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Abstract 
 

 
In this dissertation, we propose a novel statistical modeling methodology that effectively 

analyzes and extracts information from large datasets. Two real datasets were employed to validate 

the proposed methodology: breast cancer patient dataset and a no-show patient dataset. The 

objective of this dissertation is then to extract novel and useful information from these large and 

complex datasets by applying the proposed methodology that involves statistical and machine 

learning, heuristic optimization, and advanced data resampling techniques.  Particularly, in the first 

study (breast cancer), we developed prediction models for breast cancer 1-, 5- and 10-year 

survivability and studied the variables whose importance for survival change over time.  The 

obtained results revealed that certain variables lose their importance over time, while others gain 

importance. This information can assist medical practitioners in identifying specific subsets of 

variables to focus on in different periods, which will in turn lead to more effective and efficient 

cancer care. In the second study, we employ several statistical and machine learning algorithms to 

accurately predict no-show patients and to obtain patient-specific risk scores. Also, we developed 

a prediction tool that enables practitioners to use the proposed model without having any 

knowledge in statistics, optimization, and programming. Therefore, the overarching goal of the 

study is to develop a parsimonious model embedded within the prediction tool so as to enable 

healthcare professionals to improve clinic utilization, and improve patient outcomes, at the same 

time, decrease the costs that originate from patient no-shows. 
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Chapter 1 

Introduction 

1.1     Introduction 

            The advent of efficient and cost-effective technology for recording and storing data has led 

to an exponential growth in data volume, which in turn provides plenty of opportunities for 

statisticians to effectively analyze and to extract necessary information from large datasets. In this 

dissertation, we propose a novel statistical modeling approach that involves several statistical and 

machine learning techniques to extract novel, hidden and useful information from large data. In 

the proposed approach, we attempt to obtain the most parsimonious model possible. Therefore, 

optimization algorithms such as Particle Swarm Optimization (PSO), Simulated Annealing (SA), 

and Genetic Algorithms (GA) are deployed in addition to statistical Least Absolute Shrinkage and 

Selection Operator (LASSO) technique, in the variable selection process.  We employ two 

different real datasets to validate the proposed methodology those of breast cancer patients and of 

no-show patients. Since the distribution of the class size was highly imbalanced for both datasets, 

several data balancing techniques, random under-sampling (RUS), random over-sampling (ROS), 

and synthetic minority over-sampling (SMOTE), are employed. A large number of statistical and 

machine learning algorithms as well as their combinations (ensemble learner) are used along with 

a k-fold cross-validation technique.  Following the model building process, we study the 

importance of the variables that were used in the best performing models via Sensitivity Analysis 

(SA) and later combined by employing an Information Fusion (IF) technique.  

   

          The dissertation is organized as follows. In the second chapter, we apply our methodology 

to model breast cancer survivability, where the changing effect of the variables on breast cancer 

survivability is studied. In Chapter 3, the prediction of no-show patients is studied and patient-

specific risk score provided. In Chapter 4, we employ a tree augmented Bayesian belief network 

to both predict patients who will not keep their appointments and to explore conditional relations 

among the predictors. Moreover, a prediction tool utilizing the Bayesian model is developed, 

allowing practitioners to make use of our study.  



 2 

 
 
 
 
 

Chapter 2 

A Hybrid Data Mining Approach for Identifying the Temporal Effects of Variables 

Associated with Breast Cancer Survival 

 

2.1     Abstract 

 Predicting breast cancer survival is crucial for practitioners to determine possible outcomes 

and make better treatment plans for the patients. In this study, a hybrid data mining based 

methodology was constructed to differentiate the variables whose importance for survival change 

over time. Therefore, the importance of variables was determined for three different time periods 

(i.e. one, five, and ten years). To conduct such an analysis, the most parsimonious models were 

constructed by employing one regression analysis method—Least Absolute Shrinkage and 

Selection Operator (LASSO), and one metaheuristic optimization method, namely a Genetic 

Algorithm (GA). Due to the high imbalance between the number of survivals (majority) and deaths 

(minority), two well-known resampling procedures—Random Under-sampling (RUS) and 

Synthetic Minority Over-sampling Technique (SMOTE)—were applied to increase the 

performance of the classification models. In the final stage, two data mining models, namely 

Artificial Neural Networks (ANNs) and Logistic Regression (LR), were utilized along with 10-

fold cross-validation. Sensitivity analysis (SA) was conducted for each model to identify the 

importance of each variable for a certain model and time period. The obtained results revealed that 

certain variables lose their importance over time, while others gain importance. This information 

can assist medical practitioners in identifying specific subsets of variables to focus on in different 

periods, which will in turn lead to a more effective and efficient cancer care. Moreover, the study’s 

findings indicate that extremely parsimonious models can be developed by adopting a purely data-

driven approach, rather than eliminating the variables manually. Such methodology can also be 

applied in treating other types of cancer. 
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2.2     Introduction 

 Breast cancer is the second most common cause of death after lung cancer among women 

in the U.S (Allegra et al., 2010). While the number of new breast cancer cases reported each year 

has been stable over the last ten years, in 2015, the American Cancer Society estimated that there 

would be 267,267 new cases and 40,610 deaths due to breast cancer in 2020 in the U.S. (Weir et 

al., 2015). With constant improvements in technology and patient screening, the 5-year survival 

rate of breast cancer patients in the U.S. has increased from 75.2% to 98.9% over the 1975−2010 

period (Howlader et al., 2013).  

 Predicting the survival of cancer patients is important. Patients facing a cancer diagnosis 

want to know what their future may entail and what prognosis they can expect. This can help 

patients and their loved ones to plan treatment options, think about any possible lifestyle changes, 

and make financial and other important decisions. It also helps doctors identify possible treatment 

paths, understand possible outcomes of different prognoses, and make more data-informed 

decisions, in addition to being better able to guide their patients. On the other hand, making a 

medical prognosis and determining survival factors is very challenging. These factors can be 

grouped into two categories, comprising of chronological and biological factors (Bundred, 2001). 

The chronological factors include those that change with time and directly affect the prognosis, 

such as lymph node status, tumor size, and histological stage. As lymph nodes filter harmful 

substances, their increased involvement signifies a potentially wider spreading of cancerous cells 

and adversely impacts the prognosis (Bundred, 2001; Rampaul et al., 2001). Tumor size 

enlargement also adversely affects the prognosis and reduces the probability of survival. 

Moreover, the histological stage depicts whether a tumor is local or has spread to healthy breast 

tissues, or to other parts of the body. Biological factors, such as histological grade, on the other 

hand, pertain to the behavioral status of the tumor. Histological grade is indicative of tumor 

aggressiveness, whereby “low grade” cancers are less aggressive than “high grade” tumors 

(Bundred, 2001; Rampaul et al., 2001).  

 Determining the importance of these and other variables is as crucial as predicting patient 

survival, as it enables medical practitioners to better plan the treatment (Desforges et al., 1992). 

However, the impact of certain variables on the survival may vary across time. Quantin et al. 

(1999) provided empirical evidence for time-dependent effects of prognostic factors in colon 

cancer. The authors demonstrated that multivariate analysis can capture a variety of patterns in 



 4 

determining prognostic factors in different time ranges. Some variables may not be important 

during the first few years following cancer diagnosis, but might gain importance in the later stages 

of the illness. Being cognizant of this dynamic effect of certain variables enables practitioners to 

optimize the treatment.  

 On the other hand, cancer diagnosis and treatment methods require extensive medical 

research and analysis, which requires resources. Additionally, large and information-rich datasets 

are being collected and retained by medical practitioners and hospitals for all types of patients. In 

an effort to capitalize on such data and gain useful knowledge that can potentially contribute to 

cancer research efforts, as well as to the practitioners’ and caregivers’ decision-making process, 

statistical and data mining methodologies are increasingly being applied (Pendharkar et al., 1999; 

Thongkam et al., 2009; Kulkarni et al., 2011; Ting et al., 2018; Lu et al., 2019). Machine Learning 

(ML) algorithms are widely utilized for this purpose, as they have been proven effective in 

extracting hidden patterns from large and complex datasets (Fayyad et al., 1996). They can be 

broadly classified into three main categories, namely supervised, unsupervised, and semi-

supervised algorithms. In supervised algorithms, such as ANNs, Bayesian Belief Networks 

(BBNs), and Decision Trees (DTs), a training set is used to supervise the specifications of input 

data to the ML algorithm in order to estimate the desired output. In contrast, in unsupervised 

algorithms, such as hierarchical clustering, patterns in data are discovered by the models without 

a learning process. Semi-supervised algorithms are, on the other hand, a combination of supervised 

and unsupervised algorithms (Dougherty et al., 1995; Huang et al., 2014). 

 Various machine learning and data analytics techniques have been used extensively to 

process and analyze data (Rouyendegh et al., 2016; Rouyendegh et al., 2018; Simsek et al., 2018), 

such as medical data (Dag et al., 2017; Nasir et al., 2019; South-Winter et al., 2018; Topuz et al., 

2018), including breast cancer datasets, for survival and variable selection analysis (Gunasundari 

et al., 2016; Gupta & Sharma, 2011; Ryu et al., 2007; Walczak & Velanovich, 2018; West et al., 

2005; Zolbanin et al., 2015). In breast cancer research, the focus is primarily given to identification 

of important predictors, predominantly from groups of genes, that assists to detect the cause of 

cancer. Authors of such studies mostly used unsupervised learning algorithms to detect the 

important genes by applying clustering methods. Other authors have applied supervised learning 

algorithms to clinical and sociodemographic predictors to find important factors and predict 
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expected survival times based on these predictors. In the following subsections, a brief overview 

of the studies most pertinent for the current investigation is given.  

 As noted above, authors of most extant studies in this field used datasets comprised of 

various genes, as genetic data is particularly well suited for unsupervised methods like clustering. 

The aim of adopting clustering methods in these studies was identifying the most important genes 

for each cancer type. For example, Li et al. (2009) developed an unsupervised algorithm to detect 

previously unrecognized prognostic groups and features for gliomas, which is currently the most 

common brain tumor type in adults. In adopting this strategy, the authors aimed to overcome the 

bias generated by a priori gene selection that is subsequently adopted in classification (Alizadeh 

et al., 2000; Beer et al., 2002; Lapointe et al., 2004). The model developed by Li et al. (2009) 

determines two groups of gliomas, which are then clustered into six nested subgroups. Different 

sets of classifiers are identified for each group, which is then validated using different datasets. 

Although unsupervised learning allowed these authors to identify, using genomic information, 

relevant cancer subtypes that may coexist within a tumor, its main drawback is potential 

identification of cancer subtypes that are not pertinent to patient survival. In an earlier study, 

Lapointe et al. (2004) developed a semi-supervised algorithm in which gene data was combined 

with clinical data to determine patient survival times. The idea behind this approach was to use 

clinical data to identify relevant genes that will be employed in the subsequent unsupervised 

clustering. The dataset used by Lapointe et al. consisted of 7399 genes from 240 breast cancer 

patients. The authors used Cox proportional hazard scores of 7399 genes based on 160 training 

observations and ranked the genes based on their Cox scores, accordingly. Next, the test group 

was clustered using the 25 top scoring genes to predict the patients’ survival time and associated 

probabilities.  

 While these studies are highly important in the context of breast cancer survival analysis 

and early prognosis discussions, they may not be as useful from the perspective of caregivers, as 

they may not be pertinent to the treatment decisions related to sustaining patient’s quality of life 

(Bradbury-Huang, 2010). Moreover, since the aforementioned studies mostly focused on genetic 

data, the importance changes in various other patient factors, such as cancer stage or treatment 

type, which have to be considered separately by decision makers.  

 Authors of extant studies based on clinical data tend to use supervised ML algorithms for 

cancer survival prediction and variable analysis. For example, Lundin et al. (1999) used ANNs to 
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predict 5-, 10-, and 15-year breast cancer survivability based on the data pertaining to 951 patients. 

Their results demonstrate that stage, nodal status, tumor size, age, mitotic count, nuclear 

pleomorphism, tubule formulation, and tumor necrosis are the most important features determining 

cancer survivability. In a later study, Delen et al. (2005) used ANNs, as well as decision trees and 

logistic regression, which they incorporated into a hybrid model for predicting breast cancer 

survivability over a 5-year period. The authors utilized the Surveillance, Epidemiology, and End 

Results (SEER) dataset, which includes 433,272 patient records spanning the 1973−2000 period, 

in order to determine the impact of certain variables on cancer survival. The study findings indicate 

that cancer grade, number of primary tumors, cancer stage, radiation treatment, lymph node 

involvement, and tumor size are the most important predictors of breast cancer survival.  

 Extensive research has also been conducted in order to improve the predictive capacity of 

already developed models. For example, Thongkam et al. (2009) proposed a hybrid breast cancer 

survival model that incorporates Support Vector Machines (SVMs), along with an outlier-filtering 

approach, followed by simple over-sampling. The results reported by these authors demonstrate 

that the hybrid scheme significantly improved the performance of SVM. Khan et al. (2008) also 

evaluated a hybrid data mining method for cancer prognosis by utilizing interference techniques 

together with fuzzy decision tree models. Their results demonstrated that an independently applied 

crisp classification underperforms a fuzzy decision tree model. In an earlier study, Pendharkar et 

al. (1999) utilized association analysis as a variable selection tool to uncover the relations between 

breast cancer occurrence and cancer related factors. The authors used data envelopment analysis 

(DEA), ANN and discriminant analysis (DA) to predict cancer diagnosis. Their results reveal that 

while increasing the training sample size improves the prediction accuracy of DEA and DA, the 

accuracy of ANN remains relatively unchanged. Zupan et al. (2000) used classification methods 

for prostate cancer survival analysis, whereas Churilov et al. (2004) subsequently employed 

clustering techniques to assign patients into homogeneous risk groups that would facilitate 

treatment decisions. The clusters were generated by examining patient’s age, tumor size, prostate-

specific antigen concentration in the blood, and pathology scores. Recently, Kate and Nadig (2017) 

created stage-specific breast cancer survival prediction models by employing ANN, SVM, and 

DT, as well as statistical methods, such as LR and Naïve Bayes, to compare the survival predictions 

based on the stage-wise subsets and the entire dataset. The survival rate based on the full dataset 

was 92.04% (36.17−99.42%), whereby survival rates declined with progressive cancer stages. The 
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authors further demonstrated that stage-wise stratification increased the AUC (area under the ROC 

curve) of the models in all different breast cancer stages, and ranked the variables based on stages, 

rather than time. 

 The aforementioned studies focused either on predicting cancer patient survival or finding 

important survival predictors. On the other hand, to the best of our knowledge, the varying impact 

of predictors on short- and long-term survival rates of cancer patients (irrespective of the cancer 

type) has never been explored. Furthermore, a comprehensive purely data-driven variable selection 

approach has never been employed in this field, even though this would allow the researchers to 

eliminate the variables that do not contribute to the prediction power, thereby producing highly 

parsimonious models. In addition, with the exception of Thongkam et al. (2009) who used simple 

over-sampling, advanced sampling approaches have not been used to prevent class imbalance 

problems that occur due to significant differences in survival classes in most survival datasets.  

 These shortcomings must be addressed, as being cognizant of the changes in the predictor 

importance in short- and long-time periods would be informative for better estimation of the 

impacts of different predictors on cancer development. Thus, combining the balancing methods 

with variable selection algorithms should ensure that the resulting variable importance findings 

are not affected by the inherent class imbalance, which also changes over time, as the models are 

applied to longer time-frames (Chawla, 2005).  

 Given the limitations revealed by the review of pertinent literature, the overarching 

objective of the present study is to determine the varying impacts of the cancer related variables 

obtained from the SEER dataset on predicting breast cancer survivability over 1-, 5-, and 10-year 

periods. In constructing the models, the increasing class imbalance over shorter time periods and 

removing noisy variables on a per-time-frame basis were considered to ensure near-optimal model 

performance and gain accurate variable importance information. To achieve this goal, a hybrid 

data mining methodology was employed. More specifically, a purely data-driven (not manual) 

variable selection process based on using GA and LASSO methods was adopted in order to obtain 

the most parsimonious models possible. In order to increase the sensitivity of the prediction 

models, RUS and SMOTE methods were employed in the data balancing phase. Finally, prediction 

results that were obtained through ANNs and LR were combined through the Information Fusion 

(IF) technique, as this allowed us to identify the variables whose impact changes 

(increases/decreases) over time. Therefore, the proposed hybrid data-driven methodology 
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contributes to the existing body of knowledge on cancer survival literature by (1) utilizing data 

balancing algorithms (i.e., SMOTE and RUS) to overcome the class imbalance problem, (2) 

adopting a comprehensive variable selection process by using GA and LASSO methods in order 

to obtain parsimonious models, (3) analyzing the varying impacts of variables on survivability 

prediction accuracy over short-, mid- and long-term periods, and finally (4) employing a hybrid 

method (by using IF) that combines the predictors obtained through different predictive models 

(i.e., ANN and LR) to reduce model uncertainty and increase robustness of the results. It is the 

authors’ view that the contribution and the value of the current study do not stem from the standard 

machine learning and statistical models and/or better classification results employed in this study. 

Rather, the findings presented in this work augment the existing body of knowledge by identifying 

the variables whose impact can change over time. This was achieved by employing the most 

parsimonious models that were built by overcoming the class imbalance problems in most survival 

datasets. Therefore, the same method can be adopted not only by the practitioners in the breast 

cancer field, but is also applicable to all cancer types.  

 The remainder of this study is organized as follows. The dataset, data cleaning 

methodology, sampling methods, variable selection process, and the predictive models utilized in 

the current study are presented in Section 2.2. Section 2.3 is designated for the results and insights 

obtained via the hybrid data analytic methodology adopted in the current study. Finally, the study 

closes with the main study conclusions and suggestions for potential future research directions, 

which are given in Section 2.4. 

 

2.3     Methodology 

 In the present study, a hybrid data-analytical method consisting of five consecutive phases 

was adopted, as illustrated in Figure 2.1. The first phase was divided into three steps, whereby the 

dataset was cleaned in Step 1 in order to eliminate duplicate records and variables that do not 

contribute to the dependent variable prediction. In Step 2, different datasets were created from the 

original data to evaluate temporal effects of each variable over 1-, 5-, and 10-year time intervals. 

In Step 3, GA and LASSO were employed for variable selection. In the second phase, the data was 

input into the prediction algorithms, along with 10-fold cross-validation technique, to train the data 

mining models, whereby the balancing methods (i.e., RUS and SMOTE) were applied to each fold 

to prepare them for the model training process. At the completion of these stages, classification 
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results yielded by the individual prediction models were obtained, along with the relative 

importance of each of the variables, as revealed by each model. After comparing the models using 

a set of performance metrics, those that exhibited inferior performance were eliminated in Phase 

3. In Phase 4, an information fusion technique was used to combine important variable sets 

obtained through the individual models in the previous phase. This process was repeated three 

times (for each time interval), resulting in three sets of important variables (i.e., for the 1-, 5- and 

10-year period). In the final phase, the aforementioned variable sets were compared to identify the 

variables whose importance/impact for determining the survival after breast cancer diagnosis 

changes over time. More details about the study phases and individual steps are provided in the 

following subsections. 

 
Figure 2.1: Proposed hybrid methodology. 
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2.3.1     Data Acquisition and Preparation 

 In the present study, the (SEER) dataset, which combines patient-specific predictors for 

any cancer type into a unique database, was utilized. The dataset contains records (173 variables) 

pertaining to 789,284 cancer patients covering the 1973−2013 period. The database provides 

comprehensive information for several cancer types, such as breast, lung, genital, and rectum 

cancer, including cancer-specific characteristics, socioeconomic conditions, and temporal 

information, such as the time of diagnosis and whether the patient died.  

 For the present investigation, the data cleaning process commenced by removing redundant 

information, and eliminating patient-specific information that was irrelevant for model training 

(e.g., patient ID, registry ID, etc.). Next, records of patients that died of causes other than breast 

cancer, such as an accident, natural disaster, etc., were discarded. Finally, all variables pertaining 

to other cancer types were eliminated. After the aforementioned data cleaning process, 53,732 

breast cancer patient records and 17 variables that related solely to breast cancer remained. The 

descriptions of the variables are given in Table 2.1. 

 

Table 2.1: Description of variables 

Variable Name Description 

Cancer stage EOD 3rd Edition and Collaborative Stage disease 
information 

Nodes positive The exact number of regional lymph nodes examined by the 
pathologist that were found to contain metastases 

Grade The measurement of how closely the tumor cells resemble 
the parent tissue, organ of origin 

Age Patient’s age at diagnosis (single-year ages) 

Extension The farthest documented extension of tumor away from the 
primary site 

Primary site The site from which the primary tumor originated 
PR status Includes indicators for estrogen receptors in cancer cells 
ER status Includes indicators for progesterone receptors in cancer cells  

Tumor marker Cancer or other cells of the body produce tumor markers as 
a reaction to cancer or certain benign conditions 

Surgery 
A surgical procedure aimed at removing and/or destroying 
the tissue of the primary cancer site performed as part of the 
initial work-up or the first course of therapy 

Radiation An indicator that shows whether radiation treatment has been 
applied or not 

Race Patient’s race  
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Tumor size The largest dimension of the primary tumor in millimeters 

Histology Histologic cell type based on the microscopic composition of 
cells and/or tissue for a specific primary site 

Marital status Indicates whether a patient is married or not 

Behavior Collection of the malignancies, benign, uncertain whether 
benign or malignant, carcinoma in situ, malignant 

Lymph node The highest specific lymph node chain that is involved by the 
tumor 

 

2.3.2     Temporal Dataset Derivation (Data Inclusion) 

 Since the current analysis is based on three temporal intervals, the original dataset was 

segregated into three new datasets, each pertaining to the temporally delineated dependent 

variable. Each dataset was derived using the survival month variable to determine a survival cutoff 

period. The survival month variable indicates the number of months a patient has survived after 

the initial diagnosis. For each of the three time intervals (1, 5, and 10 years), a new binary 

dependent variable was created as follows:   

   (1)  

where i = 1, 5 and 10 years. Therefore, the output variable is a binary categorical variable where 1 

denotes deceased and 0 denotes survived patients. The number of patients in each class for each 

of the three time intervals is shown in Table 2.2. 

 

      Table 2.2: Distribution of survival cases 

Cutoff Point Deaths Survivors 

1 Year 866 52,886 

5 Years 7,028 46,724 

10 Years 10,787 42,965 

 

2.3.3     Variable Selection 

 Machine learning algorithms are designed to learn the relationships between independent 

and dependent variables. As such, when training a model, all available variables in a given dataset 

can be used. In practice, however, this approach might bring certain disadvantages. First, some 

1( ), 12
0( ),i

deceased if survival month i
U

survived otherwise
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variables may not have any predictive power due to the absence of correlation between the outputs. 

Second, some variables may suffer from collinearity, which, depending on the machine learning 

algorithm, can have adverse effects on the predictive power of the model (Langley, 1994). Due to 

these reasons, including all variables does not guarantee the best possible predictive model, and in 

fact it may result in a model with lower than optimal predictive capability. In addition, the 

complexity of the machine learning model also increases with the number of predictors, both in 

terms of computational complexity and the explanatory power of the model. Consequently, in 

practice, variable selection methods are used to select only the features (predictors or variables) 

that are relevant to the model training process. This results in a model with increased predictive 

performance, better comprehensibility for users, and a reduced computational cost for training the 

model. The currently available variable selection methods can be broadly categorized into filter 

and wrapper methods (John et al., 1994).  

 Filter methods are univariate statistical methods that are mostly used in the data preparation 

phase. Many filter methods have been described in the literature (Saeys et al., 2007), and mostly 

consist of covariance tests, such as t-test, which can be used to determine if an independent variable 

is correlated to the output variable.  

 Wrapper methods are algorithmically or heuristically defined approaches to selecting 

features for a machine learning model. These methods are used in conjunction with the machine 

learning algorithm, and essentially “wrap” the model in the training process. In these methods, an 

algorithm or heuristic is employed to add or remove features from the dataset and retrain the model, 

with the goal of increasing the model’s predictive performance, whereby the process is iterated 

until a stopping rule is reached. There are many wrapper methods, such as RFE (recursive feature 

elimination) (Guyon et al., 2002), simulated annealing (Aarts & Korst, 1988), genetic algorithms, 

etc. (Yang & Honavar, 1998).  

 In the present study, a wrapper (GA) and a filter method (LASSO) were adopted to conduct 

variable selection due to their high performance in the preliminary data analysis phases as well as 

their well-known high performance, as demonstrated in the pertinent literature (Dag et al., 2016). 

Variable selection was performed to obtain models that are better at predicting cancer 

survivability, and to gain a better understanding of the factors that are most important in predicting 

the survival interval. In previous studies (Delen et al., 2005; Kibis et al., 2017) in which the authors 

utilized the same dataset, the number of variables was manually reduced by applying expert 
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knowledge. However, the goal of the present study was to use a pure data-driven methodology 

instead of human intuition and domain knowledge, each of which can be limited in its scope or is 

implicitly bound by assumptions. Additionally, having fewer variables reduces model complexity 

and renders models easier to understand, thus making them more useful for practitioners and 

decision makers. A brief description of each method is provided in the following paragraph. 

 Genetic algorithm mimics the gene selection process in biological organisms to select 

features that maximize (or minimize) predefined criteria. The algorithm is initialized with a 

predefined number of “individuals” (a solution) called a population. Each individual defines a 

solution to the problem under consideration that, in the case of variable selection, is a list of 

variables included for training. The model is trained for each individual, and the best performing 

individuals are selected to create the next generation of individuals by performing crossover 

operations between them. A certain amount of mutation can also be allowed, as defined in the 

input parameters for the GA. After a predefined number of generations has been created, an 

individual that yields the best prediction performance is identified. On the other hand, LASSO is 

a statistical regularization-based filter method that utilizes a linear regression fitting procedure in 

which estimation of coefficients is subject to a restriction. The purpose of this restriction in 

estimating coefficients is to overcome the issue of overfitting the data and to converge some 

coefficients towards exactly zero, which allows LASSO to be used as a variable selection tool. The 

LASSO (Tibshirani,1996) is given by Equation 2 below: 

    (2)  

where y is the response, and the number of predictors and observations is represented by p and n, 

respectively. RSS is the residual sum of squares and 𝜆 is the penalization parameter added to the 

coefficients. The 10-fold cross-validation is used to find the optimal 𝜆 value. It should be noted 

that, for 𝜆 = 0, this procedure reduces to ordinary least squares regression. 

 Again, one of the study aims was to develop parsimonious models that have strong 

predictive power. Such parsimonious models can be used by practitioners and their patients to 

better understand the choices they have and the decisions that need to be made with regards to 

treatments, resource allocation, and patient care. 
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2.3.4     Data Imbalance and Resampling 

 The dataset used in the present study is a survival dataset, and is thus implicitly affected 

by a considerable imbalance across output classes. As seen in Table 2.2, the difference between 

the two classes of interest for the present study (surviving and deceased individuals) decreases 

monotonically for each increasing time interval. Several strategies for addressing the imbalanced 

data issue have been proposed (Chawla, 2005; Guo et al., 2008; Klement et al., 2011). In the 

present study, two well-known techniques— RUS and SMOTE—were adopted (due to their 

performance in the preliminary data analysis phase). They both have their benefits and drawbacks 

(Batista et al., 2004; Chawla, 2005; Drummond et al., 2003; Guo et al., 2008; Kotsiantis et al., 

2006). 

 When RUS is adopted, cases from the majority class are randomly sampled to include a 

similar number of cases as in the minority class, thereby producing a balanced dataset (Chawla, 

2005; Guo et al., 2008). The advantage of adopting RUS is that it includes actual data only; 

however, data that could have positively contributed to the model training process can be omitted. 

Conversely, SMOTE over samples the minority class by creating synthetic cases from the existing 

cases in the minority class. The synthetic cases are created by applying a k-nearest neighbors 

algorithm that imputes values for the synthetic cases from the actual nearby data points. More 

information on these methods can be found in the work by Chawla et al. (2002). 

 

2.3.5     Prediction Models 

 In this study, ANN and LR models were employed, since these algorithms exhibited 

superior performance in preliminary analyses, as a part of which a collection of several 

classification algorithms was evaluated. We provide a brief summary of the algorithms, ANN and 

LR, in the following paragraphs.  

 ANNs are inspired by their biological counterparts, whereby a highly interconnected 

network of simplistic neurons generates a learning model that can learn arbitrarily complex non-

linear functions. As such, these algorithms have been widely used in machine learning contexts, 

such as classification (Cetinic et al., 2018; Melin et al., 2018), regression (Genc & Dag, 2016; 

Zhou et al, 2019), optimization (Liu et al., 2009; Yazdi et al., 2011), and pattern recognition (El-

Midany et al., 2010; Patterson, 1996). The artificial neurons mimic the signal integration and 

activation of their biological counterparts using mathematical functions, such as sigmoidal 
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activation functions. These neurons are organized into input, middle, and output layers. There can 

be multiple middle layers, depending upon the complexity of the problem. Each neuron in a given 

layer is connected to all neurons in the next layer. The behavior of the neuron is governed by the 

training mechanism, which sets values for the weights of each neural connection, as well as values 

for the activation (or firing) of each neuron (Han & Kamber, 2006). In the present study, the Multi-

layer Perceptron (MLP) algorithm, along with one hidden layer, was employed. The number of 

units in the hidden layer was tuned internally using a 10-fold cross-validation algorithm (thus, 360 

models were developed). In addition, the decay parameter was tuned in order to prevent the 

possible overfitting issues in each model. 

 Logistic Regression is a probabilistic classification model that predicts probabilities of 

different class values based on the relationships between independent variables and the dependent 

variable. While the dependent variable values are continuous in linear regression, in many 

contexts, it is necessary to predict a discrete categorical class value, along with independent 

variables with discrete values. A logistic regression model transforms the discrete values into 

continuous form, and creates a linear combination of the variables to compute the probability of 

each class value of the dependent variable. As in linear regression, it predicts an outcome for the 

dependent variable, whereas logistic regression predicts a categorical class value, rather than a 

numerical value. For prediction, it computes the conditional probability of each categorical class 

value, and assigns the class value with the highest probability. The algorithm takes real values as 

input and outputs normalized values within the [0, 1] interval. The model can be utilized for binary 

and multi-class classification. The standard logistic function is a sigmoid function the value of 

which approaches 1 when the regression expression tends to ¥, whereas it approaches 0 when the 

regression expression tends to -¥. It takes the form given below:  

     (3) 

where 𝐹 denotes the probability of a class value when the dependent variable equals x, and p is the 

number of explanatory variables. In the present study, the 0.5 cutoff was chosen in order to assign 

the prediction results to the classes. 
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2.3.6     Performance Measures 

 In the present study, four metrics were adopted to measure model performance, namely 

AUC, accuracy, sensitivity, and specificity, with the latter three defined as follows: 

     (4) 

     (5) 

     (6) 

where TP, TN, FP, and FN denote the true positives, true negatives, false positives, and false 

negatives, respectively. Because the datasets examined in the present study were imbalanced, AUC 

was considered as the main performance criterion, due to the fact that sensitivity and specificity 

have an inherent tradeoff among them, and can also be misleading for imbalanced datasets. 

However, all aforementioned criteria were measured and are presented here to provide a 

comprehensive picture of the model quality. The AUC metric is the area under the curve of all 

combinations of sensitivity and (1 – specificity), thus giving a more accurate measure regarding 

the models’ performance, irrespective of the tradeoff or cutoff point chosen between sensitivity 

and specificity.  

 

2.3.7     Sensitivity Analysis of Predictor Variables 

 One of the objectives of the present study was to develop a methodology that can be used 

to identify the most important cancer survivability predictors and establish how their importance 

changes over time. Findings yielded by such analyses can provide insight into how different factors 

affect the survival time for cancer patients. This information can be used by medical practitioners 

and decision makers to make better-informed data-driven treatment choices for their patients. SA 

was used for each of the models to understand what effect each predictor has on the model output 

and thus establish the relative importance of the examined variables for each examined period.  

 SA provides indication of the relative importance of each input for predicting the model 

output. Once the models have been trained, sensitivity analysis is conducted by assigning each 

variable in the model its nominal value. In the subsequent steps, one by one, each variable is 

changed gradually in both positive and negative direction, while the values of the remaining 

variables are held constant (equal to their respective means). As can be observed in Eq. 7, the 
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sensitivity of a specific predictor variable is calculated by taking the proportion of the error of the 

model that includes this variable to the error of the model when it does not include this specific 

variable. Therefore, the importance of a variable is in direct proportion to variance of predictive 

error of the classification model in the absence of that specific variable. The effect these changes 

have on the output is observed and the same process is repeated with the next variable until the 

effect of all variables has been evaluated (Saltelli et al., 2002). At the end of the process, the effect 

of each variable on the output can be tabulated, and those that have the least significant effect on 

the output can be identified. In the present study, the relative importance of each classification 

model was established using the sensitivity measure introduced by Saltelli (2002), given by: 

     (7) 

where y is the dichotomous response variable, 𝑉(𝑦) is the unconditional response variable, E is the 

expectation operator that integrates all predictors except 𝑥*. The normalized sensitivity of a 

variable is then calculated as described by Saltelli et al. (2002).  

 

2.3.8     Information Fusion 

 IF is an umbrella term used for techniques that are applied to combine information from 

many different sources to increase some quality, such as knowledge discovery or information 

accuracy. Thus, IF techniques can be used for preprocessing raw data to increase its quality before 

being used for data mining, or for creating data mining models, to for example fuse partial results. 

Similarly IF can be used to extract and aggregate information from multiple sources (e.g., multiple 

models) to create an aggregated value using some function (Vicenc Torra, 2003). Such techniques 

have been shown to increase the robustness and accuracy of available information or knowledge 

discovery (Cang & Yu, 2014). At the same time, IF can decrease the uncertainty and bias of 

singular sources by combining many sources to obtain a better forecast estimate (Clemen, 1989). 

IF techniques have therefore become increasingly popular in the data mining field in recent years. 

While many such techniques have been described in the data mining literature, none can be 

considered the best at combining multiple information streams, whether applied before, during, or 

after the modeling process. In practice, an IF method should be chosen by considering the problem 

and the utility of several relevant models in a trial and error fashion (Ruiz & Nieto, 2000).  

Any particular data mining model or information source can be formulated as: 

( )
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     (8) 

where 𝑔 denotes the prediction function or information source, 𝑦, is the predicted output, and the 

𝑥1 …𝑥m are the m input features. With such models or information sources, a fused output can be 

formulated as: 

      (9) 

where 𝒙 denotes vectors of the input features for each input model, and Ψ specifies a combination 

function. If this function is linear, the IF model can be represented as:  

      (10) 

where 𝜆i represent weights, which can be based on the confidence level or accuracy measure of 

each information source or input model. For a prediction model, this can be the AUC measure, 

whereby a model with a higher AUC would have a greater impact on the final fused value obtained 

by the IF technique. As indicated from the above formulation, there are countless ways to combine 

the information from multiple sources, given the number of combination functions, model weights, 

source aggregations, etc. Thus, following the IF technique application, the final fused information 

will reduce the uncertainty, noise, or error contributed by any single source, thereby increasing the 

accuracy or usefulness of the final, fused data.  

 

2.4     Results and Discussion 

In this section, we discuss the variable selection results and the performance of the 

predictive models that were used to predict cancer patient survivability. The statistical 

programming language, R, was employed throughout the modeling process—from variable 

selection to model training and validation (R Core Team, 2014). In particular, GA and LASSO—

the algorithms used for performing the variable selection—were executed using the R packages 

gaselect (Kepplinger, 2015) and glmnet (Friedman et al., 2010), respectively. 

 

2.4.1     Variable Selection Results 

  In the present study, models that separate the output variable on three time-based intervals 

were developed, due to which three sets of variables were selected by each of the variable selection 

algorithms. Table 2.3 shows the variables selected for each of these time intervals.   
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Table 2.3: Variables selected for each time interval  

Variable Name 
1 YEAR 5 YEAR 10 YEAR 

LASSO GA LASSO 
U GA 

LASSO GA LASSO 
U GA 

LASSO GA LASSO 
U GA 

Cancer stage ✓ 
 

✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Nodes positive ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Tumor size 

         

Age 
 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Marital status          
Lymph node ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 
✓ 

Primary site 
         

PR status 
   

✓ ✓ ✓ ✓ ✓ ✓ 
ER status 

   
✓ ✓ ✓ ✓ 

 
✓ 

Behavior 
         

Surgery 
   

✓ 
 

✓ 
 

✓ ✓ 
Extension ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Histology 

         

Grade 
 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Radiation 

      
✓ ✓ ✓ 

Race 
 

✓ ✓ 
      

Tumor marker 
 

✓ ✓ 
 

✓ ✓ 
 

✓ ✓ 
 

 As can be seen from Table 2.3, application of GA and LASSO resulted in different variable 

sets, most of which overlap for the 5- and 10-year intervals. For instance, nodes positive and 

extension were selected for all three time periods by both GA and LASSO. In the 1-year interval, 

only three variables were selected by both GA and LASSO, namely nodes positive, extension, and 

lymph node. On the other hand, for the 5-year interval, GA and LASSO selected the same variables, 

with the exception of surgery, and tumor marker. It should be noted that tumor size, marital status, 

primary site, radiation, behavior, histology and race were not selected as important variables for 

5-year survival prediction in this study whereas these attributes have been selected for analysis in 

Delen et al. (2005). There are two possible reasons for the difference although the same dataset 

has been utilized. First, we used variable selection algorithms to select the important variables 

whereas expert opinion has been used in Delen et al. (2005). Secondly, while we used observations 

from 1973 to 2010, the comparative study has used dataset from 1973 to 2000. The extended time 

frame with new attributes such as ER- and PR status along with variable selection algorithms 

resulted in different set of attributes in this study compared to Delen et al. (2005). In the 10-year 
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time period, Lymph node, ER status, Surgery, and Tumor marker were the only variables that were 

not selected by both methods. In the final stage, based on the union set, 8, 10, and 11 variables 

were selected for 1-, 5- and 10-year time points, respectively. It should be noted that the variables 

that were selected by GA and LASSO do not represent the final set of important variables. Rather, 

they are the candidates selected for inclusion in the final prediction models. The final set of 

important variables, along with their importance levels, is provided in Section 2.4.2, after applying 

SA and IF. 

 

2.4.2     Classification Results 

 Two different classification models (ANN and LR) were employed in the present study for 

each of the three time intervals due to their high performance in the preliminary data analysis stage. 

Each model was trained using SMOTE and RUS sampling methods, along with 10-fold cross-

validation. Therefore, 360 models were produced, as there were three variable combinations (GA, 

LASSO, GA U LASSO) × two learning algorithms (ANN and LR) × two sampling algorithms 

(RUS and SMOTE) × 3 time intervals (1-, 5- and 10-year periods) × 10 folds. The aggregated form 

of the classification results yielded by these models is shown in Table 2.4, where the second 

column represents the variable selection and balancing algorithms that are used for the associated 

year. To exemplify, LASSO (RUS) represents the model that is sampled through RUS and uses the 

variables selected through LASSO only. On the other hand, LASSO	∪	GA (SMOTE) represents the 

model that is sampled through SMOTE and uses the variables selected through the union set of 

LASSO and GA. 

 Some interesting patterns can be identified in the prediction results, as shown in Table 2.4. 

As previously noted, AUC was considered as the primary criterion, since it considers both 

sensitivity and specificity. It is thus more informative, especially when there is a significant 

imbalance between the minority and majority class. In such cases, the accuracy rate can be 

extremely high, while model sensitivity can be extremely low. 

It is evident from Table 2.4 that the AUC level decreases as the prediction period increases. 

For example, the AUC rate for both ANN and LR is the lowest in the 10-year prediction. 

Furthermore, the power of AUC—as well as accuracy, sensitivity, and specificity—decreases from 

1- to 10-year survival prediction. This might be due to a higher bias in predicting survival for 

longer time periods (Steyerberg, 2008). 
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Table 2.4: Classification results using SMOTE and RUS with different models 

Logistic Regression 
Number of 
Variables 

Accuracy Sensitivity Specificity AUC 

1-
ye

ar
 

LASSO (RUS) 
4 

0.840 (0.003) 0.692 (0.034) 0.842 (0.003) 0.842 (0.024) 
LASSO (SMOTE) 0.838 (0.003) 0.693 (0.038) 0.841 (0.004) 0.845 (0.026) 
GA (RUS) 

7 
0.741 (0.006) 0.748 (0.045) 0.741 (0.007) 0.818 (0.020) 

GA (SMOTE) 0.819 (0.011) 0.756 (0.060) 0.820 (0.012) 0.861 (0.024) 
LASSO	∪	GA (RUS) 

8 
0.737 (0.005) 0.788 (0.46) 0.736 (0.005) 0.829 (0.018) 

LASSO	∪	GA (SMOTE) 0.807 (0.007) 0.789 (0.050) 0.808 (0.008) 0.870 (0.022) 

5-
ye

ar
 

LASSO (RUS) 
9 

0.726 (0.006) 0.751 (0.010) 0.722 (0.007) 0.815 (0.006) 
LASSO (SMOTE) 0.749 (0.005) 0.731 (0.006) 0.752 (0.006) 0.820 (0.006) 
GA (RUS) 

9 
0.746 (0.006) 0.740 (0.014) 0.747 (0.007) 0.824 (0.006) 

GA (SMOTE) 0.757 (0.006) 0.737 (0.011) 0.760 (0.006) 0.828 (0.005) 
LASSO	∪	GA (RUS) 

10 
0.747 (0.006) 0.752 (0.013) 0.734 (0.007) 0.824 (0.005) 

LASSO	∪	GA (SMOTE) 0.755 (0.006) 0.738 (0.012) 0.757 (0.007) 0.829 (0.005) 

10
-y

ea
r 

LASSO (RUS) 
9 

0.724 (0.007) 0.692 (0.011) 0.732 (0.009) 0.785 (0.007) 
LASSO (SMOTE) 0.736 (0.006) 0.694 (0.015) 0.747 (0.007) 0.791 (0.007) 

GA (RUS) 
9 

0.728 (0.007) 0.702 (0.012) 0.735 (0.009) 0.789 (0.007) 
GA (SMOTE) 0.737 (0.007) 0.693 (0.014) 0.749 (0.009) 0.794 (0.007) 
LASSO	∪	GA (RUS) 

11 
0.726 (0.007) 0.702 (0.013) 0.732 (0.008) 0.790 (0.007) 

LASSO	∪	GA (SMOTE) 0.738 (0.006) 0.695 (0.015) 0.749 (0.007) 0.796 (0.007) 

Artificial Neural Networks Number of 
Variables 

Accuracy Sensitivity Specificity AUC 

1-
ye

ar
 

LASSO (RUS) 
4 

0.828 (0.011) 0.694 (0.034) 0.830 (0.012) 0.840 (0.021) 
LASSO (SMOTE) 0.822 (0.013) 0.714 (0.040) 0.824 (0.013) 0.845 (0.021) 
GA(RUS) 

7 
0.736 (0.006) 0.777 (0.005) 0.735 (0.006) 0.826 (0.025) 

GA (SMOTE) 0.819 (0.010) 0.777 (0.051) 0.820 (0.010) 0.869 (0.019) 
LASSO	∪	GA(RUS) 

8 
0.722 (0.013) 0.801 (0.049) 0.721 (0.012) 0.829 (0.026) 

LASSO	∪	GA(SMOTE) 0.822 (0.009) 0.772 (0.046) 0.823 (0.009) 0.871 (0.020) 

5 
-y

ea
r 

LASSO (RUS) 
9 

0.744 (0.006) 0.745 (0.010) 0.744 (0.007) 0.823 (0.006) 
LASSO (SMOTE) 0.761 (0.008) 0.743 (0.015) 0.764 (0.010) 0.835 (0.006) 
GA (RUS) 

9 
0.744 (0.007) 0.748 (0.012) 0.743 (0.008) 0.824 (0.006) 

GA (SMOTE) 0.755 (0.005) 0.758 (0.014) 0.754 (0.007) 0.835 (0.005) 
LASSO	∪	GA(RUS) 

10 
0.737 (0.007) 0.758 (0.017) 0.734 (0.009) 0.824 (0.006) 

LASSO	∪	GA(SMOTE) 0.756 (0.003) 0.755 (0.013) 0.759 (0.005) 0.836 (0.006) 

10
-y

ea
r 

LASSO (RUS) 
9 

0.726 (0.007) 0.706 (0.016) 0.731 (0.010) 0.792 (0.008) 
LASSO (SMOTE) 0.745 (0.006) 0.695 (0.015) 0.758 (0.008) 0.803 (0.007) 

GA (RUS) 
9 

0.721 (0.007) 0.710 (0.013) 0.723 (0.010) 0.791 (0.007) 
GA (SMOTE) 0.741 (0.007) 0.706 (0.011) 0.751 (0.008) 0.802 (0.007) 
LASSO	∪	GA (RUS) 

11 
0.724 (0.006) 0.705 (0.012) 0.729 (0.008) 0.790 (0.008) 

LASSO	∪	GA (SMOTE) 0.742 (0.011) 0.697 (0.016) 0.754 (0.013) 0.801 (0.007) 

 

 Another interesting observation is that the ANN models always outperform the LR models 

in all time periods (.871 and .870 in 1-year, .836 and .829 in 5-year and .803 and .796 in 10-year 
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time periods). Irrespective of the statistical significance of the observed differences, it is not 

possible to identify models that would work the best on a certain type of data, due to which it is 

necessary to resort to the trial & error option. It is likely that the inability to differentiate models 

based on the aforementioned measures stems from the potential non-linear structure of the dataset. 

 When the balancing (sampling) procedures are considered, the results reported in Table 2.4 

indicate that SMOTE always outperformed the RUS procedure for both ANN and LR models, as 

well as for both GA and LASSO selection models. This outcome is expected when a dataset 

includes a large number of variables. As the number of variables increases, the number of cases 

(i.e., the number of observations) should also increase exponentially in order to train the model 

well (Han & Kamber, 2006). Hence, instead of decreasing the number of cases (as in RUS), 

increasing the number of cases (as in SMOTE) might increase the model predictive power, since 

there is no information loss. It should be noted that similar results might not be obtained from a 

dataset with the same number of cases but with fewer variables. These arguments are in line with 

the findings reported by Kumar et al. (2012), who demonstrated that sampling methods can be 

used interchangeably for a given model without diminishing its predictive power. 

 Finally, the results reported in Table 2.4 demonstrate that neither variable selection method 

consistently outperforms the other alternative. However, for both ANN and LR, and for all three 

time periods, the models provide better results when the union set of LASSO and GA with SMOTE 

is considered with the exception of 10-year period with ANN prediction.  

 Each prediction/classification method provides different outputs for a given dataset, as it 

was also provided in the related literature (Delen et al., 2005). Therefore, in the present study, 

information fusion was employed to combine multiple predictions made by different models and 

thus ensure more reliable and robust results. After applying the sensitivity analysis procedure, 

which was explained in detail in Section 2.3.7, the variable importance for both models and all 

three time periods was obtained. Therefore, six variable importance reports have been generated 

(i.e., 1-year ANN, 1-year LR, 5-year ANN, 5-year LR, 10-year ANN, and 10-year LR), each 

focusing on the importance level of a variable for a given period and a given model. Subsequently, 

the two reports that belong to the same time period were combined via the IF model, thus yielding 

three importance reports for their respective time periods. In the final stage, the results were 

presented graphically, as shown in Figure 2.2, to visualize model outputs for three survival time 

periods after information fusion.  
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 The results shown in Figure 2.2 demonstrate that the prediction power of grade, extension, 

lymph nodes and nodes positive does not decrease from 1- to 5-year, but increases in the 10-year 

survival prediction. Similarly, although there is 1% reduction in the 5-year survival prediction 

power of historic stage, it also increases while predicting 10-year survival rate. While such 

reduction could have occurred due to overfitting, the increase in the predictor importance from 1- 

to 10-year survival rate can be attributed to the information about the potential spread rates of the 

tumor cells, which is provided by these five predictors (Bunting et al., 1976; Carter et al., 1989; 

Kennecke et al., 2010). Therefore, while impacts of the cancer characteristics might diminish in 

the short term due to treatment, these tumor characteristics are highly informative in determining 

the long-term patient survival and cancer recurrence, and thus gain importance as the illness 

progresses (Delen, 2009).  

 

Figure 2.2: Variable importance for 1-, 5- and 10-year survival prediction via IF model 

 Furthermore, tumor marker provides information about cancer behavior and the treatment 

types that can be effective for a specific patient (McShane et al., 2005). Although one type of 

treatment can benefit the patient and reduce the recurrence risk in the first five years, it may lose 

its effect in the long term (Clarke et al., 2005). Therefore, while tumor marker is of similar 

relevance for predicting 1- and 5-year survival, its power in predicting 10-year survival is much 

lower. Cancer stage revealed a similar trend in predicting short- and long-term survival. Owing to 

the reliance on state-of-the-art technologies, 5-year survival rate is 100% for Stage 0 and Stage I 

breast cancer. However, it decreases to 93%, 72% and 22% for Stage II, III and IV breast cancer 

patients, respectively (Howlader et al., 2013). Considering the fact that the median survival time 
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of patients with metastatic breast cancer is four years (Bafford et al., 2009), and patients diagnosed 

with Stage II and III cancer often die for reasons other than breast cancer such as flu, cold, etc. 

(Howlader et al., 2013), the prediction model loses its power to predict 10-year survival.  

 In addition, ER and PR status indicate whether cancer cells have estrogen or progesterone 

receptors that promote cancer cell growth in the presence of estrogen or progesterone hormones, 

respectively. Results yielded by the current analyses demonstrate that ER and PR status do not 

have an impact on 1-year survivability, as both are also related with prognostic factors, such as 

tumor size, lymph node involvement, cancer stage, and histology type (Moise et al., 2013). On the 

other hand, both ER and PR status follow a similar trend in predicting 5- and 10-year survival. 

While a patient diagnosed ER positive may have higher chance of 5-year survival (Berry et al., 

2006), both ER- and PR-status have diminishing effect for predicting 10-year survival. The results 

support the findings reported by Kasami et al. (2008) and Hirata et al. (2009), who demonstrated 

that adjuvant systematic treatment can change ER and PR status, which would in turn reduce their 

long-term predictive power.   

 Moreover, while age is highly relevant in predicting cancer patient survival, its power 

diminishes with time. There are conflicting opinions on the importance of age for breast cancer 

survival. While Adami et al. (1986) and Nixon et al. (1994) demonstrated that younger breast 

cancer patients are more vulnerable to distant metastases and are more likely to experience cancer 

recurrence, Yancik et al. (1989) found that older patients do as well as young ones in the short-

term. Moreover, Lundin et al. (1999) showed that age does not provide any statistical power to the 

prediction model for predicting 5- and 10- year survival whereas it becomes statistically significant 

in analyzing 15-year survival. Therefore, available evidence supports the importance of age in 

predicting 1-year survival. On the other hand, its predictive power reduces from 19% to 12% from 

1- to 10-year survival period, likely due to the higher significance of other predictors, such as 

grade and lymph node involvement. Finally, while undergoing surgery provides no predictive 

importance for 1-year survival, it has almost equal power in predicting 5- and 10-year survival. 

Surgery, however, has a relatively low importance compared to other predictors because 

mastectomy is performed on almost all patients to prevent potential cancer growth and spread. 

Therefore, since most of the patients included in the analyzed dataset opted to undergo 

mastectomy, the prediction model assigned low importance rate to surgery.  
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2.5     Conclusions and Future Research Plan 

 In the present work, a novel approach for predicting the survival time of breast cancer 

patients after diagnosis was proposed and was applied to three time periods. The analyses reported 

in the preceding sections indicate that certain predictive attributes contained within existing 

medical databases can be used to develop models that can accurately predict cancer outcomes and 

patient survival rates. To achieve this aim, a hybrid methodology was formulated to elucidate 

whether and how the importance of various factors changes over time, rather than focusing on 

cancer stages. The methodology was developed using the SEER dataset pertaining to the 

1973−2013 period obtained from NIH. Since the dataset was imbalanced, RUS and SMOTE 

methods were applied. In addition, before performing classification, two well-known methods GA 

and LASSO were utilized in order to identify the best set of predictor candidates for inclusion into 

the prediction models. In the classification process, the importance of each variable was 

determined using two classification algorithms namely ANN and LR, before applying an IF 

technique. The aim of this work was to ascertain (1) which factors contribute the most to the 

prediction of survival of breast cancer patients in various time intervals, and (2) whether and how 

the importance of those factors changes over time. The study findings revealed that some factors 

typically considered relevant for cancer treatment do not equally contribute to patient survival. As 

a result of identifying the key factors for patients’ short- and long-term survival, the most 

parsimonious models were developed for each time period, by utilizing purely data-driven 

algorithms. Moreover, the importance of these variables and their changes over time was 

established, revealing the underlying dynamics within and among factors. Thus, the contribution 

of the current study to the extant body of knowledge stems from mapping out the variables whose 

impact changes over time. As this was achieved by employing the most parsimonious models, 

these strategies can have much broader implications for cancer treatment and research. In 

particular, advanced resampling techniques were built by preventing the class imbalance problems 

that occur due to significant differences in survival classes in most survival datasets. Therefore, 

the same method can be adopted not only for the practitioners in breast cancer field but also in all 

cancer types. Moreover, the information provided here will be beneficial to medical practitioners, 

cancer specialists, in conducting their treatments in a more efficient, reliable, and productive 

manner. 
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 The methodology presented in this study can be used to augment decision-making 

processes based on data-driven predictions in order to determine better prognosis and treatment 

courses. However, not all patterns identified by machine learning models may be useful, or 

interesting to practitioners. Any predictions made by such models, in order to be useful, must 

identify patterns that can be actionable and logical. Therefore, application of these models in 

practice requires a careful consideration of these model characteristics by medical practitioners.  

We plan to continue on the same research path and build a graphical user interface (GUI) 

that can be used by medical practitioners without any machine learning experience or statistical 

background. We plan to design the GUI to allow the practitioners to enter all relevant patient data 

and obtain the survival probability for that patient for three different time periods. As this tool can 

quickly identify “high risk” patients, medical practitioners can use this information to formulate 

the best course of treatment. We hope that such tool would remove some personal bias from 

already challenging treatment decisions. Finally, with minor adjustments, the tool can be applied 

to any cancer type. 
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Chapter 3 

A Data-Driven Statistical Modeling Approach for Identifying No-show Patients 

 

3.1    Abstract 

 Accurate prediction of no-show patients plays a crucial role in that it enables researchers 

to increase the efficiency of their scheduling systems. The purpose of the current study is to 

formulate a novel hybrid data mining based methodology to a) accurately predict patients no-

shows, b) build the most parsimonious model possible by employing a comprehensive variable 

selection procedure and, c) provide healthcare agencies with a patient-specific risk level. Our study 

suggests that an Artificial Neural Network (ANN) model should be employed as a classification 

algorithm in predicting patient no-shows by using the variable set that is commonly selected by a 

Genetic Algorithm (GA) and Simulated Annealing (SA). In addition, the Random Under-sampling 

(RUS) balancing method should be employed to improve the performance of the model in 

predicting the minority group (no-show) patients. The patient-specific risk scores obtained were 

justified by applying a threshold sensitivity analysis. It has been shown that the medical experts 

can purely and confidently rely on the probabilistic scores provided, while their intuition/incentive 

should collaborate with prediction models to make the final decision on the cases where the model 

is not confident enough. Those insights enable health care professionals to improve clinic 

utilization, and improve patient outcomes. The output of the model can be applied to the 

appointment scheduling system for a robust overbooking strategy. 

 

3.2     Introduction 

 When patients miss appointments, they impose a substantial burden on healthcare 

providers. Such patients, called “no-shows,” are an expensive problem because they reduce 

revenue and increase costs for healthcare providers (DuMontier et al., 2013; Moore et al., 2001). 

No-show patients harm themselves, as they have poor healthcare outcomes (Fortin et al., 2016). 

Due to these problems, the decision science literature has explored several strategies to mitigate 

both skipped appointments as well as their effects such as overbooking to reduce the number of 
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open appointments (Reid et al., 2016; Zeng et al., 2010), modifying patient behavior through 

incentives or deterrents (Vikander et al., 1986), requiring patient prepayments (Garuda et al., 

1998), and imposing fines on patients who have skipped appointments (Bech, 2005) etc.  

 Predicting patient no-shows patients plays a crucial role in that it enables researchers to 

increase the efficiency of the prescription (optimization, simulation, scheduling etc.) for the 

problem. In other words “a good predictive model leads to a good prescriptive model”. The 

enormous amount of complex data that are being made available to researchers offer a huge 

potential increase in the amount of useful knowledge to be gained, with the help of today’s 

computing power that can host efficient but computationally expensive data analytical models 

(Olson & Delen, 2008).  

 In the current study, we develop a data-driven method that classifies the “No-show” 

patients into five categories (i.e. (1) very low risk (of no-show), (2) low risk, (3) moderate risk, (4) 

high risk, and (5) very high risk) by employing efficient predictive methods in addition to heuristic-

based optimization models and data  balancing algorithms. Our study fills a significant gap in the 

existing body of knowledge in that it 1) develops a very parsimonious model by using wrapper-

based variable selection models since “the simpler is the better“, 2) employs cutting edge data 

balancing algorithms to increase the ability of the predictive model in detecting the minority class, 

as the no-show  datasets are mostly imbalanced (i.e. the number of the no-shows are much less 

than the number of show-ups), 3) determines the patients who have very low-, low-, moderate-, 

high- and very high-risk of being a no-show patient by using the probabilities that can be achieved 

by some of these probabilistic machine learning models and 4) analyzing publicly available patient 

data that were collected over a significant period of time. To the best of our knowledge, the 

outcome of the current study is significant to the no-show problem, as none of these points were 

addressed in the related literature. 

  It should be clearly indicated that our study targets only the predictive side of the problem 

as it does not attempt to come up with a prescriptive solution (i.e. scheduling). Having said that, 

the scheduling systems can be designed based on these insights to optimize the utilization of 

healthcare resources and come up with more efficient no-show management systems as our study 

provides the patient-specific (No-show) risk levels that are obtained through a highly parsimonious 

model. In addition, we examine the effects of the primary factors that lead to the no-show issues. 

Our approach is to identify and pinpoint the critical factors involved in the no-show problem such 
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as which patient types regularly miss appointments, whether there are discernable patterns at 

different time scales. That is, whether some times of the day, month or year have a higher 

probability of no-shows, etc. Such insights can help healthcare providers to implement mitigation 

strategies based on root causes by deploying prediction models and intervention systems and offer 

healthcare providers an accurate decision support system that can help them understand their 

patients’ behaviors and manage their resource deployment accordingly.  

 

3.3     Methodology 

 To provide practitioners with better information for developing a scheduling system, we 

propose a technique that can be used by clinics to minimize their no-show patient cost. Figure 3.1 

shows the proposed four-step methodology. In the first step, we begin with a healthcare provider 

dataset from the state of Espírito Santo, Brazil. We downloaded the patient data from the Kaggle 

website and preprocessed it to prepare for the machine learning algorithms. The second step was 

to select the relevant predictors. To choose the predictors, we used two optimization techniques: 

GA and SA. In the third step, we balanced the dataset because the number of no-show patients in 

the dataset is significantly less than patients who kept their appointments. We used RUS, ROS, 

and SMOTE. Balancing applied solely to the training set. To split the dataset into training and test 

sets, we implemented a 10-fold cross-validation technique. We trained three classification models 

LR, RF, and ANN along with the variable sets obtained through the optimization algorithms (SA 

and GA) as well as combinations of these variable sets. In addition, an ensemble learning model 

is developed by combining the aforementioned three models. In the fourth step, we analyzed the 

individual performance of the classification/prediction models. After finding the best performing 

variable set with the best classification algorithm and the best balancing technique, we explored 

the importance of these predictors using sensitivity analysis. An Information Fusion method is 

then used to combine essential variables. Lastly, patients are classified into five risk level with 

regard to patient-specific no-show risk scores. The details of each of the steps of the methodology 

are given the following subsections. 

 

3.3.1     Data Acquisition and Preparation 

 We acquired the dataset from the data science competition platform Kaggle 

(https://www.kaggle.com/joniarroba/noshowappointments) (“Medical Appointment No-shows,” 
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2016). The dataset has 110,528 observations with 14 variables. The dataset has two categories: (1) 

appointment characteristics (appointment date, appointment scheduling time, appointment 

 ID, patient ID); and (2) demographic information (age, gender, financial status, alcoholism,  

Figure 3.1: An outline of the proposed data analytics methodology 

handicap, and patient health). In addition to these variables, we derived new variables from the 

originals. We created a lead time variable using the number of days between when the appointment 

day was scheduled and the appointment day itself.  
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 Similarly, we constructed calling time, appointment day, appointment time, and 

appointment month variables from appointment date. We used the patient appointment records to 

create prior no-show (proportion of prior missed appointments) and time between appointments 

(the time elapsed between two consecutive appointments) variables. Lastly, we pruned outliers 

and irrelevant variables like Patient ID and Appointment ID from the dataset. After completing the 

variable extraction and elimination process, we obtained a dataset with 72,602 observations and 

17 variables. The definitions of the predictors are given in Table 3.1. 

 

Table 3.1: Description of variables 

Variable Name Definition of Variable 
Age Chronological patient age 
Gender Patient sex 
Season The month of the appointment 
Appointment Day Day (1-31) of the appointment 
Scheduling Day The day an appointment was scheduled to take place 
Lead Time Waiting time for the up-coming appointment 
Calling Time The time patients called to schedule their appointments 
Appointment Reminder Whether a reminder message or call is received 
Alcoholism Whether the patient is an alcoholic 
Financial Aid Whether the patient has financial support 
Handicap Whether the patient has a permanent physical impediment 
Hypertension Whether the patient has high blood pressure 
Diabetes Whether the patient has diabetes 
Neighborhood Hospital location 
Time between Appointments The elapsed time between two consecutive appointments 
Prior No-shows The proportion of no-shows 

 

3.3.2     Variable Selection 

 Variable selection is the extraction of the most relevant subset of variables from the original 

set. Performing variable selection enables researchers to find the simplest model that predicts the 

target variable well. However, finding an optimal subset of variables is a challenging task. An 

exhaustive search, evaluating all combinations of candidate subsets requires computational effort 

that grows exponentially (22 where n is the variable count); therefore, it may not execute in real 

time, especially when data size is big. On the other hand, computationally efficient algorithms can 

possess different shortcomings. The traditional statistical variable selection techniques (as 

employed in the related no-show literature) such as ridge regression, backward selection, forward 

selection, and stepwise selection, perform poorly when the collinearity among the predictors exists 
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(James et al., 2013). Balancing these competing interests requires careful consideration of the 

tradeoffs, and implementing a solution accordingly. In this study, we sought an accurate, 

parsimonious model, without the computationally intense demands of the exhaustive search. 

Therefore, we employed two metaheuristic algorithms, SA and GA; we explain the optimization 

techniques and advantages of these methods in the sub-sections below.  

 

3.3.2.1     Simulated Annealing  

 Simulated annealing, inspired by the annealing process, seeks a global optimum for a given 

function (Kirkpatrick et al., 1983). The SA algorithm mimics the annealing process using a 

temperature variable that initially has a large (hot) value and then cools down (decreases) at each 

iteration step. SA always accepts better solutions, yet it also randomly accepts worse solutions as 

long as the system temperature is high. The system temperature cools down gradually, thereby 

restricting the search space.  

 

 GENERATE: An initial random best-performing variable subset, X. 
 INITIALIZE:  
   The number of iterations (move attempt): G; 
   The current system temperature: 𝜑; 
 For 𝛼 = 1	𝑡𝑜	G { 
   Initiate a random move, i.e., perturb the current variable set X, 
   Calculate the performance of the model F	(𝑿9), 
   Compute the change in performance, DF = F	(𝑿:;<=) −F	(𝑿9)	  
  if  DF	 < 	0  then 
   Accept the downhill move and update the current predictor set 
   Set  F	(𝑿:;<=) = F	(𝑿9) 
  else 
          Calculate the acceptance probability of the uphill move: Θ∗ 
   Set 𝛩9∗

	 	= 	exp	(	F	(𝑿F)GF	(𝑿HIJK)
L(9)

) 
   Sample a number, 𝜁, from a uniformly distributed population between [0,1] 
   If 𝛩9∗ ≤ 𝜁	 then 
    Set F	(𝑿:;<=)	= F	(𝑿9) 
   else  
    Set F	(𝑿:;<=)=F	(𝑿:;<=) 
   end 
  end 

end 
Report the model with the predictor set having the highest F	(𝑿9), for  ∀	𝛼	 ∈ [1,G	] 

 
Figure 3.2: The proposed simulated annealing variable selection algorithm 
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The central premise of simulated annealing algorithms is to “jump” out of local minima that 

the algorithm otherwise cannot escape, thereby gaining the ability to pursue the search in other 

regions. In the optimal case, the algorithm finds the global maximum. In this study, we propose a 

simulated annealing algorithm utilizing Random Forest model as it is invulnerable to both the issue 

of the multicollinearity and the overfitting, contrary to many other machine learning models 

(Breiman, 2001).  Figure 3.2 show pseudocode of the proposed algorithm where the algorithm is 

run 10 times with a different initial random variable subset in the attempt to find the best possible 

solution. For detailed information about SA, see Rutenbar 1989 (Rutenbar, 1989). 
 

3.3.2.2     Genetic Algorithms 

 Genetic Algorithms, inspired by biological evolution, seek an optimal solution both for 

continuous (differentiable or not) and discrete functions (Goldberg & Holland, 1988). The 

effectiveness of GAs as variable selection tools has been proven in many fields (Bhanu & Lin, 

2003; Drake & Marks, 2002; Lavine et al., 2002).  

 

GENERATE: An initial population: Q = {qT, qU, qV, … , qX} 
INITIALIZE:  
 Rate of mutation: g 
 Rate of elitism: h  
 Number of iteration: 𝐾 
for 𝑘 =1 to 𝐾  

Number of elitism  𝜏 = h	 ∗ 	N  
Compute 𝑓(q	*

	(^))  where function, 𝑓, is produced using RF model 
Select the best 𝜏 chromosomes in Q and save them in QT 
Set QU = {q ∈	Q : q ∉ QT} , and set number of crossover d	 = 	 |Qb|

U
 

for 𝑗=1 to d	  
 Select two chromosomes qd and qe	from Q based on fitness criterion 

Randomly select a split position (loci) to exchange the genes of the chromosomes 
beyond the loci and store qf and q:	in QU 

 end 
 for 𝒋=1 to d	  
  mutate binary values of each gene of the chromosome q	h in QU with the rate g  
 end 
 Update Q	 = QT +	QU 
end 
Return q		∗ = 𝑎𝑟𝑔𝑚𝑎𝑥q	m(n)𝑓(q	*

			(^)). 

 
Figure 3.3: The proposed genetic variable selection algorithm 
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Therefore, in this study, we adopt GA as one of the variable selection tools. We propose a genetic 

algorithm, shown in Figure 3.3, consisting of the following initial parameters: number of 

maximum generations, 250, number of population per generation, 50, crossover probability, 0.8, 

and mutation probability: 0.1. 

 The intuition behind the choice of the crossover and mutation probability can be explained 

as follows. We keep the probability of crossover between pairs of chromosomes high, at 0.8, so as 

to promote the algorithm to move the next generations towards the space defined by the fittest 

chromosomes. Moreover, even though it is a common practice to keep the mutation probability 

small, say < 0.05, to reduce convergence time of the algorithm to an optimal solution, we set this 

probability to 0.1 in an effort to provide the proposed algorithm with the ability to escape local 

optima, with the tradeoff of having longer execution time. The proposed GA is also run 10 times 

as in SA to obtain the best possible solutions. Figure 3.4 illustrates the next generation of offspring, 

where two chromosomes propagate via the processes and the loci is the split position, beyond 

which the chromosomes exchange the genes. 

 

 
Figure 3.4: The propagation step of a genetic algorithm 
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3.3.3     K- fold Cross-validation 

 Cross-validation is a model validation technique to estimate the error rate on unseen data 

(Kohavi & Kohavi, 1995). k-fold Cross-Validation (CV) splits the dataset into k disjoint folds 

(subsets); k – 1 of these disjoint folds are used to fit a predictive model, and the fitted predictive 

model’s performance is evaluated on the fold left out. The procedure is repeated 𝑘	– 1 times, so 

that each fold takes its turn as the left-out fold, exhausting the entire dataset. The mathematical 

definition of the k-fold cross-validation is 

𝐶𝑉 =
1
𝑘q𝐴*

^

*sT

 (1) 

where k is the number of folds and 𝐴* is the model accuracy on the 𝑖th fold. We used 10-fold CV 

to evaluate the performance of the predictive models. We chose 𝑘 = 10 since it provides a good 

trade-off between the bias and variance, as well as the time required to run models (Dougherty et 

al., 1995). 

 

3.3.4     Sampling Techniques 

 The issue of having an uneven class size in the target variable encourages machine learning 

algorithms to take a naïve approach to minimize the loss function by classifying all the instances 

as the majority class (show-ups in our case). In doing so,  the machine learning algorithms 

maximize overall accuracy by generating high predictive accuracy for the majority class and low 

predictive accuracy for the minority class (see Table 3.5) (J.-S. Lee & Zhu, 2011). Table 3.2 

illustrates the number of no-show and show-up patients and their percentages in the dataset. 

Classifying all patients as show-up patients would be 79.07% accurate.  However, such a model is 

useless, because it would not predict any no-shows.  

 

   Table 3.2: Summary of the target variable 

 No-show Patients Show-up Patients 

# of instances 15196 57406 

Percentage 20.93% 79.07% 

 

 Two commonly used techniques that compensate the issue of imbalance are resampling the 

target variable, and cost-sensitive learning (Kotsiantis et al., 2006). However, in cost-sensitive 
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learning, misclassification costs may not be available, and if costs are available, overfitting the 

training set can result unless the costs are specified precisely (Bansal et al., 2008). Researchers use 

resampling methods to decrease or eliminate the imbalance. Approaches include minority class 

oversampling, majority class under-sampling, or a blend of both methods. (Dag et al., 2017; Kibis 

et al., 2017). However, it should be noted that there is no absolute winner among the techniques 

as different modeling techniques react differently to sampling. Thus, in this study, all the 

resampling techniques have been utilized during the model training process. 

 The sampling techniques we used are RUS, ROS and SMOTE. RUS randomly eliminates 

some majority-class observations until the majority class count is approximately equal to the 

minority-class observation count. Similarly, ROS increases the number of minority-class 

observations by randomly including existing samples as new samples until the number of 

observations in the minority class equals the majority class. SMOTE, on the other hand, uses both 

random under-sampling and over-sampling depending class distribution in the data. SMOTE 

increases the count of minority class by interpolating pairs of close neighbors in the minority class 

randomly, whereby generating synthetic instances. At the same time, SMOTE is capable of 

decreasing the majority class through under-sampling. The operational parameters of SMOTE—

the number nearest neighbors (KNNs), the rate of under-sampling and over-sampling—need to be 

specified by researchers before the execution of the algorithm.  After our extensive preliminary 

analysis, we use 5-nearest neighbors to have new cases synthesized, and equal rates for up- and 

down-sampling. 

 

3.3.5     Predictive Modeling 

 Predictive modeling is the process of creating a statistical or machine learning model to 

predict a future event. We used an ANN, RF, and LR to predict whether a given patient will be a 

no-show. We also created Ensemble Learners (EL) by using combinations of ANN, RF, and LR 

since empirical studies have shown that EL-based algorithms often produce more accurate results 

compared to single algorithms (Opitz & Maclin, 1999; West et al., 2005). However, 

counterexamples are reflected (Orimoloye, 2017); therefore, we included both ensemble and single 

learning algorithms. We describe our models in the following sub-sections. 
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3.3.5.1     Artificial Neural Networks 

 Artificial Neural Networks, inspired by the work theory of human brains, are complex 

analytical techniques that can model complicated, nonlinear functions (Patterson, 1996). In ANNs, 

the outcome is modeled by a set of latent variables that are a non-linear combination of the original 

variables, named as hidden units. These units, promoting the learning process by increasing the 

flexibility of the model, are located in the middle of the network and are connected to the outcomes 

through the output function.  

 Once the numbers of hidden units and predictors are defined, initial random values 

(weights) are assigned to the parameters of the network. The weight of the parameters, then, are 

updated  (i.e., the new weights are estimated) through optimization algorithms—attempting to 

minimize the loss function.  

 In this study, we deploy the most commonly used neural network, namely the single hidden 

layer back-propagation network (vanilla). The vanilla uses the back-propagation algorithm to find 

the solution to the optimal parameters. The back-propagation algorithm can be described as 

follows: 

Let 𝚯 denote the weight vector consisting of 

{𝛼vw , 𝛼w; 𝑞 = 1,2,… , 𝑄},where	Q	is	the	number	of	hidden	units 

{𝛾v^ , 𝛾^; 𝑡 = 1,2, … ,𝐾}, where K is the number of level in the target variable. 
(2) 

            Define 𝑿 be the input vector (predictor variables), 𝒁 be the hidden units (latent variables), 

and 𝒀 be the categorical target variable, then  

𝑍w = 𝜎�𝛼vw + 𝛼w�𝑿�, where 𝜎	is	the	sigmoid	function: 𝜎(𝑣) = T
TG;��

	, 

𝑇 = 𝛾v^ + 𝛾^𝒁, where 𝒁 = �𝑍T, 𝑍U,…,𝑍w�, 𝑇 = (	𝑇T, 𝑇U,…,𝑇 ), 

𝑓 (𝑿) = 	𝜋^(𝑇). 

(3) 

Compute 𝑓�̂ (𝑥*) using (3), and calculate the errors via (4) 

𝐿(𝚯) ≡ q𝐿h
X

hsT

 

=qq�𝑦h^ − 𝑓 �𝑥h��
U

�

^sT

,
X

hsT

 

(4) 

where 𝐿 is the loss function. Then back propagate the errors by means of (5) 
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𝜕𝐿h
𝜕𝛾^w

= −2 �𝑦h^ − 𝑓 �𝑥h��𝜋^¡ �𝛾^�𝑧h�𝑧wh, 

𝜕𝐿h
𝜕𝛼w£

= −q2�𝑦h^ − 𝑓 �𝑥h��𝜋^¡ �𝛾^�𝑧h�𝛾^w𝜎¡�𝛼w�𝑥*�𝑥h£
�

^sT

. 
(5) 

Where 𝑧wh = 𝜎(𝛼vw + 𝛼w�𝑥h), and 𝑧h = (𝑧Th, 𝑧Uh ,… , 𝑧¤h) .  

            Now update the weights using the following derivatives 

𝛾 w
(¥¦T) = 𝛾 w

(¥) − 𝜓q
𝜕𝐿h
𝜕𝛾 w

(¥) ,
X

hsT

 

𝛼w£
(¥¦T) = 𝛼w£

(¥) − 𝜓q
𝜕𝐿h
𝜕𝛼w£

(¥)

X

hsT

, 

(6) 

Where 𝜓 is the learning rate. The process is repated until either the maximum number of iteration 

number is reached or estimates of the error rate start increasing. 

 The neural networks involve a great number of parameters to be estimated,  thereby being 

prone to overfitting the data. To mitigate this problem, we regularize the model using the penalized 

loss function: 

qq�𝑦h^ − 𝑓 �𝑥h��
U

�

^sT

+ 	𝜉 ©q𝛾^wU
^w

+q𝛼w£U
w£

ª .
X

hsT

 (7) 

Where 𝜉 is the penalty term added on the parameter estimations known as weight decay.  

 It should be noted that tuning the parameters of ANN is a challenging task as there is no 

constraint and explicit way to select optimal parameters. In this study, therefore, all parameters of  

the ANN model, such as weight decay, learning rate, and the number of units in the hidden layer 

are tuned using the cross-validation technique.  

 

3.3.5.2     Random Forests  

 Random Forests, introduced by Breiman (2001), is a tree-based machine learning algorithm 

that recursively partitions data using a plurality of decision trees. The RF algorithm uses the 

bootstrap sampling technique to grow unique trees, which in turn not only overcomes the issue of 

overfitting but also renders the algorithm robust against noise in the data set. Moreover, RF 

randomly samples a portion of the predictors at each tree split but uses just one predictor to divide 

the data into two partitions. Limiting the predictors at each node decorrelates the trees produced. 
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Otherwise, a strong predictor, or a few strong predictors, will dominate and grow strongly 

correlated trees.  The tree-growing process yields a forest of multiple trees. Then, the RF tallies 

each tree’s vote and chooses the class by majority vote. In this study, we tune the parameters of 

the RF using the cross-validation technique, and intentionally dictate the model to grow an odd 

number of trees to avoid possible ties in the decision-making process.  The detailed information 

regarding the RF and its parameters can be found in (Breiman, 2001) and (Breiman, 2002), 

respectively. 

 

3.3.5.2     Logistic Regression 

 Logistic Regression is a member of the generalized linear models where the distribution of 

the response variable is assumed to belong to the exponential family of distributions (Hunter et al., 

2008). Researchers use LR mainly for predicting dichotomous dependent variables. LR uses the 

logit function to relate the probability of the occurrence of events to the predictor variables. In a 

two-class problem (as in our case), when the odds of the occurrence exceed 1, the instance can be 

classified as one, and zero otherwise. The mathematical definition of the standard logistic function 

can be defined as follows:  

𝑙𝑜𝑔𝑖𝑡(𝑝) = 	𝑙𝑛 ®
𝑝

1 − 𝑝¯ = 𝜷𝑿 (8) 

where 𝜷 and X are the coefficient and the input vector, respectively, and p is the probability of the 

target variable being equal one. The ultimate classification, then, is made as follows. 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = µ
"1", 𝑖𝑓		

𝑝
1 − 𝑝 > 1

"0", 𝑖𝑓	
𝑝

1 − 𝑝 < 1
 (9) 

where £
TG£

 is called the odds.  

 The researchers can manipulate the threshold value of the odds to get the desired level of 

sensitivity and specificity. For many of the programming languages, the default threshold for the 

odds is 1, or in other words, 0.5 for the p.    

  

3.3.6     Sensitivity Analysis 

 The relative importance of predictor variables can be obtained and interpreted in theory-

based statistical models such as generalized linear models, lasso, ridge regression, lars, and others. 



 40 

(James et al., 2013). Conversely, black box models, (models with no closed mathematical form), 

such as ANNs do not provide direct access to the mechanisms in the underlying process. 

Consequently, alternatives are required to provide insight into black box models. One path to 

insights is sensitivity analysis (Davis, 1989). 

 Sensitivity analysis determines the influence of independent variables in predictive models. 

The algorithm includes each of the predictors, calculates the model error, then excludes one of the 

predictors and recalculates the model error. The ratio of the model error with the variable to the 

model error without the variable is the sensitivity measure, indicating how sensitive the model is 

to the predictor (Principe et al., 2000). This process is repeated recursively. Saltelli introduced a 

sensitivity measure used to rank the relative importance of the variables for each predictive model. 

Its form is (Saltelli, 2002):  

                    (10) 

 The binary response variable is y, and V(y) is the unconditional output variance. E is the 

expectation operator, integrated over xi. We applied the sensitivity analysis on the best performing 

model and calculated the normalized sensitivity of the variable importance as described by Saltelli 

et al. (2002) (see Figure 3.5). 

 

3.3.7     Information Fusion  

 Information Fusion (IF) gathers information obtained through different algorithms to 

reduce the model uncertainty, and improve robustness and information completeness. Studies have 

shown that combining multiple predictive models produces more information and greater accuracy 

when compared to single models (Elder, 2003). 

 IF techniques have three primary use cases: 1) preprocessing to improve data quality before 

using data mining techniques, 2) model building, e.g., using a combination of predictive models 

to improve results, and 3) information extraction – calculating results that generate knowledge 

(Vicenc Torra, 2003). 

 In the final step of our study (see Figure 3.1), we used IF to aggregate the sensitivity 

measures from each of the predictors into an overall sensitivity measure. The overall sensitivity 

measure enables us to discover predictor importance in target variable prediction despite the black 

box nature of the models.  

( )
( )( )
( )
| ii

i

V E y xVS
V y V y
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 IF aggregation can take numerous forms. We adopted the method demonstrated in Dag et 

al. (2017) to combine the information gained out of each model.  

 

3.4     Results & Discussion  

3.4.1     Variable Selection Results 

 As can be seen from Table 3.3, the optimization algorithms found different sub-optimal 

solutions, due to their differing algorithmic nature. For example, the GA algorithm classified age 

and season as principal predictors in explaining the variation in the dataset while SA ignored them. 

Similarly, the SA algorithm considers handicap as a crucial predictor, but the GA algorithm did 

not. However, the algorithms arrived at the same conclusion for some variables, such as 

appointment day, lead time, appointment reminder, alcoholism, financial aid, diabetes, prior no-

show, and time between appointments. Lastly, neither of the methods considered gender, 

scheduling day, calling time, hypertension and neighborhood as essential variables.  

 

Table 3.3: Variable selections results 

Variable Name Simulated annealing Genetic algorithm 
Age  ✓ 
Gender   
Scheduling Day   
Appointment Day ✓ ✓ 
Season  ✓ 
Lead time ✓ ✓ 
Calling time   
Appointment reminder ✓ ✓ 
Alcoholism ✓ ✓ 
Financial Aid ✓ ✓ 
Handicap ✓  
Hypertension   
Diabetes ✓ ✓ 
Neighborhood   
Prior no-show ✓ ✓ 
Time between appointments ✓ ✓ 

 

 The optimization algorithms used in this study, GA and SA, are metaheuristic techniques 

in that they do not explore all search space, and thus cannot guarantee to provide the global best 
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solution. In an attempt to compensate this shortcoming, besides using the variable sets provided 

by GA and SA, we considered using their possible combinations, namely the intersection set and 

union set of the variable sets given by the two algorithms. In our preliminary analysis, the union 

set of the predictor variables has not performed as well as the intersection set, presumably because 

of the issue of overfitting the data. Therefore, it is not included in Table 3.4. On the other hand, 

the intersection set not only provides promising results, but also advances the parsimony 

(simplicity) of the model, as it is one of the essential products of the current study. More details 

about the variables and prediction/classification results are discussed in the subsequent sections. 

 
3.4.2     Classification Results 

 To begin with, to evaluate and compare the model performances we used four well-known 

performance evaluation metrics: accuracy, sensitivity, specificity, and AUC (a detailed 

explanation of the measures can be found in Powers 2011 (Powers, 2011)).  

 We trained our models with each of the variable subsets, which were defined in the 

previous sections (GA, SA and the intersection of these two) along with the balancing techniques. 

We evaluated the results using 10-fold cross-validation. We summarized the four measures of the 

performance of the predictive models numerically (i.e. accuracy, sensitivity, specificity, and 

AUC). Table 3.4 presents the classification/prediction results, with the standard deviation of each 

measure delimited by parentheses. The best results are set in boldface for each of the measures. 

We found the best AUC results (0.844) in the EL and ANN models, using RUS as the balancing 

technique and GA as the variable set provider. Similarly, the EL model using the predictor 

variables suggested by GA and balance via SMOTE produced the best accuracy (0.786) and 

specificity (0.814). Finally, the ANN model using the predictors obtained from the intersection of 

the variable set of GA and SA, and balanced by RUS, had the best sensitivity result (0.792). 

 Our study used the sensitivity metric as a primary criterion as it is crucially important to 

be able to correctly detect no-show patients so that necessary actions can be taken to mitigate any 

possible cost caused by no-show patients. Therefore, the ANN model, when trained with the 

variables that are commonly selected by GA and SA (intersection) and when the data is balanced 

with RUS algorithm,  outperformed all of the other options in Table 3.4.  

 On the other hand, Table 3.5 shows the performance of the predictive models that are 

developed without implementing the proposed data analytics technique. As expected, all of the 
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Table 3.4: Classification results 

 

models produced very low sensitivity scores, as low as 0.378 and as high as 0.426, while producing 

relatively high specificity scores. Such an outcome clearly shows that these models have very low 

Variable Set Model AUC Accuracy Sensitivity Specificity 
SI

M
U

LA
TE

D
 A

N
N

EA
LI

N
G

 

SM
O

TE
 LR 0.805(0.004) 0.735(0.006) 0.706(0.011) 0.743(0.008) 

RF 0.818(0.006) 0.766(0.006) 0.703(0.018) 0.782(0.010) 
ANN 0.838(0.006) 0.757(0.009) 0.734(0.030) 0.763(0.018) 
EL 0.837(0.004) 0.770(0.005) 0.702(0.017) 0.788(0.008) 

R
O

S 

LR 0.805(0.004) 0.727(0.006) 0.723(0.012) 0.728(0.008) 
RF 0.817(0.005) 0.756(0.004) 0.730(0.017) 0.763(0.008) 

ANN 0.839(0.005) 0.749(0.008) 0.756(0.013) 0.747(0.009) 
EL 0.837(0.004) 0.758(0.005) 0.733(0.012) 0.765(0.007) 

R
U

S 

LR 0.805(0.004) 0.751(0.005) 0.664(0.013) 0.775(0.007) 
RF 0.824(0.006) 0.771(0.004) 0.701(0.017) 0.789(0.006) 

ANN 0.838(0.004) 0.768(0.006) 0.707(0.013) 0.784(0.009) 
EL 0.837(0.004) 0.777(0.004) 0.688(0.013) 0.800(0.005) 

G
EN

ET
IC

 A
LG

O
R

IT
H

M
 

SM
O

TE
 LR 0.806(0.004) 0.734(0.007) 0.714(0.012) 0.739(0.008) 

RF 0.831(0.006) 0.782(0.005) 0.686(0.013) 0.807(0.005) 
ANN 0.837(0.004) 0.758(0.010) 0.728(0.030) 0.766(0.020) 
EL 0.843(0.005) 0.786(0.006) 0.680(0.009) 0.814(0.009) 

R
O

S 

LR 0.806(0.004) 0.727(0.007) 0.732(0.012) 0.726(0.008) 
RF 0.827(0.006) 0.771(0.007) 0.696(0.012) 0.791(0.009) 

ANN 0.837(0.007) 0.761(0.011) 0.725(0.028) 0.770(0.019) 
EL 0.842(0.005) 0.776(0.005) 0.701(0.010) 0.796(0.007) 

R
U

S 

LR 0.806(0.004) 0.729(0.006) 0.727(0.011) 0.730(0.007) 
RF 0.833(0.006) 0.745(0.006) 0.777(0.015) 0.737(0.008) 

ANN 0.844(0.005) 0.742(0.007) 0.781(0.012) 0.732(0.010) 
EL 0.844(0.005) 0.757(0.005) 0.750(0.012) 0.759(0.007) 

IN
TE

R
SE

C
TI

O
N

 SM
O

TE
 LR 0.805(0.004) 0.735(0.006) 0.706(0.011) 0.743(0.008) 

RF 0.827(0.005) 0.765(0.006) 0.715(0.027) 0.778(0.014) 
ANN 0.838(0.004) 0.757(0.005) 0.735(0.024) 0.763(0.011) 
EL 0.837(0.004) 0.771(0.004) 0.703(0.021) 0.789(0.008) 

R
O

S 

LR 0.805(0.004) 0.727(0.006) 0.723(0.012) 0.728(0.008) 
RF 0.830(0.005) 0.752(0.005) 0.752(0.017) 0.752(0.008) 

ANN 0.838(0.004) 0.746(0.010) 0.756(0.017) 0.744(0.015) 
EL 0.837(0.004) 0.757(0.005) 0.736(0.015) 0.762(0.009) 

R
U

S 

LR 0.805(0.004) 0.729(0.006) 0.718(0.010) 0.732(0.008) 
RF 0.831(0.005) 0.740(0.005) 0.780(0.015) 0.729(0.008) 

ANN 0.838(0.005) 0.730(0.005) 0.792(0.019) 0.714(0.008) 
EL 0.838(0.004) 0.747(0.004) 0.765(0.014) 0.742(0.008) 
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power in correctly classifying no-show patients, emphasizing the crucial necessity of performing 

data balancing.   

 

Table 3.5: Classification results without use of the proposed data analytics technique 

 

 After selecting the ideal model (ANN with RUS with the intersection of SA and GA 

variables), we investigated the importance of the variables used in building the ideal (ANN) model 

via sensitivity analysis. Namely, 10 different variable importance reports are produced, as we ran 

10 different models because of 10-fold cross-validation. After obtaining the individual importance 

of the variables for these models, we combined the reports obtained from the models via using the 

IF technique. 

 

 
Figure 3.5: Sensitivity analysis for predictor variables 
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Set 
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Model AUC Accuracy Sensitivity Specificity 
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N
E 

N
O

N
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LR 0.826(0.005) 0.822(0.004) 0.378(0.008) 0.940(0.003) 

RF 0.847(0.005) 0.837(0.004) 0.426(0.009) 0.945(0.003) 

ANN 0.825(0.010) 0.826(0.005) 0.416(0.059) 0.935(0.016) 

EL 0.842(0.005) 0.835(0.004) 0.384(0.018) 0.954(0.005) 
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Figure 3.5 shows the contribution (importance) of each variable in predicting the outcome. 

Note that these numbers present the relative importance of each variable, when compared with 

each other. For example, the contribution of prior no-show is 28.08% and diabetes is 12.03%. 

Collectively, the two comprise 40.11% of the total contribution.  

 Our findings confirm most of what has been published in the related literature. To 

exemplify, many studies have reported that patients with a high prior no-show history are more 

likely to miss their next appointments, thereby making prior no-show one of the most important 

predictors cited in the literature (Cronin et al., 2013; Daggy et al., 2010; Dove & Schneider, 1981; 

Farid & Alapont, 1993; Y. Huang & Hanauer, 2014; Kempny et al., 2016; V. J. Lee et al. , 2005; 

Torres et al., 2015).  

 Similarly, the literature reported that patients with diabetes have no-show rates as high as 

40% (Nuti et al., 2012).  Bindman et al. (1995) have reported that chronic medical conditions such 

as diabetes, can require acute care service. Therefore, it might be the reason that a patient with 

diabetes who fails to show up for their appointments, bears a high chance of being hospitalized 

due to the worsening health condition,  thereby missing the next appointments.   

 Moreover, the relative contributions of appointment reminder, alcoholism, lead time, and 

financial aid are 11.95%, 11.23%, 10.64%, and 9.48% respectively. The importance of these 

variables is also well articulated in the literature. For example, researches have argued that 

appointment reminders such as SMS, phone call, and email reminders, are effective at reducing 

the no-show rate of patients (Hasvold & Wootton, 2011; Junod Perron et al., 2010; Milne et al., 

2006; Vodopivec-Jamsekr et al., 2012). The reduction has been reported to be as high as 75% (A. 

Tibble et al., 2000). Similarly, Dantas et al. (2018) have shown that patients with addiction to 

alcohol are more likely to miss their appointments.  Further, researchers comparing four significant 

factors (age, payer, no-show history and lead-time) found that lead-time was the strongest predictor 

of no-show patients (Norris et al., 2014) Another study, using data from an ophthalmology clinic, 

confirmed that longer lead times increased no-show rates (McMullen & Netland, 2015).  On the 

other hand, Norris et al.  have shown that financial aid is one of the greatest reasons associated 

with patient no-shows. This claim supported by Horsley et al. (2007) asserting that Medicaid vs. 

non-Medicaid use was a significant predictor of missed appointments, with Medicaid patients 

having a much higher incidence of no-shows. 
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 Lastly, we find that time between appointments and appointment day are other two 

important variables in the prediction of the no-show patients,  having relatively lower 

contributions: 8.62%, and 7.65 %, respectively.   

 Different than the published relevant literature, we have not found any studies on the time 

between two consecutive appointments that was created in the data processing step. The variable 

simply measures the elapsed time between the last appointment and the appointment scheduled 

before the last appointment, thereby providing insights regarding patient’s appointment pattern. 

For example, if the length of the time between the appointments are relatively low, or in other 

words, if  the appointments are scheduled frequently, then it might indicate a serious health 

condition requiring the patient to schedule appointments on regular basis, and thus the patient can 

be expected to show up for his/her appointments. On the other hand, a long time period between 

the two consecutive appointments might imply a regular check-up appointment or sickness that 

the patient might choose to not keep his/her appointment depending on the urgency of the disease.  

 Finally, studies reported appointment day as an important predictor (Kheirkhah et al., 2015; 

Torres et al., 2015). Monday and Friday are deemed as two specific days on which the highest no-

show rates occur (Y.-L. Huang & Hanauer, 2016; Y. Huang & Hanauer, 2014; Kheirkhah et al., 

2015; Torres et al., 2015).  

The (ideal) ANN model assigns (estimates) probabilistic scores for each instance (patients), 

ranging between 0 and 1, as presented in Table 3.6. It should be noted that these results are obtained 

 

Table 3.6: Classification results for different probabilistic scores  

Probability 
Score 

Dropped 
Cases 

# 
Show-

up 

# 
No-

show 

TP FN 
AUC Accuracy Sensitivity Specificity 

FP TN 

0.5 0 5757 1470 1208 1660 0.846 0.734 0.822 0.712 262 4097 

∉ [0.4, 0.6] 1945 4276 1006 828 599 0.892 0.853 0.823 0.860 178 3677 

∉ [0.3, 0.7] 2602 3780 845 712 441 0.904 0.876 0.843 0.883 133 3339 

∉ [0.2, 0.8] 3568 3003 656 584 302 0.919 0.898 0.890 0.899 72 2701 

∉ [0.1, 0.9] 5722 1248 257 234 65 0.950 0.942 0.890 0.948 23 1183 

∉ [0.05, 0.95] 6538 627 62 54 4 0.960 0.983 0.871 0.994 8 633 
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from the 7th fold as the best sensitivity score was obtained from it. The estimate of a probability 

score close to 1 indicates a high chance of being a show-up for the patient, while a probability 

score of 0 indicates otherwise. Any numbers in-between the two are classified as one way or the 

other, according to the specified threshold value. For example, If a patient is assigned a probability 

score of 0.9, then it can be considered that there is a 90% chance that the patient will be a no-show. 

On the other hand, a probability score of 0.05 for a patient indicates that there is a 5% chance of 

being a no-show. In other words, there is a 95% chance that the patient will show up for her/his 

appointment. With that in mind, Table 3.6 illustrates the changing performance of the proposed 

ANN model when the different probabilistic thresholds are considered. For example, when the 

instances with the assigned prediction probability scores on the interval [0.4, 0.6] are dropped, the 

performance of the model increases in each metric. 

  It should be noted that the interval of 0.4 and 0.6 is an interval that the model does not feel 

very confident in predicting the outcome (the closer the probability is to 0.5, the less confident the 

model is in its predictions). In other words, the model performance increases when the instances 

that the model is not confident are dropped.  As expected, the same pattern can be seen as we 

widen the interval and drop the cases in between the updated probability borders. As such, the 

performance of the model reaches an accuracy score of 0.983, an AUC score of 0.960, a sensitivity 

score of 0.871, and a specificity score of 0.994 in the classification of the patients with the 

estimated probability scores less than 0.05 and greater than 0.95, attesting to the reliability of the 

probabilities estimated by the proposed model. Therefore, expert help can be used for the cases 

that the model probability is close to 0.5 in order to aggressively increase the accuracy of the 

model. This is another common practice in the modern machine learning world, which artificial 

intelligence and humans collaboration becomes inevitable (H. James & Paul R., 2018). 

 

 
Figure 3.6: The risk level classification through k-means clustering algorithm 

 In addition, we have stratified the patients into five categories (i.e. Very low risk(1), Low 

risk(2), Moderate risk(3), High risk(4) and Very high risk(5)) by employing k-means clustering 

algorithm on the estimated probabilities (Figure 3.6). As discussed earlier, the cases associated 
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with these groups were incrementally dropped starting with the middle group and moving outward 

in both directions on the probability spectrum, and the remaining cases were run through the ANN 

(ideal) model. Such risk level stratification can be used by medical decision makers to augment 

their decision-making process when assessing a specific patient’s situation for no-shows. Such a 

decision support mechanism can be used to lighten the burden of a large portion of the cases 

associated with no-shows, depending upon a specific threshold probability between available 

resources, risks, and costs. Healthcare agencies can therefore adjust their risk scoring metric to 

achieve an ideal balance between type I and type II errors based on the cost-benefit analysis. 

 

3.5     Conclusion 

 In this study, a hybrid data mining based methodology was formulated to provide 

healthcare agencies and medical decision makers with a patient-specific risk level of no-shows. 

The overarching goal was to provide patients better care by utilizing available resources more 

efficiently and, at the same time, decrease the costs that originate from patient no-shows. 

Our study fills a significant gap in the existing body of knowledge in that it; 1) develops a very 

parsimonious model by using wrapper-based variable selection models as “the simpler is the 

better”, 2) employs cutting edge data balancing algorithms to increase the ability of the predictive 

model in detecting the minority class, as the no-show  datasets are mostly imbalanced (i.e. the 

number of the no-shows  are much less than the number of show-ups), 3) determines the patients 

who have very low-, low, moderate-, high- and very high risk score of being a no-show and, 4) 

analyzing a publicly available patient data that were collected over a significant period of time. To 

the best of our knowledge, the outcome of the current study is significant to the no-show problem, 

as none of these points were addressed in the related literature. 

 It should be clearly indicated that the contribution of the current study is not the application 

of popular classification models. It is rather; a) the simplicity of the model built, b) a high 

sensitivity (low Type 1 error) score that was achieved and c) the probability risk level that was 

provided as an end-product to the medical decision makers.  

 Our study suggests that the ANN model should be employed as a classification model in 

predicting the no-show patients by using the variable set that is commonly selected by GA and SA 

algorithms. In addition, the RUS balancing method should be employed to improve the 

performance of the model in predicting the minority group of no-show patients. 
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 The patient-specific risk scores obtained were justified by applying a threshold sensitivity 

analysis and it has been shown that model performance consistently increases when the patients, 

about whom the model is not very confident, are dropped. The medical experts will be able to 

confidently rely on the probabilistic score provided, while the data analytical models and medical 

experts’ intuition/incentive should collaborate to make the final decision on the cases where the 

model is not confident enough. Healthcare agencies can take advantage of the risk assessment to 

augment their decision-making procedures. 

 Those insights enable health care professionals to improve clinic utilization, and improve 

patient outcomes. Healthcare delivery systems can adopt measures targeting patients that are no-

show candidates effectively by systematizing intervention tactics. 
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Chapter 4 

Predicting No-show Patients with Individual Probabilistic Risk Scores: A Bayesian 

Belief Network Approach 

 

4.1 Abstract 

            Patients who miss their appointments (no-shows) reduce revenues and impair the delivery 

of quality healthcare. Much research has been devoted to identifying “no-show patients”. 

However, they have had limitations in that: a) publicly available datasets have not been employed; 

b) parsimonious models based on data-driven variable selection models have not been produced; 

c) data balancing methods have not been employed even though imbalance is inherent in no-show 

datasets; d) individualized patient risk scores of being a “no-show” have not been devised, and; e) 

a web-based decision support system tool, which can be adapted by medical practitioners/facilities 

to minimize the no-show risk of a patient has not been built for practical use.  In this study, we 

build a probabilistic data-driven methodology that consists of five steps to overcome these 

limitations. After data acquisition and preparation in the first step, the second step is dedicated to 

selecting important variables through pure data-driven wrapper methods such as Particle Swarm 

Optimization (PSO), Genetic Algorithms (GA) and Extreme Gradient Boosting (XGB). Then, in 

the third step, the Synthetic Minority Oversampling Technique (SMOTE) and Random Under-

sampling (RUS) are employed along with 10-fold cross-validation to overcome the data imbalance 

issue that exists in the dataset. In the fourth step, the patient-specific probabilistic risk scores along 

with the conditional interrelations among the predictors are obtained via the Tree Augmented 

Bayesian Belief Network (TAN) model. Finally, the probabilistic risk scores are justified, patients 

are clustered into 5 risk groups and a web-based decision support system (GUI: graphical user 

interface) is built. Results show that an overall AUC score of 0.828 can be achieved with a 

sensitivity score of 0.785 if the data is balanced through RUS and the variable selection is made 

via GA and PSO. More importantly, results show that an extremely parsimonious model can be 

built (by only employing 7 variables), and interesting conditional inter-relations exist between 

these variables. In addition, a web-based GUI is developed, which can be adapted by healthcare 
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facilities, which would enable them to obtain individualized risk scores and come up with better 

scheduling scenarios. We believe that such an automated tool can easily be adapted by medical 

clinics to decrease the number of no-shows. 

 

4.2 Introduction 

 No-shows, i.e. patients who do not attend scheduled appointments, create an expensive 

problem for medical providers. Skipped appointments reduce revenues for healthcare institutions, 

and increase the cost of healthcare (DuMontier et al., 2013; Moore et al., 2001). Missing 

appointments is also associated with poor healthcare outcomes (Fortin et al., 2016). Several 

strategies to mitigate skipped appointments have been proposed. For example, reducing the 

number of open appointments through overbooking (Reid et al., 2016; Zeng et al., 2010), using 

incentives and disincentives to modify patient behavior, including moving no-show patients to the 

end of the waiting list (Vikander et al., 1986), having patients prepay a portion of the cost (Garuda 

et al., 1998), or using fines to penalize patients who miss appointments (Bech, 2005) have all been 

shown to reduce incidences of no-shows. An alternative strategy is to use patient interventions to 

reduce non-attendance (Macharia et al., 1992; Shah et al., 2016).  To use interventions effectively 

requires the identification of essential predictors. However, the efficacy of these predictors can 

vary (Junod Perron et al., 2010). Selecting effective predictors will produce better results by 

allowing judicious use of interventions when compared to indiscriminate targeting.  

 The cost of no-shows is substantial. One study estimated the daily loss for no-shows at 

$725.42 per US provider (Berg et al., 2013). Applying that estimate to the 968,743 active US 

physicians, plus 87,835 active US physician assistants (Kaiser, J, 2018), indicates a US revenue 

loss of at least $766 million per year. The actual cost is likely higher. The 2008 Veterans Health 

Administration estimate of unused appointments was $564 million (“Office of inspector general 

audit of veterans health administration’s effort to reduced unused,” 2008). A 2006 estimate for 

England’s NHS missed appointments cost was about £780 million a year (Atun & Sittampalam, 

2006). Attempts to reschedule other patients in the available time slot, even using overbooking, 

still leaves resources underutilized (Moore et al., 2001; Reid et al., 2016). Missed appointments 

are associated with lower preventive health service utilization and inadequately controlled 

hypertension and diabetes (Nguyen, DeJesus, & Wieland, 2011).  
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 Predictive analytics has been used in several studies to incorporate the probabilities of no-

shows into a scheduling system (Daggy et al., 2010; Glowacka et al. , 2009; Samorani & LaGanga, 

2015). Once the probabilities are found, they inform the schedule. Glowacka et al. (2009) predicted 

no-shows at a free clinic in the southeastern United States using association rule mining. They 

used their results as a scheduling policy input to reduce no-shows.  

 Daggy et al. (2010) used data from a Veterans Affairs hospital in the United States to 

develop a logistic regression model to estimate the number of no-shows. In the regression model, 

patients’ age, marital status, travel distance, diagnoses, insurance, the days since the last visit, 

appointment lead time, prior no-show rate, the total number of previous visits and the season were 

all used as independent variables. The model’s purpose was to find a regression model that could 

be used to optimally schedule patients while using an overbooking policy. Once the no-show 

probabilities were generated using the regression, physician utilization and overtime were 

estimated and analyzed using simulations. In a similar study, Samorani & LaGanga (2015) used 

individual appointment characteristics and appointment day to predict no-shows. These 

predictions were then used in the heuristic scheduling procedure.  

 In a study at a pediatric medical facility, Topuz et al. (2018) identified significant 

contributors for no-shows and discovered relationships in predictors such as demographics, current 

appointment information, socioeconomic status and appointment attendance history of the patient 

and the family. Although they have used feature selection models, none of these selection models 

was wrapper based method. The advantages of using wrapper methods will be discussed in detail 

in the subsequent sections.  

 Although the aforementioned studies focus either on predicting or finding important 

predictors etc., to our best knowledge, none of them have; a) used publicly available data in their 

analysis, b) employed a comprehensive data-driven feature selection approach that consists of 

wrapper methods; c) employed data balancing methods even though imbalance is inherent in no-

show datasets (i.e. the number of “no-show” patients is very low when compared to patients who 

are not “no-show” ); d) obtained individualized patient risk scores and; e) built a web-based 

decision support tool that can be easily adapted by medical practitioners/facilities to predict the 

risk of being a  “no-show” patient, therefore allowing for a chance to decrease the amount of “no-

shows”  using appropriate interventions.  
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 Given these limitations of the previous literature, our study contributes to the existing body 

of knowledge by; a) using a publicly available large dataset, b) removing noisy variables to ensure 

near-optimal model performance and accurate feature importance information, which in turn 

enables us to obtain the most parsimonious model possible; c) taking into account the class 

imbalance problem, which prevents the model from “cherry-picking” potential no-show patients; 

d) determining the patient-specific risk score of being a no-show; and finally  e) building a web-

based decision support systems tool for the practical use of medical staff & facilities to 

prevent/decrease possible future no-shows. To achieve this goal, a hybrid data mining 

methodology was employed. More specifically, we built a probabilistic data-driven methodology 

that consists of five steps. After data acquisition and preparation in the first step, our second step 

was dedicated to select important variables through data-driven models such as PSO, GA, and 

XGB. Then, in the third step, SMOTE and RUS were employed along with 10-fold cross-

validation to overcome the imbalance problem, which exists in most of the no-show datasets. The 

combination of using balancing methods along with feature selection algorithms should ensure 

that the resulting feature importance findings are not affected by the inherent class imbalance. In 

the fourth step, the individualized patient (probabilistic) risk scores along with the conditional 

interrelations were obtained via TAN model. In the final step, the probabilistic risk scores were 

justified and a web-based decision support system (GUI) is built for the medical practitioners’ use. 

This tool is designed in a way that it does not require the end user to have any background 

knowledge in machine learning, statistics, or optimization, etc. fields.  

 We believe that the contribution and the value of the current study do not come from the 

classical machine learning, statistical and/or optimization models, which have been employed in 

many health- and medical informatics studies previously. Rather, it is contributing to the existing 

body of knowledge because of its holistic probabilistic data analytic approach, which obtains 

patient-specific risk scores (of being a no-show) by employing the most parsimonious models that 

were built by preventing the class imbalance problems that occur due to significant differences in 

most no-show datasets. It should also be noted that the web-based tool also serves as a practical 

contribution of our study. 
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4.3     Methodology 

 Our data analytics approach consists of five steps as shown in Figure 4.1. In the first step, 

we prepared the dataset obtained from the kaggle.com website (“Medical Appointment No 

Shows,” 2016). In the second step, a machine learning algorithm, namely XGB, and two 

optimization algorithms, namely PSO and GA were employed to select important variables. All 

possible combinations (unions/intersections) of the variables that are obtained through these 

algorithms were created in addition to SMOTE and RUS balancing techniques in the third step. In 

the fourth step, the TAN model for each variable set was employed using 10-fold cross-validation 

to discover relationships among the variables and to obtain a patient-specific (individual) 

probabilistic risk score. In the final step, a web-based DSS was built for practitioners’ use. 

 

4.3.1     Data Preparation 

 In this study, we obtained the dataset from a well-known data science competition 

platform; kaggle.com (“Medical Appointment No-shows,” 2016). The dataset was recorded by 

public healthcare providers in the state of Espírito Santo, Brazil, and consists of 110,528 

observations with 14 variables. Using these, we also created a few more variables. For example, 

lead time, appointment day, appointment month and appointment scheduling day were created 

using the variables scheduled date and appointment date. Similarly, using the patient ID, two 

patient-specific variables such as prior no-shows and time between appointments were created. 

The rationale behind creating such variables is the potential contribution of these variables in 

predicting the patient’s no-show. During data exploration, we discovered that the lead time for 

some patients was less than zero (the number of days between the appointment scheduled day and 

the appointment day), which we believe is due to the erroneous data entries. Therefore, we 

eliminated these records from the dataset. Although some variables did not play any role in 

predicting the response variable (Patient ID and Appointment ID), they were kept in the dataset 

since they provided information about the patient’s history. However, they were excluded from 

the analysis part. After creating additional variables and the variable elimination process, we were 

left with a dataset that has 72,602 observations and 17 variables. The summaries of the predictor 

variables are shown in Table 4.1. 
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Table 4.1: Predictor variables 

Categorical Variable Name Number of levels 
Gender 2   
Appointment month 3   
Appointment day 6   
Scheduling day 6   
SMS reminder 2   
Alcoholism 2   
Financial aid 2   
Handicap 2   
Hypertension 2   
Diabetes 2   
Neighborhood 79   
Continuous Variable Name Mean Median Range 
Age 37.24 37 0-115 
Lead time 9.25 4 0-179 
Calling time 10.88 10 6-20 
Time between appointments 5.62 1 0-40 
Prior no-shows 0.13 0 0-1 

 

4.3.2     Variable Selection  

 Variable selection is the task of searching for optimal variable subsets from the original 

dataset by evaluating the relationship between the explanatory variables and response variable with 

some metrics such as correlation, entropy, error-probability, etc. Variable selection is necessary 

for several reasons. For example, it reduces dimensionality by eliminating redundant variables, 

which in turn decreases model training time (Saptarsi & Amlan, 2014). It also enables learning 

algorithms to generalize existing relationships between the explanatory variables and the response 

variable, thus prevents overfitting (Bermingham et al., 2015), and eases the model interpretability 

by simplifying the model complexity (James et al., 2013). There are various types of feature 

selection methods, which can be categorized into two types: filter methods and wrapper methods 

(John et al., 1994).  

 Filter methods are univariate statistical methods that are mostly used in the data preparation 

phase of  

analysis. Many filter methods have been described in the literature (Saeys et al., 2007), and mostly 

consist of covariance tests such as t-test, ridge regression (Hoerl & Kennard, 1970), least absolute 
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shrinkage and selection operator (LASSO) (Tibshirani, 1996), etc. which can be used to determine 

if an independent variable is correlated to the output variable.  

 

 

Figure 4.1: An Outline of the proposed methodology 
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 Wrapper methods, instead, are algorithmically or heuristically defined approaches to select 

features for a machine learning model. The methods are used in conjunction with a machine 

learning algorithm, and essentially “wrap” the model in the training process. These methods use 

an algorithm or heuristic to add or remove features from the dataset and retrain the model, with 

the goal of increasing the models’ predictive performance, iterating the process until a stopping 

rule is reached. There are many wrapper methods, such as Recursive Feature Elimination (Guyon 

et al., 2002), Simulated Annealing (Aarts & Korst, 1988), Genetic Algorithms (J. Yang & Honavar, 

1998) and Particle Swarm Optimization (Kennedy, 2011), etc. 

 In this study, we used two wrapper methods (i.e. GA and PSO) and a machine learning 

algorithm (i.e. XBG) to conduct feature selection due to their high performance in our preliminary 

data analysis stage. The detailed information regarding the algorithms is given in the following 

subsections.  

 

4.3.2.1     Genetic Algorithm 

 Only organisms who adapt themselves to the environment, can thrive and get ahead of the 

ones who are less adaptive. This phenomenon is referred to as “natural selection”. Genetic 

algorithms, inspired by natural selection, are adaptive heuristic search algorithms that are used to 

solve optimization problems. They are preferred in situations where exhaustive optimization 

techniques are computationally expensive. Genetic algorithms initially create a random set of 

individuals (chromosomes) that explore the whole solution space. These chromosomes are tested 

at each iteration according to their fitness functions. The chromosomes considered to be superior 

in terms of the fitness function are kept in the population and are mated with other well-performing 

chromosomes to create new chromosomes. The new chromosomes, members of a new generation, 

can also have random mutations. The chromosomes that do not perform well are wiped out from 

the population so that the population size of chromosomes is controlled.  

 Genetic algorithms have also been used for variable selection purposes in the literature 

(Dag et al., 2017; J. Yang & Honavar, 1998). In this study, the genetic algorithm uses the Partial 

Least Squares (PLS) regression model to evaluate the prediction performance of the chromosomes 

(i.e. variable subsets in our case). 
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 All parameters of the PLS model are optimized using the cross-validation technique. For 

detailed information about the genetic algorithm and the PLS regression model, the reader is 

referred to (Goldberg & Holland, 1988) and (Wold, 2006), respectively.  

 

4.3.2.2     Gradient Boosting 

            Gradient tree boosting is a machine learning technique that creates a predictive model by 

combining many weak learners. The idea behind gradient tree boosting is to grow a sequence of 

simple trees where each tree is grown to explain the prediction residuals of the preceding tree. A 

direct implementation of the boosting tree algorithm, however, might be computationally 

expensive since the time required to train a model increases exponentially, depending on the 

sample size. In an effort to improve the computational efficiency of the boosted tree algorithm, 

Chen and Guestrin et al. (2016) introduced a scalable tree boosting system called Extreme Gradient 

Boosting (XGB). The gradient tree boosting algorithm predicts the output by summing K 

independent regression and classification tree functions: 

																																																									𝑦,* = q𝑓 (𝑥*), 𝑓 ∈ ℱ
�

^sT

																																																															(1) 

where K stands for the number of trees and ℱ is the space of regression trees in which f is a tree 

function that maps each observation vector to a certain output. To find the optimal tree structure, 

one must minimize the objective function: 

																																																			𝐿(𝜙) =q𝑙(𝑦,*, 𝑦*) +qΩ(𝑓 )
^*

																																																									(2) 

where 𝑙 is the loss function calculating the difference between the actual response 𝑦* and the 

predicted response 𝑦,*. The second term	Ω = 	𝛾𝑇 + T
U
𝜆 ∑ 𝑤hU�

hGT  is the penalization parameter that 

tunes model complexity, where 𝛾 and 𝜆 are the constants that control regularization degree, w is 

the scores vector on leaves, and the number of leaves is represented by T. It should be noted that 

when Ω is set to be 0, the optimization objective function boils down to regulating the tree boosting 

algorithm. Moreover, in the optimization process, the XGB algorithm uses shrinkage and column 

subsampling techniques (Chen & Guestrin, 2016) to prevent overfitting. The optimization task of 
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the objective function cannot be accomplished by traditional optimization methods since it 

contains functions as parameters. Therefore, the model needs to be trained iteratively, as follows: 

																																														𝑦,*
(=) = q𝑓 (𝑥*) = 	𝑦,*

(=GT) +
=

^sT

𝑓=(𝑥*)																																																									(3) 

where the prediction of 𝑦,*
(=) for 𝑖th instance at the 𝑡th iteration, and 𝑦,*

(=) = 0 when 𝑡 is equal to 0 

(i.e. the prediction value at first step starts with 0). 

Therefore, Equation 2 takes the form: 

																																						𝐿(=)(𝜙) = q𝑙�𝑦,*
(=GT) + 𝑓=(𝑥*), 𝑦*� + Ω(𝑓=)																																															(4)

*

 

            The second-order Taylor approximation can be applied to Equation 4 in order to hasten the 

optimization of the objective function (J. Friedman et al., 2000): 

																														𝐿(=)(𝜙) ≈qÄ𝑙�𝑦,*
(=GT), 𝑦*� + 𝑔*𝑓=(𝑥*) +

1
2ℎ*𝑓=

U(𝑥*)Æ + Ω(𝑓=)	
*

																							(5) 

where the first and second order statistics on the loss function are represented by 𝑔* =

	𝜕e,(K�Ç)𝑙�𝑦,*
(=GT), 𝑦*�  and ℎ* = 	𝜕Ue,(K�Ç)𝑙�𝑦,*

(=GT), 𝑦*�, respectively. Since the loss function 

𝑙�𝑦,*
(=GT), 𝑦*� is constant at step t, it can be removed to simplify the objective function and thus can 

be written as 

																																								𝐿(=)(𝜙) ≈qÄ𝑔*𝑓=(𝑥*) +
1
2ℎ*𝑓=

U(𝑥*)Æ + Ω(𝑓=)																																											
*

(6) 

            After extending the regularization term Ω, given that the instance set of leaf j is 𝐼h =

{𝑖|𝑞(𝑥*) = 𝑗}, the objective function takes the form: 

 

   (7) 

 

            The optimal weight 𝑤h∗	of leaf j with a fixed structure q(x) and the optimal objective 

function can be calculated as in Equations 8 and 9, respectively. 
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																																																															𝑤h∗ = −
∑ 𝑔**∈ÊË

∑ ℎ* + 𝜆*∈ÊË
																																																																				(8) 

																																																𝐿Ì(=)(𝑞) = −
1
2q

�∑ 𝑔**∈ÊË �
U
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�

hsT

+ 𝛾𝑇																																																						(9) 

After finding a way to measure the goodness of the tree, the algorithm attempts to optimize the 

tree one level at a time by assigning a score to a leaf node in the splitting process:  

																													𝐿<£¥*= =
1
2 [
�∑ 𝑔**∈ÊÍ �U

∑ ℎ* + 𝜆*∈ÊÍ
+
�∑ 𝑔**∈ÊÎ �U

∑ ℎ* + 𝜆*∈ÊÎ
−
(∑ 𝑔**∈Ê )U

∑ ℎ* + 𝜆*∈Ê
] − 𝛾																																(10) 

where the first term is the score for the new left leaf, the second term is the score for the new right 

leaf and the third term is the score for the original leaf from which the left and right leaves grow. 

 

4.3.2.3     Particle Swarm Optimization 

 Particle swarm optimization is a metaheuristic search technique that mimics the social 

behavior of swarming organisms to accomplish an optimization task (Kennedy, 2011). By virtue 

of its metaheuristic nature, PSO manages to obtain a solution for irregular, time-dependent or even 

noisy functions, which in turn, leads PSO to be successfully applied in various scientific fields, 

such as machine learning (Lin et al., 2008), image processing (Dhanalakshmi et al., 2016), business 

optimization (X.-S. Yang et al. , 2011), operations research (B. Liu et al., 2008). PSO algorithms 

create a population of candidate solutions i.e. a swarm.  Each member of this swarm is called a 

particle and has its own position and fitness value calculated by the fitness function. The particles 

fly (iterate) across the search space in accordance with their velocity vector. The velocity vector 

has two main components called personal best and global best.  The personal best information 

belongs to an individual particle and is the best point experienced by the particle in the search 

space. On the other hand, the global best is the best point obtained by the swarm. Each particle 

uses the personal best and the global best information to update its current position to a presumably 

better position. In this process, the extent to which personal best and the global best will be given 

an ear to update the velocity vector is managed by weights called the learning factor. Here, we 

denoted the number of particles by N and 𝑖 refers to the specific 𝑖th particle in the swarm. The 

position vector of the particle 𝑖 at time t is denoted by 𝑋*= = (𝑥*T= , 𝑥*U= , … , 𝑥*^= , … , 𝑥*Ð= ) where D is 
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the number of variables and 𝑥*h= ∈ {0,1}. The personal best for the 𝑖th particle and the global best 

at time t are represented by 𝑃*= = (𝑝*T= , 𝑝*U= , … , 𝑝*^= , … , 𝑝*Ð= ) and 𝐺= = (𝑔T=, 𝑔U=, … , 𝑔U= ,… , 𝑔U=), 

respectively where 𝑃*=	𝑎𝑛𝑑	 𝐺= ∈ {0,1}. The global best 𝐺= does not have the index 𝑖 as it belongs 

to the swarm, not the individual particle.  After each iteration, the velocity vector for the particle 𝑖 

is updated as follows: 

																																									𝑣*=¦T = 𝜔𝑣*= + 𝑐T𝑟T(𝑃*= − 𝑋*=) + 𝑐U𝑟U(𝐺= − 𝑋*=)																																	(11) 

where, 𝑉*= = (𝑣*T= , 𝑣*U= , … , 𝑣*^= , … , 𝑣*Ð= ) is the previous velocity vector and, 𝑐T and 𝑐U are the weight 

factors for the personal best solution and global best solution, respectively. For particles to move 

stochastically in the search space, random numbers, uniformly distributed in [0,1], 𝑟T and 𝑟U are 

included in Equation 11. The inertia weight 𝜔 controls the extent to which the previous velocity 

will affect the new velocity. It should be noted that the particles are kept in the search space by 

bounding the velocity vector, as shown in Equation 18. 

In continuous PSO, the position vector is updated according to: 

																																																																								𝑋*=¦T = 𝑋*= + 𝑉*=¦T.																																																											(12) 

 On the other hand, in discrete PSO, the velocity vector is transformed into the probability 

vector via a sigmoid function and takes the form of 

																																																																	𝑆*h= = 	
1

1 + 𝑒ÔmË
K 																																																																			(13) 

where 𝑆*h=  represents the probability that jth bit 𝑋*= is 1. Therefore, the position of the particle is 

updated as follows: 

																																															𝑋*h= = Õ1,									𝛺 < 𝑆*h= 			
0,						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 j=1, …, K,                                (14) 

where 𝛺 is a uniform random number between 1 and 0. 

The maximization of the function f is equal to the minimization of function –f. For this 

reason, without loss of generality, maximization of the fitness function in a D-dimensional space 

can be expressed as: 

𝐺𝑖𝑣𝑒𝑛	𝑓: ℜÐ 					
→ 	ℜ 

																																																			𝐹𝑖𝑛𝑑		𝑿Ú£=|𝑓(𝑿Ú£=) ≥ 𝑓(𝑿)				∀𝑿 ∈ ℜÐ																																											(15) 

where 𝑿Ú£= refers to the maximum value of the fitness function. However, the maximization of 

the fitness function can be challenging if the function is not differentiable at all points. In such 

cases, possible candidate solutions are iteratively investigated by evaluating their fitness value 
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until the maximum solution is found or stopping criterion is met. In an effort to find the best 

solution, PSO uses the following algorithm (Weerasinghe, Chi, & Cao, 2016): 

1.) Randomly assign the positions and velocities of the N particles in the search space ℜÐ.  

Start the loop 

2.) Calculate the fitness function value for each particle. 

3.) If the current fitness function value of the particle (𝑋*=)  is better than its previous personal 

best fitness value (𝑃*=GT) then set the new position as the personal best i.e. 

 																																	𝑃*= = Ü
𝑃*=GT, 𝑖𝑓	𝑓(𝑋*=) < 𝑓(𝑃*=GT)
𝑋*=				, 𝑖𝑓𝑓(𝑋*=) ≥ 𝑓(𝑃*=GT)

			                     (16) 

4.) Find the best performing particle in the swarm in terms of the fitness value and set its 

personal best as a global best. 

Select the 𝑃<= such that 𝑓(𝑃*=) < 𝑓(𝑃<=) for 𝑠	𝑎𝑛𝑑	𝑖 ∈ 	 {1, 2,…,	N}  

																																																							𝑓(𝐺=) = Õ𝐺
=,					𝑖𝑓	𝑓(𝑃<=) < 𝑓(𝐺=)

𝑃<=,						𝑖𝑓	𝑓(𝑃<=) ≥ 𝑓(𝐺=)
										              (17) 

5.) Update the particle velocity based on Equation 1: 

𝑣*=¦T = 𝜔𝑣*= + 𝑐T𝑟T(𝑃*= − 𝑋*=) + 𝑐U𝑟U(𝐺= − 𝑋*=). 

In order for the particle to be kept in the search space, make the following modification: 

																																												𝑉*=¦T Ý
𝑉Þ*2,				𝑖𝑓		𝑉*=¦T < 	𝑉Þ*2.														
𝑉*=¦T,			𝑖𝑓		𝑉Þ*2 < 𝑉*=¦T < 𝑉Þfd.
𝑉Þfd, 𝑖𝑓		𝑉Þfd < 	𝑉*=¦T.															

                  (18) 

6.) Update the particle position based on Equation 2:  

𝑋*=¦T = 𝑋*= + 𝑉*=¦T. 

End of the loop 

7.) Exit if the termination criterion is met.  

 

4.3.3     K-fold Cross-validation 

 In data mining literature, a commonly identified problem is overfitting of machine learning 

algorithms (Hawkins, 2003). Therefore, it is important to validate the algorithm on an unseen 

dataset. Finding an unseen dataset, however, might be challenging in terms of budget and time. In 

such situations, one solution is to randomly separate the dataset into two subsets so one can be 

used as a training set and another can be used as a test set (i.e. unseen dataset). After splitting the 
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dataset, the machine learning algorithm can be fitted on the training set and then applied on the 

test set. However, a random separation of the dataset can introduce bias into the model’s 

performance evaluation (Kohavi, 1995). To mitigate this problem, researchers commonly use the 

k-fold cross-validation technique in which the whole dataset is randomly split into k approximately 

equal subsets (folds). The algorithm is then trained on all folds except one, which will be used as 

the test set (Kohavi, 1995). This process is repeated k times to exhaust all the folds (Figure 4.2). 

 

 
Figure 4.2: K-fold Cross-validation 

 

 The cross-validation estimate of the overall performance of the algorithm can be obtained 

by simply taking the average of the k individual performance, such that: 

																																																																									𝐶𝑉𝑃 =
1
𝑘qℱ*

^

*sT

																																																																	(19) 

where CVP is the cross-validation performance, k is the number of folds and ℱ* stands for the 

performance measure of each fold. In this study, we use 10-fold cross-validation (i.e. k=10) since 

it provides a good trade-off between the time required to train models, and minimization of the 

bias and variance associated with the validation process (Kohavi, 1995; Olson & Delen, 2008). 

 

4.3.4     Data Balancing Techniques 

 It is common to come across an imbalanced dataset in many real-world applications such 

as health informatics (Dag et al., 2017), fraud detection (Fawcett & Provost, 1997), manufacturing 

process (Riddle et al., 1994), etc. An imbalanced dataset is a dataset where one or more of the 

response classes are less represented (i.e. minority) than the other class(es), which in turn can raise 
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difficulties for the machine learning algorithms in the optimization process (Krawczyk, 2016). To 

cope with this imbalance, many approaches have been proposed in the literature (Chawla, 2005; 

Guo et al., 2008; Ling & Sheng, 2009). We have used RUS and SMOTE in this analysis. RUS is 

a simple technique that reduces the majority class by randomly eliminating several instances until 

having an approximately equal number of instances with the minority class. SMOTE, on the other 

hand, seeks to increase the minority class by creating synthetic instances (Chawla et al., 2002). 

The synthetics instances are created as follows: 

• Select a random sample 𝑥* from the dataset 

• Find its k-nearest neighbors in the feature space and randomly select one of them, say, 𝑥h 

• Calculate the Euclidian difference between 𝑥* and 𝑥h then multiply by uniform random 

number range between 0 and 1 

• Add this difference to the 𝑥* to create a new synthetic instance x along the line segment 

connecting 𝑥* and 𝑥h. 

4.3.5     Tree Augmented Naïve Bayesian Belief Network 

            A Bayesian Belief network is a directed acyclic graph that attempts to encode a joint 

distribution over a random vector 𝑿 = {𝑋T, … , 𝑋^} and it consists of two main components ℬ =<

ℌ,Θ >	(Pearl & Judea, 1997). The component ℌ forms the structure of the Bayesian Belief 

Network where each node of ℌ represents one of the random variables in 𝑿 and the arcs connecting 

the nodes indicate a probabilistic dependency among the variables. Each variable is independent 

of its non-descendant given that its parent is ℌ. The other component, Θ, is a parameter vector 

which calibrates the network. Given that the set of parents of 𝑋*	is 𝑃á(𝑋*), the joint probability 

distribution defined by the Bayesian Belief Network ℬ over 𝑿 is: 

																																																															𝑃(𝑿) =â𝑃�𝑋*ã𝑃á(𝑋*)� ,
^

hsT

																																																					(20) 

where k is the number of variables. 

            The simplest form of the BBN is the Naïve Bayes (NB) which does not require any 

structure to be learned and assumes, given the target variable, all variables to be independent. 

Namely, the nodes are disconnected and have no parents but the target node (Figure 4.3 (a)). 

However, the assumption of independence of the NB is not realistic and rarely holds true. 
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Therefore, in order to circumvent the independence assumption of NB, Friedman et al. developed 

a new algorithm called Tree Augmented Naïve Bayes (TAN) (N. Friedman, Geiger, & Goldszmidt, 

1997). Unlike Naïve Bayes, TAN allows each variable to be dependent on, at most, one non-target 

variable in addition to the target variable (Figure 4.3 (b)). In TAN, the target node is connected to 

all predictor nodes through arcs i.e. the target node is the parent of all variables. Also, arcs connect 

the predictor nodes to the other predictor nodes. These connections show the dependency between 

the predictor nodes in that the node having the starting point of the arc is the parent node of the 

pointed node, and the contribution of the child node in predicting the target variable is dependent 

on its parent node. 

            Formally, the Bayesian Belief Network ℬ is considered as a TAN network if there exists a 

tree function 𝛿 over X where the following equation holds, given that C is the target variable and 

𝑃á(𝐶) = ∅: 

																																																		𝑃á(𝑋*)=Ü
æC, 𝑋è(*)é,					𝑖𝑓	δ(𝑖) > 0.
{𝐶},															𝑖𝑓	𝛿(𝑖) = 0.

              															  (21) 

            Finding the optimal tree configuration which has maximum spanning weight is an 

optimization problem where the log likelihood of the 𝛿	function needs to be maximized. The TAN 

network algorithm uses the general outline of Chow-Liu’s algorithm for one-dependence estimator 

(Chow & Liu, 1968) to maximize the 𝛿	function and thus follows the following steps (N. Friedman 

et al., 1997): 

1. Calculate 𝐼ëìí�𝑋*; 𝑋hî𝐶� between each pair of variables, i≠j where  

																																𝐼ë(𝑿; 𝒀|𝒁) = q 𝑃(𝒙, 𝒚, 𝒛) log
𝑃(𝒙, 𝒚|𝒛)

𝑃(𝒙|𝒛)𝑃(𝒚|𝒛)
𝒙,𝒚,𝒛

																																					(22) 

            is the conditional mutual information and 𝐷 = 	 {𝐶, 𝑋T, … , 𝑋^} is a training dataset.  

2. Construct a complete undirected graph denoting variable 𝑋T,… , 𝑋^ by the nodes. Use the 

results obtained through conditional mutual information function in order to place the 

weights of arcs connecting 𝑋*	𝑡𝑜	𝑋h. 

3. Construct a maximum weighted spanning tree as in Figure 4.3 (c). 

4. Build a directed graph by transforming the undirected tree structure. To do so, choose a 

root variable from the undirected tree and set the direction of all arcs to be outward from 

it, as shown in Figure 4.3 (d) 

5. Build a TAN model by adding a node labeled C and adding an arc from C to each 𝑋* 



 66 

 

 

Figure 4.3: An augmented naïve Bayesian model. 

 

4.3.5.1      Parameter Tuning of the TAN Model 

 As discussed in the above section, there are two steps to construct the Tree Augmented 

Naïve Bayesian network. In the first step, the structure learning algorithm attempts to find an 

optimal tree configuration by maximizing the log-likelihood (in Equation 22) under the condition 

that n–1 edges need to be constructed. However, this condition can lead to overfitting the model 

since some edges can be unnecessarily included (N. Friedman et al., 1997). Therefore, to avoid 

overfitting, a penalization term can be involved in the maximization process of the likelihood 

(Equation 22).  

            In this study, the penalty terms Akaike’s information criterion (AIC) (Akaike, 1998) and 

Bayesian Information Criterion (BIC) (Wit et al., 2012) are used to find the optimal tree structure. 

It should be noted that maximizing penalized log-likelihood may result in a Forest Augmented 

Naïve Bayesian (FAN) model instead of a TAN model (N. Friedman et al., 1997). That is, the 

algorithm may choose to ignore some of the edges between the nodes, which in turn, destroys the 

structure of TAN by having less than n–1 arcs. After obtaining the tree configuration, the second 

step is to learn the parameters of the tree structure from the data. Sometimes, since the variables 

are conditioned on one another, TAN can suffer from lack of instances and hence make an 

unreliable estimate. To mitigate this difficulty the parameter estimation process is biased by adding 

the smoothing parameter (Laplace correction) (Kohavi & Kohavi, 1996). The smoothing parameter 

can control the effect of lack of instances by fixing zero probabilities. Note that introducing a 

smoothing parameter does not change the existing tree structure. Namely, the tree structure 
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(a)      Naive Bayes structure                       (b) Tree Augmented Naïve Bayes structure 
                   
 
 
                                      

 
(c)  The undirected tree structure                 (d) The directed tree with the root node !"  
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remains untouched, while the weights of the arcs are tuned. In this study, we cross validate both 

the learning process of the structure and the parameters to find an optimal model. The data specific 

behavior of the ROC (AUC) metric with the different smoothing parameters and the score 

functions is illustrated in Figure 4.4. 

 

 
Figure 4.4: Parameter tuning of a TAN model 

4.3.6     Performance Metrics 

 The model performances are compared by using 4 different evaluation metrics: accuracy, 

sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Detailed 

information about the performance evaluation metrics can be found in (Ling et al., 2003).  

 

4.4     Results and Discussion 

4.4.1 Variable Selection Results 

            To better interpret the causal relationship among the dependent variables, we seek to reduce 

the data dimensionality by employing three different variable selection methods explained in 

Section 4.3.2.1, 4.3.2.2 and 4.3.2.3. Variable selection methods, however, use their own way of 

judging the importance of the variables and thus have different shortcomings (Hall, 1999). For 

example, correlation-based feature selection techniques are sensitive to multicollinearity and might 

fail to detect all the relevant variables (Hall, 1999). Similarly, exhaustive variable selection 

techniques can be computationally expensive and may not terminate in a realistic time. Time-
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efficient algorithms, on the other hand, cannot guarantee the optimal subset solution (Dash et al., 

2000). For this reason, we consider all possible combinations of the three variable sets selected by 

the previously mentioned machine learning and optimization algorithms to reduce the bias 

associated with each algorithm. The variables selected through these variable selection methods 

are shown in Table 4.2.  

 

Table 4.2: Variable selection results 

Variable Name PSO GA XGB 
Age ✓ ✓ ✓ 
Gender  ✓ ✓ 
Scheduling day   ✓ 
Appointment day ✓ ✓ ✓ 
Appointment month   ✓ 
Lead time ✓ ✓ ✓ 
Calling time ✓ ✓ ✓ 
SMS reminder ✓ ✓ ✓ 
Alcoholism ✓   
Financial aid ✓   
Handicap    
Hypertension    
Diabetes    
Neighborhood  ✓ ✓ 
Time between appointments ✓ ✓ ✓ 
Prior no-shows ✓ ✓ ✓ 

 

            The variables; Age, Appointment day Lead time, Calling time, Prior no-show, Time 

between appointments, and SMS reminder are selected by all the algorithms while only two 

algorithms find Neighborhood and Gender be important. Moreover, Alcoholism and Financial aid 

are chosen only by particle swarm optimization. Similarly, Scheduled day and Appointment Month 

are regarded as important variables only by XGB. It should be noted that none of the algorithms 

consider Diabetes, Hypertension, Handicap as important variables. 

 

4.4.2 Creating Predictor Sets and Classification Results  

 Three different variable sets have been extracted from the dataset through a machine 

learning algorithm (i.e. XGB) and the two optimization techniques (i.e. PSO and GA). In our 
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preliminary analysis phase, we considered all possible combinations of these variable sets (i.e. 

intersections and unions of the all variable sets) to find the optimal set that results in maximizing 

the TAN models predictive performance with a minimum number of variables. The number of 

possible scenarios/combinations is 11 (i.e. GA, PSO, XGB, GA ∩ PSO, GA ∩	XGB, PSO ∩ XGB, 

GA ∩	PSO ∩	XGB, GA ∪	PSO, GA	∪ XGB, PSO ∪	XGB, and GA	∪	PSO ∪	XGB). To exemplify, 

GA ∩ PSO ∩	XGB represents the set of variables that are common in all of these three models 

employed, while GA ∪ PSO ∪ XGB represents the union of the three sets variables selected 

through GA, PSO, and XGB. Recall that we employed two algorithms to handle the data imbalance 

(i.e. RUS and SMOTE). Table 4.3 originally had 11 scenarios for each balancing algorithm. 

However, four of these 11 scenarios produced the same set of variables (For example, the 

intersection of GA and XGB (i.e. GA ∩ XGB) was exactly the same with GA (only)). Therefore, 

those scenarios were eliminated for the sake of simplicity, which left us with seven unique 

scenarios. 

 As can be seen in Table 4.3, the best performing scenario is bolded for each metric. For 

example, the model with variable sets given by the intersection set of GA and PSO (GA∩PSO) 

achieved the best performance in terms of AUC (0.828) on the test set balanced through RUS, 

while the best sensitivity (0.785) was again achieved with the intersection set of the GA and PSO 

using SMOTE. Moreover, the best specificity (0.752) is obtained with the intersection set of all 

algorithms (GA∩PSO∩XGB) with RUS, GA led to reach the best accuracy (0.742) using the RUS 

balancing technique. Even though the accuracy number obtained through GA ∪ PSO was the same, 

this scenario had a higher number of variables when compared to GA only (i.e.11 > 9). It should 

be noted that our goal is to maximize the performance while minimizing the number of the 

variables to be selected (to obtain the most parsimonious model possible).  

 The best performing variable set was selected to further investigate the causal relationships 

among the variables. To do so, the AUC metric is considered as the main criterion since it is not 

sensitive to a cutoff value, and it is a better way to judge a model performance when the dataset is 

imbalanced (Ling et al., 2003). With that said, the variable set giving the best AUC has fewer 

variables compare to the other variable sets, which also appeals to us since one of our major goals 

is to obtain the most parsimonious model possible.  Therefore, we chose to investigate the variable 

set of GA ∩ PSO when sampled with RUS, as underlined in Table 4.3. 
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Table 4.3: Model performance with different scenarios and sampling techniques 

Sampling technic: Random Under-sampling (RUS) 

Variable Set 
Number of 

Variable 
Accuracy Sensitivity Specificity AUC 

GA 9 0.742(0.003) 0.746(0.011) 0.742(0.005) 0.822(0.006) 

PSO 9 0.729(0.004) 0.783(0.012) 0.715(0.006) 0.827 (0.006) 

XGB 11 0.718(0.005) 0.739(0.010) 0.712(0.007) 0.809(0.004) 

GA∪PSO 11 0.742(0.003) 0.744(0.013) 0.741(0.005) 0.821(0.006) 

GA∩PSO 7 0.728(0.004) 0.785(0.012) 0.713(0.006) 0.828(0.006) 

PSO∪XGB 13 0.717(0.003) 0.741(0.010) 0.711(0.006) 0.809(0.004) 

GA∩PSO∩XGB 7 0.737(0.007) 0.682(0.018) 0.752(0.013) 0.796(0.005) 

Sampling technic: Synthetic Minority Over-sampling (SMOTE) 

Variable Set 
Number of 

Variable 
Accuracy Sensitivity Specificity AUC 

GA 9 0.696(0.006) 0.748(0.022) 0.682(0.011) 0.791(0.007) 

PSO 9 0.726(0.006) 0.709(0.022) 0.731(0.011) 0.8(0.007) 

XGB 11 0.683(0.008) 0.734(0.014) 0.669(0.010) 0.77(0.007) 

GA∪PSO 11 0.719(0.004) 0.712(0.016) 0.721(0.005) 0.795(0.007) 

GA∩PSO 7 0.703(0.007) 0.759(0.023) 0.689(0.014) 0.803(0.007) 

PSO∪XGB 13 0.708(0.005) 0.685(0.013) 0.714(0.008) 0.768(0.006) 

GA∩PSO∩XGB 7 0.669(0.005) 0.767(0.006) 0.643(0.007) 0.785(0.005) 

 

4.4.3    Bayesian Network Results 

 The Bayesian belief network structure of the best performing model (GA	∩ PSO) is 

illustrated in Figure 4.5 with seven independent variables and the outcome (i.e. whether the patient 

is no show or not). As explained in Section 4.3.5, the Tree Augmented Naïve Bayesian (TAN) 

algorithm requires variables to have parent-child relations. Understanding the inter-relations 

among the predictors and, the association of each predictor with the outcome can be observed from 

the TAN model. An arc from a predictor (parent) to another (child) indicates that the contribution 

of the child node on the model outcome depends on the value of the parent node. 
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Figure 4.5: Bayesian belief network 

 Figure 4.5 demonstrates that the most influential variable is Lead time since it is the parent 

of four variables (Age, SMS remainder, Calling time and Time between appointments), and the 

impacts of all these variables on the target variable are directly associated with the value of the 

Lead time. For example, the age seems to be an important factor for the outcome. However, the 

effect of age might decrease with the value of lead time. For example, if the lead time is too high, 

even if the age of the patient is between 50 and 75 (the lowest risk age frame), there is a high 

chance that this patient might be a no-show patient. This suggests that clinics need to be careful 

about the lead time when scheduling an appointment for a patient in order to increase the show-up 

rate. With that said, the effect of Lead time depends on the Appointment Day, which can be an 

indication of a general tendency among patients towards specific appointment days. Namely, some 

days can be more popular and more attractive to the patients in order to schedule an appointment, 

which in turn might increase the lead time (Y.-L. Huang & Hanauer, 2016; Norris et al., 2014).  

 Additionally, the individual effects of the variables can be investigated. For instance, age-

specific show-up rate demonstrates that the no-show rate steadily increases from an early age to 

around 18, as seen in Figure 4.6. The fact that the likelihood of the show up decreases with child’s 

age has been supported by many studies in the literature (Barron, 1980; Y. Huang & Hanauer, 
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2014; McLeod et al., 2015; Pang et al., 1995). Moreover, the show up rate hits the lowest rate of 

attendance at ages between 18 and 25. One possible reason why young adults miss their 

appointment is that they are less likely to understand the purpose of the appointments (Frankel et 

al., 1989).   

 

 
Figure 4.6 The show-up probability of patients by age 

 The show-up trend starts going up consistently until the age of 75 after which the trend 

gets nosier by experiencing some sudden decreases. The reasons for this decrease for patients older 

than 75 can be due to transportation difficulties (Bean & Talaga, 1992; Frankel et al., 1989; Pang 

et al., 1995), hospitalization (Kaplan-Lewis & Percac-Lima, 2013) or deteriorated health 

conditions (Cosgrove, 1990). However, it should be noted that the effect of age should be 

considered along with the lead time according to the BNN network.  

 Similarly, calling time is an important factor whose effect on the outcome also depends on 

the lead time. This might happen since the patients calling early in the morning may be 

experiencing an unexpected health problem, and thus will attend the appointment regardless of 

any other factors. However, if the lead time is too long for an early-calling patient, it potentially 

indicates a non-emergency situation and so it might not decrease the no-show risk.  

 As discussed in the earlier sections, the variable SMS received has an impact on the 

outcome, which again depends on its parent node, Lead time. Therefore, one can say that sending 

a text reminder might become even more important when the lead time is too long  (Barron, 1980; 

Bean & Talaga, 1992; Hardy et al., 2001; O’Brien & Lazebnik, 1998; Smith & Yawn, 1994). Or 

adversely, SMS reminder might have less impact on the outcome if the lead time is too low. The 
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rationale behind it is that SMS reminder might become unnecessary (obsolete) for very short lead 

times. Having said that, Figure 4.5 indicates that appointment day has a strong effect on the model 

outcome i.e. some days can be challenging or easy for the patients to make it to the appointment.  

 Prior no-shows is another variable that has an effect on the model outcome depending on 

the time between appointments (i.e. the elapsed time between consecutive appointments). It has 

been shown that prior no-show history is one of the most important predictors for predicting the 

no-show patients (Collins et al., 2003; Cronin et al., 2013; Y.-L. Huang & Hanauer, 2016; Kempny 

et al., 2016; Torres et al., 2015). However, counter-arguments have also been made (Dantas et al., 

2018). The reason behind this can be the failure of ignoring other factors i.e. the relation of the 

prior no-show history with other indicators. With that said, the BBN suggest that the impact of 

prior no-show is effected by the elapsed time between consecutive appointments. The rationale 

behind this might be; if the time between the most recent appointments is too short, this might 

indicate that the health issue that the patient might not be a minor problem. Therefore, the patient 

had to go to the clinic again for follow-up. In such situation, if there is some prior show in the 

patient’s history, there is a high chance that the patient will show up because of the seriousness of 

the issue that she/he has. 

 

4.4.4 Evaluation of the Predictive Power of the TAN model  

 Monte Carlo Cross Validation (MCCV) technique is used to evaluate the ability of the 

model prediction and its robustness. Namely, the dataset was split into two parts: one part is used 

to train model, and the other part is left outside of the training process to validate the model 

performance. This process repeated 1000 times. Each model was fitted on the training dataset, and 

predictions were obtained using the test set.  The predictive power of the model is then summarized 

by the aforementioned performance metrics: the area under the curve, accuracy, sensitivity, and 

specificity. In addition to these metrics, another metric called Brier’s score is used to validate the 

probabilistic accuracy of the predictive model. Brier score reflects how close the model 

probabilistic forecast is to the truth. The mathematical definition of the Brier score can be defined 

as follow 

𝛽 =
1
𝑁q(𝑓h − 𝜕h)U

X

hsT
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where 𝑓h  is the probabilistic prediction and 𝜕h is the actual outcome for the 𝑗-th instance, and N is 

the number of instances. Simply, the metric calculates the square of the difference between the 

assigned probability for each patient and his/her actual status; therefore, the lower Brier’s score 

refers to the better probabilistic accuracy. 

 

for j = 	1, 2… ,1000 do 
 threshold1 = cutoff + i/100 
 threshold2 = cutoff – i/100, where i	∈ 	 {0, 1… , 50}	and cutoff = 0.5 
          for k = 1, 2… , 𝑁, where N is the number of patients in the test set do  
                     if prediction k ≥ threshold1 then  
                          classify the patient as 1(no-show) 
          if else prediction k ≤ threshold2 then 
              classify the patient as 0 (show-up) 
         else threshold1	≤ prediction k ≤ threshold2 then 
                do not make any classification drop the instance. 
          end for 
       accuracy[j] = calculate accuracy  
       sensitivity[j] = calculate sensitivity 
       specificity[j] = calculate specificity 
       ROC[j] = calculate ROC 
       Brier’s score[j] = calculate Brier’s score 
end for 

 

Figure 4.7: The pseudo code 

 The model fitting and validation process, repeated 1000 times, are done for different cutoff 

points to better evaluate the consistency and reliability of the fitted model. Namely, the model 

performance investigated when the probabilistic prediction of the model for each instance goes 

away from the default cutoff value 0.5 with the expectation of getting better results. For example, 

for a prediction probability of 0.49, the patient would be classified as show-up while the same 

patient would be classified as no-show when the predicted probability is 0.51. In this study, in 

addition to the regular model performance investigation—where the cutoff value is generally set 

to 0.5, we explore the model performance when the model is not allowed to make a prediction 

between specified cutoff values. For example, the lower bound cutoff value is set at most to be 0.4 

and the upper bound cutoff value is set at least to 0.6, then the model simply is prevented from 

making a decision for patients for whom the assigned probabilities are between the lower (0.4) and 

upper (0.6) cutoff values. These patients are not classified as either “no-show” or “show-up”, and 



 75 

they are dropped from the confusion matrix—where we obtain the evaluation metrics: accuracy, 

sensitivity, specificity, and ROC. Therefore, the model performance is summarized by the 

evaluation metrics without taking those patients into account. In doing so, the model consistency 

and reliability is well studied for the expansive cutoff values. For each cutoff value, the TAN 

model is validated 1000 times. In other words, 50x1000 = 50,000 models are fitted and tested. The 

behavior of the five metrics is shown in Figure 4.8, and the pseudo code for this procedure is 

provided in Figure 4.7. 

            Figure 4.8 illustrates the mean behavior of each of the metrics as a line, and the shaded 

areas around the lines are the one standard deviation intervals. It can be observed from Figure 4.8 

that when the gap between the lower and the upper bound cutoff values are expanded, the 

performance of the model improves steadily. In other words, when the lower cutoff value is pushed 

towards 0 and at the same time the upper cutoff value is pushed towards 1, the probabilistic 

predictions of the model get more precise. This suggests that the model credibility increases when 

a prediction for the patient is close to the endpoints. Moreover, the marginal distributions of the 

four cutoff values are investigated. The cutoff values are chosen to be both lower and upper 0.5, 

lower 0.3 and upper 0.7, lower 0.1 and upper 0.9, and lower 0.05 and upper 0.95. The distributions 

of the evaluation metrics for these cutoff points are illustrated in Figure 4.10.  

 

Figure 4.8: Behavior of the evaluation metrics in 1000 validation samples 
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            Figure 4.9 suggests that the distributions of the evaluation metrics are approximately 

normal for each of the chosen cutoff points. Therefore, in Table 4.4, the mean value of each of the 

metrics is shown as a point estimate.  

 

Table 4.4: Model results with different cutoffs 

Cutoff ROC Accuracy Sensitivity Specificity Brier’s Score 

0.5 .827 .728 .787 .712 .174 

0.3 < | > 0.7 .881 .826 .857 .818 .133 

0.1 < | > 0.9 .943 .947 .885 .957 .049 

0.05 < | > 0.95 .968 .979 .930 .985 .021 

 

            When the cutoff value is 0.5, the mean ROC curve area is .827. For the second cutoff values 

(0.3 < | > 0.7), the mean ROC curve area becomes .881, where any probabilistic prediction between 

0.7 and 0.3 is exempted from the model evaluation process. Similarly, for the third cutoff values 

(0.1 < | > 0.9), the mean ROC curve area becomes .943. And lastly, for the fourth cutoff values 

(0.05 < | > 0.95), the mean ROC curve area hits as high as .968. 

 

Figure 4.9: Distribution of the metrics for certain cutoff points in 1000 validation samples 
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            The same consistent patterns are observed for the other evaluation metrics: accuracy, 

sensitivity, and specificity. On the other hand, the mean value of the Brier’s score decreases from 

.174 to .021 when the cutoff value is changed from 0.5 to 0.05 < | > 0.95, which demonstrates the 

assigned probabilities for each patient merely deviate from the truth; therefore, again the 

probabilistic prediction of the model can be trusted especially if the assigned probability is close 

zero or one.   

 

4.5     Patient No-Show Risk Prediction Tool 

 We have developed an interactive prediction tool that can be used by clinics to cope well 

with no-show patients (a screenshot of the tool is shown in Figure 4.10). The tool requires the 

appointment setter (clerk) to enter the necessary information of the patient who will be scheduled 

an appointment. The tool then not only provides patient-specific information such as age, the 

proportion of prior no-shows, and the lead time but also provides a patient-specific risk score of 

being no-show. It also suggests an alternative appointment date with an updated risk score, which 

 

Figure 4.10: The interface of the risk prediction tool 
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is less than the appointment date that was offered by the patient herself/himself. In order to provide 

the clerk with an alternative appointment date and its risk score, the tool iteratively searches the 

best possible neighbor appointment days, on which the patient is most likely to come, (i.e., the risk 

score for the patient hits its lowest value). To exemplify, the possible neighbor appointment days 

found by the tool is illustrated in Figure 4.11 for five patients selected at random 

The tool has been developed in R using the shiny package, and it can be utilized through computers 

(with any operating systems such as Microsoft Windows, Linux, Mac OS, etc.) and any 

smartphone. 

 
Figure 4.11: Patient-specific show-up probability structure 

4.6     Conclusions 

          Given that no-shows present a big problem for medical practitioners, wasting resources and 

creating an undue burden on the system, understanding the reasons behind no-shows and 

predicting patients likely to be no-shows is a valuable problem that has been covered in the related 

literature both in terms of descriptive and predictive analytical studies. The main targets of this 

study were to create a parsimonious Bayesian belief network model to identify the likelihood of 

patients to be no-shows and to find inter-relations among the explanatory variables.  

          The first contribution of the study was the use of machine learning techniques that could 

potentially find the most parsimonious models by eliminating irrelevant or redundant features and 

in the process increasing the accuracy of the resulting predictions. The second contribution of this 

analysis was a data-driven exploration of the relationships and interactions between the selected 

features and how these could be used to understand patient behavior and design better problem 

mitigation and decision support solutions. To have a parsimonious model, three machine learning 
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algorithms (GA, PSO, and XGB) were used to perform variable selection. Our approach was 

applied to the dataset acquired from the kaggle website. Since the dataset was imbalanced, two 

sampling techniques; random under-sampling (RUS) and synthetic minority over-sampling 

(SMOTE) were used while the model building process along with 10-fold cross-validation. We 

emphasized the following questions: 

1) What are the most important variables in detecting no-show patients? 

2) Can the interactions among the variables be visualized and analyzed? 

3) How can clinics reduce their cost by using data-driven methods?  

          The proposed framework results show that performing comprehensive variable selection can 

lead to a better performing predictive model with fewer variables. Furthermore, the information 

obtained using a probabilistic approach in the final step has provided relations among these 

important predictors as well as the patient-specific no-show probabilities. These predictions and 

insights can be useful to clinic managers, decision makers, and policy makers since they provide 

a picture of their patient’s expected behavior, which should enable them to improve their clinical 

utilization, and in the process, improve patient outcomes.  
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5     Conclusion 

            The statistical modeling methodology and the tool introduced in this dissertation play the 

critical roles in filling the gaps in the relevant literature of healthcare. In the first study, we 

proposed a novel statistical modeling approach that is used to model the survival time of breast 

cancer patients. Therefore, the contribution of the first study to the breast cancer literature can be 

summarized as follows: 1) we investigated breast cancer patient survivability from three-different-

year perspective, thereby revealing the  factors that contribute the most to the prediction of survival 

of breast cancer patients in various time intervals, and  2) we explored how the importance of those 

factors change over time.  As this was achieved by employing the most parsimonious models, these 

strategies have a high potential to have much broader implications for cancer treatment and 

research. In the second study, the similar modeling approach was formulated and applied to the 

no-show patient dataset, where the study contributes the extant patient no-show prediction 

literature by 1) finding the most parsimonious model, 2) exploring the conditional relation among 

the predictors, and 3) developing a prediction tool providing an individual patient no-show risk 

score and an alternative appointment day on which the patient is most likely to come. The main 

goal of the study is to reduce the costs of clinics introduced by patient no-shows and to provide 

patients better care by utilizing available resources more efficiently. 
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