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Abstract

Chemotaxis describes the oriented movements of biological cells or organisms in response

to chemical gradients in their environments and is crucial for many aspects of behaviour such

as the location of food sources, avoidance of predators and attracting mates, slime mold ag-

gregation, tumor angiogenesis, and primitive streak formation. Chemotaxis is also crucial in

macroscopic process such as population dynamics and gravitational collapse. In 1970, Keller

and Segel introduced a celebrated mathematical model to describe chemotaxis. Since then a

tremendous effort has been dedicated to understand the classical chemotaxis model and its var-

ious variants. But there are still a lot of open interesting problems in the understanding of

chemotaxis models. In particular, to the best of our knowledge, there has been no study of

chemotaxis models in heterogeneous environments. This dissertation aims to study the dynam-

ics of chemotaxis models of both one and two species in bounded heterogeneous environments.

Regarding chemotaxis models of one species in heterogeneous environments, we first inves-

tigate and prove the local existence and uniqueness of classical solutions. Next under some

natural conditions on the parameters, we prove the boundedness of classical solutions and the

existence of positive entire solutions. Finally, under some further conditions on the parameters,

we establish the uniqueness and stability of positive entire solutions. Our results on the exis-

tence, uniqueness and stability of positive entire solutions are new and original. Important new

techniques have been established to prove those results.

Concerning chemotaxis models of two species in heterogeneous environments, we first find

various conditions on the parameters which guarantee the global existence and boundedness

of classical solutions. Next, we find further conditions on the parameters which establish the

persistence of the two species. Furthermore, under the same set of conditions for the persistence

of the two species, we prove the existence of coexistence states. We then prove the extinction

phenomena in the sense that one of the species dies out asymptotically and the other reaches

its carrying capacity as time goes to infinity. Finally, we study the asymptotic dynamics of
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two species competition systems with/without chemotaxis in heterogeneous media and find

conditions on the parameters for the uniqueness and stability of positive coexistence states of

such systems. The persistence in general two species chemotaxis systems is studied for the

first time. Several important techniques are developed to study the persistence and coexistence

of the two species chemotaxis systems. Many existing results on the persistence, coexistence,

and extinction on two species competition systems without chemotaxis are recovered. The

established results on the asymptotic dynamics of two species competition systems are new

even for the two species competition systems without chemotaxis but with space dependent

coefficients.
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Chapter 1

Introduction

Chemotaxis, the oriented movements of mobile species toward the increasing or decreasing

concentration of a signaling chemical substance, has a crucial role in a wide range of biological

phenomena such as immune system response, embryo development, tumor growth, population

dynamics, gravitational collapse, etc. (see [28, 41, 50]). At the beginning of the 1970s, Keller

and Segel proposed a celebrated mathematical model, referred to as the classical Keller-Segel

model, to describe the aggregation process of Dictyostelium discoideum, a soil-living amoebae

[33, 34]. It is well known that in homogeneous environments, finite-time blow-up of some clas-

sical solutions may occur in the classical Keller-Segel model and its variants in space dimension

n ≥ 2 (see [9, 19, 32, 66] for a one species chemotaxis model and [4] two species chemotaxis

models). However, it is also known that logistic sources of Lotka-Volterra type may preclude

such blow-up phenomenon (see [30, 51, 59] for one species and [44, 60] for two species) and

that, at least numerically, chemotaxis with logistic sources may exhibit quite a rich variety of

colorful dynamical features, up to periodic and even chaotic solution behavior [38, 49]. For a

broad survey on the progress of various chemotaxis models in homogeneous environments and

a rich selection of references, we refer the reader to the survey papers [5, 24, 25]. To the best

of our knowledge, there has been no study on the dynamics of chemotaxis models in hetero-

geneous environments previous to our study. In reality, the underlying environments of many

biological systems are subject to various spatial and temporal variations. It is of both biological

and mathematical importance to study chemotaxis models in heterogeneous environments.
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This dissertation focuses on the study of the dynamics of the following chemotaxis models

in bounded heterogeneous environments,


ut = d1∆u− χ∇ · (u∇w) + u

(
a0(t, x)− a1(t, x)u− a2(t, x)

∫
Ω
u
)
, x ∈ Ω

τwt = d2∆w + ku− λw, x ∈ Ω

∂u
∂n

= ∂w
∂n

= 0, x ∈ ∂Ω,

(1.1)

and

ut = d1∆u− χ1∇ · (u∇w) + u
(
a0(t, x)− a1(t, x)u− a2(t, x)v

)
, x ∈ Ω

vt = d2∆v − χ2∇ · (v∇w) + v
(
b0(t, x)− b1(t, x)u− b2(t, x)v

)
, x ∈ Ω

τwt = d3∆w + ku+ lv − λw, x ∈ Ω

∂u
∂n

= ∂v
∂n

= ∂w
∂n

= 0, x ∈ ∂Ω,

(1.2)

where Ω ⊂ Rn is a bounded domain with smooth boundary.

System (1.1) is referred to as one species chemotaxis model and arises in mathematical bi-

ology as a model for the spatio-temporal evolution of the population of a species which prolif-

erates according to a Lotka-Volterra-type kinetics, and in which individuals are moreover able

to move according to both random diffusion and chemotaxis toward or away a signal produced

by themselves. In this setting, u = u(x, t) represents the population density of the species,

w = w(x, t) denotes the concentration of the chemical, χ > 0 describes the chemotaxis sensi-

tivity, di > 0, i = 1, 2, describe the diffusion rate of u and w respectively, τ ≥ 0 describes the

diffusion speed of the chemical substance, a0 and a1 describe respectively the intrinsic growth

rate and the self limitation effect of the species u, a2

∫
Ω
u describes the influence of the total

mass of the species in the growth of the population. System (1.1) with ai ≡ 0 (i = 0, 1, 2)

reduces to the classical Keller-Segel model.

A quite rich dynamical features in system (1.1) with constant coefficients have been observed,

including spatial pattern formation and spatio-temporal chaos, at least numerically (see [38,

49]). For example, it is proved that blow-up never happens in one dimension [47] and that
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chemotactic-cross diffusion has a very strong destabilizing action in space dimension n ≥ 2

in the sense that finite-time blow-up of some classical solutions may occur (see [32, 66]). It

is also known that logistic sources of Lotka-Volterra type preclude such blow-up phenomenon

in certain sense (see [30, 59]) and that, at least numerically, chemotaxis may exhibit quite a

rich variety of colorful dynamical features, up to periodic and even chaotic solution behavior

[38, 49]. But there is little study of the dynamics of (1.1) with time and space dependent

coefficients, including the case that τ = 0.

One of the main objectives of this dissertation is to study the fundamental dynamical aspects

in system (1.1) with τ = 0 such as

- Global existence of nonnegative classical solutions.

- Existence and stability of positive entire solutions.

We obtained many important results on the dynamical aspects of system (1.1) in [30]. For

example, we proved the following and others in [30] for (1.1) with a2(t, x) = 0, di = 1, τ = 0,

and k = l = 1.

(i) Assume that inft∈R,x∈Ω̄ a1(t, x) > χ(n−2)
n

. Then for any t0 ∈ R and u0 ∈ C0(Ω̄) with

u0 ≥ 0, system (1.1) has a unique global classical solution (u(x, t; t0, u0), w(x, t; t0, u0))

which satisfies that limt→t0 ‖u(·, t; t0, u0)− u0(·)‖C0(Ω̄) = 0.

(ii) Assume that inft∈R,x∈Ω̄ a1(t, x) > χ. Then there is a positive bounded entire solu-

tion (u,w) = (u∗(x, t), w∗(x, t)) of (1.1). Moreover, if there is T > 0 such that

ai(t + T, x) = ai(t, x) for i = 0, 1, then (1.1) has a positive periodic solution (u, v) =

(u∗(x, t), w∗(x, t)) with period T ; and if ai(t, x) ≡ ai(x) for i = 0, 1, then (1.1) has a

positive steady state solution (u,w) = (u∗(x), w∗(x)).

The result (i) provides some parameter region for the global existence of nonnegative clas-

sical solutions. In addition to the difficulties related to chemotaxis, for example the lack of

comparison principle, time and space dependence in (1.1) introduces several other new diffi-

culties. The existence and nonlinear stability of positive entire solutions of (1.1) with time and
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space dependent coefficients are much more difficult to study than the case with constant co-

efficients. The result (ii) provides for some parameter region of global existence, the existence

of positive entire solutions. Several new techniques have been developed in [30, Lemma 5.1,

Lemma 5.2, and Lemma 5.3] to obtain result (ii).

System (1.2) also arises in mathematical biology as a model for the spatio-temporal evolution

of the populations of two species which proliferate and compete according to a Lotka-Volterra-

type kinetics, and in which individuals are moreover able to move according to both random

diffusion and chemotaxis toward a signal produced by themselves. In the setting of (1.2), u =

u(x, t) and v = v(x, t) represent the population densities of two species; w = w(x, t) denotes

the concentration of the chemical; χi > 0, i = 1, 2, describe the chemotaxis sensitivities of u

and v respectively; di > 0, i = 1, 2, 3, describe the diffusion rate of u, v and w respectively;

τ ≥ 0 describes the diffusion speed of the chemical substance; a0 and a1 (resp. b0 and b2

) describe respectively the intrinsic growth rate and the self limitation effect of the species u

(resp. of the species v), and b1 ∈ R (resp. a2 ∈ R ) describes the local effect of the species u

(resp. of the species v) on the species v (resp. on the species u).

Among interesting dynamical issues in (1.2) are persistence, coexistence, exclusion, and

nonlinear stability of positive entire solutions. Several authors have studied these issues for

system (1.2) with constant coefficients [29, 44, 60]. There is little study of these important

issues for (1.2) with time and space dependent coefficients even in the case of τ = 0.

The second main objective of this dissertation is to study the following dynamical issues of

system (1.2) with τ = 0

- Uniform persistence and coexistence.

- Existence of positive entire solutions.

- Competitive exclusion of one of the two species.

- Uniqueness and stability of coexistence states.

Among others, we proved the following.
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(iii) (Persistence) Assume

a1,inf >
kχ1

d3

, a2,inf ≥
lχ1

d3

, b1,inf ≥
kχ2

d3

, b2,inf >
lχ2

d3

,

a0,inf > a2,supĀ2 and b0,inf > b1,supĀ1,

where

Ā1 =
a0,sup

a1,inf − kχ1

d3

, Ā2 =
b0,sup

b2,inf − lχ2

d3

.

Then there are A1 > 0 and A2 > 0 such that for any ε > 0 and u0, v0 ∈ C0(Ω̄)

with u0, v0 ≥ 0, and u0, v0 6≡ 0, there exists tε,u0,v0 such that the unique global clas-

sical solution (u(x, t; t0, u0, v0), v(x, t; t0, u0, v0), w(x, t; t0, u0, v0)) of system (1.2) with

(u(x, t0; t0, u0, v0), v(x, t0; t0, u0, v0)) = (u0(x), v0(x)) in certain sense satisfies

A1 ≤ u(x, t; t0, u0, v0) ≤ Ā1 + ε, A2 ≤ v(x, t; t0, u0, v0) ≤ Ā2 + ε (1.3)

for all x ∈ Ω̄, t ≥ t0 + tε,u0,v0 , and t0 ∈ R.

(iv) (Coexistence) Under the same assumption of (iii), there is a coexistence state (u∗∗(x, t),

v∗∗(x, t), w∗∗(x, t)) of system (1.2) (i.e. (u∗∗(x, t), v∗∗(x, t), w∗∗(x, t)) is a solution

of (1.2) defined for all t ∈ R and inft∈R,x∈Ω u
∗∗(x, t) > 0 and inft∈R,x∈Ω̄ v

∗∗(x, t) > 0).

Moreover, if there is T > 0 such that ai(t+T, x) = ai(t, x), bi(t+T, x) = bi(t, x) for i =

0, 1, 2, then system (1.2) has a T -periodic coexistence state (u∗∗(x, t), v∗∗(x, t), w∗∗(x, t));

and if ai(t, x) ≡ ai(x), bi(t, x) ≡ bi(x) for i = 0, 1, 2, then system (1.2) has a steady

state coexistence state (u∗∗(t, x), v∗∗(t, x), w∗∗(t, x)) ≡ (u∗∗(x), v∗∗(x), w∗∗(x)).

(v) (Competitive exclusion) Assume that

a1,inf >
kχ1

d3

, a2,inf ≥
lχ1

d3

, b1,inf ≥
kχ2

d3

, b2,inf > 2
χ2

d3

l,

a2,inf

(
b0,inf(b2,inf − l

χ2

d3

)− b0,sup
χ2

d3

l
)
≥ a0,sup

(
(b2,inf − l

χ2

d3

)(b2,sup − l
χ2

d3

)− (l
χ2

d3

)2
)
,
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and

(
a1,inf −

χ1k

d3

)(
b0,inf(b2,inf −

lχ2

d3

)− b0,sup
lχ2

d3

)
>
[((

b1,sup − k
χ2

d3

)
+

+ k
χ2

d3

)
(b2,inf −

χ2l

d3

) +
lχ2

d3

(
b1,inf − k

χ2

d3

)
−

]
a0,sup.

Then for every t0 ∈ R and nonnegative initial functions u0, v0 ∈ C0(Ω), u0 ≥ 0,

v0 ≥ 0, with ‖v0‖∞ > 0, the unique bounded and globally defined classical solution

(u(·, ·; t0, u0, v0), v(·, ·; t0, u0; v0),w(·, ·; t0, u0, v0)) of system (1.2) with (u(x, t0; t0, u0, v0),

v(x, t0; t0, u0, v0)) = (u0(x), v0(x)) in certain sense satisfies

lim
t→∞
‖u(·, t+ t0; t0, u0; v0)‖∞ = 0,

α ≤ lim inf
t→∞

(min
x∈Ω̄

v(x, t)) ≤ lim sup
t→∞

(max
x∈Ω̄

v(x, t)) ≤ β,

for some 0 < α < β <∞.

Global asymptotic stability and uniqueness of coexistence states are obtained for system

(1.2) when the coefficients are constants and satisfy certain weak competition condition in [6],

[55], [60]. In such cases, the persistence follows from the asymptotic stability and uniqueness

of coexistence states. The persistence in two species chemotaxis systems without assuming

the asymptotic stability of coexistence states is studied for the first time in [31], even when

the coefficients are constants. Several new nontrivial techniques have been developed in [31,

Lemma 3.1 to 3.5] to prove the persistence result (iii).

The rest of the dissertation is organized as follows. In Chapter 2, we will study the dynamics

of system (1.1) with τ = 0, the so called parabolic-elliptic chemotaxis model. We first state

basic assumptions, definitions, notations and main results. Next, we study respectively local ex-

istence and global existence of classical solutions. Finally, we study the existence, uniqueness

and stability of positive entire solutions. Chapter 3 is dedicated to the study of the dynami-

cal aspects of system (1.2) with τ = 0, the so called parabolic-parabolic-elliptic chemotaxis

model. We first study the global existence of classical solutions. Next, we study persistence

of solutions, existence of coexistent states and the exclusion phenomenon. We then study the

6



existence of optimal rectangles. Finally, we study the uniqueness and stability of coexistence

states. Chapter 4 is dedicated to concluding remarks and future works.
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Chapter 2

Dynamics in Chemotaxis Models of One Species on Bounded Heterogeneous Environments

2.1 Introduction

In this chapter, we study the dynamics of system (1.1) with τ = 0 and d1 = d2 = k = λ = 1,

that is the following chemotaxis system of parabolic-elliptic type with both local and nonlocal

heterogeneous logistic source,


ut = ∆u− χ∇ · (u∇v) + u(a0(t, x)− a1(t, x)u− a2(t, x)

∫
Ω
u), x ∈ Ω

0 = ∆v + u− v, x ∈ Ω

∂u
∂n

= ∂v
∂n

= 0, x ∈ ∂Ω,

(2.1)

where Ω is a bounded subset of Rn with smooth boundary, u(x, t) and v(x, t) represent the

population densities of living organisms and some chemoattractant substance, respectively, χ >

0 is the chemotactic sensitivity, a0, a1 are nonnegative bounded functions and a2 is a bounded

real valued function.

System (2.1) with constant coefficients was introduced recently in [44] by Negreanu and

Tello. As mentioned in [44], the logistic growth describes the competition of the individuals of

the species for the resources of the environment and the cooperation to survive. The coefficient

a0 induces an exponential growth for low density populations and the term a1u describes a local

competition of the species. At the time that the population grows, the competitive effect of the

local term a1u becomes more influential. The non-local term a2

∫
Ω
u describes the influence of

the total mass of the species in the growth of the population. If a2 > 0, we have a competitive

term which limits such growth and when a2 < 0 the individuals cooperate globally to survive.

In the last case, the individuals compete locally but cooperate globally and the effects of a1u

8



and a2

∫
Ω
u balance the system. Note that (u, v) ≡ (0, 0) is always a solution of system (2.1),

which will be called the trivial solution of system (2.1). Due to biological reasons, we are

only interested in nonnegative solutions, in particular, nonnegative and nontrivial solutions, of

system (2.1).

In the case that chemotaxis and nonlocal competition are absent (i.e. χ = 0 and a2 ≡ 0)

in system (2.1), the population density u(x, t) of the living organisms satisfies the following

scalar reaction diffusion equation,


ut = ∆u+ u(a0(t, x)− a1(t, x)u), x ∈ Ω

∂u
∂n

= 0, x ∈ ∂Ω.

(2.2)

Equation (2.2) is called Fisher or KPP type equation in literature because of the pioneer-

ing works by Fisher ([12]) and Kolmogorov, Petrowsky, Piscunov ([36]) in the special case

a0(t, x) = a1(t, x) = 1, and has been extensively studied (see [7], [21], [46], [54], [68],

etc.). The dynamics of (2.2) is quite well understood. For example, if a0(t, x) ≡ a0(t) and

a1(t, x) ≡ a1(t), it is proved in [46] that system (2.2) has a unique bounded entire solution,

that is positive, does not approach the zero-solution in the past and in the future and attracts all

positive solutions. If a0(t, x) and a1(t, x) are positive and almost periodic in t, it is proved in

[54] that (2.2) has a unique globally stable time almost periodic positive solution.

In the case of constant coefficients with a0 > 0 and a1 − |Ω|(a2)− > 0, it is clear that

(u, v) ≡ ( a0
a1+a2|Ω| ,

a0
a1+a2|Ω|) is the unique nontrivial spatially and temporally homogeneous

steady state solution of system (2.1), where |Ω| is the Lebesgue measure of Ω. It is proved in

[44] that the condition a1 > 2χ + |a2| ensures the global stability of the homogeneous steady

state (see [59] when a2 = 0) and that, if furthermore a2 = 0, the assumption a1 >
n−2
n
χ ensures

the global existence of a unique bounded classical solution (u(x, t; t0, u0), v(x, t; t0, u0)) with

given nonnegative initial function u0 ∈ C0,α(Ω̄) (i.e. u(x, t0; t0, u0) = u0(x) ≥ 0) (see [59]).

It should be pointed that, when n ≥ 3 and a1 ≤ n−2
n
χ (a2 = 0), it remains open whether for

any given nonnegative initial function u0 ∈ C0,α(Ω̄), system (2.1) possesses a global classi-

cal solution (u(x, t; t0, u0), v(x, t; t0, u0)) with u(x, t0; t0, u0) = u0(x), or whether finite-time

9



blow-up occurs for some initial data. We mention the works [39], [66], [67] along this direc-

tion. It is shown in [39], [67] that in presence of suitably weak logistic dampening (that is,

small a1) certain transient growth phenomena do occur for some initial data. It is shown in [66]

that replacing a1u by a1u
κ with suitable κ < 1 (for instance, κ = 1/2) and replacing u− v by

u− 1
|Ω|

∫
Ω
u(x)dx, then finite-time blow-up is possible.

However, as far as χ > 0 and a0(t, x), ai(t, x), a2(t, x) are not constants, there is little study

of system (2.1). The objective in this chapter is to investigate thoroughly the asymptotic dy-

namics of system (2.1). To this end, we first study the local and global existence of classical

solutions of system (2.1) with given nonnegative initial functions, next study the existence of

entire positive solutions, and then investigate the uniqueness and stability of positive entire

solutions and the asymptotic behavior of positive solutions of system (2.1).

2.2 Notations, Assumptions, Definitions and Main results

2.2.1 Notations, assumptions and definitions

Throughout this chapter, we assume that ai (i = 0, 1, 2) satisfy the following standard assump-

tion.

(H1) a0(t, x), a1(t, x) and a2(t, x) are Hölder continuous in t ∈ R with exponent ν > 0

uniformly with respect to x ∈ Ω̄, continuous in x ∈ Ω̄ uniformly with respect to t ∈ R, and

there are nonnegative constants αi, Ai (i = 0, 1, 2) with α1 + α2 > 0 such that


0 < α0 ≤ a0(t, x) ≤ A0

0 ≤ α1 ≤ a1(t, x) ≤ A1

0 ≤ α2 ≤ |a2(t, x)| ≤ A2.

We put

ai,inf = inf
t∈R,x∈Ω̄

ai(t, x), ai,sup = sup
t∈R,x∈Ω̄

ai(t, x), (2.3)

ai,inf(t) = inf
x∈Ω̄

ai(t, x), ai,sup(t) = sup
x∈Ω̄

ai(t, x), (2.4)
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unless specified otherwise. For convenience, we introduce the following assumptions.

(H2) a1(t, x), a2(t, x), and χ satisfy

inf
t∈R

{
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−

}
> χ, (2.5)

where |Ω| is the Lebesgue measure of Ω.

(H2)′ a1(t, x), a2(t, x), and χ satisfy inft∈R
{
a1,inf(t) − |Ω|

(
a2,inf(t)

)
−

}
> 0 and if n ≥ 3,

a1,inf >
χ(n−2)

n
.

For given 1 ≤ p <∞, let X = Lp(Ω) and A = −∆ + I with

D(A) =

{
u ∈ W 2,p(Ω) | ∂u

∂n
= 0 on ∂Ω

}
.

It is well known that A is a sectorial operator in X (see, for example, [17, Example 1.6]) and

thus generates an analytic semigroup
(
e−At

)
t≥0

in X (see, for example, [17, Theorem 1.3.4]).

Moreover 0 ∈ ρ(A) and

‖e−Atu‖X ≤ e−t‖u‖X for t ≥ 0 andu ∈ X.

Because ∆ is a dissipative operator and range(I −∆) = X, so it generates a strongly contin-

uous semigroup of contraction on X.

Let Xα = D(Aα) be equipped with the graph norm ‖u‖α := ‖u‖Xα = ‖Aαu‖p (see, for

example, [17, Definition 1.4.7]).

Throughout this chapter, A and Xα are defined as in the above. For given −∞ ≤ t1 < t2 ≤

∞ and 0 ≤ δ < 1, Cδ((t1, t2), Xα) is the space of all locally Hölder continuous functions from

(t1, t2) to Xα with exponent δ.

A vector valued function (u(x, t), v(x, t)) is called a classical solution of system (2.1) on

Ω× (t1, t2) (−∞ ≤ t1 < t2 ≤ ∞) if (u, v) ∈ C(Ω̄× (t1, t2)) ∩C2,1(Ω̄× (t1, t2)) and satisfies

system (2.1) for t ∈ (t1, t2) in the classical sense. A classical solution (u(x, t), v(x, t)) of

system (2.1) on Ω × (t1, t2) is called nonnegative if u(x, t) ≥ 0 and v(x, t) ≥ 0 for (x, t) ∈

Ω̄×(t1, t2), and is called positive if inf(x,t)∈Ω̄×(t1,t2) u(x, t) > 0 and inf(x,t)∈Ω̄×(t1,t2) v(x, t) > 0.

11



(u(x, t), v(x, t)) is called an entire classical solution of system (2.1) if it is a classical solution

of system (2.1) on (−∞,∞). For a given t0 ∈ R and a given function u0(·) on Ω, it is said

that system (2.1) has a classical solution with initial condition u(x, t0) = u0(x) if system (2.1)

has a classical solution, denoted by (u(x, t; t0, u0), v(x, t; t0, u0)), on (t0, T ) for some T > t0

satisfying that limt→t0+ u(·, t; t0, u0) = u0(·) in certain sense. A classical solution of system

(2.1) with initial condition u(x, t0) = u0(x) exists globally if system (2.1) has a classical

solution (u(x, t; t0, u0), v(x, t; t0, u0)) with u(x, t0; t0, u0) = u0(x) on (t0,∞).

2.2.2 Main results

First of all, we have the following local existence theorem.

Theorem 2.1. Suppose that p > 1 and 1/2 < α < 1 are such that Xα ⊂ C1(Ω̄).

(1) For any t0 ∈ R and u0 ∈ Xα with u0 ≥ 0, there exists Tmax ∈ (0,∞] such that

system (2.1) has a unique non-negative classical solution (u(x, t; t0, u0), v(x, t; t0, u0))

on (t0, t0 + Tmax) satisfying that limt→t0 ‖u(·, t; t0, u0)− u0(·)‖Xα = 0, and

u(·, ·; t0, u0) ∈ C([t0, t0 + Tmax), Xα) ∩ Cδ((t0, t0 + Tmax), Xα) (2.6)

for some 0 < δ < 1. Moreover if Tmax <∞, then

lim sup
t↗Tmax

‖u(·, t+ t0; t0, u0)‖Xα = lim sup
t↗Tmax

‖u(·, t+ t0; t0, u0)‖C0(Ω̄) =∞. (2.7)

(2) For any given t0 ∈ R and u0 ∈ C0(Ω̄) with u0 ≥ 0, there exists Tmax ∈ (0,∞] such that

system (2.1) has a unique non-negative classical solution (u(x, t; t0, u0), v(x, t; t0, u0))

on (t0, t0 + Tmax) satisfying that limt→t0 ‖u(·, t; t0, u0)− u0(·)‖C0(Ω̄) = 0, and

u(·, ·; t0, u0) ∈ C((t0, t0 + Tmax), Xα) ∩ Cδ((t0, t0 + Tmax), Xα) (2.8)

for some 0 < δ < 1. Moreover if Tmax <∞, then

lim sup
t↗Tmax

‖u(·, t+ t0; t0, u0)‖C0(Ω̄) =∞. (2.9)
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Remark 2.1. (1) Since Xα ⊂ C1(Ω̄) ⊂ C0(Ω̄), the existence of a local classical solution in

Theorem 2.1(1) is guaranteed by Theorem 2.1(2). However limt→t0 u(·, ·; t0, u0) = u0(·)

in the Xα-norm in Theorem 2.1(1) is not included in Theorem 2.1 (2).

(2) Theorem 2.1(2) is consistent (one species version ) with [55, Lemma 2.1].

(3) Semigroup theory and fixed point theorems together with regularity and a prior estimates

for elliptic and parabolic equations are among basic tools used in literature to prove

the local existence of classical solutions of chemotaxis models with various given initial

functions. For the self-completeness, we will give a proof of Theorem 2.1(1) by using

semigroup theory and give a proof of Theorem 2.1(2) based on the combination of fixed

point theorems and semigroup theory.

We next consider the global existence of classical solutions of system (2.1) with given initial

functions and the following is our main result on the global existence of positive classical

solutions to system (2.1).

Theorem 2.2. (1) Assume that (H2) holds. Then for any t0 ∈ R and u0 ∈ C0(Ω̄) with

u0 ≥ 0, system (2.1) has a unique global classical solution (u(x, t; t0, u0), v(x, t; t0, u0))

which satisfies that limt→t0 ‖u(·, t; t0, u0) − u0(·)‖C0(Ω̄) = 0 and (2.8), (2.9). Moreover,

we have

0 ≤ v(x, t; t0, u0) ≤ max
x∈Ω̄

u(x, t; t0, u0)

≤ max
{

supu0(x),
a0,sup

inft≥t0
{
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−
− χ

}}
(2.10)

for all (x, t) ∈ Ω̄× [t0,∞).

(2) Assume that (H2)′ holds. Then for any t0 ∈ R and u0 ∈ C0(Ω̄) with u0 ≥ 0, system (2.1)

has a unique global classical solution (u(x, t; t0, u0), v(x, t; t0, u0)) which satisfies that

limt→t0 ‖u(·, t; t0, u0)− u0(·)‖C0(Ω̄) = 0 and (2.8), (2.9). Moreover,

‖u(·, t; t0, u0)‖C0(Ω̄) + ‖v(·, t; t0, u0)‖C0(Ω̄) ≤ C
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for all t ≥ t0, where C = C(‖u0‖C0(Ω̄)), i.e, C depends only on ‖u0‖C0(Ω̄), and

0 ≤
∫

Ω

u(x, t; t0, u0)dx ≤ max
{∫

Ω

u0(x),
|Ω|a0,sup

inft∈R
{
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−

}}∀t ≥ t0.

Remark 2.2. (1) When a2(t, x) ≥ 0, (H2)′ becomes a1,inf > max{χ(n−2)
n

, 0}. In particular,

if a2(t, x) = 0, Theorem 2.2 is consistent with the result by Tello and Winkler in [59].

(2) When the coefficients are constant, the condition (H2) becomes a1−|Ω|(a2)− > χ which

is consistent with the result of global existence by Negreanu and Tello in [44].

(3) (H2) implies (H2)′ . Therefore the global existence of bounded classical solutions of

system (2.1) in Theorem 2.2(1) follows from Theorem 2.2(2). However the explicit bound

given by (2.10) is not included in Theorem 2.2(2). Note that the explicit bound (2.10) will

be used in the proof of the existence of periodic solutions (resp. steady state solutions)

when the coefficients ai(t, x) are periodic (resp. when ai(t, x) = ai(x)) (see Theorem

2.3).

(4) In general, assuming that inft∈R
{
a1,inf(t) − |Ω|

(
a2,inf(t)

)
−

}
> 0, it remains open

whether for any given t0 ∈ R and u0 ∈ C0(Ω̄), system (2.1) has a global classical

solution (u(x, t; t0, u0), v(x, t; t0, u0)). This is open even in the case that ai(t, x) ≡ ai

for i = 0, 1 and a2(t, x) = 0.

We now state our main result on the existence of positive bounded entire solutions of system

(2.1).

Theorem 2.3. Suppose that (H2) holds. Then there is a positive bounded entire classical

solution (u, v) = (u∗(x, t), v∗(x, t)) of system (2.1). Moreover, the following hold.

(1) If there is T > 0 such that ai(t + T, x) = ai(t, x) for i = 0, 1, 2, then system (2.1) has a

positive periodic solution (u, v) = (u∗(x, t), v∗(x, t)) with period T .

(2) If ai(t, x) ≡ ai(t) for i = 0, 1, 2, then system (2.1) has a unique positive spatially

homogeneous entire solution (u, v) = (u∗(t), v∗(t)) with v∗(t) = u∗(t), and if ai(t)

(i = 0, 1, 2) are periodic or almost periodic, so is (u∗(t), v∗(t)).
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(3) If ai(t, x) ≡ ai(x) for i = 0, 1, 2, then system (2.1) has a positive steady state solution

(u, v) = (u∗(x), v∗(x)).

Remark 2.3. (1) When the coefficients are only time dependent, i.e, ai(t, x) = ai(t) for

i = 0, 1, 2, every positive entire solution u(t) of the ODE

ut = u[a0(t)− (a1(t) + |Ω|a2(t))u]

is a positive entire solution of the first equation of system (2.1) and then (u(t), v(t)) with

v(t) = u(t) is an entire positive solution of system (2.1). Thus system (2.1) has an entire

solution under the weaker assumption inft∈R{a1(t)−|Ω|(a2(t))−} > 0 (see Lemma 2.5).

In general, due to the lack of comparison principle for system (2.1), it is fairly nontrivial

to prove the existence of positive entire solutions.

(2) It should be mentioned that there may be lots of positive entire solutions (see [38], [59]).

(3) The existence of positive bounded entire classical of system (2.1) also holds under the

weaker assumption (H2)′ (see Remarks 2.6 and 2.7). However under (H2)′ , it reminds

open whether there are periodic solutions of system (2.1) when the coefficients ai(t, x)

are periodic (resp. steady state solutions of system (2.1) when ai(t, x) ≡ ai(x)).

Finally we state the main results on the stability and uniqueness of positive entire solutions

and asymptotic behavior of positive solutions of system (2.1).

Theorem 2.4. (1) If ai(t, x) ≡ ai(t) for i = 0, 1, 2 and

inf
t

{
a1(t)− |Ω| |a2(t)|

}
> 2χ, (2.11)

then for any t0 ∈ R and u0 ∈ C0(Ω̄) with u0 ≥ 0 and u0 6≡ 0, the unique global classical

solution (u(x, t; t0, u0), v(x, t; t0, u0)) of system (2.1) satisfies

lim
t→∞

(
‖u(·, t; t0, u0)− u∗(t)‖C0(Ω̄) + ‖v(·, t; t0, u0)− u∗(t)‖C0(Ω̄)

)
= 0, (2.12)

where u∗(t) is the unique spatially homogeneous positive entire solution of system (2.1).

(2) Suppose that

15



inf
t∈R

{
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−

}
>
{
χ+

a0,sup

a0,inf

(
χ+ |Ω| sup

t∈R

(
a2,sup(t)

)
+

)}
(2.13)

and

lim sup
t−s→∞

1

t− s

∫ t

s

(L2(τ)− L1(τ))dτ < 0, (2.14)

where

L1(t) = 2r2

(
a1,inf(t) + |Ω|(a2,inf(t))+

)
, (2.15)

L2(t) = a0,sup(t) +
χ

2
(r1 − r2) +

(χr1)2

2
+ |Ω|r1

(
2(a2,inf(t))− +

(
a2,sup(t)

)
+

)
,

(2.16)

and

r1 =
supt∈R{a1,sup(t)− |Ω|(a2,sup(t))− − χ}a0,sup − a0,inf

(
χ+ |Ω| inft(a2,inf(t))+

)
h(χ)

,

(2.17)

r2 =
inft∈R{a1,inf(t)− |Ω|(a2,inf(t))− − χ}a0,inf − a0,sup

(
χ+ |Ω| supt(a2,sup(t))+

)
h(χ)

,

(2.18)

h(χ) = inf
t∈R
{a1,inf(t)− |Ω|(a2,inf(t))− − χ} sup

t∈R
{a1,sup(t)− |Ω|(a2,sup(t))− − χ}

−
(
χ+ |Ω| inf

t∈R
(a2,inf(t))+

)(
χ+ |Ω| sup

t∈R
(a2,sup(t))+

)
.

Then system (2.1) has a unique positive entire solution (u∗(x, t), v∗(x, t)), and, for any

t0 ∈ R and u0 ∈ C0(Ω̄) with u0 ≥ 0 and u0 6≡ 0, the global classical solution

(u(x, t; t0, u0), v(x, t; t0, u0)) of system (2.1) satisfies

lim
t→∞

(
‖u(·, t; t0, u0)− u∗(·, t)‖C0(Ω̄) + ‖v(·, t; t0, u0)− v∗(·, t)‖C0(Ω̄)

)
= 0. (2.19)

If, in addition, ai(t, x) ≡ ai(x) (resp. ai(t + T, x) = ai(t, x), ai(t, x) is almost periodic

in t uniformly with respect to x) for i = 0, 1, 2, then system (2.1) has a unique positive
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steady state solution (u∗(x), v∗(x)) (resp. system (2.1) has a unique time periodic pos-

itive solution (u∗(x, t), v∗(x, t)) with period T , system (2.1) has a unique time almost

periodic positive solution (u∗(x, t), v∗(x, t)).

Theorem 2.5. Suppose that (2.13) holds and r1 and r2 are as in Theorem 2.4(2). Then

(1) For any t0 ∈ R, u0 ∈ C0(Ω̄) with u0 ≥ 0 and u0 6≡ 0, and ε > 0, there exists tε such that

r2 − ε ≤ u(x, t; t0, u0) ≤ r1 + ε, r2 − ε ≤ v(x, t; t0, u0) ≤ r1 + ε

for all x ∈ Ω̄ and t ≥ t0 + tε.

(2) Moreover if the coefficients ai are periodic in t with period T > 0 (resp. ai are almost

periodic in t), then there are T -periodic functions m(t) and M(t) (resp. almost periodic

functions m(t) and M(t)) with

r2 ≤ inf
t∈R

m(t) ≤ m(t) ≤M(t) ≤ sup
t∈R

M(t) ≤ r1

such that for any t0 ∈ R, u0 ∈ C(Ω̄) with u0 ≥ 0 and u0 6≡ 0, and ε > 0, there is tε > 0

such that

m(t)− ε ≤ u(x, t; t0, u0) ≤M(t) + ε, m(t)− ε ≤ v(x, t; t0, u0) ≤M(t) + ε,

for all x ∈ Ω̄, t ≥ t0 + tε.

Remark 2.4. (1) When ai (i = 0, 1, 2) are constants, the condition (2.11) becomes

a1 − |Ω| |a2| > 2χ. (2.20)

Theorem 2.4(1) is then an extension of [44, Theorem 0.1 ] by Negreanu and Tello. When

the nonlocal term is zero, the result in Theorem 2.4(1) is consistent with the result by

Tello and Winkler in [59].

(2) In Theorem 2.4(2), when ai (i = 0, 1, 2) are constants , we have r1 = r2 = a0
a1+|Ω|a2 and

L1(t) =
2a0(a1 + |Ω|(a2)+)

a1 + |Ω|a2

, L2(t) = a0 +
χ2a2

0

2(a1 + |Ω|a2)2
+
a0|Ω|[2(a2)− + (a2)+]

a1 + |Ω|a2

.
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Hence the condition (2.13) becomes (2.20) and the condition (2.14) becomes

χ2a0

2(a1 + |Ω|a2)
< a1 − |Ω|(a2)−.

Furthermore when χ = 0, the condition (2.14) becomes

a1 − |Ω|(a2)− > 0.

(3) In Theorem 2.4(2), if ai(t+ T, x) = ai(t, x) (i = 0, 1, 2), then (2.14) becomes

∫ T

0

(
L2(t)− L1(t)

)
dt < 0.

(4) It is seen from Theorem 2.3 that (2.5) ensures the existence of positive entire solutions

of system (2.1). In the case that ai(t, x) ≡ ai(t) (i = 0, 1, 2), the condition (2.11)

ensures the stability and uniqueness of positive entire solutions of system (2.1). In the

general case, Theorem 2.5 provides some positive attracting set for positive solutions of

system (2.1) under the condition (2.13). It remains open whether in the general case, the

condition (2.13) also ensures the stability and uniqueness of positive entire solutions of

system(2.1).

(5) The reader is referred to Definition 2.3 for the definition of almost periodic functions.

The rest of the chapter is organized as follows. In section 2.3, we collect some important

results from literature that will be used in the proofs of our main results. In section 2.4, we

study the local existence of classical solutions of (2.1) with given initial functions and prove

Theorem 2.1. In section 2.5, we investigate the global existence of classical solutions of (2.1)

with given initial functions and prove Theorem 2.2. We consider the existence of positive entire

solutions of (2.1) and prove Theorem 2.3 in section 2.6. Finally, in section 2.7, we study the

asymptotic behavior of global positive solutions and prove Theorems 2.4 and 2.5.

18



2.3 Preliminaries

In this section, we recall some standard definitions and lemmas from semigroup theory. We also

present some known results on non-autonomous logistic equations and Lotka-Volterra compe-

tition systems.

2.3.1 Semigroup theory

In this subsection, we recall some standard definitions and lemmas from semigroup theory. The

reader is referred to [17], [48] for the details.

Recall that for given 1 ≤ p <∞, A = −∆ + I with

D(A) =
{
u ∈ W 2,p(Ω) | ∂u

∂n
= 0 on ∂Ω

}
and Xα = D(Aα) equipped with the graph norm ‖x‖α = ‖Aαx‖p. Note that X0 = Lp(Ω).

Lemma 2.1. (See [17, Theorem 1.6.1]) Let 1 ≤ p <∞. For any 0 ≤ α ≤ 1, we have

Xα ⊂ Cν(Ω̄) when 0 ≤ ν < 2α− n

p
,

where the inclusion is continuous. In particular when n
2p
< α ≤ 1, we get Xα ⊂ C0(Ω̄).

Lemma 2.2. (See [27, Lemma 2.1]) Let β ≥ 0 and p ∈ (1,∞). Then for any ε > 0 there exists

C(ε) > 0 such that for any w ∈ C∞0 (Ω) we have

‖Aβe−tA∇ · w‖Lp(Ω) ≤ C(ε)t−β−
1
2
−εe−µt‖w‖Lp(Ω) for all t > 0 and some µ > 0. (2.21)

Accordingly, for all t > 0 the operator Aβe−tA∇· admits a unique extension to all of Lp(Ω)

which is again denoted by Aβe−tA∇· and satisfies (2.21) for all w ∈ Lp(Ω).

Consider 
ut + Au = F (t, u), t > t0

u(t0) = u0.

(2.22)
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We assume that F maps some open set U of R × Xα into X0 for some 0 ≤ α < 1, and F is

locally Hölder continuous in t and locally Lipschitz continuous in u for (t, u) ∈ U .

Definition 2.1 (Mild solution). For given u0 ∈ Xα. A continuous function u : [t0, t1)→ X0 is

called a mild solution of (2.22) on t0 < t < t1 if u(t) ∈ Xα for t ∈ [t0, t1) and the following

integral equation holds on t0 < t < t1,

u(t) = e−A(t−t0)u0 +

∫ t

t0

e−A(t−s)F (s, u(s))ds. (2.23)

Definition 2.2 (Strong solution). (see [17, Definition 3.3.1]) A strong solution of the Cauchy

problem (2.22) on (t0, t1) is a continuous function u : [t0, t1) → X0 such that u(t0) = u0,

u(t) ∈ D(A) for t ∈ (t0, t1), du
dt

exists for t ∈ (t0, t1), (t0, t1) 3 t → F (t, u(t)) ∈ X0 is

locally Hölder continuous, and
∫ t0+σ

t0
‖F (t, u(t))‖dt <∞ for some σ > 0, and the differential

equation ut + Au = F (t, u) is satisfied on (t0, t1).

Lemma 2.3 (Existence of mild/strong solutions). (1) For any (t0, u0) ∈ U there exists Tmax =

Tmax(t0, u0) > 0 such that (2.22) has a unique strong solution u(t; t0, u0) on (t0, t0 +

Tmax) with initial value u(t0; t0, u0) = u0.Moreover, u(·; t0, u0) ∈ C([t0, t0 +Tmax), Xα)

and if Tmax <∞, then

lim sup
t↗Tmax

‖u(t+ t0; t0, u0)‖Xα =∞.

(2) For given (t0, u0) ∈ U , if u(t) is a strong solution of (2.22) on (t0, t1), then u satisfy the

integral equation (2.23). Conversely, if u(t) is continuous function from (t0, t1) into Xα,∫ t0+σ

t0
‖F (t, u(t))‖dt < ∞ for some σ > 0, and if the integral equation (2.23) holds for

t0 < t < t1, then u(t) is a strong solution of the differential equation (2.22) on (t0, t1).

Furthermore,

u ∈ Cδ((t0, t1), Xα) for all δ such that 0 < δ < 1− α

Proof. (1) It follows from [17, Theorem 3.3.3 ] and [17, Theorem 3.3.4 ].
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(2) The equivalence part follows from [17, Lemma 3.3.2] and u ∈ Cδ((t0, t1);Xα) follows

from the proof of [17, Lemma 3.3.2].

2.3.2 Nonautonomous logistic equations and Lotka-Volterra competition systems

In this subsection, we first recall the definition of almost periodic functions and some ba-

sic properties of almost periodic functions. We then review some known results for nonau-

tonomous logistic equations and Lotka-Volterra competition systems.

Definition 2.3. (1) A continuous function f : R → C is Bohr almost periodic if for any

ε > 0, the set of ε-periods {τ | |f(t + τ) − f(t)| < ε} is relatively dense in R, i.e,

there exists an l = l(ε) such that every interval of the form [t, t + l] intersects the set of

ε-periods.

(2) Let g(t, x) be a continuous function of (t, x) ∈ R× Ω̄. g is said to be almost periodic in

t uniformly with respect to x ∈ Ω̄ if g is uniformly continuous in t ∈ R and x ∈ Ω̄, and

for each x ∈ Ω̄, g(t, x) is almost periodic in t.

Lemma 2.4. Let g(t, x) be a continuous function of (t, x) ∈ R × Ω̄. g is almost periodic in t

uniformly with respect to x ∈ Ω̄ if and only if g is uniformly continuous in t ∈ R and x ∈ Ω̄,

and for any sequences {β ′n}, {γ
′
n} ⊂ R, there are subsequences {βn} ⊂ {β

′
n}, {γn} ⊂ {γ

′
n}

such that

lim
n→∞

lim
m→∞

g(t+ βn + γm, x) = lim
n→∞

g(t+ βn + γn, x) ∀ (t, x) ∈ R× Ω̄.

Proof. See [11, Theorems 1.17 and 2.10].

Consider the following nonautonomous logistic equation

du

dt
= u(a(t)− b(t)u), (2.24)

where a(t) and b(t) are continuous functions. For given u0 ∈ R, let u(t; t0, u0) be the solution

of (2.24) with u(t0; t0, u0) = u0.
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Lemma 2.5. (see [46],Theorems 2.1, 3.1 and 4.1) Suppose that a(t) and b(t) are continuous

and satisfy that 0 < inft∈R a(t) ≤ supt∈R a(t) < ∞, 0 < inft∈R b(t) ≤ supt∈R b(t) < ∞.

Then

(1) The non-autonomous equation (2.24) has exactly one bounded entire solution u∗(t) that

is positive and satisfies

inft∈R a(t)

supt∈R b(t)
≤ u∗(t) ≤ supt∈R a(t)

inft∈R b(t)
∀ t ∈ R.

(2) u∗(·) is an attractor for all positive solutions of (2.24), that is, for any u0 > 0 and t0 ∈ R,

lim
t→∞
‖u(t+ t0; t0, u0)− u∗(t+ t0)‖ = 0.

(3) If furthermore a(t) and b(t) are periodic with period T (resp. almost periodic), u∗(t) is

also periodic with period T (resp. almost periodic).

Consider now the following nonautonomous Lotka-Volterra competition systems
du
dt

= u(a1(t)− b1(t)u− c1(t)v)

dv
dt

= v(a2(t)− b2(t)u− c2(t)v),

(2.25)

where ai(t), bi(t), and ci(t) (i = 1, 2) are continuous and bounded above and below by positive

constants.

Given a function f(t), which is bounded above and below by positive constants, we let

fL = inf
t∈R

f(t) and fM = sup
t∈R

f(t).

Lemma 2.6. Suppose that aL1 >
cM1 aM2
cL2

and aL2 >
aM1 bM2
bL1

.

(1) Suppose that (u1(t), v1(t)) and (u2(t), v2(t)) are two solutions of the system (2.25) with

uk(t0) > 0, vk(t0) > 0 (k = 1, 2). Then u1(t) − u2(t) → 0 and v1(t) − v2(t) → 0 as

t→∞.

(2) For any t0 ∈ R, there exists a solution (u0(t), v0(t)) of system (2.25) for t ≥ t0 such that
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0 <
aL1 c

L
2 − cM1 aM2

bM1 c
L
2 − cM1 bL2

≤ u0(t) ≤ aM1 c
M
2 − cL1 aL2

bL1 c
M
2 − cL1 bM2

∀ t ≥ t0,

0 <
bL1 a

L
2 − aM1 bM2

bL1 c
M
2 − cL1 bM2

≤ v0(t) ≤ bM1 a
M
2 − aL1 bL2

bM1 c
L
2 − cM1 bL2

∀ t ≥ t0.

(3) If moreover the coefficients are positive and T -periodic, then there exist exactly one T -

periodic solution of the system (2.25) with positive components, which attracts all solu-

tions that begin in the open first quadrant.

(4) If moreover the coefficients are positive and almost periodic, then there exist exactly one

almost periodic solution of the system (2.25) with positive components, which attracts all

solutions that begin in the open first quadrant.

Proof. (1), (2), (3) follow from [1, Theorems 1 and 2], and (4) follows from [22, Theorem

C].

2.4 Local Existence and Uniqueness of Classical Solutions

In this section, we study the local existence and uniqueness of classical solutions of system

(2.1) with given initial functions and give main steps of the proof of Theorem 2.1 (the details

of the proof of Theorem 2.1 are given in our paper [30, proof of Theorem 2.1]).

First, observe that C0(Ω̄) ⊂ Lp(Ω) for any 1 ≤ p < ∞. Throughout this section, unless

specified otherwise, p > 1 and α ∈ (1/2, 1) are such that Xα ⊂ C1(Ω̄), where Xα = D(Aα)

with the graph norm ‖u‖α = ‖Aαu‖Lp(Ω) and A = I − ∆ with domain D(A) = {u ∈

W 2,p(Ω) | ∂u
∂n

= 0 on ∂Ω}. Note that A : D(A)→ X0(= Lp(Ω)) is a linear, bounded bijection,

and A−1 : X0 → Xα is compact.

Next, we note that if (u(x, t; t0, u0), v(x, t; t0, u0)) is a classical solution of system (2.1)

satisfying the properties in Theorem 2.1 (1) or (2), then v(·, t; t0, u0) = A−1u(·, t; t0, u0) and

u(x, t; t0, u0) is a classical solution of


ut = (∆− 1)u+ f(t, x, u), x ∈ Ω

∂u
∂n

= 0, x ∈ ∂Ω

(2.26)
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with u(x, t0; t0, u0) = u0(x), where

f(t, x, u) = −χ∇u · ∇A−1u+ χu(u− A−1u) + u
(

1 + a0(t, x)− a1(t, x)u− a2(t, x)

∫
Ω

u
)
.

Conversely, if u0 ∈ Xα (resp. u0 ∈ C0(Ω̄)) and u(x, t; t0, u0) is a classical solution of (2.26)

satisfying the properties in Theorem 2.1 (1) (resp. (2)), then (u(x, t; t0, u0), v(x, t; t0, u0)) is a

classical solution of system (2.1) satisfying the properties in Theorem 2.1 (1) (resp. (2)), where

v(·, t; t0, u0) = A−1u(·, t; t0, u0).

We now give main steps of the proof of Theorem 2.1 . In the rest of this section, C denotes

a constant independent of the initial conditions and the solutions under consideration, unless

otherwise specified.

Proof of Theorem 2.1. (1) We use the semigroup approach to prove (1) and divide the proof

into four steps.

Step 1. (Existence of strong solution). In this step, we prove the existence of a unique strong

solution u(·, t; t0, u0) of (2.26) in Xα with u(·, t0; t0, u0) = u0 and satisfying (2.6) and (2.7). In

order to do so, we write (2.26) as

ut + Au = F (t, u), (2.27)

where F (t, u) = −χ∇u ·∇A−1u+χu(u−A−1u) +u
(

1 + a0(t, ·)− a1(t, ·)u− a2(t, ·)
∫

Ω
u
)
.

It is not difficult to prove that F : R×Xα → X0 is locally Hölder continuous in t and locally

Lipschitz continuous in u. Then by Lemma 2.3, (2.27) has a strong solution u(·, ·; t0, u0) ∈

C([t0, t0 + Tmax), Xα). Moreover, u ∈ Cδ((t0, t0 + Tmax), Xα) ∩ C1((t0, t0 + Tmax), X0) for

any δ satisfying 0 < δ < 1 − α. Hence (2.6) holds. Moreover, u(x, t) := u(x, t; t0, u0) is a
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mild solution of (2.27) given by

u(·, t) =e−A(t−t0)u0 − χ
∫ t

t0

e−A(t−s)∇u(·, s) · ∇A−1u(·, s)ds

+ χ

∫ t

t0

e−A(t−s)u(·, s)
(
u(·, s)− A−1u(·, s)

)
ds

+

∫ t

t0

e−A(t−s)u(·, s)
(

1 + a0(s, ·)− a1(s, ·)u(·, s)− a2(s, ·)
∫

Ω

u(·, s)
)
ds.

Furthermore if Tmax <∞, then (2.7) holds.

Step 2. (Regularity). In this step, we prove that u(x, t) := u(x, t; t0, u0) obtained in (i) is a

classical solution of (2.26) on (t0, t0+Tmax) and then (u(x, t; t0, u0), v(x, t; t0, u0)) is a classical

solution of system (2.1) on (t0, t0 + Tmax) satisfying the properties in Theorem 2.1(1), where

v(·, t; t0, u0) = A−1u(·, t; t0, u0).

Fix t0 < t1 < T < t0 + Tmax and consider the problem
ũt(x, t) = (∆− 1)ũ(x, t) + g(x, t), x ∈ Ω, t ∈ (t1, T )

ũ(x, t1) = u(x, t1), x ∈ Ω

dũ
dn

= 0, x ∈ ∂Ω,

(2.28)

where

g(x, t) =− χ∇A−1u(x, t) · ∇u(x, t)

+
(

1 + a0(x, t)− χA−1u(x, t) + χu(x, t)− a1(x, t)u(x, t)− a2(x, t)

∫
Ω

u(·, t)
)
u(x, t).

By Lemma 2.1, t → g(·, t) ∈ Cθ(Ω̄) is Hölder continuous in t ∈ (t0, t0 + Tmax) for some

θ ∈ (0, 1). Then by [2, Theorem 15.1, Corollary 15.3], (2.28) has a unique classical solution

ũ ∈ C2,1(Ω̄× (t1, T )) ∩ C0(Ω̄× [t1, T )). Moreover, by Lemma 2.3,
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ũ(·, t) =

e−A(t−t1)u(·, t1)− χ
∫ t

t1

e−A(t−s)
(
∇u(·, s) · ∇A−1u(·, s)− u(·, s)

(
u(·, s)− A−1u(·, s)

))
ds

+

∫ t

t1

e−A(t−s)u(·, s)
(

1 + a0(s, ·)− a1(s, ·)u(·, s)− a2(s, ·)
∫

Ω

u(·, s)
)
ds.

Thus ũ(x, t) = u(x, t) for t ∈ [t1, T ) and u ∈ C2,1(Ω̄ × (t1, T )) ∩ C0(Ω̄ × [t1, T )). Letting

t1 → t0 and T → Tmax, we have u ∈ C2,1(Ω̄× (t0, t0 + Tmax)) ∩ C0(Ω̄× [t0, t0 + Tmax)).

Let v(·, t; t0, u0) = A−1u(·, t; t0, u0). We then have that (u(x, t; t0, u0), v(x, t; t0, u0)) is a

classical solution of system (2.1) on (t0, t0 + Tmax) satisfying the properties in Theorem 2.1.

Step 3. (Uniqueness). In this step, we prove the uniqueness of classical solutions of system

(2.1) satisfying the properties in Theorem 2.1(1).

Suppose that (u1(x, t), v1(x, t)) and (u2(x, t), v2(x, t)) are two classical solutions of system

(2.1) on (t0, t0 + Tmax) satisfying the properties in Theorem 2.1. First, set u = u1 − u2 and

v = v1 − v2. Then (u, v) satisfies

ut = ∆u− χ∇(u · ∇v1)− χ∇(u2 · ∇v)

+u (a0(t, x)− a1(t)(u1 + u2)− a2(t, x)
∫

Ω
u1)− a2(t, x)

(∫
Ω
u
)
u2, x ∈ Ω, t > t0

∆u+ u− v = 0, x ∈ Ω, t > t0

∂u
∂n

= ∂v
∂n

= 0, on ∂Ω

u(x, t0) = 0, on x ∈ Ω.

Next, fix t1, T such that t0 < t1 < T < t0 + Tmax. It is clear that, for t ∈ [t1, t0 + Tmax),

u(·, t) =

e−A(t−t1)
(
u1(·, t1)− u2(·, t1)

)
− χ

∫ t

t1

e−A(t−s)∇
[
u(·, s) · ∇v1(·, s) + u2(·, s) · ∇v(·, s)

]
ds

+

∫ t

t1

e−A(t−s)u(·, s)
(

1 + a0(s, ·)− a1(s, ·)(u1(·, s) + u1(·, s))− a2(s, ·)
∫

Ω

u1(·, s)
)
ds

−
∫ t

t1

e−A(t−s)a2(s, ·)
( ∫

Ω

u(·, s)
)
u2(·, s)ds. (2.29)
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Then using the generalized Gronwall’s inequality (see [17, page 6]), we get u(·, t) = 0 for

t ∈ [t0, T ]. Letting T → t0 + Tmax, we get u(·, t) = 0 for t ∈ [t0, t0 + Tmax). Since v(·, t) =

A−1u(·, t), v(·, t) = 0 for t ∈ [t0, t0 +Tmax). Therefore (u1(x, t), v1(x, t)) = (u2(x, t), v2(x, t))

for (x, t) ∈ Ω̄× [t0, t0 + Tmax).

Step 4. (Nonnegativity). In this last step, we prove the nonnegativity of the classical solutions.

Since u(x, t; t0, u0) is classical solution of (2.26), by maximum principle for parabolic equa-

tions, we have that u(x, t; t0, u0) is nonnegative (see [13, Theorem 7 on page 41]). And now,

since u(x, t; t0, u0) is nonnegative, by maximum principle for elliptic equations, v(x, t; t0, u0)

is nonnegative (see [13, Theorem 18 on page 53]).

(2) We prove (2) by Banach Fixed Point Theorem and some arguments in (1) and divide the

proof into three steps. To this end, we first introduce the notion of generalized mild solution of

(2.27). A function u ∈ C0([t0, t0 + T ), C0(Ω̄)) is called a generalized mild solution of (2.27)

with u(t0) = u0 if

u(t) =e−A(t−t0)u0 − χ
∫ t

t0

e−A(t−s)∇ · (u(s)∇A−1u(s))ds

+

∫ t

t0

e−A(t−s)u(s)
(

1 + a0(s, ·)− a1(s, ·)u(s)− a2(s, ·)
∫

Ω

u(s)
)
ds

for t ∈ [t0, t0 + T ).

Step 1. (Existence of generalized mild solution). In this step, we prove the existence of a

unique generalized mild solution u(·, t; t0, u0) of (2.27).

In order to do so, fix t0 ∈ R and u0 ∈ C0(Ω̄). For given T > 0 and R > ‖u0‖C0(Ω̄), let

XT = C0([t0, t0 + T ], C0(Ω̄))

with the supremum norm ‖u‖XT = maxt0≤t≤t0+T ‖u(t)‖C0(Ω̄), and let

ST,R = {u ∈ XT | ‖u‖XT ≤ R} .

Note that ST,R is a closed subset of the Banach space XT .
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First, it is not difficult to prove that, for given u ∈ ST,R and t ∈ [t0, t0 + T ], (Gu)(t) is well

defined, where

(Gu)(t) =e−A(t−t0)u0 − χ
∫ t

t0

e−A(t−s)∇ · (u(s)∇A−1u(s))ds

+

∫ t

t0

e−A(t−s)u(s)
(

1 + a0(s, ·)− a1(s, ·)u(s)− a2(s, ·)
∫

Ω

u(s)
)
ds

and the integrals are taken in C0(Ω̄). Furthermore G is a contraction for 0 < T � 1. Then, By

Banach fixed point Theorem, G has a unique fixed point u ∈ ST,R. That means u ∈ C0([t0, t0 +

T ], C0(Ω̄)) and

u(t) =e−A(t−t0)u0 − χ
∫ t

t0

e−A(t−s)∇ · (u(s)∇A−1u(s))ds

+

∫ t

t0

e−A(t−s)u(s)
(

1 + a0(s, ·)− a1(s, ·)u(s)− a2(s, ·)
∫

Ω

u(s)
)
ds.

Hence u(·, t; t0, u0) := u(t)(x) is a generalized mild solution of (2.27). The generalized mild

solution u(·, t; t0, u0) may be prolonged by standard method into a maximal interval [t0, t0 +

Tmax) such that if Tmax <∞ then lim supt↗Tmax
‖u(·, t+ t0; t0, u0)‖C0(Ω̄) =∞.

Step 2. (Regularity). In this step, we prove that u(t) = u(·, t; t0, u0) is a classical solution of

(2.26) satisfying the properties in Theorem 2.1(2), where u(·, t; t0, u0)) is obtained in Step 1.

Then (u(x, t; t0, u0), v(x, t; t0, u0)) with v(·, t; t0, u0) = A−1u(·, t; t0, u0) is a classical solution

of (2.1) satisfying the properties in Theorem 2.1(2).

First, for any 0 ≤ β < 1
2

and σ such that β + σ < 1
2
, by the arguments in Step 1, u(t) is

locally Hölder continuous from (t0, t0 + Tmax) to Xβ with exponent σ.

Next, fix 1
2
< α < 1. We define the map B(t) : (t0, t0 + Tmax)→ L(Xα, Lp(Ω)) by

B(t)ũ = −χ∇A−1u(t) ·∇ũ+
(
a0(t, ·)−χA−1u(t)+χu(t)−a1(t, ·)u(t)−a2(t, ·)

∫
Ω

u(t)
)
ũ.

It is not difficult to prove that B is well defined and is Hölder continuous in t.
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Finally, fix any t1 ∈ (t0, t0 + Tmax). By [17, Theorem 7.1.3], we have that


ũt = ∆ũ+B(t)ũ, t ∈ (t1, t0 + Tmax)

ũ(t1) = u(t1)

(2.30)

has a unique strong solution ũ which satisfy ũ(t) ∈ Xγ for any γ < 1 and t1 < t < t0 + Tmax.

By Lemma 2.3(2), ũ is given by the formula

ũ(t) =e−A(t−t1)u(t1)− χ
∫ t

t1

e−A(t−s)∇ · (ũ(s)∇A−1u(s))ds

+

∫ t

t1

e−A(t−s)ũ(s)
(

1 + a0(s, ·)− a1(s, ·)u(s)− a2(s, ·)
∫

Ω

u(s)
)
ds.

Fix t0 < t1 < t2 < t0 + Tmax. We have by Lemma 2.2 with β < 1
2

and ε ∈ (0, 1
2
− β) that

‖ũ(t)− u(t)‖C0(Ω̄)

≤ C

∫ t

t1

(t− s)−
1
2
−β−ε‖ũ(s)− u(s)‖C0(Ω̄)ds+ C

∫ t

t1

(t− s)−β‖ũ(s)− u(s)‖C0(Ω̄)ds

≤ C

∫ t

t1

(t− s)−
1
2
−β−ε‖ũ(s)− u(s)‖C0(Ω̄)ds

for t1 ≤ t ≤ t2 and some C = C(supt1≤t≤t2 ‖u(t)‖C0(Ω̄)). Then by generalized Gronwall’s

inequality (see [17, page 6]), we get ũ(t) = u(t) in C0(Ω̄) on [t1, t2]. Letting t1 → t0 and

t2 → t0 + Tmax, we have ũ(t) = u(t) ∈ Xγ for any 0 ≤ γ < 1 and t ∈ (t0, t0 + Tmax). It

then follows from Theorem 2.1(1) that u(x, t; 0, u0) := u(t)(x) is a classical solution of (2.26)

satisfying the properties in Theorem 2.1(2).

Step 3. (Nonnegativity and uniqueness) By the similar arguments as in Steps 3 and 4 in

the proof of Theorem 2.1(1), we have that (u(x, t; t0, u0), v(x, t; t0, u0)) is the unique non-

negative classical solution of system (2.1) satisfying Theorem 2.1(2), where v(·, t; t0, u0) =

A−1u(·, t; t0, u0).

Remark 2.5. Let {tn} ⊂ R. Suppose that limn→∞ ai(t+ tn, x) = âi(t, x) locally uniformly in

(t, x) ∈ R × Ω̄. Then âi(t, x) (i = 0, 1, 2) also satisfy the hypothesis (H1) in the introduction.
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Hence for any t0 ∈ R and u0 ∈ Xα or u0 ∈ C0(Ω̄), system (2.1) with ai(t, x) being replaced

by âi(t, x) (i = 0, 1, 2) has also a unique solution (û(x, t; t0, u0), v̂(x, t; t0, u0)) satisfying the

properties in Theorem 2.1(1) or (2).

The following corollary follows directly from Theorem 2.1 and its proof.

Corollary 2.1. (1) Let t0 ∈ R and u0 ∈ Xα or C0(Ω̄) be given and let (u(x, t; t0, u0),

v(x, t; t0, u0)) be the unique solution of system (2.1) with initial condition u(·, t0; t0, u0) =

u0(·) in Theorem 2.1(1) or (2). For any t0 < t1 < t2 < t0 + Tmax, there holds

(u(x, t2; t0, u0), v(x, t2; t0, u0)) = (u(x, t2; t1, u(·, t1; t0, u0)), v(x, t2; t1, u(·, t1; t0, u0)).

(2) Let (u(x, t; t0, u0), v(x, t; t0, u0)) be the unique solution of system (2.1) with initial con-

dition u(·, t0; t0, u0) = u0(·) ∈ X in Theorem 2.1(1) or (2), where X = Xα or C0(Ω̄).

Then R × X 3 (t0, u0) 7→ (u(·, t; t0, u0), v(·, t; t0, u0)) ∈ X × X is continuous locally

uniformly with respect to t ∈ (t0, t0 + Tmax).

(3) Let {tn} ⊂ R. Suppose that limn→∞ ai(t+ tn, x) = âi(t, x) locally uniformly in (t, x) ∈

R× Ω̄. For given t0 ∈ R and u0 ∈ Xα or C0(Ω̄), let (un(x, t; t0, u0), vn(x, t; t0, u0)) be

the solution of system (2.1) with ai(t, x) being replaced by ai(t+ tn, x) (i = 0, 1, 2) and

with initial condition un(·, t0; t0, u0) = u0(·) and (û(x, t; t0, u0), v̂(x, t, ; t0, u0)) be the

solution of system (2.1) on (t0, t0 + T̂max) with ai(t, x) being replaced by âi(t, x) (i =

0, 1, 2) and with initial condition û(·, t0; t0, u0) = u0(·). Then for any t ∈ (t0, t0 + T̂max),

lim
n→∞

(un(·, t; t0), vn(·, t; t0, u0)) = (û(·, t; t0, u0), v̂(·, t; t0, u0)) in C0(Ω̄).

2.5 Global Existence and Uniform Boundedness of Classical Solutions

In this section, we investigate the global existence and the uniform boundedness of classical

solutions of system (2.1) with given initial functions and prove Theorem 2.2. We first prove

two important lemmas.
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Consider the following Lotka-Volterra Competition system of ordinary differential equations,
u′ = χu(u− u) + u

[
a0,sup(t)− a1,inf(t)u− |Ω|

(
a2,inf(t)

)
+
u+ |Ω|

(
a2,inf(t)

)
−
u

]
u′ = χu(u− u) + u

[
a0,inf(t)− a1,sup(t)u− |Ω|

(
a2,sup(t)

)
+
u+ |Ω|

(
a2,sup(t)

)
−
u

]
.

(2.31)

For given u0 ∈ C0(Ω̄) with u0(x) ≥ 0 and t0 ∈ R, let u0 = maxx∈Ω̄ u0(x), u0 = minx∈Ω̄ u0(x)

and

(u(t), u(t)) = (u(t; t0, u0, u0), u(t; t0, u0, u0)) (2.32)

be the solution of (2.31) with (u(t0; t0, u0, u0), u(t0; t0, u0, u0)) = (u0, u0).

Lemma 2.7. Suppose inft≥t0

{
a1,inf(t)−|Ω|

(
a2,inf(t)

)
−

}
> χ. Then (ū(t), u(t)) exists for all

t > t0 and

0 ≤ u(t) ≤ u(t) ∀t ≥ t0. (2.33)

Moreover, 0 ≤ u(t) ≤ max
{
u0,

a0,sup

inft≥t0

{
a1,inf(t)−|Ω|

(
a2,inf(t)

)
−
−χ
}}.

Proof. First, note that

inf
t≥t0

{
a1,sup(t)− |Ω|

(
a2,sup(t)

)
−

}
≥ inf

t∈R

{
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−

}
> χ.

The existence of (ū(t), u(t)) for all t > t0 is then clear. For any ε > 0, let uε0 = u0 + ε and

aε0,sup(t) = aε0,sup(t) + ε. Let

(uε(t), uε(t)) = (uε(t; t0, u
ε
0, u0), uε(t; t0, u

ε
0, u0)),

where (uε(t; t0, u
ε
0, u0), uε(t; t0, u

ε
0, u0)) is the solution of (2.31) with a0,sup(t) being replaced by

aε0,sup(t) and (uε(t0; t0, u
ε
0, u0), uε(t0; t0, u

ε
0, u0)) = (uε0, u0). We claim that 0 ≤ uε(t) ≤ uε(t)

for all t ≥ t0. Suppose by contradiction that this claim does not hold. Then since 0 ≤ u0 < uε0,

there exist t ∈ (t0,∞) such that

uε(t) < uε(t), ∀t ∈ [t0, t) and u(t) = uε(t).
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Thus (uε − uε)′(t) ≤ 0. Note that uε(t) > 0 for t ≥ t0. Using (2.31) at t = t, we get

(uε − u)
′
(t) =uε(t)

[
aε0,sup(t)− a0,inf(t)

+ {a1,sup(t)− a1,inf(t) + |Ω|(a2,sup(t)− a2,inf(t))}uε(t)
]
.

It then follows that (uε − u)′(t) ≥ 0, which implies that (uε − u)′(t) = 0 and then

0 = aε0,sup(t)− a0,inf(t) + {a1,sup(t)− a1,inf(t) + |Ω|(a2,sup(t)− a2,inf(t))}uε(t) > 0,

which is a contradiction. Thus the claim holds. Letting ε→ 0 and using continuity of solutions

of (2.31) with respect to initial data and coefficients, (2.33) follows.

Furthermore, we have

u′ = χu(u− u) + u

[
a0,sup(t)− a1,inf(t)u− |Ω|

(
a2,inf(t)

)
+
u+ |Ω|

(
a2,inf(t)

)
−
u

]
≤ u

[
a0,sup(t)−

{
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−
− χ

}
u
]
.

Thus if inft≥t0

{
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−

}
> χ, by comparison principle, we have

0 < u(t) ≤ max
{
u0,

a0,sup

inft≥t0
{
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−
− χ

}}.

Lemma 2.8. Suppose inft∈R

{
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−

}
> 0. Then

0 ≤
∫

Ω

u(t) ≤ max
{∫

Ω

u0(x),
|Ω|a0,sup

inft∈R
{
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−

}} := M0(‖u0‖L1 , ai, |Ω|)

for all t ∈ [t0, t0 + Tmax), where u(t) = u(·, t; t0, u0) and u0 ∈ C0(Ω̄) with u0(x) ≥ 0.
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Proof. By integrating the first equation of system (2.1) over Ω,we get for any t ∈ [t0, t0+Tmax)

that

d

dt

∫
Ω

u(t) =

∫
Ω

u(t)
{
a0(t, x)− a1(t, x)u(t)− a2(t, x)

∫
Ω

u(t)
}

≤
∫

Ω

u(t)
{
a0,sup − a1,inf(t)u(t)−

(
a2,inf(t)

)
+

∫
Ω

u(t) +
(
a2,inf(t)

)
−

∫
Ω

u(t)
}

≤
∫

Ω

u(t)
{
a0,sup −

1

|Ω|

[
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−

] ∫
Ω

u(t)
}

Thus if inft∈R

{
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−

}
> 0, we get by comparison principle for ODEs that

0 ≤
∫

Ω

u(t) ≤ max
{∫

Ω

u0(x),
|Ω|a0,sup

inft∈R
{
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−

}}.

We now prove Theorem 2.2.

Proof of Theorem 2.2. (1) Let (ū(t), u(t)) be as in (2.32). It suffices to prove that 0 ≤ u(t) ≤

u(x, t; t0, u0) ≤ u(t) for all t0 ≤ t < t0 + Tmax and x ∈ Ω̄.

Observe that for any ε > 0, there exists t0 < tε < t0 + Tmax such that

u(t)− 2ε < u(x, t; t0, u0) < u(t) + 2ε, for all (x, t) ∈ Ω× [t0, tε).

Let

Tε = sup{tε ∈ (t0, t0 +Tmax) |u(t)−2ε < u(x, t; t0, u0) < u(t) + 2ε ∀ (x, t) ∈ Ω× [t0, tε)}.

It then suffices to prove that Tε = t0 + Tmax.

Assume by contradiction that Tε < t0 + Tmax. Then there is x0 ∈ Ω̄ such that

either u(x0, Tε; t0, u0) = u(Tε)− 2ε or u(x0, Tε; t0, u0) = u(Tε) + 2ε.

Let U(x, t) = u(x, t; t0, u0)− u(t) and U(x, t) = u(x, t; t0, u0)− u(t).

Note that for t ∈ (t0, t0 + Tmax), U satisfies
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U t −∆U ≤− χ∇U · ∇v + U
[
a0,sup(t)−

(
a1,inf(t)− χ

)
(u+ u)− χu

]
− χu(v − u)− a2,inf(t)(

∫
Ω

u)u+ |Ω|
(
a2,inf(t)

)
+
uu− |Ω|

(
a2,inf(t)

)
−
u2.

By −a2,inf(t)(
∫

Ω
u)u = −

(
a2,inf(t)

)
+

(
∫

Ω
u)u +

(
a2,inf(t)

)
−

(
∫

Ω
u)u, we get for t ∈ (t0, t0 +

Tmax) that

U t −∆U ≤

− χ∇U · ∇v + U
[
a0,sup(t)−

(
a1,inf(t)− χ

)
(u+ u)− χu

]
− χu(v − u)−

(
a2,inf(t)

)
+

(
(

∫
Ω

u)u− |Ω|uu
)

+
(
a2,inf(t)

)
−

(

∫
Ω

u)u− |Ω|
(
a2,inf(t)

)
−
u2

≤ −χ∇U · ∇v + U
[
a0,sup(t)−

(
a1,inf(t)− χ

)
(u+ u)− χu

]
− χu(v − u)−

(
a2,inf(t)

)
+

(
(

∫
Ω

u)u− |Ω|uu
)

+
(
a2,inf(t)

)
−

(
u

∫
Ω

(u− u)
)
− |Ω|

(
a2,inf(t)

)
−
u(u− u)

≤ −χ∇U · ∇v + U

[
a0,sup(t)−

(
a1,inf(t)− χ

)
(u+ u)− χu+ |Ω|

(
a2,inf(t)

)
−
u

]
− χu(v − u)−

(
a2,inf(t)

)
+

(
(

∫
Ω

u)u− |Ω|uu
)

+
(
a2,inf(t)

)
−

(

∫
Ω

U)u. (2.34)

We claim that
∫

Ω
U

2

+(x, t)dx is weakly differentiable in t and moreover

d

dt

∫
Ω

U
2

+(x, t)dx = 2

∫
Ω

U+(x, t)Ūt(x, t)dx for a.e. t ∈ (t0, t0 + Tmax), (2.35)

and

∫
Ω

U
2

+(x, t)dx =

∫
Ω

U
2

+(x, t0)dx+

∫ t

t0

( d
dt

∫
Ω

U
2

+(x, τ)dx
)
dτ ∀ t ∈ (t0, t0+Tmax). (2.36)

In order to prove the claim we define for r > 0,

Fr(z) =


(z2 + r)

1
2 − r, if z > 0;

0, if z ≤ 0.
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Then Fr ∈ C1(R),

F
′

r(z) =


z(z2 + r)−

1
2 , if z > 0;

0, if z ≤ 0.

Note that |F r
′| ≤ 1 and that we have the following pointwise convergence,

U+(x, t) = lim
r→0

Fr(U(x, t)).

This implies that

∫
Ω

U
2

+(x, t)dx = lim
r→0

∫
Ω

F 2
r (U(x, t))dx ∀ t ∈ (t0, t0 + Tmax). (2.37)

Note also that
∫

Ω
F 2
r (U(x, t))dx is differentiable in t and

d

dt

∫
Ω

F 2
r (U(x, t))dx = 2

∫
Ω

(
(U

2

+(x, t)+r)
1
2−r

)
U+(x, t)(U

2

+(x, t)+r)−
1
2 Ūt(x, t)dx. (2.38)

By (2.38), for any δ > 0, there is Mδ > 0 such that for any r > 0

∣∣∣ ∫
Ω

F 2
r (U(x, t1))dx−

∫
Ω

F 2
r (U(x, t2))dx

∣∣∣ ≤Mδ|t1 − t2| ∀ t1, t2 ∈ [t0 + δ, t0 + Tmax − δ].

(2.39)

Then by (2.37) and (2.39), we have

∣∣∣ ∫
Ω

U
2

+(x, t1)dx−
∫

Ω

U
2

+(x, t2)dx
∣∣∣ ≤Mδ|t1− t2| ∀ t1, t2 ∈ [t0 + δ, t0 + Tmax− δ]. (2.40)

Let φ ∈ C∞c ((t0, t0 + Tmax)). We have by integration by part that

∫ Tmax

t0

d

dt

(∫
Ω

Fr(U(x, t))2dx

)
φ(t)dt = −

∫ Tmax

t0

(∫
Ω

Fr(U(x, t))2dx

)
φt(t)dt. (2.41)

By Lebesgue Dominated Theorem we get from (2.37) that

lim
r→0

(
−
∫ Tmax

t0

(∫
Ω

Fr(U(x, t))2dx

)
φt(t)dt

)
= −

∫ Tmax

t0

∫
Ω

(U+(x, t))2dxφt(t)dt,
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and from (2.38) that

lim
r→0

∫ Tmax

t0

d

dt

(∫
Ω

Fr(U(x, t))2dx

)
φ(t)dt = 2

∫ Tmax

t0

∫
Ω

U+(x, t)Ūt(x, t)dxφ(t)dt.

Thus it follows from equations (2.41) that

∫ Tmax

t0

∫
Ω

(U+(x, t))2dxφt(t)dt = −2

∫ Tmax

t0

∫
Ω

U+(x, t)Ūt(x, t)dxφ(t)dt.

This implies that
∫

Ω
U

2

+(x, t)dx is weakly differentiable and (2.35) holds. By (2.35), (2.40),

and the Fundamental Theorem of Calculus for Lebesgue Integrals, we have for any t, t1 ∈

(t0, t0 + Tmax) that

∫
Ω

U
2

+(x, t)dx =

∫
Ω

U
2

+(x, t1)dx+

∫ t

t1

( d
dt

∫
Ω

U
2

+(x, τ)dx
)
dτ. (2.42)

Letting t1 → t0, (2.36) follows.

By (2.35), multiplying (2.34) by U+ and integrating with respect to x over Ω, we get

1

2

d

dt

∫
Ω

(U+)2 +

∫
Ω

|∇(U+)|2

≤
∫

Ω

(U+)2

[
a0,sup(t) + χ

1

2
u− 1

2
χv −

(
a1,inf(t)− χ

)
(u+ u)− χu+ |Ω|

(
a2,inf(t)

)
−
u

]
−χ
∫

Ω

(U+)u(v − u)−
(
a2,inf(t)

)
+

∫
Ω

(U+)

[
(

∫
Ω

u)u− |Ω|uu
]

+
(
a2,inf(t)

)
−

∫
Ω

U+(u

∫
Ω

U)

for a.e. t ∈ (t0, t0 + Tmax). Note that

(
a2,inf(t)

)
−

∫
Ω

U+(u

∫
Ω

U) ≤
(
a2,inf(t)

)
−

∫
Ω

U+u(

∫
Ω

U+) ≤ |Ω|
(
a2,inf(t)

)
−

(u+ 2ε)

∫
Ω

U
2

+

and

36



−
(
a2,inf(t)

)
+

∫
Ω

U+

(
(

∫
Ω

u)u− |Ω|uu
)

=−
(
a2,inf(t)

)
+

∫
Ω

U
2

+(

∫
Ω

u)−
(
a2,inf(t)

)
+

∫
Ω

U+u

∫
Ω

U

≤−
(
a2,inf(t)

)
+

∫
Ω

U+u

∫
Ω

U ≤
(
a2,inf(t)

)
+
u

∫
Ω

U+

∫
Ω

U−

≤|Ω|
(
a2,inf(t)

)
+

u

2

(∫
Ω

U
2

+ +

∫
Ω

U2
−

)
.

Moreover by using the second equation of system (2.1), we get∫
Ω

|∇(v − u)−|2 +

∫
Ω

(v − u)2
− = −

∫
Ω

(U)(v − u)− ≤
∫

Ω

(U)−(v − u)−.

Thus by Young’s inequality, we have
∫

Ω
(v − u)2

− ≤
∫

Ω
(U−)2. Therefore

−χ
∫

Ω

(U+)u(v − u) ≤ χ(u+ 2ε)

2

(∫
Ω

(U+)2 +

∫
Ω

(U−)2
)
.

Combining all these inequalities, we get

1

2

d

dt

∫
Ω

(U+)2 +

∫
Ω

|∇(U+)|2

≤
∫

Ω

(U+)2

[
a0,sup(t) + χ

1

2
u+ 2|Ω|

(
a2,inf(t)

)
−

(u+ ε) + |Ω|
(
a2,inf(t)

)
+

u

2
+
χ(u+ 2ε)

2

]
+

[
χ(u+ 2ε)

2
+ |Ω|

(
a2,inf(t)

)
+

u

2

] ∫
Ω

(U−)2

≤
∫

Ω

(U+)2

[
a0,sup(t) +

(
2|Ω|

(
a2,inf(t)

)
− + χ

)
(u+ 2ε) + |Ω|

(
a2,inf(t)

)
+

u

2

]
+

[
χ(u+ 2ε)

2
+ |Ω|

(
a2,inf(t)

)
+

u

2

] ∫
Ω

(U−)2 for a.e. t ∈ (t0, Tε]. (2.43)

Similarly, we have that
∫

Ω
U2
−(x, t)dx is weakly differentiable in t and moreover

d

dt

∫
Ω

U2
−(x, t)dx = 2

∫
Ω

U−(x, t)U t(x, t)dx for a.e. t ∈ (t0, t0 + Tmax), (2.44)

and

∫
Ω

U2
−(x, t)dx =

∫
Ω

U2
−(x, t0)dx+

∫ t

t0

( d
dt

∫
Ω

U2
−(x, τ)dx

)
dτ ∀ t ∈ (t0, t0+Tmax). (2.45)

37



Also we have

U t −∆U ≥− χ∇U · ∇v + U

[
a0,inf(t)−

(
a1,sup(t)− χ

)
(u+ u)− χu+ |Ω|

(
a2,sup(t)

)
−
u

]
− χu(v − u)−

(
a2,sup(t)

)
+

(
(

∫
Ω

u)u− |Ω|uu
)

+
(
a2,sup(t)

)
−

(

∫
Ω

U)u.

By multiplying the above inequality by −U− and integrating with respect to x over Ω, we have

1

2

d

dt

∫
Ω

(U2
−) +

∫
Ω

|∇(U−)|2

≤
∫

Ω

(U−)2

[
a0,inf(t) + (2|Ω|

(
a2,sup(t)

)
−

+ χ)(u+ 2ε) + |Ω|
(
a2,sup(t)

)
+

u

2

]
+

[
χ(u+ 2ε)

2
+ |Ω|

(
a2,sup(t)

)
+

u

2

] ∫
Ω

(Ū+)2 for a.e. t ∈ (t0, Tε]. (2.46)

By (2.36), (2.43), (2.45), and (2.46), we have

1

2

∫
Ω

(
U

2

+(x, t) + U2
−(x, t)

)
dx

≤ 1

2

∫
Ω

(
U

2

+(x, t0) + U2
−(x, t0)

)
dx

+

∫ t

t0

∫
Ω

(
U

2

+(x, τ) + U2
−(x, τ)

) [
a0,sup(τ) +

(
2|Ω|

(
a2,inf(τ)

)
− + χ

)
(u+ 2ε)

]
dτ

+

∫ t

t0

∫
Ω

(
U

2

+(x, τ) + U2
−(x, τ)

)[
|Ω|
(
a2,sup(τ)

)
+

u

2

]
dτ

+

∫ t

t0

[
χ(u+ 2ε)

2
+ |Ω|

(
a2,sup(τ)

)
+

u

2

] ∫
Ω

(
U

2

+(x, τ) + U2
−(x, τ)

)
dτ ∀t ∈ (t0, Tε].

This together with U+(·, t0) = U−(·, t0) = 0 and Gronwall’s inequality implies U+(x, t) =

U−(x, t) = 0 for (x, t) ∈ Ω× [t0, Tε]. Therefore,

u(t) ≤ u(x, t; t0, u0) ≤ u(t) (x, t) ∈ Ω× [t0, Tε].

This is a contradiction. Therefore, Tε = t0 + Tmax. We then have Tmax =∞ and (2.10) holds.

(2) We divide the proof in three steps. Note that the statements in these steps have already

been establish in the case of constant coefficients and a2 = 0, by Tello and Winkler in [59,

38



Lemma 2.2, 2.3 and 2.4]. For simplicity in notation, we denote (u(·, t; t0, u0), v(·, t; t0, u0)) by

(u(t), v(t)).

Step 1. In this step, we prove that for any γ ∈
(

1, χ

(χ−a1,inf)
+

)
, there is C = C(γ, ‖u0‖Lγ ,

‖u0‖L1 , A0, A2, a1, |Ω|) such that∫
Ω

uγ(t) ≤ C ∀ t ∈ [t0, t0 + Tmax), (2.47)

and

∫ T

t0

∫
Ω

uγ+1(t) +

∫ T

t0

∫
Ω

|∇u
γ
2 (t)|2 ≤ C̃(T + 1) ∀T ∈ (t0, t0 + Tmax). (2.48)

By multiplying the first equation of system (2.1) by uγ−1(t) and integrating with respect to x

over Ω, we have for t ∈ (t0, t0 + Tmax) that

1

γ

d

dt

∫
Ω

uγ(t) +
4(γ − 1)

γ2

∫
Ω

|∇u
γ
2 (t)|2 =(γ − 1)χ

∫
Ω

uγ−1(t)∇u(t) · ∇v(t)

+

∫
Ω

uγ(t)
[
a0(t, ·)− a1(t, ·)u(t)− a2(t, ·)

∫
Ω

u(t)
]
.

By multiplying the second equation of system (2.1) by uγ(·) and integrating over Ω, we get

(γ − 1)χ

∫
Ω

uγ−1(t)∇u(t) · ∇v(t) = −χ(γ − 1)

γ

∫
Ω

v(t)uγ(t) +
χ(γ − 1)

γ

∫
Ω

uγ+1(t).

Thus we have for t ∈ (t0, t0 + Tmax) that

1

γ

d

dt

∫
Ω

uγ(t) +
4(γ − 1)

γ2

∫
Ω

|∇u
γ
2 (t)|2

= −χ(γ − 1)

γ

∫
Ω

vuγ(t) +

∫
Ω

uγ(t)
[
a0(t, ·)− a1(t, ·)u(t)− a2(t, ·)

∫
Ω

u(t)
]

+
χ(γ − 1)

γ

∫
Ω

uγ+1(t).

By Lemma 2.8, we have
(
a2,inf(t)

)
−

∫
Ω
u(t) ≤ A2M0. Therefore

39



1

γ

d

dt

∫
Ω

uγ(t) +
4(γ − 1)

γ2

∫
Ω

|∇u
γ
2 (t)|2

≤ χ(γ − 1)

γ

∫
Ω

uγ+1(t) +

∫
Ω

uγ(t)

[
a0(t, ·)− a1,infu(t) +

(
a2,inf(t)

)
−

∫
Ω

u(t)

]
≤ χ(γ − 1)

γ

∫
Ω

uγ+1(t) +

∫
Ω

uγ(t) [A0 + A2M0 − a1,infu(t)]

≤ −
[
a1,inf −

χ(γ − 1)

γ

] ∫
Ω

uγ+1(t) + (A0 + A2M0)

∫
Ω

uγ(t). (2.49)

Note that µ := a1,inf − χ(γ−1)
γ

> 0. By Young’s inequality, we have

(A0 + A2M0)

∫
Ω

uγ(t) ≤ 1

2
µ

∫
Ω

uγ+1(t) + C(γ,A0, A2, a1, ‖u0‖L1 , |Ω|).

Thus

1

γ

d

dt

∫
Ω

uγ(t) +
4(γ − 1)

γ2

∫
Ω

|∇u
γ
2 (t)|2 ≤ −µ

2

∫
Ω

uγ+1(t) + C(γ,A0, A2, a1, ‖u0‖L1 , |Ω|).

(2.50)

This together with Hölder’s inequality implies that

d

dt

∫
Ω

uγ(t) ≤ − µγ

|Ω|
1
γ

(∫
Ω

uγ(t)

) γ+1
γ

+ C(γ,A0, A2, a1, ‖u0‖L1 , |Ω|).

It then follows that∫
Ω

uγ(t) ≤ max
{∫

Ω

uγ0 ,

(
C(γ,A0, A2, a1, ‖u0‖L1 , |Ω|)

µ

) γ
γ+1 }

∀t ∈ [t0, t0 + Tmax).

Now by integrating (2.50) on (t0, T ), we get

∫ T

t0

∫
Ω

uγ+1(t) +

∫ T

t0

∫
Ω

|∇u
γ
2 (t)|2 ≤ C̃(T + 1).

(2.47) and (2.48) then follow.

Step 2. In this step, we prove that for any γ > 1, there is C = C(γ, ‖u0‖Lγ , ‖u0‖L1 , ai, |Ω|)

such that ∫
Ω

uγ(t) ≤ C ∀t ∈ [t0, t0 + Tmax). (2.51)
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Since a1,inf >
χ(n−2)

n
, we get n

2
< χ

(χ−a1,inf)+
. Choose γ0 ∈ (n

2
, χ

(χ−a1,inf)+
), then by (2.47), we

have ∫
Ω

uγ0(t) ≤ C = C(γ0, ‖u0‖Lγ0 , ‖u0‖L1 , A0, A2, a1, |Ω|).

Let γ > 1. If 1 < γ ≤ γ0, the result follows by the continuous inclusion Lγ0(Ω) ⊂ Lγ(Ω).

Suppose γ > γ0. Let µ̃ = 2|(a1,inf − χ(γ−1)
γ

)|+ 1 > 0. By Young’s inequality we get

(A0 + A2M0)

∫
Ω

uγ(t) ≤ µ̃

2

∫
Ω

uγ+1(t) + C(γ,A0, A2, a1, ‖u0‖L1 , |Ω|).

This together with (2.49) implies that

1

γ

d

dt

∫
Ω

uγ(t) +
4(γ − 1)

γ2

∫
Ω

|∇u
γ
2 (t)|2 ≤ µ̃

∫
Ω

uγ+1(t) + C(γ,A0, A2, a1, ‖u0‖L1 , |Ω|).

Note that

∫
Ω

uγ0(t) = ‖u
γ
2 (t)‖

2γ0
γ

L
2γ0
γ

≤ C and

∫
Ω

uγ+1(t) = ‖u
γ
2 (t)‖

2(γ+1)
γ

L
2(γ+1)
γ

.

By Gagliardo-Nirenberg inequality, there exists C0 depending on the domain Ω and γ such that

∫
Ω

uγ+1(t) = ‖u
γ
2 (t)‖

2(γ+1)
γ

L
2(γ+1)
γ

≤ C0‖∇u
γ
2 (t)‖

2(γ+1)a
γ

L2 ‖u
γ
2 (t)‖

2(γ+1)(1−a)
γ

L
2γ0
γ

+ C0‖u
γ
2 (t)‖

2γ0
γ

L
2γ0
γ

≤ C(γ, ‖u0‖Lγ , ‖u0‖L1 , A0, A2, a1, |Ω|)
(
‖∇u

γ
2 (t)‖

2(γ+1)a
γ

L2 + 1
)
,

where a =
nγ
2γ0
− nγ

2(γ+1)

1+n
2

( γ
γ0
−1)

. Since n
2
< γ0 < γ,we have 0 < a < 1 and 2 (γ+1)

γ
a−2 = −

2− n
γ0

1+n
2

( γ
γ0
−1)

<

0. By applying Young’s Inequality, we get for any ε > 0

C(γ, ‖u0‖Lγ , ‖u0‖L1 , A0, A2, a1, |Ω|)‖∇u
γ
2 (t)‖

2(γ+1)a
γ

L2

≤ ε‖∇u
γ
2 (t)‖2

L2 + C(ε, γ, ‖u0‖Lγ , ‖u0‖L1 , A0, A2, a1, |Ω|).

Therefore

∫
Ω

uγ+1(t) ≤ ε‖∇u
γ
2 (t)‖2

L2 + C(ε, γ, ‖u0‖Lγ , ‖u0‖L1 , A0, A2, a1, |Ω|)
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and then

−4(γ − 1)

γ2

∫
Ω

|∇u
γ
2 (t)|2 ≤ −4(γ − 1)

εγ2

∫
Ω

uγ+1(t)+
4(γ − 1)

εγ2
C(ε, γ, ‖u0‖Lγ , ‖u0‖L1 , ai, |Ω|).

It then follows that

1

γ

d

dt

∫
Ω

uγ(t) ≤ −
(4(γ − 1)

εγ2
− µ̃

)∫
Ω

uγ+1(t) + C(ε, γ, ‖u0‖Lγ , ‖u0‖L1 , A0, A2, a1, |Ω|).

By choosing ε = 4(γ−1)
γ2(1+µ̃)

, we get

1

γ

d

dt

∫
Ω

uγ(t) ≤ −
∫

Ω

uγ+1(t) + C(γ, ‖u0‖Lγ ) ≤ −
1

|Ω|
1
γ

(∫
Ω

uγ(t)
) γ+1

γ
+ C(γ, ‖u0‖Lγ ).

This implies that∫
Ω

uγ(t) ≤ C(γ, ‖u0‖Lγ , ‖u0‖L1 , A0, A2, a1, |Ω|) ∀t ∈ [t0, t0 + Tmax).

(2.51) then follows.

Step 3. In this sept, we prove that there is C = C(‖u0‖L∞) such that

‖u(t)‖C0(Ω̄) + ‖v(t)‖C0(Ω̄) ≤ C ∀t ∈ [t0, t0 + Tmax). (2.52)

By the variation of constant formula, we have

u(t) =

e−A(t−t0)u0 − χ
∫ t

t0

e−(t−s)A∇(u(s) · ∇v(s))ds

+

∫ t

t0

e−A(t−s)u(s)
[

1 + a0(s, ·)− a1(s, ·)u(s)− (a2(s, ·))+

∫
Ω

u(s) + (a2(s, ·))−
∫

Ω

u(s)︸ ︷︷ ︸
I0(·,s)

]
ds,
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Note that u(s)I0(·, s) ≤ u(s)[1 + A2M0 + a0(·, s)− a1(s, ·)u(s)︸ ︷︷ ︸
I1(·,s)

] and by parabolic comparison

principle, we get
∫ t
t0
e−A(t−s)u(s)I0(·, s)ds ≤

∫ t
t0
e−A(t−s)u(s)I1(·, s)ds. Therefore

u(t) ≤ u1(t) + u2(t) + u3(t),

where

u1(t) = e−A(t−t0)u0, u2(t) = −χ
∫ t

t0

e−(t−s)A∇(u(s) · ∇v(s))ds

and

u3(t, x) =

∫ t

t0

e−A(t−s)u(s) [1 + A2M0 + a0(·, s)− a1(s, ·)u(s)] ds.

Note that there are c0, c1 > 0 such that (1 +A2M0 + a0(t, x))r− a1(t, x)r2 ≤ c0− c1r
2 for all

t ∈ R, x ∈ Ω, and r ≥ 0. We then have that

‖u1(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) ∀ t ∈ [t0, t0 + Tmax)

and

u3(t) ≤ C

∫ t

t0

e−A(t−s)ds ≤ C

∫ t

t0

e−(t−s) ≤ C ∀ t ∈ [t0, t0 + Tmax).

Choose p > n and α ∈ ( n
2p
, 1

2
). Then Xα ⊂ L∞(Ω) and the inclusion is continuous (see [17]

exercise 10, page 40.) Choose ε ∈ (0, 1
2
− α), then we have

‖u2(t)‖L∞(Ω) ≤ C‖Aαu2(t)‖Lp(Ω) ≤ Cχ

∫ t

t0

‖Aαe−(t−s)A∇(u(s) · ∇v(s))‖Lp(Ω)ds

≤ C

∫ t

t0

(t− s)−α−
1
2
−εe−µ(t−s)‖u(s) · ∇v(s)‖|Lp(Ω)ds

≤ C

∫ t

t0

(t− s)−α−
1
2
−εe−µ(t−s)‖u(s)‖Lp1 (Ω)‖∇v(s)‖Lp2 (Ω)ds

for t ∈ [t0, t0+Tmax), where p1 > p and 1
p

= 1
p1

+ 1
p2
.Note that ‖∇v(s)‖Lp2 (Ω) ≤ C‖u(s)‖Lp2 (Ω).

By (2.51), we get

‖u2(t)‖L∞(Ω) ≤ C(‖u0‖L∞(Ω))

∫ ∞
t0

(t− s)−α−
1
2
−εe−µ(t−s)ds <∞.

Therefore

43



‖v(t)‖∞ ≤ ‖u(t)‖L∞(Ω) ≤ C(‖u0‖L∞(Ω)) ∀ t ∈ [t0, t0 + Tmax).

(2.52) then follows. Theorem 2.2(2) is thus proved.

Remark 2.6. Assume (H2)′ . It follows from the proof of Theorem 2.2.(2) that for any

M ≥ a0,sup

inft∈R

{
a1,inf(t)−|Ω|

(
a2,inf(t)

)
−

} , there is a positive constant C = C(M) depending only

on M such that for any u0 ∈ C0(Ω̄) with u0 ≥ 0 and ‖u0‖C0(Ω̄) ≤M , 0 ≤ u(·, t; t0;u0) ≤ C.

2.6 Existence of Positive Entire Solutions

In this section, we explore the existence of positive entire solutions of system (2.1) in the gen-

eral case; the existence of time almost periodic, time periodic, and time independent positive

solutions of system (2.1) in the case that the coefficients of system (2.1) are time almost peri-

odic, time periodic, and time independent, respectively; and prove Theorem 2.3.

We first prove three lemmas. Throughout this section, we assume that (H2) holds and we let

M =
a0,sup

inft∈R

{
a1,inf(t)− |Ω|

(
a2,inf(t)

)
−

}
− χ

. (2.53)

Let (u(x, t; t0, u0), v(x, t; t0, u0)) be the solution of system (2.1) with u(x, t0; t0, u0) = u0(x)

(u0 ∈ C0(Ω̄)). By Corollary 2.1, for any t2 > t1 > t0,

u(x, t2; t0, u0) = u(x, t2; t1, u(·, t1; t0, u0)).

By Theorem 2.2, the global existence of system (2.1) holds, and for any 0 ≤ u0(·) ≤M ,

0 ≤ u(·, t; t0, u0) ≤M for t ≥ t0. (2.54)

Lemma 2.9. Fix a T > 0. For any ε > 0, there is δ = δ(T ) > 0 such that for any given

u0(·) ≥ 0 with supu0 < δ and any t0 ∈ R, u(x, t+ t0; t0, u0) < ε for 0 ≤ t ≤ T .

Proof. It follows from the continuity with respect to initial conditions.
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Fix a T > 0. Fix ε0 such that ε0 <
a0,inf

χ+|Ω|·|a2,sup| . Let δ0 = δ be as in Lemma 2.9 with ε = ε0.

By Lemma 2.9, for given 0 ≤ u0(x) < δ0, u(x, t+ t0; t0, u0) < ε0 for 0 ≤ t ≤ T . This implies

that v(x, t+ t0; t0, u0) = V (u(·, t+ t0; t0, u0)) := A−1u(·, t+ t0; t0, u0) < ε0 for 0 ≤ t ≤ T .

Lemma 2.10. For any t0 ∈ R and any 0 < u0(x) < min{δ0,
a0,inf−ε0(χ+|Ω|·|a2,sup|)

a1,sup
} for x ∈ Ω,

u(x, t+ t0; t0, u0) > inf u0 for 0 < t ≤ T and x ∈ Ω.

Proof. By Lemma 2.9, V (u(·, t+ t0; t0, u0)) < ε0 for 0 ≤ t ≤ T . Hence

ut = ∆u− χ∇u · ∇V (u)− χu(V (u)− u) + u(a0(t, x)− a1(t, x)u− a2(t, x)

∫
Ω

u)

≥ ∆u− χ∇u · ∇V (u) + u(a0(t, x)− ε0χ− a1(t, x)u− a2(t, x)

∫
Ω

u)

≥ ∆u− χ∇u · ∇V (u) + u(a0,inf − ε0(χ+ |Ω| · |a2,sup|)− a1,supu).

Then by comparison principle, we have

u(x, t+ t0; t0, u0) ≥ u(t; inf u0) 0 ≤ t ≤ T

where u(t; inf u0) is the solution of the ODE

u̇ = u(a0,inf − ε0(χ+ |Ω| · |a2,sup|)− a1,supu). (2.55)

with u(0; inf u0) = inf u0. Note that u(t; inf u0) increases as t increases. The lemma then

follows.

Lemma 2.11. There is δ∗ = δ∗(T ) > 0 such that for any 0 < δ ≤ δ∗, t0 ∈ R, and u0(·) with

δ ≤ inf u0 ≤ supu0 ≤M , u(x, t0 + T ; t0, u0) ≥ δ for x ∈ Ω.

Proof. We prove the lemma by contradiction. Assume that the lemma does not hold. Then there

are δn → 0, tn ∈ R, and un(·) with δn ≤ inf un ≤ M such that inf u(·, tn + T ; tn, un) < δn.

Without loss of generality, we assume that δn < min{δ0,
a0,inf−ε0(χ+|Ω|·|a2,sup|)

a1,sup
}. By Lemma
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2.10, we must have supun ≥ min{δ0,
a0,inf−ε0(χ+|Ω|·|a2,sup|)

a1,sup
}. Let

Ωn =
{
x ∈ Ω |un(x) ≥ 1

2
min{δ0,

a0,inf − ε0(χ+ |Ω| · |a2,sup|)
a1,sup

}
}
.

Without loss of generality, we may assume that m0 = limn→∞ |Ωn| exists, where |Ωn| is the

Lebesgue measure of Ωn. Assume that m0 = 0. Then there is ũn ∈ C0(Ω̄) such that

δn ≤ ũn(x) ≤ 1

2
min{δ0,

a0,inf − ε0(χ+ |Ω| · |a2,sup|)
a1,sup

}

and

lim
n→∞

‖un − ũn‖Lp(Ω) = 0 ∀ 1 ≤ p <∞.

This implies that

lim
n→∞

‖u(·, t; tn, un)− u(·, t; tn, ũn)‖Lp(Ω) = 0

uniformly in t ∈ [tn, tn + T ] for all 1 ≤ p <∞. Indeed, let G(·) be as in the proof of Theorem

1.1(1). Then G(u(·, t; tn, un))(t) = u(·, t; tn, un), G(u(·, t; tn, ũn))(t) = u(·, t; tn, ũn). Let

Ĝ(un)(t) = G(u(·, t; tn, un))(t), Ĝ(ũn)(t) = G(u(·, t; tn, ũn))(t),

wn(·, t) = G(u(·, t; tn, un))(t)−G(u(·, t; tn, ũn))(t)

and

Wn(·, t) = V (G(u(·, t; tn, un))(t))− V (G(u(·, t; tn, ũn))(t)).

Then

wn(·, t) =

e−A(t−tn)
(
un − ũn

)
− χ

∫ t

tn

e−A(t−s)∇
[
wn(·, s) · ∇V (Ĝ(un)(s) + Ĝ(ũn)(s) · ∇Wn(·, s)

]
ds

+

∫ t

tn

e−A(t−s)wn(·, s)
(

1 + a0(s, ·)− a1(s, ·)(Ĝ(un) + Ĝ(ũn))(s)− a2(s, ·)
∫

Ω

Ĝ(un)(s)
)
ds

−
∫ t

tn

e−A(t−s)a2(s, ·)
( ∫

Ω

wn(·, s)
)
Ĝ(ũn)(s)ds. (2.56)
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Now, fix 1 < p < ∞. By regularity and a priori estimates for elliptic equations, [17, Theorem

1.4.3], Lemma 2.2, and (2.56), for any ε ∈ (0, 1
2
), we have

‖wn(·, t)‖Lp(Ω)

≤ ‖un − ũn‖Lp(Ω) + Cχ max
tn≤s≤tn+T

‖∇V (Ĝ(un)(s))‖C0(Ω̄)

∫ t

tn

(t− s)−ε−
1
2‖wn(·, s)‖Lp(Ω)ds

+ Cχ max
tn≤s≤tn+T

‖Ĝ(ũn)(s)‖C0(Ω̄)

∫ t

tn

(t− s)−ε−
1
2‖wn(·, s)‖Lp(Ω)ds

+ C

∫ t

tn

{1 + A0 + A1[ max
tn≤s≤tn+T

(‖Ĝ(un)(s)‖C0(Ω̄) + ‖Ĝ(ũn)(s)‖C0(Ω̄))]}‖wn(·, s)‖Lp(Ω)ds

+ C

∫ t

tn

A2|Ω| max
tn≤s≤tn+T

‖Ĝ(un)(s)‖C0(Ω̄)‖wn(·, s)‖Lp(Ω)ds

+ C

∫ t

tn

A2‖Ĝ(ũn)(s)‖C0(Ω̄)‖wn(·, s)‖Lp(Ω)ds. (2.57)

Therefore there exists a positive constant C0 independent of t and n such that

‖wn(·, t+tn)‖Lp(Ω) ≤ ‖un−ũn‖Lp(Ω)+C0

∫ t

0

(t−s)−ε−
1
2‖wn(·, s+tn)‖Lp(Ω)ds ∀t ∈ [0, T ].

(2.58)

By (2.58) and the generalized Gronwall’s inequality (see [17, page 6]), we get

lim
n→∞

‖u(·, t; tn, un)− u(·, t; tn, ũn)‖Lp(Ω) = 0,

uniformly in t ∈ [tn, tn + T ] for all 1 ≤ p <∞. Therefore,

lim
n→∞

‖V (u(·, t; tn, un))− V (u(·, t; tn; ũn))‖C1(Ω̄) = 0

uniformly in t ∈ [tn, tn + T ]. Note that

V (u(·, t; tn, ũn))(x) ≤ ε0

for all t ∈ [tn, tn + T ] and x ∈ Ω. It then follows that

V (u(·, t; tn, un))(x) ≤ 2ε0
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for all t ∈ [tn, tn + T ], x ∈ Ω, and n� 1. Then by the arguments of Lemma 2.10, inf u(·, tn +

T ; tn, un) ≥ δn, which is a contradiction. Therefore, m0 6= 0.

By m0 6= 0 and comparison principle for parabolic equations, without loss of generality, we

may assume that

lim inf
n→∞

‖e−Atun‖C0(Ω̄) > 0 ∀ t ∈ [0, T ].

This together with the arguments in the proof of Theorem 1.1(2) implies that there is T0 > 0

and δ∞ > 0 such that

supu(·, tn + T0; tn, un) ≥ δ∞

for all n� 1. By a priori estimates for parabolic equations, without loss of generality, we may

assume that

u(·, tn + T0; tn, un)→ u∗0, u(·, tn + T ; tn, un)→ u∗

as n→∞. By (H1), without loss of generality, we may also assume that

ai(t+ tn, ·)→ a∗i (t, x)

as n→∞ locally uniformly in (t, x) ∈ R× Ω̄. Then by Corollary 2.1,

u∗(x) = u∗(x, T ;T0, u
∗
0) and inf u∗ = 0,

where (u∗(x, t;T0, u
∗
0), v∗(x, t;T0, u

∗
0)) with v∗(·, t;T0, u

∗
0) = A−1u∗(·, t;T0, u

∗
0) is the solution

of (2.1) with ai(t, x) being replaced by a∗(t, x). By comparison principle, we must have u∗0 ≡ 0.

But

supu∗0 ≥ δ∞.

This is a contradiction.

Proof of Theorem 2.3. We first prove the existence of positive entire solutions of (2.1) in the

general case.

Let δ∗ > 0 be given by Lemma 2.11 with T = 1. Choose u0 ∈ C0(Ω̄) such that δ∗ ≤

u0(x) ≤M. By Lemma 2.11 and (2.54),
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δ∗ ≤ u(x, t0 + n; t0, u0) ≤M ∀ x ∈ Ω̄, t0 ∈ R, n ∈ N. (2.59)

Set tn = −n and define un(x) = u(x, 0; tn, u0). Choose t̃ such that −2 < t̃ < −1. Then

there is M̃ > 0 such that for each n ≥ 3, we have

‖un‖α = ‖u(·, 0; tn, u0)‖α = ‖u(·, 0; t̃, u(·, t̃; tn, u0))‖α ≤ M̃.

Therefore by Arzela-Ascoli Theorem, there exist nk, u∗0 ∈ C0(Ω̄) such that unk converges to

u∗0 in C0(Ω̄) as nk →∞. Then by Corollary 2.1, we have

u(·, t; tnk , u0) = u(·, t; 0, u(·, 0; tnk , u0)) = u(·, t; 0, unk)→ u(·, t; 0, u∗0)

in C0(Ω̄) as n→∞ for t ≥ 0. Moreover, by (2.54) and Lemma 2.11,

δ∗ ≤ u(x, n; 0, u∗0) ≤M ∀ x ∈ Ω̄, n ∈ N. (2.60)

We need to prove that u(·, t; 0, u∗0) has backward extension. To see that, fix m ∈ N. Then

u(·, t; tn, u0) is defined for t > −m and n > m. Observe that

un(·) = u(·, 0; tn, u0) = u(·, 0;−m,u(·,−m; tn, u0)).

Without loss of generality, we may assume that u(·,−m; tnk , u0)→ u∗m(·) in C0(Ω̄). Then

u(·, t; tnk , u0) = u(·, t;−m,u(·,−m; tnk , u0))→ u(·, t;−m,u∗m)

for t > −m and u(·, t; 0, u∗0) = u(·, t;−m,u∗m) for t ≥ 0. This implies that u∗(x, t; 0, u∗0)

has a backward extension up to t = −m. Let m → ∞, we have that u∗(x, t) has a backward

extension on (−∞, 0).

Let u∗(x, t) = u∗(x, t; 0, u∗0) and v∗(x, t) = A−1u∗(·, t), Then (v∗(x, t), u∗(x, t)) is an entire

nonnegative solution of system (2.1). Moreover,

δ∗ ≤ u∗(x, n) ≤M ∀ x ∈ Ω̄, n ∈ Z. (2.61)
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This implies that

0 < inf
x∈Ω̄,t∈R

u∗(x, t) ≤M, 0 < inf
x∈Ω̄,t∈R

v∗(x, t) ≤M.

Therefore, (v∗(x, t), u∗(x, t)) is an entire positive bounded solution of system (2.1).

Next, we prove (1), (2), and (3).

(1) Assume that ai(t + T, x) = ai(t, x) for i = 0, 1, 2. Let δ∗ = δ∗(T ) > 0 be given by

Lemma 2.11 and set

E(T ) = {u0 ∈ C0(Ω̄) : δ∗ ≤ u0 ≤M}. (2.62)

Note that E(T ) is nonempty, closed, convex and bounded subset of C0(Ω̄). Define the map

T (T ) : E(T ) → C0(Ω̄) by T (T )u0 = u(·, T ; 0, u0). Note that T (T ) is well defined and

continuous by continuity with respect to initial conditions.

Let u0 ∈ E(T ). Then by Theorem 2.2, we have 0 < u(·, T ; 0, u0) ≤M and by Lemma 2.11,

we have u(·, T ; 0, u0) ≥ δ∗. Thus u(·, T ; 0, u0) ∈ E(T ) and T (T )E(T ) ⊂ E(T ).

Let n
2p
< α < 1

2
, and ε ∈ (0, 1

2
− α). By the similar arguments as those in the proof of local

existence, we have that

‖u(·, T ; 0, u0)‖α ≤ CMT−α + CM2T
1
2
−α−ε + CM [1 + A0 + k1(A1 + |Ω|A2)]T 1−α.

Now choose ν such that 0 ≤ ν < 2α − n
p
, then Xα ⊂ Cν(Ω̄), where the inclusion is continu-

ous. Thus by Arzela-Ascoli Theorem, T (T )E(T ) is precompact. Therefore by Schauder fixed

point theorem, there exists uT ∈ E(T ) such that T (T )uT = uT , i.e u(·, T ; 0, uT ) = uT (·).

Since u(·, t+ T ; 0, uT ) = u(·, t;T, u(·, T ; 0, uT )) = u(·, t; 0, uT ), u(·, t; 0, uT ) is periodic with

period T. Now from the facts that u(., t; 0, uT ) is periodic with period T and the uniqueness of

solutions of 
−∆v + v = u(x, t; 0, uT ) x ∈ Ω

∂v
∂n

= 0 on ∂Ω,

we get v(·, t; 0, uT ) = A−1u(·, t; 0, uT ) is periodic with period T. Then (u(·, t; 0, uT ), v(·, t; 0, uT ))

is a positive periodic solution of system (2.1).
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(2) Assume that ai(t, x) ≡ ai(t). Note that in this case, every solution of the ODE

ut = u(a0(t)− (a1(t)u+ |Ω|a2(t))u)

is a solution of the first equation of the system (2.1) with Neumann boundary. (2) then follows

from Lemma 2.5.

(3) Assume that ai(t, x) ≡ ai(x) (i = 0, 1, 2). In this case, each τ > 0 is a period for ai.

By (2), there exist uτ ∈ E(τ) such that (u(·, t; 0, uτ ), A−1(u(·, t; 0, uτ ))) is a positive periodic

solution of system (2.1) with period τ . Note that there is M̃ > 0 such that for each τ > 0 and

u0 ∈ E(τ), ‖u(·, t; 0, u0)‖α ≤ M̃ for each 1 ≤ t ≤ 2. Let τn = 1
n
, then there exists un ∈ E(τn)

such that u(·, t; 0, un) is periodic with period τn and

‖un‖α = ‖u(·, τn; 0, un)‖α = ‖u(·, Nτn; 0, un)‖α ≤ M̃, (2.63)

where N is such that 1 ≤ Nτn ≤ 2.

We claim that there is δ > 0 such that

‖un(·)‖C0(Ω̄) ≥ δ ∀ n ≥ 1. (2.64)

Suppose by contradiction that this does not hold. Then there exists nk such that ‖unk‖C0(Ω̄) <

1
nk

for every k ≥ 1. Let k0 such that 1
nk
< ε0 for all k ≥ k0. By the proof of Lemma 2.10 we get

that u(·, t; 0, unk) ≥ u(t; inf unk) for all t > 0 and k ≥ k0, where u(t; inf unk) is the solution of

(2.55) with u(0; inf unk) = inf unk . Let δ∗ =
a0,inf−ε0(χ+|Ω|·|a2,sup|)

2a1,sup
and choose k large enough

such that 1
nk
< δ∗. There is t0 > 0 such that u(t; inf unk) > δ∗ for all t ≥ t0. Then we have

unk(x) = u(·,mτnk ; 0, unk) ≥ u(mτnk ; inf unk) > δ∗

for all m ∈ N satisfying that mτnk > t0. This is a contradiction. Therefore, (2.64) holds.

By (2.63) and Arzela-Ascoli theorem, there exist nk, u∗ ∈ C0(Ω̄) such that unk converges

to u∗ in C0(Ω̄). By (2.64), ‖u∗(·)‖C0(Ω̄) ≥ δ
2
. We claim that (u(·, t; 0, u∗), v(·, t; 0, u∗)) with

v(·, t; 0, u∗) = A−1u(·, t; 0, u∗) is a steady state solution of system (2.1), that is,
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u(·, t; 0, u∗) = u∗(·) for all t ≥ 0. (2.65)

In fact, let ε > 0 be fix and let t > 0. Note that

[nkt]τnk =
[nkt]

nk
≤ t ≤ [nkt] + 1

nk
= ([nkt] + 1)τnk .

By Corollary 2.1, we can choose k large enough such that

|u(x, t; 0, u∗)−u(x, t; 0, unk)| < ε, |unk(x)−u∗(x)| < ε, |u(x,
[nkt]

nk
; 0, unk)−u(x, t; 0, unk)| < ε

for all x ∈ Ω̄. We then have

|u(x, t; 0, u∗)− u∗| ≤ |u(x, t; 0, u∗)− u(x, t; 0, unk)|+ |u(x, t; 0, unk)− u(x, [nkt]τnk ; 0, unk)|

+ |unk(x)− u∗(x)| < 3ε ∀ x ∈ Ω̄.

Letting ε→ 0, (2.65) follows.

Remark 2.7. It follows from the proof of the existence of positive entire solutions in Theorem

2.3 and Remark 2.6 that the existence of positive entire solutions also holds under the weaker

condition (H2)′ .

2.7 Asymptotic Stability of Positive Entire Solutions

In this section, we investigate the stability and uniqueness of positive entire solutions of system

(2.1), the asymptotic behavior of global positive solutions of system (2.1), and prove Theorems

2.4 and 2.5. We first prove Theorem 2.5.

Proof of Theorem 2.5. Suppose that (2.13) holds. For given u0 ∈ C0(Ω̄) with u0(x) ≥ 0,

u0(·) 6= 0, and t0 ∈ R, let (u(·, t; t0, u0), v(·, t; t0, u0)) be the solution of system (2.1) satisfying

the properties in Theorem 2.1(2). By Theorem 2.2, (u(·, t; t0, u0), v(·, t; t0, u0)) exists for all

t > t0. Note that u(x, t; t0, u0) > 0 for all x ∈ Ω̄ and t > t0. Without loss of generality, we

may assume that u0(x) > 0 for all x ∈ Ω̄.

Let (ū(t), u(t)) be as in (2.32). By Lemma 2.7 and the proof of Theorem 2.2,
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u(t) ≤ u(x, t; t0, u0) ≤ ū(t) ∀ x ∈ Ω̄, t ≥ t0. (2.66)

Let r1 and r2 be as in (2.17) and (2.18), respectively.

(1) By Lemma 2.6(1) and (2), for any ε > 0, there is tε > 0 such that

r2 − ε ≤ u(t) ≤ ū(t) ≤ r1 + ε for t ≥ t0 + tε. (2.67)

(1) then follows from (2.66) and (2.67).

(2) We first consider the case that ai(t, x) (i = 0, 1, 2) are periodic in t with period T . By

Lemma 2.6(1), (2), and (3), there are periodic functions m(t) and M(t) with period T such that

r2 ≤ m(t) ≤M(t) ≤ r1 ∀ t ∈ R

and for any ε > 0, there is tε > 0 such that

m(t)− ε ≤ u(t) ≤ ū(t) ≤M(t) + ε ∀ t ≥ t0 + tε. (2.68)

In this case, (2) then follows from (2.66) and (2.68).

Next, we consider the cases that ai(t, x) (i = 0, 1, 2) are almost periodic in t. By Lemma

2.6(1), (2), and (4), there are almost periodic functions m(t) and M(t) such that

r2 ≤ m(t) ≤M(t) ≤ r1 ∀ t ∈ R

and for any ε > 0, there is tε > 0 such that (2.68) holds. (2) then follows from (2.66) and

(2.68).

We now prove Theorem 2.4

Proof of Theorem 2.4. (1) Suppose that ai(t, x) ≡ ai(t) for i = 0, 1, 2 and

inf
t∈R

{
a1(t)− |Ω| |a2(t)|

}
> 2χ. (2.69)

For given u0 ∈ C0(Ω̄) with u0(x) ≥ 0, u0(·) 6= 0, and t0 ∈ R, let (u(·, t; t0, u0), v(·, t; t0, u0))

be the solution of system (2.1) satisfying the properties in Theorem 2.1(2). Again, by Theorem
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2.2, (u(·, t; t0, u0), v(·, t; t0, u0)) exists for all t > t0 and without loss of generality, we may

assume that u0(x) > 0 for all x ∈ Ω̄.

Let (ū(t), u(t)) be as in (2.32). Let (u∗(t), v∗(t)) be the unique entire positive spatially

homogeneous solution of system (2.1) in Theorem 2.3(2). By Lemma 2.7 and the proof of

Theorem 2.2,

u(t) ≤ u(x, t; t0, u0) ≤ ū(t) ∀ x ∈ Ω̄, t ≥ t0. (2.70)

By Lemma 2.6(1), for any ε > 0, there is tε > 0 such that

u(t)− ε ≤ u∗(t) ≤ ū(t) + ε ∀ t ≥ t0 + tε. (2.71)

By (2.70) and (2.71), it suffices to show 0 ≤ ln u(t)
u(t)
−→ 0 as t→∞. Assume that t > t0. By

dividing the first equation of (2.31) by u, and the second by u, we get
u′

u
= [a0(t)− (a1(t)− |Ω|(a2(t))− − χ)u− (|Ω|(a2(t))+ + χ)u]

u′

u
= [a0(t)− (a1(t)− |Ω|(a2(t))− − χ)u− (|Ω|(a2(t))+ + χ)u]

This together with (2.69) implies that

d

dt

(
ln
u

u

)
=
u′

u
− u′

u
= − (a1(t)− |Ω| |a2(t)| − 2χ) (u− u) ≤ 0.

Thus by integrating over (t0, t), we get

0 ≤ ln
u

u
≤ ln

u0

u0

, and then
u(t)

u(t)
≤ u0

u0

.

We have by mean value theorem that

u− u = elnu − elnu = eln û
(

ln
u

u

)
= û

(
ln
u

u

)
,

where u ≤ û ≤ u. Therefore

d

dt

(
ln
u

u

)
≤ −

(
a1(t)− |Ω| |a2(t)| − 2χ

)(
inf
t≥t0

u(t)
u0

u0

)(
ln
u

u

)
.

54



By letting ε0 = inft∈R{a1(t)− |Ω| |a2(t)| − 2χ}
(

inft≥t0 u(t)
u0
u0

)
, we have ε0 > 0 and

0 ≤ ln
u

u
≤ ln

u0

u0

e−ε0t → 0 as t→∞.

(2) Let L1(t) and L2(t) be as in (2.15) and (2.16), respectively. By (2.14),

µ = lim sup
t−s→∞

1

t− s

∫ t

s

(L1(τ)− L2(τ))dτ < 0.

Fix 0 < ε < −µ. Let r1 and r2 be as in (2.17) and (2.18), respectively. By (2.13), Theorem

2.5(1), and definition of µ, for any ε > 0, there exists Tε > 0 such that

r2 − ε ≤ u(·, t0 + t; t0;u0) ≤ r1 + ε, r2 − ε ≤ u∗(x, t) ≤ r1 + ε ∀x ∈ Ω̄, t ≥ t0 + Tε,

and ∫ t0+t

t0

(L1(s)− L2(s))ds ≤ (µ+ ε)t, ∀ t0 ∈ R, t ≥ t0 + Tε.

We first prove that for any entire positive solution (u∗(x, t), v∗(x, t)) of system (2.1), (2.19)

holds. To simplify the notation, for given t0 ∈ R and u0 ∈ C0(Ω̄) with u0(x) ≥ 0 and

u0(·) 6= 0, set u(t) = u(·, t; t0;u0) and u∗(t) = u∗(·, t). Let w(t) = u(t) − u∗(t). Then w

satisfy the equation

wt =∆w − χ∇(w · ∇A−1u)− χ∇(u∗ · ∇A−1w) + w (a0(t, x)− a1(t, x)(u+ u∗)

− a2(t, x)

∫
Ω

u)− a2(t, x)
( ∫

Ω

w
)
u∗ (2.72)

for t > t0. By the similar arguments for (2.35), we have that
∫

Ω
w2

+ is weakly differentiable

and moreover
d

dt

∫
Ω

w2
+ = 2

∫
Ω

w+wt ∀ a.e. t > t0.

Next, by multiplying (2.72) by w+ and integrating it over Ω, we get

1

2

d

dt

∫
Ω

w2
+ +

∫
Ω

|∇w+|2 = χ

∫
Ω

w+∇w+ · ∇A−1u+ χ

∫
Ω

u∗∇w+ · ∇A−1w

+

∫
Ω

w2
+

(
a0(t, x)− a1(t, x)(u+ u∗)− a2(t, x)

∫
Ω

u
)
−
( ∫

Ω

w
) ∫

Ω

a2(t, x)u∗w+
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for a.e t > t0. Integrating by part and using the equation of A−1u, we get for a.e t > t0 + Tε

1

2

d

dt

∫
Ω

w2
+ +

∫
Ω

|∇w+|2 =
χ

2

∫
Ω

w2
+(u− A−1u) + χ

∫
Ω

u∗∇w+ · ∇A−1w

+

∫
Ω

w2
+

(
a0(t, x)− a1(t, x)(u+ u∗)− a2(t, x)

∫
Ω

u
)

−
( ∫

Ω

w
) ∫

Ω

a2(t, x)u∗w+

≤ χ

2

∫
Ω

w2
+(u− A−1u) + χ

∫
Ω

u∗∇w+ · ∇A−1w

+

∫
Ω

w2
+

(
a0,sup − a1,inf(t)(u+ u∗)− (a2,inf(t))+

∫
Ω

u
)

+

∫
Ω

w2
+

(
(a2,inf(t))−

∫
Ω

u
)

−
( ∫

Ω

w
) ∫

Ω

a2(t, x)u∗w+.

We have by Young’s inequality that

χ

∫
Ω

u∗∇w+ · ∇A−1w ≤
∫

Ω

|∇w+|2 +
(χ(r1 + ε))2

4

∫
Ω

|∇A−1w|2.

Using the equation of A−1u, we get∫
Ω

|∇A−1w|2 ≤
∫

Ω

w2
+ +

∫
Ω

w2
−

for t > t0. Also we have for t > t0 + Tε that

−
∫

Ω

w

∫
Ω

a2(t, x)u∗w+

≤
∫

Ω

w−

∫
Ω

(
a2,sup(t)

)
+
u∗w+ − (a2,inf(t))+

∫
Ω

w+

∫
Ω

u∗w+ + (a2,inf(t))−

∫
Ω

w+

∫
Ω

u∗w+

≤ [(r1 + ε)(a2,inf(t))− − (r2 − ε)(a2,inf(t))+](

∫
Ω

w+)2 + (r1 + ε)
(
a2,sup(t)

)
+

(

∫
Ω

w−)(

∫
Ω

w+).

56



By combining all these inequalities we have for a.e t > t0 + Tε that

1

2

d

dt

∫
Ω

w2
+ ≤

(
a0,sup(t) +

χ

2

(
(r1 + ε)− (r2 − ε)

)
+

(χ(r1 + ε))2

4

)∫
Ω

w2
+

−
(

(r2 − ε)(2a1,inf(t) + |Ω|(a2,inf(t))+)
)∫

Ω

w2
+

+ 2|Ω|(r1 + ε)(a2,inf(t))−

∫
Ω

w2
+ +

((χ(r1 + ε))2

4

) ∫
Ω

w2
−

− (r2 − ε)(a2,inf(t))+(

∫
Ω

w+)2 + (r1 + ε)
(
a2,sup(t)

)
+

(

∫
Ω

w−)(

∫
Ω

w+). (2.73)

Similarly we have that
∫

Ω
w2
− is weakly differentiable with d

dt

∫
Ω
w2
− = −2

∫
Ω
w−wt, and for

a.e t > t0 + Tε

1

2

d

dt

∫
Ω

w2
− ≤

(
a0,sup(t) +

χ

2

(
(r1 + ε)− (r2 − ε)

)
+

(χ(r1 + ε))2

4

)∫
Ω

w2
−

−
(

(r2 − ε)(2a1,inf(t) + |Ω|
(
a2,inf(t)

)
+

)
)∫

Ω

w2
−

+ 2|Ω|(r1 + ε)(a2,inf(t))−

∫
Ω

w2
− +

((χ(r1 + ε))2

4

) ∫
Ω

w2
+

− (r2 − ε)(a2,inf(t))+(

∫
Ω

w−)2 + (r1 + ε)
(
a2,sup(t)

)
+

(

∫
Ω

w−)(

∫
Ω

w+). (2.74)

Note that

− (r2 − ε)(a2,inf(t))+

(
(

∫
Ω

w+)2 + (

∫
Ω

w−)2
)

+ 2(r1 + ε)
(
a2,sup(t)

)
+

(

∫
Ω

w−)(

∫
Ω

w+)

≤ 2
(

(r1 + ε)
(
a2,sup(t)

)
+
− (r2 − ε)(a2,inf(t))+

)
(

∫
Ω

w−)(

∫
Ω

w+)

≤ |Ω|
[
ε
((
a2,sup(t)

)
+

+ (a2,inf(t))+

)
+
(
r1

(
a2,sup(t)

)
+
− r2(a2,inf(t))+

)](∫
Ω

w2
− +

∫
Ω

w2
+

)
.

Set

K(t, ε) = χε+χ2 ε

2
(2r1+ε)+2|Ω|ε(a2,inf)−+|Ω|ε(a2,sup(t)+(a2,inf(t))+)+ε(2a1,inf(t)+|Ω|a2,inf(t)).

Adding (2.73) and (2.74), we then have

d

dt

∫
Ω

(w2
+ + w2

−)(t) ≤2
{
L2(t)− L1(t) +K(t, ε)

}∫
Ω

(w2
+ + w2

−)
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for a.e t > t0 + Tε. Therefore by the continuity with respect to time of both sides of this last

inequality, we get

d

dt

∫
Ω

(w2
+ + w2

−)(t) ≤2
{
L2(t)− L1(t) +K(t, ε)

}∫
Ω

(w2
+ + w2

−)

for t > t0 + Tε. Then by Gronwall’s inequality,

∫
Ω

(w2
+(t)+w2

−(t)) ≤
∫

Ω

(w2
+(t0+Tε)+w

2
−(t0+Tε))e

2
∫ t
t0

(L1(s)−L2(s)+K(s,ε))ds for all t > t0 + Tε.

Note that 0 ≤ supt∈R |K(t, ε)| → 0 as ε→ 0 and choose ε0 � 1 (ε0 < −µ) such that

0 ≤ sup
t∈R
|K(t, ε)| < −µ− ε0

2
.

By
∫ t
t0

(L1(s)− L2(s))ds ≤ (µ+ ε0)(t− t0) for t ≥ t0 + Tε0 , we have

∫
Ω

(w2
+(t) + w2

−(t)) ≤ (

∫
Ω

w2
+(t0 + Tε0) + w2

−(t0 + Tε0))e
2(µ+ε0)(t−t0)e2(

−µ−ε0
2

)(t−t0)

≤ (

∫
Ω

w2
+(t0 + Tε0) + w2

−(t0 + Tε0))e
(µ+ε0)(t−t0) ∀ t > t0 + Tε0 .

Therefore

lim
t→∞
‖u(·, t+ t0; t0, u0)− u∗(·, t+ t0)‖L2(Ω) = lim

t→∞
‖w(t+ t0)‖2

L2(Ω) = 0 (2.75)

uniformly in t0 ∈ R.

We claim that (2.19) holds. Suppose by contradiction that there is t0 ∈ R such that

u(·, t; t0, u0) 9 u∗(·, t)

in C0(Ω̄) as t→∞. Then there exists ε0 > 0 and a sequence tn →∞ as n→∞ such that

‖u(·, tn; t0, u0)− u∗(·, tn)‖C0(Ω̄) > ε0.
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Since u(·, tn; t0, u0), u∗(·, tn) ∈ C0(Ω̄) are uniformly bounded and equicontinuous, there exists

up to subsequence u1, u1
∗ ∈ C0(Ω̄) such that u(·, tn; t0, u0), u∗(·, tn) converges respectively

to u1, u1
∗ in C0(Ω̄). Therefore by dominated convergence theorem, u(·, tn; t0, u0) → u1 and

u∗(·, tn)→ u1
∗ in L2(Ω) as t→∞. This implies that

lim
tn→∞

‖u(·, tn; t0, u0)− u∗(·, tn)‖L2(Ω) = 0.

Hence we have that u1 = u1
∗. But also from ‖u(·, tn; t0, u0) − u∗(·, tn)‖C0(Ω̄) > ε0, we get as

n→∞, ‖u1 − u∗1‖C0(Ω̄) ≥ ε0, which is a contradiction. Hence (2.19) holds.

Next, we prove that system (2.1) has a unique entire positive solution. Suppose that (u∗1(x, t), v∗1(x, t))

and (u∗2(x, t), v∗2(x, t)) are two entire positive solutions of system (2.1). We claim that (u∗1(x, t),

v∗1(x, t)) ≡ (u∗2(x, t), v∗2(x, t)) for any t ∈ R. Indeed, fix any t ∈ R, by the arguments in the

proof of (2.75),

‖u∗1(·, t)− u∗2(·, t)‖L2(Ω) = ‖u(·, t; t0, u∗1(·, t0))− u(·, t; t0, u∗2(·, t0))‖L2(Ω) → 0 as t0 → −∞.

This together with the continuity of u∗i (x, t) (i = 1, 2) implies that u∗1(x, t) ≡ u∗2(x, t) and then

v∗1(x, t) ≡ v∗2(x, t). Hence system (2.1) has a unique entire positive solution.

Assume now that ai(t, x) ≡ ai(x) (i = 0, 1, 2). By Theorem 2.3(3) and the uniqueness of

entire positive solutions of system (2.1), (2.1) has a unique positive steady state solution.

Assume that ai(t + T, x) = ai(t, x) (i = 0, 1, 2). By Theorem 2.3(1) and the uniqueness of

entire positive solutions of (2.1), (2.1) has a unique positive periodic solution with period T .

Finally assume that ai(t, x) (i = 0, 1, 2) are almost periodic in t uniformly with respect to

x ∈ Ω̄. Let (u∗(x, t), v∗(x, t)) be the unique positive solution of system (2.1). We claim that

(u∗(x, t), v∗(x, t)) is almost periodic in t. Indeed, for any sequences {β ′n}, {γ
′
n} ⊂ R, by the

almost periodicity of ai(t, x) in t, there are subsequences {βn} ⊂ {β
′
n} and {γn} ⊂ {γ

′
n} such

that

lim
m→∞

lim
n→∞

ai(t+ βn + γm, x) = lim
n→∞

ai(t+ βn + γn, x)

uniformly in t ∈ R and x ∈ Ω̄ for i = 0, 1, 2. Let

59



âi(t, x) = lim
n→∞

ai(t+βn, x), ǎi(t, x) = lim
m→∞

âi(t+γm, x), ãi(t, x) = lim
n→∞

ai(t+βn+γn, x)

for i = 0, 1, 2. Observe that âi (i = 0, 1, 2), ǎi (i = 0, 1, 2), and ãi (i = 0, 1, 2) also satisfy the

hypothesis (H1) in the introduction, and ǎi = ãi for i = 0, 1, 2.

Without loss of generality, we may assume that limn→∞(u∗(·, t+ βn), v∗(·, t+ βn)) exists in

C0(Ω̄). Let

(û∗(x, t), v̂∗(x, t)) = lim
n→∞

(u∗(·, t+ βn), v∗(·, t+ βn)).

Then (û∗(x, t), v̂∗(x, t)) is an entire positive solution of system (2.1) with ai(t, x) being re-

placed by âi(t, x) (i = 0, 1, 2).

We may also assume that limn→∞(û∗(·, t+ βn), v̂∗(·, t+ βn)) exists in C0(Ω̄). Let

(ǔ∗(x, t), v̌∗(x, t)) = lim
n→∞

(û∗(·, t+ βn), v̂∗(·, t+ βn)).

Then (ǔ∗(x, t), v̌∗(x, t)) is an entire positive solution of system (2.1) with ai(t, x) being re-

placed by ǎi(t, x) (i = 0, 1, 2).

Furthermore, we may assume that limn→∞(û∗(·, t + βn + γn), v̂∗(·, t + βn + γn)) exists in

C0(Ω̄). Let

(ũ∗(x, t), ṽ∗(x, t)) = lim
n→∞

(û∗(·, t+ βn + γn), v̂∗(·, t+ βn + γn)).

Then (ũ∗(x, t), ṽ∗(x, t)) is an entire positive solution of system (2.1) with ai(t, x) being re-

placed by ãi(t, x) (i = 0, 1, 2). By the uniqueness of entire positive solutions of system (2.1)

with ai(t, x) being replaced by ãi(t, x) (i = 0, 1, 2), we have that

(ũ∗(x, t), ṽ∗(x, t)) = (ǔ∗(x, t), v̌∗(x, t)) ∀ x ∈ Ω̄, t ∈ R.

It then follows from ǎi = ãi for i = 0, 1, 2 that

lim
m→∞

lim
n→∞

(u∗(x, t+ βn + γm), v∗(x, t+ βn + γm)) = lim
n→∞

(u∗(x, t+ βn + γn), v∗(x, βn + γn))

and hence (u∗(x, t), v∗(x, t)) is almost periodic in t. The theorem is thus proved.
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Chapter 3

Persistence, Coexistence and Extinction in Two Species Chemotaxis Models on Bounded
Heterogeneous Environments

3.1 Introduction

In this chapter, we study system (1.2) with τ = 0, which reduces to the following two species

parabolic-parabolic-elliptic chemotaxis system with heterogeneous Lotka-Volterra type com-

petition terms,



ut = d1∆u− χ1∇ · (u∇w) + u
(
a0(t, x)− a1(t, x)u− a2(t, x)v

)
, x ∈ Ω

vt = d2∆v − χ2∇ · (v∇w) + v
(
b0(t, x)− b1(t, x)u− b2(t, x)v

)
, x ∈ Ω

0 = d3∆w + ku+ lv − λw, x ∈ Ω

∂u
∂n

= ∂v
∂n

= ∂w
∂n

= 0, x ∈ ∂Ω,

(3.1)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary, di (i = 1, 2, 3) are positive

constants, χ1, χ2, k, l, λ are nonnegative constants, and ai(t, x) and bi(t, x) (i = 0, 1, 2) are

positive bounded smooth functions.

Note that, in the absence of chemotaxis, that is, χ1 = χ2 = 0, the dynamics of (3.1) is

determined by the first two equations, that is, the following two species competition system,


ut = d1∆u+ u

(
a0(t, x)− a1(t, x)u− a2(t, x)v

)
, x ∈ Ω

vt = d2∆v + v
(
b0(t, x)− b1(t, x)u− b2(t, x)v

)
, x ∈ Ω

∂u
∂n

= ∂v
∂n

= 0, x ∈ ∂Ω.

(3.2)

61



Among interesting dynamical issues in (3.1) and (3.2) are persistence, coexistence, and ex-

tinction. These dynamical issues for (3.2) have been extensively studied (see [1], [15], [22],

[23], etc.). Several authors have studied these issues for system (3.1) with constant coefficients

[6, 29, 44, 55, 60]. For example in [29], the authors considered a more general competitive-

cooperative chemotaxis system with nonlocal terms logistic sources and proved both the phe-

nomena of coexistence and of exclusion for parameters in some natural range. However, there

is little study of these important issues for (3.1) with time and space dependent coefficients. The

objective of this chapter is to investigate the persistence, coexistence, and extinction dynamics

of (3.2). In particular, we identify the circumstances under which persistence or extinction oc-

curs, and in the case that persistence occurs, we study the existence, uniquenss and stability of

coexistence states.

In order to do so, we first study the global existence of classical solutions of (3.1) with any

given nonnegative initial functions. Note that for any given t0 ∈ R and u0, v0 ∈ C0(Ω̄) with

u0 ≥ 0 and v0 ≥ 0, system (3.2) has a unique bounded global classical solution

(u(x, t; t0, u0, v0), v(x, t; t0, u0, v0))

with (u(x, t0; t0, u0, v0), v(x, t0; t0, u0, v0)) = (u0(x), v0(x)). However, it is not known whether

for any given t0 ∈ R and u0, v0 ∈ C0(Ω̄) with u0 ≥ 0 and v0 ≥ 0, (3.1) has a unique

bounded global classical solution (u(x, t; t0, u0, v0), v(x, t; t0, u0, v0), w(x, t; t0, u0, v0)) with

(u(x, t0; t0, u0, v0), v(x, t0; t0, u0, v0)) = (u0(x), v0(x)).

3.2 Notations, Assumptions, Definitions and Main results

3.2.1 Notations, assumptions and definitions

For a given function fi(t, x) defined on R× Ω̄ we put

fi,inf = inf
t∈R,x∈Ω̄

fi(t, x), fi,sup = sup
t∈R,x∈Ω̄

fi(t, x),

fi,inf(t) = inf
x∈Ω̄

fi(t, x), fi,sup(t) = sup
x∈Ω̄

fi(t, x),
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unless specified otherwise.

We also introduce the following assumptions for our global existence results.

(H3) ai(t, x), bi(t, x), χi and d3, k and l satisfy

a1,inf >
kχ1

d3

, a2,inf ≥
lχ1

d3

, b1,inf ≥
kχ2

d3

, and b2,inf >
lχ2

d3

.

(H4) ai(t, x), bi(t, x), χi and d3, k and l satisfy

a1,inf >
kχ1

d3

, b2,inf >
lχ2

d3

, and
(
a1,inf −

kχ1

d3

)(
b2,inf −

lχ2

d3

)
>
kχ2

d3

lχ1

d3

.

(H5) ai(t, x), bi(t, x), χi and d3, k and l satisfy

a1,inf > max{0, χ1k(n− 2)

d3n
} , a2,inf > max{0, χ1l(n− 2)

d3n
},

and

b1,inf > max{0, χ2k(n− 2)

d3n
} , b2,inf > max{0, χ2l(n− 2)

d3n
}.

For our results on persistence and coexistence, we further introduce the following assump-

tions.

(H6) ai(t, x), bi(t, x), χi and d3, k and l satisfy (H3) and

a0,inf > a2,supĀ2 and b0,inf > b1,supĀ1,

where

Ā1 =
a0,sup

a1,inf − kχ1

d3

, Ā2 =
b0,sup

b2,inf − lχ2

d3

.

(H7) ai(t, x), bi(t, x), χi and d3, k and l satisfy (H4) and

a0,inf >
(
a2,sup −

χ1l

d3

)
+
B̄2 +

χ1l

d3

B̄2 and b0,inf >
(
b1,sup −

χ2k

d3

)
+
B̄1 +

χ2k

d3

B̄1,
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where

B̄1 =
a0,sup(b2,inf − lχ2

d3
) + lχ1

d3
b0,sup

(a1,inf − kχ1

d3
)(b2,inf − lχ2

d3
)− lkχ1χ2

d23

(3.3)

and

B̄2 =
b0,sup(a1,inf − kχ1

d3
) + kχ2

d3
a0,sup

(a1,inf − kχ1

d3
)(b2,inf − lχ2

d3
)− lkχ1χ2

d23

, (3.4)

and (· · · )+ represents the positive part of the expression inside the brackets.

Note that both (H6) and (H7) imply

a0,infb2,inf > a2,supb0,sup, a1,infb0,inf > a0,supb1,sup. (3.5)

Finally for our results on the stability and uniqueness of coexistence states in (3.1), we intro-

duce the following assumptions.

(H8) Assume (H3) and

a0,inf > a2,supĀ2 + k
χ1

d3

Ā1, b0,inf > b1,supĀ1 + l
χ2

d3

Ā2. (3.6)

(H9) Assume (H4) and

a0,inf > (a2,sup + l
χ1

d3

)B̄2 + k
χ1

d3

B̄1, b0,inf > (b1,sup + k
χ2

d3

)B̄1 + l
χ2

d3

B̄2. (3.7)

(H10) ai(t, x) ≡ ai(t) and bi(t, x) ≡ bi(t) (i = 0, 1, 2) satisfy (3.5) and

inf
t

{
a1(t)− b1(t)

}
> 2

χ1

d3

(k + l), inf
t

{
b2(t)− a2(t)

}
> 2

χ2

d3

(k + l). (3.8)

Remark 3.1. (1) (H8) implies (H6) and (H9) implies (H7).

(2) When χ1 = χ2 = 0, (H8) and (H9) are the same, and both (3.6) and (3.7) become (3.5).
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A solution (u(x, t), v(x, t), w(x, t)) of (3.1) defined for all t ∈ R is called an entire solution.

A coexistence state of (3.1) is a positive entire solution (u∗∗(x, t), v∗∗(x, t), w∗∗(x, t)) with

inf
t∈R,x∈Ω̄

u∗∗(x, t) > 0, inf
t∈R,x∈Ω̄

v∗∗(x, t) > 0.

We say that persistence occurs in (3.1) if there is η > 0 such that for any u0, v0 ∈ C(Ω̄) with

u0 > 0 and v0 > 0, there is τ(u0, v0) > 0 such that

u(x, t; t0, u0, v0) ≥ η, v(x, t; t0, u0, v0) ≥ η ∀ x ∈ Ω̄, t ≥ t0 + τ(u0, v0), t0 ∈ R.

We say that extinction of one species or competitive exclusion occurs in (3.1) if for any t0 ∈ R

and u0, v0 ∈ C(Ω̄) with u0 > 0 and v0 > 0, there holds

lim
t→∞
‖v(·, t+ t0; t0, u0, v0)‖∞ = 0

or for any t0 ∈ R and u0, v0 ∈ C(Ω̄) with u0 > 0 and v0 > 0, there holds

lim
t→∞
‖u(·, t+ t0; t0, u0, v0)‖∞ = 0.

3.2.2 Main results

Our results on global existence and boundedness of nonnegative classical solutions of (3.1) are

stated in the following theorem.

Theorem 3.1. (Global Existence)

(1) Assume that (H3) holds. Then for any t0 ∈ R and u0, v0 ∈ C0(Ω̄) with u0 ≥ 0 and v0 ≥

0, (3.1) has a unique bounded global classical solution (u(x, t; t0, u0, v0), v(x, t; t0, u0, v0),

w(x, t; t0, u0, v0)) which satisfies that

lim
t→t0+

(
‖u(·, t; t0, u0, v0)− u0(·)‖C0(Ω̄) + ‖v(·, t; t0, u0, v0)− v0(·)‖C0(Ω̄)

)
= 0. (3.9)
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Moreover, for any ε > 0, there is T (u0, v0, ε) ≥ 0 such that

0 ≤ u(x, t; t0, u0, v0) ≤ Ā1 + ε and 0 ≤ v(x, t; t0, u0, v0) ≤ Ā2 + ε

for all t ≥ t0 + T (u0, v0, ε). If u0 ≤ Ā1 + ε, v0 ≤ Ā2 + ε, then T (u0, v0, ε) can be chosen

to be zero.

(2) Assume that (H4) holds. Then for any t0 ∈ R and u0, v0 ∈ C0(Ω̄) with u0 ≥ 0 and v0 ≥

0, (3.1) has a unique bounded global classical solution (u(x, t; t0, u0, v0), v(x, t; t0, u0, v0),

w(x, t; t0, u0, v0)) which satisfies (3.9). Moreover, for any ε > 0, there is T (u0, v0, ε) > 0

such that

0 ≤ u(x, t; t0, u0, v0) ≤ B̄1 + ε and 0 ≤ v(x, t; t0, u0, v0) ≤ B̄2 + ε

for all t ≥ t0 + T (u0, v0, ε). If u0 ≤ B̄1 + ε, v0 ≤ B̄2 + ε, T (u0, v0, ε) can be chosen to

be zero.

(3) Assume (H5) holds. Then for any t0 ∈ R and nonnegative functions u0, v0 ∈ C0(Ω̄), sys-

tem (3.1) has a unique bounded global classical solution (u(x, t; t0, u0, v0), v(x, t; t0, u0, v0),

w(x, t; t0, u0, v0)) which satisfies (3.9). Moreover,

0 ≤
∫

Ω

u(x, t; t0, u0, v0)dx ≤ max

{∫
Ω

u0,
a0,sup

a1,inf

}

and

0 ≤
∫

Ω

v(x, t; t0, u0, v0) ≤ max

{∫
Ω

v0,
b0,sup

b2,inf

}
for all t ≥ t0.
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Remark 3.2. (1) Under the assumption (H3), (Ā1, Ā2) is the unique positive equilibrium of

the following decoupled system,


ut = u

(
a0,sup − (a1,inf − kχ1

d3
)u
)

vt = v
(
b0,sup − (b2,inf − lχ2

d3
)v
)
.

Under the assumption (H4), (B̄1, B̄2) is the unique positive equilibrium of the following

cooperative system,


ut = u

(
a0,sup − (a1,inf − k χ1

d3
)u+ lχ1

d3
v
)

vt = v
(
b0,sup − (b2,inf − lχ2

d3
)v + k χ2

d3
u
)
.

(2) Conditions (H3), (H4) and (H5) are natural in the sense that when no chemotaxis is

present, i.e., χ1 = χ2 = 0, conditions (H3) and (H4) become the trivial conditions

a1,inf > 0 and b2,inf > 0 while (H5) becomes a1,inf > 0, a2,inf > 0, b1,inf > 0, and

b2,inf > 0.

(3) By (H5), finite time blow up cannot happen when n = 1 or n = 2. In general, it

remains open whether for any t0 ∈ R and u0, v0 ∈ C(Ω̄) with u0 ≥ 0 and v0 ≥ 0,

(u(x, t; t0, u0, v0), v(x, t; t0, u0, v0), w(x, t; t0, u0, v0)) exists for all t ≥ t0.

(4) It is proved in [30] that, under the assumption (H3), (H4), or (H5), there are semitrivial

entire solutions (u∗(x, t), 0, w∗u(x, t)) and (0, v∗(x, t), w∗v(x, t)) of (3.1) with

inf
t∈R,x∈Ω̄

u∗(x, t) > 0, inf
t∈R,x∈Ω̄

v∗(x, t) > 0.

In the absence of chemotaxis (i.e. χ1 = χ2 = 0), such semitrivial solutions are unique.

(5) The condition of global existence and boundedness of classical solutions in [29, Theorem

1.1(1)] implies (H4). Therefore Theorem 3.1(2) is an improvement of the global existence

result in [29, Theorem 1.1(1)]. Notice also that when d3 = l = 1, a1 = µ1, b2 = µ2, (H4)
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coincide with the boundedness condition in [55, Lemma 2.2]. Thus (H4) is a generation

of the global existence condition in [55].

We have the following theorem on the persistence in (3.1).

Theorem 3.2 (Persistence). (1) Assume (H6). Then there are A1 > 0 and A2 > 0 such that

for any ε > 0 and u0, v0 ∈ C0(Ω̄) with u0, v0 ≥ 0, and u0, v0 6≡ 0, there exists tε,u0,v0

such that

A1 ≤ u(x, t; t0, u0, v0) ≤ Ā1 + ε, A2 ≤ v(x, t; t0, u0, v0) ≤ Ā2 + ε (3.10)

for all x ∈ Ω̄, t ≥ t0 + tε,u0,v0 , and t0 ∈ R.

(2) Assume (H7). Then there are B1 > 0 and B2 > 0 such that for any ε > 0 and u0, v0 ∈

C0(Ω̄) with u0, v0 ≥ 0, and u0, v0 6≡ 0, there exists tε,u0,v0 such (3.10) holds with A1, Ā1,

A2, and Ā2 being replaced by B1, B̄1, B2, and B̄2, respectively.

Remark 3.3. (1) It should be pointed out that in [6], [55], [60], global asymptotic stability

and uniqueness of coexistence states are obtained for (3.1) when the coefficients are

constants and satisfy certain weak competition condition (see also [44] when the system

involves nonlocal terms). In such cases, the persistence follows from the asymptotic

stability and uniqueness of coexistence states. The persistence in two species chemotaxis

systems without assuming the asymptotic stability of coexistence states is studied for the

first time, even when the coefficients are constants. It should be also pointed out that

the authors of [56] studied the persistence of a parabolic-parabolic chemotaxis system

with logistic source. The persistence in (3.1) implies the persistence of mass, that is, if

persistence occurs in (3.1), then for any u0, v0 ∈ C(Ω̄) with u0 > 0 and v0 > 0, there is

m(u0, v0) > 0 such that

∫
Ω

u(x, t; t0, u0, v0)dx ≥ m(u0, v0),

∫
Ω

v(x, t; t0, u0, v0)dx ≥ m(u0, v0),∀t ≥ t0, t0 ∈ R.
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We will study persistence in fully parabolic two species competition system with chemo-

taxis somewhere else.

(2) It is well known that, in the absence of chemotaxis (i.e., χ1 = χ2 = 0), the instability of

the unique semitrivial solutions (u∗, 0) and (0, v∗) of (3.2) implies that the persistence

occurs in (3.2). Note that both (H6) and (H7) imply (3.5), which implies that the semitriv-

ial solutions (u∗, 0) and (0, v∗) of (3.2) are unstable. When χ1 = χ2 = 0, the conditions

(H6) and (H7) coincide and become (3.5), and

Ā1 = B̄1 =
a0,sup

a1,inf

, Ā2 = B̄2 =
b0,sup

b2,inf

.

Hence theorem 3.2 recovers the uniform persistence result of (3.2) in [23, Theorem E(1)].

(3) The conditions (H6) and (H7) are sufficient conditions for semi-trivial positive entire so-

lutions of (3.1) to be unstable. In fact, assume (H6) or (H7) and suppose that (u∗, 0, w∗u)

is a semi-trivial solution of (3.1). Then we have the following linearized equation of

(3.1) at (u∗, 0, w∗u),



ut = d1∆u− χ1∇ · (u∗∇w)− χ1∇ · (u∇w∗u)

+
(
a0(t, x)− 2a1(t, x)u∗)u− a2(t, x)u∗v

)
, x ∈ Ω

vt = d2∆v − χ2∇ · (v∇w∗u) +
(
b0(t, x)− b1(t, x)u∗

)
v, x ∈ Ω

0 = d3∆w + ku+ lv − λw, x ∈ Ω

∂u
∂n

= ∂v
∂n

= ∂w
∂n

= 0, x ∈ ∂Ω.

Note that the second equation in the above system is independent of u and w. Assume

(H6). Then

u∗ ≤ Ā1, w∗u ≤
k

λ
Ā1
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and

vt = d2∆v − χ2∇v · ∇w∗u − χ2v∆w∗u +
(
b0(t, x)− b1(t, x)u∗

)
v

= d2∆v − χ2∇v · ∇w∗u +
(
b0(t, x)− (b1(t, x)− χ2k

d3

)u∗ − χ2
λw∗u
d3

)
v

≥ d2∆v − χ2∇v · ∇w∗u +
(
b0,inf − (b1,sup −

χ2k

d3

)Ā1 − χ2

λ k
λ
Ā1

d3

)
v

= d2∆v − χ2∇v · ∇w∗u +
(
b0,inf − b1,supĀ1

)
v.

This together with b0,inf > b1,supĀ1 implies that (u∗, 0, w∗u) is linearly unstable. Other

cases can be proved similarly. The proof that (H6) or (H7) implies persistence (3.1) is

very nontrivial. To prove Theorem 3.2, we first prove five nontrivial lemmas (i.e. Lemmas

3.4 to 3.8), some of which also play an important role in the study of coexistence.

(4) Consider the following one species parabolic-elliptic chemotaxis model,


ut = d1∆u− χ1∇ · (u∇w) + u

(
a0(t, x)− a1(t, x)u

)
, x ∈ Ω

0 = d3∆w + ku− λw, x ∈ Ω

∂u
∂n

= ∂w
∂n

= 0, x ∈ ∂Ω

(3.11)

and assume that

a1,inf >
kχ1

d3

. (3.12)

By the arguments of Theorem 3.2, we have the following persistence for (3.11), which is

new. There is A1 such that for any ε > 0, t0 ∈ R, u0 ∈ C0(Ω̄) with u0 ≥ 0, and u0 6≡ 0,

there exists tε,u0 such that

A1 ≤ u(x, t; t0, u0) ≤ Ā1 + ε

for all x ∈ Ω̄ and t ≥ t0+tε,u0 , where (u(x, t; t0, u0), w(x, t; t0, u0)) is the global solution

of (3.11) with u(x, t0; t0, u0) = u0(x) (see Corollary 3.2).

The next theorem is about the existence of coexistence states of (3.1).
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Theorem 3.3 (Coexistence). (1) Assume (H6). Then there is a coexistence state (u∗∗(x, t),

v∗∗(x, t), w∗∗(x, t)) of (3.1). Moreover, the following holds.

(i) If there is T > 0 such that ai(t + T, x) = ai(t, x), bi(t + T, x) = bi(t, x) for i =

0, 1, 2, then (3.1) has a T -periodic coexistence state (u∗∗(x, t), v∗∗(x, t), w∗∗(x, t)),

that is,

(u∗∗(x, t+ T ), v∗∗(x, t+ T ), w∗∗(x, t+ T )) = (u∗∗(x, t), v∗∗(x, t), w∗∗(x, t)).

(ii) If ai(t, x) ≡ ai(x), bi(t, x) ≡ bi(x) for i = 0, 1, 2, then (3.1) has a steady state

coexistence state

(u∗∗(t, x), v∗∗(t, x), w∗∗(t, x)) ≡ (u∗∗(x), v∗∗(x), w∗∗(x)).

(iii) If ai(t, x) ≡ ai(t), bi(t, x) = bi(t) for i = 0, 1, 2, then (3.1) has a spatially homo-

geneous coexistence state

(u∗∗(x, t), v∗∗(x, t), w∗∗(x, t)) ≡ (u∗∗(t), v∗∗(t), w∗∗(t))

with w∗∗(t) = ku∗∗(t) + lv∗∗(t), and if ai(t), bi(t) (i = 0, 1, 2) are periodic or

almost periodic, so is (u∗∗(t), v∗∗(t), w∗∗(t)).

(2) Assume (H7). Then there is a coexistence state (u∗∗(x, t), v∗∗(x, t), w∗∗(x, t)) of (3.1)

which satisfies (i)-(iii) of (1).

Remark 3.4. (1) By Theorem 3.2, (H6) or (H7) implies the persistence in (3.1). It is known

that persistence in (3.2) implies the existence of a coexistence state. In the spatially

homogeneous case, persistence in (3.1) also implies the existence of a coexistence state
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by the fact that the solutions of the following systems of ODEs are solutions of (3.1),


ut = u

(
a0(t)− a1(t)u− a2(t)v

)
vt = v

(
b0(t)− b1(t)u− b2(t)v

)
0 = ku+ lv − λw.

In general, it is very nontrivial to prove that persistence in (3.1) implies the existence of

a coexistence state.

(2) As it is mentioned in Remark 1.2(1), when χ1 = χ2 = 0, the conditions (H6) and (H7)

coincide and become (3.5). Hence theorem 3.3 recovers the coexistence result for (3.2)

in [23, Theorem E(1)].

We now state our result about the extinction of one of the species.

Theorem 3.4. Assume that (H3) or (H4), and suppose furthermore that

b2,inf > 2
χ2

d3

l, a2,inf ≥
χ1

d3

l, (3.13)

a2,inf

(
b0,inf(b2,inf − l

χ2

d3

)− b0,sup
χ2

d3

l
)
≥ a0,sup

(
(b2,inf − l

χ2

d3

)(b2,sup − l
χ2

d3

)− (l
χ2

d3

)2
)
,

(3.14)

and

(
a1,inf −

χ1k

d3

)(
b0,inf(b2,inf −

lχ2

d3

)− b0,sup
lχ2

d3

)
>
[((

b1,sup − k
χ2

d3

)
+

+ k
χ2

d3

)
(b2,inf −

χ2l

d3

) +
lχ2

d3

(
b1,inf − k

χ2

d3

)
−

]
a0,sup. (3.15)

Then for every t0 ∈ R and nonnegative initial functions u0, v0 ∈ C0(Ω), u0 ≥ 0, v0 ≥ 0, with

‖v0‖∞ > 0, the unique bounded and globally defined classical solution

(u(·, ·; t0, u0, v0), v(·, ·; t0, u0; v0), w(·, ·; t0, u0, v0))
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of (3.1) satisfies

lim
t→∞
‖u(·, t+ t0; t0, u0; v0)‖∞ = 0, (3.16)

α ≤ lim inf
t→∞

(min
x∈Ω̄

v(x, t)) ≤ lim sup
t→∞

(max
x∈Ω̄

v(x, t)) ≤ β, (3.17)

lα ≤ λ lim inf
t→∞

(min
x∈Ω̄

w(x, t)) ≤ λ lim sup
t→∞

(max
x∈Ω̄

w(x, t)) ≤ lβ, ∀x ∈ Ω̄ t ≥ t0, (3.18)

where

β =
b0,sup(b2,sup − lχ2

d3
)− lχ2

d3
b0,inf

(b2,inf − lχ2

d3
)(b2,sup − lχ2

d3
)− (lχ2

d3
)2
,

and

α =
b0,inf − lχ2

d3
β

b2,sup − lχ2

d3

> 0.

Furthermore, if there is a unique positive entire solution (v∗(x, t; b̃0, b̃2), w∗(x, t; b̃0, b̃2)) of


vt = d2∆v − χ2∇ · (v∇w) + v

(
b̃0(t, x)− b̃2(t, x)v

)
, x ∈ Ω

0 = d3∆w + lv − λw, x ∈ Ω

∂v
∂n

= ∂w
∂n

= 0, x ∈ ∂Ω

(3.19)

for any (b̃0, b̃2) ∈ H(b0, b2), where

H(b0, b2) =

{(c0(·, ·), c2(·, ·)) | ∃ tn →∞ such that

lim
n→∞

(b0(t+ tn, x), b2(t+ tn, x)) = (c0(t, x), c2(t, x)) locally uniformly in (t, x) ∈ R× RN},

then

lim
t→∞
‖v(·, t+ t0; t0, u0, v0)− v∗(·, t+ t0; b0, b2)‖∞ = 0. (3.20)

Remark 3.5. (1) (3.14) and (3.15) imply

a0,sup

b0,inf

≤ a2,inf

b2,sup

,
a0,sup

b0,inf

<
a1,inf

b1,sup

. (3.21)
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To see this, we first note that (3.15) implies that

(
a1,inf −

χ1k

d3

)
b0,inf(b2,inf −

lχ2

d3

) >
[((

b1,sup − k
χ2

d3

)
+

+ k
χ2

d3

)
(b2,inf −

χ2l

d3

)
]
a0,sup

≥ b1,sup(b2,inf −
χ2l

d3

)a0,sup.

Thus since b2,inf − χ2l
d3
> 0, we get

(
a1,inf −

χ1k

d3

)
b0,inf > b1,supa0,sup,

which implies the second inequality in (3.21). Second, note that (3.14) implies that

a2,inf

(
b0,inf(b2,inf − l

χ2

d3

)− b0,sup
χ2

d3

l
)
≥ a0,sup

(
(b2,inf − l

χ2

d3

)b2,sup − l
χ2

d3

b2,inf

)
≥ a0,sup(b2,inf − 2l

χ2

d3

)b2,sup.

This together with the fact that a2,inf

(
b0,inf(b2,inf − lχ2

d3
)− b0,sup

χ2

d3
l
)
≤ a2,infb0,inf(b2,inf −

2lχ2

d3
) implies that

a2,infb0,inf(b2,inf − 2l
χ2

d3

) ≥ a0,sup(b2,inf − 2l
χ2

d3

)b2,sup,

which combines with b2,inf − 2lχ2

d3
> 0 implies the first inequality in (3.21).

(2) When χ1 = χ2 = 0, (3.13) becomes

b2,inf > 0, a2,inf > 0, a1,inf > 0;

(3.14) and (3.15) become

a0,sup

b0,inf

≤ a2,inf

b2,sup

and
a0,sup

b0,inf

<
a1,inf

b1,sup

,

respectively. Therefore, the extinction results for (3.2) in [23] are recovered.
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(3) When the coefficients are constants, Theorem 3.4 coincide with the exclusion Theorem

in [29, Theorem 1.4]. Thus Theorem 3.4 give a natural extension to the phenomenon of

exclusion in heterogeneous media.

(4) The reader is referred to [30] for the existence and uniqueness of positive entire solutions

of (3.19).

Now, we state our result about optimal attracting rectangles for (3.1) under the assumption

(H8) (resp., (H9)).

Theorem 3.5 (Optimal attracting rectangle). For given u0, v0 ∈ C0(Ω̄) with u0, v0 ≥ 0, let

u0 = maxx∈Ω̄ u0(x), u0 = minx∈Ω̄ u0(x), v0 = maxx∈Ω̄ v0(x) , v0 = minx∈Ω̄ v0(x).

(1) Assume (H8) and that the following system has a unique solution (r̄1, r̄2, r1, r2)



(a1,inf − k χ1

d3
)r̄1 = a0,sup − a2,infr2 − k χ1

d3
r1

(b2,inf − lχ2

d3
)r̄2 = b0,sup − b1,infr1 − k χ1

d3
r2

(a1,sup − k χ1

d3
)r1 = a0,inf − a2,supr̄2 − k χ1

d3
r̄1

(b2,sup − lχ2

d3
)r2 = b0,inf − b1,supr̄1 − lχ2

d3
r̄2.

(3.22)

Then 0 < r1 ≤ r̄1, 0 < r2 ≤ r̄2, and for any ε > 0, t0 ∈ R, and u0, v0 ∈ C0(Ω̄) with

inf u0 > 0, inf v0 > 0, there exists tε,u0,v0,u0,v0 such that


0 < r1−ε ≤ u(x, t; t0, u0, v0) ≤ r̄1 + ε

0 < r2−ε ≤ v(x, t; t0, u0, v0) ≤ r̄2 + ε,

(3.23)

for all x ∈ Ω̄ and t ≥ t0 + tε,u0,v0,u0,v0 . Furthermore

r1 ≤ u0 ≤ r̄1 and r2 ≤ v0 ≤ r̄2 (3.24)

implies

r1 ≤ u(x, t; t0, u0, v0) ≤ r̄1 and r2 ≤ v(x, t; t0, u0, v0) ≤ r̄2 ∀t ≥ t0. (3.25)
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(2) Assume (H9) and that there is a unique solution (s̄1, s̄1, s1, s2) of the following system,



s̄1 =

(
a0,sup−(a2,inf+l

χ1
d3

)s2−k
χ1
d3

s1

)
(b2,inf−l

χ2
d3

)

(a1,inf−k
χ1
d3

)(b2,inf−l
χ2
d3

)−lk χ1χ2
d23

+
lχ1
d3

(
b0,sup−(b1,inf+k

χ2
d3

)s1−l
χ2
d3

s2

)
(a1,inf−k

χ1
d3

)(b2,inf−l
χ2
d3

)−lk χ1χ2
d23

s̄2 =

(
b0,sup−(b1,inf+k

χ2
d3

)s1−l
χ2
d3

s2

)
(a1,inf−k

χ1
d3

)

(a1,inf−k
χ1
d3

)(b2,inf−l
χ2
d3

)−lk χ1χ2
d23

+
kχ2
d3

(
a0,sup−(a2,inf+l

χ1
d3

)s2−k
χ1
d3

s1

)
(a1,inf−k

χ1
d3

)(b2,inf−l
χ2
d3

)−lk χ1χ2
d23

s1 =

(
a0,inf−(a2,sup+l

χ1
d3

)s̄2−k χ1d3 s̄1
)

(b2,sup−lχ2d3 )

(a1,sup−k χ1d3 )(b2,sup−lχ2d3 )−lk χ1χ2
d23

+
lχ1
d3

(
b0,inf−(b1,sup+k

χ2
d3

)s̄1−lχ2d3 s̄2
)

(a1,sup−k χ1d3 )(b2,sup−lχ2d3 )−lk χ1χ2
d23

s2 =

(
b0,inf−(b1,sup+k

χ2
d3

)s̄1−lχ2d3 s̄2
)

(a1,sup−k χ1d3 )

(a1,sup−k χ1d3 )(b2,sup−lχ2d3 )−lk χ1χ2
d23

+
kχ2
d3

(
a0,inf−(a2,sup+l

χ1
d3

)s̄2−k χ1d3 s̄1
)

(a1,sup−k χ1d3 )(b2,sup−lχ2d3 )−lk χ1χ2
d23

.

Then 0 < s1 ≤ s̄1, 0 < s2 ≤ s̄2, and for any ε > 0, t0 ∈ R, and u0, v0 ∈ C0(Ω̄) with

inf u0 > 0, inf v0 > 0, there exists tε,u0,v0,u0,v0 , such that (3.23)-(3.25) hold with r̄1, r̄2, r1,

and r2 being replaced by s̄1, s̄2, s1, and s2, respectively.

Remark 3.6. (1) Under the assumptions in Theorem 3.5(1), (r̄1, r̄2) is the unique positive

equilibrium of the system,


ut = u

(
a0,sup −

(
a1,inf − k χ1

d3

)
u− a2,infr2 − k χ1

d3
r1

)
vt = v

(
b0,sup −

(
b2,inf − lχ2

d3

)
v − b1,infr1 − lχ2

d3
r2

)
,

hence,

r̄1 < Ā1, r̄2 < Ā2,

and (r1, r2) is the unique positive equilibrium of the system,


ut = u

(
a0,inf −

(
a1,sup − k χ1

d3

)
u− a2,supr̄2 − k χ1

d3
r̄1

)
vt = v

(
b0,inf −

(
b2,sup − lχ2

d3

)
v − b1,supr̄1 − lχ2

d3
r̄2

)
.

(2) Under the assumptions in Theorem 3.5(2), (s̄1, s̄2) is the unique positive equilibrium of

the system,


ut = u

(
a0,sup − (a2,inf + lχ1

d3
)s2 − k χ1

d3
s1 − (a1,inf − k χ1

d3
)u+ lχ1

d3
v
)

vt = v
(
b0,sup − (b1,inf + k χ2

d3
)s1 − lχ2

d3
s2 − (b2,inf − lχ2

d3
)v + k χ2

d3
u
)
,
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hence,

s̄1 < B̄1, s̄2 < B̄2,

and (s1, s2) is the unique positive equilibrium of the system,


ut = u

(
a0,inf − (a2,sup + lχ1

d3
)s̄2 − k χ1

d3
s̄1 − (a1,sup − k χ1

d3
)u+ lχ1

d3
v
)

vt = v
(
b0,inf − (b1,sup + k χ2

d3
)s̄1 − lχ2

d3
s̄2 − (b2,sup − lχ2

d3
)v + k χ2

d3
u
)
.

(3) When χ1 = χ2 = 0,

r1 = s1 =
a0,infb2,inf − a2,supb0,sup

a1,supb2,inf − a2,supb1,inf

, r̄1 = s̄1 =
a0,supb2,sup − a2,infb0,inf

a1,infb2,sup − a2,infb1,sup

,

r2 = s2 =
a1,infb0,inf − a0,supb1,sup

a1,infb2,sup − a2,infb1,sup

, r̄2 = s̄2 =
a1,supb0,sup − a0,infb1,inf

a1,supb2,inf − a2,supb1,inf

.

Thus Theorem 3.5 recovers the result on ultimate bounds of solutions of (3.2) in [1]. Note

that this result can be proven directly by using the competitive comparison principle.

Note also that, in this case, (r̄1, r2) is the unique coexistence state of


ut = u(a0,sup − a1,infu− a2,infv)

vt = v(b0,inf − b1,supu− b2,supv)

and (r1, r̄2) is the unique coexistence state of


ut = u(a0,inf − a1,supu− a2,supv)

vt = v(b0,sup − b1,infu− b2,infv).

(4) When the coefficients are constants, i.e ai(t, x) = ai and bi(t, x) = bi (i = 0, 1, 2), we

have

r1 = r̄1 = s1 = s̄1 =
a0b2 − a2b0

b2a1 − b1a2

,
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and

r2 = r̄2 = s2 = s̄2 =
b0a1 − b1a0

b2a1 − b1a2

.

Thus Theorem 3.5 implies the uniqueness and stability of coexistence states and we re-

cover the results on asymptotic stability and uniqueness of the constant positive steady

states in [29, Theorem 1.3] and [6]. Moreover, we get the optimal attracting rectangles

[r1 − ε, r̄1 + ε]× [r2 − ε, r̄2 + ε] (ε > 0) for (3.1).

Finally, we state our result on the uniqueness and stability of coexistence states of (3.1).

Theorem 3.6 (Stability and uniqueness of coexistence states).

(1) Assume (H8). Furthermore, assume that

lim sup
t−s→∞

1

t− s

∫ t

s

max{Q1(τ)− q1(τ), Q2(τ)− q2(τ)}dτ < 0, (3.26)

where

q1(t) = 2a1,inf(t)r1 + a2,inf(t)r2 +
χ1 (kr1 + lr2)

2d3

,

Q1(t) = a0,sup(t) +
χ1

2d3

(
kr̄1 + lr̄2

)
+

k2

4λd3

(χ2
1r̄

2
1

d1

+
χ2

2r̄
2
2

d2

)
+
a2,sup(t)r̄1 + b1,sup(t)r̄2

2
,

q2(t) = 2b2,inf(t)r2 + b1,inf(t)r1 +
χ2 (kr1 + lr2)

2d3

,

and

Q2(t) = b0,sup(t) +
χ2

2d3

(
kr̄1 + lr̄2

)
+

l2

4λd3

(χ2
1r̄

2
1

d1

+
χ2

2r̄
2
2

d2

)
+
a2,sup(t)r̄1 + b1,sup(t)r̄2

2
.

Then (3.1) has a unique coexistence state (u∗∗(x, t), v∗∗(x, t), w∗∗(x, t)), and, for any

t0 ∈ R and u0, v0 ∈ C0(Ω̄) with u0, v0 ≥ 0 and u0, v0 6≡ 0, the global classical solution

(u(x, t; t0, u0, v0), v(x, t; t0, u0, v0), w(x, t; t0, u0, v0)) of (3.1) satisfies

lim
t→∞

(
‖u(·, t; t0, u0, v0)− u∗∗(·, t)‖C0(Ω̄) + ‖v(·, t; t0, u0, v0)− v∗∗(·, t)‖C0(Ω̄)

)
= 0,

(3.27)
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and

lim
t→∞
‖w(·, t; t0, u0, v0)− w∗∗(·, t)‖C0(Ω̄) = 0. (3.28)

(2) Assume (H9). Furthermore, assume that (3.26) holds with r̄1, r̄2, r1, and r2 being re-

placed by s̄1, s̄2, s1, and s2, respectively, where si and s̄i (i = 1, 2) are as in Theorem

3.5(2). Then the conclusion in (1) also holds.

(3) Assume (H10). Then (3.1) has a unique spatially homogeneous coexistence state (u∗∗(t), v∗∗(t),

w∗∗(t)), and for any t0 ∈ R and u0, v0 ∈ C0(Ω̄) with u0, v0 ≥ 0 and u0, v0 6≡ 0, the

unique global classical solution (u(x, t; t0, u0, v0), v(x, t; t0, u0, v0), w(x, t; t0, u0, v0)) of

(3.1) satisfies

lim
t→∞

(
‖u(·, t; t0, u0, v0)− u∗∗(t)‖C0(Ω̄) +‖v(·, t; t0, u0, v0)− v∗∗(t)‖C0(Ω̄)

)
= 0, (3.29)

lim
t→∞
‖w(·, t; t0, u0, v0)− ku∗∗(t)− lv∗∗(t)‖C0(Ω̄) = 0. (3.30)

Remark 3.7. (1) Assume (H10). (3.5) implies that


ut = u(a0(t)− a1(t)u− a2(t)v)

vt = v(b0(t)− b1(t)u− b2(t)v)

has a positive entire solution (u∗∗(t), v∗∗(t)) which is globally stable (see Lemma 3.9).

Thus (u∗∗(t), v∗∗(t), w∗∗(t)) with w∗∗(t) = ku∗∗(t)+lv∗∗(t)
λ

, is a positive entire solution of

(3.1) in the case of space homogeneous coefficients, i.e, ai(t, x) = ai(t) and bi(t, x) =

bi(t). The uniqueness results is new even for the case χ1 = χ2 = 0 with general time

dependence. When the coefficients are periodic, Alvarez and Lazer proved in [3] the

uniqueness of the entire solution (u∗∗(t), v∗∗(t)) only under the assumption (3.5). It

remains open whether such uniqueness result holds even in the case of χ1 = χ2 = 0 with

general time dependence under only the assumption (3.5)

(2) (3.8) implies (H4). It is the analogue of the condition a1,inf >
2χ1k
d3

for the global stability

of the unique spatially homogeneous positive entire solution of the following one species
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chemotaxis model,


ut = d1∆u− χ1∇ · (u∇w) + u

(
a0(t)− a1(t)u

)
, x ∈ Ω

0 = d3∆w + ku− λw, x ∈ Ω

∂u
∂n

= ∂w
∂n

= 0, x ∈ ∂Ω,

(see [29, Theorem 1.7]).

(3) When χ1 = χ2 = 0, (3.26) becomes


limt−s→∞

1
t−s

∫ t
s

{
a0,sup(τ) + a2,sup(τ)

2
r̄1 − 2a1,inf(τ)r1 + b1,sup(τ)

2
r̄2 − a2,inf(τ)r2

}
dτ < 0

limt−s→∞
1
t−s

∫ t
s

{
b0,sup(τ) + b1,sup(τ)

2
r̄2 − 2b2,inf(τ)r2 + a2,sup(τ)

2
r̄1 − b1,inf(τ)r1

}
dτ < 0.

If furthermore the coefficients are time homogeneous i.e ai(t, x) = ai(x) and bi(t, x) =

bi(x), then (3.26) becomes


a0,sup + a2,sup

2
r̄1 + b1,sup

2
r̄2 < 2a1,infr1 + a2,infr2

b0,sup + b1,sup
2
r̄2 + a2,sup

2
r̄1 < 2b2,infr2 + b1,infr1.

(3.31)

We have the following corollary for the uniqueness and stability of coexistence states of (3.2),

which is new in the general space dependence case.

Corollary 3.1. Consider (3.2). Assume that a0,sup
a0,inf

< 2
a1,inf
a1,sup

and b0,sup
b0,inf

< 2
b2,inf
b2,sup

. Then (3.2) has

a unique stable coexistence state provided that the competition coefficients a2 and b1 are such

small so that (3.5) and the following hold,


a2,sup

(
r̄1
2

+
2a1,infb0,sup−a0,supb1,inf
a1,supb2,inf−a2,supb1,inf

)
+ b1,sup

2
r̄2 − a2,infr2 < b2,inf

2a1,infa0,inf−a0,supa1,sup
a1,supb2,inf−a2,supb1,inf

b1,sup

(
r̄2
2

+
2b2,infa0,sup−b0,supa2,inf
b2,supa1,inf−b1,supa2,inf

)
+ a2,sup

2
r̄1 − b1,infr1 < a1,inf

2b2,infb0,inf−b0,supb2,sup
b2,supa1,inf−b1,supa2,inf

.
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The rest of the chapter is organized as follows. In section 3.3, we study the global existence of

classical solutions and prove Theorem 3.1. Section 3.4 is devoted to the study of the persistence

and boundedness of classical solutions. It is here that we present the proof of Theorem 3.2. In

section 3.5, we study the existence of coexistence states and prove Theorem 3.3. Next, in

section 3.6, we study the phenomenon of exclusion and prove Theorem 3.4. Finally in section

3.7, we study existence of optimal rectangles and stability and uniqueness of coexistence states

and prove Theorem 3.5 and Theorem 3.6.

3.3 Global Existence of Bounded Classical Solutions

In this section, we study the existence of bounded classical solutions of system (3.1) and prove

Theorem 3.1. We start with the following important result on the local existence of classical

solutions of system (3.1) with nonnegative initial functions in C0(Ω̄).

Lemma 3.1. For any given t0 ∈ R, u0, v0 ∈ C0(Ω̄) with u0 ≥ 0 and v0 ≥ 0, there ex-

ists Tmax(t0, u0, v0) ∈ (0,∞] such that (3.1) has a unique nonnegative classical solution

(u(x, t; t0, u0, v0), v(x, t; t0, u0, v0), w(x, t; t0, u0, v0)) on (t0, t0 + Tmax(t0, u0, v0)) satisfying

that

lim
t↗t0
‖u(·, t; t0, u0, v0)− u0(·)‖C0(Ω̄) = 0, lim

t↗t0
‖v(·, t; t0, u0, v0)− v0(·)‖C0(Ω̄) = 0,

and moreover if Tmax(t0, u0, v0) <∞, then

lim sup
t↗Tmax(t0,u0,v0)

(
‖u(·, t0 + t; t0, u0, v0)‖C0(Ω̄) + ‖v(·, t0 + t; t0, u0, v0)‖C0(Ω̄)

)
=∞. (3.32)

Proof. If follows from the similar arguments as those in [55, Lemma 2.1].
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Next, we consider the following system of ODEs induced from system (3.1),



u′ = χ1

d3
u
(
ku+ lv − ku− lv

)
+ u
[
a0,sup(t)− a1,inf(t)u− a2,inf(t)v

]
u′ = χ1

d3
u
(
ku+ lv − ku− lv

)
+ u
[
a0,inf(t)− a1,sup(t)u− a2,sup(t)v

]
v′ = χ2

d3
v
(
ku+ lv − ku− lv

)
+ v
[
b0,sup(t)− b2,inf(t)v − b1,inf(t)u

]
v′ = χ2

d3
v
(
ku+ lv − ku− lv

)
+ v
[
b0,inf(t)− b2,sup(t)v − b1,sup(t)u

]
.

(3.33)

For convenience, we let

(u(t), u(t), v(t), v(t))

= (u (t; t0, u0, u0, v0, v0) , u (t; t0, u0, u0, v0, v0) , v (t; t0, u0, u0, v0, v0) , v (t; t0, u0, u0, v0, v0))

be the solution of (3.33) with initial condition

(u (t0; t0, u0, u0, v0, v0) , u (t0; t0, u0, u0, v0, v0) , v (t0; t0, u0, u0, v0, v0) , v (t0; t0, u0, u0, v0, v0))

= (u0, u0, v0, v0) ∈ R4
+. (3.34)

Then for given t0 ∈ R and (u0, u0, v0, v0) ∈ R4
+, there exists Tmax (t0, u0, u0, v0, v0) > 0 such

that (3.33) has a unique classical solution (u(t), u(t), v(t), v(t)) on (t0, t0+Tmax (t0, u0, u0, v0, v0))

satisfying (3.34). Moreover if Tmax (t0, u0, u0, v0, v0) <∞, then

lim sup
t↗Tmax(t0,u0,u0,v0,v0)

(|u(t0 + t)|+ |u(t0 + t)|+ |v(t0 + t)|+ |v(t0 + t)|) =∞.

We now state and prove the following important lemma which provides sufficient conditions

for the boundedness of classical solutions of system (3.33).

Lemma 3.2. let (u(t), u(t), v(t), v(t)) be the solution of (3.33) which satisfies (3.34). Then

(i) 0 ≤ u0 ≤ u0 and 0 ≤ v0 ≤ v0 imply 0 ≤ u(t) ≤ u(t) and 0 ≤ v(t) ≤ v(t) for

all t ∈ [t0, t0 + Tmax (u0, u0, v0, v0)).
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(ii) If (H4) holds, then Tmax (t0, u0, u0, v0, v0) =∞ and

lim sup
t→∞

u(t) ≤ B̄1, lim sup
t→∞

v(t) ≤ B̄2,

where B̄1 and B̄2 are as in (3.3) and (3.4), respectively.

Proof. (i) Let ε > 0 and (uε(t), uε(t), vε(t), vε(t)) be solution of (3.33) with a0,sup(t) and

b0,sup(t) being replaced by a0,sup(t) + ε and b0,sup(t) + ε, respectively, and satisfying (3.34)

with u0, v0 being replaced respectively by uε0 = u0 + ε and vε0 = v0 + ε. We claim first that

(i) holds for (uε(t), uε(t), vε(t), vε(t)) . Suppose by contradiction that our claim does not hold.

Then there exists t ∈ (t0, t0 + Tmax (t0, u
ε
0, u0, v

ε
0, v0)) such that

0 ≤ uε(t) < uε(t), 0 ≤ vε(t) < vε(t) ,∀t ∈ [t0, t) (3.35)

and

either uε(t) = uε(t) or vε(t) = vε(t).

Without loss of generality, assume that uε(t) = uε(t). Then on one hand (3.35) implies that

(uε − uε)
′
(t) ≤ 0,

and on the other hand the difference between the first and the second equations of (3.33) gives

(uε − uε)
′
(t) = uε(t)

{
a0,sup(t) + ε− a0,inf(t) + (a1,sup(t)− a1,inf(t))uε(t) + 2l

χ1

d3

(vε − vε) (t)

}
+ uε(t)

{
a2,sup(t)vε(t)− a2,inf(t)vε(t)

}
> 0,

which is a contradiction. Thus (i) holds for
(
uε(t), uε(t), vε(t), vε(t)

)
. Letting ε→ 0, we have

that (i) holds for (u(t), u(t), v(t), v(t)).
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(ii) First from the first and third equations of (3.33) we get


u′ ≤ u

[
a0,sup −

(
a1,inf − k χ1

d3

)
u+ lχ1

d3
v
]

v′ ≤ v
[
b0,sup −

(
b2,inf − lχ2

d3

)
v + k χ2

d3
u
]
.

Thus the result follows from comparison principle for cooperative systems and the fact that

(B̄1, B̄2) is a uniformly asymptotically stable solution for the following system of ODEs,


u′ = u

{
a0,sup − (a1,inf − k χ1

d3
)u+ lχ1

d3
v
}

v′ = v
{
b0,sup −

(
b2,inf − lχ2

d3

)
v + k χ2

d3
u
}
.

Next, we state and prove the following lemma used in some of our proofs.

Lemma 3.3. [29, Proof Theorem 1.1(1)] Assume (H4). Given t0 ∈ R, u0, v0 ∈ C0(Ω̄)

with u0, v0 ≥ 0, let u0 = maxx∈Ω̄ u0(x), u0 = minx∈Ω̄ u0(x), v0 = maxx∈Ω̄ v0(x) , v0 =

minx∈Ω̄ v0(x) and let (u(t), u(t), v(t), v(t)) be solution of (3.33) satisfying initial condition

(3.34). Then if (u(x, t), v(x, t), w(x, t)) is the solution of equation (3.1) with initials u(·, t0) =

u0 and v(·, t0) = v0, we have

0 ≤ u(t) ≤ u(x, t) ≤ u(t) and 0 ≤ v(t) ≤ v(x, t) ≤ v(t) ,∀x ∈ Ω̄ t ≥ t0.

Proof. By the similar arguments as those in [29, Theorem 1.1(1)], under the condition (H4),

we have

0 ≤ u(t) ≤ u(x, t) ≤ u(t) and 0 ≤ v(t) ≤ v(x, t) ≤ v(t) ,∀x ∈ Ω̄ t ≥ (t0, t0 + Tmax).

By (H2) and Lemma 3.2, we get Tmax =∞.

Now we prove Theorem 3.1.

Proof of Theorem 3.1. Let u0, v0 ∈ C0(Ω̄) with u0 ≥ 0 and v0 ≥ 0.
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(1) From the first equation of system (3.1), we have that for t ∈ (t0, t0 + Tmax(t0, u0, v0)),

ut =d1∆u− χ1∇u · ∇w + u

{
a0(t, x)−

(
a1(t, x)− kχ1

d3

)
u−

(
a2(t, x)− lχ1

d3

)
v − χ1

d3

λw

}
≤ d1∆u− χ1∇u · ∇w + u

{
a0,sup −

(
a1,inf − k

χ1

d3

k

)
u−

(
a2,inf − l

χ1

d3

)
v − χ1

d3

λw

}
.

This together with (H3) gives for t ∈ (t0, t0 + Tmax(t0, u0, v0)),

ut ≤ d1∆u− χ1∇u · ∇w + u

{
a0,sup −

(
a1,inf − k

χ1

d3

k

)
u

}
. (3.36)

Therefore by comparison principle for parabolic equations, we get

0 ≤ u(x, t; t0, u0, v0) ≤ max

{
‖u0‖∞,

a0,sup

a1,inf − k χ1

d3

}
∀ t ∈ [t0, t0 + Tmax(t0, u0, v0)).

(3.37)

Similarly, the second equation of system (3.1) gives

0 ≤ v(x, t; t0, u0, v0) ≤ max

{
‖v0‖∞,

b0,sup

b2,inf − lχ2

d3

}
∀ t ∈ [t0, t0 + Tmax(t0, u0, v0)).

This together with (3.32) and (3.37) implies that Tmax(t0, u0, v0) =∞.

Moreover, by (3.36) and comparison principle for parabolic equations again, for any ε > 0,

there is T1(u0, v0, ε) ≥ 0 such that

0 ≤ u(x, t; t0, u0, v0) ≤ a0,sup

a1,inf − k χ1

d3

+ ε ∀ x ∈ Ω̄, t ≥ t0 + T1(u0, v0, ε),

and T1(u0, v0, ε) can be chosen to be zero if u0 ≤ Ā1 + ε. Similarly, for any ε > 0, there is

T2(u0, v0, ε) ≥ 0 such that

0 ≤ v(x, t; t0, u0, v0) ≤ b0,sup

b2,inf − lχ2

d3

+ ε ∀ x ∈ Ω̄, t ≥ t0 + T2(u0, v0, ε),

and T2(u0, v0, ε) can be chosen to be zero if v0 ≤ Ā2 + ε. (1) thus follows with T (u0, v0, ε) =

max{T1(u0, v0, ε), T2(u0, v0, ε)}.

85



(2) Let u0 = maxx∈Ω̄ u0(x), u0 = minx∈Ω̄ u0(x), v0 = maxx∈Ω̄ v0(x) , v0 = minx∈Ω̄ v0(x)

and let (u(t), u(t), v(t), v(t)) be solution of (3.33) satisfying initial condition (3.34). By the

similar arguments as those in [29, Theorem 1.1(1)], under the condition (H4), we have

0 ≤ u(t) ≤ u(x, t) ≤ u(t) and 0 ≤ v(t) ≤ v(x, t) ≤ v(t) ,∀x ∈ Ω̄ t ∈ (t0, t0 + Tmax).

This together with Lemma 3.2 implies Theorem 3.1 (2).

(3) It follows from the similar arguments as those in [29, Theorem 1.1(2)].

3.4 Persistence

In this section, we study the persistence in (3.1) and prove Theorem 3.2.

Fix T > 0. We first prove five Lemmas.

Lemma 3.4. (1) Assume (H3). For any ε > 0, there is δ = δ(ε) > 0 such that for any

0 ≤ u0 ≤ Ā1 + ε, 0 ≤ v0 ≤ Ā2 + ε, the following hold.

(i) If 0 ≤ u0 ≤ δ, then u(x, t; t0, u0, v0) ≤ ε for t ∈ [t0, t0 + T ] and x ∈ Ω̄.

(ii) If 0 ≤ v0 ≤ δ, then v(x, t; t0, u0, v0) ≤ ε for t ∈ [t0, t0 + T ] and x ∈ Ω̄.

(2) Assume (H4). For any ε > 0, there is δ = δ(ε) > 0 such that for any 0 ≤ u0 ≤ B̄1 + ε,

0 ≤ v0 ≤ B̄2 + ε, the following hold.

(i) If 0 ≤ u0 ≤ δ, then u(x, t; t0, u0, v0) ≤ ε for t ∈ [t0, t0 + T ] and x ∈ Ω̄.

(ii) If 0 ≤ v0 ≤ δ, then v(x, t; t0, u0, v0) ≤ ε for t ∈ [t0, t0 + T ] and x ∈ Ω̄.

Proof. (1)(i) By Theorem 3.1(1),

0 ≤ u(x, t+ t0; t0, u0, v0) ≤ Ā1 + ε, 0 ≤ v(x, t+ t0; t0, u0, v0) ≤ Ā2 + ε ∀ t ≥ 0, x ∈ Ω̄.
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Assume (H3). Then

ut = d1∆u− χ1∇ · (u∇w) + u
(
a0(t, x)− a1(t, x)u− a2(t, x)v

)
= d1∆u− χ1∇u · ∇w + u

(
a0(t, x)− (a1(t, x)− χ1k

d3

)u− (a2(t, x)− χ1l

d3

)v − χ1λ

d3

w
)

≤ d1∆u− χ1∇u · ∇w + a0,supu.

Hence, by comparison principle for parabolic equations, we have

u(x, t; t0, u0) ≤ ea0,sup(t−t0)‖u0‖ ∀ t ≥ t0.

(1)(i) thus follows with δ = εe−a0,supT for any given ε > 0.

(1)(ii) It can be proved by the similar arguments as in (1)(i).

(2)(i) By Theorem 3.1(2),

u(x, t+ t0; t0, u0, v0) ≤ B̄1 + ε, v(x, t+ t0; t0, u0, v0) ≤ B̄2 + ε ∀ t ≥ 0, x ∈ Ω̄.

Assume (H4). Then

ut = d1∆u− χ1∇ · (u∇w) + u
(
a0(t, x)− a1(t, x)u− a2(t, x)v

)
= d1∆u− χ1∇u · ∇w + u

(
a0(t, x)− (a1(t, x)− χ1k

d3

)u− (a2(t, x)− χ1l

d3

)v − χ1λ

d3

w
)

≤ d1∆u− χ1∇u · ∇w +
(
a0,sup +

χ1l

d3

(B̄2 + ε)
)
u.

By comparison principle for parabolic equations, we have

u(x, t; t0, u0) ≤ e

(
a0,sup+

χ1l
d3

(B̄2+ε)
)

(t−t0)‖u0‖ ∀ t ≥ t0.

(2)(i) thus follows with δ = εe
−
(
a0,sup+

χ1l
d3

(B̄2+ε)
)
T for any given ε > 0.

(2)(ii) It can be proved by the similar arguments as in (2)(i).
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Remark 3.8. Consider (3.11) and assume (3.12). By the arguments of Lemma 3.4, we have

that, for any ε > 0, there is δ = δ(ε) > 0 such that for any 0 ≤ u0 ≤ Ā1 + ε, if 0 ≤ u0 ≤ δ,

then u(x, t; t0, u0) ≤ ε for t ∈ [t0, t0 + T ] and x ∈ Ω̄.

Lemma 3.5. (1) Assume (H6). Let ε0 and δ0 = δ0(ε0) be such that Lemma 3.4(1) holds with

ε = ε0 and δ = δ0,

a0,inf > a2,sup(Ā2 + ε0) +
χ1k

d3

ε0, b0,inf > b1,sup(Ā1 + ε0) +
χ2l

d3

ε0,

and

δ0 < min
{a0,inf − a2,sup(Ā2 + ε0)− χ1k

d3
ε0

a1,sup − χ1k
d3

,
b0,inf − b1,sup(Ā1 + ε0)− χ2l

d3
ε0

b2,sup − χ2l
d3

}
.

For given 0 ≤ u0 ≤ Ā1 + ε0, 0 ≤ v0 ≤ Ā2 + ε0, the following hold.

(i) If 0 < u0 < δ0, then u(x, t+ t0; t0, u0, v0) > inf u0(x) ∀ 0 < t ≤ T.

(ii) If 0 < v0 < δ0, then v(x, t+ t0; t0, u0, v0) > inf v0(x) ∀ 0 < t ≤ T.

(2) Assume (H7). Let ε0 and δ0 = δ0(ε0) be such that Lemma 3.4(2) holds with ε = ε0 and

δ = δ0,

a0,inf >
[(
a2,sup −

χ1l

d3

)
+

+
χ1l

d3

]
(B̄2 + ε0) +

χ1k

d3

ε0,

b0,inf >
[(
b1,sup −

χ2k

d3

)
+

+
χ2k

d3

]
(B̄1 + ε0) +

χ2l

d3

ε0,

and

δ0 < min
{a0,inf −

[(
a2,sup − χ1l

d3

)
+

+ χ1l
d3

]
(B̄2 + ε0)− χ1k

d3
ε0

a1,sup − χ1k
d3

,

b0,inf −
[(
b1,sup − χ2k

d3

)
+

+ χ2k
d3

]
(B̄1 + ε0)− χ2l

d3
ε0

b2,sup − χ2l
d3

}
.

For given 0 ≤ u0 ≤ B̄1 + ε0, 0 ≤ v0 ≤ B̄2 + ε0, the following hold.

(i) If 0 < u0 < δ0, then u(x, t+ t0; t0, u0, v0) > inf u0(x) ∀ 0 < t ≤ T.
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(ii) If 0 < v0 < δ0, then v(x, t+ t0; t0, u0, v0) > inf v0(x) ∀ 0 < t ≤ T.

Proof. (1)(i) Without loss of generality, assume infx∈Ω u0(x) > 0. By Theorem 3.1 (1),

u(x, t+ t0; t0, u0, v0) ≤ Ā1 + ε0, v(x, t+ t0; t0, u0, v0) ≤ Ā2 + ε0 ∀ t ≥ 0, x ∈ Ω̄.

This together with Lemma 3.4 (1) implies that

ut = d1∆u− χ1∇ · (u∇w) + u
(
a0(t, x)− a1(t, x)u− a2(t, x)v

)
= d1∆u− χ1∇u · ∇w + u

(
a0(t, x)− (a1(t, x)− χ1k

d3

)u− (a2(t, x)− χ1l

d3

)v − χ1λ

d3

w
)

≥ d1∆u− χ1∇u · ∇w

+ u
(
a0(t, x)− (a1(t, x)− χ1k

d3

)u− (a2(t, x)− χ1l

d3

)(Ā2 + ε0)− χ1λ

d3

(k
λ
ε0 +

l

λ
(Ā2 + ε0)

))
= d1∆u− χ1∇u · ∇w + u

(
a0(t, x)− a2(t, x)(Ā2 + ε0)− χ1k

d3

ε0 − (a1(t, x)− χ1k

d3

)u
)

≥ d1∆u− χ1∇u · ∇w + u
(
a0,inf − a2,sup(Ā2 + ε0)− χ1k

d3

ε0 − (a1,sup −
χ1k

d3

)u
)

for 0 < t ≤ T . Let ũ(t) be the solution of

ũt = ũ
(
a0,inf − a2,sup(Ā2 + ε0)− χ1k

d3

ε0 − (a1,sup −
χ1k

d3

)ũ
)

with ũ(t0) = infx∈Ω̄ u0(x). We have ũ(t) is monotonically increasing in t ≥ t0 and

lim
t→∞

ũ(t) =
a0,inf − a2,sup(Ā2 + ε0)− χ1k

d3
ε0

(a1,sup − χ1k
d3

)
.

By comparison principle for parabolic equations, we have

u(x, t+ t0; t0, u0) ≥ ũ(t+ t0) > inf
x∈Ω̄

u0(x) ∀ 0 < t ≤ T.

(1)(ii) It can be proved by the similar arguments as those in (1)(i).
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(2)(i) Again, without loss of generality, assume infx∈Ω u0(x) > 0. By Theorem 3.1 (2),

u(x, t+ t0; t0, u0, v0) ≤ B̄1 + ε0, v(x, t+ t0; t0, u0, v0) ≤ B̄2 + ε0 ∀ t ≥ 0, x ∈ Ω̄.

This together with Lemma 3.4 (2) implies that

ut = d1∆u− χ1∇ · (u∇w) + u
(
a0(t, x)− a1(t, x)u− a2(t, x)v

)
= d1∆u− χ1∇u · ∇w + u

(
a0(t, x)− (a1(t, x)− χ1k

d3

)u− (a2(t, x)− χ1l

d3

)v − χ1λ

d3

w
)

≥ d1∆u− χ1∇u · ∇w+

u
(
a0(t, x)− (a1(t, x)− χ1k

d3

)u−
(
a2(t, x)− χ1l

d3

)
+

(B̄2 + ε0)− χ1λ

d3

(k
λ
ε0 +

l

λ
(B̄2 + ε0)

))
≥ d1∆u− χ1∇u · ∇w

+ u
(
a0,inf −

[(
a2,sup −

χ1l

d3

)
+

+
χ1l

d3

]
(B̄2 + ε0)− χ1k

d3

ε0 − (a1,sup −
χ1k

d3

)u
)

for 0 < t ≤ T . Let ũ(t) be the solution of

ũt = ũ
(
a0,inf −

[(
a2,sup −

χ1l

d3

)
+

+
χ1l

d3

]
(B̄2 + ε0)− χ1k

d3

ε0 − (a1,sup −
χ1k

d3

)ũ
)

with ũ(t0) = infx∈Ω̄ u0(x). We have ũ(t) is monotonically increasing in t ≥ t0 and

lim
t→∞

ũ(t) =
a0,inf −

[(
a2,sup − χ1l

d3

)
+

+ χ1l
d3

]
(B̄2 + ε0)− χ1k

d3
ε0

(a1,sup − χ1k
d3

)
.

By comparison principle for parabolic equations, we have

u(x, t+ t0; t0, u0) ≥ ũ(t+ t0) > inf
x∈Ω̄

u0(x) ∀ 0 < t ≤ T.

(2)(ii) It can be proved by the similar arguments as those in (2)(i).

Remark 3.9. Consider (3.11) and assume (3.12). By the arguments of Lemma 3.5, the follow-

ing holds. Let ε0 and δ0 = δ0(ε0) be such that Remark 3.8 holds with ε = ε0 and δ = δ0,
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and

a0,inf >
χ1k

d3

ε0 and δ0 <
a0,inf − χ1k

d3
ε0

a1,sup − χ1k
d3

.

For given 0 ≤ u0 ≤ Ā1 +ε0, if 0 < u0 < δ0, then u(x, t+t0; t0, u0) > inf u0(x) ∀ 0 < t ≤ T.

Lemma 3.6. (1) Assume (H3). Let ε0 and δ0 = δ0(ε0) be such that Lemma 3.4(1) holds

with ε = ε0 and δ = δ0. There are A1
1 > 0 and A1

2 > 0 such that for any t0 ∈ R and

0 < u0 < Ā1 + ε0 and 0 < v0 < Ā2 + ε0, the following hold.

(i) For any t ≥ T , if supx∈Ω̄ u(x, t+ t0; t0, u0, v0) ≥ δ0, infx∈Ω̄ u(x, t+ t0; t0, u0, v0) ≥

A1
1.

(ii) For any t ≥ T , if supx∈Ω̄ v(x, t+ t0; t0, u0, v0) ≥ δ0, infx∈Ω̄ v(x, t+ t0; t0, u0, v0) ≥

A1
2.

(2) Assume (H4). Let ε0 and δ0 = δ0(ε0) be such that Lemma 3.4(2) holds with ε = ε0 and

δ = δ0. There are B1
1 > 0 and B1

2 > 0 such that for any t0 ∈ R and 0 < u0 < B̄1 + ε0

and 0 < v0 < B̄2 + ε0, the following hold.

(i) For any t ≥ T , if supx∈Ω̄ u(x, t+ t0; t0, u0, v0) ≥ δ0, infx∈Ω̄ u(x, t+ t0; t0, u0, v0) ≥

B1
1.

(ii) For any t ≥ T , if supx∈Ω̄ v(x, t+ t0; t0, u0, v0) ≥ δ0, infx∈Ω̄ v(x, t+ t0; t0, u0, v0) ≥

B1
2.

Proof. (1)(i) Assume that (1)(i) does not hold. Then there are t0n ∈ R, tn ≥ T , and un, vn with

0 < un < Ā1 + ε0 and 0 < vn < Ā2 + ε0 such that

sup
x∈Ω̄

u(x, tn + t0n; t0n, un, vn) ≥ δ0, lim
n→∞

inf
x∈Ω̄

u(x, tn + t0n; t0n, un, vn) = 0.

By Theorem 3.1(1),

0 < u(x, t+ t0; t0, u0, v0) < Ā1 +ε0, 0 < v(x, t+ t0; t0, u0, v0) < Ā2 +ε0 ∀ t > 0, x ∈ Ω̄.
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Without loss of generality, we may assume that

lim
n→∞

ai(x, t+ tn + t0n) = ãi(x, t), lim
n→∞

bi(x, t+ tn + t0n) = b̃i(x, t)

and

lim
n→∞

u(x, t+ tn + t0n; t0n, un, vn) = ũ(x, t), lim
n→∞

v(x, t+ tn + t0n; t0n, un, vn) = ṽ(x, t)

uniformly in x ∈ Ω̄ and t in bounded closed sets of (−T,∞). Note that

u(x, t+ tn + t0n; t0n, un, vn)

= u(x, t+ tn + t0n; tn + t0n, u(·, tn + t0n; t0n, un, vn), v(·, tn + t0n; t0n, un, vn)),

and

v(x, t+ tn + t0n; t0n, un, vn)

= v(x, t+ tn + t0n; tn + t0n, u(·, tn + t0n; t0n, un, vn), v(·, tn + t0n; t0n, un, vn)).

Therefore

ũ(x, t) = ũ(x, t; 0, ũ(·, 0), ṽ(·, 0)), ṽ(x, t) = ṽ(x, t; 0, ũ(·, 0), ṽ(·, 0)),

where (ũ(x, t; 0, ũ(·, 0), ṽ(·, 0)), ṽ(x, t; 0, ũ(·, 0), ṽ(·, 0)), w̃(x, t; 0, ũ(·, 0), ṽ(·, 0))) is the solu-

tion of (3.1) on (−T,∞) with ai being replaced by ãi and bi being replaced by b̃i, and

(
ũ(x, 0; 0, ũ(·, 0), ṽ(·, 0)), ṽ(x, 0; 0, ũ(·, 0), ṽ(·, 0))

)
=
(
ũ(x, 0), ṽ(x, 0)

)
.

Moreover ũ(x,−T/2) ≥ 0, ṽ(x,−T/2) ≥ 0 for x ∈ Ω̄, with supx∈Ω̄ ũ(x, 0) ≥ δ0 and

infx∈Ω̄ ũ(x, 0) = 0, which is a contradiction by comparison principle for parabolic equations.

Hence (1)(i) holds.

(1)(ii), (2)(i), (2)(ii) can be proved by the similar arguments as those in (1)(i).
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Remark 3.10. Consider (3.11) and assume (3.12). By the arguments of Lemma 3.6, the fol-

lowing holds. Let ε0 and δ0 = δ0(ε0) be such that Remark 3.8 holds with ε = ε0 and δ = δ0.

There is A1
1 > 0 such that for any t0 ∈ R and 0 < u0 < Ā1 + ε0, for any t ≥ T , if

supx∈Ω̄ u(x, t+ t0; t0, u0) ≥ δ0, then infx∈Ω̄ u(x, t+ t0; t0, u0) ≥ A1
1.

Lemma 3.7. (1) Assume (H6). Let ε0 and δ0 = δ0(ε0) be such that Lemma 3.4(1) and Lemma

3.5(1) hold with ε = ε0 and δ = δ0. There are A2
1 > 0 and A2

2 > 0 such that for any

t0 ∈ R and 0 < u0 < Ā1 + ε0 and 0 < v0 < Ā2 + ε0, the following holds.

(i) For any A1 ≤ A2
1, if infx∈Ω̄ u0(x) ≥ A1, then infx∈Ω̄ u(x, T + t0; t0, u0, v0) ≥ A1.

(ii) For any A2 ≤ A2
2, if infx∈Ω̄ v0(x) ≥ A2, then infx∈Ω̄ v(x, T + t0; t0, u0, v0) ≥ A2.

(2) Assume (H7). Let ε0 and δ0 = δ0(ε0) be such that Lemma 3.4(2) and Lemma 3.5(2) hold

with ε = ε0 and δ = δ0. There are B2
1 > 0 and B2

2 > 0 such that for any t0 ∈ R and

0 < u0 < B̄1 + ε0 and 0 < v0 < B̄2 + ε0, the following holds.

(i) For any B1 ≤ B2
1, if infx∈Ω̄ u0(x) ≥ B1, then infx∈Ω̄ u(x, T + t0; t0, u0, v0) ≥ B1.

(ii) For any B2 ≤ B2
2, if infx∈Ω̄ v0(x) ≥ B2, then infx∈Ω̄ v(x, T + t0; t0, u0, v0) ≥ B2.

Proof. (1)(i) We prove it using properly modified similar arguments of [30, Lemma 5.3].

Assume that (1)(i) does not hold. Then there are A1,n → 0, 0 < un < Ā1 + ε0, 0 < vn <

Ā2 + ε0, tn ∈ R, and xn ∈ Ω such that

un(x) ≥ A1,n ∀ x ∈ Ω̄ and u(xn, T + tn; tn, un, vn) < A1,n.

Let

Ωn = {x ∈ Ω |un(x) ≥ δ0

2
}.

Without loss of generality, we may assume that limn→∞ |Ωn| exists. Let

m0 = lim
n→∞

|Ωn|.
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Assume that m0 = 0. Then there is ũn ∈ C0(Ω̄) such that

A1,n ≤ ũn(x) ≤ δ0

2
and lim

n→∞
‖un − ũn‖Lp(Ω) = 0 ∀ 1 ≤ p <∞.

This implies that

lim
n→∞

‖φ1
n(·, t)‖Lp(Ω) + lim

n→∞
‖φ2

n(·, t)‖Lp(Ω) = 0

uniformly in t ∈ [tn, tn + T ] for all 1 ≤ p < ∞, where φ1
n(·, t) = u(·, t; tn, un, vn) −

u(·, t; tn, ũn, vn) and φ2
n(·, t) = v(·, t; tn, un, vn)− v(·, t; tn, ũn, vn). Indeed, let

G1
n(·, t) = u(·, t; tn, un, vn), G2

n(·, t) = v(·, t; tn, un, vn), Wn(·, t) = w(·, t; tn, un, vn),

G̃1
n(·, t) = u(·, t; tn, ũn, vn), G̃2

n(·, t) = v(·, t; tn, ũn, vn), W̃n(·, t) = w(·, t; tn, ũn, vn),

and

Ŵn(·, t)(·, t) = w(·, t; tn, un, vn)− w(·, t; tn, ũn, vn).

Then

φ1
n(·, t)

= e−A(t−tn)
(
un − ũn

)
− χ1

∫ t

tn

e−A(t−s)∇ ·
[
φ1
n(·, s)∇Wn(·, s) + G̃1

n(·, s)∇Ŵn(·, s)
]
ds

+

∫ t

tn

e−A(t−s)φ1
n(·, s)

(
1 + a0(s, ·)− a1(s, ·)(G1

n(·, s) + G̃1
n(·, s))− a2(s, ·)G2

n(·, s)
)
ds

−
∫ t

tn

e−A(t−s)a2(s, ·)
(
G̃1
n(·, t)

)
φ2
n(·, s)ds, (3.38)
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and

φ2
n(·, t) =

− χ2

∫ t

tn

e−A(t−s)∇ ·
[
φ2
n(·, s)∇Wn(·, s) + G̃2

n(·, s)∇Ŵn(·, s)
]
ds

+

∫ t

tn

e−A(t−s)φ2
n(·, s)

(
1 + b0(s, ·)− b2(s, ·)(G2

n(·, s) + G̃2
n(·, s))− b1(s, ·)G1

n(·, s)
)
ds

−
∫ t

tn

e−A(t−s)b1(s, ·)
(
G̃2
n(·, t)

)
φ1
n(·, s)ds, (3.39)

where A = −∆ + I with D(A) =
{
u ∈ W 2,p(Ω) | ∂u

∂n
= 0 on ∂Ω

}
(it is known that A

is a sectorial operator in X = Lp(Ω)). Now, fix 1 < p < ∞. By regularity and a priori

estimates for elliptic equations, [17, Theorem 1.4.3], [30, Lemma 2.2], (3.38), and (3.39), for

any ε ∈ (0, 1
2
), there is C = C(ε) > 0 such that

‖φ1
n(·, t)‖Lp(Ω)

≤ ‖un − ũn‖Lp(Ω) + Cχ1 max
tn≤s≤tn+T

‖∇Wn(·, s))‖C0(Ω̄)

∫ t

tn

(t− s)−ε−
1
2‖φ1

n(·, s)‖Lp(Ω)ds

+ Cχ max
tn≤s≤tn+T

‖Ŵn(·, s)‖C0(Ω̄)

∫ t

tn

(t− s)−ε−
1
2 (‖φ1

n(·, s)‖Lp(Ω) + ‖φ2
n(·, s)‖Lp(Ω))ds

+ C

∫ t

tn

{1 + a0,sup + a1,sup[ max
tn≤s≤tn+T

(‖G1(·, s)‖C0(Ω̄) + ‖G̃1(·, s)‖C0(Ω̄))]}‖φ1
n(·, s)‖Lp(Ω)ds

+ Ca2,sup max
tn≤s≤tn+T

‖G2(·, s)‖C0(Ω̄)

∫ t

tn

‖φ1
n(·, s)‖Lp(Ω)ds

+ Ca2,sup max
tn≤s≤tn+T

‖G̃1(·, s)‖C0(Ω̄)

∫ t

tn

‖φ2
n(·, s)‖Lp(Ω)ds.

and
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‖φ2
n(·, t)‖Lp(Ω)

≤ Cχ2 max
tn≤s≤tn+T

‖∇Wn(·, s))‖C0(Ω̄)

∫ t

tn

(t− s)−ε−
1
2‖φ2

n(·, s)‖Lp(Ω)ds

+ Cχ max
tn≤s≤tn+T

‖Ŵn(·, s)‖C0(Ω̄)

∫ t

tn

(t− s)−ε−
1
2 (‖φ1

n(·, s)‖Lp(Ω) + ‖φ2
n(·, s)‖Lp(Ω))ds

+ C

∫ t

tn

{1 + b0,sup + b2,sup[ max
tn≤s≤tn+T

(‖G2(·, s)‖C0(Ω̄) + ‖G̃2(·, s)‖C0(Ω̄))]}‖φ2
n(·, s)‖Lp(Ω)ds

+ Cb1,sup max
tn≤s≤tn+T

‖G1(·, s)‖C0(Ω̄)

∫ t

tn

‖φ2
n(·, s)‖Lp(Ω)ds

+ Cb1,sup max
tn≤s≤tn+T

‖G̃2(·, s)‖C0(Ω̄)

∫ t

tn

‖φ1
n(·, s)‖Lp(Ω)ds.

Therefore there exists a positive constant C0 independent of n such that

‖φ1
n(·, t+ tn)‖Lp(Ω) + ‖φ1

n(·, t+ tn)‖Lp(Ω)

≤ ‖un − ũn‖Lp(Ω) + C0

∫ t

0

(t− s)−ε−
1
2 (‖φ1

n(·, s+ tn)‖Lp(Ω) + ‖φ1
n(·, s+ tn)‖Lp(Ω))ds

for all t ∈ [0, T ]. This together with the generalized Gronwall’s inequality (see [17, page 6])

implies that

lim
n→∞

(‖φ1
n(·, t)‖Lp(Ω) + ‖φ1

n(·, t)‖Lp(Ω)) = 0

uniformly in t ∈ [tn, tn + T ] for all 1 ≤ p <∞. This implies that

lim
n→∞

‖w(·, t; tn, un, vn))− w(·, t; tn; ũn, vn)‖C1(Ω̄) = 0

uniformly in t ∈ [tn, tn + T ]. Note that v(x, t; tn, ũn, vn) ≤ Ā2 + ε0 for t ∈ [tn, tn + T ] and by

Lemma 3.4(1), u(x, t; tn, ũn, vn) ≤ ε0 for t ∈ [tn, tn + T ]. Hence

w(·, t; tn; ũn, vn) ≤ k

λ
ε0 +

l

λ
(Ā2 + ε0)

for all t ∈ [tn, tn + T ] and x ∈ Ω. It then follows that for any ε > 0,

w(·, t; tn;un, vn) ≤ (
k

λ
+ ε)ε0 +

l

λ
(Ā2 + ε0)
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for all t ∈ [tn, tn + T ], x ∈ Ω, and n� 1. Then by the arguments of Lemma 3.5, inf u(·, tn +

T ; tn, un) ≥ A1,n, which is a contradiction. Therefore, m0 6= 0.

By m0 6= 0 and comparison principle for parabolic equations, without loss of generality, we

may assume that

lim inf
n→∞

‖e−Atun‖C0(Ω̄) > 0 ∀ t ∈ [0, T ].

This implies that there is 0 < T0 < T and δ∞ > 0 such that

sup
x∈Ω̄

u(x, tn + T0; tn, un, vn) ≥ δ∞

for all n� 1. By a priori estimates for parabolic equations, without loss of generality, we may

assume that

u(·, tn + T0; tn, un, vn)→ u∗0, v(·, tn + T0; tn, un, vn)→ v∗0

and

u(·, tn + T ; tn, un, vn)→ u∗, v(·, t+ n+ T ; tn, un, vn)→ v∗

as n→∞. Without loss of generality, we may also assume that

ai(t+ tn, x)→ a∗i (t, x), bi(t+ tn, ·)→ b∗i (t, x)

as n→∞ locally uniformly in (t, x) ∈ R× Ω̄. Then we have

u∗(x) = u∗(x, T ;T0, u
∗
0, v
∗
0), v∗(x) = v∗(x, T ; t0, u

∗
0, v
∗
0)

and

inf
x∈Ω̄

u∗(x) = 0, inf
x∈Ω̄

v∗(x) ≥ 0,
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where (u∗(x, t;T0, u
∗
0, v
∗
0), v∗(x, t;T0, u

∗
0, v
∗
0), w(x, t;T0, u

∗
0, v
∗
0)) is the solution of (3.1) with

ai(t, x) and bi(t, x) being replaced by a∗i (t, x) and b∗i (t, x), and

(u∗(x, T0;T0, u
∗
0, v
∗
0), v∗(x, T0;T0, u

∗
0, v
∗
0)) = (u∗0(x), v∗0(x))

. By comparison principle, we must have u∗0 ≡ 0. But supu∗0 ≥ δ∞. This is a contradiction.

(1)(ii) It can be proved by the similar arguments as those in (1)(i).

(2) Follows by similar arguments as those in (1).

Remark 3.11. Consider (3.11) and assume (3.12). By the arguments of Lemma 3.7, the fol-

lowing holds. Let ε0 and δ0 = δ0(ε0) be such that Remark 3.8 and Remark 3.9 hold with ε = ε0

and δ = δ0. There is A2
1 > 0 such that for any t0 ∈ R and 0 < u0 < Ā1 + ε0, for any A1 ≤ A2

1,

if infx∈Ω̄ u0(x) ≥ A1, then infx∈Ω̄ u(x, T + t0; t0, u0) ≥ A1.

Let

A1 = min{A1
1,A

2
1}, A2 = min{A1

2,A
2
2}

and

B1 = min{B1
1,B

2
1}, B2 = min{B1

2,B
2
2}.

Note that the constants A1, A2, B1 and B2 depend on T and ε0.

Lemma 3.8. (1) Assume (H6). Let ε0 and δ0 = δ0(ε0) be such that Lemma 3.4(1) and Lemma

3.5(1) hold with ε = ε0 and δ = δ0. For any 0 < u0 < Ā1 + ε0 and 0 < v0 < Ā2 + ε0,

the following holds.

(i) If infx∈Ω̄ u0(x) ≥ A1, then

A1 ≤ u(x, t+ t0; t0, u0, v0) ≤ Ā1 + ε0 ∀ t ≥ T, x ∈ Ω̄. (3.40)

(ii) If infx∈Ω̄ v0(x) ≥ A2, then

A2 ≤ v(x, t+ t0; t0, u0, v0) ≤ Ā2 + ε0 ∀ t ≥ T, x ∈ Ω̄.
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(2) Assume (H7). Let ε0 and δ0 = δ0(ε0) be such that Lemma 3.4(2) and Lemma 3.5(2) hold

with ε = ε0 and δ = δ0. For any 0 < u0 < B̄1 + ε0 and 0 < v0 < B̄2 + ε0, the following

hold.

(i) If infx∈Ω̄ u0(x) ≥ B1, then

B1 ≤ u(x, t+ t0; t0, u0, v0) ≤ B̄1 + ε0 ∀ t ≥ T, x ∈ Ω̄.

(ii) If infx∈Ω̄ v0(x) ≥ B2, then

B2 ≤ v(x, t+ t0; t0, u0, v0) ≤ B̄2 + ε0 ∀ t ≥ T, x ∈ Ω̄.

Proof. (1)(i) First of all, by Lemma 3.7(1), we have

A1 ≤ u(x, T + t0; t0, u0, v0) ≤ Ā1 + ε0 ∀ x ∈ Ω̄.

Note that we have

either sup
x∈Ω̄

u(x, T + t0; t0, u0, v0) > δ0 or sup
x∈Ω̄

u(x, T + t0; t0, u0, v0) ≤ δ0.

In the former case, if supx∈Ω̄ u(x, t + T + t0; t0, u0, v0) > δ0 for all 0 ≤ t ≤ T , by Lemma

3.6, (3.40) holds for all T ≤ t ≤ 2T . If there is t∗ ∈ (T, 2T ) such that supx∈Ω̄ u(x, t +

t0; t0, u0, v0) > δ0 for T ≤ t ≤ t∗ and supx∈Ω̄ u(x, t∗+ t0; t0, u0, v0) = δ0, then by Lemma 3.6,

(3.40) holds for all T ≤ t ≤ t∗, which together with Lemma 3.5 implies that (3.40) also holds

for all t∗ ≤ t ≤ 2T . In the later case, by Lemma 3.5, (3.40) also holds for all T ≤ t ≤ 2T .

Therefore, in any case, (3.40) also holds for all T ≤ t ≤ 2T . Repeating the above process, we

have that (3.40) also holds for all t ≥ T .

(1)(ii) It can be proved by the similar arguments as those in (1)(i).

(2) It follows from the similar arguments as those in (1).

Remark 3.12. Consider (3.11) and assume (3.12). By the arguments of Lemma 3.8, the fol-

lowing holds. Let ε0 and δ0 = δ0(ε0) be such that Remark 3.8 and Remark 3.9 hold with ε = ε0
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and δ = δ0. For any 0 < u0 < Ā1 + ε0, if infx∈Ω̄ u0(x) ≥ A1, then

A1 ≤ u(x, t+ t0; t0, u0) ≤ Ā1 + ε0 ∀ t ≥ T, x ∈ Ω̄.

We now prove Theorem 3.2.

Proof of Theorem 3.2. (1) Let ε0 and δ0 = δ0(ε0) be such that Lemma 3.4(1) and Lemma 3.5(1)

hold with ε = ε0 and δ = δ0. Let A1, Ā1, A2, and Ā2 be as in Lemma 3.8(1). By the

assumption that u0 6≡ 0, v0 6≡ 0, and comparison principle for parabolic equations, without loss

of generality, we may assume that infx∈Ω̄ u0(x) > 0 and infx∈Ω̄ v0(x) > 0.

First, by Theorem 3.1, there is T1 = T1(u0, v0, ε0) such that

u(x, t+ t0; t0, u0, v0) ≤ Ā1 + ε0, v(x, t+ t0; t0, u0, v0) ≤ Ā2 + ε0 ∀ t ≥ T1, x ∈ Ω̄.

Observe that if supx∈Ω u(x, t+ t0; t0, u0, v0) < δ0, then

ut = d1∆u− χ1∇ · (u∇w) + u
(
a0(t, x)− a1(t, x)u− a2(t, x)v

)
= d1∆u− χ1∇u · ∇w + u

(
a0(t, x)− (a1(t, x)− χ1k

d3

)u− (a2(t, x)− χ1l

d3

)v − χ1λ

d3

w
)

≥ d1∆u− χ1∇u · ∇w+

u
(
a0(t, x)− (a1(t, x)− χ1k

d3

)u− (a2(t, x)− χ1l

d3

)(Ā2 + ε0)− χ1λ

d3

(
k

λ
δ0 +

l

λ
(Ā2 + ε0))

)
≥ d1∆u− χ1∇u · ∇w + u

(
a0(t, x)− a2(t, x)(Ā2 + ε0)− χ1k

d3

ε0 − (a1(t, x)− χ1k

d3

)u
)
.

Let ũ(t; ũ0) be the solution of

ũt = ũ
(
a0,inf − a2,sup(Ā2 + ε0)− χ1k

d3

ε0 − (a1,sup −
χ1k

d3

)ũ
)

with ũ(0; ũ0) = ũ0 ∈ (0, δ0). We have ũ(t) is monotonically increasing in t ≥ 0 and

lim
t→∞

ũ(t; ũ0) =
a0,inf − a2,sup(Ā2 + ε0)− χ1k

d3
ε0

(a1,sup − χ1k
d3

)
> δ0. (3.41)
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Observe also that

inf
t0∈R

inf
x∈Ω̄

u(x, T + t0; t0, u0, v0) > 0. (3.42)

Indeed, we have either supu0 < δ0 or supu0 ≥ δ0. If supu0 < δ0, we have by Lemma 3.5

(i) that infx∈Ω̄ u(x, T + t0; t0, u0, v0) ≥ inf u0 > 0 for all t0 ∈ R and then (3.42) follows. If

supu0 ≥ δ0, but (3.42) does not hold, then there are t0n ∈ R and xn ∈ Ω̄ such that

lim
n→∞

u(xn, T + t0n; t0n, u0, v0) = 0.

Let ani (t, x) = ai(t+ t0n, x) and bni (t, x) = bi(t+ t0n, x) for i = 0, 1, 2. Then

(u(x, t+ t0n; t0n, u0, v0), v(x, t+ t0n; t0n, u0, v0), w(x, t+ t0n; t0n, u0, v0))

= (un(x, t;u0, v0), vn(x, t;u0, v0), wn(x, t;u0, v0))

for t ≥ 0, where (un(x, t;u0, v0), vn(x, t;u0, v0), wn(x, t;u0, v0)) is the solution of (3.1) with

ai and bi (i = 0, 1, 2) being replaced by ani and bni (i = 0, 1, 2) and

(un(x, 0;u0, v0), vn(x, 0;u0, v0)) = (u0(x), v0(x)).

Without loss of generality, we may assume that

lim
n→∞

ani (t, x) = a∞i (t, x), lim
n→∞

bni (t, x) = b∞i (t, x)

uniformly in x ∈ Ω̄ and t in bounded sets of R, and

lim
n→∞

xn = x∞.

Then

lim
n→∞

(un(x, t;u0, v0), vn(x, t;u0, v0), wn(x, t;u0, v0))

= (u∞(x, t;u0, v0), v∞(x, t;u0, v0), w∞(x, t;u0, v0))
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uniformly in x ∈ Ω̄ and t in bounded set of [0,∞), where (u∞(x, t;u0, v0), v∞(x, t;u0, v0),

w∞(x, t;u0, v0)) is the solution of (3.1) with ai and bi (i = 0, 1, 2) being replaced by a∞i and

b∞i (i = 0, 1, 2) and (u∞(x, 0;u0, v0), v∞(x, 0;u0, v0)) = (u0(x), v0(x)). It then follows that

inf u0(x) > 0 and u∞(x∞, T ;u0, v0) = 0,

which is a contradiction. Hence if supu0 ≥ δ0, (3.42) also holds.

Note that we have either supx∈Ω u(x, T+t0; t0, u0, v0) ≥ δ0 or supx∈Ω u(x, T+t0; t0, u0, v0) <

δ0. If supx∈Ω u(x, T + t0; t0, u0, v0) < δ0, by (3.41), (3.42), and comparison principle for

parabolic equations, there are T2(u0, v0, ε0) ≥ T and T ≤ T̃2(u0, v0, ε0) ≤ T2(u0, v0, ε0) such

that

sup
x∈Ω

u(x, T̃2(u0, v0, ε0) + t0; t0, u0, v0) = δ0.

Hence, in either case, there is T̃2(u0, v0, ε0) ∈ [T, T2(u0, v0, ε0)] such that

sup
x∈Ω

u(x, T̃2(u0, v0, ε0) + t0; t0, u0, v0) ≥ δ0.

This together with Lemma 3.6 implies that

inf
x∈Ω

u(x, T̃2(u0, v0, ε0) + t0; t0, u0, v0) ≥ A1.

Then by Lemma 3.8(1),

A1 ≤ u(x, t+t0; t0, u0, v0) ≤ Ā1 +ε0 ∀ t ≥ max{T1(u0, v0, ε0), T + T2(u0, v0, ε0)}. (3.43)

Similarly, we can prove that there are T̃1(u0, v0, ε0) > 0 and T̃2(u0, v0, ε0) ≥ T such that

A2 ≤ v(x, t+ t0; t0, u0, v0) ≤ Ā2 + ε0 ∀ t ≥ max{T̃1(u0, v0, ε0), T + T̃2(u0, v0, ε0)}.

This together with Theorem 3.1 and (3.43) implies that for any ε > 0, there is tε,u0,v0 such that

(3.10) holds.

102



(2) It follows from the similar arguments as those in (1).

Corollary 3.2. Consider (3.11) and assume (3.12). There is A1 such that for any ε > 0, t0 ∈ R,

u0 ∈ C0(Ω̄) with u0 ≥ 0, and u0 6≡ 0, there exists tε,u0 such that

A1 ≤ u(x, t; t0, u0) ≤ Ā1 + ε

for all x ∈ Ω̄ and t ≥ t0 + tε,u0 , where (u(x, t; t0, u0), w(x, t; t0, u0)) is the global solution of

(3.11) with u(x, t0; t0, u0) = u0(x) (see Corollary 3.2).

Proof. It follows from Remarks 3.8-3.12 and the arguments of Theorem 3.2.

3.5 Coexistence

In this section, we study the existence of coexistence states in (3.1) and prove Theorem 3.3.

We first prove a lemma.

Lemma 3.9. Consider 
ut = u

(
a0(t)− a1(t)u− a2(t)v

)
vt = v

(
b0(t)− b1(t)u− b2(t)v

)
.

(3.44)

Assume (3.5) is satisfied. Then there is a positive entire solution (u∗∗(t), v∗∗(t)) of (3.44).

Moreover, for any u0, v0 > 0 and t0 ∈ R,

(u(t; t0, u0, v0), v(t; t0, u0, v0))− (u∗∗(t), v∗∗(t))→ 0

as t→∞, where (u(t; t0, u0, v0), v(t; t0, u0, v0)) is the solution of (3.44) with (u(t0; t0, u0, v0),

v(t0; t0, u0, v0)) = (u0, v0). In addition, if ai(t) and bi(t) are almost periodic, then so is (u∗∗(t),

v∗∗(t)).

Proof. First, let

s1 =
b2,infa0,inf − a2,supb0,sup

b2,infa1,sup − a2,supb1,inf

, r1 =
b2,supa0,sup − a2,infb0,inf

b2,supa1,inf − a2,infb1,sup

,
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and

r2 =
a1,infb0,inf − b1,supa0,sup

a1,infb2,sup − b1,supa2,inf

, s2 =
a1,supb0,sup − b1,infa0,inf

a1,supb2,inf − b1,infa2,sup

.

Then

0 < s1 ≤ r1 and 0 < r2 ≤ s2.

Next, for given t0 ∈ R and u0, v0 ∈ R, if 0 < u0 ≤ r1 and v0 ≥ r2, by [1, Lemma 3.1], we

have

0 < u(t; t0, u0, v0) ≤ r1 and v(t; t0, u0, v0) ≥ r2 ∀ t ≥ t0. (3.45)

And if u0 ≥ s1 and 0 < v0 ≤ s2, by [1, Lemma 3.2] again,

u(t; t0, u0, v0) ≥ s1 and 0 < v(t; t0, u0, v0) ≤ s2 ∀ t ≥ t0. (3.46)

We now start with the proof of existence of positive entire solutions of (3.44) by the so called

pullback method. Fix u0, v0 ∈ R such that s1 ≤ u0 ≤ r1 and s2 ≤ v0 ≤ r2. For n ∈ N, let

tn = −n, un = u(0; tn, u0, v0) and vn = v(0; tn, u0, v0). Then by (3.45) and (3.46), we have

s1 ≤ un ≤ r1 and s2 ≤ vn ≤ r2 ∀ n ∈ N.

Therefore there exists u0
0, v

0
0 ∈ R such that up to subsequence un → u0

0 as n → ∞ and

vn → v0
0 as n→∞. And so

s1 ≤ u0
0 ≤ r1 and s2 ≤ v0

0 ≤ r2.

Furthermore (u(t; tn, u0, v0), v(t; tn, u0, v0))→ (u(t; 0, u0
0, v

0
0), v(t; 0, u0

0, v
0
0)) as n→∞.Again

by (3.45) and (3.46), we have

s1 ≤ u(t; 0, u0
0, v

0
0) ≤ r1 and s2 ≤ u(t; 0, u0

0, v
0
0) ≤ r2 ∀ t ≥ 0.

We claim that (u(t; 0, u0
0, v

0
0), v(t; 0, u0

0, v
0
0)) has backward extension. Indeed for each m ∈

N, we define for n > m, umn = u(−m; tn, u0, v0) and vmn = v(−m; tn, u0, v0). Then by
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similar arguments as before there exist um0 , v
m
0 ∈ R such that up to subsequence umn →

um0 as n → ∞ and vmn → vm0 as n → ∞, s1 ≤ um0 ≤ r1 and s2 ≤ vm0 ≤ r2, and

(u(t; tn, u0, v0), v(t; tn, u0, v0)) → (u(t;−m,um0 , vm0 ), v(t;−m,um0 , vm0 )) as n → ∞. It fol-

lows that

(u(t; 0, u0
0, v

0
0), v(t; 0, u0

0, v
0
0)) = (u(t;−m,um0 , vm0 ), v(t;−m,um0 , vm0 ))

for all t ≥ 0. Thus (u(t; 0, u0
0, v

0
0), v(t; 0, u0

0, v
0
0)) has backward extension up t ≥ −m, for

each m ∈ N. This show that (u(t; 0, u0
0, v

0
0), v(t; 0, u0

0, v
0
0)) is defined for all t ∈ R and more-

over we have s1 ≤ u(t; 0, u0
0, v

0
0) ≤ r1 and s2 ≤ v(t; 0, u0

0, v
0
0) ≤ r2, for all t ∈ R. Hence

u(t; 0, u0
0, v

0
0), v(t; 0, u0

0, v
0
0)) is a positive entire solution of (3.44).

Finally, we prove the stability of positive entire solutions and the almost periodicity of posi-

tive entire solutions when the coefficients are almost periodic. Let (u∗∗(t), v∗∗(t)) be a positive

entire solution of (3.44) and let u0, v0 > 0 and t0 ∈ R. It follows from [1, Theorem 1] that

(u(t; t0, u0, v0), v(t; t0, u0, v0))− (u∗∗(t), v∗∗(t))→ 0 as →∞.

By [22, Theorem C], when ai(t) and bi(t) (i = 0, 1, 2) are almost periodic in t, then positive

entire solutions of (3.44) are unique and almost periodic. The lemma thus follows.

We now prove Theorem 3.3. Let T > 0 be fixed and Ai, Āi, Bi, and B̄i (i = 1, 2) be as in the

previous section.

Proof of Theorem 3.3. (1) We first prove the existence of positive entire solutions. Let u0, v0 ∈

C0(Ω̄) be such that 0 < A1 ≤ u0(x) ≤ Ā1 and 0 < A2 ≤ v0(x) ≤ Ā2. By Theorem 3.1(1) and

Lemma 3.8(1),

0 < A1 ≤ u(x, t+ t0; t0, u0, v0) ≤ Ā1 and 0 < A2 ≤ v(x, t+ t0; t0, u0, v0) ≤ Ā2

for all x ∈ Ω̄, t ≥ T , and t0 ∈ R. For n ∈ N with n > T , set tn = −n, un = u(·, 0; tn, u0, v0)

and vn = v(·, 0; tn, u0, v0). Then by parabolic regularity there exist tnk ∈ N, u∗∗0 , v∗∗0 ∈ C0(Ω̄)
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such that

unk → u∗∗0 and vnk → v∗∗0 in C0(Ω̄).

We have u(·, t; tnk , u0, v0) = u(·, t; 0, u(·, 0; tnk , u0, v0), v(·, 0; tnk , u0, v0)), and v(·, t; tnk , u0, v0) =

v(·, t; 0, u(·, 0; tnk , u0, v0), v(·, 0; tnk , u0, v0)). Thus for t ≥ 0 we have

(u(·, t; tnk , u0, v0), v(·, t; tnk , u0, v0))→ (u(·, t; 0, u∗∗0 , v
∗∗
0 ), v(·, t; 0, u∗∗0 , v

∗∗
0 )) inC0(Ω̄)×C0(Ω̄).

Moreover

0 < A1 ≤ u(x, t; 0, u∗∗0 , v
∗∗
0 ) ≤ Ā1 and 0 < A2 ≤ v(x, t; 0, u∗∗0 , v

∗∗
0 ) ≤ Ā2 ∀ x ∈ Ω, t ≥ 0.

We now prove that (u(·, t; 0, u∗∗0 , v
∗∗
0 ), v(·, t; 0, u∗∗0 , v

∗∗
0 )) has backward extension. In order to

prove that, fix m ∈ N and define umn = u(·,−m; tn, u0, v0) and vmn = v(·,−m; tn, u0, v0) for

all n > m + T. Then by parabolic regularity, without loss of generality, we may assume that

there exist u∗∗m , v
∗∗
m ∈ C0(Ω̄) such that

umnk → u∗∗m and vmnk → v∗∗m in C0(Ω̄).

Furthermore we have u(·, t; tnk , u0, v0) = u(·, t;−m,u(·,−m; tnk , u0, v0), v(·,−m; tnk , u0, v0)),

and v(·, t; tnk , u0, v0) = u(·, t;−m,u(·,−m; tnk , u0, v0), v(·,−m; tnk , u0, v0)). Therefore we

have

(u(·, t; tnk , u0, v0), v(·, t; tnk , u0, v0))→ (u(·, t;−m,u∗∗m , v∗∗m ), v(·, t;−m,u∗∗m , v∗∗m ))

inC0(Ω̄) × C0(Ω̄) for all t ≥ −m , which implies that (u(·, t; 0, u∗∗0 , v
∗∗
0 ), v(·, t; 0, u∗∗0 , v

∗∗
0 ))

has backward extension in the sense that

(u(·, t; 0, u∗∗0 , v
∗∗
0 ), v(·, t; 0, u∗∗0 , v

∗∗
0 )) = (u(·, t;−m,u∗∗m , v∗∗m ), v(·, t;−m,u∗∗m , v∗∗m ))
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for all t > −m and m ∈ N. Moreover

0 < A1 ≤ u(·, t;−m,u∗∗m , v∗∗m ) ≤ Ā1 and 0 < A2 ≤ v(·, t;−m,u∗∗m , v∗∗m ) ≤ Ā2,

∀x ∈ Ω, t ≥ −m. Set u∗∗(x, t) = u(x, t; 0, u∗∗0 , v
∗∗
0 ), v∗∗(x, t) = v(x, t; 0, u∗∗0 , v

∗∗
0 ), and

w∗∗ = (−∆ + I)−1(ku∗∗ + lv∗∗). Then (u∗∗(x, t), v∗∗(x, t), w∗∗(x, t)) is a positive bounded

entire solution of (3.1).

(i) Assume that ai(t+ T, x) = ai(t, x) and bi(t+ T, x) = bi(t, x) for i = 0, 1, 2. Set

E(T ) = {(u0, v0) ∈ C0(Ω̄)× C0(Ω̄) | 0 < A1 ≤ u0(x) ≤ Ā1 and 0 < A2 ≤ v0(x) ≤ Ā2}.

Note that E is nonempty, closed, convex and bounded subset of C0(Ω̄) × C0(Ω̄). Define the

map T (T ) : E(T )→ C0(Ω̄)× C0(Ω̄) by

T (T )(u0, v0) = (u(·, T ; 0, u0, v0), v(·, T ; 0, u0, v0)).

Note that T (T ) is well defined, T (T )E(T ) ⊂ E(T ), and continuous by continuity with respect

to initial conditions. Moreover by regularity and Arzella-Ascoli’s Theorem, T (T ) is com-

pletely continuous and therefore by Schauder fixed point there exists (uT , vT ) ∈ E(T ) such

that (u(·, T ; 0, uT , vT ), v(·, T ; 0, uT , vT )) = (uT , vT ). Then ((u(·, t; 0, uT , vT ), v(·, t; 0, uT , vT ),

w(·, t; 0, uT , vT ))) is a positive periodic solution of (3.1) with periodic T.

(ii) Assume that ai(t, x) ≡ ai(x) and bi(t, x) ≡ ai(x) (i = 0, 1, 2). In this case, each τ > 0 is

a period for ai and bi . By (i), there exist (uτ , vτ ) ∈ E(τ) such that (u(·, t; 0, uτ , vτ ), v(·, t; 0, uτ , vτ ),

w(·, t; 0, uτ , vτ )) is a positive periodic solution of (3.1) with period τ .

Observe that C0(Ω̄) ⊂ Lp(Ω) for any 1 ≤ p < ∞. Choose p > 1 and α ∈ (1/2, 1) are

such that Xα ↪→ C1(Ω̄), where Xα = D(Aα) with the graph norm ‖u‖α = ‖Aαu‖Lp(Ω) and

A = I −∆ with domain D(A) = {u ∈ W 2,p(Ω) | ∂u
∂n

= 0 on ∂Ω}.

Note that there is M̃ > 0 such that for each τ > 0 and (u0, v0) ∈ E(τ), ‖u(·, t; 0, u0, v0)‖α +

‖v(·, t; 0, u0, v0)‖α ≤ M̃ for each 1 ≤ t ≤ 2. Let τn = 1
n
, then there exists un, vn ∈ E( 1

n
) such
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that (u(·, t; 0, un, vn), v(·, t; 0, un, vn), w(·, t; 0, un, vn)) is periodic with period τn and

‖un‖α + ‖vn‖α = ‖u(·, Nτn; 0, un, vn)‖α + ‖v(·, Nτn; 0, un, vn)‖α ≤ M̃,

where N is such that 1 ≤ Nτn ≤ 2.

We claim that there is δ1 > 0 and δ2 > 0 such that

‖un(·)‖C0(Ω̄) ≥ δ1 ∀ n ≥ 1. (3.47)

and

‖vn(·)‖C0(Ω̄) ≥ δ2 ∀ n ≥ 1. (3.48)

Since the proof of (3.47) and (3.48) are similar, we only prove (3.47). Suppose by contradiction

that (3.47) does not hold. Then there exists nk such that ‖unk‖C0(Ω̄) <
1
nk

for every k ≥ 1. Let

k0 such that 1
nk
< δ0 for all k ≥ k0. By Lemma 3.4 and the proof of Lemma 3.5, we get that

u(·, t; 0, unk , vnk) ≥ u(t; inf unk) for all t > 0 and k ≥ k0, where u(t; inf unk) is the solution of

ut = u
(
a0,inf − a2,supĀ2 −

χ1k

d3

ε0 − (a1,sup −
χ1k

d3

)u
)

with u(0; inf unk) = inf unk . Let δ∗ =
a0,inf−a2,supĀ2−χ1kd3 ε0

2(a1,sup−χ1kd3 )
and choose k large enough such that

1
nk
< δ∗. There is t0 > 0 such that u(t; inf unk) > δ∗ for all t ≥ t0. Then we have

unk(x) = u(·,mτnk ; 0, unk , unk) ≥ u(mτnk ; inf unk) > δ∗

for all m ∈ N satisfying that mτnk > t0. This is a contradiction. Therefore, (3.47) holds.

By (3.5) and Arzela-Ascoli theorem, there exist {nk}, (u∗∗, v∗∗) ∈ C0(Ω̄) × C0(Ω̄) such

that (unk , unk) converges to (u∗∗, v∗∗) in C0(Ω̄) × C0(Ω̄). By (3.47) and (3.48), we have that

‖u∗∗(·)‖C0(Ω̄) ≥ δ1 and ‖v∗∗(·)‖C0(Ω̄) ≥ δ2. We claim that (u(·, t; 0, u∗∗, v∗∗), v(·, t; 0, u∗∗, v∗∗),

w(·, t; 0, u∗∗, v∗∗)) is a steady state solution of (3.1), that is,

u(·, t; 0, u∗∗, v∗∗) = u∗∗(·) and v(·, t; 0, u∗∗, v∗∗) = v∗∗(·) for all t ≥ 0. (3.49)
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In fact, let ε > 0 be fix and let t > 0. Note that

[nkt]τnk =
[nkt]

nk
≤ t ≤ [nkt] + 1

nk
= ([nkt] + 1)τnk .

Then, we can choose k large enough such that

|u(x, t; 0, u∗∗, v∗∗)−u(x, t; 0, unk , vnk)| < ε, |unk(x)−u∗∗(x)| < ε, |vnk(x)−v∗∗(x)| < ε,

|v(x, t; 0, u∗∗, v∗∗)−v(x, t; 0, unk , vnk)| < ε, |v(x,
[nkt]

nk
; 0, unk , vnk)−v(x, t; 0, unk , vnk)| < ε,

|u(x,
[nkt]

nk
; 0, unk , vnk)− u(x, t; 0, unk , vnk)| < ε.

for all x ∈ Ω̄. We then have

|u(x, t; 0, u∗∗, v∗∗)− u∗∗| ≤ |u(x, t; 0, u∗∗, v∗∗)− u(x, t; 0, unk , vnk)|+ |unk(x)− u∗∗(x)|

+ |u(x, t; 0, unk , vnk)− u(x, [nkt]τnk ; 0, unk , vnk)| < 3ε ∀ x ∈ Ω̄,

and

|v(x, t; 0, u∗∗, v∗∗)− v∗∗| ≤ |v(x, t; 0, u∗∗, v∗∗)− v(x, t; 0, unk , vnk)|+ |vnk(x)− v∗∗(x)|

+ |v(x, t; 0, unk , vnk)− v(x, [nkt]τnk ; 0, unk , vnk)| < 3ε ∀ x ∈ Ω̄.

Letting ε→ 0, (3.49) follows.

(iii) Note that solutions of the following system,


ut = u(a0(t)− a1(t)u− a2(t)v)

vt = v(b0(t)− b1(t)u− b2(t)v)

0 = ku(t) + lv(t)− λw(t)

are spatially homogeneous solutions (u(t), v(t), w(t)) of (3.1). By (H4) and Remark 3.3, (3.5)

is satisfied. (iii) then follows by Lemma 3.9.
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(2) It follows from the similar arguments as those in (1).

3.6 Extinction of One of the Species

In this section, our aim is to find conditions on the parameters which guarantee the extinction

of one of the species. First we prove a lemma.

Assume (H3) or (H4). For given u0, v0 ∈ C(Ω̄) with u0 ≥ 0 and v0 ≥ 0, let

L1(t0, u0, v0) = lim sup
t→∞

(max
x∈Ω̄

u(x, t; t0, u0, v0)), l1(t0, u0, v0) = lim inf
t→∞

(min
x∈Ω̄

u(x, t; t0, u0, v0)),

and

L2(t0, u0, v0) = lim sup
t→∞

(max
x∈Ω̄

v(x, t; t0, u0, v0)), l2(t0, u0, v0) = lim inf
t→∞

(min
x∈Ω̄

v(x, t; t0, u0, v0)).

If no confusion occurs, we may write Li(t0, u0, v0) and li(t0, u0, v0) as Li and li (i = 1, 2)

respectively. By Theorem 3.1 we have

0 ≤ l1 ≤ L1 <∞, 0 ≤ l2 ≤ L2 <∞.

Furthermore, using the definition of lim sup and of lim inf, and elliptic regularity, we get that

given ε > 0, there exists Tε > 0 such that

l1 − ε ≤ u(x, t) ≤ L1 + ε, l2 − ε ≤ v(x, t) ≤ L2 + ε, ∀ t > Tε. (3.50)

Lemma 3.10. (1) Assume a1,inf >
kχ1

d3
and a2,inf ≥ lχ1

d3
. Then

L1 ≤
{a0,sup − a2,inf l2}+

a1,inf − χ1k
d3

. (3.51)
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(2) Assume b2,inf >
lχ2

d3
. Then

L2 ≤

{
b0,sup − χ2l

d3
l2 +

(
b1,inf − k χ2

d3

)
−
L1

}
+

b2,inf − χ2l
d3

, (3.52)

and

l2 ≥

{
b0,inf −

((
b1,sup − k χ2

d3

)
+

+ k χ2

d3

)
L1 − χ2l

d3
L2

}
+

b2,sup − χ2l
d3

. (3.53)

Proof. (1) From the first equation of (3.1), (3.50), and the fact that a2,inf ≥ χ1l
d3

, we have

ut − d1∆u+ χ1∇u · ∇w

= u

{
a0(t, x)− (a1(t, x)− χ1

d3

k)u− (a2(t, x)− lχ1

d3

)v − χ1

d3

λw

}
≤ u

{
a0,sup − (a1,inf −

χ1

d3

k)u− a2,inf l2 +

(
a2,sup + k

χ1

d3

)
ε

}

for t ≥ Tε, and thus since a1,inf >
χ1k
d3
, (3.51) follows from parabolic comparison principle.

(2) From the second equation of (3.1) and (3.50), we have that

vt − d2∆v + χ2∇v · ∇w

= v

{
b0(t, x)− (b2(t, x)− χ2

d3

k)v − (b1(t, x)− kχ2

d3

)u− χ2

d3

λw

}
≤ v

{
b0,sup − (b2,inf −

χ2

d3

k)v +
(
b1,inf − k

χ2

d3

)
−
L1 − l

χ2

d3

l2

}
+ v
(

(k + l)
χ2

d3

+
(
b1,inf − k

χ2

d3

)
−

)
ε

for t ≥ Tε, and (3.52) follows from parabolic comparison principle.
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Similarly, we have

vt − d2∆v + χ2∇v · ∇w

= v

{
b0(t, x)− (b2(t, x)− χ2

d3

k)v − (b1(t, x)− kχ2

d3

)u− χ2

d3

λw

}
≥ v

{
b0,inf − (b2,sup −

χ2

d3

k)v −
(
b1,sup − k

χ2

d3

)
+
L1 − k

χ2

d3

L1

}
− lχ2

d3

L2 − v
(
l
χ2

d3

+ v
(
b1,sup − k

χ2

d3

)
+

)
ε

for t ≥ Tε, and (3.53) thus follows from parabolic comparison principle.

Now we prove Theorem 3.4.

Proof of Theorem 3.4. We first prove that L1 = 0.

Suppose by contradiction that L1 > 0. Then by (3.51) and (3.13), we have

l2 <
a0,sup

a2,inf

. (3.54)

By (3.14), we have

a2,inf

(
b0,inf(b2,inf − l

χ2

d3

)− b0,sup
χ2

d3

l
)
≥ a0,sup

(
(b2,inf − l

χ2

d3

)(b2,sup − l
χ2

d3

)− (l
χ2

d3

)2
)

= a0,sup

(
(b2,inf − l

χ2

d3

)b2,sup − l
χ2

d3

b2,inf

)
≥ a0,sup(b2,inf − 2l

χ2

d3

)b2,sup.

This together with the fact that a2,inf

(
b0,inf(b2,inf − lχ2

d3
)− b0,sup

χ2

d3
l
)
≤ a2,infb0,sup(b2,inf −2lχ2

d3
),

we get

a2,infb0,sup(b2,inf − 2l
χ2

d3

) ≥ a0,sup(b2,inf − 2l
χ2

d3

)b2,sup,

which combines with b2,inf − 2lχ2

d3
> 0 implies

a2,infb0,sup ≥ a0,supb2,sup ≥ a0,sup2l
χ2

d3

.
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Therefore

b0,sup −
χ2l

d3

l2 > b0,sup −
χ2l

d3

a0,sup

a2,inf

≥ 0. (3.55)

From (3.53), we get

lχ2

d3

L2 ≥ b0,inf −
((
b1,sup − k

χ2

d3

)
+

+ k
χ2

d3

)
L1 − (b2,sup −

χ2

d3

l)l2.

Thus, from (3.51) and L1 > 0, we get

lχ2

d3

L2 ≥ b0,inf −
((
b1,sup − k

χ2

d3

)
+

+ k
χ2

d3

){a0,sup − a2,inf l2}
a1,inf − χ1k

d3

− (b2,sup −
χ2

d3

l)l2.

Therefore

lχ2

d3

(a1,inf −
χ1k

d3

)L2 ≥ b0,inf(a1,inf −
χ1k

d3

)−
((
b1,sup − k

χ2

d3

)
+

+ k
χ2

d3

)
a0,sup

−
(

(a1,inf −
χ1k

d3

)(b2,sup −
χ2

d3

l)−
((
b1,sup − k

χ2

d3

)
+

+ k
χ2

d3

)
a2,inf

)
l2.

It follows from the last inequality, (3.52), and (3.55) that

lχ2

d3

(a1,inf −
χ1k

d3

)

{
b0,sup − χ2l

d3
l2 +

(
b1,inf − k χ2

d3

)
−
L1

}
b2,inf − χ2l

d3

≥ b0,inf(a1,inf −
χ1k

d3

)−
((
b1,sup − k

χ2

d3

)
+

+ k
χ2

d3

)
a0,sup

−
(

(a1,inf −
χ1k

d3

)(b2,sup −
χ2

d3

l)−
((
b1,sup − k

χ2

d3

)
+

+ k
χ2

d3

)
a2,inf

)
l2.

Therefore from (3.51), we get

lχ2

d3

(a1,inf −
χ1k

d3

)

{
b0,sup − χ2l

d3
l2 +

(
b1,inf − k χ2

d3

)
−

{
a0,sup−a2,inf l2

}
a1,inf−

χ1k
d3

}
b2,inf − χ2l

d3

≥ b0,inf(a1,inf −
χ1k

d3

)−
((
b1,sup − k

χ2

d3

)
+

+ k
χ2

d3

)
a0,sup

−
(

(a1,inf −
χ1k

d3

)(b2,sup −
χ2

d3

l)−
((
b1,sup − k

χ2

d3

)
+

+ k
χ2

d3

)
a2,inf

)
l2.
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Thus

{
(a1,inf −

χ1k

d3

)
[
(b2,inf −

χ2l

d3

)(b2,sup −
χ2l

d3

)− (l
χ2

d3

)2
]

︸ ︷︷ ︸
B1

}
l2

−
{[((

b1,sup − k
χ2

d3

)
+

+ k
χ2

d3

)
(b2,inf −

χ2l

d3

) +
lχ2

d3

(
b1,inf − k

χ2

d3

)
−

]
a2,inf︸ ︷︷ ︸

B2

}
l2

≥
(
b0,inf(b2,inf −

χ2l

d3

)− lχ2

d3

b0,sup

)(
a1,inf −

χ1k

d3

)
︸ ︷︷ ︸

A1

−
[((

b1,sup − k
χ2

d3

)
+

+ k
χ2

d3

)
(b2,inf −

χ2l

d3

) +
lχ2

d3

(
b1,inf − k

χ2

d3

)
−

]
a0,sup︸ ︷︷ ︸

A2

,

which is equivalent to

Bl2 ≥ A, (3.56)

with B = B1 −B2 and A = A1 − A2. Note that (3.15) yields that A > 0. This combined with

(3.56) implies that B > 0. Therefore, inequality (3.56) becomes

l2 ≥
A

B
.

Then thanks to equation (3.54), we get

B >
a2,inf

a0,sup

A.

That means

a0,sup(a1,inf −
χ1k

d3

)
[
(b2,inf −

χ2l

d3

)(b2,sup −
χ2l

d3

)− (l
χ2

d3

)2
]

− a0,sup

[((
b1,sup − k

χ2

d3

)
+

+ k
χ2

d3

)
(b2,inf −

χ2l

d3

) +
lχ2

d3

(
b1,inf − k

χ2

d3

)
−

]
a2,inf

> a2,inf

(
b0,inf(b2,inf −

χ2l

d3

)− lχ2

d3

b0,sup

)(
a1,inf −

χ1k

d3

)
−
[((

b1,sup − k
χ2

d3

)
+

+ k
χ2

d3

)
(b2,inf −

χ2l

d3

) +
lχ2

d3

(
b1,inf − k

χ2

d3

)
−

]
a0,supa2,inf .
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Thus

a0,sup

[
(b2,inf −

χ2l

d3

)(b2,sup −
χ2l

d3

)− (l
χ2

d3

)2
]
> a2,inf

(
b0,inf(b2,inf −

χ2l

d3

)− lχ2

d3

b0,sup

)
,

which contradicts to (3.14). Hence L1 = 0.

Next, we prove (3.17) and (3.18). Since L1 = 0, we get from (3.52) and (3.53) respectively

that

L2 ≤
b0,sup − χ2l

d3
l2

b2,inf − χ2l
d3

.

and

l2 ≥
b0,inf − χ2l

d3
L2

b2,sup − χ2l
d3

.

(3.17) then follows. Furthermore (3.18) follows from (3.16), (3.17) and elliptic comparison

principle.

Finally, assume that (3.19) has a unique positive entire solution (v∗(x, t; b̃0, b̃2), w∗(x, t; b̃0, b̃2))

for any (b̃0, b̃2) ∈ H(b0, b2). We claim that (3.20) holds. Indeed, if (3.20) does not hold. Then

there are ε̃0 > 0 and tn →∞ such that

‖v(·, tn + t0; t0, u0, v0)− v∗(·, tn + t0; b0, b2)‖∞ ≥ ε̃0 ∀ n = 1, 2, · · · .

Without loss of generality, we may assume that

lim
n→∞

(b0(t+ tn + t0, x), b2(t+ tn + t0, x)) = (b̃0(t, x), b̃2(t, x))

and

lim
n→∞

(u(x, t+ tn + t0; t0, u0, v0), v(x, t+ tn + t0; t0, u0, v0), w(x, t+ tn + t0; t0, u0, v0))

= (0, ṽ(x, t), w(x, t))
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locally uniformly in (t, x) ∈ R×Ω̄. Then (ṽ(x, t), w̃(x, t)) is a positive entire solution of (3.19)

and

‖ṽ(·; 0)− v∗(·, 0; b̃0, b̃2)‖∞ ≥ ε̃0,

which is a contradiction. Hence (3.20) holds.

3.7 Optimal Attracting Rectangle and Proof of Theorem 3.5

In this section, we construct optimal attracting rectangles for (3.1) and prove Theorem 3.5. We

first prove two important lemmas.

Lemma 3.11. Consider (3.1). For given u0, v0 ∈ C0(Ω̄) with u0, v0 ≥ 0, let u0 = maxx∈Ω̄ u0(x),

u0 = minx∈Ω̄ u0(x), v0 = maxx∈Ω̄ v0(x) , v0 = minx∈Ω̄ v0(x).

(1) Assume (H8). Let r0
1 = r0

2 = 0, r̄0
1 = Ā1, r̄0

2 = Ā2, and



r̄n1 =
a0,sup−a2,infrn−1

2 −k χ1
d3

rn−1
1

a1,inf−k
χ1
d3

r̄n2 =
b0,sup−b1,infrn−1

1 −k χ1
d3

rn−1
2

b2,inf−l
χ2
d3

rn1 =
a0,inf−a2,supr̄n2−k

χ1
d3
r̄n1

a1,sup−k χ1d3

rn2 =
b0,inf−b1,supr̄n1−l

χ2
d3
r̄n2

b2,sup−lχ2d3

for n = 1, 2, · · · . Then


0 < rn−1

1 ≤ rn1 ≤ r̄n1 ≤ r̄n−1
1 ≤ Ā1

0 < rn−1
2 ≤ rn2 ≤ r̄n2 ≤ r̄n−1

2 ≤ Ā2

(3.57)

for n = 2, · · ·, and for any given u0, v0 ∈ C0(Ω̄) with inf u0 > 0, inf v0 > 0, ε > 0, and

n ∈ N with n ≥ 1, there exists tnε,u0,v0,u0,v0 ≥ tn−1
ε,u0,v0,u0,v0

(t0ε,u0,v0,u0,v0 = 0) such that


rn1 − ε ≤ u(x, t; t0, u0, v0) ≤ r̄n1 + ε

rn2 − ε ≤ v(x, t; t0, u0, v0) ≤ r̄n2 + ε,

(3.58)
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for all x ∈ Ω̄, t0 ∈ R and t ≥ t0 + tnε,u0,v0,u0,v0 .

(2) Assume (H9). Let s0
1 = s0

2 = 0, s̄0
1 = B̄1, s̄0

2 = B̄2, and



s̄n1 =

(
a0,sup−(a2,inf+l

χ1
d3

)sn−1
2 −k χ1

d3
sn−1
1

)
(b2,inf−l

χ2
d3

)

(a1,inf−k
χ1
d3

)(b2,inf−l
χ2
d3

)−lk χ1χ2
d23

+
lχ1
d3

(
b0,sup−(b1,inf+k

χ2
d3

)sn−1
1 −lχ2

d3
sn−1
2

)
(a1,inf−k

χ1
d3

)(b2,inf−l
χ2
d3

)−lk χ1χ2
d23

s̄n2 =

(
b0,sup−(b1,inf+k

χ2
d3

)sn−1
1 −lχ2

d3
sn−1
2

)
(a1,inf−k

χ1
d3

)

(a1,inf−k
χ1
d3

)(b2,inf−l
χ2
d3

)−lk χ1χ2
d23

+
kχ2
d3

(
a0,sup−(a2,inf+l

χ1
d3

)sn−1
2 −k χ1

d3
sn−1
1

)
(a1,inf−k

χ1
d3

)(b2,inf−l
χ2
d3

)−lk χ1χ2
d23

sn1 =

(
a0,inf−(a2,sup+l

χ1
d3

)s̄n2−k
χ1
d3
s̄n1

)
(b2,sup−lχ2d3 )

(a1,sup−k χ1d3 )(b2,sup−lχ2d3 )−lk χ1χ2
d23

+
lχ1
d3

(
b0,inf−(b1,sup+k

χ2
d3

)s̄n1−l
χ2
d3
s̄n2

)
(a1,sup−k χ1d3 )(b2,sup−lχ2d3 )−lk χ1χ2

d23

sn2 =

(
b0,inf−(b1,sup+k

χ2
d3

)s̄n1−l
χ2
d3
s̄n2

)
(a1,sup−k χ1d3 )

(a1,sup−k χ1d3 )(b2,sup−lχ2d3 )−lk χ1χ2
d23

+
kχ2
d3

(
a0,inf−(a2,sup+l

χ1
d3

)s̄n2−k
χ1
d3
s̄n1

)
(a1,sup−k χ1d3 )(b2,sup−lχ2d3 )−lk χ1χ2

d23

for n = 1, 2, · · · . Then


0 < sn−1

1 ≤ sn1 ≤ s̄n1 ≤ s̄n−1
1 ≤ B̄1

0 < sn−1
2 ≤ sn2 ≤ s̄n2 ≤ s̄n−1

2 ≤ B2

(3.59)

for n = 2, · · ·, and for any given u0, v0 ∈ C0(Ω̄) with inf u0 > 0, inf v0 > 0, ε > 0, and

n ∈ N with n ≥ 1, there exists tnε,u0,v0,u0,v0 ≥ tn−1
ε,u0,v0,u0,v0

(t0ε,u0,v0,u0,v0 = 0) such that


sn1 − ε ≤ u(x, t; t0, u0, v0) ≤ s̄n1 + ε

sn2 − ε ≤ v(x, t; t0, u0, v0) ≤ s̄n2 + ε,

(3.60)

for all x ∈ Ω̄, t0 ∈ R and t ≥ t0 + tnε,u0,v0,u0,v0 .

Proof. (1) First of all, note that r̄1
1 = r̄0

1 and r̄1
2 = r̄0

2, and by (H8), 0 < r1
1 ≤ r̄1

1 and 0 < r1
2 ≤ r̄1

2.

(3.57) then follows from the definition of r̄ni and rnn (i = 1, 2) directly.

We then prove (3.58). We do so by induction.

First we claim that there exists t1ε,u0,v0,u0,v0 ≥ 0 such that


r1
1 − ε ≤ u(x, t; t0, u0, v0) ≤ r̄1

1 + ε

r1
2 − ε ≤ v(x, t; t0, u0, v0) ≤ r̄1

2 + ε

(3.61)
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for all x ∈ Ω̄, t0 ∈ R and t ≥ t0 + t1ε,u0,v0,u0,v0 .

In fact, from the first and third equations of (3.1), we get

ut ≤ d1∆u− χ1∇w · ∇u+ u
(
a0,sup − (a1,inf − k

χ1

d3

)u
)
. (3.62)

Let u(t; t0, u0) be the solution of

u′ = u
(
a0,sup − (a1,inf − k

χ1

d3

)u
)

with u(t0; t0, u0) = u0. Then by solving, we get

u(t; t0, u0) =
c0a

c0b− e−a(t−t0)
∀ t ≥ t0,

where a = a0,sup, b = a1,inf − k χ1

d3
, and c0 = u0

bu0−a . (Actually u(t; t0, u0) > 0 for all t >

t0 − ln(c0b)
a

and blows up in backward time at t∗ = t0 − ln(c0b)
a

< t0.) It then follows from

parabolic comparison principle that

u(x, t; t0, u0, v0) ≤ c0a

c0b− e−a(t−t0)
∀ t ≥ t0, ∀ t0 ∈ R.

Thus

u(x, t+ t0; t0, u0, v0) ≤ u(t+ t0; t0, u0) =
c0a

c0b− e−at
∀ t ≥ 0, ∀ t0 ∈ R.

Therefore there is t1ε,u0 > 0 such that

u(x, t; t0, u0, v0) ≤ r̄1
1 + ε ∀t ≥ t0 + t1ε,u0 , ∀ t0 ∈ R. (3.63)

Similarly using the second and third equation of (3.1), there exists t1ε,v0 > 0 such that

v(x, t; t0, u0, v0) ≤ r̄1
2 + ε ∀ t ≥ t0 + t1ε,v0 , ∀ t0 ∈ R. (3.64)
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Choose 0 < ε̃ ≤ ε such that

a0,inf − a2,supr̄
1
2 − k

χ1

d3
r̄1

1 − ε̃
(
a2,sup + k χ1

d3

)
a1,sup − kχ1

d3

− ε̃ ≥ r1
1 − ε.

Let t1ε̃,u0,v0 = max{tε̃,u0 , tε̃,v0}. Then for t ≥ t1ε̃,u0,v0 , from (3.63), (3.64), the first and third

equations of (3.1), we get

ut ≥ d1∆u−χ1∇w ·∇u+u
(
a0,inf − a2,supr̄

1
2− k

χ1

d3

r̄1
1− (a1,sup− k

χ1

d3

)u− ε̃
(
a2,sup + k

χ1

d3

))
.

Thus similar arguments as those lead to (3.63) implies that there is t1ε,u0,u0,v0 ≥ t1ε,u0,v0 such that

r1
1 − ε ≤ u(x, t; t0, u0, v0) ∀ t ≥ t0 + t1ε,u0,u0,v0 , ∀ t0 ∈ R. (3.65)

Similarly, from (3.63), (3.64), the second and third equation of (3.1) and similar arguments as

those lead to (3.63), there is t1ε,v0,u0,v0 ≥ t1ε,v0,v0 such that

r1
2 − ε ≤ v(x, t; t0, u0, v0) ∀ t ≥ t0 + t1ε,u0,u0,v0 , ∀ t0 ∈ R. (3.66)

Choose t1ε,u0,v0,u0,v0 = max{tε,u0,u0,v0 , tε,v0,u0,v0}(≥ 0). Then (3.61) follows from (3.63), (3.64),

(3.65) and (3.66).

Next, assume that for any ε > 0, there is tkε,u0,v0,u0,v0 ≥ tk−1
ε,u0,v0,u0,v0

(k ≥ 2) such that


rk1 − ε ≤ u(x, t; t0, u0, v0) ≤ r̄k1 + ε

rk2 − ε ≤ v(x, t; t0, u0, v0) ≤ r̄k2 + ε

(3.67)

for all x ∈ Ω̄, t0 ∈ R and t ≥ t0 + tkε,u0,v0,u0,v0 . We claim that there is there is tk+1
ε,u0,v0,u0,v0

≥

tkε,u0,v0,u0,v0 (k ≥ 2) such that


rk+1
1 − ε ≤ u(x, t; t0, u0, v0) ≤ r̄k+1

1 + ε

rk+1
2 − ε ≤ v(x, t; t0, u0, v0) ≤ r̄k+1

2 + ε
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for all x ∈ Ω̄, t0 ∈ R and t ≥ t0 + tk+1
ε,u0,v0,u0,v0

.

In fact, choose 0 < ε̃ ≤ ε such that

a0,sup − a2,infrk2 − k
χ1

d3
rk1 + ε̃

(
a2,inf + k χ1

d3

)
a1,inf − kχ1

d3

+ ε̃ ≤ r̄k+1
1 + ε

and
a0,inf − a2,supr̄

k+1
2 − k χ1

d3
r̄k+1

1 − ε̃
(
a2,sup + k χ1

d3

)
a1,sup − kχ1

d3

− ε̃ ≥ rk+1
1 − ε.

We have that for t ≥ t0 + tkε̃,u0,v0,u0,v0 ,

ut ≤ d1∆u− χ1∇w · ∇u+ u
(
a0,sup − a2,infrk2 − k

χ1

d3

rk1 − (a1,inf − k
χ1

d3

)u− ε̃
(
a2,inf + k

χ1

d3

))
Then there is t̃k+1

ε,u0,v0,u0,v0
≥ tkε,u0,v0,u0,v0 such that for t ≥ t̃k+1

ε,u0,v0,u0,v0

u(x, t; t0, u0, v0) ≤ r̄k+1 + ε ∀ x ∈ Ω̄, ∀ t0 ∈ R ∀ t ≥ t0 + t̃k+1
ε,u0,v0,u0,v0

.

This implies that for t ≥ t0 + t̃k+1
ε,u0,v0,u0,v0

,

ut ≥ d1∆u−χ1∇w·∇u+u
(
a0,inf−a2,supr̄

k+1
2 −kχ1

d3

r̄k+1
1 −(a1,sup−k

χ1

d3

)u−ε̃
(
a2,sup + k

χ1

d3

))
.

It then follows that there is t̄k+1
ε,u0,v0,u0,v0

≥ tkε,u0,v0,u0,v0 such that for t ≥ t0 + t̄k+1
ε,u0,v0,u0,v0

,

rk+1
1 − ε ≤ u(x, t; t0, u0, v0) ≤ r̄k+1

1 + ε.

Similarly, we can prove that there is t̂k+1
ε,u0,v0,u0,v0

≥ tkε,u0,v0,u0,v0 such that for t ≥ t0 +

t̂k+1
ε,u0,v0,u0,v0

,

rk+1
2 − ε ≤ v(x, t; t0, u0, v0) ≤ r̄k+1

2 + ε.

The claim then follows with tk+1
ε,u0,v0,u0,v0

= max{t̄k+1
ε,u0,v0,u0,v0

, t̂k+1
ε,u0,v0,u0,v0

}.

Now, by induction, (3.58) holds for all n ≥ 1. This completes the proof of (1).

120



(2) It can be proved by the similar arguments as those in (1). We outline some idea in the

following.

First of all, note that s̄1
1 = s̄0

1 = B̄1 and s̄1
2 = s̄0

2 = B̄1, and by (H9), 0 < s1
1 ≤ s̄1

1 and

0 < s1
2 ≤ s̄1

2. (3.59) then follows from the definition of s̄ni and sni (i = 1, 2) directly.

We prove (3.60) by induction.

To this end, we first claim that there exists t1ε,u0,v0,u0,v0 ≥ 0 such that


s1
1 − ε ≤ u(x, t; t0, u0, v0) ≤ s̄1

1 + ε

s1
2 − ε ≤ v(x, t; t0, u0, v0) ≤ s̄1

2 + ε

(3.68)

for all x ∈ Ω̄, t0 ∈ R and t ≥ t0 + t1ε,u0,v0,u0,v0 .

In fact, note that


ut ≤ d1∆u− χ1∇w · ∇u+ u

(
a0,sup − (a2,inf + lχ1

d3
)s0

2 − k
χ1

d3
s0
1 − (a1,inf − k χ1

d3
)u+ lχ1

d3
v
)

vt ≤ d2∆v − χ2∇w · ∇v + v
(
b0,sup − (b1,inf + k χ2

d3
)s0

1 − l
χ2

d3
s0
2 − (b2,inf − lχ2

d3
)v + k χ2

d3
u
)
.

Then for any ε > 0, there is t̄1ε,u0,v0,u0,v0 ≥ 0 such that


u(x, t; t0, u0, v0) ≤ s̄1

1 + ε

v(x, t; t,u0, v0) ≤ s̄1
2 + ε

for all x ∈ Ω, t0 ∈ R, and t ≥ t0 + t̄1ε,u0,v0,u0,v0 . This implies that for any ε̃ > 0, t ≥

t0 + t̄1ε̃,u0,v0,u0,v0 ,


ut ≥ d1∆u− χ1∇w · ∇u+ u

(
a0,inf − (a2,sup + lχ1

d3
)(s̄1

2 + ε̃)− k χ1

d3
(s̄1

1 + ε̃)− (a1,sup − k χ1

d3
)u+ lχ1

d3
v
)

vt ≥ d2∆v − χ2∇w · ∇v + v
(
b0,inf − (b1,sup + k χ2

d3
)(s̄1

1 + ε̃)− lχ2

d3
(s̄1

2 + ε̃)− (b2,sup − lχ2

d3
)v + k χ2

d3
u
)
.
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Choose 0 < ε̃ < ε such that
(
a0,inf−(a2,sup+l

χ1
d3

)(s̄12+ε̃)−k χ1
d3

(s̄11+ε̃)
)

(b2,sup−lχ2d3 )

(a1,sup−k χ1d3 )(b2,sup−lχ2d3 )−lk χ1χ2
d23

+
lχ1
d3

(
b0,inf−(b1,sup+k

χ2
d3

)(s̄11+ε̃)−lχ2
d3

(s̄12+ε̃)
)

(a1,sup−k χ1d3 )(b2,sup−lχ2d3 )−lk χ1χ2
d23

> s1
1 − ε(

b0,inf−(b1,sup+k
χ2
d3

)(s̄11+ε̃)−lχ2
d3

(s̄12+ε̃)
)

(a1,sup−k χ1d3 )

(a1,sup−k χ1d3 )(b2,sup−lχ2d3 )−lk χ1χ2
d23

+
kχ2
d3

(
a0,inf−(a2,sup+l

χ1
d3

)(s̄12+ε̃)−k χ1
d3

(s̄11+ε̃)
)

(a1,sup−k χ1d3 )(b2,sup−lχ2d3 )−lk χ1χ2
d23

> s1
2 − ε.

Then there is t1ε,u0,v0,u0,v0 ≥ t̄1ε,u0,v0,u0,v0 such that


u(x, t; t0, u0, v0) ≥ s1

1 − ε

v(x, t; t,u0, v0) ≥ s1
2 − ε

for x ∈ Ω, t0 ∈ R, and t ≥ t0 + t1ε,u0,v0,u0,v0 . The claim (3.68) then follows.

Next, assume that for any ε > 0, there is tkε,u0,v0,u0,v0 ≥ tk−1
ε,u0,v0,u0,v0

(k ≥ 2) such that


sk1 − ε ≤ u(x, t; t0, u0, v0) ≤ s̄k1 + ε

sk2 − ε ≤ v(x, t; t0, u0, v0) ≤ s̄k2 + ε

for all x ∈ Ω̄, t0 ∈ R and t ≥ t0 + tkε,u0,v0,u0,v0 . By the similar arguments as in (1), there is

there is tk+1
ε,u0,v0,u0,v0

≥ tkε,u0,v0,u0,v0 (k ≥ 2) such that


sk+1
1 − ε ≤ u(x, t; t0, u0, v0) ≤ s̄k+1

1 + ε

sk+1
2 − ε ≤ v(x, t; t0, u0, v0) ≤ s̄k+1

2 + ε

for all x ∈ Ω̄, t0 ∈ R and t ≥ t0 + tk+1
ε,u0,v0,u0,v0

. (3.60) then follows by induction and (2) is thus

proved.

Lemma 3.12. Consider (3.1).

(1) Assume (H8). For any given n ∈ N, u0, v0 ∈ C0(Ω̄) with u0, v0 ≥ 0 and u0, v0 6≡ 0 and

t0 ∈ R, if

rn1 ≤ u0 ≤ r̄n1 and rn2 ≤ v0 ≤ r̄n2 , (3.69)
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then

rn1 ≤ u(x, t; t0, u0, v0) ≤ r̄n1 and rn2 ≤ v(x, t; t0, u0, v0) ≤ r̄n2 ∀ t ≥ t0. (3.70)

(2) Assume (H9). For any given n ∈ N, u0, v0 ∈ C0(Ω̄) with u0, v0 ≥ 0 and u0, v0 6≡ 0 and

t0 ∈ R, if

sn1 ≤ u0 ≤ s̄n1 and sn2 ≤ v0 ≤ s̄n2 ,

then

sn1 ≤ u(x, t; t0, u0, v0) ≤ s̄n1 and sn2 ≤ v(x, t; t0, u0, v0) ≤ s̄n2 ∀ t ≥ t0.

Proof. (1) For given n ∈ N, suppose (3.69) holds. We prove (3.70) holds in two steps.

Step 1. We prove in this step that the following holds for k = 1,

rk1 ≤ u(x, t; t0, u0, v0) ≤ r̄k1 and rk2 ≤ v(x, t; t0, u0, v0) ≤ r̄k2 ∀ t ≥ t0. (3.71)

Recall that (3.62) reads as

ut ≤ d1∆u− χ1∇w · ∇u+ u
(
a0,sup − (a1,inf − k

χ1

d3

)u
)
.

Thus, by parabolic comparison principe and ū0 ≤ r̄n1 ≤ r̄1
1, we get that

0 ≤ u(x, t; t0, u0, v0) ≤ r̄1
1 ∀ t ≥ t0. (3.72)

Similarly, by parabolic comparison principe and v̄0 ≤ r̄n2 ≤ r̄1
2, we can get that

0 ≤ v(x, t; t0, u0, v0) ≤ r̄1
2 ∀ t ≥ t0. (3.73)
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Therefore, for t ≥ t0,

ut ≥ d1∆u− χ1∇w · ∇u+ u
(
a0,inf − a2,supr̄

1
2 − k

χ1

d3

r̄1
1 − (a1,sup − k

χ1

d3

)u
))
.

By parabolic comparison principe and r1
1 ≤ rn1 ≤ u0, we have that

r1
1 ≤ u(x, t; t0, u0, v0) ∀ t ≥ t0. (3.74)

Similarly, by parabolic comparison principe and r1
2 ≤ rn2 ≤ v0, we have that

r1
2 ≤ v(x, t; t0, u0, v0) ∀ t ≥ t0.

This together with (3.72), (3.73), and (3.74) implies that (3.71) holds for k = 1.

Step 2. Suppose that (3.71) holds for k = 1, 2, · · · , l (l ≤ n − 1), we prove that (3.71) holds

for k = l + 1.

Indeed since (3.71) holds for 1 ≤ k ≤ l, for t ≥ t0, we get from the first and third equation

of (3.1) that

ut ≤ d1∆u− χ1∇w · ∇u+ u
(
a0,sup − a2,infrl2 − k

χ1

d3

rl1 − (a1,inf − k
χ1

d3

)u
)
.

Thus, by parabolic comparison principe and ū0 ≤ r̄n1 ≤ r̄l+1
1 , we get that

u(x, t; t0, u0, v0) ≤ r̄l+1
1 ∀t ≥ t0. (3.75)

Similarly, from the second and third equation of (3.1) and parabolic comparison principe, we

get since v̄0 ≤ r̄n2 ≤ r̄l+1
2 that

v(x, t; t0, u0, v0) ≤ r̄l+1
2 ∀t ≥ t0. (3.76)
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Next again from the first and third equation of (3.1) that

ut ≥ d1∆u− χ1∇w · ∇u+ u
(
a0,inf − a2,supr̄

l
2 − k

χ1

d3

r̄l1 − (a1,sup − k
χ1

d3

)u
)
.

Therefore by parabolic comparison principe we get since rl+1
1 ≤ rn1 ≤ u0 that

rl+1
1 ≤ u(x, t; t0, u0, v0) ∀t ≥ t0. (3.77)

Similarly, from the second and third equation of (3.1) and parabolic comparison principe, we

get since rl+1
2 ≤ rn2 ≤ u0 that

rl+1
2 ≤ v(x, t; t0, u0, v0) ∀t ≥ t0.

This together with (3.75), (3.76), and (3.77) implies that (3.71) holds for k = l+ 1. (3.70) then

follows by induction.

(2) It can be proved by the similar arguments as those in (1).

Now we prove Theorem 3.5.

Proof of Theorem 3.5. (1) First of all, from (3.57), the sequences rn1 and rn2 are nondecreasing

bounded sequences of nonnegative real numbers and the sequences r̄n1 and r̄n2 non-increasing

bounded sequences of nonnegative real numbers. Thus there exist real numbers 0 < r1 ≤ r̄1 ≤

Ā1 and 0 < r2 ≤ r̄2 ≤ Ā2 such that


limn→∞ rn1 = r1, limn→∞ r̄

n
1 = r̄1,

limn→∞ rn2 = r2, limn→∞ r̄
n
2 = r̄2.

Combining this with the definition of r̄ni and rni (i = 1, 2), we get

r̄1 =
a0,sup − a2,infr2 − k χ1

d3
r1

a1,inf − k χ1

d3

,
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r̄2 =
b0,sup − b1,infr1 − k χ1

d3
r2

b2,inf − lχ2

d3

,

r1 =
a0,inf − a2,supr̄2 − k χ1

d3
r̄1

a1,sup − k χ1

d3

,

and

r2 =
b0,inf − b1,supr̄1 − lχ2

d3
r̄1

b2,sup − lχ2

d3

.

Hence (r̄1, r̄2, r1, r2) is the unique solution of (3.22).

Next, we prove (3.25). By (3.58) and (3.7), for any ε > 0, we can choose N such


r1 − 2ε ≤ rN1 − ε ≤ u(x, t; t0, u0, v0) ≤ r̄N1 + ε ≤ r̄1 + 2ε

r2 − 2ε ≤ rN2 − ε ≤ v(x, t; t0, u0, v0) ≤ r̄N2 + ε ≤ r̄2 + 2ε,

for all x ∈ Ω̄, t0 ∈ R and t ≥ t0 + tNε,u0,v0,u0,v0 . Thus (3.10) holds.

Now suppose that (3.24) holds. We prove (3.25). Assume that

r1 ≤ u0 ≤ r̄1 and r2 ≤ v0 ≤ r̄2.

Since the sequences rn1 and rn2 are nondecreasing bounded sequences of nonnegative real num-

bers and the sequences r̄n1 and r̄n2 non-increasing bounded sequences of nonnegative real num-

bers, from (3.7), we get for n ∈ N that

rn1 ≤ r1 ≤ u0 ≤ r̄1 ≤ r̄n1 and rn2 ≤ r2 ≤ v0 ≤ r̄2 ≤ r̄n2 .

By Lemma 3.12,

rn1 ≤ u(x, t; t0, u0, v0) ≤ r̄n1 and rn2 ≤ v(x, t; t0, u0, v0) ≤ r̄n2 ∀n ∈ N , t ≥ t0.

Then as n→∞, we get

r1 ≤ u(x, t; t0, u0, v0) ≤ r̄1 and r2 ≤ v(x, t; t0, u0, v0) ≤ r̄2 ∀t ≥ t0.
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Thus (3.25) holds.

(2) It follows from the similar arguments as those in (1).

3.8 Uniqueness and Stability of Coexistence States and Proof of Theorem 3.6

In this section, we establish the nonlinear stability and uniqueness of entire solutions of system

(3.1) and prove Theorem 3.6 and Corollary 3.1.

We first prove Theorem 3.6(3).

Proof of Theorem 3.6(3). Recall that (3.8) implies (H4) (see Remark 3.7(2)). For given t0 ∈ R

and u0, v0 ∈ C0(Ω̄) with u0(x), v0(x) ≥ 0, u0(·), v0(·) 6= 0, let (u(·, t; t0, u0, v0), v(·, t; t0, u0, v0),

w(·, t; t0, u0, v0)) be the solution of (3.1) given by Theorem 3.1(2). Note that (u(·, t; t0, u0, v0),

v(·, t; t0, u0, v0), w(·, t; t0, u0, v0)) exists for all t > t0 and without loss of generality, we may

assume that u0(x), v0(x) > 0 for all x ∈ Ω̄.

Let (u∗∗(t), v∗∗(t), w∗∗(t)) be a spatially homogeneous coexistence state of (3.1) (see Remark

3.7(1)). We first prove that (3.29) and (3.30) hold.

To this end, let (u(t), u(t), v(t), v(t)) be as in Lemma 3.3. Then by Lemma 3.3, we have

u(t) ≤ u(x, t; t0, u0, v0) ≤ ū(t), v(t) ≤ v(x, t; t0, u0, v0) ≤ v̄(t) ∀ x ∈ Ω̄, t ≥ t0.

(3.78)

We claim that for any ε > 0, there is tε,u0,v0,t0 > 0 such that

u(t)− ε ≤ u∗∗(t) ≤ ū(t) + ε, v(t)− ε ≤ v∗∗(t) ≤ v̄(t) + ε ∀ t ≥ t0 + tε,u0,v0,t0 . (3.79)

Indeed let (u1(t), v1(t)) be the solution of (3.44) with (u1(t0), v1(t0)) = (u0, v0). Note that

(u(t), v(t)) satisfies


ut ≥ u(t)(a0(t)− a1(t)u(t)− a2(t)v(t))

vt ≤ v(t)(b0(t)− b1(t)u(t)− b2(t)v(t)).
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Then by comparison principle for two species competition systems,

u1(t) ≤ u(t) and v1(t) ≥ v(t) for all t ≥ t0. (3.80)

Similarly, let (u2(t), v2(t)) be the solution of (3.44) with (u2(t0), v2(t0)) = (u0, v0). Note that


ut ≤ u(t)(a0(t)− a1(t)u(t)− a2(t)v(t))

vt ≥ v(t)(b0(t)− b1(t)u(t)− b2(t)v(t))

By comparison principle for two species competition systems again,

u2(t) ≥ u(t) and v2(t) ≤ v(t) for all t ≥ t0. (3.81)

By Lemma 3.9,

lim
t→∞

(
|ui(t)− u∗∗(t)|+ |vi(t)− v∗∗(t)|

)
= 0 for i = 1, 2.

This implies that for any ε > 0, there is tε,u0,v0,t0 > 0 such that

u2(t)− ε ≤ u∗∗(t) ≤ u1(t) + ε, v1(t)− ε ≤ v∗∗(t) ≤ v2(t) + ε ∀ t ≥ t0 + tε,u0,v0,t0 .

This together with (3.80) and (3.81) implies (3.79).
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By (3.78) and (3.79), to show (3.29) and (3.30), it suffices to show 0 ≤ ln u(t)
u(t)

+ ln v(t)
v(t)
−→

0 as t→∞. Assume that t > t0. By (3.33), we have

u′

u = χ1

d3

(
ku+ lv − ku− lv

)
+
[
a0(t)− a1(t)u− a2(t)v

]
u′

u = χ1

d3

(
ku+ lv − ku− lv

)
+
[
a0(t)− a1(t)u− a2(t)v

]
v′

v = χ2

d3

(
ku+ lv − ku− lv

)
+
[
b0(t)− b2(t)v − b1(t)u

]
v′

v = χ2

d3

(
ku+ lv − ku− lv

)
+
[
b0(t)− b2(t)v − b1(t)u

]
.

This together with (3.5) implies that

d

dt

(
ln
u

u
+ ln

v

v

)
=
u′

u
− u′

u
+
v′

v
− v′

v
≤ −min{α1, β1} ((u− u) + (v − v)) ≤ 0, (3.82)

where

0 < α1 = inf
t∈R
{a1(t)− b1(t)− 2k

χ1 + χ2

d3

},

and

0 < β1 = inf
t∈R
{b2(t)− a2(t)− 2l

χ1 + χ2

d3

}.

Thus by integrating (3.82) over (t0, t), we get

0 ≤ ln
u(t)

u(t)
+ ln

v(t)

v(t)
≤ ln

u0

u0

+ ln
v0

v0

, and then
u(t)v(t)

u(t)v(t)
≤ u0v0

u0v0

.

We have by mean value theorem that

− ((u− u) + (v − v)) ≤ −u
(

ln
u

u

)
− v
(

ln
v

v

)
Therefore

d

dt

(
ln
u

u
+ ln

v

v

)
≤ −

(
min{α1, β1}

)(
min{α2, β2}

)(
ln
u

u
+ ln

v

v

)
, (3.83)
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where

0 < α2 := α2,t0,u0,v0 = inf
t≥t0

u(t)
u0v0

u0v0

,

and

0 < β2 := β2,t0,u0,v0 = inf
t≥t0

v(t)
u0v0

u0v0

.

By letting ε0,t0,u0,v0 =
(

min{α1, β1}
)(

min{α2, β2}
)
, we have ε0,t0,u0,v0 > 0 and

0 ≤ ln
u

u
+ ln

v

v
≤
(

ln
u0

u0

+ ln
v0

v0

)
e−ε0,t0,u0,v0 (t−t0) → 0 as t→∞.

Hence (3.29) and (3.30) hold.

Next, we show that (3.1) has a unique spatially homogeneous coexistence state. Suppose

that (u∗i (t), v
∗
i (t), w

∗
i (t)) (i = 1, 2) are spatially homogeneous coexistence states of (3.1).

Let u01 = max{supt∈R u
∗
1(t), supt∈R u

∗
2(t)}, v01 = min{inft∈R v

∗
1(t), inft∈R v

∗
2(t)}, u02 =

min{inft∈R u
∗
1(t), inft∈R u

∗
2(t)}, and v02 = max{supt∈R v

∗
1(t), supt∈R v

∗
2(t)}. For any t0 ∈ R,

let (ui(t), vi(t)) = (u(t; t0, u0i, v0i), v(t; t0, u0i, v0i)) be the solution of (3.44) with

(u(t0; t0, u0i, v0i), v(t0; t0, u0i, v0i)) = (u0i, v0i)

(i = 1, 2). By comparison principle for two species competition systems,

u2(t) ≤ u∗i (t) ≤ u1(t) and v1(t) ≤ v∗i (t) ≤ v2(t) (3.84)

for i = 1, 2 and t ≥ t0. By the definition of coexistence states, there are 0 < δ < K such that

δ ≤ u∗i (t) ≤ K, δ ≤ v∗i (t) ≤ K (3.85)

for i = 1, 2 and all t ∈ R. By the similar arguments of (3.82), we have

d

dt
ln
u1(t)

u2(t)
+
d

dt
ln
v2(t)

v1(t)
≤ −min{α̃1, β̃1}

(
u1(t)− u2(t) + v2(t)− v1(t)

)
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for t ≥ t0, where

α̃1 = inf
t∈R

(a1(t)− b1(t)), β̃1 = inf
t∈R

(b2(t)− a2(t)).

Let

α̃2 = inf
t∈R
u∗1(t)

u02v01

u01v02

, β̃2 = inf
t∈R
v∗2(t)

u02v01

u01v02

and ε̃0 =
(

min{α̃1, β̃1}
)(

min{α̃2, β̃2}
)
. Then by the similar arguments of (3.83), we have

0 ≤ ln
u1(t+ t0)

u2(t+ t0)
+ ln

v2(t+ t0)

v1(t+ t0)
≤
(

ln
u01

u02

+ ln
v02

v01

)
e−ε̃0t

for t ≥ t0. This together with (3.85) implies that

0 ≤ ln
u1(t+ t0)

u2(t+ t0)
+ ln

v2(t+ t0)

v1(t+ t0)
≤ 2 ln

(K
δ

)
e−ε̃0t.

Therefore

lim
t→∞

ln
u(t+ t0; t0;u01, v01)

u(t+ t0; t0, u02, v02)
+ ln

v(t+ t0; t0;u02, v02)

v(t+ t0; t0, u01, v01)
= 0

uniformly in t0 ∈ R. It then follows from (3.84) that u∗1(t) ≡ u∗2(t) and v∗1(t) ≡ v∗2(t). Indeed

let t ∈ R be given. It follows from (3.84) that

|u∗1(t)− u∗2(t)| = |ũ∗(t) ln
(u∗1(t)

u∗2(t)

)
| (for some ũ∗(t) between u∗1(t) and u∗2(t))

≤ max{|u∗1(t)|, |u∗2(t)|}| ln
(u∗1(t)

u∗2(t)

)
|

≤ K ln
(u1(t)

u2(t)

)
≤ 2K ln

(K
δ

)
e−ε̃0(t−t0), ∀t0 ≤ t.

And similarly

|v∗1(t)− v∗2(t)| ≤ 2K ln
(K
δ

)
e−ε̃0(t−t0), ∀t0 ≤ t.

Therefore as t0 → −∞, we get |u∗1(t) − u∗2(t)| = |v∗1(t) − v∗2(t)|. Hence (3.1) has a unique

spatially homogeneous coexistence state.
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Next, we prove Theorem 3.6(1) and (2).

Proof of Theorem 3.6(1) and (2). For given u0, v0 ∈ C0(Ω̄) with u0, v0 ≥ 0, let u0 = maxx∈Ω̄ u0(x),

u0 = minx∈Ω̄ u0(x), v0 = maxx∈Ω̄ v0(x) , v0 = minx∈Ω̄ v0(x).

(1) By Theorem 1.2(1) and Remark 1.3(2), (3.1) has coexistence states. Let (u∗∗(x, t),

v∗∗(x, t), w∗∗(x, t)) be a coexistence state of (3.1). Let q1(t), Q1(t), q2(t) and Q2(t) be as

in Theorem 3.6 (1), By (3.26),

µ = lim sup
t−s→∞

1

t− s

∫ t

s

max{q1(τ)−Q1(τ), q2(τ)−Q2(τ)}dτ < 0.

Fix 0 < ε < −µ. Then, for given u0, v0 ∈ C0(Ω̄) with inf u0 > 0, inf v0 > 0, there exists

Tε,u0,v0 := Tε,ū0,v̄0,u0,v0 > 0 such that for any t0 ∈ R,

r1− ε ≤ u(·, t0 + t; t0;u0, v0) ≤ r̄1 + ε, r1− ε ≤ u∗∗(x, t) ≤ r̄1 + ε ∀x ∈ Ω̄, t ≥ t0 +Tε,u0,v0 ,

r2− ε ≤ v(·, t0 + t; t0;u0, v0) ≤ r̄2 + ε, r2− ε ≤ v∗∗(x, t) ≤ r̄2 + ε ∀x ∈ Ω̄, t ≥ t0 +Tε,u0,v0 ,

and

∫ t0+t

t0

max{q1(s)−Q1(s), q2(s)−Q2(s)}ds ≤ (µ1 + ε)t, ∀ t ≥ t0 + Tε,u0,v0 .

To simplify the notation, set u(t) = u(·, t; t0;u0, v0), v(t) = v(·, t; t0;u0, v0), u∗∗(t) =

u∗∗(·, t), and v∗∗(t) = v∗∗(·, t). Let ψ = u− u∗∗ and φ = v − v∗∗. Then ψ satisfies

ψt = d1∆ψ − χ1∇ · (ψ∇w)− χ1∇ · (u∗∗∇(w − w∗∗))

+ ψ
(
a0(t, x)− a1(t, x)(u+ u∗∗)− a2(t, x)v

)
− a2(t, x)u∗∗φ, (3.86)

and φ satisfies

φt = d2∆φ− χ2∇ · (φ∇w)− χ2∇ · (v∗∗∇(w − w∗∗))

+ ψ
(
b0(t, x)− b1(t, x)u− b2(t, x)(v + v∗∗)

)
− b1(t, x)v∗∗ψ. (3.87)
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We first prove that
∫

Ω

(
ψ2 + φ2

)
dx → 0 as t → ∞ uniformly in t0 ∈ R. To this end, by

multiplying (3.86) by ψ+ and integrating over Ω, we get

1

2

d

dt

∫
Ω

ψ2
+ + d1

∫
Ω

|∇ψ+|2 = χ1

∫
Ω

ψ+∇ψ+ · ∇w + χ1

∫
Ω

u∗∗∇ψ+ · ∇(w − w∗∗)

+

∫
Ω

ψ2
+

(
a0(t, x)− a1(t, x)(u+ u∗∗)− a2(t, x)v

)
−
∫

Ω

a2(t, x)u∗∗ψ+φ

for a.e t > t0 (see [30, (4.6)]) for the reasons to have the above equality). Then by integrating

by parts, we get

1

2

d

dt

∫
Ω

ψ2
+ + d1

∫
Ω

|∇ψ+|2 ≤−
χ1

2

∫
Ω

ψ2
+∆w + χ1

∫
Ω

u∗∗∇ψ+ · ∇(w − w∗∗)

+

∫
Ω

ψ2
+

(
a0,sup(t)− a1,inf(t)(u+ u∗∗)− a2,inf(t)v

)
−
∫

Ω

a2(t, x)u∗∗ψ+φ+ +

∫
Ω

a2(t, x)u∗∗ψ+φ− (3.88)

for a.e t > t0.

We have from the third equation of (3.1) that

−χ1

2

∫
Ω

ψ2
+∆w =

χ1

2d3

∫
Ω

ψ2
+(ku+ lv − λw), (3.89)

and by Young’s inequality

χ1

∫
Ω

u∗∗∇ψ+ · ∇(w − w∗∗) ≤ d1

∫
Ω

|∇ψ+|2 +
χ2

1(u∗∗sup)2

4d1

∫
Ω

|∇(w − w∗∗)|2. (3.90)

We claim that ∫
Ω

|∇(w − w∗∗)|2 ≤ k2

2λd3

∫
Ω

ψ2 +
l2

2λd3

∫
Ω

φ2. (3.91)

Indeed since (u, v, w) and (u∗∗, v∗∗, w∗∗) are both solutions of (3.1), from the third equation of

(3.1) we get

0 = d3∆(w−w∗∗)+k(u−u∗∗)+l(v−v∗∗)−λ(w−w∗∗) = d3∆(w−w∗∗)+kψ+lφ−λ(w−w∗∗).
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By multiplying this last equation byw−w∗∗ and integrating over Ω,we get by Green’s Theorem

0 = −d3

∫
Ω

|∇(w − w∗∗)|2 + k

∫
Ω

ψ(w − w∗∗) + l

∫
Ω

ψ(w − w∗∗)− λ
∫

Ω

(w − w∗∗)2.

By Young’s inequality we get

d3

∫
Ω

|∇(w − w∗∗)|2 + λ

∫
Ω

(w − w∗∗)2 ≤ k2

2λ

∫
Ω

ψ2 +
l2

2λ

∫
Ω

φ2 + λ

∫
Ω

(w − w∗∗)2,

and the claim thus follows.

By (3.88)-(3.91), we have

1

2

d

dt

∫
Ω

ψ2
+ ≤

χ1

2d3

∫
Ω

ψ2
+(ku+ lv − λw) +

(kχ1u
∗∗
sup)2

8λd1d3

∫
Ω

ψ2 +
(lχ1u

∗∗
sup)2

8λd1d3

∫
Ω

φ2

+

∫
Ω

ψ2
+

(
a0,sup(t)− a1,inf(t)(u+ u∗∗)− a2,inf(t)v

)
− a2,inf(t)

∫
Ω

u∗∗ψ+φ+

+ a2,sup(t)u∗∗sup

∫
Ω

ψ+φ−

for a.e t > t0. Thus by Young’s inequality, we have

1

2

d

dt

∫
Ω

ψ2
+ ≤

χ1

2d3

∫
Ω

ψ2
+(ku+ lv − λw) +

(kχ1u
∗∗
sup)2

8λd1d3

∫
Ω

ψ2 +
(lχ1u

∗∗
sup)2

8λd1d3

∫
Ω

φ2

+

∫
Ω

ψ2
+

(
a0,sup(t)− a1,inf(t)(u+ u∗∗)− a2,inf(t)v

)
+
a2,sup(t)u∗∗sup

2

∫
Ω

ψ2
+

+
a2,sup(t)u∗∗sup

2

∫
Ω

φ2
−−a2,inf(t)

∫
Ω

u∗ψ+φ+ (3.92)

for a.e t > t0.

Similarly, we have

1

2

d

dt

∫
Ω

ψ2
− ≤

χ1

2d3

∫
Ω

ψ2
−(ku+ lv − λw) +

(kχ1u
∗∗
sup)2

8λd1d3

∫
Ω

ψ2 +
(lχ1u

∗∗
sup)2

8λd1d3

∫
Ω

φ2

+

∫
Ω

ψ2
−
(
a0,sup(t)− a1,inf(t)(u+ u∗)− a2,inf(t)v

)
+
a2,sup(t)u∗∗sup

2

∫
Ω

ψ2
−

+
a2,sup(t)u∗∗sup

2

∫
Ω

φ2
+−a2,inf(t)

∫
Ω

u∗∗ψ−φ− (3.93)
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for a.e t > t0. By adding (3.92) and (3.93), we get

1

2

d

dt

∫
Ω

ψ2

≤
∫

Ω

ψ2
( χ1

2d3

(ku+ lv − λw) +
(kχ1u

∗∗
sup)2

4λd1d3

+ a0,sup(t)− a1,inf(t)(u+ u∗∗)− a2,inf(t)v
)

+
a2,sup(t)u∗∗sup

2

∫
Ω

ψ2 +
((lχ1u

∗∗
sup)2

4λd1d3

+
a2,sup(t)u∗sup

2

)∫
Ω

φ2−a2,inf(t)

∫
Ω

u∗
(
ψ+φ+ + ψ−φ−

)
for a.e. t > t0.

Similarly we have

1

2

d

dt

∫
Ω

φ2

≤
∫

Ω

φ2
( χ2

2d3

(ku+ lv − λw) +
(lχ2v

∗∗
sup)2

4λd2d3

+ b0,sup(t)− b2,inf(t)(v + v∗)− b1,inf(t)u
)

+
b1,sup(t)v∗∗sup

2

∫
Ω

φ2 +
((kχ2v

∗∗
sup)2

4λd2d3

+
b1,sup(t)v∗∗sup

2

)∫
Ω

ψ2−b1,inf(t)

∫
Ω

v∗∗
(
ψ+φ+ + ψ−φ−

)
for a.e. t > t0. By adding the last two inequalities, we get

1

2

d

dt

∫
Ω

(
ψ2 + φ2

)
≤
∫

Ω

ψ2
( χ1

2d3

(ku+ lv − λw) +
k2

4λd3

((χ1u
∗∗
sup)2

d1

+
(χ2v

∗∗
sup)2

d2

)
+ a0,sup(t)− a1,inf(t)(u+ u∗∗)

)
+
(
− a2,inf(t)v +

a2,sup(t)u∗∗sup + b1,sup(t)v∗∗sup

2

)∫
Ω

ψ2

+

∫
Ω

φ2
( χ2

2d3

(ku+ lv − λw) +
l2

4λd3

((χ1u
∗∗
sup)2

d1

+
(χ2v

∗∗
sup)2

d2

)
+ b0,sup(t)− b2,inf(t)(v + v∗∗)

)
+
(
− b1,inf(t)u+

a2,sup(t)u∗∗sup + b1,sup(t)v∗∗sup

2

)∫
Ω

φ2

for a.e. t > t0. Thus for t ≥ t0 + Tε,u0,v0 , we have

1

2

d

dt

∫
Ω

(
ψ2 + φ2

)
≤
(
Q1(t)− q1(t) +K1(t, ε)

)∫
Ω

ψ2 +
(
Q2(t)− q2(t) +K2(t, ε)

)∫
Ω

φ2,
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where

K1(t, ε) =
χ1(k + l)

d3

ε+
k2ε

4λd3

(χ2
1

d1

(2r̄1 + ε) +
χ2

2

d2

(2r̄2 + ε)
)

+ ε
(

2a1,inf(t) + a2,inf (t) +
a2,sup(t) + b1,sup(t)

2

)
,

and

K2(t, ε) =
χ2(k + l)

d3

ε+
l2ε

4λd3

(χ2
1

d1

(2r̄1 + ε) +
χ2

2

d2

(2r̄2 + ε)
)

+ ε
(

2b2,inf(t) + b1,inf (t) +
b1,sup(t) + a2,sup(t)

2

)
.

Therefore for t ≥ t0 + Tε,u0,v0 , we have

1

2

d

dt

∫
Ω

(
ψ2 + φ2

)
≤ (h(t) +K(t, ε))

(∫
Ω

(
ψ2 + φ2

))
,

where

h(t) = max{Q1(t)− q1(t), Q2(t)− q2(t)},

and

K(t, ε) = |K1(t, ε)|+ |K2(t, ε)|.

Note that 0 ≤ supt∈RK(t, ε)→ 0 as ε→ 0. Choose ε0 � 1 (ε0 < −µ) such that

0 ≤ sup
t∈R

K(t, ε) <
−µ− ε0

2
.

By
∫ t
t0
h(s)ds ≤ (µ+ ε0)(t− t0) for t ≥ t0 + Tε,u0,v0 , we have

∫
Ω

(
ψ2 + φ2

)
≤ (

∫
Ω

ψ2(t0 + Tε,u0,v0) + φ2(t0 + Tε,u0,v0))e
2(µ+ε0)(t−t0−Tε,u0,v0 )e2(

−µ−ε0
2

)(t−t0−Tε,u0,v0 )

≤ (

∫
Ω

ψ2(t0 + Tε,u0,v0) + φ2(t0 + Tε,u0,v0))e
(µ+ε0)(t−t0−Tε,u0,v0 ) ∀ t > t0 + Tε,u0,v0 .
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Therefore

lim
t→∞
‖u(·, t+ t0; t0, u0, v0)− u∗∗(·, t+ t0)‖L2(Ω) = lim

t→∞
‖ψ(t+ t0)‖2

L2(Ω) = 0, (3.94)

and

lim
t→∞
‖v(·, t+ t0; t0, u0, v0)− v∗∗(·, t+ t0)‖L2(Ω) = lim

t→∞
‖φ(t+ t0)‖2

L2(Ω) = 0. (3.95)

uniformly in t0 ∈ R.

It follows from (3.94) and (3.95) and similar arguments as in the proof [30, Theorem 1.4 (2)]

that for any u0, v0 ∈ C0(Ω̄) with inf u0 > 0, inf v0 > 0, we have

lim
t→∞
‖u(·, t+ t0; t0, u0, v0)− u∗∗(·, t+ t0)‖L∞(Ω) = 0,

and

lim
t→∞
‖v(·, t+ t0; t0, u0, v0)− v∗∗(·, t+ t0)‖L∞(Ω) = 0.

uniformly in t0 ∈ R. It then follows that (3.27) and (3.28) hold for any u0, v0 ∈ C0(Ω̄) with

u0 ≥ 0, v0 ≥ 0, and u0 6= 0, v0 6= 0.

Next, we prove that (3.1) has a unique positive entire solution. We are going to prove that in

the following two steps.

Step 1. (3.1) has a unique positive entire solution (u∗, v∗, w∗) which satisfy

r1 ≤ u∗(x, t) ≤ r̄1 and r2 ≤ v∗(x, t) ≤ r̄2 ∀x ∈ Ω̄ and t ∈ R. (3.96)

Suppose that (u∗1(x, t), v∗1(x, t), w∗1(x, t)) and (u∗2(x, t), v∗2(x, t), w∗2(x, t)) are two positive en-

tire solutions of (3.1) that satisfy (3.96). We claim that

(u∗1(x, t), v∗1(x, t), w∗1(x, t)) ≡ (u∗2(x, t), v∗2(x, t), w∗2(x, t))

137



for any t ∈ R. Indeed, Then by assumption (3.26), for given ε > 0, there is tε > 0 such that

∫ t0+t

t0

max{q1(s)−Q1(s), q2(s)−Q2(s)}ds ≤ (µ1 + ε)t, ∀t0 ∈ R, t ≥ t0 + tε.

Then by the arguments in the proof of (3.94) and (3.95), there is ε0 > such that for any t, t0 ∈ R

with t ≥ t0 + tε0 , we have

‖u∗1(·, t)− u∗2(·, t)‖L2(Ω) + ‖v∗1(·, t)− v∗2(·, t)‖L2(Ω)

≤ (

∫
Ω

(u∗1 − u∗2)2(t0 + tε0) + (v∗1 − v∗2)2(t0 + tε0))e
(µ+ε0)(t−t0−tε0 ). (3.97)

Moreover, by (3.96), we have

m = min{r1, r2} ≤ u∗i (x, t) ≤M = max{r̄1, r̄2} and m ≤ v∗i (x, t) ≤M, i = 1, 2.

By combining this with (3.97), we get

‖u∗1(·, t)− u∗2(·, t)‖L2(Ω) + ‖v∗1(·, t)− v∗2(·, t)‖L2(Ω)

≤ 8M2|Ω|e(µ+ε0)(t−t0−tε0 ) ∀t0 ∈ R and t ≥ t0 + tε0 .

Now let t ∈ R be given. Choose t0 ∈ R such t0 < t− tε0 . It then follows that

‖u∗1(·, t)− u∗2(·, t)‖L2(Ω) + ‖v∗1(·, t)− v∗2(·, t)‖L2(Ω)

≤ 8M2|Ω|e(µ+ε0)(t−t0−tε0 ) → 0 as t0 → −∞.

Thus we get by continuity of solution that u∗1(x, t) = u∗2(x, t) and v∗1(x, t) = v∗2(x, t) for all

x ∈ Ω̄ and t ∈ R.

Step 2. We claim that every positive entire solution of (3.1) satisfies (3.96). Indeed, let

(u∗, v∗, w∗) be a positive entire solution of (3.1). Then for any given ε > 0 there exists
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ttε,u∗,v∗ := tε,supu∗,sup v∗,inf u∗,inf v∗ such that


r1 − ε ≤ u∗(x, t; t0, u

∗(·, t0), v∗(·, t0)) ≤ r̄1 + ε

r2 − ε ≤ v∗(x, t; t0, u
∗(·, t0), v∗(·, t0)) ≤ r̄2 + ε

(3.98)

for all x ∈ Ω̄, t0 ∈ R, and t ≥ t0 + tε,u∗,v∗ . Let t ∈ R be fix. We have u∗(x, t) =

u∗(x, t; t−tε,u∗,v∗ , u∗(·, t−tε,u∗,v∗), v∗(·, t−tε,u∗,v∗)) and v∗(x, t) = v∗(x, t; t−tε,u∗,v∗ , u∗(·, t−

tε,u∗,v∗), v
∗(·, t− tε,u∗,v∗)). Then by (3.98) with t0 = t− tε,u∗,v∗ , we get

r1 − ε ≤ u∗(x, t) ≤ r̄1 + ε and r2 − ε ≤ v∗(x, t) ≤ r̄2 + ε.

And since ε is arbitrary, we get as ε→ 0 that

r1 ≤ u∗(x, t) ≤ r̄1 and r2 ≤ v∗(x, t) ≤ r̄2.

and thus the claim holds.

(2) It follows by the similar arguments as those in (2).

Finally, we prove Corollary 3.1.

Proof of Corollary 3.1. First, note that in this case χ1 = χ2 = 0, condition (3.31) becomes

condition (3.26) for the global stability and uniqueness of positive entire solution of (3.2).

Recall that (3.31) reads as


a0,sup + a2,sup

2
r̄1 + b1,sup

2
r̄2 < 2a1,infr1 + a2,infr2

b0,sup + b1,sup
2
r̄2 + a2,sup

2
r̄1 < 2b2,infr2 + b1,infr1.

(3.99)
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Note that r1 =
a0,infb2,inf−a2,supb0,sup
a1,supb2,inf−a2,supb1,inf

, and r2 =
a1,infb0,inf−a0,supb1,sup
a1,infb2,sup−a2,infb1,sup

(see Remark 3.6(3)). Hence

(3.99) is equivalent to



a2,sup
2
r̄1 + b1,sup

2
r̄2 < −a0,sup + 2a1,inf

(
a0,infb2,inf−a2,supb0,sup
a1,supb2,inf−a2,supb1,inf

)
+ a2,infr2

b1,sup
2
r̄2 + a2,sup

2
r̄1 < −b0,sup + 2b2,inf

(
a1,infb0,inf−a0,supb1,sup
a1,infb2,sup−a2,infb1,sup

)
+ b1,infr1,

which is equivalent to



a2,sup
2
r̄1 + b1,sup

2
r̄2 <

−a0,supa1,supb2,inf+a0,supa2,supb1,inf+2a1,infa0,infb2,inf−2a1,infa2,supb0,sup
a1,supb2,inf−a2,supb1,inf

+ a2,infr2

b1,sup
2
r̄2 + a2,sup

2
r̄1 <

−b0,supa1,infb2,sup+b0,supa2,infb1,sup+2b2,infa1,infb0,inf−2b2,infa0,supb1,sup
a1,infb2,sup−a2,infb1,sup

+ b1,infr1,

and so

a2,sup
2
r̄1 + b1,sup

2
r̄2 <

b2,inf

(
2a1,infa0,inf−a0,supa1,sup

)
−a2,sup

(
2a1,infb0,sup−a0,supb1,inf

)
a1,supb2,inf−a2,supb1,inf

+ a2,infr2

b1,sup
2
r̄2 + a2,sup

2
r̄1 <

a1,inf

(
2b2,infb0,inf−b0,supb2,sup

)
−b1,sup

(
2b2,infa0,sup−b0,supa2,inf

)
a1,infb2,sup−a2,infb1,sup

+ b1,infr1.

Therefore (3.99) is equivalent to


a2,sup

(
r̄1
2

+
2a1,infb0,sup−a0,supb1,inf
a1,supb2,inf−a2,supb1,inf

)
+ b1,sup

2
r̄2 < b2,inf

2a1,infa0,inf−a0,supa1,sup
a1,supb2,inf−a2,supb1,inf

+ a2,infr2

b1,sup

(
r̄2
2

+
2b2,infa0,sup−b0,supa2,inf
b2,supa1,inf−b1,supa2,inf

)
+ a2,sup

2
r̄1 < a1,inf

2b2,infb0,inf−b0,supb2,sup
b2,supa1,inf−b1,supa2,inf

+ b1,infr1.

(3.100)

Next, suppose that 2a1,infa0,inf − a0,supa1,sup > 0 and 2b2,infb0,inf − b0,supb2,sup > 0. If a2

and b1 are such small so that (3.5) and (3.100) hold, then conditions (3.5) and (3.26) hold and

Corollary 3.1 follows from Theorem 3.6.
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Remark 3.13. We discussed the conditions under which (3.22), that is,



(a1,inf − k χ1

d3
)r̄1 = a0,sup − a2,infr2 − k χ1

d3
r1

(b2,inf − lχ2

d3
)r̄2 = b0,sup − b1,infr1 − k χ1

d3
r2

(a1,sup − k χ1

d3
)r1 = a0,inf − a2,supr̄2 − k χ1

d3
r̄1

(b2,sup − lχ2

d3
)r2 = b0,inf − b1,supr̄1 − lχ2

d3
r̄2,

has a unique solution in the appendix of our paper [29, Appendix].
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Chapter 4

Concluding Remarks and Future Works

The results obtained in this dissertation lead to many interesting and challenging open prob-

lems. In this last chapter, we will enumerate and discuss some of these interesting research

problems.

Problem 1 : Can the results obtained in Chapter 1 be extended the to the known mathemat-

ically challenging case of full chemotaxis i.e τ > 0 ?

System (1.1) with τ = d2 = d3 = 1 reduces to


ut = ∆u− χ∇ · (u∇v) + u

(
a0(t, x)− a1(t, x)u− a2(t, x)

∫
Ω
u
)
, x ∈ Ω

vt = ∆v − v + u, x ∈ Ω

∂u
∂n

= ∂v
∂n

= 0, x ∈ ∂Ω,

(4.1)

Note that the existing methods on global existence of nonnegative solutions of (4.1) in the

case that a0 and a1 are constants and a2 = 0 such as [64, Theorem 0.1] can be adopted to the

study of global solutions of (4.1) in the general case without much modification. Thus in the

study of dynamics of system (4.1), a very challenging problem is to prove under the condition of

global existence, the persistence and existence of positive entire solutions. In a recent ongoing

work, I and Dr. Wenxian Shen were able to prove under the condition of global existence, the

persistence and existence of positive entire solutions for system (4.1). Furthermore, one can

consider working on the following open problems on dynamics of system (4.1).

- Is chemotaxis/heterogeneous environment good/bad for persistence/existence of entire

solution? (see [62])
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- When the coefficients ai(t, x) are periodic with period T, does system (4.1) have a posi-

tive periodic solution with period T ?

- Uniqueness and stability of positive entire solutions.

The main challenge in this case is that unlike in system (2.1), u small does not guarantee

any more that v and ∆v are small. Actually because in this case, v also depends on the initial

v0, u small does guarantee that v and ∆v are small only for t very large and that we basically

proved and used to obtain our recent result on the persistence and existence of positive entire

solutions for system (4.1) under the condition of global existence. When, Ω is convex, global

existence of classical solutions of system (4.1) holds under the explicit parameter region a1,inf >

χn
4

and inft∈R
(
a1,inf(t) − (a2,inf (t))−

)
> 0. No such explicit global existence parameter

region exist up to today for system (4.1) even when the coefficients are constant.

Problem 2 : Can the results obtained in Chapter 2 and 3 be extended the to the known

mathematically challenging case of full chemotaxis i.e τ > 0 ?

More precisely, one can consider the system



ut = d1∆u− χ1∇ · (u∇w) + u
(
a0(t, x)− a1(t, x)u− a2(t, x)v

)
, x ∈ Ω

vt = d2∆v − χ2∇ · (v∇w) + v
(
b0(t, x)− b1(t, x)u− b2(t, x)v

)
, x ∈ Ω

wt = d3∆w + ku+ lv − λw, x ∈ Ω

∂u
∂n

= ∂v
∂n

= ∂w
∂n

= 0, x ∈ ∂Ω,

(4.2)

and address the following interesting open problems:

- Find natural parameter region for which global existence of classical solutions hold for

system (4.2). (This should follow from existing global existence results for constant

coefficients)

- Under the condition of global existence plus some further natural conditions, prove per-

sistence and existence of positive entire solutions for system (4.2)
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- Is chemotaxis/heterogeneous environment good/bad for persistence/existence of entire

solution?

- When the coefficients ai(t, x) are periodic with period T, does system (4.2) have a posi-

tive periodic solution with period T ?

- Existence of optimal attracting rectangle

- Uniqueness and stability of positive entire solutions.

Problem 3: Study the dynamics of two species chemotaxis with homogeneous/heterogeneous

coefficients on unbounded domain.

For example, I, Dr. Rachidi Salako, and Dr. Shen are currently studying the existence of

traveling wave solutions for the following two species chemotaxis models with constant coef-

ficients on unbounded domain.
ut = d1∆u− χ1∇ · (u∇w) + u1(a0 − a1u− a2v), x ∈ RN , t > 0,

vt = d2∆v − χ2∇ · (v∇w) + v(b0 − b1u− b2v), x ∈ RN , t > 0,

0 = (∆− λI)w + l1u+ l2v, x ∈ RN , t > 0,

(4.3)

Problem 4 : Can movement of populations attracted/repelled by things like job opportunities,

individual freedom, political stability,..., etc be modeled by certain variants of (discrete) Keller-

Segel model? If yes can mathematics, big data, statistics and machine learning be combined to

understand and predict such complex dynamics of population? I plan to work on these type of

problems that combine mathematics and data science.
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