gravitation error

term is neglected as the application is for local applications only in this thesis. A simple gravity

error model would require knowledge of the pedestrian’s global position. A thorough derivation

of these error equations can be found in [21,39]. The system model is augmented to also include

the accelerometer and gyro bias states. Section 3.3.1 modeled the biases as

ḃa = wba (3.29)

29

ḃg = wbg (3.30)

where both the biases are modeled as random walk processes and {wba ,wbg} are the driving

noise. Notice that Equations (3.25-3.27, 3.29-3.30) are always linear, so they do not need to be

linearlized and can be put directly into state-space form as

δẋ = Fδx + Gw (3.31)

where F is the state matrix, δx is the error state vector, G is the noise input matrix, and w is the

continuous process noise.

The state vector is made up of 15 states that include 9 navigation error states and 6 bias

states. The state vector is

δx =
[
δr δv δϕ ba bg

]T
(3.32)

where navigation error states are the (3 × 1) position error vector (δr), (3 × 1) velocity error

vector (δv), and the (3× 1) attitude error vector (δϕ). The state vector has been augmented to

include the (3 × 1) accelerometer bias vector (ba) and the (3 × 1) gyro bias vector (bg). The

components of each of the navigation states and bias states can be seen in Equations (3.33) and

(3.34), respectively.

δr =


δN

δE

δD

 δv =


δṄ

δĖ

δḊ

 δϕ =


δφ

δθ

δψ

 (3.33)

ba =


ba,x

ba,y

ba,z

bg =


bg,x

bg,y

bg,z

 (3.34)

The terms {δN, δE, δD} are the position errors and {δṄ , δĖ, δḊ} are the velocity errors of the

North, East, and Down directions, respectively. Following this, the terms {δφ, δθ, δψ} are the

roll, pitch, and yaw errors, respectively. Lastly, the terms {ba,x, ba,y, ba,z} are the accelerometer

biases and {bg,x, bg,y, bg,z} are the gyro biases of the x, y, and z axes, respectively. The state

30

matrix F is a (15× 15) matrix defined as

F =



03 I3 03 03 03

03 03 −S(an) Cn
b 03

03 03 03 03 Cn
b

03 03 03 03 03

03 03 03 03 03


(3.35)

where 03 is a (3× 3) zero matrix and I3 is a (3× 3) identity matrix. The matrix G is a (15× 12)

continuous process noise input matrix, it is defined as

G =



03 03 03 03

Cn
b 03 03 03

03 Cn
b 03 03

03 03 I3 03

03 03 03 I3


(3.36)

The vector w is the (12× 1) continuous process (system) noise vector and is defined as

w =

[
wa wg wba wbg

]T
(3.37)

where wa denotes the accelerometer noise and wg the gyro noise. The terms {wba , wbg} are the

accelerometer and gyro bias noise, respectively. The continuous process noise covariance is a

(12× 12) matrix defined as

Q =



σ2
a · I3 03 03 03

03 σ2
g · I3 03 03

03 03 σ2
ba · I3 03

03 03 03 σ2
bg · I3


(3.38)

31

where {σ2
a, σ2

g} are the variance of noise of the acceleration and gyro measurements, respec-

tively. The terms {σ2
ba , σ2

bg} are the variance of the accelerometer and gyro biases, respectively.

The term I3 is a (3 × 3) identity matrix. Further discussion on how to find the sensor and bias

variances can be found in [3, 40, 41]

In order to implement this KF in the discrete form, the system model must be discretized.

The linear error equations in the discrete form are

δxk = Φk−1δxk−1 + wd,k−1 (3.39)

where Φk−1 is the state transition matrix at time tk−1 and wd,k−1 is the discrete system noise.

The state transition matrix is defined as being the unique solution to Equation (3.40) [42].

Φ̇ = FΦ. (3.40)

If the state transition matrix is assumed to be time invariant, the solution to the differential

equation is found to be the matrix exponential of the system matrix as shown in Equation

(3.41).

Φ = exp(F∆t). (3.41)

In this case, F is time varying as the acceleration term −S(an) and the attitude represented

as coordinate transform matrix Cn
b are updated each iteration in time. The matrix F can be

approximated as being time invariant (i.e. a constant matrix) between each iteration in time if

the sample rate of the IMU is high compared to the rate of change of F. The matrix exponential

can be approximated with a power series expansion truncated to the first term as

Φ ≈ I15 + F∆t (3.42)

32

where I15 is a (15×15) identity matrix and ∆t is the time interval between samples. Therefore,

the state transition matrix is

Φ =



I3 ∆t · I3 03 03 03

03 I3 −∆t · S(an) ∆t · Cn
b 03

03 03 I3 03 ∆t · Cn
b

03 03 03 I3 03

03 03 03 03 I3


(3.43)

The process noise covariance matrix is discretized with the equation

Qd = GQGT∆t (3.44)

where G is the continuous process noise input matrix and Qd is the (15 × 15) discrete process

noise matrix. The inertial error model equations presented in this thesis are linear, hence the

discrete-time linear KF equations in Table 3.1 were utilized.

II. Measurement Model

The discrete-time linear measurement model of the ESKF is

δyk = Hkδxk + vk, vk ∼ N(0,Rk) (3.45)

where δyk is the error measurement, Hk is the measurement matrix, and vk is the measurement

noise at time tk. Note the measurement model is linear and does not need to be linearized to be

put into state-space form.

The ZVU, ZARU, HDR, and CHAIN updates are applied in the measurement update of

the ESKF. When the foot is the swing phase of the gait cycle the measurement vector is zero.

When zero-velocity is detected in the stance phase of the gait cycle, a ZVU can be applied. The

33

measurement vector when applying just a ZVU is

δy =

[
δv
]

(3.46)

where δv is the velocity error. It is defined as, δv = v̂− v, where v̂ is the estimated state and v

is the true state. When the foot is detected to be at zero velocity, the velocity error is defined as

δv = v̂− [0, 0, 0]T , where the value of the true state is a vector of zeros. Thus, the measurement

is simplified to δv = v̂. The measurement matrix is a (3× 15) matrix for a ZVU and is

H =

[
03 I3 03 03 03

]
(3.47)

where 03 is a (3× 3) matrix of zeros and I3 is a (3× 3) identity matrix. When the pedestrian’s

foot is still, it has zero velocity and is stationary allowing a ZVU and ZARU to be applied.

Because the angular rates are not states, the application of the ZARU is not as straightforward.

The gyro measurements that are modeled in Equation (3.3) are repeated here in Equation (3.48)

ω̃bib = ωbib + bg + wg (3.48)

When a still is detected the foot is said to have a zero angular rate, therefore the true value

of ωbib is equal to zero, ωbib = 03×1. The measurement of the gyro bias is then said to be equal

to the measured angular rates, bg = ω̃bib. The measurement vector for both the ZVU and ZARU

is Equation (3.49).

δy =

[
δv bg

]T
(3.49)

The measurement matrix is a (6× 15) matrix for a ZVU and ZARU and is

H =

03 I3 03 03 03

03 03 03 03 I3

 (3.50)

where 03 is a (3× 3) matrix of zeros and I3 is a (3× 3) identity matrix.

34

When straightline walking is detected either an HDR or CHAIN update can be applied.

The measurement vector for both is

δy =

[
δψ

]
(3.51)

where δψ is the heading error. For the HDR method, the heading error is computed as

δψk = ψk − ψk−1 (3.52)

where ψk is the current heading at time tk and ψk−1 is the heading at time tk−1. For the CHAIN

method the heading error is given by

δψk = COG− ψcardinal (3.53)

where ψcardinal is one of the building cardinal directions. The term COG is the course over

ground. It is defined as

COG = arctan2(Eks − Eks−1, Nks −Nks−1) (3.54)

where {Eks, Nks} are the East and North positions at the current stride and {Eks−1, Nks−1} are

the East and North positions at the previous stride, respectively. The measurement matrix is a

(3× 15) matrix for a HDR or CHAIN update

H =

[
01×3 01×3 I1×3 01×3 01×3

]
(3.55)

where 01×3 is a (1× 3) matrix of zeros and I1×3 is a (1× 3) identity matrix.

The measurement noise vk is zero mean and Gaussian with a covariance matrix of Rk.

The measurement noise covariance matrix (Rk) associated with the ZVU must be chosen as it

is a pseudo measurement and not provided from an outside source. The method used in this

thesis was developed in [38] by Foxlin and shown in [32] by Pierce. By making the update

covariance no smaller than the current velocity variance, the corrections will occur gradually

35

over the update period. This is represented mathematically as

Rk = I3 · trace(HkPkHT
k) (3.56)

where the function trace is the summation of the diagonal elements of the matrix, and I3 is a

(3 × 3) identity matrix. The part of the measurement noise covariance matrix (Rk) associated

with the ZARU is similarly found by

Rk = I3 · trace(HkPkHT
k) + Q4:6,4:6 (3.57)

where the measurement covariance also accounts for the noise in the inertial measurements

with the gyroscope portion of input covariance matrix (Q4:6,4:6). When applying both ZVU and

ZARU, Equations (3.56-3.57) should be concatenated to make Rk a (6 × 6) matrix. Note that

ZVU measurements do not allow for the estimation of all the gyro biases. The z-axis gyro bias

is unobservable in low dynamic situations (e.g. slow turns, straight paths) [23,32]. To estimate

the z-axis gyro bias, a ZARU, HDR, or CHAIN method must be used. The x-axis and y-axis

gyro biases are observable with just a ZVU due to their relation with the pitch (θ) and roll (φ)

angle errors. Note that the method used to compute variance for the ZARU was also used for

the HDR and CHAIN methods.

III. Commentary on Measurement Update Type

The yaw axis gyro bias has been shown to be unobservable with only a ZVU as a measurement

source. This effect is shown in Figure 3.7. The ZARU has been shown to be an effective method

in estimating the yaw axis gyro bias, though drift in the localization solution will still persist.

The localization solution with both the ZVU and ZARU method is seen in Figure 3.8. The

HDR measurement is another method used to help estimate the yaw axis gyro bias, and reduce

the heading drift. The solution with the ZVU and HDR method is seen in Figure 3.9. Note the

straight walking points are the epochs (shown with green circles) in which the measurement

update was applied. The CHAIN method was introduced as a way to reduce the drift that is

36

still present when the ZARU and HDR methods are used. The results of this method are shown

in Figure 3.10. This update was only applied at three straight walking epochs to demonstrate

how the solution is corrected. Notice that after the updates stop, the solution begins to drift

again. It should be noted that these results are preliminary and should be treated as such. A

thorough analysis of each of these methods is beyond the scope of this work.

Figure 3.7: Position Estimates with ZVU Method

37

Figure 3.8: Position Estimates with ZVU+ZARU Method

Figure 3.9: Position Estimates with ZVU+HDR Method

38

Figure 3.10: Position Estimates with ZVU+ZARU+CHAIN Method

39

3.3.7 INS Mechanization

The overall framework for a classical KF based INS mechanization is presented in this section.

This INS mechanization process has seven steps that are presented in the order that they occur

in the following sections. These are based upon work by Jiménez et al. [23].

1. Initialization of Position, Velocity, and Attitude

INS position and velocity must be initialized using an external reference. For this thesis the

initial position of the user was found using GPS and the velocity of the foot was assumed to be

zero as the user was stationary relative to the ground.

When an INS is stationary, self-alignment can be used to initialize the pitch, roll with lev-

eling and the heading (yaw) initialized using gyrocompassing [3]. The leveling process is based

upon the fact that when an INS is stationary, the specific force measured by the accelerometers

is the reaction to gravity, which is approximately the down direction in the local navigation

frame. Based upon this principle the pitch (θ) and roll (φ) can be initialized as

θo = arctan2(−f bib,y,−f bib,z) (3.58)

φo = arctan2
(
f bib,x,

√
(f bib,y)

2 + (f bib,z)
2
)

(3.59)

where {f bib,x, f bib,y, f bib,z} are the measured specific force of the x, y, and z axes, respectively.

The term arctan2 is the four-quadrant inverse tangent. For further discussion of how Equations

(3.58-3.59) are derived see [3].

Gyrocompassing requires that the IMU be aviation grade or better [3]. Thus it could not be

performed in this thesis as a tactical grade IMU was used. The heading was instead initialized

using a magnetometer. For details on how to calculate heading using a magnetometer see

Section 4.5.1.

40

2. Bias Compensation

Bias compensation is the removal of the bias from raw accelerometers and gyropscope mea-

surements. Section 3.3.1 modeled the inertial errors as

ω̃bib = ωbib + bg + wg (3.60)

f̃
b

ib = fbib + ba + wa (3.61)

where {ω̃bib, f̃
b

ib} are the measured (raw) values and {ωbib, f
b
ib} are the true values of the angular

rates and specific force, respectively. The bias terms {bg,ba} estimated by the Kalman filter are

removed from the raw measurements by subtracting them out. This is mathematically shown

as

ωbib = ω̃bib − b̂g (3.62)

fbib = f̃
b

ib − b̂a (3.63)

where {b̂g, b̂a} are the estimated gyro and accelerometer biases, respectively. Note that the

‘true’ values {ωbib, f
b
ib} solved for in Equations (3.62-3.63) are not the true values of the body in

motion, as they can never be perfectly known. They are instead the optimal estimate of them.

3. Attitude Estimation

After the gyro measurements have been bias compensated, the attitude of the body frame rela-

tive to the local navigation frame must be updated. The time derivative of the CTM Cn
b is given

by

Ċ
n

b = Cn
bΩ

b
ib (3.64)

where Ωb
ib is the skew symmetric matrix for angular rates. It is defined as

Ωb
ib =


0 −ωbib,z ωbib,y

ωbib,z 0 −ωbib,x

−ωbib,y ωbib,x 0

 (3.65)

41

where {ωbib,x, ωbib,y, ωbib,z} are the bias compensated gyro measurements of the x, y, and z axes,

respectively. The solution to Equation (3.65) can be approximated by assuming Ωb
ib is time

invariant during the interval from time tk−1 to tk. What this means practically is that Ωb
ib is

assumed to be constant over the time interval, resulting in the following approximation

Cn
b,k = Cn

b,k−1exp(Ω
b
ib∆t) (3.66)

where ∆t is the time interval between samples at time tk−1 and tk. A Padé approximation

of the matrix exponential in Equation (3.66) is used for the attitude update [23, 43]. This

approximation is used to maintain the orthoganality of the CTM [44]

Cn,−
b,k = Cn

b,k−1

(2 · I3 + Ωb
ib,k∆t)

(2 · I3 −Ωb
ib,k∆t)

(3.67)

where Cn,−
b,k is the CTM that represents the attitude of the body frame (b) with respect to the

local navigation frame (n) at time tk. The superscript minus (−) indicates that the value is prior

to being corrected with the Kalman filter error estimate. The term Ωb
ib,k is the skew symmetric

matrix of the angular rates at time tk.

4. Gravity Compensation

In this step, the acceleration due to the gravitational force is removed from the accelerometer

measurements. This must be done as accelerometers measure specific force and not accelera-

tion [3]. The accelerometer measurements are first rotated into the local navigation frame and

then the value of g = 9.81 (m/s2) is added to the vertical component of the down component

of the acceleration. This is shown as

anib,k = Cn
b,kfbib,k + [0, 0, g]T (3.68)

where anib is the acceleration of the body in the local navigation frame. It should be noted

that this step is responsible for the largest amount of error in an inertial navigation solution.

When Cn
b,k is not perfectly known, the gravitational acceleration will not be correctly removed.

42

Because the magnitude of the gravitational acceleration is large compared to the measured

acceleration, this will cause a low cost unaided inertial navigation solution to quickly diverge.

For further discussion of this topic, see [3, 40].

5. Estimation of Velocity and Position

Next, the acceleration measurements are numerically integrated with Euler (rectangular) inte-

gration to obtain the velocity of the body in the local navigation frame. This is given by

vn,−ib,k = vnib,k−1 + anib,k∆t (3.69)

where vn,−ib,k is the velocity of the body prior to being corrected by the Kalman filter estimate of

error. This velocity is then integrated to obtain the position of the body in the local navigation

frame. This is shown by

rn,−ib,k = rnib,k−1 + vn,−ib,k∆t (3.70)

where rn,−ib,k is the position of the body prior to being corrected by the Kalman filter error esti-

mate.

6. Applying Corrections to Position, Velocity, and Attitude Estimates

The position, velocity, and attitude estimates are corrected using the error estimates from the

Kalman filter. Error is defined as δx = x̂− x, to get the corrected or ‘true’ state this equation is

rearranged to be x = x̂− δx. Therefore the corrected position estimate is

rnib,k = rn,−ib,k − δr̂k (3.71)

where rnib,k is the corrected position estimate at time tk and δr̂k is the Kalman filter position

error estimate at time tk. Similarly, the corrected velocity estimate is

vnib,k = vn,−ib,k − δv̂k (3.72)

43

where vnib,k is the corrected velocity estimate at time tk and δv̂k is the Kalman filter velocity

error estimate at time tk.

The attitude correction (refinement) is applied assuming that the attitude errors are small.

The correction is given using another Padé approximation as

Cn
b,k =

(2 · I3 + Ψk∆t)

(2 · I3 −Ψk∆t)
Cn,−
b,k (3.73)

where Cn
b,k is the corrected rotation matrix. The term Ψk is the skew symmetric matrix of the

attitude error estimated by the Kalman filter. It is defined as

Ψk =


0 −δψ̂k δθ̂k

δψ̂k 0 −δφ̂k

−δθ̂k δφ̂k 0

 (3.74)

where {δφ̂k, δθ̂k, δψ̂k} are the estimated roll, pitch, and yaw errors, respectively.

7. Zeroing Out Position, Velocity, and Attitude States

The navigation states {δrk, δvk, δϕk} must be zeroed out after the corrections have been ap-

plied. This is done to ensure that the same error is not removed more than once. This process

is shown by the following equations

δr̂ = 03×1 (3.75)

δv̂ = 03×1 (3.76)

δϕ̂ = 03×1 (3.77)

where 03×1 is a (3 × 1) vector of zeros. After this occurs, the steps repeat starting with step

two.

44

Chapter 4

Pedestrian Dead Reckoning:

A Step Detection Approach

4.1 Introduction

This chapter introduces an alternative method of PDR, that performs step detection and esti-

mates step length and heading of the pedestrian [3]. This method has been shown in many

works, some of which are [22, 27, 45–55]. The steps of this method are discussed in the re-

maining sections.

4.2 PDR-SD Systems

When pedestrians exhibit normal movement such as walking, IMUs that are not foot-mounted

will always have specific force readings much greater than zero. This makes it impossible to

regularly apply ZVUs as the IMU only has ‘zero-velocity’ when the pedestrian is stationary.

PDR with step detection (PDR-SD) allows for the IMU to be mounted in multiple locations

on the pedestrian’s body as it does not rely upon inertial navigation with ZVUs. The PDR-SD

methods can be broken into four parts [51]. They are: step detection, step length estimation,

heading determination, and navigation system update. These parts will be explained in the

following sections.

4.3 Step Detection

Most often step detection is performed using just accelerometers [3, 4, 47, 50, 53, 56, 57]. Step

detection can be accomplished by using either measurements from a single accelerometer (i.e.

f̃ bib,x, f̃
b
ib,y, orf̃

b
ib,z) or the magnitude of the accelerometers. The magnitude of the accelerometer

45

measurements is found by calculating the Euclidean norm shown in Equation (4.1).

∥∥∥f̃
b

ib

∥∥∥ =
√

(f̃ bib,x)
2 + (f̃ bib,y)

2 + (f̃ bib,z)
2 (4.1)

This is effectively using the accelerometers as a pedometer. If only single accelerometer is

used, it must be roughly parallel with the pedestrian coordinate frame (Figure 2.4) z-axis for

steps to be easily identified. If the orientation of the sensor relative to the pedestrian is unknown

or it is not mounted in such a manner that an axis aligns with the pedestrian frame z-axis then

the magnitude of all the accelerometer measurements should be used [3, 50]. In this thesis, the

magnitude of all the accelerometers was chosen as it is the more robust approach.

The accelerometer measurement exhibits a double-oscillatory pattern due to the ambula-

tory motion pedestrians exhibit. A typical pattern of the raw measurements while a pedestrian

is walking, can be seen in Figure 4.1. The z-axis can be seen to have large periodic motion rel-

ative to the other two axes. This is because the z-axis of the IMU was roughly parallel with the

pedestrian z-axis. The magnitude of the accelerometer triad at other locations on the body have

similar periodic signals. This allows for consistent step detection as the measurements have a

predictable pattern. The most popular method uses thresholding to detect steps [50, 51, 58, 59].

Another commonly used method is peak detection. This method is more prone to error, thus

was not considered in this work [47, 53, 60]. Furthermore, more advanced methods exist using

correlation and spectral analysis algorithms. These are beyond the scope of this thesis, but fur-

ther discussion can be found in [4,18]. Step detection methods not only apply to accelerometer

measurements, but other sensors can be used as well. Some other sensors that have been used

successfully are: gyros, magnetometers, and pressure sensors [4, 18, 48]. For this thesis, the

thresholding method using accelerometers was chosen for its effectiveness and simplicity.

For the threshold method, a new step is detected when there is an ‘acceleration zero cross-

ing’. For the most basic threshold detection method, acceleration zero crossings occur when the

magnitude of the specific force readings cross the magnitude of the acceleration due to gravity

(|g| = 9.81 m/s2) [3]. This is based upon the knowledge that when a step begins at footfall,

the magnitude of accelerometers for a torso mounted IMU is approximately the magnitude of

46

Figure 4.1: Raw Accelerometer Measurements During Walking

the acceleration due to gravity
∥∥∥f̃
b

ib

∥∥∥ ≈ |g|. Note that this is only true for normal walking on a

flat surface. Figure 4.2 illustrates step detection with a simplistic thresholding method along

with the relevant parts of the gait cycle.

A more advanced thresholding method calculates a maximum, minimum, and average

threshold for a window of samples [50]. The size of the window is determined by the IMU

sample rate. For example, if the IMU was sampled at 100 Hz the thresholds would be up-

dated every 100 samples. Four conditions have to be met for there to be a detected step. The

conditions qualitatively are:

1. The accelerometer signal must have a negative slope. This means the current measure-

ment must be less than the previous measurement.

2. The previous epoch must be above the average threshold and the current epoch must be

below the average threshold. These are called acceleration crossings.

47

Figure 4.2: Basic Step Detection [3, 47, 49, 51]

3. There must be a minimum time between each detected step. The minimum time between

each step varies based on the type motion (e.g. walking, running), the type of IMU and

specific algorithm implementation.

4. The minimum and maximum thresholds must be values that indicate pedestrian move-

ment. This is an additional condition, that was added to prevent false step detections

during quasi-stationary periods.

This method applied to a segment of a walking data set is shown in Figure 4.3, show-

ing that steps are consistently detected for a chest mounted IMU. This dynamic thresholding

method is more robust at detecting steps for irregular walking and walking on inclined surfaces.

The pseudo code for a post-process step detection algorithm is presented in Algorithm 1 at the

end of this section. This algorithm can be modified and implemented in real time. The pa-

rameters used and their respective abbreviations are listed in Table 4.1. It should be noted that

the accelerometer data was prefiltered in post-process using a zero-lag moving average filter.

48

This was done to ensure the accelerometer magnitude signal only had a single threshold cross-

ing during each step. Other methods that could be used are band-pass filtering or a wavelet

transform [47, 61].

Figure 4.3: Step Detection

49

Table 4.1: Algorithm 1 Parameter Definitions

Algorithm 1 Parameter Definitions
Parameter (abbreviation) Value (if applicable)

Accelerometer Magnitude (accel) N/A
Sample Rate (SR) 100 (Hz)

Minimum Time Between Steps (tmin) 0.2 (s)
Period Between Samples (∆t) 1/SR (s)

Time Window (TW) 0.2 (s)
Sample Window (SW) round(TW/∆t)

Number of steps (stepCount) N/A
Time when step detected (stepT imes) N/A

True or false if step detected (stepDetect) 1 (true), 0 (false)
Filtering Window (M) 25 samples

Minimum Threshold (THmin) N/A
MaximumThreshold (THmax) N/A
Average Threshold (THavg) N/A

Checks if all conditions are true (logical) N/A
Finds index of where condition is true (find) N/A

50

Algorithm 1: Step Detector

Input: accelraw, timeaccel
Output: stepIndex, stepT imes

1 Initialization: SR = 100 Hz; tmin = 0.2 (s); accelfilt = accelraw;∆t = 1/SR (s); TW = 0.2 (s);
2 SW = round(TW/∆t); stepCount = 1; stepT imes = 0; stepDetect = 0; M = 25 (must be odd number)

3 % Zero-lag Moving Average Filter
4 for i = (M + 1) : (length(accelraw)− 1) do
5 ii = (i−M) + (M − 1)/2; %Center of filtering window
6 accelfilt(ii) = mean(accelraw((i−M) : i− 1));

7 end

8 % Calculate Thresholds
9 for i = (1 : SR : (length(accelraw)− 1) do

10 THmin(i : i+ SR− 1) = min(accelfilt(i : (i+ SR− 1)));
11 THmax(i : i+ SR− 1) = max(accelfilt(i : (i+ SR− 1)));
12 THavg(i : i+ SR− 1) = (THmin(i : i+ SR− 1) + THmax(i : i+ SR− 1))/2;
13 end

14 for i = 1 : ((length(accelraw)− SW) do

15 % Condition 1
16 if accelfilt(i+ 1) < accelfilt(i) then
17 C1 = true
18 else
19 C1 = false
20 end

21 % Condition 2
22 if accelfilt(i) > THavg(i) & accelfilt(i+ 1) < THavg(i) then
23 C2 = true
24 else
25 C2 = false
26 end

27 % Condition 3
28 if (timeaccel(i)− stepT imes(stepCount)) > tmin then
29 C3 = true
30 else
31 C3 = false
32 end

33 % Condition 4
34 if THmin < 9.75 & THmax > 10.25 then
35 C4 = true
36 else
37 C4 = false
38 end
39 stepDetect(i) = logical(C1 & C2 & C3 & C4)

40 if stepDetect(i) = true then
41 stepCount = stepCount+ 1;
42 stepT imes(stepCount) = timeaccel(i)

43 else
44 end
45 stepIndex = find(stepDetect);

46 end

51

4.3.1 The Effects of IMU Location on Step Detection

When using the PDR-SD method, IMUs can be mounted at multiple locations on the pedes-

trian’s body. Some of these possible IMU locations in a fixed setting are illustrated in Figure

4.4. A fixed setting is one in which the IMU is mounted to a certain area and does not change

location on the pedestrian. PDR-SD with the foot-mounted IMU has been exhibited by Cho,

S.Y. et al. as it easily identifies steps when the stance phase and swing phase are known [62].

Although a foot-mounted IMU is an option, it is preferable to use inertial navigation tech-

niques when mounting on the foot as ZVUs help restrict the error growth [22,48,58]. When an

IMU is not foot-mounted and mounted elsewhere on the body, it is sometimes referred to as a

body-mounted IMU [22]. Some examples of the body-mounted IMU approach include, but are

not limited to: IMU mounted on a backpack [22], waist-mounted IMUs [12, 53], and an IMU

mounted on a pedestrian’s head using a helmet [56].

Figure 4.4: Possible fixed IMU locations on pedestrian body [3]

If sensors are attached to appendages (e.g. arms and legs), they can be ‘excited’ indepen-

dently from the pedestrian. In other words, they exhibit movement while the pedestrian’s center

52

of gravity (CoG) does not move. This is why it is commonly accepted that sensors should be

attached near the body’s center of mass, because movement of the center of mass more often

reflects movements of the entire body [63, 64]. Note here, that the terms center of mass and

center of gravity are used synonymously and these points are exactly the same on a pedestrian

standing upright. The anotomical position for the CoG of a pedestrian when standing, lies ap-

proximately anterior to the second sacral vertebra and is the origin of the pedestrian frame as

shown in Figure 2.4 [65]. When an IMU attached to an appendage moves independently, false

steps can be detected.

Tests were conducted to verify this using a Xsens MVN Awinda system, shown in Figure

4.5. This is an inertial motion capture system used to perform full-body human motion capture.

The results of Test #1 are shown in Figures 4.6 and 4.7. Figure 4.6 shows that around the 17

second mark a false step is detected for the motion captured for the user’s right hand. This is

known to be a false step detection, as the test subject is stationary at the 17 second mark. This

was determined by analyzing the step detection performed on motion captured for the user’s

pelvis in Figure 4.7. This figure shows no movement or steps detected.

Test #2 showed that mounting an IMU on the head can produce similar issues. This is

indicated by the false step detections from a head mounted IMU at the 20 second mark in

Figure 4.8. This is known to be a false step detection as motion captured for the pelvis in

Figure 4.9 indicates the pedestrian is stationary.

In this thesis, the IMU was placed on the pedestrian’s torso. There are multiple locations

on the pedestrian’s torso that could have been used, including the waist (pelvis), chest, back,

and shoulders. The choice of which location produces the best result is beyond the scope of this

thesis. Note that when PDR-SD is used in this thesis, the IMU was mounted on the pedestrian’s

chest. For further discussion of IMU locations used to perform step detection, refer to [4].

53

Figure 4.5: MVN Awinda System
(Image courtesy of Auburn Univ. Industrial Eng. Dept.)

54

Figure 4.6: Test #1 Step Detection

Figure 4.7: Test #1 Step Detection

55

Figure 4.8: Test #2 Step Detection Head

Figure 4.9: Test #2 Step Detection Pelvis

56

4.4 Step Length Determination

The most simplistic algorithms assume a constant step length (SL), as naturally walking pedes-

trians have an almost constant step length. This is an easy approach to implement as only the

average step length for a user needs to be identified. This can be easily found by recording

distance traveled and number of steps taken by a pedestian and using the simple formula

SL1 = (x)/(n) (4.2)

where x is the distance traveled and n is the number of steps taken. Some pedometer manufac-

turers list step length as a function of height [27]. This relation is

SL2 = (h) · (K) (4.3)

where h is the height of the user and K is a constant based upon the user’s height. The often

quoted constant for the pedestrian height in inches isK = 0.413. This relation is created with a

survey of multiple pedestrians walking naturally. Unfortunately, step length can vary as much

as 40% from person to person, as it is largely dependent upon leg length. Furthermore, step

length can vary as much as 50% as a pedestrian changes their gait (i.e. walking slower and

faster than a natural pace) [57]. Unless the pedestrian assumes a natural walking pace for the

entire distance traveled, a fixed step length is not adequate and will introduce error into the

positioning solution.

A slightly more complex method is presented by Zhao, which uses a simple tabular method

for computing step length based upon step frequency and height [50]. Note that the author calls

a step length a stride in his work. The table of values for this method is presented in Table 4.2.

The following two step length formulas are intended to be used with a sensor mounted

on the pedestrian’s hip [18]. Consequently, the most popular application has been to use a

smartphone, containing an IMU, in a pant or jacket pocket. Each formula uses the vertical

acceleration to calculate the step length. Thus the smartphone or sensor must either be aligned

such a way that the vertical component of acceleration is directly measured, or the orientation

57

Table 4.2: SL3 Definition

Steps per 2 seconds SL3 (m)
0-2 height/5
2-3 height/4
3-4 height/3
4-5 height/2
5-6 height/1.2
6-8 height/4
≥8 1.2 × height

of the smartphone must be known. Weinburg’s work created a dynamic step length estimation

formula based upon the maximum vertical displacement (‘Bounce’) of the hip (or upper body)

[18, 57, 66]. It was shown that stride length was a function of the vertical displacement and the

angle between the maximum and minimum hip position. This angle is set as a constant even

though it is typically not. The formula has been modified to estimate step length instead of

stride length. This results in the empirical relation

SL4 = K
4√

(amax − amin) (4.4)

where amax, amin are the maximum and minimum measured values of the vertical acceleration

during a step. The relation assumes the angle between the maximum and minimum hip position

is constant which is generally not true. The formula contains a constant K to tune it for each

individual user. This method also reports step lengths to be within 8% of their true values. The

second step length formula for hip located sensors is

SL5 = 0.1
2.7

√√√√∑k=N
i=1

∥∥avert,i∥∥
N

√
K√

T · apeak
(4.5)

where T is the step duration, avert is the vector of measured vertical accelerations during a

single step. The term apeak is the difference between the maximum and minimum vertical

accelerations during the step and N is the number of samples during one step. Similar to

Equation (4.4),K is a calibration constant. The empirical relation in Equation (4.5) was created

58

by [27] and is based upon step length formula by Kim et al. [45]. This formula is

SL6 = 0.98
3

√∑k=N
i=1

∥∥avert,i∥∥
N

(4.6)

where avert is the vector of measured vertical accelerations during a single step. Note that this

formula is intended to be used for a foot-mounted IMU.

Another method uses a simple biomechanical model of a pedestrian, it is based upon work

by [67] and is presented by [66]. This model assumes the pedestrian is a kneeless biped which

is modeled as an inverted pendulum. This is given by the following function

SL7 = K
√

2LY − Y 2 (4.7)

where Y is the vertical displacement of the pedestrian’s hip and L is the length of the pedes-

trian’s leg. The estimates are each scaled with a constant K to calibrate the results to the

individual user.

The last method of step length determination models step length as a function of certain

signal characteristics such as step frequency and variance of specific force. Step frequency has

been shown to be strongly related to step length [68, 69]. Gusenbauer et al. chose to relate the

step frequency to step length using the linear function [54]

SL8 = K1 +K2f (4.8)

where f is step frequency and K1 and K2 are the model coefficients [54]. Other works in-

clude additional terms to their models. Ladetto models step length as a function of both step

frequency and variance of the specific force, resulting in the function

SL9 = K1 +K2f +K3σ
2
f (4.9)

where f is step frequency, σ2
f is the variance of the magnitude of the specific force, andK1, K2,

and K3 are the model coefficients [47]. Groves et al. also include a slope term in their work,

59

resulting in the function

SL10 = K1 +K2f +K3σ
2
f +K4S (4.10)

where f is step frequency, σ2
f is the variance of the magnitude of the specific force, and S is the

slope term. K1, K2, K3, and K4 are the model coefficients [22]. Note that Groves et al. found

the step frequency coefficient K2 and the slope coefficient K4 were both poorly estimated from

their data. Hence they reduced the number of terms in their model, resulting in the equation

SL11 = K1 +K3σ
2
f (4.11)

where σ2
f is the variance of the magnitude of the specific force and K1 and K3 are the model

coefficients.

The step frequency is calculated by

fk = 1/(tkstop − tkstart) (4.12)

where tkstart is the time at the beginning of the step, and tkstop is the time at the end of the step.

In order to calculate the variance of the magnitude of the specific force, the magnitude is first

found by computing the Euclidean norm with

∥∥∥f̃
b

ib,(kstart:kstop)

∥∥∥ =
√

(f̃ bib,x,(kstart:kstop))
2 + (f̃ bib,y,(kstart:kstop))

2 + (f̃ bib,z,(kstart:kstop))
2 (4.13)

where kstart is the first epoch of the step and kstop is the last epoch of the step. Then the variance

of the magnitude of the specific force is computed as

σ2
f =

(
kstop∑

k=kstart

(∥∥∥f̃
b

ib,k

∥∥∥− µ(kstart:kstop)

))2

kstop − kstart
(4.14)

where µ(kstart:kstop) is the mean of Equation (4.13).

A comprehensive comparison of all the above step length formulas is beyond the scope of

this thesis. A comparison of step length formulas: SL8, SL9, and SL11 is presented by Jahn et

60

al. [66]. The next section will introduce a short discussion of the linear least squares methods

used to solve for the model coefficients in Equations (4.8-4.11). In the following section, least

squares estimation will be introduced followed by a short study of the step length functions that

are based upon empirical data. Within this study it will be shown how to estimate their model

parameters.

4.4.1 Linear Least Squares Estimation

The model coefficients of each formula are estimated using linear least squares techniques.

This is formally called parameter identification, and in the field of statistics the process of

fitting a model to measured data is known as regression. Least squares computes the estimate

(x̂) that minimizes the sum of the square of the residual errors [34, 35]. The following linear

least squares techniques will be discussed: ordinary least squares, weighted least squares, and

recursive least squares.

I. Ordinary Least Squares

The simplest form of linear least squares is ordinary least squares (OLS). It computes an opti-

mal estimate of x by obtaining the solution to

x̂ = (HTH)−1HTy (4.15)

where x̂ is the (n × 1) vector of estimates. The term H is the (m × n) measurement matrix,

that relates the measurements to the state vector with a linear function. Lastly, y is the (m× 1)

measurement vector. The estimate of the error covariance matrix is given as

P̂ = (HTH)−1σ2 (4.16)

where P̂ is the (n×n) estimated error covariance matrix, H is the (m×n) measurement matrix,

and σ2 is the variance of the measurement noise. The estimated covariance matrix provides an

61

estimate of the accuracy and correlation of state estimates. The estimate of σ2 is computed by

σ̂2 =
eT e
m− n

(4.17)

where e is the (m× 1) vector of residuals. The vector of residuals is given by

e = y−Hx̂ (4.18)

For the derivation of Equation (4.17) see [70].

II. Weighted Least Squares

In the previous section, Equations (4.15) and (4.16) place an equal amount of confidence on

each measurement. In the unlikely event that each measurement is made with equal confidence,

the OLS approach is sufficient. However, the weighted least squares (WLS) approach, solves

the problem of unequal measurements by enabling the ability to place more confidence in

certain measurements over others. This results in the equations

x̂ = (HTWH)−1HTWy (4.19)

P̂ = (HTWH)−1 (4.20)

where W is the (n×m) weighting matrix. This weighting matrix can either be set empirically

or can be found by inverting the measurement noise matrix (R), and is expressed as W = R−1.

The OLS and WLS method each process all of the measurements simultaneously and are known

as batch methods. The next section will introduce a method of least squares, that processes

measurements as they become available sequentially in time.

III. Recursive Least Squares

Using OLS or WLS may not be possible over long periods of time as the measurement matrix

(H) may grow too large to be computed effeciently [35]. Therefore, as new measurements

62

become available, new estimates need to be computed without completely recalculating Equa-

tions (4.19-4.20). Recursive least squares (RLS) allows for a new estimate (x̂k) to be computed

from just the previous state estimate (x̂k−1) and the current measurement (yk). Note that the

previously discussed KF is also a recursive estimator. The KF in Table 3.1 is equivalent to RLS

with the process noise covariance is set equal to zero (Qd = 0) and the state transition matrix is

an identity matrix (Φk−1 = I) [34]. RLS calculates a recursive least squares estimate with the

following equations. First the (n×m) optimal gain matrix (Kk) is computed by

Kk = Pk−1HT
k (HkPk−1HT

k + Rk)
−1 (4.21)

where Pk−1 is the (n×n) estimate covariance matrix at time tk−1, Hk is the (m×n) measurement

matrix at time tk, and Rk is the (m×m) measurement noise covariance matrix at time tk. The

state estimates are computed by

x̂k = x̂k−1 + Kk(yk −Hkx̂k−1) (4.22)

where x̂k is the (n× 1) vector of state estimates and yk is the (m× 1) vector of measurements

all at time tk. The estimate covariance matrix is updated by

Pk = (In −KkHk)Pk−1(In −KkHk)
T + KkRkKk

T (4.23)

where In is the (n × n) identity matrix. Note that Equation (4.23) is just one way to update

the estimate covariance matrix, another form was shown in the measurement update section

in Table 3.1. These equations are mathematically identical thus they can be used with equal

validity.

If no knowlege of the states (x) is available beforehand the covariance of the estimate

should be theoretically initialized as P0 = ∞ · In×n. However, the initialization can be com-

puted in a more deterministic fashion by Equation (4.24) along with the initial state estimate in

Equation (4.25)

P0 =

(
1

α2
· In×n + HT

0 W0H0

)−1

(4.24)

63

x̂0 = P0

(
1

α
β + HT

0 W0H0

)
(4.25)

where α is a very large number, β is a very small number, and In×n is a (n × n) identity

matrix [34]. Equations (4.24) and (4.25) are often approximated by simply setting the initial

covariance to a large number, Po = 106 · In×n and setting the initial state vector equal to zero,

x̂0 = 0n×1. This thesis takes this approach.

4.4.2 Empirical Step Length Formula Comparison

This section will first introduce how the measurement noise covariance matrix was obtained.

Next, the measurement matrices for each model are discussed. Lastly, the estimation of step

length model coefficients for the models: SL8, SL9, and SL11 will be performed and then

compared.

I. Step Length Measurement and Variance

The measurements used to solve for the step length function coefficients are not the North or

East positions themselves, but the magnitude of the change in position (i.e. step length). The

GPS receiver used also provides a covariance of the position measurements. This covariance

does not represent the covariance of the relative position measurements. Finding the variance

for this measurement is not obvious, so it is discussed here. For two random variables X and

Y , the variance of the sum or difference of the random variables given by

σ2
X±Y = σ2

X + σ2
Y − E[(X − µX), (Y − µY)] (4.26)

where σ2
X±Y is the variance of the summed or differenced measurements and {σ2

X , σ
2
Y } are the

variance of theX and Y random variables, respectively. The termE[(X−µX), (Y −µY)], is the

the covariance between the two random variables X and Y [71]. The GPS measurements can

be assumed to be independent, therefore the covariance term will be zero and Equation (4.26)

simplifies to Equation (4.27). Derivations of Equations (4.26-4.27) can be found in Appendix

64

B of [3].

σ2
X±Y = σ2

X + σ2
Y (4.27)

The true step length of the pedestrian is computed from the GPS measurements. It is the

distance between two epochs, where a step was detected. It is computed with the Euclidean

norm as

SL =
√

(Nks −Nks−1)2 + (Eks − Eks−1)2 (4.28)

where SL is the GPS step length, {Nks, Eks} are the North and East positions at the current step

detected, and {Nks−1, Eks−1} are the North and East positions of the previous step detected.

The variance of the step length measurement is found with Equation (4.27) and observing how

the SL is computed. It is given by

σ2
SL,k = (σ2

N,ks + σ2
N,ks−1)2 + (σ2

E,ks + σ2
E,ks−1)2 (4.29)

where σ2
SL is the variance of the SL measurement. For the OLS and WLS case the (m ×m)

diagonal measurement covariance matrix is given by Equation (4.30).

R =



σ2
SL,1 0 . . . 0

0 σ2
SL,2 . . . 0

...
...

0 0 . . . σ2
SL,m


(4.30)

For RLS, the measurement covariance matrix at time tk is Rk = σ2
SL,k.

II. Measurement Matrices and Vector

For OLS and WLS the measurements can be modeled by the equation

y = Hx + v, v ∼ N(0,R) (4.31)

65

where H is the measurement matrix and v is the measurement noise. The term x is the (n× 1)

state vector which contains the model coefficients, and y is the (m × 1) measurement vector

which contains the GPS step length measurements. The (m × m) measurement covariance

matrix R is defined as

R = E[vvT] (4.32)

as the noise for each measurement is assumed to be zero mean and independent [35]. For the

RLS case the measurements are modeled as

yk = Hkxk + vk, vk ∼ N(0,Rk) (4.33)

where the measurement covariance matrix Rk is defined as

Rk = E[vkvTk] (4.34)

where the noise is again assumed to be zero mean and independent.

For SL8, presented by Gusenbauer et al. [54], the (m × n) measurement matrix for OLS

and WLS is

H =



1 f1

1 f2

...
...

1 fm


(4.35)

where the first column is a vector of ones and in the second column are the step frequencies (f)

at the step epochs. For the RLS case, the (1× n) measurement matrix is Equation (4.36).

Hk =

[
1 fks

]
(4.36)

66

For SL9 presented by Ladetto et al. [47], the (m × n) measurement matrix for OLS and

WLS is

H =



1 f1 σ2
f,1

1 f2 σ2
f,2

...
...

...

1 fm σ2
f,m


(4.37)

where the first column is a vector of ones, in the second column are the step frequencies (f)

for each step, and the third column is the variance of the magnitude of the specific force (σf) at

each step. For the RLS case, the (1× n) measurement matrix is Equation (4.38).

Hk =

[
1 fks σ2

f,ks

]
(4.38)

For SL11 presented by Groves et al. [22], the (m × n) measurement matrix for OLS and

WLS is

H =



1 σ2
f,1

1 σ2
f,2

...
...

1 σ2
f,m


(4.39)

where the first column is vector of ones and in the second column is the variance of the magni-

tude of the specific force (σf) at each step. For the RLS case, the (1× n) measurement matrix

is Equation (4.40).

Hk =

[
1 σ2

f,ks

]
(4.40)

IV. Performance Evaluation

A short path was walked by the pedestrian as shown in Figure 4.10. Using OLS and WLS, the

model coefficients for each of the different models were estimated along with their associated

67

confidence intervals. The general form of the covariance matrix is

P =



σ2
1 σ1,2 . . . σ1,n

σ2,1 σ2
2 . . . σ2,n

...
...

σn,1 σn,2 . . . σ2
n,n


(4.41)

where σ2
1 is the variance of the first state estimate and σ2

n,n is the variance of the nth state

estimate. The standard deviations that form the confidence intervals are found by taking the

square root of the diagonal entries of the error covariance matrix in Equation (4.41). The

standard deviation of the first state estimate is σ1 =
√

P11 the standard deviation of the second

state estimate is σ2 =
√

P22 and so on. The state can then be represented in the form, xn =

x̂n ± σn. The estimates using OLS are shown in Table 4.3. The results shown for SL8 show

that both coefficients (K1, K2) were estimated with reasonable confidence. The results for SL9

show that while coefficients {K1, K2} are estimated reasonably well, the coefficient K3 is not.

The results for SL11 are similar, with coefficient K1 estimated with reasonable certainty while

coefficient K2 is not. The coefficients from {SL9, SL11} that are both poorly identifiable are

the variance of specific force coefficients for each model. It may be possible to better identify

these coefficients with longer data sets. The results from the WLS estimates are shown in Table

4.4. The results for {SL8, SL9, SL11} show that all of the coefficients for each model are

estimated well. In order to better understand these results a second similar path was walked.

Using the calibration from the first test dataset, the step length was then calculated using the

second test dataset and compared to the true step length computed from the GPS position

measurements. The root-means-square (RMS) error (defined in Section 5.7.1) is computed for

each model. The results in Table 4.5 show that each of the models estimated with OLS perform

slightly better or approximately the same as the WLS estimates. Also, the SL11 performs

slightly better than the others. Note that these results are preliminary and should be treated

as such. Future tests should estimate the models using a measurement source with higher

accuracy. This could be achieved using the real-time kinematic (RTK) positioning technique

68

or other positioning techniques (e.g. precise point positioning (PPP), time differenced carrier

phase (TDCP)). RTK-GPS can be used to obtain horizontal position measurements that are

accurate to∼2 (cm). Additionally, the data sets used should be much longer, to ensure a proper

calibration and calculation of RMS error.

Figure 4.10: Pedestrian Path Used for Estimation of Step Length

Table 4.3: OLS Estimates

OLS Estimates
Step Length Formula K = estimate ± standard deviation

SL8
K1 = 1.69154± 0.11232 (m)
K2 = −0.44957± 0.05949 (Hz)

SL9

K1 = 1.72391± 0.11591 (m)
K2 = −0.45401± 0.05959 (Hz)
K3 = −0.00190± 0.00169 (m2/s4)

SL11

K1 = 0.85747± 0.02483 (m)
K2 = −0.00104± 0.00187 (m2/s4)

69

Table 4.4: WLS Estimates

WLS Estimates
Step Length Formula K = estimate ± standard deviation

SL8
K1 = 1.89943± 0.02522 (m)
K2 = −0.55420± 0.01324 (Hz)

SL9

K1 = 1.91497± 0.02540 (m)
K2 = −0.55344± 0.01324 (Hz)
K3 = −0.00184± 0.00036 (m2/s4)

SL11

K1 = 0.86664± 0.00398 (m)
K2 = −0.00201± 0.00036 (m2/s4)

Table 4.5: Step Length RMS Error

Step Length RMS Error
Step Length Formula Least Squares Method RMS Error (m)

SL8
OLS 0.3173
WLS 0.3436

SL9
OLS 0.3307
WLS 0.3461

SL11
OLS 0.2771
WLS 0.2792

70

4.5 Heading Determination

Most often for PDR-SD, the heading is determined similar to a PDR-INS system, as the same

sensors are used. Some systems only use a single gyro or a magnetometer mounted paral-

lel to the torso and assume that it stays parallel. In addition, more advanced systems fuse a

magnetometer with inertial sensors to estimate heading or attitude. In the following sections,

the methods for determining heading with a gyro or magnetometer are detailed. It then will

be shown how to fuse both the magnetometer and gyro measurements. Lasty, the subject of

attitude heading reference systems will be briefly discussed.

4.5.1 Magnetometer Heading

The heading for a calibrated magnetometer is computed as

ψm = arctan2(−mb
m,y,m

b
m,x) (4.42)

where {mb
m,y,m

b
m,x} are the calibrated measurements of the magnetic field in the body frame’s

y and x axes, respectively. The function arctan2 is the four-quadrant inverse tangent. Note

that this computation assumes that the magnetometer is level. If the magnetometer is not level,

the measurements need to be compensated for pitch and roll effects [3, 23]. The expression for

computing heading from a magnetometer becomes

ψm = arctan2(−mb
m,y cosφ+mb

m,z sinφ,mb
m,x cos θ+mb

m,y sinφ sin θ+mb
m,z cosφ sin θ)

(4.43)

where {φ, θ} are the roll and pitch angles, respectively.

The magnetometer heading must also be corrected, as it is computed with respect to mag-

netic North and not true North. This is done by

ψn = ψm + αm (4.44)

71

where ψn is the true heading and αm is the declination angle. For further discussion of heading

from a magnetometer, the reader is referred to [3, 21].

Many calibration algorithms exist to calibrate a magnetometer [72–74]. Most of these

involve fitting either an ellipse or ellisoid to raw measurements. For further discussion of

calibration algorithms and routines see [30, 74, 75].

4.5.2 Heading from a Single Gyroscope

Obtaining heading from a single gyroscope can be done several ways. The simplest method is

to numerically integrate the yaw axis gyro to propagate the heading after initializing it from an

external source. This method could be used in conjunction with an error-state Kalman filter.

The method presented here uses a kinematic estimator. It is termed a kinematic estimator as

the system model is the kinematic relationship of the sensor and not a dynamic model [76].

The following section will introduce the system model and then the measurement model will

be presented.

I. System Model

The model of the gyroscope in Equation (3.3) is used for the kinematic estimator and can be

put into state-space form as

ẋ = Fx + Bu + Gw (4.45)

where xk is the (2 × 1) state vector, F is the (2 × 2) system matrix, and G is the (2 × 2) noise

input matrix. The term uk is the (1×1) input vector and B is the (2×1) input matrix. Equations

(3.3) and (3.6) in the form of Equation (4.45) is

 ψ̇

ḃg,z

 =

0 −1

0 0


 ψ

bg,z

+

1

0

[ω̃bib,z]+

1 0

0 1


wg

wbg

 (4.46)

The elements of the state vector x are heading (ψ) and yaw axis gyro bias (ψ),
(
x = [ψ bg,z]

T
)
.

The element of the input vector (u) is the measurement of z-axis angular rate (ω̃bib,z),
(
u =

[ω̃bib,z]
)
. The elements of the continuous noise vector (w) are the gyro noise (wg) and the gyro

72

bias noise (wbg). The continuous process noise covariance is a (2× 2) matrix defined as

Q =

σ2
g 0

0 σ2
bg

 (4.47)

where {σ2
g , σ

2
bg
} are the variance of the gyro noise and gyro bias, respectively.

In order to implement this KF in the discrete form, the system model must be discretized.

The linear error equations in discrete form are

xk = Φk−1xk−1 + Γk−1uk−1 + wd,k−1 (4.48)

where Φk−1 is the state transition matrix at time tk−1 and Γk−1 is the discretized input matrix.

The term wd,k−1 is the discrete system noise. The (2× 2) state transition matrix is

Φ =

1 −∆t

0 1

 (4.49)

where ∆t is the time interval between measurements. The discrete process noise covariance

matrix is approximated with the equation

Qd = GQGT∆t (4.50)

where G is the continuous process noise input matrix and Qd is the (2 × 2) discrete process

noise matrix. Further discussion of the discretization process can be found in multiple texts

[3, 19, 34, 41].

II. Measurement Model

The discrete-time linear measurement model is

yk = Hkxk + vk, vk ∼ N(0,Rk) (4.51)

73

where Hk is the measurement matrix and vk is the measurement noise at time tk. Note the

measurement model is linear and does not need to be linearized.

Unlike the PDR-INS approach, pseudo measurements cannot often be applied. Only

ZARU can be applied if the pedestrian is standing stationary. Details on how to apply this

update were previously provided in Section 3.3.6. Because of this, the (1 × 2) measurement

matrix for a standalone gyro is typically empty as shown by Equation (4.52).

H =

[
0 0

]
(4.52)

4.5.3 Gyro + Magnetometer Heading

The heading determination methods in the two previous sections exhibit different error char-

acteristics. This is because they utilize different sensors. Magnetic measurements are subject

to interference from local ferrous and magnetic objects, but can provide an absolute heading

measurement. Gyros can provide an accurate heading update measurement for short periods of

time, but will drift over time. Together these sensors can be combined to remove the anoma-

lies from the magnetometer measurements and reduce the heading drift from the gyros. Using

the KF presented in Section 4.5.2 these measurements can be integrated as follows. When a

magnetometer is available, the measurement vector is

y =

ψn
0

 (4.53)

where ψn is the magnetometer heading. The measurement matrix is Equation (4.54).

H =

[
1 0

]
(4.54)

This measurement update is often done with innovation filtering [3, 30, 77]. This is to re-

move outlier magnetometer measurements that have been corrupted by magnetic perturbations.

Magnetic interference comes from ferrous material and magnetic fields (other than the Earth’s)

74

that magnetometers are in close proximity to. Further discussion of this and other ways to

mitigate magnetic interference are discussed by Abdulrahim [30].

4.5.4 Attitude Heading Reference Systems

Attitude heading and heading reference systems (AHRSs) are used to provide the user with ori-

entation information (i.e. attitude). They often comprise of a tactical-grade IMU that includes

an accelerometer, gyro, and magnetometer triads. AHRSs are used for applications that require

higher heading determination accuracy than the two aforementioned methods. For an AHRS,

attitude is computed in the same manner as it would be for an INS. A KF or KF variant is used

to integrate the sensors and estimate the attitude or attitude errors. For further discussion and

implementation of AHRSs see [3, 21, 41, 78, 79].

4.6 Navigation System Update

Once the steps, step length, and heading have been determined the navigation states can be

updated. The system model for a PDR-SD system is given by

xk = xk−1 +


(SLk) · cosψk

(SLk) · sinψk

∆ψk

 (4.55)

where xk is the state vector and ψk is the heading at time tk. The term ∆ψk is the change in

heading at time tk. The elements of the state vector (xk) are North position (Nk) , East position

(Ek), and heading (ψk),
(
x = [N E ψ]T

)
. This process in state-space format is governed by

a linear difference equation in the form

xk = Φk−1xk−1 + Γuk (4.56)

where Φk−1 is the (3× 3) state transition matrix and Γ is the (3× 3) input distribution matrix.

The term u is the (3×1) input vector at time tk. Equation (4.55) written in the form of Equation

75

(4.56) is

xk =


1 0 0

0 1 0

0 0 1

 xk−1 +


cosψk 0

sinψk 0

0 1

uk (4.57)


Nk

Ek

ψk

 =


1 0 0

0 1 0

0 0 1



Nk−1

Ek−1

ψk−1

+


cosψk 0

sinψk 0

0 1


 lk

∆ψk

 (4.58)

where the elements of the input vector (uk) are step length (lk) and the change in heading

(∆ψk),
(
u = [l ∆ψ]T

)
.

76

Chapter 5

Particle Filtering for Indoor Positioning Systems

5.1 Introduction

This chapter introduces the overall framework for an indoor positioning system using a particle

filter (PF). Subsequently, each of the PF steps are explained in detail. Next the current state of

the art PF methods for pedestrian navigation are discussed and a new weight update method is

presented. Lastly, a performance evaluation of the new and current methods is presented with

both simulated and experimental data.

5.2 Estimation Framework

The estimation framework for a body worn system (i.e. no physical infrastructure) used in

this thesis is described as follows. The sensor used is a tactical grade MEMS IMU, which is

mounted on the pedestrian’s foot. Thus the PDR method used is a PDR-INS approach with

ZVUs and ZARUs [3]. The PDR-INS produces a 6 degree-of-freedom (DoF) navigation solu-

tion of the device (i.e. position, velocity, attitude). A 2D odometry measurement (i.e. change

in position, change in heading) is extracted from the 6 DoF solution and used as the source

of PDR and input into the PF along with the a priori map. The PF fuses the map and PDR,

outputting a more accurate localization solution. The overall framework is portrayed in Figure

5.1. This framework was first demonstrated independently by Woodman and Harle [11], Klepal

et al. [80], and Krach and Robertson [81] in 2008 [4]. Subsequently, it has been explored by

others, some of which are [4, 8, 9, 12–18].

5.3 Particle Filtering

The PF was first introduced in 1993, as a nonlinear, non-Gaussian, Bayesian estimation tech-

nique that numerically approximates the Bayesian filter with a recursive state-space approach

77

Figure 5.1: Indoor Positioning System Estimation Framework

[34,82,83]. The PF estimates the continuous posterior probability density function (PDF) with

multiple finite random samples (particles), which differs from traditional filtering techniques

like Kalman filtering [34]. For instance, Kalman filtering represents a bivariate Gaussian dis-

tribution with a mean and covariance, whereas the PF spreads a set of discrete state vectors

(particles) to create a joint distribution to represent the distribution [3]. This is represented

visually in Figure 5.2.

The PF is widely used for problems that are difficult to solve with conventional Kalman

filtering techniques, which rely on Gaussian measurement distributions. The KF and its variants

cannot easily incorporate map measurements as they are highly non-Gaussian in nature. The

PF incorporates map information by placing direct constraints upon the position states which

are known to be restricted by the building floorplan [12]. This is accomplished by eliminating

particles that cross map boundaries and is referred to as map-matching [4, 9].

The PF consists of four steps: initialization, propagation, update, and resampling. These

are illustrated in Figure 5.3. Each of the PF steps can be implemented in various ways, which

will affect the overall performance of the PF. The main focus of this chapter is to describe

78

Figure 5.2: Two states represented with a bivariate Gaussian distribution using a mean and
covariance (left), and a set of particles (right) [3]

various propagation and weight update methods. The methods differ based upon the selection

of the motion model, measurement likelihood, and the proposal distribution.

Figure 5.3: Particle Filter Steps [3]

79

5.3.1 Initialization

The first step is to initialize the PF with a fixed number of particles, Np, with equal normal-

ized weights. The PFs in this thesis used Np = 1000 particles. This choice is based upon the

standard practice of having a minimum of 1000 particles [34]. This is somewhat arbitrary, as

currently no method exists to calculate how many particles should be used for a given state

vector of a certain type and dimension. The approximation of the posterior density approaches

the true posterior density as Np → ∞, but as the number of particles increases, so does the

computational cost. In order to approximate the posterior density well, sample impoverish-

ment (depletion) must be avoided. Sample impoverishment is when only a small number of

particles (or particle) remains to contribute to the state estimate [83]. For this thesis, 1000

particles were found to be adequate at avoiding sample impoverishment while also not being

too computationally expensive. Further study on the optimal number of particles is beyond the

scope of this work but is further discussed in [83].

A standalone PDR navigation system requires an external reference to determine the initial

position and heading states of the particles. An example of an external reference would be

a WLAN to obtain the pedestrian’s initial position and a magnetometer to determine initial

heading. More advanced techniques assume that there is no knowledge of the pedestrian’s

pose within a building and adopt a multi-modal approach. This is accomplished by spreading

particles over the entire building or area of interest [10, 11]. The initial spread of particles

corresponds to the confidence in the initial state estimates.

In this thesis, the initial position and heading are found using GPS and a magnetometer, re-

spectively. The initial particles are spread with the distribution N(x|xo,Σxo), where N(x|µ,P)

is a Normal (Gaussian) distribution of x, with a mean µ and covariance P. The term Σxo is a

(3× 3) diagonal initial covariance matrix. The elements of the initial state vector xo are North

position (No), East position (Eo), and heading (ψo). The standard deviations chosen to represent

the uncertainty of the initial position coordinates and heading are {σNo = 0.6 m, σEo = 0.6 m,

σψo = 0.5°}.

80

5.3.2 Propagation with PDR

Pedestrian dead-reckoning is the most popular method used to propagate particles. Each time

the pedestrian steps or changes direction, the particle states are propagated with the change

in position and change in heading measurements. Artificial process noise is added to particle

states to prevent particle degeneracy and sample impoverishment by spreading the particles.

This ad-hoc process is called roughening or jittering and is used to increase the particle diver-

sity [8, 34]. This ensures that there are distinct particles (i.e. not identical) to approximate the

posterior distribution, thus the PF is a type of sequential Monte Carlo algorithm [3,34,71]. For

the PFs in this work, roughening is performed each time the particles are propagated. Note

that this may be not necessary, but the analysis of the frequency of roughening is beyond the

scope of this work. The following sections outline the system models used for propagation for

pedestrian navigation and the relationship between them.

I. Delta Positions System Model

The conventional 2D dead-reckoning equations in the North-East-Down (NED) frame that form

the system model are

xk = xk−1 +


∆xk cosψk −∆yk sinψk

∆xk sinψk + ∆yk cosψk

ψk + ∆ψk

 (5.1)

where the elements of the (3 × 1) state vector xk are North position (Nk) , East position (Ek),

and heading (ψk),
(
x = [N E ψ]T

)
. These equations show that the changes in position

(∆xk,∆yk) of the body are rotated into the local navigation frame (n) and then added to the

previous state vector xk−1 to obtain the current state vector xk. This rotation into the local

navigation frame is shown in Equations (5.2-5.4).

∆N

∆E

 = Cn
b

∆x

∆y

 (5.2)

81

∆N

∆E

 =

cosψ − sinψ

sinψ cosψ


∆x

∆y

 (5.3)

∆N

∆E

 =

∆x cosψ −∆y sinψ

∆x sinψ + ∆y cosψ

 (5.4)

The matrix Cn
b is the 2D CTM from the body frame (b) to the navigation frame (n). This model

assumes motion only occurs in the 2D plane (i.e. planar motion), so it is commonly referred

to as a planar model [19, 41, 84]. These equations are typically used when extracting a 2D

odometry solution from a 6 DoF INS solution.

When the PDR is used to propagate particles, discrete samples of artificial noise (w∆x,w∆y,w∆ψ)

are added to the longitudinal change in position (∆x), lateral change in position (∆y), and the

change in heading (∆ψk) respectively, at each time step (tk). This is done to create a distribu-

tion of state estimates as in Equation (5.5).

xik = xik−1 +


(∆xk + wi

∆x) cosψk − (∆yk + wi
∆y) sinψk

(∆xk + wi
∆x) sinψk + (∆yk + wi

∆y) cosψk

ψk + (∆ψk + wi
∆ψ)

 (5.5)

The vector xik is the state vector of the ith particle at time tk. The system model in Equations

(5.1) and (5.5) allows for the pedestrian to move in any planar direction. The artificial process

noise is sampled from the following distributions {w∆x∼N(0, σ2
∆x),w∆y∼N(0, σ2

∆y),w∆ψ∼

N(0, σ2
∆ψ)} where N(µ, σ2) is a Normal (Gaussian) distribution with a mean µ and a variance

of σ2. The standard deviations of {∆x, ∆y, ∆ψk} were selected empirically to be {σ2
∆x = 0.1

m, σ2
∆y = 0.1 m, σ2

∆ψ = 0.5°}, respectively. This process in state-space format is represented

by a linear difference equation of the form

xik = Φk−1xik−1 + Γuk + Υwi
d,k (5.6)

where Φk−1 is the (3× 3) state transition matrix at time tk−1, Γ is the (3× 3) input distribution

matrix, and Υ is the (3×3) discrete noise distribution matrix. The term uk is the input vector at

82

time tk and wi
d,k is the discrete noise vector of the ith particle at time tk. Equation (5.5) written

in the form of Equation (5.6) is

xik =


1 0 0

0 1 0

0 0 1

 xik−1 +


cosψk − sinψk 0

sinψk cosψk 0

0 0 1

uk +


cosψk − sinψk 0

sinψk cosψk 0

0 0 1

wi
d,k (5.7)


N i
k

Ei
k

ψik

 =


1 0 0

0 1 0

0 0 1



N i
k−1

Ei
k−1

ψik−1

+


cosψk − sinψk 0

sinψk cosψk 0

0 0 1




∆xk

∆yk

∆ψk

+


cosψk − sinψk 0

sinψk cosψk 0

0 0 1




wi
∆xk

wi
∆yk

wi
∆ψk


(5.8)

where the elements of the input vector (uk) are the longitudinal change in position (∆x), lateral

change in position (∆y), and the change in heading (∆ψk),
(
u = [∆x ∆y ∆ψ]T

)
. The

elements of the (3× 1) discrete noise vector (wd,k) are the ∆x noise (w∆xk), ∆y noise (w∆yk),

and ∆ψ noise (w∆ψk),
(
wd = [w∆x w∆y w∆ψ]T

)
. The PDF of the system model in Equation

(5.5) is

p(xk|xk−1) = N

(
xk
∣∣∣∣xk−1 +

[
∆Nk
∆Ek
∆ψk

]
,Σx

)
(5.9)

p(xk|xk−1) = N

(
xk
∣∣∣∣xk−1 +

[
∆xk cosψk−∆yk sinψk
∆xk sinψk+∆yk cosψk

∆ψk

]
,

[σ2
∆x O

σ2
∆y

O σ2
∆ψ

])
(5.10)

where N(x|µ,P) is a Normal (Gaussian) distribution of x with a mean µ and covariance P.

The term Σx is a (3 × 3) diagonal covariance matrix and the term O indicates that all of the

off-diagonal terms are zero. The PDF p(xk|xk−1) is referred to as the motion model. Note

that this name is a bit of a misnomer as it may cause the reader to mistake it as the system

model. Note that p(xk|xk−1) is also known as the transition density and the prior density by

other authors [34–36]. Though these are more appropriate names, the pedestrian navigation

community commonly refers to the PDF of the system model as the motion model, thus this

thesis follows that precedent [9, 11, 12].

83

II. Distance and Heading System Model

The distance and heading system model is a simplification of the previous model. Instead of

incorporating the longitudinal and lateral changes in position (∆x, ∆y), the distance traveled

(l) is used. Distance traveled is defined as the Euclidean distance from the previous position

to the current position and is either a step or stride length depending upon the PDR method

used. If the PDR-INS method is used, the distance traveled is the stride length. It is found by

computing the Euclidean norm of the delta positions (l =
√

(∆x)2 + (∆y)2). If the PDR-SD

method is used the distance traveled is the step length. The distance and heading system model

is given by Equation (5.11).

xk = xk−1 +


(lk) · cosψk

(lk) · sinψk

∆ψk

 (5.11)

When PDR is used to propagate particles within a PF, discrete samples of artificial noise

(wl,w∆ψ) are added to the distance traveled (lk) and change in heading (ψk), respectively at

time tk to create a distribution of state estimates. This is seen in Equation (5.12).

xik = xik−1 +


(lk + wi

l) · cosψk

(lk + wi
l) · sinψk

(∆ψk + wi
∆ψ)

 (5.12)

The vector xik is the state vector of the ith particle at time tk. The system model in Equations

(5.11-5.12) assumes the pedestrian only moves forward and does not account for sideways

or backwards motion. The artificial process noise is sampled from the distributions {wl ∼

N(0, σ2
l),w∆ψ∼N(0, σ2

∆ψ)} where N(µ, σ2) is a Normal (Gaussian) distribution with a mean

µ and a variance of σ2. The standard deviations of the step length and heading were selected

empirically as {σ2
l = 0.14 m, σ2

∆ψ = 0.5°}, respectively. This process in state-space format is

governed by a linear difference equation of the form

xik = Φk−1xik−1 + Γuk + Υwi
d,k (5.13)

84

where Φk−1 is the (3× 3) state transition matrix at time tk−1, Γ is the input distribution matrix,

and Υ is the (3 × 3) discrete noise distribution matrix. The term uk is the input vector at time

tk and wi
d,k is the discrete noise vector of the ith particle at time tk. Equation (5.11) written in

the form of Equation (5.13) is

xik =


1 0 0

0 1 0

0 0 1

 xik−1 +


cosψk 0

sinψk 0

0 1

uk +


cosψk 0

sinψk 0

0 1

wi
d,k (5.14)


Nk

Ek

ψk

 =


1 0 0

0 1 0

0 0 1



Nk−1

Ek−1

ψk−1

+


cosψk 0

sinψk 0

0 1


 lk

∆ψk

+


cosψk 0

sinψk 0

0 1


 wi

lk

wi
∆ψk

 (5.15)

where the elements of the input vector (uk) are the distance traveled (lk) and the change in

heading (∆ψk),
(
u = [l ∆ψ]T

)
. The elements of the (3 × 1) discrete noise vector (wd,k) are

the lk noise (wlk) and ∆ψk noise (w∆ψk),
(
wd = [wl w∆ψ]T

)
. The PDF of the system model in

Equation (5.12) is

p(xk|xk−1) = N

(
xk
∣∣∣∣xk−1 +

[
∆Nk
∆Ek
∆ψk

]
,Σx

)
(5.16)

p(xk|xk−1) = N

(
xk
∣∣∣∣xk−1 +

[
lk·cosψk
lk·sinψk

∆ψk

]
,

[
σ2
l ·I2 O

O σ2
∆ψ

])
(5.17)

where N(x|µ,P) is a Normal (Gaussian) distribution of x with a mean µ and covariance P.

The term Σx is a (3 × 3) diagonal covariance matrix and I2 is a (2 × 2) identity matrix. The

term O indicates that all of the off-diagonal terms are zero. The elements of the state vector xk

are North position (Nk) , East position (Ek), and heading (ψk)
(
x = [N E ψ]T

)
. The PDF

p(xk|xk−1) is again referred to as the motion model.

III. Relationship of PDR Models

The model used in this chapter was the delta positions model in Equation (5.8). The simpler

distance and heading model could have also been used, as the pedestrian in tests only exhibited

85

forward motion. The distance traveled and the delta positions are related by the Pythagorean

theorem, as are the standard deviations. The Euclidean norm of the delta positions and their

standard deviations are shown in Equations (5.18) and (5.19), respectively.

l =
√

(∆x)2 + (∆y)2 (5.18)

σl =
√

(σ∆x)2 + (σ∆y)2 (5.19)

5.3.3 Propagation with PDR + Map

Newer PF methods include map information in the propagation step [9]. Map information is

quantified by creating what is referred to as the angular PDF. The angular PDF weights the

particles based on their proximity to the boundaries of the map. Distances shorter than an

average distance traveled (l) are given small non-zero weights, whereas distances as they ex-

tend longer than the distance traveled are assigned increasingly larger weights. This heavily

weights the particles toward open space directions and gives little to no weight in the direc-

tion of map boundaries. Mathematically this method is implemented using a truncated PDF

N[a,b](ψk|ψk−1 + ∆ψk, σ
2
∆ψ) with the truncation interval [a, b] calculated with the angular PDF.

Truncation reduces the uncertainty (i.e. variance) of the heading distribution and puts more

probability in open space directions. Therefore, when the distribution is sampled the particles

will spread towards open space. The result is less particles colliding with walls which will

reduce the need for resampling.

5.3.4 Update

The weight update depends upon the motion model p(xik|xik−1), measurement likelihood p(yk|xik−1),

and proposal distribution q(xik|x0:k−1, y1:k). For a Markov process, the proposal distribution

only depends upon the current state (xik−1) and measurement (yk) and simplifies to q(xik|xk−1, yk)

[12, 34, 82]. From Bayes’ rule and the law of total probability, the weight update equation is

86

formed for this Markov process is

wik =
p(yk|xik−1)p(xik|xik−1)

q(xik|xk−1, yk)
wik−1 (5.20)

wherewik is the weight of the ith particle and yk is the map measurement at time tk. The particle

weights (wik) should be interpreted to be the probability of the states each particle represents.

After the weight update the particle weights are renormalized with Equation (5.21).

wik =
wik∑Np
j=1w

j
k

(5.21)

The posterior probability density function is approximated as

p(xk|y1:k) ≈
Np∑
i=1

wikδ(xk − xik) (5.22)

where wik is defined by Equation (5.20) and δ(·) is a Dirac delta function. Note that asNp →∞

the approximation in Equation (5.22) approaches the true posterior density function p(xk|y1:k)

[82]. The states are estimated by computing the expected valued (mean) after the update at

every epoch (tk) in Equation (5.23).

x̂k = E[xk] ≈
Np∑
i=1

wikxik (5.23)

The measurement likelihood p(yk|xik−1) is also known as the likelihood or likelihood func-

tion [34,36,82]. The proposal distribution q(xik|xk−1, yk) is also known as the importance distri-

bution, importance density, and proposal density [12,34,36,82]. Note that calling q(xik|xk−1, yk)

the proposal distribution is a misnomer as it is a density and not a distribution. Even though

there are more correct names than proposal distribution, this work will follow the precedent of

previous works and call it as such [9, 13].

Two methods used to implement the weight update are presented below.

87

I. Bootstrap Filter

A bootstrap filter (BF) makes the convenient choice of the motion model as the proposal dis-

tribution. The advantage of this is that the motion model p(xk|xk−1) and proposal distribution

q(xk|xk−1, yk) terms cancel, and the weight update equation becomes Equation (5.24).

wik = p(yk|xik)wik−1 (5.24)

The motion model is a suboptimal choice for a proposal distribution as it does not take the

current measurement (yk) into account at time tk [9, 34, 82]. For a non-infrastructure-based

system with no absolute position measurement, the measurement likelihood is defined with the

binary weighting scheme described in Equation (5.25).

p(yk|xik) =

{
ε, particle crossing

1− ε, otherwise
(5.25)

The particles that ‘collide’ with a wall (i.e. the relative position vector between the a priori and

a posteriori particle passes through a wall) are said to ‘die’ and given small or zero weights

(ε). The other particles are said to ‘live’ and retain their weights, and then the particle weights

are renormalized. This binary weight update is a popular choice to perform map-matching as

it only relies on the measurement likelihood. In this thesis, the value ε = 0 was assigned. The

technique used to check for wall crossings is based upon work by Perttula et al. [13]. It is

presented in full in Section 5.4.

II. Map-based proposal distribution, motion model, and measurement likelihood

Newer methods propose including map information into the weight update equation, namely

the proposal distribution, motion model, measurement likelihood or a combination thereof [9,

85]. The map information is included in the weight update equation using the angular PDF.

This creates a two-step weight update. The particles are first re-weighted using the angular

PDF. Next, map-matching is performed with the binary weight update and the particle weights

renormalized. The performance of the PF is affected by which parts of the weight update

88

equation include the angular PDF. Depending on the which parts are chosen, the particles will

be either weighted towards open space or in the direction of the map. The more accurate the

PDR, the less of an effect the angular PDF has as less particles will collide with walls.

5.3.5 Resampling

Resampling is required to prevent sample impoverishment and particle degeneracy. Sample

impoverishment occurs when the effective sample size Neff reduces and approaches Neff ≈ 1

as calculated by Equation (5.26).

Neff =
1∑Np

j=1w
j
k

(5.26)

Neff is reduced when particle weights are set to zero after a wall crossing has been detected.

Particle degeneracy occurs when the normalized weights tend to concentrate to one or few

particles after several recursive steps. This lack of particle diversity is also indicated byNeff ≈

1. If Neff becomes too small the PF will no longer approximate the posterior distribution

accurately. When almost all of the particles are equally weighted then Neff ≈ Np. A large

Neff is desired for good PF performance. To produce this result, particles are resampled when

the constraint

Neff < 0.5 ·Np (5.27)

is met, where 0.5 is the resample percent. Note that a large Neff alone does not ensure that

the particles are diverse, as they may be identical due to previous resampling steps [34]. This

is why particle filters, especially bootstrap filters, implement both resampling and roughening

(jittering) to ensure good performance.

The basic idea of resampling is to eliminate particles with small weights (zero in this case)

and duplicate the particles that have retained their weights. It is implemented by sampling with

replacement from {xik, wik}
Np
i=1 to create Np equally weighted particles {xjk, w

j
k = 1/Np}Npj=1.

The number of particles remains unchanged from resampling. Several resampling schemes

exist, for this work the systematic resampling method was used. It was chosen as it is the

most popular method and is straightforward to implement. Resampling and other resampling

methods are further discussed in [34,82,83,86]. The steps for systematic resampling are shown

89

below with pseudocode provided in Algorithm 2 and is based upon pseudocode in [34, 82].

Systematic Resampling

1. Compute the cumulative distribution function, where ci is the ith cumulative sum element

of the weights: ci =
∑Np

i=1w
i
k.

2. Draw a uniform sample (u1) on the interval (0, 1/Np]: u1 ∼ uniform(0, 1/Np]

3. For j = 1 : Np compute:

uj = u1 + (1/Np) · (j − 1)

4. Set i = 1. Perform next steps for j = 1 : Np.

if uj < ci

xjk = xik

wjk = wik

j = j + 1

else

i = i+ 1

end

Algorithm 2: Systematic Resampling

Input: xik , wik
Output: xjk , wjk

1 Initialization: c1 = 0

2 for i = 2 : Np do
3 ci = ci−1 + wik
4 end

5 i = 1
6 u1 = rand/Np

7 for j = 1 : Np do
8 uj = u1 + (1/Np) · (j − 1)
9 while uj > ci do

10 if (i+ 1) > length(c) then
11 break
12 else
13 i = i+ 1
14 end
15 end
16 xjk = xik
17 wjk = 1/Np
18 end

19 %Note the function rand returns a single uniformly distributed random sample in the interval (0,1].

90

5.4 Particle Inbounds Check

The particle inbounds check is a very important piece of the update step as it checks to see if

the particle at the current time is within the map boundary. In other words, has the particle

crossed a map boundary (e.g. wall) when it was propagated to a new position. As previously

mentioned, the technique used to check for wall crossings is based upon work by Perttula et

al. [13]. This method checks if the vector from the previous to the current particle position

intersects a map boundary vector. The particles’ 2D positions are each represented with (2× 1)

column vectors. The vector ra represents the particle position at the previous epoch tk−1 and

rb is the particle position at the current epoch tk. Likewise, the 2D map boundary positions are

represented with (2×1) column vectors. The vector rc is the node that is the start map boundary

and the vector rd is the node that ends the map boundary. The vector from the previous position

(ra) to the current particle position (rb) is rb/a and is defined in Equation (5.28), where b/a is

read as: b from the perspective of a.

rb/a = rb − ra (5.28)

The vector from the start of the map boundary (rc) to the end of the map boundary (rd) is rd/c

and is defined in Equation (5.29).

rd/c = rd − rc (5.29)

The particles inbounds check is presented graphically in Figure 5.4, where the vectors ra,

rb, rc, rd, rb/a, and rd/c are illustrated. Additionally, the point of intersection for each vector

rb/a and rd/c is defined as pab and pcd, respectively. The equations that define these points are

pab = ra + q1rb/a, 0 ≤ q1 ≤ 1 (5.30)

pcd = rc + q2rd/c, 0 ≤ q2 ≤ 1 (5.31)

where q1 and q2 are scalar coefficients.

91

Figure 5.4: Particle Inbounds Check [13]

In order to check to see if an intersection exists, the scalar coefficients q1 and q2 must be

calculated. First the Equations (5.30) and (5.31) are set equal. This can be done as the points

pab and pcd are equivalent if there is an intersection. The resultant equation is shown below.

ra + q1rb/a = rc + q2rd/c. (5.32)

Next, Equation (5.32) is rearranged by placing the terms that contain the scalar coefficients

q1 and q2 on the left-hand side and the other terms on the right-hand side. This is shown in

Equation (5.33).

q1rb/a − q2rd/c = rc − ra (5.33)

This equation can be written in matrix form by defining a new column vector q = [q1, q2]T and

a (2 × 2) matrix M = [rb/a,−rd/c]. These substituted into Equation (5.33) result in Equation

(5.34).

Mq = rc − ra. (5.34)

92

The column vector q is solved for by multiplying Equation (5.34) by the matrix inverse M−1

resulting in Equation (5.35).

q = M−1(rc − ra) (5.35)

There is an intersection of the particle path (rb/a) and the map boundary (rd/c) if 0 ≤ q1 ≤ 1

and 0 ≤ q2 ≤ 1. If these two conditions are met then the particle is said to be out of bounds. If

not, then the particle is inbounds and no wall has been crossed. The pseudocode for the particle

inbounds check is represented in Algorithm 3.

Algorithm 3: Particle Inbounds Check
Input: rk−1, rk,mapStart,mapStop
Output: inbounds

1 Initialization: ra = rk−1, rb = rk, rc = mapStart, rd = mapStop

2 % Calculate the position and map vectors
3 rb/a = rb − ra
4 rd/c = rd − rc

5 % Calculate M and q
6 M = [rb/a,−rd/c]
7 q = M−1(rc − ra)

8 % Conditions for Intersect
9 C1 = (0 ≤ q(1) ≤ 1) % Condition 1

10 C2 = (0 ≤ q(2) ≤ 1) % Condition 2

11 intersect = logical(C1 & C2)

12 % Condition if particle is inbounds
13 if intersect = true then
14 inbounds = false
15 else
16 inbounds = true
17 end

5.5 Particle Filters

Different PFs result from what propagation and weight update methods are selected in the de-

sign. In the work by Nurminen et al., five PFs are compared with four of those including map

information via the angular PDF [9]. The filter PF1 in his work includes the angular PDF

solely in the proposal distribution. PF2 includes map information in both the proposal distri-

bution and the motion model. PF3 includes map information in the proposal distribution and

the measurement likelihood. Lastly, PFw includes the angular PDF only in the measurement

likelihood. PF1 and PF2 assign more probability towards open space while PF3 and PFw as-

sign more probability in the direction of the map boundaries. The PFc and PFw are the filters

of interest and are presented below. PFw is the only filter that incorporates the angular PDF to

93

be evaluated in this work due to its performance presented by Nurminen et al. PFw was shown

to perform well when the PDR closely matched the map in corridor and room situations while

using Np = 1000 particles and a change of heading measurement perturbed by noise with a

small variance. The fifth PF presented by Nurminen et al. was the collision particle filter (PFc).

The details of the other filters are not further discussed here, but are described in [9].

5.5.1 Collision Particle Filter (PFc)

The most common form of the PF used in the field of indoor positioning is the collision particle

filter (PFc). This is due to its relative simplicity. The PFc propagates particle states with PDR

and is a BF, using the motion model as the proposal distribution. The weight update is a single

step with the binary weight update used to perform map-matching.

5.5.2 Map-based measurement likelihood (PFw)

PFw also uses PDR to propagate particles. The difference between the two filters is that the

PFw includes the angular PDF in the measurement likelihood. The measurement likelihood

p(yk|xik) is replaced with the angular PDF p(ψk|xik) and the weight update equation becomes

Equation (5.36).

wik = p(yk|xik)p(ψk|xik)wik−1 (5.36)

After the particles are re-weighted with the angular PDF, map-matching is performed with the

binary weight update.

5.6 New Weight Update

This thesis proposes a new weight update method. The motivation for this new method is based

upon the weaknesses of the current PF methods in certain situations. The situation where a

map only constrains a single side of the particle cloud is of particular interest in this work. This

can occur when pedestrians walk closely to the wall of a wide corridor, or in a room where the

outer wall is the only feature constraining the pedestrian’s motion. The PFc does not purposely

94

weight particle directions, instead it eliminates particles that have crossed map boundaries. This

shifts the mean of the particle distribution away from the wall towards open space producing an

undesired estimate. This solution drift can be seen in Figures 5.5 and 5.6. PF1 and PF2 suffer

from the same problem as PFc, as they also perform map-matching and assign more weight

to open space directions. PFw and PF3 weight map directions more heavily so they perform

well in these situations as the PDR path closely follows the building map. Though these filters

perform well in those instances, this assumption can be impractical in many other situations [9].

A new weight update method is proposed to mitigate the limitations of prior methods.

Figure 5.5: PFc Error in Corridor

95

Figure 5.6: PFc Error in Room

96

The proposed method is similar to the PFc. The particles are propagated with PDR, but

a new weight update is used. Instead of weighting particles that collide with the wall to zero

or a small number, particles are placed on the inside of the wall that they crossed, and their

weights are retained. These particles are now no longer in violation and produce an estimate

which reduces the drift and improves the navigation solution. The steps of the new method are

described as follows. The vector from the previous position to the current position (rk/k−1) is

found by subtracting the previous position (rk−1) at time tk−1 from the current position (rk) at

time tk. It is then rotated by angle α and becomes r∗k/k−1. This is then added to r∗k so that the

particle is no longer outside of the map boundary. The new method is illustrated in Figure 5.7

and is detailed in Algorithm 4.

Figure 5.7: Inbounds Particle Filter

The particle is either rotated in the clockwise (CW) or counter clockwise (CCW) direction

depending on its out of bounds position. The new update uses a signum function sign(x) to

change the sign of angle α each iteration, to check both directions. Angle δα is added to the

absolute value of angle α until a wall cross is no longer detected. Also, angle δα is set to a value

that balances finding the minimum rotation angle with reasonable error and computational time.

The angle α is initialized as angle δα. The value of angle α is limited to the range −αmax ≤

α ≤ αmax. The term αmax cannot be greater than 90° otherwise the positive and negative angles

will overlap. For this thesis αmax was empirically tuned to 45°. The PF that implements this

new method is called the inbounds particle filter (PFi).

97

Algorithm 4: Rotate Particle Inbounds
Input: rk−1, rk,mapStart,mapStop
Output: r∗k

1 Initialization: α = 0.1°; αmax = 45°; valid = true;

2 while inbounds = false & valid = true do

3 % Calculate vector from previous to current position
4 rk/k−1 = rk − rk−1

5 % Construct a rotation matrix
6 R =

[
cosα − sinα
sinα cosα

]
7 %Rotate Vector
8 r∗

k/k−1
= R · rk/k−1

9 %Calculate new particle position
10 r∗k = rk−1 + r∗

k/k−1

11 %Take the absolute value of α and add δα:
12 α = (|α|+ δα) · sign(−α)

13 %Check if particle is inbounds
14 [inbounds]=paricleInboundsCheck(rk−1, rk,mapStart,mapStop)

15 %Check if α is Valid
16 if α > αmax then
17 valid = false
18 end
19 end

20 %The signum function (sign(x)) is defined as:

21 sign(x) =

{
−1, x < 0

1, x > 0

98

5.7 Performance Evaluation

Multiple types of data can be produced to evaluate the performance of a localization algorithm.

One type is simulated data which is generated using a predetermined path which acts as the truth

reference [9]. Simulated data is useful as it allows the user to perform analysis of algorithms

without actually having to perform data collection with sensors. It is the author’s opinion that

simulated data should always be coupled with experimental data. This section first presents

the error statistics used to perform the evaluation, then presents analysis using simulated data

followed by an experimental data analysis to verify the simulated results.

5.7.1 Error Statistics

In order to determine the accuracy of a positioning system, error statistics must be computed.

A simple definition of statistical error is the difference between a measured value and the actual

value of the parameter. When evaluating the performance of an indoor positioning system, the

parameter of interest is position error. Multiple types of position error can be computed to

provide a more comprehensive performance evaluation. The different types of position errors

used in this work are presented in the remainder of this section.

The first type of error is 2D position error, it is the Euclidean distance between the esti-

mated position and the true position. It is defined as

2D position error =
√

(δN)2 + (δE)2 (5.37)

where {δN, δE} are the North and East position errors, respectively. The North and East posi-

tion errors are defined as

δN = N̂− N (5.38)

δE = Ê− E (5.39)

where {N̂, Ê} are the estimated and {N,E} are the true North and East positions, respectively.

The North and East position errors separate are not particulary useful for analyzing the

system performance, as the orientation of the body frame is constantly changing relative to the

99

navigation frame. Therefore, the error in the longitudinal and lateral directions of the body

frame is used instead. The North and East errors are transformed into the body frame to com-

pute the longitudinal and lateral error. This is shown in Equations (5.40-5.42).

δx
δy

 = Cb
n

δN
δE

 (5.40)

δx
δy

 =

 cosψ sinψ

− sinψ cosψ


δN
δE

 (5.41)

δx
δy

 =

 δN cosψ + δE sinψ

−δN sinψ + δE cosψ

 (5.42)

The matrix Cb
n is the 2D CTM from the navigation frame (n) to the body frame (b). The terms

{δx, δy} are the longitudinal and lateral position errors, respectively.

Another type of error is root-mean-square (RMS) error. It is also referred to as RMS

deviation by some [87]. Its purpose is to aggregate the error computed at various times into a

single measure of error. In other words, it provides a measure of accuracy with a single number

for an entire dataset. A general expression for RMS error (RMSE) is defined as

RMSE =

√√√√ 1

N

N∑
k=1

(x̂k − xk)2 (5.43)

where {x̂k, xk} are the estimated and true variables at time tk, respectively and N is the total

number of epochs in time. RMS error can be computed for 2D, longitudinal and lateral position

errors as follows

2D Position RMSE =

√√√√ 1

N

N∑
k=1

[
(δNk)2 + (δEk)2

]
(5.44)

Longitudinal Position RMSE =

√√√√ 1

N

N∑
k=1

(δxk)2 (5.45)

100

Lateral Position RMSE =

√√√√ 1

N

N∑
k=1

(δyk)2 (5.46)

where {δNk, δEk} are the North and East position errors, respectively and {δxk, δyk} are the

longitudinal and lateral position errors, respectively all at time tk.

5.7.2 Simulated Data Generation

A simple 2D trajectory was created to simulate a pedestrian walking in a straight line alongside

a single wall. This situation is illustrated by Figure 5.8 and the pedestrian’s path is shown in

Figure 5.9. The estimated positions from PFc and PFi were compared.

Figure 5.8: Environment Animation Figure 5.9: User Path of a Simulated Pedestrian

5.7.3 Simulated Results

Due to the stochastic nature of the filters, a Monte Carlo simulation was performed with 5000

iterations of each filter [36,71]. The error at every stride epoch can be seen in Figure 5.10. Note

that this is the mean error of the 5000 iterations at each epoch. A stride epoch is defined as a

single instance in which the pedestrian takes a new stride. The PFc is shown to have more 2D

and lateral position error than PFi, while the PFi is shown to have slightly more longitudinal

101

error. The lateral, longitudinal, and 2D position RMS errors are plotted in Figure 5.11 and can

be seen to converge to a steady state error. The PFi is shown to have more lateral and 2D RMS

error than PFc, while PFi and PFc have approximately the same longitudinal error.

Figure 5.10: Position Errors

102

Figure 5.11: Position RMS Error

103

5.7.4 Experimental Data Collection

Though simulated data is useful for preliminary analysis, it is not desirable as it is difficult to

represent the authentic motion of a pedestrian. A second method obtains experimental data

by pausing at chosen points along a predetermined path [13]. These true positions of these

points are known and allow for error between the true and predicted position to be calculated.

This method is also undesirable as the error is only calculated at certain points and not ev-

ery predicted position in the pedestrian’s trajectory. Another method uses absolute position

measurements from indoor measurement systems (e.g. ultrasonic positioning) [11]. These sys-

tems detailed in [10], are extremely beneficial to performing analysis, but are costly to obtain

and time prohibitive to deploy [4]. This thesis proposes simulating indoor walking to obtain

experimental data to use in lieu of the above-mentioned methods.

Building interiors are GNSS denied environments, therefore this thesis proposes simulat-

ing a building floorplan in an outdoor environment. This would make GPS available as an

external measurement. Standalone GPS is ∼5m accurate in the horizontal plane. This does not

meet the accuracy requirements to survey out a virtual building floorplan and to evaluate PF per-

formance. To amend this, real-time kinematic (RTK) positioning technique was used to obtain

horizontal position measurements that are accurate to ∼2 cm. With the accuracy requirements

satisfied, the steps for simulating a building floorplan outdoors are presented below.

The building floorplan of interest must first be either surveyed or obtained from a source.

If the building floorplan is surveyed, the survey data can easily be implemented as a graphical

style map (i.e. nodes and ways). Otherwise if building floorplan images are obtained, more

steps are required to create a graphical style map. First, a satellite view map of the relevant

building should be obtained from Open Street Maps (OSM) or similar equivalent. If OSM is

used, the floorplan image can be georeferenced with Java Open Street Maps (JOSM). Once

georeferenced, the floorplan image is digitized by overlaying the image with nodes and ways.

104

A virtual building should then be created in an outdoor space, by first surveying points with

RTK-GPS and plotting the building walls and features on the ground. With this 2D represen-

tation of a building floor plan now available, the pedestrian can now walk realistic trajectories

while using RTK-GPS as an external reference to evaluate algorithm performance.

For this thesis, the floor plan of the 2nd floor of the Woltosz Engineering Research Lab-

oratory building at Auburn University was surveyed. Inertial measurements were taken with

a MEMSENSE 3020 IMU which contains a triaxial accelerometers and gyroscopes. Two No-

vatel ProPak GPS receivers were used. One acted as a base station to broadcast corrections

to the second receiver that was mounted on the rover (i.e. pedestrian). The sensors mounted

on the pedestrian were interfaced to a central computer and the data collected using the Robot

Operating System (ROS).

5.7.5 Experimental Results

Test #1 was performed to validate the proposed PFi against PFc. The test trajectory chosen was

a wide corridor in which the building map only constrains the user’s movement on one side as

seen in Figure 5.12. The true building has an inner wall, which was removed from the map to

emulate a large open corridor or atrium. The performance of the filters was characterized by

computing lateral, longitudinal, and 2D position error. The 2D position error is calculated from

the Euclidean distances between the RTK-GPS and PF positions in time. Due to the probabilis-

tic nature of PF’s, a Monte Carlo simulation was performed running each filter 10 times. The

2D position error results from Test #1 can be seen in Figure 5.13. The PFc position solution di-

verges as time progresses because particles are shifted towards open space when map-matching

is performed. The PFi solution error remains relatively constant over the trajectory as the new

weight update method restricts the error growth. Table 5.1 shows the RMS error of both filters

for Test #1 showing PFi to have the best performance with the lowest RMSE.

The inbounds PF (PFi) is only practical when used in situations when only a single map

boundary restricts the pedestrian’s position (e.g. wide corridor, room). If used in other situa-

tions, like a narrow corridor the new weight method can introduce error into the solution. The

PFc works well in almost every situation except those illustrated by Figures 5.5-5.6 and Test #1

105

50 60 70 80 90 100
East (m)

-15

-10

-5

0

5

10

15

20

25

N
or

th
 (m

)

Test #1 User Path

Map Boundaries
Pedestrian Path
Path Start
Path Stop

Figure 5.12: Test #1 User Path

0 5 10 15 20 25
Time (s)

-2

0

2

Er
ro

r (
m

) Lateral Position Error

PFc
PFi

0 5 10 15 20 25
Time (s)

-1

0

1

Er
ro

r (
m

) Longitudinal Position Error

PFc
PFi

0 5 10 15 20 25
Time (s)

0

1

2

Er
ro

r (
m

) 2D Position Error

PFc
PFi

Figure 5.13: Test #1 Position Error

Table 5.1: Test # 1 and # 2 RMS Error

Test 1 Test 2
Particle Filter RMSE (m) Particle Filter RMSE (m)

PFc 0.819 PFc 0.704
PFi 0.302 PFci 0.605

PFw 1.097

results. Therefore this thesis proposes using the PFc and PFi in conjunction with one another to

utilize the strengths of the two different weight updates. This new filter is termed the collision

inbounds particle filter (PFci).

Test #2 was performed to compare three filters: PFc, PFci, and PFw. The length of the

test was approximately 2 minutes long and its path can be seen in Figure 5.14. Because of the

stochastic behavior of the PFs, each filter was run 10 times. The intervals at which the different

PFci weight updates were used was predetermined empirically. When the user’s position is

constrained with only the exterior corridor wall and while inside the room, the new weight

update is performed. In all other instances, map-matching is performed with the binary weight

update. The time intervals at which the new weight update was used for these are from 32 to

52 seconds and 58 to 76 seconds, respectively. The 2D error results can be seen in Figure 5.15.

The results reveal that the PFw is the worst performing filter. This is most likely due to the

fact that this filter is intended to be used for a system with low quality PDR [9]. Figure 5.15

also shows that PFci has less error growth than PFc during the two periods that the new weight

106

update is used. Table 5.1 shows that PFci is the best performing PF overall, as it converges to

the lowest RMSE.

50 60 70 80 90 100
East (m)

-15

-10

-5

0

5

10

15

20

25

N
or

th
 (m

)

Test #2 User Path
Map Boundaries
Pedestrian Path
Path Start
Path Stop

Figure 5.14: Test # 2 User Path

0 20 40 60 80 100 120
Time (s)

-2

0

2

Er
ro

r (
m

) Lateral Position Error PFc
PFci
PFw

0 20 40 60 80 100 120
Time (s)

-2

0

2

Er
ro

r (
m

) Longitudinal Position Error
PFc
PFci
PFw

0 20 40 60 80 100 120
Time (s)

0

1

2

Er
ro

r (
m

) 2D Position Error
PFc
PFci
PFw

Figure 5.15: Test # 2 Position Error

107

Chapter 6

Summary, Conclusions, and Future Work

6.1 Summary

Chapter 1 began by motivating why pedestrian navigation is one of the most challenging nav-

igation problems seen today. This was conferred to be because GNSS signals are either de-

graded or completely unvailable in certain environments thus the user must utilize alternative

positioning systems. These systems use body worn inertial sensors that provide relative posi-

tioning information using PDR. The problem of unbounded error growth associated with PDR

systems was introduced along with the methods to mitigate it. The first method discussed uses

an infrastructure based system, that utilizes beacons or networks to provide absolute position-

ing information. It was decided that these systems are not yet practical as they are expensive

and time intensive to deploy. The second method which uses a priori map information, was

chosen to be the preferred method to aid PDR systems in this thesis. Next, the objectives of

this work were introduced. They were as follows: provide background information on current

PDR methods including both the classical INS approach and the newer step detecting approach,

investigate the current methods of integrating a priori with PDR systems, and introduce a new

weight update method.

Chapter 2 first introduced the coordinate frames used in this thesis. This included def-

initions of the body and navigation frames used. Next, the term attitude was defined along

with methods used to represent it. Lastly, the transformations to and from different coordinate

frames were discussed.

Chapter 3 began by defining pedestrian dead reckoning and its variants and describing

the PDR-INS approach. Next, the pedestrian gait cycle along with the terms step and stride

were defined, followed by the IMU error model. Following, the gait monitoring process to

108

detect zero-velocity, still, and stride epochs was described followed by straight walking de-

tection. Subsequently, the error-state Kalman filter was presented along with the system and

measurement models as well as the effects of different measurement updates upon the localiza-

tion solution. The last portion of Chapter 3 discussed each of the steps required to perform an

INS mechanization in detail.

Chapter 4 started by motivating the use of PDR-SD as opposed to the classical INS ap-

proach. This was followed by a discussion of common step detection methods and how they are

implemented. Next, a short study on the effect of IMU mounting location was performed. This

revealed that an IMU needs to be mounted on the pedestrian’s torso. Following, a survey of

step length determination methods was presented as well as the method of linear least squares

and its variants. The next section presented a short study of different empirical step length

formulas. This study showed that all of the parameter estimates with OLS outperformed those

estimated with WLS. This indicated that the measurement variances used were not adequate in

weighting the measurements. The study also showed that SL11 performed slightly better than

the other two formulas (SL8, SL9) compared. Lastly, the methods of heading determination

were discussed along with the system model used to perform the navigation system update.

Chapter 5 first introduced the estimation framework of fusing PDR and a PF that uses map

measurements. Next, a qualitative description of PF estimation was presented which included

initialization, propagation, update, and resampling. Subsequently, the system models used to

propagate the particles were discussed as well as the methods used to perform the weight update

and resampling. Following, the method used to check if particles are inbounds was derived and

its implementation shown. In the next section, the current PFs used for indoor positioning

systems were introduced. This was followed by the motivation for a new weight update which

is based upon the weaknesses of the current methods. This new weight update was explained

and the PF that uses it was termed the inbounds particle filter (PFi). Lastly, a performance

evaluation was performed using both simulated and experimental data to asses the performance

of the PFs. In the next section, the performance evalution is further discussed along with the

conclusions that can be drawn from it.

109

6.2 Conclusions

The first goal of this thesis was to provide a thorough background on current PDR methods.

This was effectively done with both classical PDR-INS and the newer PDR-SD approaches.

Next, the current particle propagation and weight update methods used in indoor positioning

systems were presented. Additionally, the problems associated with each of the different PF

methods were discussed motivating the proposal of a new weight update method. This new

weight update was introduced to reduce position solution drift in situations where only a single

map boundary constrains the user’s motion. In addition, a new approach for collecting ex-

perimental data was introduced, that uses a high accuracy GNSS reference to evaluate indoor

positioning systems. This allowed for experimental validation of an indoor positioning system

without the use of expensive indoor systems. Test #1 evaluated PFi and PFc showing that PFi

reduced the position drift when only a single wall was used as a measurement update. In Test

#2 PFc, PFci, and PFw were assessed within a more general building environment. The test

demonstrated the proposed filter PFci to be the best performing filter, as it had the lowest over-

all error. Therefore, it is concluded that the new PF is an improvement upon previous methods.

The following section presents potential future work based upon the work in this thesis.

6.3 Future Work

Some areas of future work are listed below. This includes the continuation of the work in this

thesis and additional topics related to the field of pedestrian navigation.

• Create an algorithm to generalize the process of deciding when the two different weight

updates for the PFci should be used. This algorithm will detect how many map bound-

aries are near the user and choose the appropriate weight update.

• A detailed comparison of the performance of PDR-INS and PDR-SD methods should be

completed like those seen in [22, 48].

110

• A comprehensive comparison of step detection and step length determination methods

should be performed. The pedestrian navigation research community suffers from a lack

of repeatability and comparable results.

• More advanced biomechanics based step length models could be developed. This would

be an improvement upon the kneeless biped model presented in Section 4.4.

• The gait monitoring and step detection techniques used in this work should be compared

with more advanced methods such as correlation and spectral analysis, as well as machine

learning [4, 18].

• Further study of fusing a foot and body mounted IMU should be performed [88].

• Develop machine learning algorithms to perform activity detection (i.e. crawling, walk-

ing, running) to use in conjuction with navigation systems to increase the robustness of

systems. [3].

111

References

[1] K. R. Howe, Vaka moana: Voyages of the ancestors: The discovery and settlement of the

Pacific. University of Hawaii Press, 2006.

[2] J. I. Bowditch, American practical navigator. No. 9, US Government Printing Office,

1906.

[3] P. D. Groves, Principles of GNSS, inertial, and multisensor integrated navigation systems.

Artech house, 2013.

[4] R. Harle, “A survey of indoor inertial positioning systems for pedestrians.,” IEEE Com-

munications Surveys and Tutorials, vol. 15, no. 3, pp. 1281–1293, 2013.

[5] E. D. Kaplan and C. Hegarty, Understanding GPS/GNSS: principles and applications.

Artech House, 2017.

[6] P. Misra and P. Enge, “Global positioning system: signals, measurements and perfor-

mance second edition,” Massachusetts: Ganga-Jamuna Press, 2006.

[7] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and

Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for

future sensor networks,” IEEE signal processing magazine, vol. 22, no. 4, pp. 70–84,

2005.

[8] H. Nurminen, A. Ristimaki, S. Ali-Loytty, and R. Piché, “Particle filter and smoother for

indoor localization,” in Indoor Positioning and Indoor Navigation (IPIN), 2013 Interna-

tional Conference on, pp. 1–10, IEEE, 2013.

[9] H. Nurminen, M. Raitoharju, and R. Piché, “An efficient indoor positioning particle filter

using a floor-plan based proposal distribution.,” in FUSION, pp. 541–548, 2016.

112

[10] O. Woodman, Pedestrian Localisation for Indoor Environments. PhD thesis, University

of Cambridge, Computer Laboratory, Sept. 2010. PhD Thesis.

[11] O. Woodman and R. Harle, “Pedestrian localisation for indoor environments,” in Proceed-

ings of the 10th international conference on Ubiquitous computing, pp. 114–123, ACM,

2008.

[12] P. Davidson, J. Collin, and J. Takala, “Application of particle filters for indoor position-

ing using floor plans,” in Ubiquitous Positioning Indoor Navigation and Location Based

Service (UPINLBS), 2010, pp. 1–4, IEEE, 2010.

[13] A. Perttula, H. Leppäkoski, M. Kirkko-Jaakkola, P. Davidson, J. Collin, and J. Takala,

“Distributed indoor positioning system with inertial measurements and map matching.,”

IEEE Trans. Instrumentation and Measurement, vol. 63, no. 11, pp. 2682–2695, 2014.

[14] T. N. Ray, J. D. Pierce, and D. M. Bevly, “A comparison of particle propagation and

weight update methods for indoor positioning systems,” in Proceedings of the 31st Inter-

national Technical Meeting of the Satellite Division of The Institute of Navigation (ION

GNSS+), pp. 3398–3408, 2018.

[15] J. Racko, P. Brida, A. Perttula, J. Parviainen, and J. Collin, “Pedestrian dead reckoning

with particle filter for handheld smartphone,” in 2016 International Conference on Indoor

Positioning and Indoor Navigation (IPIN), pp. 1–7, IEEE, 2016.

[16] P. Peltola, C. Hill, and T. Moore, “Particle filter for context sensitive indoor pedestrian

navigation,” in 2016 International Conference on Localization and GNSS (ICL-GNSS),

pp. 1–6, IEEE, 2016.

[17] J. Pinchin, C. Hide, and T. Moore, “A particle filter approach to indoor navigation using

a foot mounted inertial navigation system and heuristic heading information,” in 2012

International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–10,

IEEE, 2012.

113

[18] P. Davidson and R. Piché, “A survey of selected indoor positioning methods for smart-

phones,” IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 1347–1370, 2017.

[19] J. Farrell and M. Barth, The global positioning system and inertial navigation, vol. 61.

Mcgraw-hill New York, 1999.

[20] J. Ginsberg, Engineering dynamics, vol. 10. Cambridge University Press, 2008.

[21] D. Titterton, J. L. Weston, and J. Weston, Strapdown inertial navigation technology,

vol. 17. IET, 2004.

[22] P. D. Groves, G. W. Pulford, C. A. Littlefield, D. L. Nash, and C. J. Mather, “Inertial

navigation versus pedestrian dead reckoning: Optimizing the integration,” in Proc. ION

GNSS, pp. 2043–2055, 2007.

[23] A. R. Jiménez, F. Seco, J. C. Prieto, and J. Guevara, “Indoor pedestrian navigation using

an ins/ekf framework for yaw drift reduction and a foot-mounted imu,” in Positioning

Navigation and Communication (WPNC), 2010 7th Workshop on, pp. 135–143, IEEE,

2010.

[24] S. Rajagopal, “Personal dead reckoning system with shoe mounted inertial sensors,” Mas-

ter’s Degree Project, Stockholm, Sweden, 2008.

[25] D. Levine, J. Richards, and M. W. Whittle, Whittle’s gait analysis. Elsevier Health Sci-

ences, 2012.

[26] S. J. Cuccurullo, Physical medicine and rehabilitation board review. Demos Medical

Publishing, 2014.

[27] I. Bylemans, M. Weyn, and M. Klepal, “Mobile phone-based displacement estimation for

opportunistic localisation systems,” in 2009 Third International Conference on Mobile

Ubiquitous Computing, Systems, Services and Technologies, pp. 113–118, IEEE, 2009.

[28] J. Borenstein, L. Ojeda, and S. Kwanmuang, “Heuristic reduction of gyro drift for per-

sonnel tracking systems,” The Journal of Navigation, vol. 62, no. 1, pp. 41–58, 2009.

114

[29] K. Abdulrahim, C. Hide, T. Moore, and C. Hill, “Aiding low cost inertial navigation with

building heading for pedestrian navigation,” The Journal of Navigation, vol. 64, no. 2,

pp. 219–233, 2011.

[30] K. A. Rahim, Heading drift mitigation for low-cost inertial pedestrian navigation. PhD

thesis, University of Nottingham, 2012.

[31] I. Skog, P. Handel, J.-O. Nilsson, and J. Rantakokko, “Zero-velocity detection—an al-

gorithm evaluation,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 11,

pp. 2657–2666, 2010.

[32] D. Pierce, “Incorporation of a foot-mounted imu for multi-sensor pedestrian navigation,”

Master’s thesis, Auburn University, 2016.

[33] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of

basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[34] J. L. Crassidis and J. L. Junkins, Optimal Estimation of Dynamic Systems, Second Edi-

tion (Chapman & Hall/CRC Applied Mathematics & Nonlinear Science). Chapman &

Hall/CRC, 2nd ed., 2011.

[35] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John

Wiley & Sons, 2006.

[36] R. G. Brown, P. Y. Hwang, et al., Introduction to random signals and applied Kalman

filtering, vol. 3. Wiley New York, 1992.

[37] J. D. Pierce and D. M. Bevly, “A centralized approach to pedestrian localization using

multiple odometry sources,” in Proc. ION ITM, 2015.

[38] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,” IEEE Computer

graphics and applications, vol. 25, no. 6, pp. 38–46, 2005.

[39] J. Sola, “Quaternion kinematics for the error-state kalman filter,” arXiv preprint

arXiv:1711.02508, 2017.

115

[40] O. J. Woodman, “An introduction to inertial navigation,” tech. rep., University of Cam-

bridge, Computer Laboratory, 2007.

[41] J. Farrell, Aided navigation: GPS with high rate sensors. McGraw-Hill, Inc., 2008.

[42] B. Schutz, B. Tapley, and G. H. Born, Statistical orbit determination. Elsevier, 2004.

[43] A. Schumacher, “Integration of a gps aided strapdown inertial navigation system for land

vehicles,” Master of Science Thesis, Stockholm, Sweeden, pp. 1–57, 2006.

[44] I. Skog, GNSS-aided INS for land vehicle positioning and navigation. PhD thesis, KTH,

2007.

[45] J. W. Kim, H. J. Jang, D.-H. Hwang, and C. Park, “A step, stride and heading determina-

tion for the pedestrian navigation system,” Positioning, vol. 1, no. 08, p. 0, 2004.

[46] S. H. Shin and C. G. Park, “Adaptive step length estimation algorithm using optimal

parameters and movement status awareness,” Medical engineering & physics, vol. 33,

no. 9, pp. 1064–1071, 2011.

[47] Q. Ladetto, “On foot navigation: continuous step calibration using both complementary

recursive prediction and adaptive kalman filtering,” in Proceedings of ION GPS, vol. 2000,

pp. 1735–1740, 2000.

[48] A. R. Jimenez, F. Seco, C. Prieto, and J. Guevara, “A comparison of pedestrian dead-

reckoning algorithms using a low-cost mems imu,” in 2009 IEEE International Sympo-

sium on Intelligent Signal Processing, pp. 37–42, IEEE, 2009.

[49] H. Leppakoski, J. Kappi, J. Syrjarinne, and J. Takala, “Error analysis of step length esti-

mation in pedestrian dead reckoning,” in ION GPS 2002: 15 th International Technical

Meeting of the Satellite Division of The Institute of Navigation, 2002.

[50] N. Zhao, “Full-featured pedometer design realized with 3-axis digital accelerometer,”

Analog Dialogue, vol. 44, no. 06, pp. 1–5, 2010.

116

[51] J. Kappi, J. Syrjarinne, and J. Saarinen, “Mems-imu based pedestrian navigator for hand-

held devices,” in Proceedings of the 14th international technical meeting of the satellite

division of the institute of navigation (ION GPS 2001), pp. 1369–1373, 2001.

[52] S. Beauregard and H. Haas, “Pedestrian dead reckoning: A basis for personal position-

ing,” in Proceedings of the 3rd Workshop on Positioning, Navigation and Communication,

pp. 27–35, 2006.

[53] C. Randell, C. Djiallis, and H. Muller, “Personal position measurement using dead reck-

oning,” in null, p. 166, IEEE, 2003.

[54] D. Gusenbauer, C. Isert, and J. Krösche, “Self-contained indoor positioning on off-the-

shelf mobile devices,” in 2010 International Conference on Indoor Positioning and Indoor

Navigation, pp. 1–9, IEEE, 2010.

[55] V. Renaudin, M. Susi, and G. Lachapelle, “Step length estimation using handheld inertial

sensors,” Sensors, vol. 12, no. 7, pp. 8507–8525, 2012.

[56] S. Beauregard, “A helmet-mounted pedestrian dead reckoning system,” in 3rd Interna-

tional Forum on Applied Wearable Computing 2006, pp. 1–11, VDE, 2006.

[57] H. Weinberg, “Using the adxl202 in pedometer and personal navigation applications,”

Analog Devices AN-602 application note, vol. 2, no. 2, pp. 1–6, 2002.

[58] S. Godha, G. Lachapelle, and M. E. Cannon, “Integrated gps/ins system for pedestrian

navigation in a signal degraded environment,” in Ion gnss, vol. 2006, 2006.

[59] R. Faragher and R. Harle, “Smartslam-an efficient smartphone indoor positioning system

exploiting machine learning and opportunistic sensing,” in ION GNSS, vol. 13, pp. 1–14,

2013.

[60] T. Judd, “A personal dead reckoning module,” in ION GPS, vol. 97, pp. 1–5, 1997.

117

[61] G. Thonet, O. Blanc, P. Vandergheynst, E. Pruvot, J.-M. Vesin, and J.-P. Antoine,

“Wavelet-based detection of ventricular ectopic beats in heart rate signals,” Applied Signal

Processing, vol. 5, no. 3, pp. 170–181, 1998.

[62] S. Y. Cho, K. W. Lee, C. G. Park, and J. G. Lee, “A personal navigation system using

low-cost mems/gps/fluxgate,” Proc. ION 59th, 2003.

[63] C. V. Bouten, A. A. Sauren, M. Verduin, and J. Janssen, “Effects of placement and ori-

entation of body-fixed accelerometers on the assessment of energy expenditure during

walking,” Medical and biological engineering and computing, vol. 35, no. 1, pp. 50–56,

1997.

[64] D. Farris, “Prototype development of a system providing for initial a.˜ sessment of the

dynamics/kinematic of bipedal motion.’,” Prec. lOth Ann, Coati RESNA, pp. 726–728,

1987.

[65] N. P. Hamilton, Kinesiology: Scientific basis of human motion. Brown & Benchmark,

2011.

[66] J. Jahn, U. Batzer, J. Seitz, L. Patino-Studencka, and J. G. Boronat, “Comparison and

evaluation of acceleration based step length estimators for handheld devices,” in 2010

International Conference on Indoor Positioning and Indoor Navigation, pp. 1–6, IEEE,

2010.

[67] W. Zijlstra and A. L. Hof, “Displacement of the pelvis during human walking: experi-

mental data and model predictions,” Gait & posture, vol. 6, no. 3, pp. 249–262, 1997.

[68] J. E. Bertram and A. Ruina, “Multiple walking speed–frequency relations are predicted by

constrained optimization,” Journal of theoretical Biology, vol. 209, no. 4, pp. 445–453,

2001.

[69] S. Yang and Q. Li, “Ambulatory walking speed estimation under different step lengths

and frequencies,” in 2010 IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, pp. 658–663, IEEE, 2010.

118

[70] W. H. Greene, Econometric analysis. Pearson Education India, 2003.

[71] J. A. Gubner, Probability and random processes for electrical and computer engineers.

Cambridge University Press, 2006.

[72] D. Gebre-Egziabher, G. H. Elkaim, J. David Powell, and B. W. Parkinson, “Calibration of

strapdown magnetometers in magnetic field domain,” Journal of Aerospace Engineering,

vol. 19, no. 2, pp. 87–102, 2006.

[73] M. J. Caruso, “Applications of magnetic sensors for low cost compass systems,” in Posi-

tion Location and Navigation Symposium, IEEE 2000, pp. 177–184, IEEE, 2000.

[74] J. A. Shockley, “Ground vehicle navigation using magnetic field variation,” tech. rep.,

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH GRADUATE SCHOOL

OF . . . , 2012.

[75] G. Morales, “Magnetometer aided navigation filters for improved observability and esti-

mation on ground vehicles,” Master’s thesis, Auburn University, 2016.

[76] D. M. Bevly, “Global positioning system (gps): A low-cost velocity sensor for correcting

inertial sensor errors on ground vehicles,” Journal of dynamic systems, measurement, and

control, vol. 126, no. 2, pp. 255–264, 2004.

[77] B. Brumback and M. Srinath, “A chi-square test for fault-detection in kalman filters,”

IEEE Transactions on Automatic Control, vol. 32, no. 6, pp. 552–554, 1987.

[78] A. M. Sabatini, “Quaternion-based extended kalman filter for determining orientation by

inertial and magnetic sensing,” IEEE Transactions on Biomedical Engineering, vol. 53,

no. 7, pp. 1346–1356, 2006.

[79] J. L. Marins, X. Yun, E. R. Bachmann, R. B. McGhee, and M. J. Zyda, “An extended

kalman filter for quaternion-based orientation estimation using marg sensors,” in Pro-

ceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Ex-

panding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180),

vol. 4, pp. 2003–2011, IEEE, 2001.

119

[80] M. Klepal, S. Beauregard, et al., “A backtracking particle filter for fusing building plans

with pdr displacement estimates,” in 2008 5th Workshop on Positioning, Navigation and

Communication, pp. 207–212, IEEE, 2008.

[81] B. Krach and P. Robertson, “Integration of foot-mounted inertial sensors into a bayesian

location estimation framework,” in 2008 5th Workshop on Positioning, Navigation and

Communication, pp. 55–61, IEEE, 2008.

[82] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle fil-

ters for online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions on signal

processing, vol. 50, no. 2, pp. 174–188, 2002.

[83] F. Gustafsson, “Particle filter theory and practice with positioning applications,” IEEE

Aerospace and Electronic Systems Magazine, vol. 25, no. 7, pp. 53–82, 2010.

[84] R. N. Jazar, Vehicle dynamics: theory and application. Springer, 2017.

[85] S. Kaiser, M. Khider, and P. Robertson, “A human motion model based on maps for

navigation systems,” EURASIP Journal on Wireless Communications and Networking,

vol. 2011, no. 1, p. 60, 2011.

[86] R. Douc and O. Cappé, “Comparison of resampling schemes for particle filtering,” in

Image and Signal Processing and Analysis, 2005. ISPA 2005. Proceedings of the 4th

International Symposium on, pp. 64–69, IEEE, 2005.

[87] J. R. Taylor, “An introduction to error analysis 2nd edn (sausalito, ca,” 1997.

[88] T. Gädeke, J. Schmid, M. Zahnlecker, W. Stork, and K. D. Müller-Glaser, “Smartphone

pedestrian navigation by foot-imu sensor fusion,” in 2012 Ubiquitous Positioning, Indoor

Navigation, and Location Based Service (UPINLBS), pp. 1–8, IEEE, 2012.

120

