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Abstract

Chemotaxis describes the oriented movements of biological cells or organisms in response
to chemical gradients in their environments and is crucial for many aspects of behaviour such
as the location of food sources, avoidance of predators and attracting mates, slime mold ag-
gregation, tumor angiogenesis, and primitive streak formation. Chemotaxis is also crucial in
macroscopic process such as population dynamics and gravitational collapse. In 1970, Keller
and Segel introduced a celebrated mathematical model to describe chemotaxis. Since then a
tremendous effort has been dedicated to understand the classical chemotaxis model and its var-
ious variants. But there are still a lot of open interesting problems in the understanding of
chemotaxis models. In particular, to the best of our knowledge, there has been no study of
chemotaxis models in heterogeneous environments. This dissertation aims to study the dynam-
ics of chemotaxis models of both one and two species in bounded heterogeneous environments.

Regarding chemotaxis models of one species in heterogeneous environments, we first inves-
tigate and prove the local existence and uniqueness of classical solutions. Next under some
natural conditions on the parameters, we prove the boundedness of classical solutions and the
existence of positive entire solutions. Finally, under some further conditions on the parameters,
we establish the uniqueness and stability of positive entire solutions. Our results on the exis-
tence, uniqueness and stability of positive entire solutions are new and original. Important new
techniques have been established to prove those results.

Concerning chemotaxis models of two species in heterogeneous environments, we first find
various conditions on the parameters which guarantee the global existence and boundedness
of classical solutions. Next, we find further conditions on the parameters which establish the
persistence of the two species. Furthermore, under the same set of conditions for the persistence
of the two species, we prove the existence of coexistence states. We then prove the extinction
phenomena in the sense that one of the species dies out asymptotically and the other reaches

its carrying capacity as time goes to infinity. Finally, we study the asymptotic dynamics of

il



two species competition systems with/without chemotaxis in heterogeneous media and find
conditions on the parameters for the uniqueness and stability of positive coexistence states of
such systems. The persistence in general two species chemotaxis systems is studied for the
first time. Several important techniques are developed to study the persistence and coexistence
of the two species chemotaxis systems. Many existing results on the persistence, coexistence,
and extinction on two species competition systems without chemotaxis are recovered. The
established results on the asymptotic dynamics of two species competition systems are new
even for the two species competition systems without chemotaxis but with space dependent

coefficients.
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Chapter 1

Introduction

Chemotaxis, the oriented movements of mobile species toward the increasing or decreasing
concentration of a signaling chemical substance, has a crucial role in a wide range of biological
phenomena such as immune system response, embryo development, tumor growth, population
dynamics, gravitational collapse, etc. (see [28, 41, 50]). At the beginning of the 1970s, Keller
and Segel proposed a celebrated mathematical model, referred to as the classical Keller-Segel
model, to describe the aggregation process of Dictyostelium discoideum, a soil-living amoebae
[33, 34]. It is well known that in homogeneous environments, finite-time blow-up of some clas-
sical solutions may occur in the classical Keller-Segel model and its variants in space dimension
n > 2 (see [9, 19, 32, 66] for a one species chemotaxis model and [4] two species chemotaxis
models). However, it is also known that logistic sources of Lotka-Volterra type may preclude
such blow-up phenomenon (see [30, 51, 59] for one species and [44, 60] for two species) and
that, at least numerically, chemotaxis with logistic sources may exhibit quite a rich variety of
colorful dynamical features, up to periodic and even chaotic solution behavior [38, 49]. For a
broad survey on the progress of various chemotaxis models in homogeneous environments and
a rich selection of references, we refer the reader to the survey papers [5, 24, 25]. To the best
of our knowledge, there has been no study on the dynamics of chemotaxis models in hetero-
geneous environments previous to our study. In reality, the underlying environments of many
biological systems are subject to various spatial and temporal variations. It is of both biological

and mathematical importance to study chemotaxis models in heterogeneous environments.



This dissertation focuses on the study of the dynamics of the following chemotaxis models

in bounded heterogeneous environments,

ur = diAu— xV - (uVw) + u(ao(t,x) — ay(t, x)u — as(t, x) [, u), x €

Twy = doAw + ku — dw, x €€ (1.1)

du __ dw __
\%—an—o, J:G@Q,

and

(

up = diAu—x1V - (uVw) + u(ao(t,x) —ay(t, x)u — as(t, a:)v), x €}

vy = daAv — 2oV - (vVWVw) + U(bo(t,a:) — by (t, x)u — bo(t, x)v), x €Q 12

Twy = dsAw + ku +lv— A w, x €K

du _ v _ dw _
\%—an—an—o, xG@Q,

where 2 C R" is a bounded domain with smooth boundary.

System (1.1) is referred to as one species chemotaxis model and arises in mathematical bi-
ology as a model for the spatio-temporal evolution of the population of a species which prolif-
erates according to a Lotka-Volterra-type kinetics, and in which individuals are moreover able
to move according to both random diffusion and chemotaxis toward or away a signal produced
by themselves. In this setting, v = u(x,t) represents the population density of the species,
w = w(z,t) denotes the concentration of the chemical, x > 0 describes the chemotaxis sensi-
tivity, d; > 0,7 = 1, 2, describe the diffusion rate of u and w respectively, 7 > 0 describes the
diffusion speed of the chemical substance, ay and a; describe respectively the intrinsic growth
rate and the self limitation effect of the species u, as fQ u describes the influence of the total
mass of the species in the growth of the population. System (1.1) with a; = 0 (z = 0,1,2)
reduces to the classical Keller-Segel model.

A quite rich dynamical features in system (1.1) with constant coefficients have been observed,
including spatial pattern formation and spatio-temporal chaos, at least numerically (see [38,

49]). For example, it is proved that blow-up never happens in one dimension [47] and that



chemotactic-cross diffusion has a very strong destabilizing action in space dimension n > 2
in the sense that finite-time blow-up of some classical solutions may occur (see [32, 66]). It
is also known that logistic sources of Lotka-Volterra type preclude such blow-up phenomenon
in certain sense (see [30, 59]) and that, at least numerically, chemotaxis may exhibit quite a
rich variety of colorful dynamical features, up to periodic and even chaotic solution behavior
[38, 49]. But there is little study of the dynamics of (1.1) with time and space dependent
coefficients, including the case that 7 = 0.

One of the main objectives of this dissertation is to study the fundamental dynamical aspects

in system (1.1) with 7 = 0 such as
- Global existence of nonnegative classical solutions.
- Existence and stability of positive entire solutions.

We obtained many important results on the dynamical aspects of system (1.1) in [30]. For
example, we proved the following and others in [30] for (1.1) with as(t,2) = 0,d; = 1,7 =0,

andk=1=1.

(i) Assume that inf,cp ,cqa1(t, z) > x(nT—2) Then for any ¢, € R and uy € C°(Q2) with
ug > 0, system (1.1) has a unique global classical solution (u(x,t; to, ug), w(zx, t; to, ug))

which satisfies that limy 4, [|u(-, t; %o, uo) — uo(+)[|coq) = 0.

(i) Assume that inf,cp ,cqai(t,#) > x. Then there is a positive bounded entire solu-
tion (u,w) = (u*(z,t),w*(x,t)) of (1.1). Moreover, if there is 77 > 0 such that
a;(t +T,x) = a;(t,z) for i = 0,1, then (1.1) has a positive periodic solution (u,v) =
(u*(z,t),w*(z,t)) with period T'; and if a;(t,2) = a;(x) fori = 0, 1, then (1.1) has a

positive steady state solution (u, w) = (u*(x), w*(z)).

The result (i) provides some parameter region for the global existence of nonnegative clas-
sical solutions. In addition to the difficulties related to chemotaxis, for example the lack of
comparison principle, time and space dependence in (1.1) introduces several other new diffi-

culties. The existence and nonlinear stability of positive entire solutions of (1.1) with time and



space dependent coefficients are much more difficult to study than the case with constant co-
efficients. The result (ii) provides for some parameter region of global existence, the existence
of positive entire solutions. Several new techniques have been developed in [30, Lemma 5.1,
Lemma 5.2, and Lemma 5.3] to obtain result (ii).

System (1.2) also arises in mathematical biology as a model for the spatio-temporal evolution
of the populations of two species which proliferate and compete according to a Lotka-Volterra-
type kinetics, and in which individuals are moreover able to move according to both random
diffusion and chemotaxis toward a signal produced by themselves. In the setting of (1.2), u =
u(z,t) and v = v(z,t) represent the population densities of two species; w = w(x,t) denotes
the concentration of the chemical; x; > 0,72 = 1,2, describe the chemotaxis sensitivities of u
and v respectively; d; > 0,7 = 1,2, 3, describe the diffusion rate of u, v and w respectively;
7 > 0 describes the diffusion speed of the chemical substance; ag and a; (resp. by and b,
) describe respectively the intrinsic growth rate and the self limitation effect of the species u
(resp. of the species v), and b; € R (resp. as € R ) describes the local effect of the species u
(resp. of the species v) on the species v (resp. on the species u).

Among interesting dynamical issues in (1.2) are persistence, coexistence, exclusion, and
nonlinear stability of positive entire solutions. Several authors have studied these issues for
system (1.2) with constant coefficients [29, 44, 60]. There is little study of these important
issues for (1.2) with time and space dependent coefficients even in the case of 7 = 0.

The second main objective of this dissertation is to study the following dynamical issues of

system (1.2) with 7 =0

Uniform persistence and coexistence.

Existence of positive entire solutions.

Competitive exclusion of one of the two species.

Uniqueness and stability of coexistence states.

Among others, we proved the following.



(i11) (Persistence) Assume

kx1 Ix1 kX2 Ix2
a/ in > _’ a’ in > _7 b il’l > _7 b in > _7
1,inf a5 2,inf = a5 1,inf = ds 2,inf ds

ag,inf > a2,supA2 and bo,inf > bl,supAh

where

1211 _ ag,sup 1T bO,sup

kxi’ 2= Ixa’
a1,inf = g bo,int — 52

Then there are A; > 0 and A, > 0 such that for any ¢ > 0 and ug,v9 € C°(Q)
with ug,vo > 0, and ug, vy # 0, there exists t.,, ., such that the unique global clas-
sical solution (u(x, t; to, ug, vo), v(x, t; to, wo, Vo), w(x, t; to, ug, vg)) of system (1.2) with

(u(z, to; to, uo, vo), v(x, to; to, ug, vo)) = (uo(x),ve(x)) in certain sense satisfies
Al S U($,t;t0,U0,U0) S 141 + €, AQ S U(I,t;to,ﬂo,vo) S A2 + € (13)

forallz € O, t >ty + teuowy> and tp € R.

(iv) (Coexistence) Under the same assumption of (iii), there is a coexistence state (u**(x, ),
v**(x,t), w*(x,t)) of system (1.2) (i.e. (u**(x,t), v™*(z,t), w™(z,t)) is a solution
of (1.2) defined for all ¢ € R and inf,cg ycq u**(,t) > 0 and inf,cg ,cq v**(z,t) > 0).
Moreover, if there is 7' > 0 such that a,(t+ 7', z) = a;(t, z), b;(t+T, z) = b;(t,x) fori =
0, 1,2, then system (1.2) has a T-periodic coexistence state (u**(z, t), v*™*(z, t), w**(x,t));
and if a;(t,x) = a;(z), b;(t,x) = b;(z) for i = 0,1,2, then system (1.2) has a steady

state coexistence state (u**(t, z), v**(¢,x), w**(t, x)) = (u**(z),v** (x), w**(x)).

(v) (Competitive exclusion) Assume that

kx1 Ix1 kx2 X2
in 7 in Z 7 b in Z 7 b in 2_l7
Q1 inf > a5 a2 inf a5 1,inf a5 2,inf > a5
X2 X2 X2 X2 X2
2 inf (bo,inf(b2,inf - ld_g) - bO,supd_3l) > Go,sup((b2,inf - ld_g)(bQ,sup - ld_3) - (ld_3)2)’



and

X1k Ix Ix
(aLinf - %3) <bo,inf(52,inf — d_;) — bO’SUPd_32>

> |:<<b1,sup - k§—§>+ + k§—§> (bg,int — 2—23[) + ljl(_j (bl,inf — kz—?f)_} o sup-

Then for every ¢ty € R and nonnegative initial functions wug, vy € C’O(ﬁ), ug > 0,
vo > 0, with ||vg]|s > 0, the unique bounded and globally defined classical solution
(u(-, -5 to, uo, vo), v(+, *; to, Uo; Vo), w(+, -5 to, g, Vo)) of system (1.2) with (u(z, to; to, uo, vo),

v(x, to; to, ug, Vo)) = (uo(x),ve(x)) in certain sense satisfies
tlggo |u(-,t + to; to, uo; vo)|| o, = O,

a < liminf(minv(z,t)) < limsup(maxv(z,t)) < 3,

l—oo e t—soo  TEQ

for some 0 < a < B < 0.

Global asymptotic stability and uniqueness of coexistence states are obtained for system
(1.2) when the coefficients are constants and satisfy certain weak competition condition in [6],
[55], [60]. In such cases, the persistence follows from the asymptotic stability and uniqueness
of coexistence states. The persistence in two species chemotaxis systems without assuming
the asymptotic stability of coexistence states is studied for the first time in [31], even when
the coefficients are constants. Several new nontrivial techniques have been developed in [31,
Lemma 3.1 to 3.5] to prove the persistence result (iii).

The rest of the dissertation is organized as follows. In Chapter 2, we will study the dynamics
of system (1.1) with 7 = 0, the so called parabolic-elliptic chemotaxis model. We first state
basic assumptions, definitions, notations and main results. Next, we study respectively local ex-
istence and global existence of classical solutions. Finally, we study the existence, uniqueness
and stability of positive entire solutions. Chapter 3 is dedicated to the study of the dynami-
cal aspects of system (1.2) with 7 = 0, the so called parabolic-parabolic-elliptic chemotaxis
model. We first study the global existence of classical solutions. Next, we study persistence

of solutions, existence of coexistent states and the exclusion phenomenon. We then study the

6



existence of optimal rectangles. Finally, we study the uniqueness and stability of coexistence

states. Chapter 4 is dedicated to concluding remarks and future works.



Chapter 2

Dynamics in Chemotaxis Models of One Species on Bounded Heterogeneous Environments
2.1  Introduction

In this chapter, we study the dynamics of system (1.1) with7 =0and dy =dy =k =\ =1,
that is the following chemotaxis system of parabolic-elliptic type with both local and nonlocal

heterogeneous logistic source,

(

u = Au— xV - (uVv) + uag(t, z) — ar (t, x)u — as(t, ) [u), =€
0=Av4+u—v, x€) (2.1

ou — v — () e,

L on on

where () is a bounded subset of R” with smooth boundary, u(z,¢) and v(z,t) represent the
population densities of living organisms and some chemoattractant substance, respectively, y >
0 1s the chemotactic sensitivity, ag, a; are nonnegative bounded functions and as is a bounded
real valued function.

System (2.1) with constant coefficients was introduced recently in [44] by Negreanu and
Tello. As mentioned in [44], the logistic growth describes the competition of the individuals of
the species for the resources of the environment and the cooperation to survive. The coefficient
ao induces an exponential growth for low density populations and the term a;u describes a local
competition of the species. At the time that the population grows, the competitive effect of the
local term a;u becomes more influential. The non-local term a- fQ u describes the influence of
the total mass of the species in the growth of the population. If ay > 0, we have a competitive
term which limits such growth and when a; < 0 the individuals cooperate globally to survive.

In the last case, the individuals compete locally but cooperate globally and the effects of a;u

8



and ay [, u balance the system. Note that (u,v) = (0,0) is always a solution of system (2.1),
which will be called the trivial solution of system (2.1). Due to biological reasons, we are
only interested in nonnegative solutions, in particular, nonnegative and nontrivial solutions, of
system (2.1).

In the case that chemotaxis and nonlocal competition are absent (i.e. x = 0 and ay, = 0)
in system (2.1), the population density u(z,t) of the living organisms satisfies the following

scalar reaction diffusion equation,

ur = Au~+u(ap(t, z) — ar(t, z)u), x€Q
(2.2)

3—220, x € 0f).

Equation (2.2) is called Fisher or KPP type equation in literature because of the pioneer-
ing works by Fisher ([12]) and Kolmogorov, Petrowsky, Piscunov ([36]) in the special case
ap(t,z) = ay(t,z) = 1, and has been extensively studied (see [7], [21], [46], [54], [68],
etc.). The dynamics of (2.2) is quite well understood. For example, if ao(t,z) = ag(t) and
ai(t,z) = ay(t), it is proved in [46] that system (2.2) has a unique bounded entire solution,
that is positive, does not approach the zero-solution in the past and in the future and attracts all
positive solutions. If ay(t, z) and a, (¢, z) are positive and almost periodic in ¢, it is proved in
[54] that (2.2) has a unique globally stable time almost periodic positive solution.

In the case of constant coefficients with ay > 0 and a; — |Q2|(az)- > 0, it is clear that

(u,v) = (a1 +“£2|Q‘, o +“£2‘Q|) is the unique nontrivial spatially and temporally homogeneous

steady state solution of system (2.1), where || is the Lebesgue measure of Q. It is proved in
[44] that the condition a; > 2x + |ay| ensures the global stability of the homogeneous steady
state (see [59] when as; = 0) and that, if furthermore a, = 0, the assumption a; > ”T_Q X ensures
the global existence of a unique bounded classical solution (u(z, t;to, ug), v(z, t; g, ug)) with
given nonnegative initial function ug € C%*(Q) (i.e. u(z,to;to, uo) = uo(z) > 0) (see [59]).
It should be pointed that, when n > 3 and a; < ”T_z X (a2 = 0), it remains open whether for
any given nonnegative initial function uy € C%%(Q), system (2.1) possesses a global classi-

cal solution (u(x,t;to, ug), v(x, t;tg, ug)) with u(x,to; tg, ug) = wue(x), or whether finite-time



blow-up occurs for some initial data. We mention the works [39], [66], [67] along this direc-
tion. It is shown in [39], [67] that in presence of suitably weak logistic dampening (that is,
small a) certain transient growth phenomena do occur for some initial data. It is shown in [66]
that replacing a;u by a;u” with suitable x < 1 (for instance, k = 1/2) and replacing u — v by
u— ‘51' Jo, u(z)dz, then finite-time blow-up is possible.

However, as far as x > 0 and a(t, x), a;(t, z), a2(t, x) are not constants, there is little study
of system (2.1). The objective in this chapter is to investigate thoroughly the asymptotic dy-
namics of system (2.1). To this end, we first study the local and global existence of classical
solutions of system (2.1) with given nonnegative initial functions, next study the existence of
entire positive solutions, and then investigate the uniqueness and stability of positive entire

solutions and the asymptotic behavior of positive solutions of system (2.1).

2.2 Notations, Assumptions, Definitions and Main results

2.2.1 Notations, assumptions and definitions

Throughout this chapter, we assume that a; (i = 0, 1, 2) satisfy the following standard assump-

tion.

(H1) ao(t,x), ai(t,x) and ay(t,z) are Holder continuous in t € R with exponent v > 0
uniformly with respect to © € Q, continuous in x € € uniformly with respect to t € R, and

there are nonnegative constants c;, A; (i = 0,1, 2) with oy + as > 0 such that

;

0< (o7)) < CL()(t,JZ) < A()

0<o <a(t,x) <A

0 S 0%) S ]ag(t,x)| S AQ.

We put
Qg = Inf _a;(t,2), aisp = sup a;(t,x), 2.3)
teR,z€0 teR,zeQ)
ai,inf (t) - IIlf a; (t, SL’), ai,sup(t) = sSup a; (ta SL’), (24)
zefd z€Q

10



unless specified otherwise. For convenience, we introduce the following assumptions.

(H2) ay(t, x), as(t, x), and x satisfy

inf {aue(t) = 19 (a20m(8)) } > x. 2.5)

where || is the Lebesgue measure of ().

(H2) a1(t, ), ay(t, ), and x satisfy inf,cp {aLinf(t) — |Q|<a27inf(t)>7} > 0 and ifn > 3,

. x(n=2)
Q1 inf > n_

For given 1 < p < oo, let X = LP(Q2) and A = —A + I with

D(A) = {u € W?P(Q) | g_:; =0 on 89}.

It is well known that A is a sectorial operator in X (see, for example, [17, Example 1.6]) and

in X (see, for example, [17, Theorem 1.3.4]).

thus generates an analytic semigroup (e~*)

>0

Moreover 0 € p(A) and
le™*ullx < e Mlullx for > 0andue X.

Because A is a dissipative operator and range(I — A) = X, so it generates a strongly contin-
uous semigroup of contraction on X.

Let X* = D(A®) be equipped with the graph norm ||ul|, = ||ul/xe = ||[A%ul|, (see, for
example, [17, Definition 1.4.7]).

Throughout this chapter, A and X are defined as in the above. For given —oo < t < t5 <
occand 0 < 6 < 1, C%((t1, 1), X?) is the space of all locally Holder continuous functions from
(t1,t2) to X with exponent 6.

A vector valued function (u(z,t),v(x,t)) is called a classical solution of system (2.1) on
QO x (t,t2) (—o0 <ty <ty < 00)if (u,v) € C(2 x (t1,t3)) N C*H(Q x (t1,1,)) and satisfies
system (2.1) for ¢ € (t1,t2) in the classical sense. A classical solution (u(z,t),v(z,t)) of
system (2.1) on €2 x (t1,t5) is called nonnegative if u(x,t) > 0 and v(x,t) > 0 for (x,t) €

Q% (t1,t2), and is called positive if inf , ;) cax 1, 1) (2, 1) > 0andinf , yeax @, 1) v(7, 1) > 0.

11



(u(x,t),v(x,t)) is called an entire classical solution of system (2.1) if it is a classical solution
of system (2.1) on (—o0, 00). For a given ¢, € R and a given function ug(-) on €2, it is said
that system (2.1) has a classical solution with initial condition u(x,ty) = ug(zx) if system (2.1)
has a classical solution, denoted by (u(z, t; to, up), v(z, t; o, ug)), on (to, T') for some T > t,
satisfying that lim,_,;  u(-, t; o, ug) = up(-) in certain sense. A classical solution of system
(2.1) with initial condition u(x,ty) = wug(x) exists globally if system (2.1) has a classical

solution (u(x,t;tg, ug), v(x,t; to, up)) with u(z, to; to, ug) = up(z) on (tg, 00).
2.2.2  Main results

First of all, we have the following local existence theorem.

Theorem 2.1. Suppose that p > 1 and 1/2 < o < 1 are such that X* C C1(Q).

(1) For any ty € R and ug € X* with ug > 0, there exists T.x € (0,00] such that
system (2.1) has a unique non-negative classical solution (u(x,t;to, ug),v(x,t;to, ug))

on (to, to + Tmax) satisfying that lim,_, ||u(-, t;to, uo) — uo(-)||xe = 0, and
U(‘, ) th uO) S C([t()a tO + Tmax)a Xa) N Oé((tm tO + Tmax)> Xa) (26)

for some 0 < 6 < 1. Moreover if Ty, < 00, then

tim sup [[ul ¢ + to fo, o) | o = i sup (-, ¢ + toi o, wo)lgngey = 00 (2.7)
t/‘Tmax t/‘Tmax

(2) For any giventy € R and ug € C°(Q) with ug > 0, there exists Tyax € (0, 00] such that

system (2.1) has a unique non-negative classical solution (u(x,t;to, ug),v(x,t;to, ug))

on (to, to + Tmax) satisfying that imy_q, [[u(-,; o, uo) — uo(+)||co) = 0, and
u(-, - o, up) € C((to, to + Thnax), X*) N C°((to, to + Thnax), X*) (2.8)
for some 0 < 6 < 1. Moreover if Ty, < 00, then
lim sup [[u(-, t 4 to; to, to)|| po(qy = o0 (2.9)

t/‘Tmax

12



Remark 2.1. (1) Since X® C C*(Q) C C°(R), the existence of a local classical solution in
Theorem 2.1(1) is guaranteed by Theorem 2.1(2). However lim;_,y, u(-, -; o, ug) = uo()

in the X“-norm in Theorem 2.1(1) is not included in Theorem 2.1 (2).
(2) Theorem 2.1(2) is consistent (one species version ) with [55, Lemma 2.1].

(3) Semigroup theory and fixed point theorems together with regularity and a prior estimates
for elliptic and parabolic equations are among basic tools used in literature to prove
the local existence of classical solutions of chemotaxis models with various given initial
functions. For the self-completeness, we will give a proof of Theorem 2.1(1) by using
semigroup theory and give a proof of Theorem 2.1(2) based on the combination of fixed

point theorems and semigroup theory.

We next consider the global existence of classical solutions of system (2.1) with given initial
functions and the following is our main result on the global existence of positive classical

solutions to system (2.1).

Theorem 2.2. (1) Assume that (H2) holds. Then for any ty, € R and uy € C’O(Q) with
ug > 0, system (2.1) has a unique global classical solution (u(x,t;to, ug), v(x,t;to, ug))
which satisfies that lim;_, ||u(-, t;to, uo) — uo(+)||coqy = 0 and (2.8), (2.9). Moreover,
we have

0 < v(x,t;to, up) < maxu(x,t;to, ug)
e

aO,sup }
inftzto {al,inf(t) - |Q| <a2vinf(t)>_ - X}
(2.10)

< max { sup uo(x),

forall (z,t) € Q X [tg, o).

(2) Assume that (H2) holds. Then foranyty € Randug € C O(Q) with ug > 0, system (2.1)
has a unique global classical solution (u(x,t;to, ug), v(x,t;to, up)) which satisfies that

limy sy, [|u(-, 5 to, o) — uo(-) |l o) = 0 and (2.8), (2.9). Moreover,

||U('>t§t0,U0)HCO(Q) + ||U('7t§t0»uo)||00(ﬁ) <C
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forallt > to, where C' = C(||uol|co(q)), i-e, C depends only on ||uo|| o), and

[2]a0,sup

> 1.

0< /Qu(x,t;to,uo)dx < max { /QUO(x)v infyen {al,inf(t) — 19 (asz(t))_} }Vt =

Remark 2.2. (1) When ay(t,z) > 0, (H2) becomes a1inf > max{@, 0}. In particular,
if as(t, ) = 0, Theorem 2.2 is consistent with the result by Tello and Winkler in [59].

(2) When the coefficients are constant, the condition (H2) becomes a, — || (az)— > x which

is consistent with the result of global existence by Negreanu and Tello in [44].

(3) (H2) implies (H2)'. Therefore the global existence of bounded classical solutions of
system (2.1) in Theorem 2.2(1) follows from Theorem 2.2(2). However the explicit bound
given by (2.10) is not included in Theorem 2.2(2). Note that the explicit bound (2.10) will
be used in the proof of the existence of periodic solutions (resp. steady state solutions)
when the coefficients a;(t, x) are periodic (resp. when a;(t,xz) = a;(x)) (see Theorem
2.3).

(4) In general, assuming that inf,cg {al’inf(t) — |Q|<a27inf(t)> } > 0, it remains open
whether for any given ty € R and uy € C°(Q), system (2.1) has a global classical
solution (u(x,t;tg, ug), v(x,t;ty,up)). This is open even in the case that a;(t,x) = a;

fori=0,1and as(t,x) = 0.

We now state our main result on the existence of positive bounded entire solutions of system

(2.1).
Theorem 2.3. Suppose that (H2) holds. Then there is a positive bounded entire classical
solution (u,v) = (u*(z,t),v*(x,t)) of system (2.1). Moreover, the following hold.

(1) If there is T > 0 such that a;(t + T, z) = a;(t,x) fori = 0,1, 2, then system (2.1) has a

positive periodic solution (u,v) = (u*(x,t),v*(z,t)) with period T.

(2) If a;(t,z) = a;(t) for i = 0,1,2, then system (2.1) has a unique positive spatially
homogeneous entire solution (u,v) = (u*(t),v*(t)) with v*(t) = u*(t), and if a;(t)

(1 = 0, 1,2) are periodic or almost periodic, so is (u*(t),v*(t)).

14



(3) If a;(t,x) = a;(x) fori = 0,1,2, then system (2.1) has a positive steady state solution
(u,v) = (u(x),v"(x)).

Remark 2.3. (1) When the coefficients are only time dependent, i.e, a;(t,x) = a;(t) for

i =0, 1,2, every positive entire solution u(t) of the ODE
u = ulao(t) — (a1(t) + [Qfax(t))u]

is a positive entire solution of the first equation of system (2.1) and then (u(t),v(t)) with
v(t) = u(t) is an entire positive solution of system (2.1). Thus system (2.1) has an entire
solution under the weaker assumption inf,cg{a(t) —|Q|(az(t))-} > 0 (see Lemma 2.5).
In general, due to the lack of comparison principle for system (2.1), it is fairly nontrivial
to prove the existence of positive entire solutions.

(2) It should be mentioned that there may be lots of positive entire solutions (see [38], [59]).

(3) The existence of positive bounded entire classical of system (2.1) also holds under the
weaker assumption (H2)' (see Remarks 2.6 and 2.7). However under (H2)', it reminds
open whether there are periodic solutions of system (2.1) when the coefficients a;(t,x)

are periodic (resp. steady state solutions of system (2.1) when a;(t, z) = a;(x)).

Finally we state the main results on the stability and uniqueness of positive entire solutions

and asymptotic behavior of positive solutions of system (2.1).

Theorem 2.4. (1) Ifa;(t,z) = a;(t) fori =10,1,2 and
irtlf{al(t) — Q[ aa(t)] } > 2x, (2.11)

then for any ty € R and ug € C°(Q) with ug > 0 and ug # 0, the unique global classical

solution (u(zx, t; to, ug), v(z, t;to, ug)) of system (2.1) satisfies

lim ( Hu(v t; t07 uO) - U*(t)HCO(Q) + ||U('7 t; tU? UO) - U*(t)HCO(Q) ) = 07 (212)

t—o00

where u*(t) is the unique spatially homogeneous positive entire solution of system (2.1).

(2) Suppose that

15



inf {arnr(t) = 101 (a2ime(®) } > {x+ 2222 (x + 10 sup (e2m®)) )} @13)

QQ,inf
and .
lim sup / (Lo(T) — Ly(1))dT < 0, (2.14)
t—s—o0 — S s
where
L(t) = 2ry(ayme(t) + Q] (azme(t))+), (2.15)
X (X'f’1)2
Lg(t) = (Io7sup(t) + 5(7"1 — 7’2) + T + ‘Q‘Tl (2(&27inf(t)), + (a27sup(t))+),
(2.16)
and
o SuPteR{al,Sup(t) - |Q|(a2,sup(t))— - X}CLO,Sup — Qo,inf (X + |Q| inft(alinf(t))—i-)
' h(x) ’
2.17)
o — infier{arint(t) — [Qf(a,imt(t)) - — X}@0,int — G0 sup (X + 19| SuPt(aZsup(t))Jr)
‘T h(x) ’
(2.18)

PX) = {1 ine (8) = [2)(@2,me (1)) - = x} sup{ar s (t) = [2(02.0p(H)) - = x}

— (x +19| %gﬂg(alinf(t))-i-) (x + 19 ig‘g(alsup@))-&-)'

Then system (2.1) has a unique positive entire solution (u*(x,t),v*(x,t)), and, for any
to € Rand uy € C°%Q) with ug > 0 and ug # 0, the global classical solution

(u(z, t;to, ug), v(z,t;to, uo)) of system (2.1) satisfies
Lim <Hu(-,t;t0,u0) —u* (-, )o@y + v+t to, wo) — U*('at)HC’O(Q)> =0. (219

If, in addition, a;(t,z) = a;(x) (resp. a;(t + T, x) = a;(t,x), a;(t, z) is almost periodic

in t uniformly with respect to x) for i = 0,1, 2, then system (2.1) has a unique positive
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steady state solution (u*(x),v*(x)) (resp. system (2.1) has a unique time periodic pos-
itive solution (u*(z,t),v*(x,t)) with period T, system (2.1) has a unique time almost

periodic positive solution (u*(x,t),v*(z,t)).
Theorem 2.5. Suppose that (2.13) holds and r| and ry are as in Theorem 2.4(2). Then

(1) Foranyty € R, ug € C°(Q) with ug > 0 and ug # 0, and € > 0, there exists t. such that

ro —€ < wu(w,titg,ug) <1 te€, ro—e < vz, tito,uy) <1 te
forall x € Qandt >ty +t..

(2) Moreover if the coefficients a; are periodic in t with period T' > 0 (resp. a; are almost
periodic in t), then there are T-periodic functions m(t) and M (t) (resp. almost periodic

functions m(t) and M (t)) with

ro <infm(t) <m(t) < M(t) <supM(t) <mr
teR teR

such that for any ty € R, ug € C(Q) with ug > 0 and ug #Z 0, and € > 0, there is t. > 0

such that
m(t) —e < u(z,t;to,ug) < M(t)+¢e, m(t) —e <wv(x,t;to,ug) < M(t)+e,

forall x € Q, t >ty +t..

Remark 2.4. (1) When a; (i = 0, 1,2) are constants, the condition (2.11) becomes
a; — || Jag| > 2x. (2.20)

Theorem 2.4(1) is then an extension of [44, Theorem 0.1 | by Negreanu and Tello. When
the nonlocal term is zero, the result in Theorem 2.4(1) is consistent with the result by

Tello and Winkler in [59].

(2) In Theorem 2.4(2), when a; (i = 0,1, 2) are constants , we have r1 = ro = m and
2 0 2 92 Qll2 )
Ll(t) _ ao(a1 + | |(a2)+)’ Lg(t) = ag + X ag ' ao’ H (a2) + (a2)+]
@+ [Qas 2(ar + [Qas) ar + [
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Hence the condition (2.13) becomes (2.20) and the condition (2.14) becomes

2
X" Qo

— < a—|Q _.
2(a1+|Q|a2) ay | |(a2)

Furthermore when x = 0, the condition (2.14) becomes
a] — |Q|(CL2)_ > 0.
(3) In Theorem 2.4(2), if a;(t + T, x) = a;(t,x) (i = 0,1,2), then (2.14) becomes
T
/ (La(t) — Ly (t))dt < 0.
0

(4) It is seen from Theorem 2.3 that (2.5) ensures the existence of positive entire solutions
of system (2.1). In the case that a;(t,z) = a;(t) (i = 0,1,2), the condition (2.11)
ensures the stability and uniqueness of positive entire solutions of system (2.1). In the
general case, Theorem 2.5 provides some positive attracting set for positive solutions of
system (2.1) under the condition (2.13). It remains open whether in the general case, the
condition (2.13) also ensures the stability and uniqueness of positive entire solutions of

system(2.1).

(5) The reader is referred to Definition 2.3 for the definition of almost periodic functions.

The rest of the chapter is organized as follows. In section 2.3, we collect some important
results from literature that will be used in the proofs of our main results. In section 2.4, we
study the local existence of classical solutions of (2.1) with given initial functions and prove
Theorem 2.1. In section 2.5, we investigate the global existence of classical solutions of (2.1)
with given initial functions and prove Theorem 2.2. We consider the existence of positive entire
solutions of (2.1) and prove Theorem 2.3 in section 2.6. Finally, in section 2.7, we study the

asymptotic behavior of global positive solutions and prove Theorems 2.4 and 2.5.
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2.3 Preliminaries

In this section, we recall some standard definitions and lemmas from semigroup theory. We also
present some known results on non-autonomous logistic equations and Lotka-Volterra compe-

tition systems.

2.3.1 Semigroup theory

In this subsection, we recall some standard definitions and lemmas from semigroup theory. The
reader is referred to [17], [48] for the details.

Recall that for given 1 < p < co, A = —A + [ with

D(A) = {u e W??(Q) | g—z =0 on 90}

and X* = D(A®) equipped with the graph norm ||z||, = || A%z||,. Note that X° = LP((Q).

Lemma 2.1. (See [17, Theorem 1.6.1]) Let 1 < p < co. Forany 0 < a < 1, we have

X*C C"(Q) when 0 < 1/<20¢—2,
p

where the inclusion is continuous. In particular when 2% <a <1, weget X*CCQ).

Lemma 2.2. (See [27, Lemma 2.1]) Let f > 0 and p € (1,00). Then for any € > 0 there exists

C'(€) > 0 such that for any w € C§°(§2) we have

AP 4N - w| o) < C’(e)t’ﬁ’%’ee*“t||wHLp(Q) forall t > 0and some 11> 0. (2.21)
Accordingly, for all t > 0 the operator APe=*AN- admits a unique extension to all of LP(2)
which is again denoted by APe=*AV - and satisfies (2.21) for all w € LP().

Consider

u + Au = F(t,u), t >t
(2.22)

u(to) = up.
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We assume that " maps some open set U of R x X* into X° for some 0 < @ < 1, and F is

locally Holder continuous in ¢ and locally Lipschitz continuous in u for (t,u) € U.

Definition 2.1 (Mild solution). For given ug € X®. A continuous function u : [ty,t;) — X° is
called a mild solution of (2.22) on ty < t < ty if u(t) € X fort € [to,t1) and the following

integral equation holds on ty <t < tq,

t
u(t) = A0y, / e M (s, u(s))ds. (2.23)

to

Definition 2.2 (Strong solution). (see [17, Definition 3.3.1]) A strong solution of the Cauchy
problem (2.22) on (ty,t,) is a continuous function u : [tg,t;) — X° such that u(ty) = u,
u(t) € D(A) fort € (to,t1), % exists for t € (to,t1), (to,t1) 2 t = F(t,u(t)) € X°is

locally Holder continuous, and f foto

It u(t))]|dt < oo for some o > 0, and the differential

equation u; + Au = F(t,u) is satisfied on (to,t1).

Lemma 2.3 (Existence of mild/strong solutions). (1) Forany (to,ug) € U there exists Ty =
Trnax(to, wo) > 0 such that (2.22) has a unique strong solution u(t;ty,uo) on (to,to +
Trnax) with initial value u(to; to, ug) = ug. Moreover, u(+; to, ug) € C([to, to+Tmax), X*)

and if Thax < 00, then

limsup [[u(t + to; o, uo) || ya = 00
t/(Tmax
(2) For given (to,uy) € U, if u(t) is a strong solution of (2.22) on (to, t1), then u satisfy the
integral equation (2.23). Conversely, if u(t) is continuous function from (ty,t,) into X“
8 q Y ) )
f;ﬁg | E(t,u(t))||dt < oo for some o > 0, and if the integral equation (2.23) holds for

to < t < t1, then u(t) is a strong solution of the differential equation (2.22) on (tg,t1).

Furthermore,
u € C%((to,t1), X) forall § suchthat 0 < 3§ <1 —«

Proof. (1) It follows from [17, Theorem 3.3.3 ] and [17, Theorem 3.3.4 ].
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(2) The equivalence part follows from [17, Lemma 3.3.2] and v € 05((t0, t1); X*) follows
from the proof of [17, Lemma 3.3.2]. [l

2.3.2 Nonautonomous logistic equations and Lotka-Volterra competition systems

In this subsection, we first recall the definition of almost periodic functions and some ba-
sic properties of almost periodic functions. We then review some known results for nonau-

tonomous logistic equations and Lotka-Volterra competition systems.

Definition 2.3. (1) A continuous function f : R — C is Bohr almost periodic if for any
€ > 0, the set of e-periods {T||f(t + 7) — f(t)| < €} is relatively dense in R, i.e,
there exists an | = [(€) such that every interval of the form [t,t + l] intersects the set of
e-periods.

(2) Let g(t, ) be a continuous function of (t,z) € R x €. g is said to be almost periodic in
t uniformly with respect to x € € if g is uniformly continuous int € R and x € Q, and

for each x € ), g(t, x) is almost periodic in t.

Lemma 2.4. Let g(t, z) be a continuous function of (t,z) € R x Q. g is almost periodic in t

uniformly with respect to x €  if and only if g is uniformly continuous int € R and x € Q,

and for any sequences {3, }, {7,,} C R, there are subsequences {3,} C {B,}, {7} C {7,}

such that

lim lim g(t+ By + Ym, o) = lim g(t + B + Y, 2) V (t,2) €R x Q.
n—oo

n—0o0 mMm—0oo

Proof. See [11, Theorems 1.17 and 2.10]. ]

Consider the following nonautonomous logistic equation

du
i u(a(t) — b(t)u), (2.24)

where a(t) and b(t) are continuous functions. For given uy € R, let u(t; to, ug) be the solution

of (224) with U(t(), t(), Uo) = Ug.
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Lemma 2.5. (see [46], Theorems 2.1, 3.1 and 4.1) Suppose that a(t) and b(t) are continuous
and satisfy that 0 < infcg a(t) < sup,cpa(t) < oo, 0 < infierb(t) < sup,epb(t) < 0.
Then
(1) The non-autonomous equation (2.24) has exactly one bounded entire solution u*(t) that
is positive and satisfies

Supye b(?)

Wiz alt) g

< ut(t) <
<00 S b0

(2) u*(-) is an attractor for all positive solutions of (2.24), that is, for any ug > 0 and ty € R,

T [[u(t + to; o, o) — u* (¢ + to)]| = 0.

(3) If furthermore a(t) and b(t) are periodic with period T (resp. almost periodic), u*(t) is

also periodic with period T’ (resp. almost periodic).

Consider now the following nonautonomous Lotka-Volterra competition systems

‘ZZ_I; — u(al(t) — bl (t)u —C (t)?))
(2.25)

@ — y(ag(t) — ba(t)u — ca(t)),

where a;(t), b;(t), and ¢;(t) (i = 1, 2) are continuous and bounded above and below by positive

constants.

Given a function f(t), which is bounded above and below by positive constants, we let

f¥=inf f(t) and fM =sup f(t).

teR teR

M M M p M
G a4 ay” by

Lemma 2.6. Suppose that a* > - and al > oL
2 1

(1) Suppose that (ui(t),v1(t)) and (us(t), ve(t)) are two solutions of the system (2.25) with
ug(to) > 0, vi(to) > 0 (k = 1,2). Then uy(t) — uz(t) — 0 and vi(t) — vo(t) — 0 as
t — o0.

(2) Forany ty € R, there exists a solution (uy(t),vo(t)) of system (2.25) for t > t such that
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L.L M, M M, M L. L
apCy — €1 Gy ap Co — C1 Ay

082 7A% o gy B2 Tal gy
ol — o S W) S prar— o izt
I ' 7 1T
— T (¥ — .
bEch — cfbdt = U = oMk — bk =

(3) If moreover the coefficients are positive and T-periodic, then there exist exactly one T'-
periodic solution of the system (2.25) with positive components, which attracts all solu-

tions that begin in the open first quadrant.

(4) If moreover the coefficients are positive and almost periodic, then there exist exactly one
almost periodic solution of the system (2.25) with positive components, which attracts all

solutions that begin in the open first quadrant.

Proof. (1), (2), (3) follow from [1, Theorems 1 and 2], and (4) follows from [22, Theorem
Cl. O

2.4 Local Existence and Uniqueness of Classical Solutions

In this section, we study the local existence and uniqueness of classical solutions of system
(2.1) with given initial functions and give main steps of the proof of Theorem 2.1 (the details
of the proof of Theorem 2.1 are given in our paper [30, proof of Theorem 2.1]).

First, observe that C°(Q)) C LP(Q) for any 1 < p < oo. Throughout this section, unless
specified otherwise, p > 1 and o € (1/2, 1) are such that X C C'(f2), where X* = D(A®)
with the graph norm |ull = [[A%u|rr(@) and A = I — A with domain D(A) = {u €
W2P(Q) | 24 = 0 on 0Q}. Note that A : D(A) — X°(= LP(Q)) is a linear, bounded bijection,
and A~': X° — X“is compact.

Next, we note that if (u(z,t;to, up),v(x,t;te, ug)) is a classical solution of system (2.1)
satisfying the properties in Theorem 2.1 (1) or (2), then v (-, t; to,up) = A~ u(-, ; o, up) and

u(z, t;tg, up) is a classical solution of

u = (A—1u+ f(t,z,u), xel
(2.26)

g—Z:(), x € 0f)
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with u(x, to; to, ug) = uo(x), where
f(t,z,u) = —xVu- VA u + yu(u — A ) + u(l + ap(t, ) — ai(t, z)u — as(t, x) / u)
Q

Conversely, if ug € X (resp. ug € C°(Q)) and u(x,t;t, up) is a classical solution of (2.26)
satisfying the properties in Theorem 2.1 (1) (resp. (2)), then (u(x, t; to, up), v(x, t;to, up)) is a
classical solution of system (2.1) satisfying the properties in Theorem 2.1 (1) (resp. (2)), where
v(-, tte, ug) = A7 (-, t; to, up).

We now give main steps of the proof of Theorem 2.1 . In the rest of this section, C' denotes
a constant independent of the initial conditions and the solutions under consideration, unless

otherwise specified.

Proof of Theorem 2.1. (1) We use the semigroup approach to prove (1) and divide the proof
into four steps.

Step 1. (Existence of strong solution). In this step, we prove the existence of a unique strong
solution (-, ¢; to, ug) of (2.26) in X* with u(-, to; to, ug) = uo and satisfying (2.6) and (2.7). In

order to do so, we write (2.26) as
u + Au = F(t,u), (2.27)

where F(t,u) = —xVu- VA u+ yu(u — A7 ) +u <1 +ag(t, ) —ai(t, - )u—as(t,-) |, u) :

It is not difficult to prove that I : R x X* — XU is locally Holder continuous in ¢ and locally
Lipschitz continuous in w. Then by Lemma 2.3, (2.27) has a strong solution u(-, -; t, ug) €
C([to, to + Tmax), X). Moreover, u € C%((to, to + Tmax), X*) N C{(to, to + Timax), Xo) for

any ¢ satisfying 0 < 6 < 1 — a. Hence (2.6) holds. Moreover, u(z,t) := u(x,t;ty, up) is a
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mild solution of (2.27) given by

¢
u(-,t) =e ATy — X/ e A=ITy(-,5) - VA u(-, s)ds

to

+ X/ e_A(t—S)u(_’ 5) (u(v S) - A_lu(" S))ds

to

- /t e~ AUy 3)(1 + ap(s, ) —ai(s, )u(-, s) — aa(s, ) / u(',s)>ds.

to Q

Furthermore if 1}, < 00, then (2.7) holds.

Step 2. (Regularity). In this step, we prove that u(z,t) := wu(x,t;to, ug) obtained in (i) is a
classical solution of (2.26) on (o, to+7max) and then (u(x, t; to, ug), v(z, t; to, ug)) is a classical
solution of system (2.1) on (o, ¢y + Tmax) satisfying the properties in Theorem 2.1(1), where
v(-, tte, ug) = A7 (-, to, up).

Fix tg < t; <T <ty + Twax and consider the problem

;

in(z,t) = (A — Di(a,t) + g(z,), z€Q, te(®,T)

a(z,t) = u(x, t1), zeQ (2.28)
i —0, zeo,

Ve

where

g(x,t) = — xVA u(z,t) - Vu(z,t)

+ <1 +ag(x,t) — XA u(w, t) + xu(z, t) — ar(z, t)u(z,t) — ag(x,t) / u(-,t))u(x,t).

Q

By Lemma 2.1, t — g(-,t) € C%(Q) is Holder continuous in t € (to,ty + Tiax) for some
0 € (0,1). Then by [2, Theorem 15.1, Corollary 15.3], (2.28) has a unique classical solution
@€ CP(Qx (t,T)) N C°Q x [ty,T)). Moreover, by Lemma 2.3,
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+ /t e Ay (. s) <1 + ag(s, ) —ai (s, )u(-,s) — as(s,-) /

t1 Q

u(-, 3))ds.

Thus @(z,t) = u(z,t) fort € [t;,T) and u € C*1(Q x (t1,T)) N C°(Q x [t;,T)). Letting
t; — toand T — Tay, We have u € C2H(Q X (tg, to + Thax)) N C%(Q X [to, to + Tnax))-

Let v(-, t;tg, ug) = A u(-,t;to,ug). We then have that (u(x,t;to, ug), v(z,t;to, up)) is a
classical solution of system (2.1) on (o, ty + Tax) satisfying the properties in Theorem 2.1.
Step 3. (Uniqueness). In this step, we prove the uniqueness of classical solutions of system
(2.1) satisfying the properties in Theorem 2.1(1).

Suppose that (u1(x,t),vi(z,t)) and (ug(z,t), vo(x,t)) are two classical solutions of system
(2.1) on (tg, tg + Tmax) satisfying the properties in Theorem 2.1. First, set u = u; — ug and

v = v; — vy. Then (u, v) satisfies

(

u = Au — xV(u-Voy) — xV(ug - V)

+u (ao(t, ©) — a1 (t)(ur + u2) — az(t, @) [ur) — az(t, z) ([qu)ue, x € Q¢ >t

Au+u—v=0, x € t>1y
ou __ Ov __

Gu — v — |, on 0f)
u(z,ty) =0, onx € .

Next, fix t1, T such that ty < t; < T < to + Thax. It is clear that, for ¢t € [t1, 1o + Tiax),

t Q
—/te_A(t_S)a (s, )(/u(-,s))uz(-,s)ds (2.29)
t Q
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Then using the generalized Gronwall’s inequality (see [17, page 6]), we get u(-,t) = 0 for
t € [to, T]. Letting T' — to + Trnax, we get u(-,t) = 0 for t € [to, to + Tmax)- Since v(+,t) =
A7 (- 1), v(-,t) = 0fort € [to, to+ Timax)- Therefore (uy(z,t), vy (x,t)) = (ua(z,t), va(x, t))

for (x,t) € Q X [to, to + Tinax)-

Step 4. (Nonnegativity). In this last step, we prove the nonnegativity of the classical solutions.
Since u(x, t; g, up) is classical solution of (2.26), by maximum principle for parabolic equa-
tions, we have that u(x,t; o, ug) is nonnegative (see [13, Theorem 7 on page 41]). And now,
since u(x, t; to, ug) is nonnegative, by maximum principle for elliptic equations, v(x, t; tg, ug)

is nonnegative (see [13, Theorem 18 on page 53]).

(2) We prove (2) by Banach Fixed Point Theorem and some arguments in (1) and divide the
proof into three steps. To this end, we first introduce the notion of generalized mild solution of
(2.27). A function u € C°([ty,to + T'),C°(Q)) is called a generalized mild solution of (2.27)
with u(ty) = ug if

t
u(t) =e Al—t)y, — X/ e AUIT L (u(s) VA u(s))ds

to

+ /t e~ A=)y (s) (1 + ag(s, ) —ai (s, )u(s) — as(s, )/

to Q

u(s))ds

fort € [to,to +1).
Step 1. (Existence of generalized mild solution). In this step, we prove the existence of a
unique generalized mild solution w(-, ¢; ¢y, ug) of (2.27).

In order to do so, fix t, € R and uy € C°(). For given T > 0 and R > ||ugl|co(q), let
Xr = C°([to, to + T],C°(Q))
with the supremum norm ||u||x, = maxs <<y 47 [|U(t)| o). and let
Srr = {u € Xr||lulx, < R}

Note that Sy is a closed subset of the Banach space Xr.
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First, it is not difficult to prove that, for given v € Sy g and t € [to, to + T, (Gu)(t) is well
defined, where

(Gu)(t) =e A1)y, — X/t e A=V . (u(s)VA u(s))ds

to

+ /t e~ At=5)y(s) (1 +ao(s, ) — a(s, Juls) — as(s, ") /

to Q

u(s))ds

and the integrals are taken in C°(Q2). Furthermore G is a contraction for 0 < T' < 1. Then, By
Banach fixed point Theorem, G has a unique fixed point u € Sz z. That means u € C°([to, to+
T],C(€2)) and

t
u(t) =e Alt0)y, — X/ e AT - (u(s) VA u(s))ds

to

+ /t e’A(t’S)u(s)<1 + ao(s, ) — ai(s, u(s) — as(s, )/

to Q

u(s))ds.

Hence u(-, t; to, ug) := u(t)(x) is a generalized mild solution of (2.27). The generalized mild
solution u(-, t; g, ug) may be prolonged by standard method into a maximal interval [¢g,to +

Thnax) such that if T, < oo then lim SUD; ATy (-, t + to; to, uo) || o) = oo

Step 2. (Regularity). In this step, we prove that u(t) = u(-,t;to, ug) is a classical solution of
(2.26) satisfying the properties in Theorem 2.1(2), where u(-, t;t, ug)) is obtained in Step 1.
Then (u(x, t;tg, ug), v(x, t;tg, ug)) with v(-, t; o, ug) = A7 u(-, ; to, uo) is a classical solution
of (2.1) satisfying the properties in Theorem 2.1(2).

First, for any 0 < # < % and o such that § + o < 1, by the arguments in Step 1, u(t) is
locally Holder continuous from (tg, tg + Tinax) to X # with exponent o.

Next, fix 3 < o < 1. We define the map B(t) : (to, to + Tinax) — L£(X®, LP(2)) by

B(t)i = —xVA u(t)-Va+ (ao(t, )= XA u(t) + xu(t) — aq (t, u(t) — as(t, -) /Q

u(t))a.

It is not difficult to prove that B is well defined and is Holder continuous in ¢.
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Finally, fix any ¢; € (to,to + Tmax)- By [17, Theorem 7.1.3], we have that

U = Au+ B(t)a, te (ti,to~+ Tmax)
(2.30)

a(ty) = ulty)

has a unique strong solution % which satisfy 4(¢) € X7 forany v < land t; < t <ty + Tinax-

By Lemma 2.3(2), u is given by the formula

(t) =e Ay (t)) — X/t e A9V . (a(s)VA u(s))ds

t1

+ /t e~ A=) g(s) (1 +ao(s, ) — ai(s, )u(s) — as(s, ) /

t1 Q

u(s))ds.

Fix tg < t1 < ty < tg + Tax. We have by Lemma 2.2 with § < % and € € (0, % — f) that

[a(t) = u()llco @)

SClﬁ—ﬁ551W$—Mﬂw@%+0l@—@5M®—Mﬂw@%

sc/u—@%”ﬂW@—mwm@@

t1

for t; <t < 5 and some C' = C(supy, </, ||u(t)||co@)). Then by generalized Gronwall’s
inequality (see [17, page 6]), we get @(t) = u(t) in C°(Q) on [t;,t,]. Letting t; — t, and
to — to + Tax, We have 4(t) = u(t) € X7 forany 0 < v < land t € (to,to + Timax). It
then follows from Theorem 2.1(1) that u(x, t;0,ug) := u(t)(x) is a classical solution of (2.26)

satisfying the properties in Theorem 2.1(2).

Step 3. (Nonnegativity and uniqueness) By the similar arguments as in Steps 3 and 4 in
the proof of Theorem 2.1(1), we have that (u(zx,t;to, ug),v(z,t;to, up)) is the unique non-
negative classical solution of system (2.1) satisfying Theorem 2.1(2), where v(-,t;to, up) =

A7 (-t to, ug). O

Remark 2.5. Ler {t,,} C R. Suppose that lim,,_,. a;(t + t,,x) = a;(t, z) locally uniformly in

(t,z) € R x Q. Then a;(t,x) (i = 0,1,2) also satisfy the hypothesis (H1) in the introduction.
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Hence for any ty € R and ug € X or uy € C°(Q), system (2.1) with a;(t, z) being replaced
by a;(t,x) (i = 0,1,2) has also a unique solution (u(x,t;ty, ug), v(x,t;to, up)) satisfying the

properties in Theorem 2.1(1) or (2).
The following corollary follows directly from Theorem 2.1 and its proof.

Corollary 2.1. (1) Let ty € R and ug € X* or C°(Q) be given and let (u(z,t;ty,up),
v(z, t;ty, ug)) be the unique solution of system (2.1) with initial condition u(-, to; to, up) =

ug(+) in Theorem 2.1(1) or (2). For any ty < t; < ty < to + Tiax, there holds

(u(z, ta; to, uo), v(x, ta; to, uo)) = (u(x, ta; t1, ul-, t1;to, wo)), v(x, ta; t1, ul-, t1; to, uo))-

(2) Let (u(x,t;to, ug), v(x,t;to, ug)) be the unique solution of system (2.1) with initial con-
dition u(-,to; to, ug) = uo(-) € X in Theorem 2.1(1) or (2), where X = X or C°(Q).
Then R x X 3> (to,ug) — (u(-,t;to, ), v(,t;to, ug)) € X x X is continuous locally

uniformly with respect to t € (to,to + Tax)-

(3) Let {t,} C R. Suppose that lim,,_,~, a;(t + t,,x) = a;(t, x) locally uniformly in (t,x) €
R x Q. For giventy € R and ug € X* or C°(Q), let (u,(z,t;to, uo), vn(x, t; to, ug)) be
the solution of system (2.1) with a;(t, z) being replaced by a;(t + t,,,x) (i = 0,1,2) and
with initial condition u,(-,to; to, ug) = uo(-) and (u(x,t;to, up), 0(x,t,;t9, uo)) be the
solution of system (2.1) on (to, to + Tmax) With a;(t,z) being replaced by a;(t,z) (i =

0,1,2) and with initial condition (-, to; to, ug) = uo(-). Then for any t € (to, to+ Tinax),

m (up (-, 5 t0), vn (-t to, u0)) = (4(-, 5 to, uo), (-, o, up))  in CY(Q).

n—oo

2.5 Global Existence and Uniform Boundedness of Classical Solutions

In this section, we investigate the global existence and the uniform boundedness of classical
solutions of system (2.1) with given initial functions and prove Theorem 2.2. We first prove

two important lemmas.
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Consider the following Lotka-Volterra Competition system of ordinary differential equations,

@ = Xl —u) + 7 {ao,sup(o = (1) — 19 (a2:00(1)) 1+ 12 (a2(1)) _u]

Ql = Xﬂ(g - ﬂ) + u |:a0,inf(t) - al,sup(t)g - |Q| <a2,sup<t)> +E + |Q| (a2,sup(t>> _Q:| .
(2.31)

For given ug € C°(Q) with ug(x) > 0and ¢y € R, let Uy = max,q to(z), ¥y = Min,eq ()
and

(u(t), u(t)) = (u(t; to, o, ug), u(t; to, o, up)) (2.32)
be the solution of (2.31) with (@(to; to, To, Ug), wu(to; to, o, Uy)) = (Uo, Uy)-

Lemma 2.7. Suppose inf;>, {amnf(t) — |9 ((J,Q,inf(t)) } > x. Then (u(t), u(t)) exists for all
t >ty and

0 <u(t) <u(t) Vvt >t,. (2.33)

a0,sup

Moreover, 0 < u(t) < max {ﬂo, }
inf; >4, {a1,inf(t)—|Q| az,inf(t)> —X}

Proof. First, note that

inf {ar () = 190 (a20p(8)) | 2 inf {are(®) = 190 (@) } > x.

t>tg —

The existence of (u(t), u(t)) for all ¢ > ¢, is then clear. For any € > 0, let ufj = %o + € and

ag,sup(t) - ag,sup(t) + €. Let
(@(t), u(t)) = (@(t; to, wy, uy), u(t; to, wG, uy) )

where (T (t; to, uf), ug), u(t; to, uj, uy)) is the solution of (2.31) with ag s, (¢) being replaced by
aasup(t) and (u(to; to, ug, ug), ut(to; to, U, ug)) = (uf, ug). We claim that 0 < u(t) < u(t)
for all ¢ > ty. Suppose by contradiction that this claim does not hold. Then since 0 < u, < ug,

there exist ¢ € (g, 00) such that
u(t) < u(t), Vt € [to,t) and u(t) = u(1).
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Thus (7€ — u)'(t) < 0. Note that u*(¢) > 0 for ¢ > to. Using (2.31) at t = ¢, we get

(@ — ) (1) =0 (?) | a5 up () — a0,0e(D)

+{a1sup(t) = arins(f) + |2 (02,50p(F) — azinf(f))}ﬂe(f)] :
It then follows that (u® — w)’(¢) > 0, which implies that (¢ — u)'(¢) = 0 and then
0 = a qup(£) = a0t (£) + {a1,0up () = @1,in (F) + [Q2(an,50p(F) — a2,ins(£)) }u(2) > 0,

which is a contradiction. Thus the claim holds. Letting € — 0 and using continuity of solutions
of (2.31) with respect to initial data and coefficients, (2.33) follows.

Furthermore, we have

W = (T — u) + 7 {ao,sup(t) = s (17 = 0 (2ane(1) ) 20+ 12 (a20e(1)) _a]

< ﬂ[ao,sup(t) — {aLinf(t) — Q] <a2,inf<t>>_ - X}ﬂ]-

Thus if inf>y, {al’inf(t) — Q| (ag’inf(t)> } > \, by comparison principle, we have

0 < u(t) < max {EO, 40.sup }
inf iz, {annr(t) = 1920 (a2m6(t)) = X}

Lemma 2.8. Suppose inf,cg {G/Linf(t) — 19| <G/271nf(t)) } > 0. Then

12 ag,sup

- /QU(t) = e { /ﬂuou)’ infyer {a1me(t) — Q] (aQ,inf(t)>_}} ol 12

forallt € [to,to + Timax), where u(t) = u(-, t; to, up) and ug € C°(Q) with up(z) > 0.
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Proof. By integrating the first equation of system (2.1) over 2, we get for any ¢ € [to, to+ Tinax)

that

< /Q ut) = | ut){ao(t z) — arlt, D)u(t) - ax(t, ) /Q u(t)}

u(t) a0y — angor (1) — (azgun(0)) /Q w(t) + (anant(t)) /Q
1

) {anawy = 57 o) = 19 (02(0) ] [ utt)}

IN

S— 55— 35

u(t)}

IN

Thus if inf,cg

—

aymt(t) — | (ag’inf(t)) _} > 0, we get by comparison principle for ODEs that

[2]a0,sup
V= /QU(t) = max{ /Quo(x)’ infier { @i (t) — |2 (azmi(t)) _} }

We now prove Theorem 2.2.

Proof of Theorem 2.2. (1) Let (u(t),u(t)) be as in (2.32). It suffices to prove that 0 < u(t) <
u(w,t;to, uo) < u(t) forall tg <t <ty + Tyayx and x € Q.

Observe that for any € > 0, there exists tg < te < tg + Tmax such that
u(t) — 2e < u(z, t;to,up) < u(t) +2¢  forall (z,t) € Q X [to, te).
Let
T. = sup{t. € (to,to+ Tmax) | u(t) —2¢ < u(x,t;tg,up) < u(t)+2e V (z,t) € QX [to, L)}

It then suffices to prove that T, = £y + Tiyax.

Assume by contradiction that 7. < ty + T ,ax. Then there is zy € ) such that

either u(xg, Tt;to, ug) = u(T.) — 2€ or u(xg, Tt; to, up) = u(T:) + 2e.

Let U(x,t) = u(x, t;to, uo) — u(t) and U(x,t) = u(x,t;tg, up) — u(t).

Note that for ¢ € (t, to + Timax), U satisfies
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U, —AU < —xVU-Vo+U [aojsup(t) — (alyinf<t> — X> (u+a) — Xg}

— (v — 1) — agmi()( / W+ 19 <a2,mf(t))+@ el (az,mf@)) 7.

Q _

By —azmt(t)(fou)u = — <a2,inf(t>)+<f9 u)u + (Cbz,inf(t)) 7(]9 u)u, we get for t € (to,to +
Thnax) that

U, — AU <

—xVU -Vv+U [a075up(t) — (a1 inf(t) — X) (u+) — Xg]

— xu(v —u) — <a27inf(t)>+< / w)u — |Q|uu> <6L2 inf ( ) /Qu)u — 19| (asz(t))_g?

< —xVU-Vv+T [ao,sup(t) - (al inf (¢ X) u+ 1) }

— xu(v —u) — <a2,inf(t)>+< / u)u — |Q|uu>

+ (oasmel®)) (u /Q (u—) — 19/ (arue(t)) (@)

< —xVU-Vu+U [ao,sup(t) — (al,inf(t) — X) (u+a) — xu+ Q] (agdnf(t)) a}

—xu(v —u) — (ag?inf<t)) ((/ u)u — \Qmu) a2, in ( / U)u (2.34)
N Ja
We claim that fQ Ui (x,t)dx is weakly differentiable in ¢ and moreover
d [ — — _
p Ul(z,t)yde =2 | Up(z,t)Up(x,t)de for a.e.t € (to,to+ Tmax), (2.35)
Q Q
and
—2 —2 Lrd [
/ U (z,t)de = / U+(x,t0)dx—|—/ (—/ U (z, T)dx) dr Yt € (to, to+Tinae). (2.36)
Q Q to Nt Jq
In order to prove the claim we define for > 0,
(22+7r)z —r, ifz>0;

0, if z <0.
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Then F, € C*(R),
2(2247)72, ifz>0;
0, if z <0.

Note that | F','| < 1 and that we have the following pointwise convergence,

U, (z,t) = lim F,(U(z,1)).

r—0

This implies that

/Ui(w,t)dm =lim [ FX(U(x,t))dz Yt € (to,to + Tax)- (2.37)
0

r=0 Jq
Note also that [, F>(U(x,t))du is differentiable in ¢ and

d

- QFf(U(m,t))dx:2/Q (T (1) +7)

[NIES

)Ty (2, ) (T (0, £)4) 2 O, (, ). (2.38)
By (2.38), for any 6 > 0, there is My > 0 such that for any r» > 0
| / F?(U(a, t,))de — / F2 (T, t))dz] < Mty sl ¥ tu,1s € [fo+ 8.ty + T — 0],
Q Q
(2.39)
Then by (2.37) and (2.39), we have
‘ / Ui(l’,tl)dl’ - / Ui(l‘, tg)dl" S M5|t1 - t2| i tl, t2 S [to + 5, to + Tmax - (5] (240)
Q Q
Let ¢ € C°((to, to + Tmax))- We have by integration by part that

/tOTmax % ( /ﬂ FT(U(x,t))de> P(t)dt = — /:nax < /Q FT(U(x,t))2d$) oi(t)dt.  (2.41)

By Lebesgue Dominated Theorem we get from (2.37) that

i - / ([ A@yar) o) = - / | @0 asa
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and from (2.38) that

i [0 ( /Q FT(U(x,t))2dx) S(t)dt = 2 /tT /Q U (z,)0i(z, ) dzo(t)dt.

r—0 to dt

Thus it follows from equations (2.41) that

Toax [ Toax [ )
/ / (T (2, 0))2daon(t)dt = —2 / / T ()0, ) drs (1) dt
to Q to Q

This implies that fQ Ui(:c, t)dx is weakly differentiable and (2.35) holds. By (2.35), (2.40),
and the Fundamental Theorem of Calculus for Lebesgue Integrals, we have for any ¢,¢; €

(to, to + Tiax) that

/
/Ui(m,t)dx:/ﬁi(x,tl)dx—k/ (i/Ui_(JZ,T)d:L‘>dT. (2.42)
Q Q n Nt Jo

1

Letting t; — %o, (2.36) follows.

By (2.35), multiplying (2.34) by U, and integrating with respect to x over §), we get

1d

< /Q(U+)2 |:a0,sup<t) + X%u - %XU - (al,inf(t) - x) (u+a) — xu+ [ (ag,inf(t)>a]
X / @oute =2 = (o) [ @) ([ vy~ 1]
az nf(t / Ui(u /

fora.e. t € (to,to + Timax)- Note that

(azmelt /U+ / (et )/Qmu(/gm) < ]Q](&z,inf(t))(ﬂ—i-Qe)/QUi_

and
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Moreover by using the second equation of system (2.1), we get

[ =P [ @ Z—/Q(Q)(v—u)—S/Q(Q)—(v—u)—-

Thus by Young’s inequality, we have fQ v—u)?: < [,(U N 2. Therefore

x [ @outo - < X2 / O3+ W)

Combining all these inequalities, we get

L4 [0+ [

< @ [ao,sup<t> gt 200 (a(®) @+ + 0] (a20(t))

< /Q (U)? |asun(t) + (2120 () _ +x) (@ +26) + ym(@,inf(t))}}

+{—X(ﬂ+2€>+ml(a2,inf<t>> EU (U_)? forae. t€ (to,T]. (2.43)
2 +2] Jo

Similarly, we have that fQ U? (x,t)dx is weakly differentiable in ¢ and moreover

d
pr U2 (x,t)dx = 2/ U_(z,t)U,(x,t)dx for a.e.t € (to,to+ Tmax), (2.44)
Q

and
2 2 ! d 2
U2 (2, 8)dz = | U2 (x,to)dz+ (— Q,(z,ﬂdaz)dT V1€ (o, to+Tomax). (2.45)
Q Q to Nt Jq
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Also we have
AU > VU -Vu+T {ao,mf@) ~ (@0 () = X) (1) = X3 + |2 (a2,005(1)) _g]

.
~xu(o =) ~ (a2a(0)) (0 /Q o — [00a) + (20 / U

By multiplying the above inequality by —U _ and integrating with respect to x over {2, we have

< / .y [ao,mf@) + (219 (ag,supu))* F20(+20) 410 (a2000(8)) 3

[ 0 wsmt0) 3] [0 for wete o)

2
s [+ [ v
< “}

(2.46)

By (2.36), (2.43), (2.45), and (2.46), we have

2
<1/<U (z,t0) + U2 (x,t0)>dx

/ / (,7) + U (2,7 ) [agsup( )+ (2’Q|(a2,inf(7))_ +X> (E+26)] dr

1/Q (Ui(x,t) +Q2_(x,t)>dx

// (.7) + U2 (2, 7) {m - g} i
+/t: [@ ‘Q‘<G2SUP )3]/( ,7) + U (z, T))dT Vvt € (to, T..

This together with U (-, ) = U_(-, ) = 0 and Gronwall’s inequality implies U (z,t) =
U_(z,t) =0for (z,t) € Q x [to, T]. Therefore,

w(t) < ulz, t;to,ug) <u(t) (x,t) € Q x [ty, TL].

This is a contradiction. Therefore, 1. = ty + Tmax. We then have T,,,, = oo and (2.10) holds

(2) We divide the proof in three steps. Note that the statements in these steps have already

been establish in the case of constant coefficients and ay, = 0, by Tello and Winkler in [59
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Lemma 2.2, 2.3 and 2.4]. For simplicity in notation, we denote (u(-, t; o, ug), v(-, t; to, ug)) by
(u(t), v(t)).
Step 1. In this step, we prove that for any v € (1, (#) , there is C' = C'(, ||uo|| 2+,

X_al,inf>+

|uo L1, Ao, A2, a1, |€2|) such that

/ Uﬂy(t) S C Vte [to, t[) + Tmax)a (247)
Q
and

T T
/ / W) + / / [V ()] < C(T +1) VT € (to, fo + Tax). (2.48)
to Q to Q

By multiplying the first equation of system (2.1) by ©?~*(¢) and integrating with respect to x
over (2, we have for t € (tg, to + Tax) that

1d

'y 4(y—1) T2 —(n y—1 Yo
[0+ 252 [ 19 0F =6 - 0y [ @vae) - Ve

+/Quw(t) [ao(t;) —ax(t,)Ju(t) — as(t, ')/Qu(t)]

By multiplying the second equation of system (2.1) by u”(-) and integrating over (2, we get

(=1 [0 V(o) - Tolt) - X =) [ e+ X —1) [,

Y Y
Thus we have for ¢ € (to, to + Tinax) that

1d 4(7_1)/ 202
—— [ u'(t) + ————= [ |[Vuz(t
i 0= v

_ _@ / o (8) + / a0 ]as(t, ) = an(t, Ju(t) - aat, ) / u(t)]

xX(y=1 [
+T/Qu+ (1).

By Lemma 2.8, we have <a27inf(t>) fQ u(t) < AyM,. Therefore
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1d CEUY
—— W)+ ——= Vuz(t
e R AEC

< w /Q WL + /Q (1) {ao(t,.) —areult) + (a2m(t)) /Q u(t)}

X(Fy_l) y+1 Y — A el
cxtr—1) /Q D) + /Q (1) [Ao + Ao My — ay suru(t)]

v
-1
<- {al,mf— X(V—)} / WH(E) + (Ao + Ao My) / u(b): (249)
v Q Q
Note that 1 := aj jnr — @ > (. By Young’s inequality, we have
1
(Ao +A2M0)/U7(t) < 5#/ W (t) 4+ C(v, Ao, Ag, ar, J|uol 1, [2]).-
Q Q
Thus
1d 4(y—1 7
o “A’(tHw—z)/ [Vuz (t)]” < _H/“W(?ﬁ) +C (7, Ao, Ag, an, [Juol| 1, [€2]).
ydt Jo ¥ Q 2 Jo

(2.50)

This together with Holder’s inequality implies that

141

S < -2 (/ uv(w) + C (7, Ao, A, an, Juo| 11, [92])-
dt Jq | Q

It then follows that

Ao, A LD\ T
/U’Y(Zf) S max{ / Ug, (0(77 0, A2, a1, HUOHL 7| |)) } YVt € [thtO +Tmax)-
Q 0 1%

Now by integrating (2.50) on (ty,7"), we get

/tOT/Quwl(t) +/tOT/QNu;’(t),2 <O(T+1).

(2.47) and (2.48) then follow.

Step 2. In this step, we prove that for any v > 1, there is C' = C'(v, ||uo|| £+, ||uol| L1, @i, [€2])
such that
/ W) < C Yt E [to, to + Toax). 2.51)
Q
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( 2)

Since a jns > X9 we get 5 2 . Choose vy € (% then by (2.47), we

(X al mf (X ag i f)+)

have

/ WO() < C = C o, [t oo, ol 1, Ao, As, ax, 2.
Q

Lety > 1.If 1 < v < =, the result follows by the continuous inclusion L?°(Q2) C L7(1Q2).

x(y— 1)

Suppose v > 7. Let i = 2|(ayinf — | + 1 > 0. By Young’s inequality we get

(AO —|—142]\40)/U7

(t) < g/ Wt (t) + C(y, Ao, As, ar, [Juol| e, [€2).
Q Q

This together with (2.49) implies that

1d 4(v —1 ~ -
U’Y(t) + <fy—2)\/ ‘VUf(t”Q < ILL/ U’H_l(t) + O(f)/vAOaAQaa'l? ||UOHL17 |Q|)
’Ydt Y 9 Q
Note that

5 al} 41 5 2(y+1)
[ =10l oy <€ and [0 = kO] 2

By Gagliardo-Nirenberg inequality, there exists Cj depending on the domain €2 and ~y such that

1 5 2(y+1) 5 2(y+1)a . 2(y+1)(1—a)
/QW (t)z\lw(t)HL?ZM) < GolVuz(8)] 2" Hu2(t>HLz%” +CoHu2()H
v

2('y+1)a

O, Juollrs ol 1, Ao, Az, an, 12) (I VuZ (1)o7 +1),

VA

—_n
—__Jo
ol _1) <
5

where a = M Since § < 79 < 7,wehave 0 < a < 1and2@a—2 =~
270

1+( 1)°

0. By applying Young’s Inequality, we get for any € > 0

2(v+1)a

C(y, lluollza, lluoll 2, Ao, Az, ar, ()| (#)]] 2"

< €| Vuz (t)]22 + Cle, 7, [Juoll v, [uoll 1, Ao, Az, ar, |€2)).
Therefore

[ 00 < vt @)1 + e, ool Fuolor, Ao, A, )
Q
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and then

4(~v — 1 ~y 4(~v — 1 4(~v — 1
—ilr{/WwaWs—4173/w“@+il7%wmwmmwwmﬂmm»
i Q €Y Q €y

It then follows that

1d 4(vy—1 .
o | W) < _<(7—2) - M) / Wt (t) + Cle, v, ol v, lluollpr, Ao, Az, ar, |€2).
ydt Jg €Y 0

By choosing € = ;12((7111,1)), we get
1d Y v+l 1 v =
—S - [ @@+ luoll) < —— ([ w®) 7 +C uollz).
vdt Jo Q Q7 \e

This implies that

/m@) < Cy ol ol s Ao, Ao, a1, 1Q0) ¥t € [torto + Tonms).
Q

(2.51) then follows.

Step 3. In this sept, we prove that there is C' = C'(||ug|| ) such that
|u(®)|lco@) + l[v(t)llco@y < C VE € [to, to + Tinax)- (2.52)

By the variation of constant formula, we have

u(t) =
e Aty — /tt e_(t_s)AV(u(s) -Vu(s))ds
+/tt e A u(s)[ 1+ agls. ) — (s, Ju(s) — (aa(s, ))+/Qu(s)+(a2(s,.))/Qu(s)}ds,
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Note that u(s)Io(-, s) < u(s)[1 + AsMy + ao(+, s) — a1(s, -)u(s)] and by parabolic comparison

Ii(-,9)
principle, we get fti e~ A=)y (s)Io(-, 5)ds < fti e~ At=5)y(s)I;(-, s)ds. Therefore

where

uy(t) = e A0y uy(t) = —X/ e =AY (u(s) - Vu(s))ds

and
ug(t,r) = / e Ay () [1 4+ As My + ao(-, s) — aq(s, )u(s)] ds.

to
Note that there are cg, ¢; > 0 such that (1 + Ay My + ag(t, x))r — ay(t, z)r?* < co — ¢y for all

te R,z €, and r > 0. We then have that
Jur ()l z=(0) < [[wollz=@) ¥t € [to,to + Tinax)
and . .
ug(t) < C / e~ A=) ds < C / et <O Yt e [ty to+ Tmax)-
to to

Choose p > nand o € ( ). Then X* C L*°(2) and the inclusion is continuous (see [17]

n 1
27 2

exercise 10, page 40.) Choose € € (0, 3 — a), then we have

t
ua(t)]|zo) < CHAauz(t)HLP(mSCX/ | A%~ DAY (u(s) - Vu(s))|| o) ds
to
t
< C / (t = 5) 55 P u(s) - Vo(s)||| e ds
to

t
—a—L—e —p(t—s
< C’/ (t — s)7 2 e ) (s)|| ow o) | VO ()| Lo () ds

to

fort € [to, to+Tmax), Where p; > pand% = pi1+pi2.N0te that [|[Vo(s)||zrzq) < Cllu(s)| L2 (q)-

By (2.51), we get

||UQ(t)HLoo(Q) < C(||UO||L00(Q))/ (t — S)_a_%_ee_u(t_s)dS < 0.

to

Therefore
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[o(®)lloe < u(®)llze@) < Cllluollze@) V¢ € [to, to + Tinax)-

(2.52) then follows. Theorem 2.2(2) is thus proved. O

Remark 2.6. Assume (H2)'. It follows from the proof of Theorem 2.2.(2) that for any

T infyep {al,inf(t)_‘g‘ (a2vinf(t)>

M > 0,5up T there is a positive constant C = C(M) depending only
on M such that for any uy € C°(Q)

with ug > 0 and |[ugl|coqy < M, 0 < u(-, t;to;up) < C.

2.6 Existence of Positive Entire Solutions

In this section, we explore the existence of positive entire solutions of system (2.1) in the gen-
eral case; the existence of time almost periodic, time periodic, and time independent positive
solutions of system (2.1) in the case that the coefficients of system (2.1) are time almost peri-
odic, time periodic, and time independent, respectively; and prove Theorem 2.3.

We first prove three lemmas. Throughout this section, we assume that (H2) holds and we let

= @o,su
M= inf,cp {al,inf o |Q|p<a2,inf(t)> } - (2.53)

Let (u(x, t;tg, up), v(z,t; to, up)) be the solution of system (2.1) with u(z, to; to, up) = uo(z)

(ug € C°(2)). By Corollary 2.1, for any ty > t; > t,

U(I, t27 tOJ uO) - u(m, t?u tlv U(', tla tO? UO))

By Theorem 2.2, the global existence of system (2.1) holds, and for any 0 < wug(-) < M,

0 <wu(-t;to,ug) < M for t>t. (2.54)

Lemma 2.9. FixaT > 0. For any ¢ > 0, there is 6 = §(T) > 0 such that for any given

uo(+) > 0 with supug < § and any to € R, u(x,t + to; to, up) < efor 0 <t < T.

Proof. 1t follows from the continuity with respect to initial conditions. ]
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a0, inf

R HrE— Let o = 6 be as in Lemma 2.9 with € = ¢.

Fix aT > 0. Fix ¢; such that ¢5 <
By Lemma 2.9, for given 0 < wg(z) < 0o, u(x, t + to; to, ug) < € for 0 < ¢ < T This implies

that U([L’,t+ to;to,Uo) = V(U(,t+ to;to,Uo)) = Ailu(-,t+ to;to,Uo) < € for 0 S t S T.

Lemma 2.10. For any ty € R and any 0 < ug(r) < min{dy, ao’i“f_EO(XHQl'|a2’“p|)}for r e,

ai,sup

u(x, t + to;to, up) > infug for 0 <t < T and x € (.

Proof. By Lemma 2.9, V' (u(-,t + to; to, ug)) < € for 0 < ¢t < T'. Hence

up = Au — xVu-VV(u) — xu(V(u) —u) +ulag(t, z) — a1 (t, x)u — as(t, ) /Qu)

> Au—xVu-VV(u) +ulag(t,z) — eox — ar(t, x)u — as(t, z) /Qu)

> Au— xVu - VV(u) + u(agms — €o(x + 19| - |a2sup|) — a1,5uptt).
Then by comparison principle, we have
u(z,t + to;to, ug) > u(t;infug) 0<t<T
where u(t; inf ug) is the solution of the ODE
U = u(agims — €o(X + |2 - |a2,5up|) — A1 suptt). (2.55)
with u(0;infug) = infug. Note that u(¢;inf ug) increases as t increases. The lemma then

follows. ]

Lemma 2.11. There is 6* = 6*(T") > 0 such that for any 0 < § < 0%, ty € R, and uy(-) with

d <infug <supug < M, u(x,ty+ T';ty,ug) > 9 forx € Q.

Proof. We prove the lemma by contradiction. Assume that the lemma does not hold. Then there

are 9, — 0, t, € R, and wu,(-) with §,, < infu,, < M such that inf u(-, ¢, + T;t,, u,) < 6y.

ag,inf —€0 (X+/9|*|az2,sup|
ai,sup

Without loss of generality, we assume that §,, < min{dy, )}. By Lemma
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2.10, we must have sup u,, > min{dy, ao’i“fféo(XHQH”’“"D}. Let

ai,sup

1 ot — Q-
Q= {7 € Qun(@) = 5 min{dy, loit ’“278“1")}}.

al,sup

Without loss of generality, we may assume that my = lim,,_, |€2,| exists, where |€2,] is the

Lebesgue measure of €2,,. Assume that my = 0. Then there is u,, € C’O(Q) such that

1 inf — Q : su
5n§ﬂn(x)§§min{5o,a0’f co(x + (€] - |as, p|)}

Q1 sup

and
lim ||, — G|y =0 V1<p<oo.
n—oo

This implies that

h—>In ”U<'7t;tn7un) - u('7t;tn7an)||Lp(Q) =0

uniformly in ¢ € [t,, ¢, + T forall 1 < p < co. Indeed, let G(+) be as in the proof of Theorem

1.1(1). Then G(u(-, t; tn, wn))(t) = u(-, t; £, ), Gl 5ty 1)) (t) = (-, sty ). Let

~

Gun)(t) = G(ul, bt un)) (1), Glin)(t) = Glul b ta, @))(1),

Wn (1) = G(u(, 5 tn, un))(t) — Gul-, t by, Un)) (2)
and

Wil 1) = V(G(ul- G tn, un)) (1)) = VGl L, 00))(1)).

Then

e~ A (y, — @, — X/t e AV [w, (-, 5) - VV(G(un)(s) + G(tn)(s) - VIV, (., s)]ds
- /t e_A(t_s)wn(-,s)<1 +ao(s, ) — a1(s, ) (Gun) + G(iin))(s) — as(s, -) /Q é(un)(s)>ds
- /t e At gy (s, -)(/an(-, s))é’(ﬂn)(s)ds. (2.56)



Now, fix 1 < p < oco. By regularity and a priori estimates for elliptic equations, [17, Theorem
1.4.3], Lemma 2.2, and (2.56), for any € € (0, 1), we have
[[wn (- )| 2 ()

t
< |tn = U zr) + Cx  max ||VV(G(Un)(5))||CO(Q)/ (t =) 2 ||wn (-, 9)|| Lr()ds
tn

tn<s<tn+T

t
+cxxmxummmmmm/@—w+w%@wm@@
tn

tn<s<tn+T
t
+ 0/ {1+ Ao+ A max ([|G(un)(s)llco@) + [1G(@n)(s)llco@)HIwa(:, s)ll e @ds
tn

n<s<tn+T

tn<s<tn+T

t
+C/ Aol - max |G (un) ()l co@) lwnl-, 8)l o ds
tn

t
+€ [ AallGan) s lewllon9)loards. @57
t

n

Therefore there exists a positive constant Cj independent of ¢ and n such that

t

[wn (-, t4-tn) || Lr) < Hun—fanLp(Q)JrCO/ (t=s)" "2 |lwn (-, s+tn)lryds  VE €[0,T].
0

(2.58)

By (2.58) and the generalized Gronwall’s inequality (see [17, page 6]), we get
Jim (-t b, un) — u(e, 5 tn, @) || o) = 0,
uniformly in ¢t € [¢,,t, + T] forall 1 < p < co. Therefore,
Jim [V (st b, un)) — V(u( i tn; @) llera =0
uniformly in ¢t € [¢,,t, + T]. Note that
V(- 5 tn, in)) (x) < €
forall t € [t,,t, + 1] and = € Q. It then follows that

V(u(s 8 tn, un))(z) < 2€0
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forallt € [t,,t,+T], z € , and n > 1. Then by the arguments of Lemma 2.10, inf u(-, ¢, +
T;tn, u,) > 0,, which is a contradiction. Therefore, mq # 0.

By mg # 0 and comparison principle for parabolic equations, without loss of generality, we
may assume that

liminf |le™*u, [coq) >0Vt €[0,T].
n— oo

This together with the arguments in the proof of Theorem 1.1(2) implies that there is 7 > 0
and 0., > 0 such that

Supu(-, tn + TOa tna un) Z 500

for all n > 1. By a priori estimates for parabolic equations, without loss of generality, we may

assume that

u('atn + TO; tnyun> — 'LLS, u('atn + T; tna un) —u’

as n — oo. By (H1), without loss of generality, we may also assume that
a;(t+t,, ) — al(t,x)
as n — oo locally uniformly in (¢, ) € R x Q. Then by Corollary 2.1,
u*(z) = u(z, T; Ty, uy) and infu” =0,

where (u*(x, t; Ty, ug), v* (x, t; Ty, uy)) with v* (-, ; Ty, ul) = A~ u* (-, t; Ty, ub) is the solution
of (2.1) with a;(¢, x) being replaced by a*(¢, x). By comparison principle, we must have uj, = 0.

But

SUp Uy > Oso-
This is a contradiction. OJ

Proof of Theorem 2.3. We first prove the existence of positive entire solutions of (2.1) in the
general case.
Let 6* > 0 be given by Lemma 2.11 with T = 1. Choose uy € C°(Q) such that §* <

up(z) < M. By Lemma 2.11 and (2.54),
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6 <wulw, tg+njtg,u)) <M VareQ, tyeR, neN. (2.59)

Set t, = —n and define u,(x) = u(z,0;t,,up). Choose ¢ such that —2 < # < —1. Then

there is M > 0 such that for each n > 3, we have
tnllo = llu(-; 05 tn, uo)lla = llul-, 0;8, (-, & tn, uo))[lo < M.

Therefore by Arzela-Ascoli Theorem, there exist ny, ug € C’O(Q) such that u,, converges to

ul in C°(Q) as ny, — co. Then by Corollary 2.1, we have
(e, tstn,, uo) = (-, 0, u(-, 05y, , uo)) = ul(-, 650, upn, ) — ul-, 50, up)
in C°(Q) as n — oo for t > 0. Moreover, by (2.54) and Lemma 2.11,
& <wu(z,n;0,uy)) <M Ve nel. (2.60)

We need to prove that (-, ¢; 0, uj) has backward extension. To see that, fix m € N. Then

u(+, t;tn, up) is defined for t > —m and n > m. Observe that
un(+) = u(-,0;t,, ug) = u(-, 0; —m, u(-, —m; ty, up)).
Without loss of generality, we may assume that u(-, —m; t,,, , ug) — u’,(-) in C°(Q). Then
(e, titn,, uo) = u(-, t;—m,u(-, —m; ty, , up)) — u(-, t; —m, uy,)

for t > —m and u(-,t;0,u}) = u(-,t; —m,w},) for ¢ > 0. This implies that u*(x,t; 0, u)
has a backward extension up to ¢ = —m. Let m — oo, we have that u*(z, t) has a backward
extension on (—o0, 0).

Let u*(z,t) = u*(x,t;0,u;) and v*(x,t) = A'u*(-,t), Then (v*(x,t), u*(z,t)) is an entire

nonnegative solution of system (2.1). Moreover,

§ <u(x,n) <M Ve neZ. (2.61)
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This implies that

0< inf u*(z,t) <M, 0< inf o*(z,t) <M.
zeQLER zeQL,teR

Therefore, (v*(x,t), u*(x,t)) is an entire positive bounded solution of system (2.1).

Next, we prove (1), (2), and (3).

(1) Assume that a;(t + T, x) = a;(t,x) fori = 0,1,2. Let 6* = §*(7") > 0 be given by
Lemma 2.11 and set

E(T) = {ug € C°(Q) : §* <y < M}. (2.62)

Note that E(T) is nonempty, closed, convex and bounded subset of C°((2). Define the map
T(T) : E(T) — C%Q) by T(T)ug = u(-,T;0,ug). Note that T(T) is well defined and
continuous by continuity with respect to initial conditions.

Let uy € E(T). Then by Theorem 2.2, we have 0 < u(-,7;0,u) < M and by Lemma 2.11,
we have u(-,7;0,u) > 0*. Thus u(-,7;0,uy) € E(T) and T(T)E(T) C E(T).

Let 2ﬂp <a< %, and € € (0, % — «). By the similar arguments as those in the proof of local

existence, we have that

- 750, wo)lla < CMT ™ 4+ CMPTE¢ 4 OM[L+ Ag + b (As + Q] Az)] T~

Now choose v such that 0 < v < 2a — %, then X C C¥(£2), where the inclusion is continu-
ous. Thus by Arzela-Ascoli Theorem, 7 (T)E(T) is precompact. Therefore by Schauder fixed
point theorem, there exists u? € E(T) such that 7(T)u’ = u”, ie u(-, T;0,u”) = uT(-).
Since u(-,t + T;0,u”) = u(-, t; T,u(-, T;0,u”)) = u(-, t;0,u), u(-, t; 0, u”) is periodic with
period 7. Now from the facts that u(., t; 0, u”) is periodic with period 7" and the uniqueness of
solutions of

—Av+v=u(z,t;0,ul) z€Q

g—z =0 onod2,
we getv(-, t;0,ul) = A= (-, t; 0, u’) is periodic with period T'. Then (u(-, ¢; 0, u”), v(-, ¢;0,uT))

is a positive periodic solution of system (2.1).
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(2) Assume that a;(t, x) = a,(t). Note that in this case, every solution of the ODE
ur = ufao(t) = (a1 (t)u + [Qas(t))u)

is a solution of the first equation of the system (2.1) with Neumann boundary. (2) then follows

from Lemma 2.5.

(3) Assume that a;(t,x) = a;(x) (i = 0,1,2). In this case, each 7 > 0 is a period for a;.
By (2), there exist u™ € E(7) such that (u(-,¢;0,u"), A~ (u(-, ¢;0,u"))) is a positive periodic
solution of system (2.1) with period 7. Note that there is M/ > 0 such that for each 7 > 0 and
uy € E(7), ||u(-,;0,u)||a < M foreach1 <t < 2.LetT, = L then there exists u,, € E(7,)

such that u(+,¢; 0, u,,) is periodic with period 7,, and
[tnlla = [Ju(, 705 0, un) lo = llu(, N7o; 0, up) [la < M: (2.63)

where N is suchthat 1 < N7, < 2.

We claim that there is 4 > 0 such that
[tn(Vco@ >0 Vn>1. (2.64)

Suppose by contradiction that this does not hold. Then there exists n;, such that ||u,, [|co@q) <
nl for every k > 1. Let kg such that - < ¢ for all k > k. By the proof of Lemma 2.10 we get
k ng

that u(-,¢; 0, u,, ) > u(t;inf u,, ) forall ¢ > 0 and k > ko, where u(¢; inf u,,, ) is the solution of

(2.55) with u(0;inf u,, ) = infu,,. Let §, = 90.int 0 0t azpl) 4 choose k large enough

2all,s,up

such that n—lk < d4. There is to > 0 such that u(¢; inf u,,, ) > J, for all t > ;. Then we have
Up, () = u(-,m7y,; 0, Uy, ) > u(mm,,;infu,, ) > 0"

for all m € N satisfying that m7,, > ¢o. This is a contradiction. Therefore, (2.64) holds.
By (2.63) and Arzela-Ascoli theorem, there exist ng, u* € C’O(Q) such that u,,, converges
to u* in C°(Q). By (2.64), [|u*(-)[co@) = §. We claim that (u(-,¢;0,u*),v(-,;0,u*)) with

v(-,1;0,u*) = A7 u(-, £;0,u*) is a steady state solution of system (2.1), that is,
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u(-,t;0,u") =u*(-) forallt > 0. (2.65)

In fact, let ¢ > 0 be fix and let t > 0. Note that

ng ng

[4t] Ty, = = ([nat] + D)7y,

By Corollary 2.1, we can choose k large enough such that

[t |

Ju(z, ;0,0 ) —u(z, 0, u,, )| <€ |un, (2)—u"(z)] <€ |u(x, ——:0,u,, )—u(x,t;0,u,,)| <e

for all x € Q). We then have

lu(z,t;0,u") —u*| < |u(x,t;0,u") —u(z,t;0,uy, )| + |u(z, 0, uy, ) — u(z, [NEt]70,; 0, wn, )|

+ [, (2) — u*(z)] < 3¢ V2 €.

Letting € — 0, (2.65) follows. O

Remark 2.7. It follows from the proof of the existence of positive entire solutions in Theorem
2.3 and Remark 2.6 that the existence of positive entire solutions also holds under the weaker

condition (H2)'.
2.7 Asymptotic Stability of Positive Entire Solutions

In this section, we investigate the stability and uniqueness of positive entire solutions of system
(2.1), the asymptotic behavior of global positive solutions of system (2.1), and prove Theorems

2.4 and 2.5. We first prove Theorem 2.5.

Proof of Theorem 2.5. Suppose that (2.13) holds. For given uy € C°(Q) with ug(z) > 0,
uo(+) # 0,and ty € R, let (u(-,t;to, uo), v(-, t;to, up)) be the solution of system (2.1) satisfying
the properties in Theorem 2.1(2). By Theorem 2.2, (u(-,t;to, up), v(-,; %o, ug)) exists for all
t > to. Note that u(x,t;tg,up) > 0 for all x € Q and t > t,. Without loss of generality, we
may assume that uo(x) > 0 for all z € Q.

Let (u(t), u(t)) be as in (2.32). By Lemma 2.7 and the proof of Theorem 2.2,
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w(t) < wulx, tito,ug) <ult) VaoeQ, t>t. (2.66)

Let r; and r5 be as in (2.17) and (2.18), respectively.

(1) By Lemma 2.6(1) and (2), for any € > 0, there is t. > 0 such that
ro—e<u(t) <u(t) <r +e for t>ty+t.. (2.67)

(1) then follows from (2.66) and (2.67).

(2) We first consider the case that a;(t,z) (i = 0, 1,2) are periodic in ¢ with period 7. By
Lemma 2.6(1), (2), and (3), there are periodic functions m(¢) and M () with period 7" such that
ro <m(t) < M({t)<r, VteR

and for any € > 0, there is ¢, > 0 such that
m(t) —e < u(t) <a(t) < M(t)+e Yt>ty+t. (2.68)

In this case, (2) then follows from (2.66) and (2.68).
Next, we consider the cases that a;(t,z) (: = 0, 1,2) are almost periodic in ¢. By Lemma

2.6(1), (2), and (4), there are almost periodic functions m(t) and M (t) such that

ro <m(t) < M(t)<r, VteR

and for any € > 0, there is £, > 0 such that (2.68) holds. (2) then follows from (2.66) and
(2.68). O

We now prove Theorem 2.4
Proof of Theorem 2.4. (1) Suppose that a;(t, x) = a;(t) fori = 0,1, 2 and

inf {a1(t) — 92 Jax(t)] } > 2x. (2.69)

For given ug € C°(Q) with ug(z) > 0, ug(-) # 0, and ty € R, let (u(-, t; to, uo), v(+, t; to, up))

be the solution of system (2.1) satisfying the properties in Theorem 2.1(2). Again, by Theorem
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2.2, (u(-, t;to, uo), v(-, t;to, ug)) exists for all ¢ > ¢, and without loss of generality, we may
assume that uy(z) > 0 for all z € .

Let (u(t),u(t)) be as in (2.32). Let (u*(t),v*(t)) be the unique entire positive spatially
homogeneous solution of system (2.1) in Theorem 2.3(2). By Lemma 2.7 and the proof of

Theorem 2.2,
w(t) < ulx, tito,ug) <ult) VaoeQ, t>t. (2.70)

By Lemma 2.6(1), for any € > 0, there is t. > 0 such that
u(t) —e<u*(t) <u(t)+e Vit>ty+te. (2.71)

By (2.70) and (2.71), it suffices to show 0 < In % — 0as t — oo. Assume that ¢t > t,. By

dividing the first equation of (2.31) by w, and the second by u, we get

2|8l

= [ao(t) = (a1 (t) = [2/(a2(t)) - = x)u = (12/(a2(t))+ + x)u]

= [ao(t) = (ax(t) = [Q(az(t)) - — x)u — (12(az(t))+ + x)u]

e |\:\

This together with (2.69) implies that

S(m3) =Z £ = (@) - 10l la®)] - 20 (5 -) < 0.

‘:I
—
=
IN
|8
(=]

0< lnE < ln—o, and then
u

%(m—) < — (@) — 190 aa(t)] = 2¢) (infu()=2 ) (. 2).

U t>to Ug U
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By letting ¢y = inf;cg{a;(t) — || |az(t)] — 2x} <inft2t0 ﬂ(t)@—> , we have ¢y > 0 and

ug

u
0<In-— gln—oe’eot—>0 as t — oo.
u Uy

(2) Let Ly (t) and Ly(t) be as in (2.15) and (2.16), respectively. By (2.14),

@ = limsup
t—s—00 - S

/ (L1(7) — Lo(7))dT < 0.

Fix 0 < € < —p. Let r; and 75 be as in (2.17) and (2.18), respectively. By (2.13), Theorem

2.5(1), and definition of u, for any € > 0, there exists 7. > 0 such that
ry —e <u(to+titoug) <1ite, ro—e<uf(wt)<rit+eVreQ, t>ty+ 1T,

and

to+t
/ (Li(s) — La(s))ds < (u+e)t, Vtg € R, t >ty + 1.

to

We first prove that for any entire positive solution (u*(z,t),v*(x,t)) of system (2.1), (2.19)
holds. To simplify the notation, for given t, € R and uy € C°(Q) with ug(z) > 0 and
up(+) # 0, set u(t) = u(-,t;to;up) and u*(t) = u*(-,t). Let w(t) = wu(t) — u*(t). Then w

satisfy the equation

w; =Aw — xV(w- VA ) — xV(u* - VA 'w) + w (ag(t, ©) — a1 (t, z)(u + u*)

—ag(t,x)/ﬂu)—aQ(t,x)(/ﬂw)u* (2.72)

for t > ty. By the similar arguments for (2.35), we have that fQ wi is weakly differentiable

and moreover

d
— wi:2/w+wt Ya.e.t>t.

Next, by multiplying (2.72) by w. and integrating it over €2, we get

1d
——/wi—i—/ |Vw+|2zx/w+Vw+-VA_1u+X/u*Vw+-VA_1w
2dt Jqo Q Q Q

+/Qwi(a0(t,x)—al(t,x)(quu*) —ag(t,x)/gu) — (/Qw)/gaz(t,w)u*m
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for a.e t > to. Integrating by part and using the equation of A~ u, we get fora.e t > ty + T,

th/w+ /|Vw+|2 /w+(u—A_1u)+X/U*Vw+.VA_1w
0
+/wi(ao(t,:c)—al(t,a:)(u+u*)—ag(t,x)/u)
Q Q
/w)/ag(t r)u w,y
SX/eru— )+X/u*Vw+-VA_1w
2 Jo Q

+/Qw 0.sup — @1 1nf(t)(u+u*>_(a2,inf(t))+/9u)

CL2 1nf / U)
Q

We have by Young’s inequality that

2
X/U*Vw+-VA_1w§/|Vw+|2+M/ VA w|?.
Q Q 4 Q

Using the equation of A~1u, we get

/|VA_1w|2§/wi+/wz
0 0 0

fort > ty. Also we have for ¢t > ¢y + 7. that

—/w/ag(t,x)u*w+

o Jao

g/w/ (ag,sup(t))+u*w+—(a27inf +/w+ wwy + (agme(t )/w+/u*w+
Q Q Q Q Q Q

< 101+ o) = (72 = e ()21 | w2 + (1 + amaan(®)), ([ w0 [ )

Q
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By combining all these inequalities we have for a.e ¢ > ¢y + 7, that

5t 0t (@ 3 (40 = (2= 0) + LD [z
= ((r2 = I20r18(0) + 19002 0)2) [k
200001+ Ofana)- [ a4 (ML) [ 2

~ (ra — ) (azmmi(£)) 1 ( / Wi + (11 + ) (azauplt)), /

Q Q

w)( [ wo). @73

2

Similarly we have that [, w? is weakly differentiable with & [, w? = —2 [, w_wy, and for

aet >ty + 1,

1d

2dt w% S(ao,sup(t) T %«Tl +e)—(ra—€)) + M) /ng

_ <(7’2 — €)(2a1,me(t) + |Q\(a27inf(t))+)> /Q w?
+2|Q|(r1+e)(a2,inf(t))_/wg+ (M)/gwi

= (ra = aman)+ | -+ 1+ ) (amaun(®), (|

Q

w)( / w.). (2.74)
Q
Note that

~ (ra = Nama )+ (( | ws)?+ ([ w2) 42001+ amap(®)) ([ w)( [ )
< 2((r1+ )@z (®),, = (2 = ama(®)) ([ w)( [ )

<19 |:€<(a/2,sup(t))+ + (ag,inf(t))+> + <T1 (ag,sup(t)) — ro(agins(t /w + / w? ).

Set
K(t,e) = xe+x” 2(27"1+6)+2IQI €(azint) -+ €(az sup(t) +(azine (t)) ) +€(2a1,ime () +Q] az,ine ().

Adding (2.73) and (2.74), we then have

d

- Q(wi +w?)(t) SQ{Lz(t) — Ly(t) + K(t, 6)} /(wi +w?)

Q
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fora.e t > ty + 1.. Therefore by the continuity with respect to time of both sides of this last

inequality, we get

d

- Q(uﬂ+ +w?)(t) §2{L2(t) — Li(t) + K(t, e)} /(wi +w?)

Q

fort >ty + 1. Then by Gronwall’s inequality,

/(wi(ﬁ)—i—w2 (1) < /(wi(%—i—Te)—i-w2 (to+T.))e” Jig ) =L@+ K(Dds o ap1 ¢ ¢ 4 T0.
Q Q

Note that 0 < sup,cp |K(t,€)| — 0 as € — 0 and choose ¢y < 1 (¢y < —p) such that

0 <sup|K(t,e)| < H
teR 2

By j;i(Ll(s) — Lo(s))ds < (pu+ €)(t — to) for t > to + T,, we have

/ (W (1) +w (1)) < ( / W2 (ty + Tog) + 02 (t + T, )20 e0)0=10) 250 et
Q Q

< (/ w2 (to + Tpy) + W (tg + Tpy))eP O > 4 4+ T,
Q

Therefore
tlgilo (-, t + tos to, uo) — u* (-, t + to)|l r2(02) = tlgglo Jw(t +to)||Z2(q) = 0 (2.75)

uniformly in ¢y € R.

We claim that (2.19) holds. Suppose by contradiction that there is ¢y € R such that

u(-, tto, ug) = u*(+,t)

in C°(Q) as t — oo. Then there exists ¢y > 0 and a sequence t,, — 0o as n — oo such that

HU(',tn;to,uD) - U*<'>tn)HCO(Q) > €o.

58



Since u(-, t,; to, ug), u*(+, t,) € C°(£2) are uniformly bounded and equicontinuous, there exists
up to subsequence u!,ul € C°(Q) such that u(-,t,;to, ug), u*(+,t,) converges respectively
to u', ul in C°(€)). Therefore by dominated convergence theorem, u(-,t,; %, uo) — u; and
u*(-,t,) — ulin L?(Q) as t — oo. This implies that

lim ||u(7tna t07 'LL()) - U*(',tn)HL?(Q) =0.
tn—00

Hence we have that u' = u}. But also from |[u(-, ,,; to, uo) — u* (-, ts)|[co@) > €0, We get as
n — o0, |lu' — ufl|co@) > €0, which is a contradiction. Hence (2.19) holds.

Next, we prove that system (2.1) has a unique entire positive solution. Suppose that (u(x,t), v} (z,t))
and (u3(z,t),v3(x,t)) are two entire positive solutions of system (2.1). We claim that (u(x, t),
vi(x,t)) = (ub(x,t),v5(x,t)) for any t € R. Indeed, fix any ¢t € R, by the arguments in the
proof of (2.75),

|ul (- t) = us(-, )| L2y = llul-, tto, ui (-5 to)) — u(-, ts to, us(-,t0)) |l L2() = 0 as  to — —o0.

This together with the continuity of u}(x,t) (i = 1, 2) implies that u}(x,t) = u}(z,t) and then
vi(x,t) = vi(x,t). Hence system (2.1) has a unique entire positive solution.

Assume now that a;(t,z) = a;(x) (i = 0,1,2). By Theorem 2.3(3) and the uniqueness of
entire positive solutions of system (2.1), (2.1) has a unique positive steady state solution.

Assume that a;(t + T, x) = a;(t,z) (i = 0, 1,2). By Theorem 2.3(1) and the uniqueness of
entire positive solutions of (2.1), (2.1) has a unique positive periodic solution with period 7'.

Finally assume that a;(¢,z) (i = 0,1,2) are almost periodic in ¢ uniformly with respect to
r € Q. Let (u*(z,t),v*(x,t)) be the unique positive solution of system (2.1). We claim that
(u*(x,t),v*(x,t)) is almost periodic in ¢. Indeed, for any sequences {3,}, {7.} C R, by the
almost periodicity of a;(t, x) in t, there are subsequences {3,} C {/,} and {7,} C {7, } such

that
lim lim a;(t + By + Ym, ) = lim a;(t + By + Yn, T)
n—oo

m—00 N— 00

uniformly int € Rand z € Q fori = 0,1, 2. Let
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a;(t,z) = lim a;(t4+6,, z), a;(t,x) = nlliréo a;(t+vm, x), a;(t,x) = nlgr;() a;(t+Bn+vn, T)

n—oo

fori = 0,1,2. Observe that a; (i = 0,1,2), a; (: =0,1,2),and @; (: = 0, 1,2) also satisfy the
hypothesis (H1) in the introduction, and a; = a; fori = 0,1, 2.
Without loss of generality, we may assume that lim,, . (u*(-, t + 3,),v*(-,t + (3,)) exists in

C°(Q). Let

(@*(z, 1), 0" (2,8)) = Hm (W*(-, t + Ba), v* (-, t + Bn)).

n—oo

Then (a*(z,t),0*(x,t)) is an entire positive solution of system (2.1) with a;(t,z) being re-
placed by a;(t,z) (i =0, 1, 2).

We may also assume that lim,, o (4*(-, + 3,), 9" (-, t + (3,)) exists in C°(Q). Let

(@ (x, ), 0" (z, 1)) = Hm (@ (-, t + Bn), 0" (.t + Bn))-

n—oo

Then (a*(z,t),0*(x,t)) is an entire positive solution of system (2.1) with a;(t, z) being re-
placed by a;(t,z) (i = 0,1, 2).
Furthermore, we may assume that lim,, o (4*(-, ¢ + B, + ), 0*(-, t + Bn + 7)) exists in

Co%(Q). Let

(@ (z,t), 0" (z,t)) = Hm (0 (-, t + Bo + ), 0" (-, t 4 Bn + 7))

n—oo

Then (a*(x,t),0*(z,t)) is an entire positive solution of system (2.1) with a;(t, z) being re-
placed by a;(t,z) (i = 0,1,2). By the uniqueness of entire positive solutions of system (2.1)

with a,(t, x) being replaced by a;(t, z) (i = 0, 1,2), we have that
(a*(x,t), 0" (2, 1)) = (0 (x,t),0*(x,t)) VaeQ, teR,
It then follows from a; = a, for i = 0, 1, 2 that

lim lim (u*(z,t + By + Ym), 0" (T, t 4 Bn +Ym)) = li_}rn (u*(z,t+ By + Yn), 0™ (T, B + V)

mM—00 N— 00

and hence (u*(z,t),v*(x,t)) is almost periodic in ¢. The theorem is thus proved. O
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Chapter 3

Persistence, Coexistence and Extinction in Two Species Chemotaxis Models on Bounded
Heterogeneous Environments

3.1 Introduction

In this chapter, we study system (1.2) with 7 = 0, which reduces to the following two species
parabolic-parabolic-elliptic chemotaxis system with heterogeneous Lotka-Volterra type com-

petition terms,

(

up = diAu—x1V - (uVw) + u(ao(t,m) —ay(t,x)u — as(t, x)v), x €N

vy = dayAv — xoV - (vVVw) + U(bo(t,x) — by (t, x)u — by(t, x)v), z € A

0=dsAw+ku+lv—Aw, x€f)

Ju _ Ov _ Ow __
\%—%—8”—0, xG@Q,

where 2 C R"(n > 1) is a bounded domain with smooth boundary, d; (i = 1,2, 3) are positive
constants, X1, X2, k, [, A are nonnegative constants, and a;(¢,x) and b;(t,x) (i = 0,1,2) are
positive bounded smooth functions.

Note that, in the absence of chemotaxis, that is, y; = x2 = 0, the dynamics of (3.1) is

determined by the first two equations, that is, the following two species competition system,

(
uy = diAu + u(ao(t, x) —ay(t, z)u — as(t, x)v), x €N

vy = doAv + U(bo(t,x) — by (t, z)u — bo(t, a:)v), x € (3.2)

ou __ Jv __
k%—%—o, x € 0.
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Among interesting dynamical issues in (3.1) and (3.2) are persistence, coexistence, and ex-
tinction. These dynamical issues for (3.2) have been extensively studied (see [1], [15], [22],
[23], etc.). Several authors have studied these issues for system (3.1) with constant coefficients
[6, 29, 44, 55, 60]. For example in [29], the authors considered a more general competitive-
cooperative chemotaxis system with nonlocal terms logistic sources and proved both the phe-
nomena of coexistence and of exclusion for parameters in some natural range. However, there
is little study of these important issues for (3.1) with time and space dependent coefficients. The
objective of this chapter is to investigate the persistence, coexistence, and extinction dynamics
of (3.2). In particular, we identify the circumstances under which persistence or extinction oc-
curs, and in the case that persistence occurs, we study the existence, uniquenss and stability of
coexistence states.

In order to do so, we first study the global existence of classical solutions of (3.1) with any
given nonnegative initial functions. Note that for any given ¢, € R and ug, vy € C°(Q) with

ug > 0 and vy > 0, system (3.2) has a unique bounded global classical solution
(U(ZE, ta tU) Uo, UO)? U({E, ta tO) Uo, UO))

with (u(z, to; to, uo, vo), v(z, to; to, Uo, Vo)) = (uo(z), vo(z)). However, it is not known whether

for any given t; € R and ug,v9 € C°(Q) with uy > 0 and vy > 0, (3.1) has a unique

bounded global classical solution (u(z,t;tg, uo, vo), v(x,t; to, ug, vo), w(x, t; to, ug, vo)) With

(u(z, to; to, uo, Vo), v(x, to; to, wo, Vo)) = (uo(z), vo(x)).

3.2 Notations, Assumptions, Definitions and Main results

3.2.1 Notations, assumptions and definitions

For a given function f;(t, z) defined on R x  we put

fi,inf = inf _ fl(t,fﬂ), fi,sup = sup fz(tax)>
teR,2€Q tER €0

fi,inf(t) = ;725% fl(t7 .T), fi,sup(t) = SUP fl(t7 l’),

z€Q
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unless specified otherwise.

We also introduce the following assumptions for our global existence results.

(H3) a;(t, z), bi(t, x), x; and ds, k and | satisfy

kx1 Ix1 kxa Ix2
1 inf > ——,  A2inf = ——, bimt > ——, and bying > ——

d3 ’ dg d3 d3 '

(H4) a;(t, z), bi(t, x), x; and ds, k and | satisfy

kx1 Ix2 kx1

Ixa kxa Ix1
int > ——, b > =, d inf — —— ) (b2inf — —— —
Q1 inf > a5 2,inf > a5 an (al,f dg)(2’f d3)> &5 ds
(H5) a;(t, z), bi(t, x), x; and ds, k and 1 satisfy
kin—2 I(n—2
ai,ing > max{0, %} , A2,inf > max{0, %},
and
k(n—2 I(n—2
b1 inf > max{0, %} , b inf > max{0, %}

For our results on persistence and coexistence, we further introduce the following assump-

tions.

(H6) a;(t, ), b;(t,x), x; and ds, k and [ satisfy (H3) and
Qg inf > a/2,supA2 and bO,inf > bl,supAh

where

i aO,su 1 bO,su
A = 205w _ O0sup

pr— lX2 .
Qa1 inf — ds b2,in ~ ds

(H7) a;(t,z), bi(t, x), x; and ds, k and [ satisfy (H4) and

.
Qo,inf > (a2,sup - %)+BZ +

xil 5

k
"By and by > (byaup — 22
3

) o
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where
Ix lx
— @0,sup(b2,inf - d_;) + ! bO ,sup

b= (3.3)
k l Ik
(a1t — di;)(bsz — dij) — >§l1§xz
and
b le kXQ
_ 0.5up (Q1,inf — E) + g5 Qosup o
y = - z LLE |
(a1,inf — dL;)(bQJHf — di;) _ >C<é><2
and (- - - ) represents the positive part of the expression inside the brackets.
Note that both (H6) and (H7) imply
a0,intb2,int > @2, 5upbo,sups 1,infb0,inf > A0 supb1 sup- 35)

Finally for our results on the stability and uniqueness of coexistence states in (3.1), we intro-

duce the following assumptions.

(H8) Assume (H3) and
A inf > a2,supA2 + kXI Ala bO,inf > bl,supAl + lX2 AQ (36)
d3 d3
(H9) Assume (H4) and
ag,inf > (CLQ sup+lX1)Bg +I€XlBl, bo inf > (b1 Sup+kX2)Bl +ZXQBQ. (37)
ds ds ds ds
(H10) a;(t, x) = a;(t) and b;(t,x) = b;(t) (i = 0, 1,2) satisfy (3.5) and
3 3

Remark 3.1. (1) (HS8) implies (H6) and (H9) implies (H7).

(2) When x1 = x2 = 0, (H8) and (H9) are the same, and both (3.6) and (3.7) become (3.5).
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A solution (u(z,t),v(z,t), w(x,t)) of (3.1) defined for all ¢ € R is called an entire solution.

A coexistence state of (3.1) is a positive entire solution (u**(z,t), v**(x,t), w**(x,t)) with

inf w**(z,t) >0, inf o™ (x,t) > 0.
teR,ze) teER,zeQ)

We say that persistence occurs in (3.1) if there is 7 > 0 such that for any ug, vy € C(Q) with

up > 0 and vy > 0, there is 7(ug, v9) > 0 such that
u(x, t;tg, ug,v9) > 1, v(x,t;ty,ug,v9) >n Ve Q, t>ty+ 7(ug, Vo), to € R.

We say that extinction of one species or competitive exclusion occurs in (3.1) if for any ¢, € R

and g, vy € C(Q) with uy > 0 and vy > 0, there holds
lim ||v(-, ¢ + to; to, wo, V0)]|cc = 0
t—o0
or for any ¢y, € R and ug, vy € C(Q) with ug > 0 and vy > 0, there holds
lim ||U(, t+ tg; t(), Uo, UO)Hoo =0.
t—o0

3.2.2 Main results

Our results on global existence and boundedness of nonnegative classical solutions of (3.1) are

stated in the following theorem.
Theorem 3.1. (Global Existence)

(1) Assume that (H3) holds. Then for any ty € R and ug, vy € CO(Q) with ug > 0 and vy >
0, (3.1) has a unique bounded global classical solution (u(x, t; to, ug, vo), v(x,t; to, ug, vo),

w(z, t; to, ug, Vo)) which satisfies that

lim (HU(',t;to,UQ,’UQ) - uO()HCO(Q) + HU(',t;to,UO,UQ) - UO(')HCO(Q)) = 0. (39)

t—to™T
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Moreover, for any € > 0, there is T (ug, vo, €) > 0 such that
0 < wu(z,t;to,up,v0) < Ay +e and 0 < v(x,t;to, up, vo) < Ay + €

forallt > to+ T (ug,vo,€). Ifug < Ay + ¢ vy < Ay + ¢, then T (ug, vo, €) can be chosen

to be zero.

(2) Assume that (H4) holds. Then for any ty € R and ug, vy € CO(Q) with ug > 0 and vy >
0, (3.1) has a unique bounded global classical solution (u(x, t; to, ug, vo), v(x, t; to, ug, vo),

w(x, t; to, ug, vo)) which satisfies (3.9). Moreover, for any € > 0, there is T (ug, vg, €) > 0

such that

0 < wu(x,t;to,ug,vo) < By +e and 0 <wv(z,t;to, ugp,vo) < By + €

forall t >ty + T(ug,vo, €). If ug < By + ¢ v9 < By + ¢ T(ug, vo, €) can be chosen to

be zero.

(3) Assume (H5) holds. Then for any t, € R and nonnegative functions ug, vy € CO(Q), sys-
tem (3.1) has a unique bounded global classical solution (u(x,t; to, ug, vo), v(z,t; to, ug, Vo),

w(z, t; to, ug, Vo)) which satisfies (3.9). Moreover,

a
0 S/u(m,t;tg,uo,vo)dx < max{/ o, o,sup}
@ Q

Q1 inf

and

b su
OS/v(fE,t;to,uo,’Uo)SmaX{/ Vo, - p}
Q Q

b2,inf

forallt > t.
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Remark 3.2. (1) Under the assumption (H3), (Ay, Ay) is the unique positive equilibrium of

the following decoupled system,

Uy = u(ao,sup - (al,inf - %)U)

v = U(boysup — (b2,int — lsf_;)v)'

Under the assumption (H4), (B, By) is the unique positive equilibrium of the following

cooperative system,

Uy = u(aosup — (A1 nt — k3 )u + l%”)

U = U(bO,sup - <b2,inf - lid(_;)v + ]{Z%U)

(2) Conditions (H3), (H4) and (H5) are natural in the sense that when no chemotaxis is
present, i.e., X1 = X2 = 0, conditions (H3) and (H4) become the trivial conditions
a1inf > 0 and byine > 0 while (H5) becomes ayine > 0, agine > 0, biing > 0, and

bQ’inf > 0.

(3) By (HS5), finite time blow up cannot happen when n = 1 or n = 2. In general, it

remains open whether for any t, € R and ug,vy € C(2) with uy > 0 and vy > 0,

(U(IL’, ta tO) U, UO)? U(IL’, ta tO) U, UO)? UJ(..'E, ta tO) U, UO)) existsfor all t 2 7f()-
(4) It is proved in [30] that, under the assumption (H3), (H4), or (HS), there are semitrivial

entire solutions (u*(x,t),0,w(x,t)) and (0,v*(x,t), wk(x,t)) of (3.1) with

inf  u*(z,t) >0, inf v*(x,t) > 0.
teR,zeN teER,zeN

In the absence of chemotaxis (i.e. x1 = X2 = 0), such semitrivial solutions are unique.

(5) The condition of global existence and boundedness of classical solutions in [29, Theorem
1.1(1)] implies (H4). Therefore Theorem 3.1(2) is an improvement of the global existence

resultin [29, Theorem 1.1(1)]. Notice also that whends =1 =1, a; = 1, by = ps, (H4)
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coincide with the boundedness condition in [55, Lemma 2.2]. Thus (H4) is a generation

of the global existence condition in [55].

We have the following theorem on the persistence in (3.1).

Theorem 3.2 (Persistence). (1) Assume (H6). Then there are A, > 0 and A, > 0 such that
for any € > 0 and ug,vy € C°(Q) with ug, vy > 0, and ug, vy # 0, there exists t. u,.v,

such that
Al S U(%t;to,umvo) S Al + €, A2 S U(ZL‘7t;t0,UO7U0) S AQ +e€ (310)

forallz € Q, t >ty + Leuovg and ty € R.

(2) Assume (H7). Then there are B; > 0 and B, > 0 such that for any € > 0 and gy, vy €
C%(Q) with ug,vo > 0, and ug, vy Z 0, there exists t., ., Such (3.10) holds with A,, A;,

A,, and A, being replaced by B,, By, B,, and By, respectively.

Remark 3.3. (1) It should be pointed out that in [6], [55], [60], global asymptotic stability
and uniqueness of coexistence states are obtained for (3.1) when the coefficients are
constants and satisfy certain weak competition condition (see also [44] when the system
involves nonlocal terms). In such cases, the persistence follows from the asymptotic
stability and uniqueness of coexistence states. The persistence in two species chemotaxis
systems without assuming the asymptotic stability of coexistence states is studied for the
first time, even when the coefficients are constants. It should be also pointed out that
the authors of [56] studied the persistence of a parabolic-parabolic chemotaxis system
with logistic source. The persistence in (3.1) implies the persistence of mass, that is, if
persistence occurs in (3.1), then for any ug, vy € C (Q) with ug > 0 and vy > 0, there is

m(ug,vo) > 0 such that

/ u(z, t; tg, ug, vo)dxr > m(ug, vg), / v(x, t;to, ug, vo)dx > m(ug,vg), Vt > tg, to € R.
Q Q
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We will study persistence in fully parabolic two species competition system with chemo-

taxis somewhere else.

(2) It is well known that, in the absence of chemotaxis (i.e., x1 = X2 = 0), the instability of
the unique semitrivial solutions (u*,0) and (0,v*) of (3.2) implies that the persistence
occurs in (3.2). Note that both (H6) and (H7) imply (3.5), which implies that the semitriv-
ial solutions (u*,0) and (0,v*) of (3.2) are unstable. When x, = xo = 0, the conditions

(H6) and (H7) coincide and become (3.5), and

Hence theorem 3.2 recovers the uniform persistence result of (3.2) in [23, Theorem E(1)].

(3) The conditions (H6) and (H7) are sufficient conditions for semi-trivial positive entire so-
lutions of (3.1) to be unstable. In fact, assume (H6) or (H7) and suppose that (u*, 0, w})
is a semi-trivial solution of (3.1). Then we have the following linearized equation of

(3.1) at (u*,0,w?),

(

up = diAu—x1V - (w*Vw) — 1V - (uVwy)
—l—(ao(t,x) — 2a;(t, x)u*)u — ag(t,x)u*v), x €
vy = doAv — X2V - (vVVw}) + <bo(t, x) — bl(t,x)u*>v, z €

0=dsAw+ ku+1lv— 2w, z€f

R Ty

(0 = o = o =

Note that the second equation in the above system is independent of u and w. Assume

(H6). Then
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and

vy = doAv — XV - V! — xovAw? + <b0(t, x) — b (t, x)u*)v

k )
= dyAv — x2Vv - Vw;, + (bo(t, z) — (by(t,z) — Xi)u* — X2 w“)v
ds ds
k. - kA
> dyAv — x2 Vv - Vw,, + (bO,inf — (by,sup — XL)AI — X2 1>U
ds ds

= dgAU — XQVU . sz + <b07inf — bl,sup/_h)v.

This together with by iy > bLsup/_ll implies that (u*,0,w}) is linearly unstable. Other
cases can be proved similarly. The proof that (H6) or (H7) implies persistence (3.1) is
very nontrivial. To prove Theorem 3.2, we first prove five nontrivial lemmas (i.e. Lemmas

3.4 to 3.8), some of which also play an important role in the study of coexistence.

(4) Consider the following one species parabolic-elliptic chemotaxis model,

;

ur = diAu— x1V - (uVw) + u(ao(t,x) - al(t,x)u>, x €

0 =dsAw+ ku— A w, x¢€f (3.11)
\%:g—gzo, x € 00

and assume that

0 s X (3.12)
) dg

By the arguments of Theorem 3.2, we have the following persistence for (3.11), which is
new. There is A, such that for any € > 0, ty € R, ug € C°(Q) with ug > 0, and uy # 0,

there exists t. ,, such that

Al < u(x,t;to,u(]) < Al + €

forallx € Qandt > to+t..,, where (u(x,t;tg, up), w(z, t;to, uo)) is the global solution

of (3.11) with u(z, to; ty, ug) = up(x) (see Corollary 3.2).

The next theorem is about the existence of coexistence states of (3.1).
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Theorem 3.3 (Coexistence). (1) Assume (H6). Then there is a coexistence state (u**(x,t),

v**(x, 1), w*(x,t)) of (3.1). Moreover, the following holds.

(i) If there is T > 0 such that a;(t + T, x) = a;(t,x), b;(t + T, z) = b;(t,x) for i =
0, 1,2, then (3.1) has a T-periodic coexistence state (u**(x,t), v**(z,t), w**(x, 1)),

that is,

(W (x, t+T), v (2, t + 1), w™(z,t +T)) = (v (z,t), v (x,t), w™"(z,1)).

(ii) If a;(t,z) = a;(x), bi(t,z) = bi(z) for i = 0,1,2, then (3.1) has a steady state

coexistence state

(u™(t,z),v™(t,x), w™(t,z)) = (v (x), v (z), w"(z)).

(iii) If a;(t,x) = a;(t), bj(t,x) = b;(t) for i = 0,1,2, then (3.1) has a spatially homo-

geneous coexistence state

(u™ (2, 1), 0" (2, 1), w*™ (x, 1)) = (u™(t), 0™ (1), w™ (1))
with w*(t) = ku™(t) + (v**(t), and if a;(t), b;(t) (i = 0,1,2) are periodic or
almost periodic, so is (u**(t), v**(t), w**(t)).

(2) Assume (H7). Then there is a coexistence state (u**(x,t), v**(x,t),w**(z,t)) of (3.1)

which satisfies (i)-(iii) of (1).

Remark 3.4. (1) By Theorem 3.2, (H6) or (H7) implies the persistence in (3.1). It is known
that persistence in (3.2) implies the existence of a coexistence state. In the spatially

homogeneous case, persistence in (3.1) also implies the existence of a coexistence state
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by the fact that the solutions of the following systems of ODEs are solutions of (3.1),

(

up = u(ao(t) — ar(t)u — az(t)v)

vy = v(bo(t) — by(t)u — ba(t)v)

0=Fku-+lv— \w.
\

In general, it is very nontrivial to prove that persistence in (3.1) implies the existence of

a coexistence state.

(2) As it is mentioned in Remark 1.2(1), when x1 = x2 = 0, the conditions (H6) and (H7)
coincide and become (3.5). Hence theorem 3.3 recovers the coexistence result for (3.2)

in [23, Theorem E(1)].
We now state our result about the extinction of one of the species.

Theorem 3.4. Assume that (H3) or (H4), and suppose furthermore that

boimt > 2221 Ggine > L, (3.13)
ds

2 inf (bo,inf(bzinf - l&) - bO,sup§l) > ao,sup((b2,inf - l&)(blsup - l&) - (Z&Y),
3

ds ds ds ds
(3.14)
and
X1k Ix Ix
(aldnf - dLg) (bo,inf(bQ,inf — d—;) — bo,supd—;>
X2 X2 XQZ ZXQ X2
> [((bl,sup - kd_3>+ + kd_g) (b2,inf - d_g) + d_g (bl,inf - k?d—3> _] Q0 sup- (315)

Then for every ty € R and nonnegative initial functions g, vy € C° (ﬁ), ug > 0, vg > 0, with

|vo]|co > 0, the unique bounded and globally defined classical solution

(U(', ) tOJ Uo, UO)? U('? ) th Uo; U0)7 ’LU(', ) tO? Uo, UO))
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of (3.1) satisfies

tli}m ||U<',t+tg;t0,U0;U0>||oo :O, (316)
a < liminf(minv(z,t)) < limsup(maxv(z,t)) < 3, (3.17)
t—oo zeQ t—oo  TEQ
la < Miminf(minw(x,t)) < AMlimsup(maxw(x,t)) <18, Vx €Q t>t,, (3.18)
t—oo  zeQ t—00 x€f)
where
B bO,sup<b2,sup - lﬁ_j) - lﬁ_ibo,inf
(b2,inf - lg_;)(b%sup - lii_;) - (lg_i)27
and

bo,int — 1352
’ 3
a=—"355_

- X2
b2,sup - l@

Furthermore, if there is a unique positive entire solution (v*(x,t; bo, 52), w*(z, t; bo, 52)) of
4

v = daAv — oV - (vVWw) + v(go(t, T)— Bg(t,x)v), r e

0=dsAw+1lv—Aw, z€ (3.19)

\g—z = g—;‘l’ =0, xe€0Q
for any (50, 52) € H(by, by), where
H(bo, bg) —

{(co(+,+),c2(+,+)) | It — oo such that

lim (bo(t + tn, ), ba(t + tn, x)) = (co(t, x), ca(t, ) locally uniformly in (¢,2) € R x RV},
n—oo

then
tlim HU(', t + to; to, Up, UQ) — ’U*(',t + to; bo, bz)”oo = 0 (320)

Remark 3.5. (1) (3.14) and (3.15) imply

@0,sup < @2 inf o,sup @1,inf
)

< . (3.21)
bO,inf b2,sup bO,inf bl,sup
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(2)

To see this, we first note that (3.15) implies that

(a1ms — X;gk)bolnf(bmf l;?)> [((bl,sup k§§> kzj)(bg,mf—’;—zl)]ao,sup
X2l

> b1 sup(b2,inf — d—)ao,sup~
3

Thus since b ins — % > 0, we get

Xlk)
3

(al,inf bO inf > bl ,sup@0,sup

which implies the second inequality in (3.21). Second, note that (3.14) implies that

QA2 inf (bO,inf(bQ,inf l§2 ) bO ,sup d l) Z Qg sup (<b2,inf - l%)blsup l§2 b2 1nf)
3 3

Z aO,sup(bQ,inf 2l ;(2 )b27sup-
3

This together with the fact that a ins (bo,inf(bQ,inf l d—2) bo sup - l) < a2,infbo inf (b2,int —

21%2) implies that

a2 1nfb0 1nf(b2 inf — 2ld_> > aO,sup(bQ,inf 2l ;(2 )bQ,Supa
3 3

which combines with bs i — 2l§—§ > 0 implies the first inequality in (3.21).

When x1 = x2 = 0, (3.13) becomes
baint >0, agint >0, @y ins > 0;

(3.14) and (3.15) become

Q0,sup < A2 inf and @0,sup Q1 ,inf

>~ )
bO,inf b2,sup bO,inf bl,sup

respectively. Therefore, the extinction results for (3.2) in [23] are recovered.
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(3) When the coefficients are constants, Theorem 3.4 coincide with the exclusion Theorem
in [29, Theorem 1.4]. Thus Theorem 3.4 give a natural extension to the phenomenon of

exclusion in heterogeneous media.

(4) The reader is referred to [30] for the existence and uniqueness of positive entire solutions

of (3.19).

Now, we state our result about optimal attracting rectangles for (3.1) under the assumption

(H8) (resp., (H9)).

Theorem 3.5 (Optimal attracting rectangle). For given ug, vy € C°(Q) with ug,vy > 0, let

Up = Max,eq Uo(T), Uy = mingcq uo(x), Tp = max,cn vo(x) , vy = mingeq vo(T).
(1) Assume (H8) and that the following system has a unique solution (71,73, r,15)

/

X1\~ X1
(al,inf - kd—3)7"1 = Qo,sup — A2/infl'y — k@h

X2\, X1
(bQ,inf - lg)rz = bO,Sup - bl,infﬁ - k@lg

S (3.22)

X1 o = X1 &~
(a1,50p — k@)’_’l = @0,inf — A2,sup’2 — kd—37’1

X2 _ - X2 =
(b2,sup - ld—g)’_b = bo,inf - bl,supTl - lET’x

\

Then 0 < r, < 7,0 < r, < 7y, and for any € > 0, ty € R, and uy,vy € C°(Q) with

infug > 0, inf vy > 0, there exists tc gy vo,uy,0, SUCh that

0< r—e S u(ajvt;t(ﬁanUO) S T +e€

(3.23)
0 < ry—e < w(z,t;tg, ug, vg) < T + €,
forallz € Q andt >ty + Le o, o ,ug vy FUIthermore
r <wuy<riand ry < vy <7y (3.24)
implies
ry <u(z,t;ty, up,vo) < 71 and ry < v(x,t;ty, up, vo) < 7o VE > 1. (3.25)
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(2) Assume (H9) and that there is a unique solution (81, 51, S;, S,) of the following system,

5 = (ao,sup*(az,inf;rll%)iszzféﬁl)(bi,i:f*l%) n d <b0 supX (b1 mf+kxi)51*li2i2)
(al,inf_k@)(bQ,inf_lﬁ)_lk% (a1,inf =k G ) (b2 ,ing =152 ) — 1k (1132

5y — (bo,sup*(bl,inft]:%)&*l%fg)(a;,lil;(f;k%) n %(ao,sup*(az inf‘H:iSQ*kfi)
< (%,mf*k‘@)(bz,inf*l@)*lk? (a1,int—k 3+ )(mef las) -tk P
R IS LS D[ P o LRI U
(100 (a1 32) TR 32 (@t sup ) By L2 ) TR 152

5 — (bo,inf—(bLsup")‘(’:%)ﬁ—Z%Xiz)(a1,;.;§2—k% N kd32 (ao int— (02, sup+H1% X)ng k;i;)
s (@m0 33 ) b2y 1 32) T L2 (000 R 1) By L3 2) T2 13

Then 0 < s, < 5, 0 < 5, < 5y, and for any € > 0, ty € R, and uy,vy € C°(Q) with
inf ug > 0, infvg > 0, there exists t .z, wo,u, v, SUCh that (3.23)-(3.25) hold with 71, o, 1y,

and r, being replaced by 51, 55, s,, and s,, respectively.

Remark 3.6. (1) Under the assumptions in Theorem 3.5(1), (T1,T2) is the unique positive

equilibrium of the system,

— X1 X1
up = U(ao,sup — (@1t — K%L )u — agmery — kd—3£1>

— 2 2
Uy = U<bo,sup - (b2,inf - l%)v — by jntlry — l%fg);

hence,

r < /_11, Ty < AQ,
and (ry, ry) is the unique positive equilibrium of the system,

— X1 -, X1 5
Ut = u<a0,inf - (al,sup - k@)u — A2 supT2 — kET1>

— X - X2 &
U = U<b0,inf - (b2,sup - ld_i)v - bl,sup'rl - ld—iT‘g) .

(2) Under the assumptions in Theorem 3.5(2), (81, S9) is the unique positive equilibrium of

the system,

Uy = u<a0,sup - (a2,inf + lz_;) k_sl (al,inf o k%)u T l%v)
Uy = U<bo,sup — (b1t + kz—;) - l_SQ (b2,ins — lﬁ—i)v - k%“)’
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hence,

S < Bl, So < BQ,

and (sy, S,) is the unique positive equilibrium of the system,

— s — Xi\e, _ LXig _ X1 X1
ut—U(ao,mf (a2,sup + 157)52 — k3151 — (a1,5up kds)u+ld3v>

v = U<bo,inf — (b1 sup + k§—§)§1 - l§_§§2 = (b2sup — lij—;)v + l{:ﬁ—;u)

(3) When x; = x2 =0,

o aO,infb2,inf - a2,supb0,sup _ - CL(),supr,sup - a2,inbe,inf

) ’
CLl,supb2,inf - a2,supb1,inf al,inbe,sup - a2,infb1,sup

. al,inbe,inf - aO,supbl,sup 7 - al,supbO,sup - aO,infbl,inf

al,inbe,sup - a2,infbl,sup, al,supr,inf - a/2,supb1,inf.
Thus Theorem 3.5 recovers the result on ultimate bounds of solutions of (3.2)in [1]. Note
that this result can be proven directly by using the competitive comparison principle.

Note also that, in this case, (T1,1,) is the unique coexistence state of

Uy = U(@o,sup — O1,inflh — G2,inf?)

Uy = U(bO,inf - bl,supu - b2,supv)

and (ry, 72) is the unique coexistence state of

Uy = u<a0,inf — A1 supU — a2,supv)

V¢ = v(bO,sup - bl,infu - b27iﬂfv)‘

(4) When the coefficients are constants, i.e a;(t,xz) = a; and b;(t,x) = b; (i = 0,1,2), we

have

_ _ apby — azby
I 1 =3 1
bra; — b1a2’



and

_ _ boar — biagp
L‘ fr— ’)”‘2 — § pr— 82 = ——:
2 2 bra; — bras

Thus Theorem 3.5 implies the uniqueness and stability of coexistence states and we re-
cover the results on asymptotic stability and uniqueness of the constant positive steady
states in [29, Theorem 1.3] and [6]. Moreover, we get the optimal attracting rectangles

[ry —€,71 + € X [ry — €,T2 + €] (¢ > 0) for (3.1).
Finally, we state our result on the uniqueness and stability of coexistence states of (3.1).
Theorem 3.6 (Stability and uniqueness of coexistence states).

(1) Assume (HS). Furthermore, assume that

) 1
lim sup
t—s00 L — S

/ max{Q1(7) — q1(7), Q2(7) — q2(7) }d1 < 0, (3.26)
where

kr, +lr
a1 (1) = 200 (D)1, + asme(t)ry + LT 1)

2ds 7
X0y R8T XY a1+ b (O
t) = su t oo (K ! ( ) | | 7
Q:1(t) = ao, p()+2d3(r1+ 7“2)+4>\d3 dy N dy " 2

X2 (kry + 1)

q2(t) = 2boin(£)ry + byine(t)ry + ;
2ds

and

X2 /- ? AT XaTS a2,sup ()71 + b1 sup ()72
t) = by sun(t == (k l : . .
QZ( ) 07bup( )+ 2d3( Tt TQ) + 4)\d3< d + do ) + 9

Then (3.1) has a unique coexistence state (u**(x,t),v**(x,t), w**(z,t)), and, for any
to € R and ug, vy € C°(Q) with ug, vy > 0 and ug, vy Z 0, the global classical solution

(u(z, t; tg, ug, vo), v(x,t; to, uo, vo), w(x,t;to, ug, vo)) of (3.1) satisfies

Jim (Hu(wtétho,UO) —u™ (D)oo + lv(-s 5 o, wo, vo) — U**('>t)HoO(Q)> =0,

(3.27)
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and

lim H’w(,t,to, UQ,U()) — ’w**<',t)HCD(Q) = 0. (328)

t—o00

(2) Assume (H9). Furthermore, assume that (3.26) holds with v, 75, ry, and r, being re-
placed by $1, So, s, and s,, respectively, where s; and §; (i = 1,2) are as in Theorem

3.5(2). Then the conclusion in (1) also holds.

(3) Assume (H10). Then (3.1) has a unique spatially homogeneous coexistence state (u**(t), v**(t),
w**(t)), and for any ty € R and ug,vo € C°(Q) with ug, vy > 0 and ug, vy Z 0, the
unique global classical solution (u(x,t;ty, ug, vo), v(z, t; o, ug, vo), w(x, t; to, uo, Vo)) Of

(3.1) satisfies
Jim ([lu(, %o, w0, vo) — u™ (t)llcoay + 00 tito, o, vo) = 0™ (#) oy ) = 0, (3.29)

tlgglo lw(-, ¢ to, to, vo) — ku™(t) — W™ ()| po(qy = 0 (3.30)

Remark 3.7. (1) Assume (HI10). (3.5) implies that

up = u(ag(t) — ar(t)u — az(t)v)

v = v(bo(t) — by (t)u — by(t)v)

has a positive entire solution (u**(t),v**(t)) which is globally stable (see Lemma 3.9).
Thus (u**(t), v**(t), w**(t)) with w*(t) = w, is a positive entire solution of
(3.1) in the case of space homogeneous coefficients, i.e, a;(t,x) = a;(t) and b;(t,z) =
b;(t). The uniqueness results is new even for the case x1 = x2 = 0 with general time
dependence. When the coefficients are periodic, Alvarez and Lazer proved in [3] the
uniqueness of the entire solution (u**(t),v**(t)) only under the assumption (3.5). It
remains open whether such uniqueness result holds even in the case of x1 = x2 = 0 with

general time dependence under only the assumption (3.5)

(2) (3.8) implies (H4). It is the analogue of the condition a jnt > % for the global stability

of the unique spatially homogeneous positive entire solution of the following one species
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chemotaxis model,

(

ur = diAu— 1V - (uVw) + u<a0(t) — al(t)u>, z €
0=dsAw+ku— w, z€K

Qu—8u—_0, zedn,

L on on

(see [29, Theorem 1.7]).

(3) When x1 = x2 = 0, (3.26) becomes

mtfsﬁoo L ft {a/(],sup(T) + az%p(q—)fl - 2a1,inf(7-)rl + bl’%p(T)FZ - a2,inf(7-)r2}d7— <0

t—s Js

Timy s yo0 1= ft {bo,Sup(T) + M@ — 209 ine(T)1y + GQ‘SHTP(T)E — bl,inf(T)L’l}dT < 0.

t—s Js

If furthermore the coefficients are time homogeneous i.e a;(t,x) = a;(x) and b;(t,x) =
b;(x), then (3.26) becomes

a2 sup = b17< _
apsup + =527 + —5"To < 201 jnfly + G2,infly

(3.31)

by, _ az, —
bosup + —55T2 + =571 < 2b2infly + b1 jnfry -

We have the following corollary for the uniqueness and stability of coexistence states of (3.2),

which is new in the general space dependence case.

Corollary 3.1. Consider (3.2). Assume that Z(;’?“‘f’ < 22t and l;%’f“f < 2:225”‘2 Then (3.2) has

ai,sup

a unique stable coexistence state provided that the competition coefficients as and b, are such

small so that (3.5) and the following hold,

p
2a1,infaO,inf_aO,supal,sup

r 2a1,intbo sup —ao0 supbl inf by sup =
a (—1 o o ) STy — Qg intly < baj
2,5up\ 2 al,supb2,inf*a2,supb1,inf + 2 2 2,inf12 2,inf

al,supr,inf *a2,supb1,inf

2b2,infb0,inf_bO,supr,sup

2b2,inf‘10,sup_bO,supa2,inf) + aQ,supf

5 1 — biintry < Q1 int

)3

b2,supa1,inf*bl,supa&inf ’

bl,sup (
\

b2,supal,inf7b1 ,sup @2 inf
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The rest of the chapter is organized as follows. In section 3.3, we study the global existence of
classical solutions and prove Theorem 3.1. Section 3.4 is devoted to the study of the persistence
and boundedness of classical solutions. It is here that we present the proof of Theorem 3.2. In
section 3.5, we study the existence of coexistence states and prove Theorem 3.3. Next, in
section 3.6, we study the phenomenon of exclusion and prove Theorem 3.4. Finally in section
3.7, we study existence of optimal rectangles and stability and uniqueness of coexistence states

and prove Theorem 3.5 and Theorem 3.6.

3.3 Global Existence of Bounded Classical Solutions

In this section, we study the existence of bounded classical solutions of system (3.1) and prove
Theorem 3.1. We start with the following important result on the local existence of classical

solutions of system (3.1) with nonnegative initial functions in C°(2).

Lemma 3.1. For any given ty € R, ug,vy € C°(Q) with ug > 0 and vy > 0, there ex-
ists Tax(to, wo,v0) € (0,00] such that (3.1) has a unique nonnegative classical solution
(u(z, t; to, ug, vo), v(x,t;to, ug, vo), w(x,t;ty, ug,vo)) on (to, to + Tmax(to, o, Vo)) satisfying

that

th/{g (-, t; to, w0, vo) — uo(+)||co@y = 0, th/‘% [v(-, 250, uo, vo) — vo(+)[lco@) = 0,

and moreover if Trax (to, uo, vg) < 00, then
lim sup (”U(a to + t; to, uo, Vo)l o) + [lv(+ to + & to, uo, UO)HCO(Q)) =o0. (3.32)

t/‘Tmax (tO ,UO 7U0)

Proof. 1f follows from the similar arguments as those in [55, Lemma 2.1]. ]

81



Next, we consider the following system of ODEs induced from system (3.1),

u ﬂ(ku + 11U — ku — ly) + U |agsup(t) — a1 (1) — a27inf(t)y]

|—||—|

Mu(ku+ v — ku — 1) +u
(3.33)

v = ku+1v—ku—lv

&.

y/

Pl ) +7]
X2y (ku 4 v — k@ — 10) + 0[bo ins () = ba,sup(t)2 — b sup ()]

\

For convenience, we let

(a (t7 t07ﬂ0ag()760790) y U (tv t07E07Q_L0a607QO) 75 (t7 t07ﬂ07g0a607y0) y U (ta t076071_1'0a50a20))

be the solution of (3.33) with initial condition

(E (t07 t07ﬂ07Q0a607yo) 7@(1507 t07ﬂ07Q07607QO) 7v<t07 t07ﬂ07Q0a607yo) » U <t0> t07ﬂ07g076071_}0))

= (To, Uy, Vo, Vy) € R (3.34)

Then for given ¢, € R and (U, uy, Do, vy) € R, there exists Trnax (to, Uo, Uy, Vo, vy) > 0 such
that (3.33) has a unique classical solution (u(t), u(t), o(t), v(t)) on (tg, to+Tmax (to, To, Uy, Vo, ¥g))

satisfying (3.34). Moreover if T}y, (to, U, Uy, To, Vg) < 00, then

limsup — ([u(to + )| + [uto + )| + [0(to + )| + |u(to + 1)]) = oco.

t/Tmax (t() U0 U ;00 720)

We now state and prove the following important lemma which provides sufficient conditions

for the boundedness of classical solutions of system (3.33).
Lemma 3.2. let (u(t),u(t),v(t),v(t)) be the solution of (3.33) which satisfies (3.34). Then

(i) 0 <wy <uy and 0<wv, <vyimply 0 < u(t) <u(t) and 0 < v(t) <7v(t)for

allt € [to, tO + Tmax (u(]ag()?EO?QO))'
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(ii) If (H4) holds, then T (to, o, Wy, Vo, ¥y) = 00 and

limsupu(t) < By, limsupo(t) < B,

t—o0 t—o0
where B, and By are as in (3.3) and (3.4), respectively.

Proof. (i) Let € > 0 and (.(t),u.(t),7(t),v.(t)) be solution of (3.33) with g« (f) and
bosup(t) being replaced by agsup(t) + € and by sup(t) + €, respectively, and satisfying (3.34)
with %y, vy being replaced respectively by u§ = uy + € and v, = vy + €. We claim first that
(i) holds for (@, (t), u.(t),v(t),v.(t)) . Suppose by contradiction that our claim does not hold.

) Le

Then there exists ¢ € (to, to + Tiax (to, T, Ug, U5, vy)) such that

0 <u(t) <T(t), 0<u(t)<T(t), Ve [to,t) (3.35)

and

either w (t) =u(t) or wv./(t)=71(t).
Without loss of generality, assume that u_(#) = %.(t). Then on one hand (3.35) implies that

-

(ﬂe - Q€> (t) S 07

and on the other hand the difference between the first and the second equations of (3.33) gives

/

(e — u,) (E) = ﬂe(f) {aO,sup@) +e— aO,inf(E) + (al,sup@) - al,inf(f))ﬂe@) + 212_31 (T —v,) (f)}

+0e(t) { azsup (O)T(F) — azne (v () } > 0,

which is a contradiction. Thus (i) holds for (u(t), u(t), De(t), v.(t)). Letting € — 0, we have

7 =€

that (i) holds for (u(t), u(t),v(t),v(t)).
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(i1) First from the first and third equations of (3.33) we get

, fr— f— f—
S u|:a0,sup - <afl,inf - k%) u + Z%U]

S|

<0 b — (o — 132 ) T+ k3.

<

Thus the result follows from comparison principle for cooperative systems and the fact that

(B1, By) is a uniformly asymptotically stable solution for the following system of ODEs,

/
u =u {aoysup — (armt — k3 )u + lg—;v}

v =w {bgvsup — <b2,mf - l%) v+ kﬁ—ju} :

Next, we state and prove the following lemma used in some of our proofs.

Lemma 3.3. /29, Proof Theorem 1.1(1)] Assume (H4). Given t, € R, up,vy € C°(Q)
with ug, vy > 0, let Ty = max,eq uo(r), uy = mingeq ug(x), Tp = MaxX,eqvo(x), vy =
min,cq vo(x) and let (u(t),u(t),v(t),v(t)) be solution of (3.33) satisfying initial condition
(3.34). Then if (u(z,t),v(x,t), w(x,t)) is the solution of equation (3.1) with initials u(-, ty) =

ug and v(-,ty) = vo, we have
0 <u(t) <u(z,t)<ut) and 0<ov(t) <ov(r,t) <v(t),Vo e t>t.

Proof. By the similar arguments as those in [29, Theorem 1.1(1)], under the condition (H4),

we have
0 <u(t) <u(z,t) <u(t) and 0<v(t) <v(xt) <V(t),Vo € Q t> (to,to+ Tmax)-

By (H2) and Lemma 3.2, we get 1,,,,x = 00. [l
Now we prove Theorem 3.1.
Proof of Theorem 3.1. Let ug, vy € C°(2) with ug > 0 and v > 0.
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(1) From the first equation of system (3.1), we have that for t € (¢, to + Timax(to, vo, Vo)),

up =d1Au— x1Vu-Vw +u {ao(t,m) — (al(t,m) - k%) u— (ag(t,x) — l&) v — X
3

< diAu— x1Vu-Vw+u {aoﬁup — (ame — k§k> U — (agyinf - l£> v — &)\w} )
3
This together with (H3) gives for ¢ € (tg, to + Tiax(to, o, Vo)),

uy < diAu — xy1Vu-Vw +u {aoﬁup — (aLinf — k§k> u} . (3.36)
3

Therefore by comparison principle for parabolic equations, we get

0 < u(z,t;to, uo, vo) < maX{HuoHoo, aafo,%} V t € [to, to + Tmax(to, uo, vo)).
Linf — kg,

(3.37)

Similarly, the second equation of system (3.1) gives

bO,sup

0 < w(z,t;to, uo, vo) < max { [[vo oo } V t € [to, to + Tinax(to, to, o))

2
b2,inf - l§_3

This together with (3.32) and (3.37) implies that T}, (to, ug, Vo) = 0.
Moreover, by (3.36) and comparison principle for parabolic equations again, for any € > 0,

there is T} (ug, vo, €) > 0 such that

@0,sup

0 < u(x,t;to, uo, vo) < A1 — X
1,inf ds

+e VaeQ, t>ty+Ti(ug,vo,e€),

and T (ug, vo, €) can be chosen to be zero if ug < A; + e. Similarly, for any € > 0, there is

T5(ug, vo, €) > 0 such that

b
0 < v(x, t;to, ug, vg) < P

_bf—lXQ—}_e vx€Q7t2tU+TQ<u0aU07€)v
2,inf T ds

and Th(ug, v, €) can be chosen to be zero if vy < A; + €. (1) thus follows with T'(ug, vg, €) =

max{Tl (Uo, Vo, 6), TQ(UQ, Vo, 6)}
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(2) Let up = max,cq uo(T), uy = mingcq uo(x), V9 = max,cq vo(x) , vy = Mmingeq vo(x)
and let (@(t),u(t),v(t),v(t)) be solution of (3.33) satisfying initial condition (3.34). By the

similar arguments as those in [29, Theorem 1.1(1)], under the condition (H4), we have

0 <u(t) <u(z,t) <u(t) and 0<v(t) <v(xt) <V(t),Vz € Q t € (to,to+ Tmax)-

This together with Lemma 3.2 implies Theorem 3.1 (2).

(3) It follows from the similar arguments as those in [29, Theorem 1.1(2)]. [

3.4 Persistence

In this section, we study the persistence in (3.1) and prove Theorem 3.2.

Fix T' > 0. We first prove five Lemmas.

Lemma 3.4. (1) Assume (H3). For any ¢ > 0, there is 6 = 0(¢) > 0 such that for any

0<uy <A +¢60<uwvy<Ay+e the following hold.

(i) If 0 < ug < 6, then u(w, t;tg, ug, vo) < € fort € [to,to + 1] and x € Q.

(ii) If0 < vy < 6, then v(z, t;tg, ug,v9) < efort € [tog,to + T and x € Q.

(2) Assume (H4). For any € > 0, there is § = §(€) > 0 such that for any 0 < ug < By + ¢,

0<wy < By+e the following hold.

(i) If 0 < ug < 6, then u(x,t;tg, ug, vo) < € fort € [to, to + T) and x € Q.

(ii) If0 < vy < 6, then v(x,t; g, ug, vo) < efort € [tg, to + T and x € Q.

Proof. (1)(1) By Theorem 3.1(1),

0 < wu(z,t+to;tg, up,v9) < A1+, 0<w(w t+tg;to,up,vp) < Ay+e Vt>0, x€Q.
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Assume (H3). Then

up = diAu— 1V - (uVw) + u(ao(t, x) — a1 (t, v)u — as(t, x)v)

k l A
= d1Au— x1Vu - Vw + u(ag(t, x) — (a1(t,z) — &)u — (as(t, z) X1 o — X;w>
d3 dg d3

< diAu — x1Vu - Vw + ag gupu.
Hence, by comparison principle for parabolic equations, we have

u(z, t;to, ug) < e“o*sup(t_tO)HuoH Vit>t.

(1)(i) thus follows with § = ee~%=wT for any given ¢ > 0.

(1)(ii) It can be proved by the similar arguments as in (1)(i).

(2)(1) By Theorem 3.1(2),

U(l’,t+t0;t0,Uo,U0) < Bl + €, U(l‘,t+t0;t0,ﬂ0,vo) < BQ +e Vit> 0, z¢€ Q.

Assume (H4). Then

u = diAu— 1V - (uVw) + u(czg(t, x) —ay(t, z)u — as(t, az)v)

ds ds ds
X1l

< diAu— x1Vu-Vw + (ao,sup + d_(BQ + e))u
3

= d1Au—x1Vu-Vw + u(ag(t, z) — (a1(t,z) — &k)u — (ay(t, ) Xll)v XlAw)

By comparison principle for parabolic equations, we have
(a0,5up+ 2 (Bate) ) (t—t0)
u(z, t;tg, ug) < e\ ds |luol| V' t > to.

xil/p
(2)(i) thus follows with § = e (ao’s“er%(Bﬁe))T for any given € > 0.

(2)(11) It can be proved by the similar arguments as in (2)(1).
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Remark 3.8. Consider (3.11) and assume (3.12). By the arguments of Lemma 3.4, we have
that, for any € > 0, there is 6 = §(¢) > 0 such that for any 0 < ug < Ay + ¢ if 0 < ug < 6,

then u(x,t;tg, ug) < € fort € [to,to + T and x € Q.

Lemma 3.5. (1) Assume (H6). Let €y and 6y = 0¢(€o) be such that Lemma 3.4(1) holds with

€ = €9 and d = 0,

_ k 3 l
o,int > A2.sup(A2 + €0) + %607 bo,int > b1sup(A1 + €0) + 2_260,
3 3

and

1 k 1 l
QQ,inf — G2,sup(A2 + 60) - %60 bo,inf - bl,sup(Al + 60) - %60}

dp < mln{ T , 7
al,sup - E b2,sup - E

For given 0 < ugp < AL+ e, 0 <y < Ay + €, the following hold.

(i) If 0 < ug < o, then u(x,t + to; to, ug, vg) > infug(z) VO0<t<T.

(ii) If 0 < vy < do, then v(x,t + to; ty, ug, vo) > infug(x) VO <t <T.

(2) Assume (H7). Let ¢y and 6y = do(€o) be such that Lemma 3.4(2) holds with € = €y and

0 = do,
xal X1y, 4 X1k
@0,inf > [(azzsup - d_3)+ + d_3] (B2 + 60) + d—3€0>
X2k X2k = XQl
boint > [(blvsup - d_3)+ + d_3:| (B1 + €) + d—geo,
and

aont = [(a2s0p = 3), + ] (B2 + ) = AFeg

0 < min{ ak ,
A1,sup — “ds
‘ x2k x2k7 (B _ xal
bO,lnf - [(bl,sup T ds )Jr + ds }(Bl + 60) ds 60}
xal ’
b2,sup - ds

For given 0 < uy < By + €, 0 < vy < By + €, the following hold.

(i) If 0 < uy < o, then u(x,t + to; to, ug, vo) > infug(z) VO0<t<T.
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(ii) If 0 < vy < do, then v(x,t + to; ty, ug, vo) > infug(x) VO <t <T.

Proof. (1)(i) Without loss of generality, assume inf,cq uo(x) > 0. By Theorem 3.1 (1),
U(JT, t+ to;to, U(),Uo) S /_11 + €o, ’U(l’,t+ t(); to,UO, Uo) S 1212 + € Vit Z 0, x € Q
This together with Lemma 3.4 (1) implies that

up = diAu — x1V - (uVw) + u(ao(t, x) — ay(t, z)u — as(t, x)v)

= i~ o V- Vu -+ u(ag(t. ) — (an(tx) — X~ (an(t, ) - XLy - Xhy)
d3 dg d3

> d1Au— x1Vu - Vw

k [, - Ak [, <
Fuao(t,2) — (@(t,2) = 45— (aslt2) = ) (At e0) = 5 (Feo + 5 (A + o) )
- k k
= d1Au — x1Vu - Vw + u(ao(t, x) — as(t,z)(As + €) — XLEO — (a1(t,z) — XL)U)
ds ds
_ k k
> diAu—xiVu - Vu + u<a07inf - azsup(A? + 60) ps €0 — (aLsup . )u>
ds ds
for 0 <t <T. Let @(t) be the solution of
_ i xik xik,
= inf — su A - - sup
Ut U(%, £ — Agsup(A2 + €9) ds €0 — (@1sup ra )U>

with @(tg) = inf_cq uo(z). We have @(t) is monotonically increasing in ¢ > ¢, and

Qg.inf — A2.5 Ay + ) — Xike
hm ﬂ(t): 0,in 25up( 2 0) ds 0.

t—o00

(arsup = 57)

By comparison principle for parabolic equations, we have
u(z,t + to;to, up) > u(t +1to) > infup(z) VO<t<T.
x€N

(1)(ii) It can be proved by the similar arguments as those in (1)(i).
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(2)(1) Again, without loss of generality, assume inf,cq ug(z) > 0. By Theorem 3.1 (2),
u(w,t + to;to, ug,v9) < By + €0, v(w,t+to;to, up,v0) < Bo+eg V>0, x€.
This together with Lemma 3.4 (2) implies that

up = diAu—x1V - (uVw) + u(ao(t, x) — ay(t, z)u — as(t, x)v)

k [ A
= d1Au—x1Vu-Vw + u(ao(t, z) — (ay(t,z) — &)u — (as(t,x) — X—l)v - XLw)
ds ds ds
> d1Au — x1Vu - Vw+
k Iy = Ak [
u(an(t, ) = (e (t,2) = 2= )u = (as(t,x) = T0)  (Bo + ) = 2= (0 + {(Ba o))
> d1Au— x1Vu - Vw
X1l Xily, 5 X1k Y1k
T “(aovinf - [(alsup - d_3)+ + d_3} (B2 +€0) — d—3€0 — (a1 sup — d_3)u)
for 0 < ¢t <T. Let @(t) be the solution of
_ X1l Xily, 5 X1k X1k
Up = u<a0,inf - [(GQ,sup — d_3)+ + d_g] (By + €) — d—3€0 — (@1 sup — d—3)u>
with @(t) = inf,cq uo(x). We have 4(t) is monotonically increasing in ¢ > ¢, and
! /(5 k
lim a(t) = g inf — [(QQ,Sup - %L + %k] (By +€) — %60.
oo (al,sup - %)
By comparison principle for parabolic equations, we have
u(m,t—i—to;to,u(]) > Tl(t—l-t()) > Hlf Uo(ZE) VOo<t<T.
€
(2)(ii) It can be proved by the similar arguments as those in (2)(i). [l

Remark 3.9. Consider (3.11) and assume (3.12). By the arguments of Lemma 3.5, the follow-

ing holds. Let €y and 09 = 0o(€o) be such that Remark 3.8 holds with € = €y and § = J,
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and

xik

X1k Ao,inf — “g; €0

Qg,inf > —5 €0 and (50 < k-
d3 a1 sup — ds

For given 0 < ug < Ay +eo, if 0 < ug < &, then u(x,t+to; to, ug) > infup(x) V0<t<T.

Lemma 3.6. (1) Assume (H3). Let ¢y and §y = 0o(€o) be such that Lemma 3.4(1) holds
with € = €y and 6 = &g. There are A% > 0 and A% > 0 such that for any ty € R and

0<uy <A +eand0 < vy < Ay + €, the following hold.

(l) For a”yt > T, l:fsupxef_l U(.ZU, t+1o; Lo, u07U0) > 50’ infxeﬁ U(I, t+1o; to, uo, UO) >
1
A

(ii) Foranyt > T, if sup,cq v(z, t+to; to, uo, vo) > o, inf,cq v(z, t +to; to, uo, vo) >

As

(2) Assume (H4). Let ¢y and oy = do(€o) be such that Lemma 3.4(2) holds with ¢ = €, and
0 = 0g. There are B} > 0 and By > 0 such that for any ty € R and 0 < uy < By + ¢

and 0 < vy < By + €, the following hold.

(l) For Cmyt > T, lfSUpIEQU(ZE, t+1o; Lo, U'Ovv[)) > 50’ infxeﬁ U(I7t+t0a Lo, Uo, UO) >

Bi.

(ii) Foranyt > T, ifsup,cq v(z,t+1o; o, uo, Vo) > 6o, inf,cq v(z, t +to; to, uo, vo) >

B;.

Proof. (1)(i) Assume that (1)(i) does not hold. Then there are ¢y, € R, ¢, > T, and u,, v,, with

0<u, <A +¢and0 < v, < Ay + € such that
supu(z, t, + ton; ton, Un, Vn) > do,  lim inf w(z, €, + ton; ton, Un, vy) = 0.
zeQ n—=00 zefd

By Theorem 3.1(1),

O<U($,t+t0;t0,’d0,vo> <A1+€0, O<v(x,t+t0;t0,u0,v0) </_12+€0 Vit>0, x e Q.
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Without loss of generality, we may assume that

lm a;(z,t 4ty + ton) = @iz, t), Lim b;(x, t + t, + ton) = bi(z, 1)

n—o0 n—o0

and

lm wu(z,t + t, + ton; ton, Un, Vn) = U(x,t), Lm v(x,t+ t, + ton; ton, Un, Vn) = O(z, 1)

n—oo n—oo

uniformly in € 2 and ¢ in bounded closed sets of (—T’, 00). Note that

U(Z’, t + tn + tOn; tOna Unp, Un)

= u(a:, t + Zfn + tOn; tn + tOn; u(-, Zfn + tOn; tOna Up, Un)a U('v tn + tOn; tOna Up, Un))a
and

U(l‘, L+ tn + ton; ton, Un, ’Un)

= U(l'a t + tn + tOn; tn + t0n7 u('a tn + tOn; tOna Up, Un)a U(‘, tn + tUn; tOn; Unp,, Un))
Therefore
iz, t) = @z, 0,a(-,0),8(-,0)), o(z,t) =v(z,t;0,a(-,0),3(-,0)),

where (a(x,t;0,a(-,0),0(-,0)),0(x,¢;0,u(-,0),0(-,0)), w(x,t;0,a(-,0),(-,0))) is the solu-

tion of (3.1) on (=7, 00) with a; being replaced by a; and b; being replaced by b;, and
(a(z,0;0,4(-,0),9(-,0)),0(x,0;0,a(-,0),5(-,0))) = (a(z,0),5(z,0)).

Moreover i(x, —T/2) > 0, ¥(x,—T/2) > 0 for z € €, with sup,.q @(z,0) > & and
inf,.q @(x,0) = 0, which is a contradiction by comparison principle for parabolic equations.
Hence (1)(i) holds.

(1)), (2)(1), (2)(i1) can be proved by the similar arguments as those in (1)(1). [l
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Remark 3.10. Consider (3.11) and assume (3.12). By the arguments of Lemma 3.6, the fol-
lowing holds. Let €y and 6y = 0¢(€y) be such that Remark 3.8 holds with € = €y and § = .
There is A} > 0 such that for any to € R and 0 < uy < A, + ey, for any t > T, if

SUP,eq U(T,t 4 to; to, ug) > o, then inf,cq u(x,t + to; to, ug) > Al

Lemma 3.7. (1) Assume (H6). Let ¢y and 6y = 6o(€o) be such that Lemma 3.4(1) and Lemma
3.5(1) hold with ¢ = ¢y and § = &y. There are A3 > 0 and A5 > 0 such that for any

to € Rand 0 < ug < Ay + € and 0 < vy < Ay + €, the following holds.

(i) Forany A, < A%, if inf,cq uo(x) > A, then infcq u(x, T + to; to, up, vo) > A,.

(ii) Forany Ay < A3, if inf,cq vo(x) > Ay, then infcq v(x, T + to; to, ug, vo) > Ay.

(2) Assume (H7). Let €y and 0y = do(€o) be such that Lemma 3.4(2) and Lemma 3.5(2) hold
with € = €y and 6 = 6g. There are 1_9% > 0 and Qg > 0 such that for any ty € R and

0<ug<By+eand0 < vy < By + e, the following holds.

(l) For any El < B%: lfinfaceﬁ UO(I> > Ell then inf:veﬁ U(ZL', T+ to; t0> UQ, UO) > Bl‘

(ii) For any B, < B3, if inf,cqvo(x) > By, then inf,cqv(x, T + to; to, uo, vo) > Bo.

Proof. (1)(i) We prove it using properly modified similar arguments of [30, Lemma 5.3].
Assume that (1)(i) does not hold. Then there are A, ,, — 0,0 < u, < Al +6,0 < v, <

Ay + €, t, € R, and z,, €  such that
un(x) > Ay, Vo eQ and w(@,, T4 tyity, U, vn) < Ay,

Let
)

Q, ={z€Q|u,(z) > 5}

Without loss of generality, we may assume that lim,, .. |{2,| exists. Let

mo = lim |Q,,[.
n—o0
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Assume that m = 0. Then there is @, € C°(2) such that

do

Ay Sln(r) < 5 and - Tim fJug = Gnllre) =0 V1< p < oo
) n—0o0

This implies that
tim (63, Oll + 1 16208 iey = 0
uniformly in ¢ € [t,,t, + T] forall 1 < p < oo, where ¢L(-,t) = u(-,t;tn, Un,vy,) —

(e, b, U, vy) and @2 (-, 1) = v(-, 5 by Up, Un) — V-, E5 ty, T, v,). Indeed, let

G:L(,t) = u(-,t;tn,un,wn), Gi(,t) = v(',t;tn,un,vn), Wn(>t> = w('at;tnaumvn>7

é}l(,t) = u(-,t;tn,ﬂn,vn), é721<7t) = U('7t;tnaamvn)a Wn(7t> = w('at;tnaﬂnavn>7

and

A

Wn(vt)<7t) = w(-,t; trmumvn) - U)(‘, t; tnaﬂnavn>-

Then
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and

— X2 | eIV [GR(, 8)VIW,(+, 8) + G2, 8) VIV, (-, 5)] ds

" / efA(tfs)¢i(_’ ) <1 + bo(s, ) — ba(s, ) (G2 (-, s) + G’i(, s)) — bi(s, )G (-, s))ds

t"

t
_ / e Ap, (5, ) (G2 1)) 6L (-, 5)ds, (3.39)
tn

where A = —A + I with D(A) = {u € W2r(Q)[% = 0 on aQ} (it is known that A
is a sectorial operator in X = LP(Q2)). Now, fix I < p < oo. By regularity and a priori
estimates for elliptic equations, [17, Theorem 1.4.3], [30, Lemma 2.2], (3.38), and (3.39), for

any € € (0,1), there is C = C(e) > 0 such that

6 (5 )l zo(e)

t
. el
<N, = Un]| () + Cxa , Jnax VW, (-, 8)llcoe /tn (t =) 2] (-, 8)|| Loy ds

t
v, max W)y [ (0= 9731038 ey + 163, s

n

+C/{1+ao,sup+a1,sup[ max_([|G*(-, s)llco@) + 1G* (-, 8) loo@) I} I6n(, 8)l| oy ds
tn

tn <s<tn+T
 Canan, 105 (G5 [ 1639l
+ Canan, 1 1o | 16209
and
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16 (5 )l oo

t
<Cxo max [VWu(8) oo /(t—sw2u¢i<-,3>|rmmds
tn

tn<s<tn+T

t
~ _€_l
+Cx  max HWn('vS)”CO(Q)/(t_S) 2(llon ()o@ + 165, 5)lle(e)ds
tn

tn<s<tn+T

t
C/ {1 +b0,sup+b2,sup[ maX (||G2('78>||CO(Q) + ||G2(7S)||CO(Q))]}||¢72'L(7S)||LP(Q)dS
tn

s<tn+T
+ Chip, max G 9)|ence /||¢ M
+ Chip, max G2 5)|ence /||¢ Miwayds.

Therefore there exists a positive constant Cy independent of n such that

[ (ot + to)l o) + 1on (-t + ) || o)

t
_ el
< Jlun = tnlze(e) +Co/ (t =)~ 72 (l6ns s+ ta) o + 60 (s 5+ tn) | o) ds
0

for all t € [0,T]. This together with the generalized Gronwall’s inequality (see [17, page 6])
implies that

Tim (|6, (1)l zr@) + [|En (D)l o)) = 0

uniformly in ¢t € [t,,t, + T] forall 1 < p < co. This implies that

m Jw(-, &5 tn, tn, vn)) — w(e, G s U, V) || o1@) = 0
n—oo

uniformly in t € [t,,t, + T)]. Note that v(z, t;,, tp, v,) < Ay + € fort € [t,,t, + T] and by

Lemma 3.4(1), u(z, t; t,, Uy, v,) < €o fort € [t,,t, + T]. Hence

k -
—€0+— A2+€0)

ttn7~n7n§
W, bt i o) < 60 + 1

forall t € [t,,t, + T] and = € 2. It then follows that for any € > 0,

I -
—(AQ + 60)

Wt b Un, ) < (; +€)eo + y
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forallt € [t,,t, + T], x € Q, and n > 1. Then by the arguments of Lemma 3.5, inf u(-, ¢, +
Tty uy) > Ay, which is a contradiction. Therefore, mg # 0.

By mg # 0 and comparison principle for parabolic equations, without loss of generality, we
may assume that

liminf ||e™u, [|coq) >0Vt €[0,T].
n— oo

This implies that there is 0 < Ty < T and d, > 0 such that
sup u<$> tn + TO; tn7 Up, Un) Z 600

z€Q

for all n > 1. By a priori estimates for parabolic equations, without loss of generality, we may

assume that
u(ey by + Tos b, Un, V) = uh, V(s ty 4+ Tos b, U, Uy) —

and

u(s ty + Titp,tun,vn) = u™, v t+n+ Tt uy,v,) — 0

as n — oo. Without loss of generality, we may also assume that
a;i(t +t,,x) = al(t,z), bi(t+t,,-)— bi(t,x)
as n — oo locally uniformly in (¢, z) € R x Q. Then we have
u(z) = u*(x, T; Ty, uy, vy), v*(x) =v"(z,T;to, ug, vg)

and

inf u*(z) =0, inf v*(z) >0,
Inf () Infv'(w) =
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where (u*(z,t; T, uf, vg), v (x, t; To, ug, vg), w(z, t; To, us, vy)) is the solution of (3.1) with

a;(t,x) and b;(t, x) being replaced by a (¢, z) and b} (¢, x), and

(u*(x, TO; T07 u;;? US)? U*(JZ, TO; T07 USa US)) = (u(";(x), US(SL’))

. By comparison principle, we must have u; = 0. But sup u{; > d. This is a contradiction.
(1)(i) It can be proved by the similar arguments as those in (1)(i).

(2) Follows by similar arguments as those in (1). L]

Remark 3.11. Consider (3.11) and assume (3.12). By the arguments of Lemma 3.7, the fol-
lowing holds. Let €y and 5y = do(€o) be such that Remark 3.8 and Remark 3.9 hold with € = ¢
and 6 = &g. There is A% > 0 such that for any ty € R and 0 < uy < Ay + €, for any A, < A2

l:finfxefl uU(‘r) > Al’ then infoQ U(l’, T+ to; Lo, UO) > Al'

Let

A, =min{A},Al}, A, = min{A;, A7}
and
B, = min{BLB%}v B, = mln{Bé>B§}
Note that the constants A, A,, B, and B, depend on 7" and ¢.

Lemma 3.8. (1) Assume (H6). Let ¢y and oy = 6o(€y) be such that Lemma 3.4(1) and Lemma
3.5(1) hold with € = ¢y and § = 6. For any 0 < ug < Ay + €gand 0 < vy < Ay + €,
the following holds.

(i) Ifinf,cquo(x) > A, then

A, <z, t+to;to,ug,v0) <Al +e VE>T, 2. (3.40)

(ii) If inf e vo(z) > Ay, then

AQ SU(I‘,t—i‘to;tQ,Uo,Uo) §A2+€0 \V/tZT, .TGQ.
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(2) Assume (H7). Let ¢y and 6y = 0o(€o) be such that Lemma 3.4(2) and Lemma 3.5(2) hold
with € = ey and § = 8y. Forany 0 < uy < By + €y and 0 < vy < By + €, the following

hold.

(i) Ifinf,cquo(x) > By, then

B, <u(w,t+to;to,up,v9) < Bi+e Vt>T, v

(ii) Ifinf,eqvo(x) > By, then

22 SU(ZI},t—i‘to;to,uO,Uo) SBQ+€0 VtZT, l’GQ.

Proof. (1)(i) First of all, by Lemma 3.7(1), we have

A, <wu(x, T+ to;to, up,v0) < A +eg Ve

Note that we have

either supu(z, T + to; to, ug,vg) > dg or supu(x,T + to; Lo, ug, vo) < do-
zeQ z€Q

In the former case, if sup,.q u(x,t + T + to; to, ug,v9) > d for all 0 < ¢t < T, by Lemma
3.6, (3.40) holds for all 7" < ¢ < 2T'. If there is t* € (7,2T) such that sup,.q u(z,t +
to; to, Ug, Vo) > 0p for T' < ¢ < ¢* and sup,cq u(x, t* + to; to, uo, vo) = do, then by Lemma 3.6,
(3.40) holds for all 7" < t < t*, which together with Lemma 3.5 implies that (3.40) also holds
for all t* < ¢t < 27T'. In the later case, by Lemma 3.5, (3.40) also holds for all 7' < t < 27
Therefore, in any case, (3.40) also holds for all 7' < ¢t < 27'. Repeating the above process, we
have that (3.40) also holds for all ¢t > T.
(1)(@i1) It can be proved by the similar arguments as those in (1)().

(2) It follows from the similar arguments as those in (1). O

Remark 3.12. Consider (3.11) and assume (3.12). By the arguments of Lemma 3.8, the fol-

lowing holds. Let ¢y and 8y = 0¢(€o) be such that Remark 3.8 and Remark 3.9 hold with € = ¢
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and § = dy. For any 0 < ug < Ay + e, if infcq uo(x) > A,, then
A, <wux,t+totg,ug) <Ay +e VE>T, €.

We now prove Theorem 3.2.

Proof of Theorem 3.2. (1) Let €y and 09 = do(€g) be such that Lemma 3.4(1) and Lemma 3.5(1)
hold with ¢ = ¢ and § = &,. Let A;, A;, A,, and A, be as in Lemma 3.8(1). By the
assumption that ug # 0, vy # 0, and comparison principle for parabolic equations, without loss
of generality, we may assume that inf, g uo(x) > 0 and inf cq vo(x) > 0.

First, by Theorem 3.1, there is 7} = T3 (uy, vo, €9) such that
U(I,t+t0;t0,U0,U0) S A1+€0, ’U(LC,t—th;to,’U/O,'U()) S A2+60 VtZTl, T & Q

Observe that if sup,.q u(z, t + to; to, uo, vo) < o, then

ur = diAu— 1V - (uVw) + u(ao(t, x) —ai(t, x)u — as(t, x)v)

k l A
= d1Au—x1Vu-Vw + u(ao(t,x) — (a1 (t, z) — XL)u — (as(t, x) — X—l)v - XLw)
ds ds ds
> diAu — x1Vu - Vw+
k [, - Ak [ -
u(ao(t,2) = (ar(t.2) = 35 = (aalt.2) = 20 (Az + ) = 2S00+ 5 (e + )
d3 d3 d3 A A
- k k
> diAu—x1Vu - Vw + u(ao(t, x) — ag(t,z)(As + €) — %60 — (a1(t,x) — %)u)
3 3
Let @(t; ug) be the solution of
_ - k k.
Ut = u<a0,inf - CL2,sup(142 + 60) - %60 - (al,sup - %)U)
3 3
with 4(0; @) = Ty € (0, dp). We have u(t) is monotonically increasing in ¢ > 0 and
A0 inf — Ao sup( Az + € — wuk,
lim a(t; do) = — 2 o k0> R (3.41)
t=roo (al,sup - %)
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Observe also that

inf mf U(m,T—Fto;to,UO,UQ) > 0. (3.42)
to€R zeQ)

Indeed, we have either sup uy < dg or supug > dg. If supug < dy, we have by Lemma 3.5
(i) that inf cq u(z, T + to; to, up, vo) > infug > 0 for all ¢y € R and then (3.42) follows. If

sup ugp > dg, but (3.42) does not hold, then there are ¢,, € R and z,, € Q such that

lim U(l’n, T+ ton; ton, Uo, UO) =0.
N—00

Let a'(t,z) = a;(t + ton, x) and b]'(t, ) = b;(t + ton, x) fori = 0,1,2. Then

(U(.ﬁlf, t+ tOn; tOna Ug, UD)? U('T7 t+ tOna tOna Ug, U0)7 UJ(.Z', t+ tOna tOna Ug, 'UO))

= (un(‘ra ta Uo, UO), ,Un<x7 tv Ug, UU)? wn(x7 tv Ug, UO))

for t > 0, where (u™(z, t;ug, vo), V" (x, t; ug, vo), W™ (x, t; ug, vy)) is the solution of (3.1) with

a; and b; (¢ = 0, 1, 2) being replaced by a}' and b} (: = 0, 1, 2) and

(u” (2, 0; ug, vo), v"(, 05 g, vo)) = (uo(x), vo(x)).

Without loss of generality, we may assume that

lim al(t,x) = a°(t,z), lim b} (t,x) = b°(t, x)

n—oo n—o0

uniformly in z € 2 and ¢ in bounded sets of R, and

lim x, = Zo.
n—o0

Then

lim (u"(x,t; ug, vo), v" (x, t; ug, vo), w"(x, t; ug, vo))
n—oo

= (uoow,? t? Uo, UO)J ,UOO(:U’ t7 U, UO)? woo(x7 ty Up, UO))
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uniformly in z € € and ¢ in bounded set of [0, c0), where (u™(x,t;ug, vo), v™(x, t; ug, Vo),
w>(x, t;up,vg)) is the solution of (3.1) with a; and b; (i = 0, 1, 2) being replaced by a° and

b° (i = 0,1,2) and (u(z, 0; ug, vg), v>°(x, 0; ug, v9)) = (up(z),vo(x)). It then follows that

infug(z) >0 and u™(xy,T;up,v0) =0,

which is a contradiction. Hence if sup ug > dq, (3.42) also holds.

Note that we have either sup, . u(z, T+to; to, to, Vo) > 0 Or SUP,c, u(x, T+to; to, Ug, Vo) <
do. I sup,equ(z, T + to;to, ug, v9) < g, by (3.41), (3.42), and comparison principle for
parabolic equations, there are T5(ug, vo, €p) > T and T' < Tg(uo,vo, €0) < Ty(up, vo, €9) such
that

sup U(l’, T2<u07 Vo, 60) + th th Ug, UO) = 50'
e

Hence, in either case, there is T5(uo, vo, €0) € [T, Ts(uo, v, €0)] such that

sup u(z, Tz(um o, €0) + to; Lo, o, Vo) > .
e

This together with Lemma 3.6 implies that

ingf)u(x, Ty (uo, vo, €0) + to; to, Uo, o) > A,.
BAS

Then by Lemma 3.8(1),
A, <u(w, t+tg;te, ug,vo) < Aiteg YVt > max{Ty(ug,vo, €), T + To(uo, vo, €0)}. (3.43)
Similarly, we can prove that there are T (uo, vo, €9) > 0 and TQ(U(), Vo, €0) > T such that
A, < v(x,t 4 to; to, g, vo) < Ay + €V t > max{T}(ug, vo, €), T + To(uo, vo, €0) }-

This together with Theorem 3.1 and (3.43) implies that for any € > 0, there is £, ,, such that

(3.10) holds.
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(2) It follows from the similar arguments as those in (1). ]

Corollary 3.2. Consider (3.11) and assume (3.12). There is A, such that for any e > 0,1y € R,

Uy € CO(Q) with ug > 0, and uy # 0, there exists t. ,, such that
Ay < u(x,tito, ug) < Ay + ¢
forallz € Qand t > to + t. ., where (u(x,t;to, up), w(z,t;to, up)) is the global solution of

(3.11) with u(x, to; to, ug) = uo(x) (see Corollary 3.2).

Proof. It follows from Remarks 3.8-3.12 and the arguments of Theorem 3.2. [

3.5 Coexistence

In this section, we study the existence of coexistence states in (3.1) and prove Theorem 3.3.

We first prove a lemma.

Lemma 3.9. Consider

up = u(ao(t) — ar(t)u — az(t)v)
(3.44)
vy = v(bo(t) — bi(t)u — ba(t)v).
Assume (3.5) is satisfied. Then there is a positive entire solution (u**(t),v**(t)) of (3.44).

Moreover, for any ug,vg > 0 and ty € R,

(u(t; to, uo, vo), v(t; to, ug, vo)) — (W (t),v™(t)) = 0

as t — oo, where (u(t; tg, ug, vo), v(t; to, ug, Vo)) is the solution of (3.44) with (u(to; to, uo, Vo),
v(to; to, ug, vo)) = (ug, vo). In addition, if a;(t) and b;(t) are almost periodic, then so is (u**(t),

v (t)).

Proof. First, let

o b2,infa0,inf - a2,supb0,sup ro—= bQ,supaJO,sup - CL2,infb(],inf
1

S1

- ’ - )
b2,infa1,sup - a2,supbl,inf b2,supa1,inf - a2,infb1,sup

103



and

CLl,infb[),inf - bl,supaO,sup S0 — al,supbO,sup - bl,infa(],inf
9 =

9 =

s .
CLl,inbe,sup - bl,supa2,inf al,supb2,inf - bl,infa2,sup

Then

0<s;<ry and 0 <ry < so.

Next, for given tyg € R and ug, vy € R, if 0 < ug < 7y and vg > 19, by [1, Lemma 3.1], we
have

0 < u(t;ty, up,vo) <7y and v(t;tg, ug,v9) > 190 V> 1. (3.45)

And if ug > 51 and 0 < vy < s9, by [1, Lemma 3.2] again,

U(t;to, UQ,U()) >s; and 0< ’U(t, to,Uo,Uo) < sy Vit>t. (346)

We now start with the proof of existence of positive entire solutions of (3.44) by the so called
pullback method. Fix ug,vg € R such that s; < uy < 1y and s5 < vy < 9. Forn € N, let

tn, = —n, u, = u(0;t,, uy, vo) and v, = v(0;,, ug, vo). Then by (3.45) and (3.46), we have

s$1<u, <rjyand s, <v,<ry, VneN.

Therefore there exists uj,v) € R such that up to subsequence u,, — u) asn — oo and

v, — V) as n — 0o. And so

slguggrlandsggvggm.

Furthermore (u(t; t,,, ug, Vo), v(t; tn, ug, vo)) — (u(t; 0, ud, vy), v(t;0,ud, v3)) as n — oco. Again

by (3.45) and (3.46), we have

s1 < u(t; O,ug,vg) <y and sy < u(t; 0,u8,1)8) <r, Vt>0.

We claim that (u(t; 0, u), v)), v(t; 0,ud, v])) has backward extension. Indeed for each m €

N, we define for n > m, u”" = u(—m;t,, up,vo) and v* = v(—m;t,,ug,vy). Then by
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similar arguments as before there exist ', vy € R such that up to subsequence u;' —
ugtasn — oo and v — vi'asn — o0, 51 < ul' < rpand sy < vl < 1o, and
(w(t; tn, uo, Vo), v(t; ty, g, vo)) — (u(t; —m,ug, v"), v(t; —m, ul', vy")) as n — oo. It fol-

lows that

( (t O UO7UO) (t 0 u07v8)) (U(t, _mvuglavz)ﬂ)’v(t; _m’ug‘b’van))

for all t > 0. Thus (u(t;0,ud, v]),v(t;0,ud,v))) has backward extension up ¢t > —m, for
each m € N. This show that (u(t;0,ud, v0), v(t;0,ud, v))) is defined for all ¢+ € R and more-
over we have s; < u(t;0,ud,v)) < r; and sy < v(£;0,ud,v) < ro, for all ¢ € R. Hence
u(t; 0,ud, v3), v(t; 0,uf, v)) is a positive entire solution of (3.44).

Finally, we prove the stability of positive entire solutions and the almost periodicity of posi-
tive entire solutions when the coefficients are almost periodic. Let (u*™*(¢), v**(¢)) be a positive

entire solution of (3.44) and let ug, vy > 0 and ¢ty € R. It follows from [1, Theorem 1] that
(u(t; to, uo, vo), v(t; to, ug, vo)) — (w**(t),v™(t)) = 0 as — oo.
By [22, Theorem C], when a;(t) and b;(t) (: = 0, 1,2) are almost periodic in ¢, then positive

entire solutions of (3.44) are unique and almost periodic. The lemma thus follows. ]

We now prove Theorem 3.3. Let T > 0 be fixed and A;, A4;, B;, and B; (i = 1,2) be as in the

previous section.

Proof of Theorem 3.3. (1) We first prove the existence of positive entire solutions. Let ug, vy €
C%(Q) be such that 0 < A; < ug(z) < Ayand0 < A, < vy(x) < A,. By Theorem 3.1(1) and

Lemma 3.8(1),

0 <Ay <ulz,t+to;to, ug,v0) < Ay and 0 < Ay < v(, T+ to; to, uo, vo) < Ay

forallz € Q,t > T, and ty € R. Forn € Nwithn > T, sett, = —n, u, = u(-,0;t,, ug, vo)

and v,, = v(-, 0; t,,, ug, vo). Then by parabolic regularity there exist t,,, € N, u3*, vi* € C°(Q)
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such that

Un, — ug® and v, — vi* in C°(Q).

We have u<’7t;tnk7u0avo> - u(Ut;OaU’(WO;tnkaanU0>7U(')0;tnk7u07UO)): andv<'7t;tnk7u0)v()) =

v(-,t;0,u(-, 05y, , ug, Vo), v(+, 0; £y, , Ug, vo)). Thus for ¢ > 0 we have
(u(‘ut;tn/wumvO)uv('at;tnk7u07U0)) — (U(,t, 07u8*7,08*)7U(‘ut;07u8*7U8*>>inCO(Q)XCO(Q)'

Moreover

0<A; <u(z,t;0,uy",v5") <A and 0< A, <wv(z,t;0,uy",v5") <Ay Ve, t>0.

We now prove that (u(-, t; 0, us*, v5*), v(-, t; 0, uy*, v5*)) has backward extension. In order to
prove that, fix m € N and define " = u(-, —m; t,,, ug, vo) and v" = v(-, —=m;t,, ug, vy) for
all n > m + T Then by parabolic regularity, without loss of generality, we may assume that

there exist u;*, v € C°(€2) such that

ul = ur and o — v in C(Q).
Furthermore we have u(-, t; ¢, , uo, vo) = u(-, t; —m, u(-, —m; t,, , o, Vo), v(-, —m; ty, , Uo, Vo)),

and v(-, t;t,,, uo,vo) = u(-,t; —m,u(-, —m;t,, , ug, Vo), v(-, —m; ty, , Uo, vo)). Therefore we

have

(w(ey b5ty , w0, 00), V(b by s U0, 00)) = (w(ey b —myupy v ) v(e, 6 —my up vy )

Y mo Ym Y mor Ym

inC%(Q) x C°Q) for all t > —m , which implies that (u(-,#; 0, ug*, v3*), v(-, t; 0, us*, vi*))

has backward extension in the sense that

(w(-, 650, us™ vg™), (s, 8 0,uy", v57)) = (u(-, t;—myugy o), v(- 6 —m,uly o))

Y 'mo Ym > m) Ym
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forall ¢t > —m and m € N. Moreover

0<A, <u(t;—m,u™ v>) <A and 0< A, <v(-,t;—m,u™ v>) < A,

b m?

Vo e Q t > —m. Set u™(z,t) = u(z,t;0,uy", v5*), v*(x,t) = v(x,t;0,uf", v*), and
w* = (=A + )7 (ku** + [v**). Then (u*™*(x,t),v*™*(x,t), w*(x,t)) is a positive bounded

entire solution of (3.1).

(i) Assume that a;(t + T, z) = a;(t,x) and b;(t + T, x) = b;(t,x) fori = 0, 1,2. Set
E(T) = {(ug,v0) € C°(Q) x C°(Q) |0 < A} < up(r) < Ajand0 < A, < vy(z) < Ay}

Note that E is nonempty, closed, convex and bounded subset of C°(Q2) x C°(Q). Define the

map 7(T) : E(T) — C°(Q2) x C°(Q) by
T(T)(ug,vo) = (u(-,T50,ug,vq),v(:, T30, ug, vo)).

Note that 7 (T') is well defined, 7 (1) E(T") C E(T'), and continuous by continuity with respect
to initial conditions. Moreover by regularity and Arzella-Ascoli’s Theorem, 7 (7") is com-
pletely continuous and therefore by Schauder fixed point there exists (up,vr) € E(T) such
that (u(-, T; 0, up, vr), v(-, T; 0, ur, vr)) = (up,vr). Then ((u(-, t; 0, ur, vr),v(+, t; 0, up, v7),
w(-,t;0,ur,vr))) is a positive periodic solution of (3.1) with periodic 7T'.

(ii) Assume that a;(t, ) = a;(x) and b;(¢, ) = a;(x) (i = 0, 1, 2). In this case, each 7 > 0 is
aperiod for a; and b; . By (i), there exist (u™,v™) € E(7) such that (u(-,¢;0,u™,v7),v(-,¢;0,u”,v7),
w(-,t;0,u”,v7)) is a positive periodic solution of (3.1) with period 7.

Observe that C°(Q) C LP(Q) for any 1 < p < oo. Choose p > 1 and « € (1/2,1) are
such that X — C'(Q), where X® = D(A®) with the graph norm ||u|, = ||A%u||s) and
A =T — A with domain D(A) = {u € W??(Q) | %% = 0 on 9Q}.

Note that there is M > 0 such that for each 7 > 0 and (ug, vo) € E(7), ||u(-,t; 0, ug, vo)||a +

[v(-, 0, u0, Vo) ||« < M foreach1 <t < 2.LetT, = L then there exists u,, v, € F(%) such
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that (u(-,£;0, up, v,),v(+, t; 0, up, v,), w(+, ; 0, uy,, v,)) is periodic with period 7,, and
[tnlla + lonlla = [[u(-s N7n; 0, un, ) |lo + [[0(; NT03 0, tny vi) lo < M,

where N is such that 1 < N7, < 2.

We claim that there is §; > 0 and d, > 0 such that
[tn()llco@) =61 Vn>1 (3.47)

and

lon()lco@y =02 ¥V n>1. (3.48)

Since the proof of (3.47) and (3.48) are similar, we only prove (3.47). Suppose by contradiction
that (3.47) does not hold. Then there exists n, such that ||u,, [[co@q) < i for every k > 1. Let
ko such that é < ¢ for all & > ky. By Lemma 3.4 and the proof of Lemma 3.5, we get that

u(+, 650, U, , U, ) > u(t;infuy,, ) forallt > 0and k > ko, where u(t; inf u,,, ) is the solution of

T X1k X1k
Uy = u<a0,inf - a2,supA2 - d—Eo - (al,sup - d_)u>
3 3

ik
llo,inf—llz,supAz—Tl3 €0

X1k
2(a1,sup— d13

n—lk < 0. There is to > 0 such that u(¢; inf u,, ) > ¢, for all ¢ > t,. Then we have

with u(0; inf u,, ) = inf u,, . Let 6, = and choose £ large enough such that

Up,, () = u(-,mT, 5 0, Upy, Up, ) > u(mry,, ;inf uy,, ) > 6

for all m € N satisfying that m,, > . This is a contradiction. Therefore, (3.47) holds.

By (3.5) and Arzela-Ascoli theorem, there exist {n;}, (u™*, v**) € C°(Q) x C°(Q) such
that (uy,, , t,, ) converges to (u**,v**) in C°(Q) x C°(€2). By (3.47) and (3.48), we have that
Hu**(~)HCO(Q) > §; and HU**<')H00(Q) > 09. We claim that (u(-, t; 0, u™, v**), v(-, ¢; 0, u**, v*™),

w(-, t;0,u™, v**)) is a steady state solution of (3.1), that is,

u(-,t0,u™,0™) =u™(-) and wv(-,t;0,u™,0") =0v™(-) forallt > 0. (3.49)
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In fact, let ¢ > 0 be fix and let t > 0. Note that

Ny, ny,

[nkt]Tnk = = ([nkt] + ]‘)Tnk

Then, we can choose k large enough such that

|u(z, t;0,u™, ™) —u(z, 0, up,, Un, )| <€ up, (x) —u™(z)| <€, |vg, (x)—v"(2)] <e¢,

ngt
(2, t;0,u™, v™)—v(z, t; 0, up, , v, )| <€, |v(z, m;O,unk,vnk)—v(x,t; 0, Up,, U, )| < €,
nkt
|u(z, %; 0, Uny s Uy, ) — (@, 10, Up, , Uy, )| < €.

for all z € ). We then have

|u(z, t;0,u™, ™) — ™| < |u(z, t;0,u™, ™) — u(z, 0, Up, , Vn, )| + |tn, (2) — ™ (2)]

+ [w(, 40, Up, , Vny ) — w(@, [0t T, 0, Uy, v, )| < 36 V2 € Q,

and

[o(z,¢;0,u™, v™) — ™| < |u(z,t;0,u™,v™) —v(x,t;0, U, , Vn, )| + |Vn, () — 0™ (2)]

+ vz, 850, Upy s Vny ) — 0(2, 05 T3 0, Uy, U, )| < 3 V2 € Q.

Letting € — 0, (3.49) follows.

(ii1)) Note that solutions of the following system,

(

u = u(ag(t) — ar(t)u — as(t)v)
§ ve = v(bo(t) — bi(t)u — by(t)v)

0 = ku(t) + lv(t) — Aw(t)

\

are spatially homogeneous solutions (u(t), v(t),w(t)) of (3.1). By (H4) and Remark 3.3, (3.5)

is satisfied. (iii) then follows by Lemma 3.9.
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(2) It follows from the similar arguments as those in (1). ]

3.6 Extinction of One of the Species

In this section, our aim is to find conditions on the parameters which guarantee the extinction

of one of the species. First we prove a lemma.

Assume (H3) or (H4). For given ug, vy € C'(£2) with ug > 0 and vy > 0, let

L (to, uo, vo) = lim sup(max u(x, t; o, uo, vo)), i (to, uo, vo) = liminf(min u(z, t; to, uo, vo)),
t—00 e t—oo  zeQ

and

La(to, 1o, vo) = lim sup(max v(z, t; o, uo, vo)), l2(to, uo, vo) = liminf(minv(z,t; 2o, uo, vo)).
t—00 e t—oo e

If no confusion occurs, we may write L;(to, ug, vo) and l;(tg, ug, vo) as L; and [; (1 = 1,2)

respectively. By Theorem 3.1 we have

OSZ1SL1<OO, OSZQSL2<OO.

Furthermore, using the definition of lim sup and of lim inf, and elliptic regularity, we get that

given € > 0, there exists 7. > 0 such that

h—e<u(z,t)<Li+e l—e<uv(x,t)<Lys+e Vit>T. (3.50)
Lemma 3.10. (1) Assume a jnt > % and ains > %. Then

L. < {ao,sup - a2,infl2}+
1 .

- x1k
A1,inf — "

(3.51)
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(2) Assume by > l[’;—;. Then

{bo,sup — %, 4 (g — kz—g)Ll}
JF

L= : (3.52)
b?,inf - )23_23[
and
{bo,inf — <<b1,sup — k§—§>+ + k%) L, — %LQ}
*. (3.53)

l2 = xz!

b2,sup T ds

Proof. (1) From the first equation of (3.1), (3.50), and the fact that as ;s > )é—;l, we have

uy — diAu + x1Vu - Vw

X1 X1 X1
=u {ag(t,x) — (a1(t,x) — d—Sk)u — (asz(t,x) — ld—g)v - d—3)\w}

S U {G'O,sup - (al,inf - &k‘)u - a2,infl2 + (a2,sup + k£> 6}
d3 d3

for t > T, and thus since a; jnf > %7 (3.51) follows from parabolic comparison principle.

(2) From the second equation of (3.1) and (3.50), we have that

vy — doAv + xo Vv - Vw

=0 {bo(t,x) — (bo(t,x) — E—jk)v — (bi(t,x) — /{:E—j)u - ;(—z)\w}

<w {bO,Sup — (bo,int — E—jk)v + (bl,inf — kz—ii) _L1 — lz—jlg}
X2 X2
B4 D22 (b = 22) )
+v(( 05+ (bans = k7))

for t > T, and (3.52) follows from parabolic comparison principle.
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Similarly, we have

vy — doAv + xo Vv - Vw

=0 {bo(t,x) — (bo(t,x) — E—jk)v — (bi(t,x) — /{:&)u - &)\w}

2 {bo,inf - (bQ»SuP - &k)v - (bl,sup - k‘&) Ly — k&[/l}
+

ds ds ds
X2 X2 X2
X2, (z- (b . — k—) )
d3 2 v d3 v 1,up d3 + ‘
for t > T, and (3.53) thus follows from parabolic comparison principle. ]

Now we prove Theorem 3.4.
Proof of Theorem 3.4. We first prove that L; = 0.

Suppose by contradiction that L; > 0. Then by (3.51) and (3.13), we have

< J0sup (3.54)

A2 inf

By (3.14), we have

Q2 inf (bO,inf(b2,inf - l&) - bO,sup§l) 2 aoysup((bgjnf — l&)(blsup — l&) — (l&y)
3

d3 d3 d3 d3
X2 X2
= su b in —1==)b su —1==b in
a0 5up ((b2,int ds) 2o ~ L=b2 )

2 aO,sup<b2,inf - 2l§)62,sup-
3

This together with the fact that as juf (bo,in¢ (b,int — 1%2) — bo sup 32 1) < a2,intbo sup (b2,int — 21 X)),

ds
we get
X2 X2
a2,infb0,sup(62,inf - 21_) 2 aO,sup(bQ,inf - 2l_>b2,sup7
d3 d3
which combines with by i — 21 §—§ > () implies
X2
a2,infb0,sup Z aO,supr,sup Z aO,supzld_'
3

112



Therefore

xel

Xal ao s
bO,sup - d l2 > bO,sup - 5 =L
3

ds Q2 inf

> 0. (3.55)

From (3.53), we get

Ix2 X2 X2 X2
Xap >bin—<<bsu—k—> k—)L—bsu——ll.
a5 2 2 0 inf 1,sup ds ++ s 1 — (b2,sup d3)2

Thus, from (3.51) and L; > 0, we get

Ix2 X2 X2 {ao sup — a2 infl2} X2
it > P — = + k== U U — == .
d L2 - bO,mf ((bl,sup k >+ k ) (b2,bup l)l2

3 ds ds A1 inf — % ds

Therefore

[ k k
ﬁ(amnf - &)Lz > bo,inf(amnf S ) - <<b1,sup - k&>+ + k&>a0,sup

d; ds ds ds ds
- ((Ch,inf - %)(bQ,Sup - E—jl) — <<b1,sup - k§—§)+ + lfz_j)alinf)l}

It follows from the last inequality, (3.52), and (3.55) that

2l 2
g, b (e B (i) 1)
s \PLinf T 7 boinf — >§l_23l
X1k X2 X2
>b in inf — ;) ((b su _k_> k ‘) su
2> o i (@1,inf d3) v Mo LU
x1k X2 X2 X2

- inf ™ b sup l - <<b su _k ) k ) in)l .

((al, f ds )( 2,sup ds ) 1,sup ds ++ ds a2 inf | b2

Therefore from (3.51), we get

‘ol N {ao,sup—az,inflz}
2 2
{bO,sup T ds l2 + (bl,inf - k@) k }

l><_2(a1' , Xlk) al,inf‘%
d3 " d3 bQ,inf - %
X1k X2 X2
Z b(],inf(al,inf - d_3) - ((bl,sup - kd_3>+ + kd_3)a0,sup
X1k X2 X2 X2
- ((al,inf - d_s)(b2,sup - d_3l) - <<b1,sup - kd_g)Jr + kd_3>a2,inf> l2‘
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Thus

{ (@ aky (oo — 2ol (g — 220 — 1222 b

ds ds ds ds
By
X2 X2 Xal, | Ixo X2
~{[((brow = 532+ 822 ) g = X5) + 22 (brjns = £32) | anur J1
{K(l =R ), TR ) Baine = )+ e = [t g2
By
Xl X2 X1k
> binbin__ _l_bsu inf 7 T ;
_(0, f( 2,inf d3> ds 0, p) (al, f dg)
A
X2 X2 Xal, | Ixe X2
~[((brow = 532) + K22 ) (bagur = X2) + 22 (brine = k22 ) | aop
[((1 R A T ] 0
A
which is equivalent to
Bly > A, (3.56)

with B = By — By and A = A; — A,. Note that (3.15) yields that A > 0. This combined with

(3.56) implies that B > 0. Therefore, inequality (3.56) becomes

vV
STES

Then thanks to equation (3.54), we get

a .
B> 2,inf A

Q,sup

That means

k l {
ot = ) [ (Baing = ) (o — o) = (152)?]

d_S d3 dS d3
X2 X2 XQZ ZXQ X2

_ su b su _k:_ k— b inf — —0— i b in _k_ :| .

o ((Broun = g2}, + 32 ) (asar = 7) 32 (b = 132) [z

l k
> (2,inf (bo,inf<b2,inf - %) - lz—jboﬁup) (al,inf — %)
X2 X2 XQZ ZXQ X2

— |:<<b17sup - kd_3>+ + kd_5> (b2,1nf - d_g) + d_3 <b17mf — kd—3> _:| a0 sup2,inf -
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Thus

X2l X2l X2 X2l X2
ao,sup (bQ,inf - d—g)(bz,sup - d_g) - (ld—g)Q] > Qg inf (bO,inf(bQ,inf - d_s) - ld_gbo,sup) )

which contradicts to (3.14). Hence L; = 0.

Next, we prove (3.17) and (3.18). Since L; = 0, we get from (3.52) and (3.53) respectively

that
l
bO sup — X_Ql
,Sup ds "2
Ly< 22 db 2
bo e — X20
2,inf ds
and
l
bo inf — %L2
Iy > b 2
b X2t
2,sup ds

(3.17) then follows. Furthermore (3.18) follows from (3.16), (3.17) and elliptic comparison
principle.

Finally, assume that (3.19) has a unique positive entire solution (v*(x, t; bo, 52), w*(z, t; bo, 52))
for any (130, Z~)2) € H(bg, bs). We claim that (3.20) holds. Indeed, if (3.20) does not hold. Then

there are €y > 0 and ¢,, — oo such that

lo(-, tn + to; to, o, vo) — v (-, tn +to; b0, b2)||cc > € VR =1,2,---.

Without loss of generality, we may assume that

lim (bo(t 4 Ly, + to, ), ba(t + tn + to, ) = (bo(L, ), by(t, )

n—o0

and

lim (u(x,t + t, + to; to, uo, vo), v(z, t + t, + to; to, U, Vo), w(x, t + t, + to; to, g, Vo))

n—o0

= (0,0(z,t), w(x,t))
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locally uniformly in (¢, ) € R x Q. Then (9(z,t), w(z,t)) is a positive entire solution of (3.19)

and

||6(? 0) - U*('70;l~)0a BQ)HOO > gO?

which is a contradiction. Hence (3.20) holds. [l

3.7 Optimal Attracting Rectangle and Proof of Theorem 3.5

In this section, we construct optimal attracting rectangles for (3.1) and prove Theorem 3.5. We

first prove two important lemmas.
Lemma 3.11. Consider (3.1). For given ug, vy € C°(Q) withug, vy > 0, let Uy = max,q uo(),
Uy = minxe@ UO(Z'), Vo = maXgzeg Yo (SC) » Vg = mianQ ’Uo(l’).

(1) Assume (HS). Let 19 = 1) = 0, 70 = Ay, 7) = Ay, and

n—1 X n—1
aO,sup_QQ,infrg _kférl

T = X
1 al,inf*kd*;

n—1 X1 yn—1
bO,sup*bl,inf’:l 7]‘3@’:2

X
b2,inf_lT§

_ X1 =
aO,inf_QZ,supTg_kT;T?

=
1 al,sup*k%

=

= X2
bO,inffbl,supT{L*larg

L X2
\ b2,sup_l ds

forn=1,2,---. Then

O<A <A <m<m <A
(3.57)

O<r ' < <m<m ' <A

forn = 2,---, and for any given ug, vy € C°(Q) with inf uy > 0, infvy > 0, € > 0, and

: : n n—1 0 —
n € N withn > 1, there exists t75, 50 v v = te g w00,y (Leiooug,w, = V) Such that

i —e <wu(x, t;to, ug,vo) < T+ €
(3.58)

L’g — € S U(iﬁatStO»UOaUO) S /fg + 6
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forallz € Q, tg € Rand t > to + 75, T, 110,00

(2) Assume (H9). Let 59 = 53 =0, 50 = By, 39 = By, and

(
Y (aO,supf(UQ ian’,lﬂ)snilfkﬂsnil)(bg inffl%) _I_ T)l( (bOsup (bl,inf“l’k%)g’?il*lﬁggil)
S =
1 (@1, ik (b it —152) — Ik 12 (a1,inf —k 1) (b2 ,ine—152) — 1k X132
3
_ — kx -
Y (bo,sup*(b1 ianrkﬁ)sn 1,[Xf2§;1 1>(a1,inf k ;) n Ky (ao sup (a2 merle )S” 1 k%g? 1)
S =
2 (@1 int 3 ) (b imi — lxi)—lk—xégﬂ (a1,int =k 1) (b2 ,inr—152) — 1k X132
3 3
n <a0,inf—(a2,sup+l@)gg_k%§?>(anS‘JP_l%) 4 d3 (bO int —(b1, S“p+kT2) 57— l%§g>
s=
21 (a,LS“pfk;(—l)(bg,supflgi)*lkixigz (al,sup*k*)(b%sup* 72) le%Q
k —
" <b0,inf (bl sup+kX2) —52>(G1,sup—k% + d32 (ao mf_(GQSup"Fl ) —k%s?)
o=
=2 (al,sup k 3)(b2,sup =l g)_lk% (al,sup—k@)(blsup lxg) lkX;:%Q

forn=1,2,---. Then

0<si ' < <sr<s7'<B
(3.59)

0<sy ' <sp<85<5 " <B

forn = 2,---, and for any given ug, vy € C°(Q) with inf uy > 0, inf vy > 0, € > 0, and

n n—1 0 _
n € N withn > 1, there exists 125, 50w v 2 Uiy wo.ug vy (Yo sougw, = 0) such that

st — € Sz, tyto, ug, vp) < 57 + ¢
(3.60)

st —e <w(x, t;ty, ug,vo) < 55 + €,

forallz € Q, tg € Randt >ty + " 00,50, 00"

Proof. (1) First of all, note that 7{ = 7 and 73 = 79, and by (H8),0 <1} < 7{ and 0 < rj < 7.
(3.57) then follows from the definition of 7' and r; (¢ = 1, 2) directly.
We then prove (3.58). We do so by induction.

First we claim that there exists ti i0,To g, = O Such that

ri — e < u(z, t;to, ug, vo) < 7y + € ;
(3.61)

L‘% — € S U([E,t;to,UO,U(]) S f% +6
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forallz € Q,tg € Rand ¢t > to + t!

€,U0,00,%0,Vq °

In fact, from the first and third equations of (3.1), we get

Ut S dlAu — lew -Vu + U(ao,sup — (al,inf — k%)u) (362)
3

Let u(t; to, ug) be the solution of

u' = u(aO,sup - (al,inf - k&)u)

d3
with u(to; to, Wo) = Up. Then by solving, we get

CoQ

U(t, to,ﬂo) = m V t Z to,
where a = aggup, b = @1,inr — kz—;, and ¢y = b%‘la. (Actually wu(t;tg,up) > 0 for all t >
to — @ and blows up in backward time at t* = ty — @ < to.) It then follows from

parabolic comparison principle that

CoQ

m Vtzt[b vtoéR.

u(x, t;to, ug, vo) <

Thus
u(z,t + to; to, ug, vo) < u(t + to;to, o) = # Vt>0, ViyeR.
Therefore there is ¢/, > 0 such that
u(x, t;to, ug, vo) < 7y + €Vt >ty + tiﬂo, Yty € R. (3.63)

Similarly using the second and third equation of (3.1), there exists tijo > 0 such that

v(x,t;to, Ug, Vo) < Ty + €V t > tg+t! YVt € R. (3.64)

€,00"
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Choose 0 < € < € such that

Qg,inf — A2 sup7‘2 k?xl 7"1 (a2,sup + kz_;) ~ 1
= —€2>1I — €
X1
al,sup - E
Let t}y 5 = max{tem,,tes, }- Then for t > tlo o from (3.63), (3.64), the first and third
equations of (3.1), we get
uy > diAu— x1Vw - Vu+ 'U/(a/[)’inf as 5upr2 le — (a1,sup — k%)u - €(a2,sup + k%))
3 3
Thus similar arguments as those lead to (3.63) implies that there is ¢! g Ti0,T0 = ti 0.5, Such that
I —€<U($ t; to,UO,UQ)Vt>tQ+teu0u0v0, YV ty € R. (3.65)

Similarly, from (3.63), (3.64), the second and third equation of (3.1) and similar arguments as

those lead to (3.63), there is ¢! > t!_ _ such that

€,V,U0,00 — "€V0,00

r;—e <oz, tto,uo,vo)‘v’t>to+teu aomer Vi ER. (3.66)
Choose t. 7, vy = MAX{e.ug 10,0+ Levg 0,70 (> 0). Then (3.61) follows from (3.63), (3.64),
(3.65) and (3.66).
Next, assume that for any € > 0, there is ¥ 0 Togvg tk u; Bo.ug.w, (F = 2) such that

i — e <z, t;to, ug,v9) < 7Y+ e

(3.67)
EIQC — € S U(xat;t()au()av()) S fl; + €

forallz € Q,t € Rand t >t + ¥y o, , . We claim that there is there is {1 5 , , >

th_ (k > 2) such that

€,U0,V0,Uq,Yq

i e <l bty ug,v) < T A€

ot — e <w(x, tito, ug, o) < T 46
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forallz € Q, to € Rand t >t + t*1!

€,U0,00,Ug,Vq

In fact, choose 0 < € < € such that

k k =
A0,sup — A2,infly — kz—;h + 6(a2,inf + kz_;)

kxa
Q1,inf — g

+E< T e

and
—k+1 X1 =k+1 = X1
ag,inf — A2supTy = — k’gﬁ - €(a2,sup + k@)

- — >t — e
W o — kx1 -
1,sup ds

We have that for t > ¢, + t*

€,U0,V0,q,Yq°

u < diAu—x;Vw - Vu + u<a/0,sup - CL2,inflflgC - k%l”f - (al,inf - kﬁ)u - g(&2 inf + k&))
3

Then there is £°F! >tk , such that for ¢ > htt

€,U0,00,U,Vy — ~€U0,V0,Ug,Y €,U0,00,%,Y0

u(z, t;to, ug, o) <7 +e VoeQ VigeRY >ty + 10!

€,U0,V0,U%,Vq "

This implies that for ¢t > ¢, + ¢°11

€,U0,00,%0,Vq°

_ X1 _ X ~ X
up > dlAU—X1V'IU'VU+U(CLO7inf—a/27sup7’]2€+1—kd—l’f’lf-i_l—(aLsup—kd—l)U_G(aQ’sup + /{:d—l))
3 3 3

It then follows that there is £+ > tk such that for ¢ > to + t*1!

€,U0,V0,Un,Vy — ~€,U0,U0,Ug,Vq €,U0,V0,Uq,Vq°

k+1 —k+1
£1+ — € S U(fEatthUOaUO) S 7"1—"_ + €.

. oo 7Rl k

Similarly, we can prove that there is £ 7 5 v, = Tewomouyw, SUCh that for ¢ > 5 +
Pk+1
€,U0,V0,U0,Vq°

ket 1 1
it — e <w(x, t;to, ug,v9) < Ty + €.

tk+1

k41 rk+1
€,U0,V0,Ug,Yq t } :

€,U0,V0,U,Vq 7~ €,U0,V0,Uy,Yq

The claim then follows with = max{

Now, by induction, (3.58) holds for all n > 1. This completes the proof of (1).
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(2) It can be proved by the similar arguments as those in (1). We outline some idea in the
following.

First of all, note that 51 = 5 = B; and 5} = 5 = By, and by (H9), 0 < s! < 5! and
0 < si < 5).(3.59) then follows from the definition of 57 and s (i = 1, 2) directly.

We prove (3.60) by induction.

To this end, we first claim that there exists ¢! . > ( such that

€,U0,V0,L,Y,

st — e <wu(x,t;tg, ug,v9) < 51 + €

(3.68)
st — e <w(x, t;tg, ug, vo) < 55 + €

forallz € O, tg € Rand ¢t >ty + t!

€,U0,00,%0,Vq °

In fact, note that

up < diAu — x1Vw - Vu+ u(aosup — (a2t + lg—;)§g — kz—ggg’ — (a1,inf — k3 )u + lﬁ—;v)

v < dyAv = xoVw - Vo 4 0 (bosup — (bring + k32)s] — 13289 — (Do ine — 12X2)v + k32u).

Then for any € > 0, there is 7. > ( such that

€,U0,V0,Uq,Vq

u(x, t;to, ug, vo) < 5] + €

v(x, t;t ug,vp) < 53+ €

forallz € Q, t) € R, and t > ¢ty + t! This implies that for any € > 0, ¢t >

€,U0,00,U0,Vq °

to + L

€,10,00 U,V

up > diAu — s Vw - Vu + u(ag it — (agsup + 1351) (55 + €) — kXL(5] +€) — (arup — k3 )u + 1X10)

vy > doAv — XaVw - Vo + v (bgint — (b1sup + kz—j)(g% +é) — lﬁ—j(% +€) — (bosup — 132)0 + kij—;u)
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Choose 0 < € < € such that

(aO,inf_(a2,sup+l%)(§%+€)_k;(; (§i+€) (b2 sup l% % (bO,inf_(bl,sup“l‘k%)(§%+g)—l%(gé‘i‘g)) 1
(@t oy = 5 (b2 vy~ ) T2 L TP < P2 sb Sim€
(bo,mff(bl,suﬁkij—;)(§i+€)fl§—§(§§+€))(al,supfkij—;) n %(ao,im«f(az,sup+l§—;)(§§+€)7k§—§(§}+€)) 1
(al,sup_k%)(b2’sup—l%)—lk X(li%CZ (al,sup_k%)(bzsup—l%)—lk% §2 €.

| 71
Then there 1S t; 5 50 uowe = Leio,50.ug,v, SUCH that

. 1
U(ZL’,t,to, U(),Uo) Z 8] — €

'U(fIJ, tu t’UO,’Uo) > §% — €

forz € O, to € R,and t >ty + tiﬂovfo@o,yo' The claim (3.68) then follows.

Next, assume that for any € > 0, there is tfﬂoﬁo@o&o > ’zg(}jwoﬂo (k > 2) such that

sh— e <z, t;to, ug, vo) < 85 + ¢

sk —e <w(w,tity, ug,v9) < 55 + €

forallz € O, tp € Rand t > t, + tlzﬁoﬁo&o,yo' By the similar arguments as in (1), there is

o gkt K
there is ;50 50 o v =ty moug, (B > 2) such that

st — e <wu(x, t;tg, up, vo) < §]f+1 + €
shTl — e <w(a, t;to, up, vo) < 55T 4 €

forallz € Q,to € Rand t > t,+ tfv%;»ﬁovﬂo»ﬂo' (3.60) then follows by induction and (2) is thus

proved. O]

Lemma 3.12. Consider (3.1).

(1) Assume (HS). For any given n € N, ug, vy € C°(Q) with ug, vy > 0 and ug, vy Z 0 and
to € R, if

rf Swuy <7y and ry < vy <7y, (3.69)
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then

r! <wu(zx, t;tg, ug,vo) < 77 and ry < v(x,t;to, ug,vg) < 7o ¥t > t. (3.70)

(2) Assume (H9). For any given n € N, ug, vy € C°(Q) with ug, vy > 0 and ug, vy # 0 and
to €R, if

n =n n =n
s7 Sug < 57 and sy < vy < 5y,

then

st < u(x,t;ty, ug,vo) < 87 and sy < v(x,t;ty, ug,vo) < 55 YVt > to.

Proof. (1) For given n € N, suppose (3.69) holds. We prove (3.70) holds in two steps.

Step 1. We prove in this step that the following holds for k£ = 1,
¥ <z, t;to, ug, vo) < 7F and rh < v(x,titg, ug,ve) < Th YVt > to. (3.71)
Recall that (3.62) reads as
uy < dyAu — x1Vw - Vu + u(aoﬁup — (@1,inf — k?—;)u)
Thus, by parabolic comparison principe and @y < 77 < 7}, we get that
0 < u(w t;tg,ug,vo) <71 YV t>to. (3.72)

Similarly, by parabolic comparison principe and vy < 75 < 71, we can get that

0 < vz, t;to, up,v9) <7y Yt 2>t (3.73)
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Therefore, for t > t,

uy > diAu — x1Vw - Vu + U(a07inf - agwpf% — kﬁfl — (a1,5up — k:&)u))

d3 1 d3
By parabolic comparison principe and r; < r} < u,, we have that
11 < u(, b to, uo,v0) V> to. (3.74)

Similarly, by parabolic comparison principe and r} < 1 < v,,, we have that
E% S U(J?,t;to, ’LLD,"U()) Yt Z to.

This together with (3.72), (3.73), and (3.74) implies that (3.71) holds for k£ = 1.

Step 2. Suppose that (3.71) holds for £ = 1,2,--- |1 (I < n — 1), we prove that (3.71) holds
fork =1+ 1.
Indeed since (3.71) holds for 1 < k < [, for t > ¢, we get from the first and third equation

of (3.1) that

u < dyAu — xiVw - Vu + U(ao,sup - a2,inf£lz - kz—;ﬂ - (a1,mf - /{:E—;)u)

Thus, by parabolic comparison principe and i < 7 < 7,!, we get that
u(z, t; o, ug, vo) < 7 VE > 1. (3.75)

Similarly, from the second and third equation of (3.1) and parabolic comparison principe, we

get since 7y < 7§ < 75! that

v(x, tto, ug, vg) < Ty Wt >ty (3.76)
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Next again from the first and third equation of (3.1) that

up > diAu— x1Vw - Vu + u(agms — A2, supT — k%fll — (a1 sup — k%)u)
3 3
Therefore by parabolic comparison principe we get since r'™' < r? < u, that
i < (e, tto, uo, vo) - VE >t (3.77)

Similarly, from the second and third equation of (3.1) and parabolic comparison principe, we

get since 1, < 1} < u, that

bt < w(z, tyto, up, v9) V> to.

This together with (3.75), (3.76), and (3.77) implies that (3.71) holds for £ = [ + 1. (3.70) then
follows by induction.

(2) It can be proved by the similar arguments as those in (1). O]
Now we prove Theorem 3.5.

Proof of Theorem 3.5. (1) First of all, from (3.57), the sequences 1 and r} are nondecreasing
bounded sequences of nonnegative real numbers and the sequences 7' and 75 non-increasing
bounded sequences of nonnegative real numbers. Thus there exist real numbers 0 < r; <7 <

Ay and 0 < Iy, <79 < A, such that

. n__ . n =
hmn—>oo Il - 217 hmn—)oo ry =rn,

3 n 3 oy (A
lim, ooty =1y, im0 7y = 7.

Combining this with the definition of 7' and r}’ (¢ = 1, 2), we get

X1
6L(),sup - a?,ianQ - kd_3£1

™ =

Y

X1
Q1,inf — k ds
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X1
bO,sup - bl,infll - k££2

T2
X2 )
b2,inf - l%
_ X1 =
Q0,inf — A2,sup’2 — k@ﬁ
r =
21 X1 9
CLl,sup - k%
and
_ X2 =
bO,inf - bl,supﬁ - l@ﬁ
T =
12 X2
b2,sup - ld_g

Hence (7, 7o, 1;,I,) is the unique solution of (3.22).

Next, we prove (3.25). By (3.58) and (3.7), for any ¢ > 0, we can choose N such

1, —2e <1 —e < u(w, t;to, ug, vo) < Ty + € < Ty 4 2¢

r, — 2e <1 —e <w(w, t;tg, ug, vo) < 7Y + € < 7y + 2e,

forallz € Q,tg € Rand ¢ > to + 2 5 o - Thus (3.10) holds.

Now suppose that (3.24) holds. We prove (3.25). Assume that

r; <wo <7y and ry < vy < 7.

Since the sequences ! and 1} are nondecreasing bounded sequences of nonnegative real num-
%) Iy

bers and the sequences 7' and 75 non-increasing bounded sequences of nonnegative real num-
bers, from (3.7), we get for n € N that

17 <1 <uy <7 <7landry <1y, <y <7y < Ty

By Lemma 3.12,

ry < wu(x,t;to, up,vo) < 71 and ry < v(zx,t;to, ug,vo) < 7o Vn € N [t > t.

Then as n — oo, we get

r; <u(x,t;to, ug,vg) < 7 and ry < v(x,t;tg, ug, vy) < 7o VE > .
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Thus (3.25) holds.

(2) It follows from the similar arguments as those in (1). O

3.8 Uniqueness and Stability of Coexistence States and Proof of Theorem 3.6

In this section, we establish the nonlinear stability and uniqueness of entire solutions of system
(3.1) and prove Theorem 3.6 and Corollary 3.1.
We first prove Theorem 3.6(3).

Proof of Theorem 3.6(3). Recall that (3.8) implies (H4) (see Remark 3.7(2)). For given ¢y € R
and ug, vg € C°(Q) with ug(x), vo(z) > 0, ue(+), vo(-) # 0, let (u(-, t; to, U, vo), v(-, t; to, U, Vo),
w(-, t;ty, ug, Vo)) be the solution of (3.1) given by Theorem 3.1(2). Note that (u(-, ¢; tg, ug, vo),
v(-, t; to, ug, Vo), w(-, t;to, ug, vg)) exists for all ¢ > t, and without loss of generality, we may
assume that u (), vo(x) > 0 for all x € (0.

Let (u**(t), v**(t), w*™(t)) be a spatially homogeneous coexistence state of (3.1) (see Remark
3.7(1)). We first prove that (3.29) and (3.30) hold.

To this end, let (u(t), u(t),v(t),v(t)) be as in Lemma 3.3. Then by Lemma 3.3, we have

w(t) < ulx,t;to, ug,vo) < w(t), v(t) <v(x,tito,ug,vo) <v(t) Ve, t>t.
(3.78)

We claim that for any € > 0, there is ¢y, 1,1, > 0 such that

u(t) —e <u™(t) <ut)+e v(t)—e<v™(t)<0(t)+e ViE>to+teupwoto- (3.79)

Indeed let (u'(t),v'(t)) be the solution of (3.44) with (u'(to),v'(t0)) = (ugy, Vo). Note that

(u(t),v(t)) satisfies

a2 u(t)(ao(t) — ar(t)u(t) — as(t)u(t))

¢ S u(t)(bo(t) — ba(t)u(t) — ba(t)u(t)).

IS
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Then by comparison principle for two species competition systems,

u'(t) <u(t) and o' (t) >w(t) forall ¢ > t,.

(3.80)

Similarly, let (u?(¢), v*(¢)) be the solution of (3.44) with (u?(to), v*(to)) = (o, vy). Note that

u; < u(t)(ao(t) — ar(t)u(t) — ax(t)o(t))

vy 2 (1) (bo(t) — br (B)u(t) — ba(t)v(?))
By comparison principle for two species competition systems again,
w (t) > u(t) and 0*(t) <v(t) forall > t,.
By Lemma 3.9,

lim (Ju'(t) — u*™(¢)| + [0'(t) —v™(t)]) =0 for i=

t—o00

This implies that for any € > 0, there is t. 4, o4, > 0 such that

(3.81)

w(t) —e <u(t) <u'(t)+e, () —e<v(E) S VR(t) e V>t + tewgmoito-

This together with (3.80) and (3.81) implies (3.79).
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=

~+
s

By (3.78) and (3.79), to show (3.29) and (3.30), it suffices to show 0 < In % + In

[
~
~—

Oast — oo. Assume that t > ty. By (3.33), we have

f% = 2 (ka + 10 — ku — lv) + [ao(t) — a1 (t)T — az(t)y]
J o= (ke o — ki = 10) + [ao(t) = ar(Du — ax(t)7]

Y= 22 (KT + 17— ku — 1) + [bo(t) — ba(1)T — b ()]
|5 = 3 (hu+ lw = kT — 1) + [bo(t) = ba(t)u — ba(t)T].

This together with (3.5) implies that

~

d u 0l [T VA VA T
— — ) = — - = — = < —mi U — 7 — <
dt<1ng +1n Q> Sl + R min{ay, 1} (@ —u) + (0 —2)) <0, (3.82)
where
. B o X1t Xe
0<a; = %g{oh(t) bi(t) — 2k a }
and

. +
0 < B = inf{balt) — aa(t) - 2z”d—3“}.

Thus by integrating (3.82) over (%o, 1), we get

a(t)

o(t) T . T
0<In—-+In—= <In— +1In—, and then .
u(t) v(t) Uy Yo u(t)u(t) ~ uyv,

We have by mean value theorem that

Therefore

i(ln u +1n §> < —<min{a1, 61}) <min{a2, Bg}) <lnz +In Z), (3.83)

u v
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where

UV
o _ e Yol
0 < g := Qatyugw, = Inf U(t)==
t>to UV
and
Uply

0 < By = Batguowo = gltfo W(ﬂﬁ

By letting €o,¢)u0,00 = (min{oy, 51}) (min{as, 52}), we have €g ¢ w0, > 0 and
v U 0,190 00 (t—t0)
0<In—+In-<{ln— +In— ] e touoo —0 as t— oo.
v

Hence (3.29) and (3.30) hold.
Next, we show that (3.1) has a unique spatially homogeneous coexistence state. Suppose

that (u}(t),v/(t),w}(t)) (i = 1,2) are spatially homogeneous coexistence states of (3.1).

Let up; = max{sup,cp ui(t),sup,cp us(t)}, vor = min{infier v} (t), infier v5(t)}, v =
min{inf,cg ui(t), infiep ub(t)}, and vy = max{sup,cg vi(t),sup,cg v5(¢)}. For any ¢y € R,

let (u;(t),vi(t)) = (u(t; to, uoi, voi), v(t; to, ug;, vo;)) be the solution of (3.44) with
(u(to; to, wos, voi), v(to; to, Yo, Voi)) = (Wos, Voi)
(2 = 1, 2). By comparison principle for two species competition systems,
ug(t) < wui(t) <wuy(t) and wvi(t) <vf(t) < wvlt) (3.84)
for: = 1,2 and t > ty. By the definition of coexistence states, there are 0 < 6 < K such that
d<ui(t) <K, 0<0v(t)<K (3.85)
for7 = 1,2 and all ¢ € R. By the similar arguments of (3.82), we have
d . w(t) d, vyt)

Elnm + %lnr(t) < —min{&l,Bl}(ul(t) — ua(t) 4 va(t) — vi (1))
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for t > ty, where

Let

~ . Up2Vo1 3 . Up2V01
JR— * J—
Gy = infui(t) : 2
teR U1 V02 teR Up1 V02

and ) = (min{dl, Bl}) (min{&g, 52}) Then by the similar arguments of (3.83), we have

t+1 t+1 .
Oglnul( + o) +1nv2( + o) < (ln@nLln@) e ¢ot
UQ(t + to) U1 (t + to) Up2 Vo1

for t > t,. This together with (3.85) implies that

< In (751 (t -+ to) In 'Uz(t + to)
Ug(t + to) Ul(t + to)

<2In (%)e_got.

Therefore
) u(t 4 to; to; uo1, vo1) v(t + to; to; Uoz, vo2)
lim In n
t—oo  u(t + to; to, U2, Vo) v(t + to; to, wor, vo1)

=0

uniformly in ¢y € R. It then follows from (3.84) that uj(¢) = u5(¢) and vj(¢) = v;(t). Indeed

let t € R be given. It follows from (3.84) that

)| (for some @*(t) between uj(t) and uj(t))

ui(t)

< max{ui (1) Jus(0)]} n (
< Kln (ul(t))

- UQ(t)
KN\ _.

<2KIn <F>6_€°(t_t°), Vto < t.

And similarly
K _

07 (t) — v3(t)| < 2K In (K)e—eoﬁ—toh Vo < t.
Therefore as ty — —oo, we get |uj(t) — ui(t)| = |vj(t) — v5i(t)|. Hence (3.1) has a unique
spatially homogeneous coexistence state. [

131



Next, we prove Theorem 3.6(1) and (2).

Proof of Theorem 3.6(1) and (2). For given ug, vy € C°(Q) with ug, vy > 0, let Uy = max,.q ug(7),
Uy = Mineq Uo(T), To = Max,eq Uo(T) , Yo = min,eq vo().

(1) By Theorem 1.2(1) and Remark 1.3(2), (3.1) has coexistence states. Let (u™*(x,t),
v**(x,t),w*™*(z,t)) be a coexistence state of (3.1). Let ¢;(t), Q1(t), q2(t) and Q2(t) be as

in Theorem 3.6 (1), By (3.26),

t

p=timsup —— [ max{a(r) ~ Qu(r), a:(r) ~ Qu(r)}dr < 0.

t—s—o00 s

Fix 0 < € < —pu. Then, for given ug,vy € C°(Q) with infug > 0, infvy > 0, there exists

T uowo = Tt a0.00,u9.0, > 0 such that for any ¢y € R,
1 —e <u(-to+tto;ug,vo) <Ti+e, 1 —e<u(z,t) <TFi+e Vo €Q, t > to+ Tty

1, — e < (- to+tto;ug,v0) < Fate, Ty—e <0 (z,t) <Tote Vo €Q, t > to+ Tty

and

to+t
/ max{q(s) — Q1(s), q2(s) — Qa(s)}ds < (1 + €)t, ¥Vt > to + Tt g vp-

to

To simplify the notation, set u(t) = wu(-,t;to;ug, vo), v(t) = v(-,t;to;ug,vo), u™(t) =

u**(-,t), and v**(t) = v**(-,t). Let ¢ = u — u™* and ¢ = v — v**. Then 1) satisfies

Y = diAY — 1V - (YVw) — 1 V- (v V(w — w™))

+ 0 (ao(t.2) — ar(La) (u+ u) — wft,)o) — et oo, (386)
and ¢ satisfies

¢ = d2Ad = xaV - ($Vw) = xoV - (v V(w — w™))

4 (bg(t, %) — bi(t, 2)u — ba(t, ) (v + v**)) by (¢, )0 (3.87)
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We first prove that [, (¢? + ¢?)dz — 0 as ¢ — oo uniformly in t, € R. To this end, by

multiplying (3.86) by ¢, and integrating over {2, we get

s ot [ 90 = [ 090, Vot [ w0, V- )
n / U2 (aolt, 7) — ar (£, 2)(u + ™) — aalt, 1)) — / aalt, T)urp ¢
Q

Q

for a.e t > ty (see [30, (4.6)]) for the reasons to have the above equality). Then by integrating

by parts, we get

th / v+ dl/ V2 < - A / VAW + x4 /QU**V'QZ)+ - V(w —w™)
/ 7/}+ Qo sup al,inf(t) (U + U**) — G/Q’inf<t)’l})

/ o(t, T)u” ¢+¢++/ o(t, 2)u™ b (3.38)
Q

fora.et > .

We have from the third equation of (3.1) that

—&/wiAw: ﬁ/qﬁ(lm—l—lv—)\w), (3.89)
2 Jo 2d3 Jq

and by Young’s inequality

X1/U Vi - V(w—w™ <d1/]V1/J+|2 4;1”) /|Vw w** (3.90)

We claim that

k2 2
gk 2< 2 [ 2_ 91
Jww=wps g [vre s [0 G91)

k%

Indeed since (u, v, w) and (u**, v**, w**) are both solutions of (3.1), from the third equation of

(3.1) we get

0 = dsA(w—w™)+k(u—u™)+l(v—v"*) = MNw—w*") = dsA(w—w**)+kp+lp— AN w—w*).
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By multiplying this last equation by w—w** and integrating over {2, we get by Green’s Theorem

0=—ds [ [V(w=w )P+ [ vw—w)+1 [ ptw—w) = [ -

By Young’s inequality we get

2 2
dg/|V(w—w**)|2+)\/(w—w**)2§k—/¢2+l—/¢2+)\/(w—w**)2,
Q Q 2X Ja 2X Jq Q

and the claim thus follows.

By (3.88)-(3.91), we have

(kxiul: (Ixaut
k? v — \ sup sup
2dt/¢+_2d3/¢+ et lo =)+ =5 /w T T Sndds /¢

+ / 2 (a0sup(t) — arims (6) (1 + 4™) — e (£)0) — azant (1) / e
Q Q
gty [ i

for a.e t > ty. Thus by Young’s inequality, we have

(Rxaug; (Ixyul:
: 2 sup 2 sup 9
k lv— X
2dt/¢+ — 3/Qw+( U+ v U)) 8/\d1d3 /w 8>\d1d3 /(b
a2 sup (1) Ug
+ / l/i (a07sup(t) — () (w4 u™) — a27inf(t)v) + % / ¢i
N Q
a2 su tu:; .
+%/¢3_a2’mf(t)/u " 592
2 Q 0

fora.et > .

Similarly, we have

(kx1ugy (Ixaug,
2 2 (k v — \ sup / Sup / 9
th/iﬂ _2d3/w u+ v — Iw) + Shdyds P Shdid, b
a/ su ::
+ / i (aﬂﬁsup(t) — () (u 4 u*) — a%nf(t)v) + % / 02
N Q
a2 su tu:{: »
+w/¢i—a27mf(t)/u V¢ (3.93)
2 Q 0
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for a.e t > ty. By adding (3.92) and (3.93), we get

i o

(Bxaudi,)? .
/ ¢2 2d3 ku + v — )\’UJ) 4;d1dz + a07sup<t) — al,inf<t) (u +u ) — a2,inf(t)v>

a2,sup sup 2 (ZX1u:;p)2 a2,sup<t)u:up / 2 / *
— —2,inf (1 —p-
+ 2 /Qz/z +(4Ad1d3 +— ) O au(t) | 0 (Yeds +0d-)

fora.e. t > tg.

Similarly we have

2
it )¢
* )2

(ZXQU:up)
< — R A — b N _ b, .
/ ¢° <2d3(k;u + v — ) + Indyds + bosup(t) — bame(t) (v + V") bl,mf(t)u>

bl suP sup kX2’Usup)2 by sup (t)U:Jp 9
’ _b in t *ok b
/¢ Ddods 2 )/91/} L, f()/gv (V11 +1p_¢-)

for a.e. t > ty. By adding the last two inequalities, we get

1d
2 Jo )

P | (e’ .
< [0 (G5 o= )y (P S (1) = () )

g sup (t)uin 4 b1 sup (£) V5
(= aartege 4 22 S DO [
Q
2

2

2 Oaui)?  (evis)?
ku + v — A Sup Sup bo.sun (1) — boint (£ =
+/¢<2d3(u+v w)+4Ad3( P )+ bosup(t) — baint () (v + v ))

a2 sup (t)uss 4 b1 sup ()05
+(—b1,mf(t)u+ 2un(1) p2 Lo () p)/¢2
Q

fora.e. t > ty. Thus for ¢ > ¢y + T 4, 4,> We have

o / (07 + %) < (@ult) = au(t) + K (t,6)) / o+ (Qalt) ~ alt) + Kalt,0)) [

Q
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where

E+1) ke /3 X3 /o -
a €+4>\d3<—(27“1+6)+d—2(27“2+6)>

dy
a2,5up(t) + bl,sup(t)>
2 )

Ki(t,e) = xa(

+ 6(2a1,inf(t) + ag,ing(t) +

and

2
(271 + €) + %(2@ + e)>
2

x2(k +1) e 13
Ks(t,e) = €+ =
2(t€) ds 4)\d3(d1

bl,sup (t) + CLZ,sup (t))

+ €<2b2,inf(t) + bl,mf(t> + >

Therefore for ¢ > tg + Tt 4.4, W€ have

1d

s @) <o+ ko ([ 02+ e),

where
h(t) = max{Q:(t) — q1(t), Q2(t) — q2(t)},

and

K(ta 6) = ‘Kl(t7€)‘ + ‘KQ(tae)"
Note that 0 < sup,cg K (t,€¢) — 0as e — 0. Choose €y < 1 (¢y < —u) such that

0 <sup K(t,e) < I
teR 2

By fti h(s)ds < (u+ €o)(t — to) for t > to + T. .00, We have

/Q (% + )

< (/ ¢2 (to + Te,uo,vo) + ¢2(t0 + Te,uo,vo))62(M+60)(t_t0_T€’"0’v0)62( _”2_60)(t—t0—T€,u0,U0)
Q

<( / V2 (to + Tengwy) + 02 (o + Tegrup) )TN0 Tomo0) N > 40 + T, 4
Q
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Therefore

Jim [[u(-, ¢ + to; to, uo, vo) — u™ (-t +to) || 22(0) = Jlim [4(t + to) | Z20) = 0, (3.94)

and

Jim o, ¢ 4203 to, 1o, v0) — v (4 t0) || 2() = Jim [[o(# + to)|[72() = 0. (3.95)

uniformly in ¢y € R.
It follows from (3.94) and (3.95) and similar arguments as in the proof [30, Theorem 1.4 (2)]

that for any ug, vy € C°(Q) with inf uy > 0, inf vy > 0, we have

tli{& (-, + to; to, uo, vo) — w™ (-, 4 to)||Lo(2) = 0,

and
B {[o(-, &+ to; to, uo, vo) — v (- £ + to)l| Lo () = 0,

uniformly in ¢, € R. It then follows that (3.27) and (3.28) hold for any ug, vy € C°(Q) with
Ug Z O,UO Z O,anduo 7& O,UO 7é 0.
Next, we prove that (3.1) has a unique positive entire solution. We are going to prove that in

the following two steps.

Step 1. (3.1) has a unique positive entire solution (u*, v*, w*) which satisfy
r, <u*(x,t) <7 andr, <v*(x,t) <7 Vo € Qandt € R. (3.96)

Suppose that (uf(z,t), v} (x,t), wi(x,t)) and (ub(z,t),v3(x,t), ws(x, 1)) are two positive en-

tire solutions of (3.1) that satisfy (3.96). We claim that

(uy (2, ), 01 (x, 1), wi(z, 1) = (up(2, 1), v3(x, 1), w(, 1))
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for any ¢t € R. Indeed, Then by assumption (3.26), for given € > 0, there is ¢, > 0 such that

to+t
/ max{q;(s) — Q1(s), q2(s) — Qa2(s) }ds < (u1 + €)t, Vtg € R, t > tg + te.

to

Then by the arguments in the proof of (3.94) and (3.95), there is €y > such that for any ¢,7y € R

with ¢t >ty + ¢, we have

[ui (- 8) =z D)l 2@ + o1 (5 1) = v D)l 2@

< ( /Q (uh — u3)?(to + toy) + (V5 — v3)2(to + te, ) )P0l tto—teo) (3.97)
Moreover, by (3.96), we have
m = min{r;,r,} < u;(z,t) < M =max{r,7} and m <ovf(z,t) < M,i=1,2.
By combining this with (3.97), we get

[ui (1) = us (s )l 2oy + [[or (5 1) = o5 (- D)2

< 8MP|Qelrteo)lt=to~t) Wty € R and t > to + t,,.
Now let ¢t € R be given. Choose ty € R such ¢, <t — t.,. It then follows that

[ui (1) = us (-, )|z + (o1 (5 1) = o5 (- D)l 2o

< 8MAQ|elrteolt—to~te) 5 0 as ¢y — —oo0.

Thus we get by continuity of solution that uf(z,t) = uj(z,t) and v{(x,t) = vi(z,t) for all

reQandt € R.

Step 2. We claim that every positive entire solution of (3.1) satisfies (3.96). Indeed, let

(u*,v*,w*) be a positive entire solution of (3.1). Then for any given ¢ > 0 there exists
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tt6 ¥ ot s te,sup u* sup v*,inf u*,inf v* such that

r; —e < ut(x, t;to, u (-, t), v*(-,t0)) < T1+ €
(3.98)

b —¢€ < U*('rat;t07U*('7t0)7U*('7t0)) <Tyte

forall z € Q,t) € R, andt > ty + teyrr. Lett € R be fix. We have u*(z,t) =
W, bt — ey e, W (o =ty o), U ( E =ty o)) and 0™ (x, t) = 0™ (2, t; t — ey e, (-, T —

tew v+ ), U (-, t — teyr o)) Then by (3.98) with ¢y =t — ¢, = ,+, We get

r—e<u(z,t)<7rit+eandr, —e < v (x,t) < Ty +e

And since € is arbitrary, we get as e — 0 that

r, <u'(z,t) <7 and r, < v*(z,t) < 7.

and thus the claim holds.

(2) It follows by the similar arguments as those in (2). O
Finally, we prove Corollary 3.1.

Proof of Corollary 3.1. First, note that in this case x; = x2 = 0, condition (3.31) becomes
condition (3.26) for the global stability and uniqueness of positive entire solution of (3.2).

Recall that (3.31) reads as

as _ by, _
ag,sup + ;up 1+ ;up ro < 2al,infl‘l + 2 infloy

(3.99)

b _ a _
bosup + 5T + =527y < 2bg Ty + by jnel;
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aO,infb2,inf 7(12,supb0,sup

a1 infbo.inf —a b
, and r, = —hint0anl ZOswpllsw (gee Remark 3.6(3)). Hence
al,supb2,inf_a2,supbl,inf -

a1,intb2,sup—a2,intb1,sup

Note thatr; =

(3.99) is equivalent to

(

a2sup = bl,ﬂ - _ . aO,infb2,inf_a2,supb0,sup .
2 Tl + 2 ,r2 < aO,sup + 2a/1,1nf (al,supr,inf*a2,supb1,inf + a2,1nf£2

b1 sup = a2 sup = al,inbe,inf_ao,supbl,sup
\ 2 o + ) r < bO,sup + 2b2,1nf @1 1ntb2,sup—02,infb1 sup + bl,ll’lfIl?

which is equivalent to

p

a2 sup = bl,su — 7a0,supal,Supb2,inf+a0,supa2,supb1,inf+2a1,infaO,inbe,inf72al,inf‘12,supb0,sup
Bry+ =50 < + 2 infIy

2 al,supb2,inf_a2,supbl,inf

blysupFQ + ag,supfl < —b0,5upa1,infb2,5up+b0,5up32,infb1,sup +2b2,infa1,infb0,inf =202 inf20,supb1,sup 1 by it
2 2 a1,infb2,sup—a2,intb1,sup JIIZ] s

and so

;

b2 inf | 201 inf@0 inf— @ a —a 2a1 infb —a b1 ;
a2 sup = bl,sup — 2,1nf( 1,inf @0,inf 0,sup 1,sup) 2,sup ( 1,inf00,sup 0,sup l,mf)
—7T ——T a9 infL
2 1 + 2 2 < al,supr,inf*a2,supb1,inf + 2,11’1f_2
bl’supf 1 a2.sup a1,inf (252,infbo,mf*bo,supb2,sup)*bl,sup (2b2,infao,sup*bo,supaz,inf) Ty r
\ 2 2 1 al,infb2,sup*a2,infb1,sup Linf21-
Therefore (3.99) is equivalent to
(
s 2a1 infbo,sup—a b1 ; b — 2a1 inf@Q. inf —@ a
1 1,inf90,sup 0,sup 1,1nf) 1,sup 1,inf@0,inf 0,sup@1,sup
-5 i infl
a2,sup( 2 + al,supb2,inf_a2,supb1,inf + 2 "2 < b2,1nf al,supr,inf_a2,supb1,inf _I_ a/2,1nf_2

P 2b2 inf@0,sup —b0,5up a2, inf 42 sup = 2b2,infbo,inf —b0,5upb2,su
b (7"_2 ,inf @0,sup ,Sup ,ln) Sup g Q1 ,inf90,in ,sup02,sup by el
Lsup\7 + b2,supa1,inf_bl,supa2,inf + 2 1 < Linf b2,supa1,inf_bl,supa2,inf + Linfl1
(3.100)

Next, suppose that 2a17infa07inf — Q0supQ1,sup ~ 0 and 2b27infb071nf — b07supb2,sup > 0. If a9
and b; are such small so that (3.5) and (3.100) hold, then conditions (3.5) and (3.26) hold and

Corollary 3.1 follows from Theorem 3.6. [
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Remark 3.13. We discussed the conditions under which (3.22), that is,

X1\, X1
(al,inf - k?d—g)ﬁ = Qo,sup — A2,infly — kgl_ﬁ

X2\ X1
(bQ,inf - ld—3)7”2 = bO,sup - bl,infi_’l - k@lg

AL = r X1
(al,sup - k’@)fl = Qg,inf — A2,sup”’2 — /{,’d—37’1

X2 — = X2 =
(bZ,sup - ld_g)fg - bO,inf - bl,suprl - ld—3T27

has a unique solution in the appendix of our paper [29, Appendix].
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Chapter 4

Concluding Remarks and Future Works

The results obtained in this dissertation lead to many interesting and challenging open prob-
lems. In this last chapter, we will enumerate and discuss some of these interesting research

problems.

Problem 1 : Can the results obtained in Chapter 1 be extended the to the known mathemat-
ically challenging case of full chemotaxisi.e 7 > 0 ?

System (1.1) with 7 = dy = d3 = 1 reduces to

.

up = Au — xV - (uVv) + u(ao(t,x) —ai(t, x)u — as(t, ) [, u), x e

v=Av—v+u, x€f 4.1)

ou _ Ov __
k%—an—(), QTE@Q,

Note that the existing methods on global existence of nonnegative solutions of (4.1) in the
case that ay and a; are constants and a; = 0 such as [64, Theorem 0.1] can be adopted to the
study of global solutions of (4.1) in the general case without much modification. Thus in the
study of dynamics of system (4.1), a very challenging problem is to prove under the condition of
global existence, the persistence and existence of positive entire solutions. In a recent ongoing
work, I and Dr. Wenxian Shen were able to prove under the condition of global existence, the
persistence and existence of positive entire solutions for system (4.1). Furthermore, one can

consider working on the following open problems on dynamics of system (4.1).

- Is chemotaxis/heterogeneous environment good/bad for persistence/existence of entire

solution? (see [62])
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- When the coefficients a;(t, x) are periodic with period 7', does system (4.1) have a posi-

tive periodic solution with period 7?7

- Uniqueness and stability of positive entire solutions.

The main challenge in this case is that unlike in system (2.1), u small does not guarantee
any more that v and Av are small. Actually because in this case, v also depends on the initial
vp, u small does guarantee that v and Awv are small only for ¢ very large and that we basically
proved and used to obtain our recent result on the persistence and existence of positive entire
solutions for system (4.1) under the condition of global existence. When, €2 is convex, global
existence of classical solutions of system (4.1) holds under the explicit parameter region a jns >
X and  infyer (a1me(t) — (az,ing(t))-) > 0. No such explicit global existence parameter
region exist up to today for system (4.1) even when the coefficients are constant.

Problem 2 : Can the results obtained in Chapter 2 and 3 be extended the to the known

mathematically challenging case of full chemotaxisi.e 7 > 0 ?

More precisely, one can consider the system

(

up = diAu—x1V - (uVw) + u(ao(t,x) —ay(t, x)u — asft, a:)v), x €}

v = daAv — X2V - (vVVw) + v(bo(t, x) — by (t, x)u — by(t, :c)v), x €
4.2)

wy = dsAw + ku + v — A w, x €

du _ v _ Ow _
an_an_(‘)n_o’ xeaQ’

and address the following interesting open problems:

- Find natural parameter region for which global existence of classical solutions hold for
system (4.2). (This should follow from existing global existence results for constant

coefficients)

- Under the condition of global existence plus some further natural conditions, prove per-

sistence and existence of positive entire solutions for system (4.2)
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Is chemotaxis/heterogeneous environment good/bad for persistence/existence of entire

solution?

When the coefficients a;(t, x) are periodic with period 7, does system (4.2) have a posi-

tive periodic solution with period 7?7

Existence of optimal attracting rectangle

Uniqueness and stability of positive entire solutions.

Problem 3: Study the dynamics of two species chemotaxis with homogeneous/heterogeneous
coefficients on unbounded domain.

For example, I, Dr. Rachidi Salako, and Dr. Shen are currently studying the existence of
traveling wave solutions for the following two species chemotaxis models with constant coef-
ficients on unbounded domain.

;

uy = diAu — x1V - (uVw) + uy(ap — ayu — azv), xRN >0,

vy = daAv — X2V - (VW) +v(by — byu — byv), x € RN, ¢ >0, (4.3)

0=(A=X)w+hu+lv, zeRY t>0,
\

Problem 4 : Can movement of populations attracted/repelled by things like job opportunities,
individual freedom, political stability,..., etc be modeled by certain variants of (discrete) Keller-
Segel model? If yes can mathematics, big data, statistics and machine learning be combined to
understand and predict such complex dynamics of population? I plan to work on these type of

problems that combine mathematics and data science.
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