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Abstract

Mobile Ad hoc Networks (MANET) allow communication with little or no network

infrastructure. Assuming no infrastructure is available, user nodes are defined as service

demanding and agent nodes as service providing, communicating via device-to-device con-

nections when within range. This dissertation uses pre-planning, assignment and possible

re-planning, in a stochastic environment, to improve network connectivity over the mission.

A mission’s progression is discretized, where each time step can be modeled as a Steiner

Tree Problem with Minimum Number of Steiner Points and Bounded Edge Length (STP-

MSPBEL). To solve the static problem, a Reduction method was developed, derived from

a Minimum Spanning Tree (MST) solution method yielding a set of connecting points P .

The Reduction method was verified and preformed as well as a mathematical model when

comparing |P |. The Reduction method also performed as well as or (when possible) better

than a solution method found in literature.

The dynamic deterministic environment problem considers successive static networks.

A two stage solution approach is presented that first determines connecting points, Pt, at

each time step using the Reduction per Time Interval (RTI) method and then assigns points

in Pt to agent node tours with a genetic algorithm. In a majority of the runs this method

performed as well as a mathematical model developed for validation and was better than a

reactive approach.

The dynamic stochastic environment problem incorporated random deviations in user

node movement. A MANET management method is presented that uses the pre-plan and

assignment solution with the possibility of re-planning when the network has deviated beyond

a given threshold. In comparison, using the MANET management method outperformed the

reactive method in a majority of the runs.
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Chapter 1

Introduction

1.1 Background and Motivation

United States wartime combat has changed significantly as improvements in computing

and wireless communications have been incorporated. Specifically, unmanned aerial vehicles

(UAV) such as the Shadow-200 FQ-7B [71] and Predator [64] have been developed with

the primary goal to reduce the exposure of the human operator to potentially dangerous

situations. Smaller in scale, custom built multi-rotor copters are also being developed. In

addition to saving lives, they may support intelligence gathering, reconnaissance, munitions

support, and network connectivity between forward deployed units and the command and

control units[66].

In the wake of increasingly frequent natural disasters, installed communication infras-

tructures can be rendered inoperable. Simultaneously, there arises a need for a communi-

cation infrastructure when surveying damage or searching for individuals or items. Thus,

search and rescue operations could benefit from mobile ad-hoc networks, an as needed net-

work topology defined by device to device communication.

In such contexts, there are entities that specifically issue commands, carry out a mission,

or maintain connectivity. Each is later defined in Chapter 3 as control, user and agent

nodes, respectively. Because the control node issues commands, it is necessary for all other

nodes to be network connected to receive commands. Basically, the user nodes are service

demanding nodes and agent nodes, service providing nodes. This communication network

will be modeled as a Mobile Ad-Hoc Network (MANET).

In a military context, user nodes represent deployed soldiers. The size of a group of

soldiers is specified in U.S. Army Pamphlet 10-1[68]. The smallest grouping of soldiers is
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known as a fireteam/team and consists of two to four soldiers [1]. Each unit level in the

U.S. Army consist of three to five smaller units. The successively larger groupings with

approximate sizes are shown in Table 1.1 [68].

Table 1.1: Military Unit Type and Sizes [68]

Element Sub-element Soldiers

Fireteam Soldiers (4-5) 4-5

Squad Fireteams (x2) 9 - 10

Platoon Squad (3-5) 16 - 44

Company Platoon (3-6) 62 - 190

Battalion Company (2-7) 300 - 1000

Brigade Battalion (3-6) 3,000 - 5,000

Division Brigade (>3) 10,000 - 15,000

Corps Division (>2) 20,000 - 45,000

Army Corps (>2) 50,000+

In search and rescue (SAR) missions, user nodes represent first responders or even

civilian members participating in the effort. Unit sizes for search and rescue reconnaissance

are explained in the Australia’s National Land Search Operation Manual. “Composition

of teams for general search ... should be kept small (4 to 6 persons)...[or] larger teams

can be utilized depending on the terrain.” For coordinated searches, after reconnaissance,

e.g. during a contact search, the manual specifies eight to twelve persons, dependent on

conditions [80]. Alternatively, the United States Coast Guard guide specifies a two person

team with approximately twelve to thirty teams for ground search and rescue exercises [53].

The number of user nodes required for a given model or static location problem will be

specified in Section 3.3 in reference to values listed here.

Nodes will move based on a sequence of locations defined as a tour. User node tours

are pre-defined. Each use node follows its tour independently. To maintain connectivity the

control node determines the agent nodes’ locations. The literature, covered in Chapter 2,

shows that there have been few published works that address continuous space stochastic
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environment path planning and those that do, use purely reactive methods. This is based

on the assumption that the user nodes move without instruction or coordination from the

control node.

In this dissertation, it is assumed that the control node has knowledge of the user nodes’

intended movements. With this, a deterministic model of the system can be used to plan

agent node movement. In such a case, the location of any node at any time is known or can

be determined. In a stochastic environment, when faced with uncertainty where user nodes

may deviate from their given tour, agent node movement can be modified or redefined as

needed to maintain network connectivity.

1.2 Problem Definition

Given a network composed of control and user nodes that are given specific movement

plans, this dissertation will provide agent node tours that best connect the network during

the duration of the mission and minimize the number of needed agent nodes. Define this as

the minimum number of agent nodes path planning problem.

A problem instance will be defined as a collection of nodes moving about a defined

area of operation. User nodes are, in the military context, representative of soldiers or, in

the search and rescue context, representative of first responders. The field of operation has

boundaries, generalized to be rectangular in shape, thus having minimum and maximum x

and y coordinates. This dissertation focuses on two dimensions but this could be relaxed to

incorporate three dimensions by adding altitude for flying nodes. Users can move within the

field of operation, generally starting at the control node, to accomplish certain tasks. The

control node is the point of command for the operation. Each type of node will be elaborated

on in Chapter 3.
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1.2.1 Agent Node Path Planning

For all missions, a deterministic model is used during the planning stage. The planning

solution finds the set of agent node locations defining its path. The planned path will be used

to manage agent nodes movement during a mission in either a deterministic or stochastic

environment. During deterministic environment simulations, the mission operates identically

to the mission in the planning stage. Incorporating uncertainty, regardless of the cause, may

result in need to re-plan.

1.2.2 Assumptions

This problem is based on a few assumptions. First, no permanent communication

infrastructure exists, thus the need for an ad-hoc network. Second, prior to deployment, the

control node assigns tours for user nodes and as a result, in a deterministic planning case,

knows where each user will be at any given time. This can not be assumed in the stochastic

environment. Finally, considering that agent nodes are expensive, there is also a goal to

minimize the number of agent nodes needed to provide full connectivity over the mission.

For purposes of this research, user node movement will be driven by a checkpoint sys-

tem. Checkpoints are defined to model discrete time steps in a continuous time mission. A

checkpoint specifies a location that a node need to be at a given time. Each mission will have

a certain number of checkpoints each user node must visit. After completion of a user node’s

checkpoint list, it will remain at the last checkpoint. In the deterministic case, user nodes

follow a straight line between checkpoints. Stochastic cases will also be considered where

user node movement includes a combination of random and checkpoint directed movement.

The application of this dissertation is based on the assumptions that a mission planner

would plan in a deterministic environment, defining user node tours, determining connecting

points, and assign connecting points to agent node tours. Then, deploying the planned sys-

tem in a stochastic environment the mission planner would constantly monitor and forecast
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user node locations. If user nodes deviate significantly from their plans, the agent node tours

are re-planned.

1.3 Research Decisions

Given pre-deployment user node movement plans, this dissertation attempts to deter-

mine the set of agent node tours that will maintain the connectivity of the network. This

will be achieved by a two step solution process. The first is the process of solving successive

static location problems at discrete time steps yielding sets of points needed to connect the

network. A point identifies a time and location where an agent node would be needed. As

a result the number of needed agent nodes for a problem will be at least the maximum over

all time steps of the minimized number of points for a fully connected network at all time

steps. The second step is the assignment of the aforementioned points to agent node tours.

In a deterministic environment this assignment will ensure a connected network at all time

steps. Using the same tours in a stochastic environment does not ensure an always connected

network. For this reason, a robustness metric will be included as part of the agent node tour

assignment process.

1.4 Research Objectives

The MANET literature offers many methods of dealing with path planning, clustering,

routing, positioning, and connectivity problems. However, continuous space tour planning

to support mobile users to ensure network connectivity is a niche area. Recent works in

the field have used genetic algorithms as well as particle swarm optimization to approach

the problem of path planning. However, these methods have been entirely reactive in their

approach to managing network connectivity.

The goal of this dissertation is to determine agent node tours to illustrate the efficacy

of pre-deployment planning compared to reactive only locating. This will be done by com-

paring the average number of connected user nodes and a measure of robustness over the
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time of the mission. However, when modeling the problem, the number of connected users

is considered as a constraint. For the deterministic environment, the average number of

connected users is always equal to the number of user nodes. This assumption is not always

true for the stochastic environment, in which the objective is to maximize the average num-

ber of connected users and a measure of the network’s ability to remain connected, termed

robustness.

To identify the benefits of this research its performance in a stochastic environment

will be compared to a reactive positioning method in a stochastic environment. By includ-

ing a planning step, this dissertation attempts to show improvement in average number of

connected user nodes over the course of a mission using equal or fewer agent nodes.

In a stochastic environment the user node may deviate from planned tours. At these

points, the efficacy of the agent node plan will be evaluated. A method is developed to iden-

tify significant deviations from planned tours where additional actions, such as re-planning,

will be warranted.

The military and SAR contexts have similar objectives and constraints that will illus-

trate this dissertation’s applicability to a variety of problem contexts. The two contexts

will be evaluated at differing sizes to illustrate scalability and limitations. Planning will be

conducted in a deterministic environment. The primary objective of this dissertation is to

plan agent node tours that minimize the size of the agent node set while maximizing average

number of connected users in a stochastic environment.

1.5 Research Contributions

This dissertation will extend MANET path planning by using pre-deployment plan-

ning for agent node movement and also offer a method to re-plan based on stochastic user

node movement. The combination of planning and the option to re-plan in a stochastic

environment should improve network performance over the completely reactive agent node

movement systems currently found in literature.
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1.5.1 Planning

Solving successive static problems will yield a set of points at each time step determining

the minimum connectivity requirements at each time step. To ensure that a static solution is

optimal, a mathematical model will be used to validate it. To validate the dynamic problem,

the static problem mathematical model will be modified. For the deterministic case, assigning

the points to agent nodes and enforcing movement constraints can be modeled as a maximum

flow problem.

With the incorporation of the robustness metric the problem becomes complex and

non-linear. To help improve network connectivity, especially in a stochastic environment,

the robustness metric favors well connected networks, specifically networks with a higher

occurrence of connections between two nodes of high degree. Combinatorial meta-heuristics

are well suited to handle complex solution spaces. Movement constraint violations and

robustness metrics can be measured easily with the encoding of these meta-heuristics. A

genetic algorithm will be used for the deterministic environment assignment process. The

resultant assignment solution will be agent node tours.

1.5.2 Stochastic Missions

In the stochastic environment agent node tours will be initialized with the deterministic

assignment solution and user nodes may deviate from their given tours. The network is

continually monitored to determine if the forecast deviations are significant. If so, then

agent node tours will be modified to attempt to maintain network connectivity. All future

agent node tour checkpoints are removed and, similar to the assignment method, are assigned

tours from a new set of connecting points based on user node location forecasts. To contrast,

a reactive approach operates myopically prescribing agent node locations for only a few time

steps in the future. This dissertation will modify agent node tours considering user node

tours for all future time steps.
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1.6 Research Outline

The following chapter presents the associated literature and identify where this disser-

tation adds to the field of research. Chapter 3 details the Mobile Ad Hoc Network model’s

components, notation, formulation, problem classification, and the research plan. Solution

methods for static and dynamic problems are described in Chapter 4 and 5. Lastly, results

and analysis of this experimentation is given in Chapter 6.
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Chapter 2

Literature Review

2.1 Communications

2.1.1 Radio

The focus of this dissertation is usage of a fixed-range communication method to es-

tablish node to node connections. In the military context, assume that nodes will use the

SINCGARS (Single Channel Ground to Air Radio System) which is stated to have a trans-

mission radius of up to ten kilometers [70]. Also assume that such radios would not be

available for the search and rescue context, resulting in the use of commercially available ra-

dios that generally have an effective transmission range of about one kilometer. The chosen

connection method is only used as a parameter in the system. Regardless of the particular

connection method, this dissertation uses network connections and location predictions to

improve system operation.

2.1.2 Ad Hoc Networks

In traditional networks, relay nodes are usually at a fixed location and communicate

with some other device, such as a server, via fixed connection points like hubs, routers or

radio towers. Such networks require infrastructure to properly communicate between nodes.

An ad hoc network is one that is created as needed. It is a collection of several similar

nodes or smaller networks that connect without the need for fixed infrastructure. Any

communicating node should be able to communicate directly or act as a transceiver node

to relay communication to other network nodes [62]. One unique ability that such networks

have is the ability to drop and add nodes. A dropped node could affect the network’s overall
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connectivity, but robust routing algorithms can, up to a point, be used to compensate

for this [86, 85]. Nodes may be dropped or added due to their connection strength, where

connection strength is directly proportional to the transmission power, node to node distance,

and natural or unnatural interference.

The effect of adding nodes is the key premise behind this dissertation. For any given

pair of connected nodes, if these nodes are relocated beyond either of their connection radii,

then the nodes become disconnected. These nodes can be reconnected with the addition of

a node acting as a transceiver. These added nodes are defined as agent nodes.

2.1.3 Sensor Networks

A derivative of ad-hoc networks, sensor networks have the typical properties of a MANET,

(nodes can be added, removed, and can act as a transceiver), but have low-powered nodes

that are used to gain some data about the network or surrounding environment and relay

that information to some central intelligence [8, 44]. Generally, sensor networks consist of

stationary nodes, with some works using a few mobile sensor nodes to re-connect the net-

work. Monitoring could be for meteorological or surveillance purposes, conducting tasks

such as reporting temperature and humidity or intrusion into an area, respectively.

The sensor network’s goal is to maximize coverage and sensing ability while cooperat-

ing to relay data, but to do so with finite power. The transmission of packets is of more

importance than the idea of dynamic node placement. This problem type usually assumes

homogeneous node types with a given radius of sensing and transmission. Similar to ad-hoc

networks, the transmission of data from the sensor to the base station is via other sensor

nodes.

If the only objective is to ensure that every point within a given area is within connection

range of a sensing node, then a hexagonal arrangement satisfies this. It minimizes the number

of nodes needed to cover while maximizing coverage area, see Figure 2.1. Frenkiel illustrates

this principle in the context of wireless tower placement [22].
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Losses of nodes could occur due to insufficient power, alterations, or damage to the sensor

caused by the environment or an antagonizing force. The loss of a node can be mitigated by

replacing the lost node, or relocating working nodes to patch the gap in coverage [41, 44, 78].

Figure 2.1: Optimal Maximum Coverage Sensor Solution

The mentioned works in the sensor network literature address the problem of locating

nodes to create a connected network, but many of the requirements and parameters of

the sensor networks do not apply to this dissertation. In particular, the sensor network’s

requirement to cover an area is not considered in this dissertation and more focus is placed

on the connected network requirement. This means that each node must be connected to

any other node, either directly or indirectly through the network.

2.2 Mobile Ad Hoc Networks

Mobile Ad hoc Networks (MANET) have all of the properties of the aforementioned ad

hoc networks, with the additional consideration that the nodes may be mobile. The location

of any given node at time t may not be the same at time t+ 1. The addition of mobile units

adds a significant degree of difficulty to the ad hoc networking problem.

A majority of the MANET literature focuses on clustering, routing, positioning, and

connectivity models. Clustering [58, 57, 3, 76, 77, 36] determines stable groupings to better

manage network communication protocols. Routing [11, 33, 50, 49, 60, 56, 2] is focused
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on determining efficient paths to send packets. Positioning [38, 82, 32, 46] determines the

locations of nodes (for use in routing and connectivity). Connectivity [83, 6, 7, 42, 75] deals

with improving networks by managing node and network degrees. These methods use the

existing topology, without modifying locations, to make decisions to improve network oper-

ations. Here, the tasks of routing and positioning are considered to be inherent features of

an operational network. Clustering is considered, but only to improve network connectivity.

Two areas of research, Topology Management and Path Planning, improve network

operations by manipulating the physical entities of the network. This is in contrast to the

previous ones that seek to improve functioning of an existing network.

2.2.1 Topology Manipulation

Topology was defined by Gilbert and Pollak [24] as the set of edges that define the

network. Practically, it is applied in managing node’s transmission power where having

too many high powered nodes can create intra-network interference; limiting transmis-

sion/receiving ranges would reduce this. Similarly, adding nodes would require less power

for distant nodes to bridge a gap to be connected. This dissertation is closely related to the

topology manipulation area in that there may be a need to add or relocate nodes.

Kusyk et al. [39], similar to the later discussed works of Cho et al. [12, 13], investigate

agent node locating in a MANET with enemies. With the goal to maintain each node’s

network connectivity and coverage of the area of operation, a decentralized game theory

approach using a genetic algorithm (GA) with a 128-bit binary encoding evaluated node

configurations. There is no mention of using prior knowledge to make better decisions. It is

assumed that none of the nodes have any knowledge of enemy locations. Kusyk et al. also

present a new node spreading bio-inspired game (NSBG) method that address the maximal

sensor coverage network. Kusyk et al. allow all nodes to be mobile.

Kulkarni et al. [37] implement particle swarm optimization (PSO) for a swarm of robots,

where each particle is a deployed robot that is assumed to always knows its location. The
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objective of the swarm in the two experiments were to locate and cover a target. Unlike this

dissertation, nodes had no prior knowledge of the path to take, nor was there specification

that the network be completely connected.

Han et al. [29] implement a MANET simulation initialized with a connected network

and one deployed drone used to improve (and maintain) network connectivity. Connectivity

was evaluated using global message connectivity, network bisection connectivity, and the k-

connectivity metric. Results show that these metrics do improve the network’s connectivity,

but using only one agent node and no prior knowledge sets this dissertation apart from the

work of Han et al..

Dogan et al. [52, 51] use a physical network (or testbed) of laptops, desktops and some

mobile nodes in a lab environment. Locating is handled with a Simple Genetic Algorithm

(SGA) with chromosomes consisting of “location, speed, and direction as a binary string

that is divided into genes.” The performance relative to area coverage was improved with

increased node movement speed and increased communication range.

Hunjet et al. [31] enhance mobile ad hoc networks through Networked Autonomous Ve-

hicle (NAV) placement and topology manipulation. The placement of the mobile nodes was

done with PSO via an objective function maximizing the percentage of connected nodes and

minimizing the used power for transmission. An exhaustive search using topology manip-

ulation and a maximum of two NAVs validated the PSO. Results show that adding NAVs

with use of topology manipulation reduces network power consumption, increasing longevity

of the network, and increases the percentage of connected nodes. Here, centralized, not

autonomous, control of agent nodes is assumed. Also, the number of agent nodes considered

in this dissertation is much larger than two NAVs.

These works, [24, 39, 37, 29, 52, 51, 31], have similarities to the ideas of this dissertation,

but most of the works in this field are related to sensor or (maximum) coverage networks.

None use pre-deployment planning, and are all strictly reactive in nature. Additionally,

controlling power usage is not a concern herein.
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2.2.2 Path Planning and Node Locating

This research area focuses on determining locations for nodes at a given time to maintain

network connectivity or accomplish a set of tasks or goals. For node placement and path

planning for network connectivity, the difficulty of continuous space searches as well as

combinations of large numbers of nodes must be considered. The following works use meta-

heuristics which are capable of adequately handling combinatorial and continuous space

searches.

Sahin et al. [15, 14] use distributed genetic algorithms to locate nodes to cover an

area with the possibility of losing assets. Within this dissertation’s framework, network

connectivity (not area coverage) is the primary goal. Unlike Sahin et al., this dissertation

uses a centralized agent node locating method.

Hsieh et al. [30] create an actual application of robot communication and path/task

planning on a nodal network. Because there are no added nodes such as agents, communica-

tion is maintained only by Line of Sight (LOS) connections. In this dissertation, connectivity

is the goal with agent node locating as a form of route planning.

Guan et al. [28] define and solve the Electronic Warfare problem in an two stage LP. The

first stage decision is placement of an Electronic Attack (EA). The second stage decision is

placement of Electronic Support (ES) nodes used to connect EA nodes. A genetic algorithm

was also used to handle this complex problem. The idea here is to provide jamming to enemy

networks (EA nodes) and maintain ally networks (via ES nodes) while also minimizing the

number of nodes needed for deployment. Similarly a two staged approach is also defined

for this dissertation but in a different context. Planning based on user node’s pre-defined

movement takes place in the first stage, and reactive locating occurs when they must deviate.

Additionally, the problem presented by Guan et al. is static, considers a discrete solution

space of candidate solutions (not continuous space), and uses LP (and GA) solution methods.

Reina et al. [55] locate static (agent) nodes at discrete locations using a genetic algorithm

to increase connectivity of a MANET in an emergency response center. Similarly, this
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dissertation considers nodes that will cover the mobile users of the system but with mobile

agent nodes.

2.2.3 Applicable Works in Robotics Literature

In a real world application, finding locations to maintain network connectivity has been

applied to robotic teams. Antonelli et al. [4, 5] develop a function for a set of robots consist-

ing of a task directed unit and a set of units acting as a mobile antenna. The proposed work

hierarchically uses a set of functions (stay connected to base, stay connected to neighbor

node, stay connected to task robot), dynamically reordering based on the robots’ states, to

determine the robots’ movement velocities. The resultant robotic network is a task directed

robot connected by a chain of mobile (robotic) antennas to a base station. This dissertation’s

MANET model is similar to the model of Antonelli et al., however it considers centralized

planning for path determination, not a distributed reactive method for maintaining a net-

work.

Ulam and Arkin [63] focus on a suite of four movement behaviors for robot teams to

reconnect a disjointed network. These are all reactive including robotic behaviors to move

towards inclines, retrace visited way points and others.

Vazquez and Malcolm [74] develop methods to expedite and coordinate a robot team’s

exploration and mapping of a facility. The robot team maintains connectivity without addi-

tional units (i.e. agent nodes) and avoids collisions. The system considers only robots with

distributed logic; no human nodes are considered. It is similar to a mobile sensing network

with the objective of surveying an unknown area.

2.2.4 Mobile Ad Hoc Networks with Particle Swarm Optimization

Recent works in locating nodes within the MANET framework have mostly used parti-

cle swarm optimization (PSO). Canonically, the PSO uses particles to search a continuous
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solution space with its movements based on a weighted measure of its current position com-

pared to its best found solution and a global (or neighborhood) best found solution. Defining

multiple sets of particles as the set of agent nodes, the swarm searches for locations that

connect the disconnected network of user nodes to the control node. The PSO does well

in continuous space searches by leveraging shared global knowledge with the local search of

each particle to find good (if not optimal) solutions. This section details the previous work

in the area of maintaining network connectivity using PSO for node locating.

Konak et al. [35, 34], Dengiz et al. [17, 18], and Cho et al. [12, 13] have used particle

swarm optimization in determination of node locating to improve the overall connectivity of

the network. Konak et al. [35] define user nodes (service demanding) and agent nodes (service

supplying) that operate in the network. Assuming all nodes have GPS and their locations

can be obtained via radio or satellite link, current and past locations are known and can be

used to predict future locations of a node. The primary objective is to maximize network

connectivity, or the total number of network connected node pairs. A secondary objective is

to maximize bandwidth between user nodes and control nodes. There also exists a tertiary

objective that creates an attraction point for locations that would reconnect an unconnected

network. This enables the agent nodes to have some level of intelligence to rejoin the network

if isolated. Using double exponential smoothing for future user node location predictions,

the allocation algorithm (ALOC) looks t+H time steps into the future to determine agent

node placement where t is the current time and forward prediction horizon is H.

In a more recent work, Konak et al. [34] develop a flocking meta-heuristic that balances

“separation, cohesion, and exploration behaviors.” The developed rule set was designed to of-

fer simple, decentralized augmentation of the network via the agent nodes. Here, distributed

methods are not considered. A centralized locating method uses network information to

make decisions beneficial to the entire network.

Dengiz’s dissertation [17] is also one of the pioneering works in the field of MANET node

locating with meta-heuristics. The first approach used a non-deterministic binary decoding
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GA (NDBGA). Agent movement/placement was defined to use either the NDBGA or PSO

in both static and dynamic simulation scenarios. Also, to show the practicality of the meta-

heuristic methods, a mixed-integer program (MIP) was developed. Specific performance

metrics for the set of experiments show that both are efficient at connecting the networks

and in terms of solution time, the NDBGA performed better and both outperformed the

MIP.

Dengiz et al. [18] also assume that node locations are known via mounted GPS units and

communicate their locations via low frequency radio or a satellite modem. Similar to Konak

et al., the primary objective is to maximize all node to node connections or total network

connectivity. Secondary and tertiary objectives are to maximize bandwidth between user

node clusters and minimize distance to attraction points in both connected and unconnected

networks. Dengiz et al.developed locating reactive methods, whereas this dissertation uses

planning and reactive methods for locating.

Cho [12] uses PSO exclusively for agent node locating and movement in the context of

military operations (Network-Centric Warfare) where enemies are present that can hinder

communications or disable nodes. User node movement is based on the Random Waypoint

Model (RWM), Convoy and Defense (CD), or Search and Rescue (SR), with the system

using current and past locations to predict potential user node future locations. User node

intelligence is extended from Konak et al. (and Dengiz et al.) to be able to react to en-

croachment into enemy range/territory. A Java simulation was developed to test the system

similar metrics to Dengiz et al. and Konak et al..

Cho et al. [13] improve the MANET PSO by incorporating another sub-objective, the

pre-deployed agent level (P ) that helped relocate nodes so that each will be more accessible

to user nodes as the mission progressed. The addition of the P metric increased the number

of connected units over the course of simulated missions.

Unlike the works of Konak et al., Dengiz et al., and Cho et al., pre-deployment infor-

mation to plan routes for the agent nodes will be used. Here, discrete time steps are used
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to solve a series of static problems that together represent the MANET over its operational

time. For any given unconnected network, an algorithm was developed to minimize the num-

ber of, and determine the location of, the agent nodes required to connect the network. Each

static problem is, in essence, a graph problem and is expounded upon in the next section.

2.3 Locating Methods Using Graph Theory

Though it has been around for some time, graph theory has recently gained more at-

tention in the area of mathematics. West [79] explains the basics of graph theory. Graphs

are generally notated by G and consist of a vertex set and an edge set, V (G) and E(G),

also represented as G = (V,E). The graph is the relationship between the vertex and edge

sets and can be used to model systems with interrelated components. If every vertex has a

relationship to every other vertex, directly or indirectly, it is called a connected graph. If

there is an associated cost of flow along edges, then the graph is called a weighted graph.

For purposes here, graphs are undirected and weighted, where the weight is the Euclidean

distance (used as a connection surrogate) between nodes.

In the MANET framework, the vertex set is the set of nodes that needs to be connected.

Edges are the connections between nodes, but due to radio transmission range limitations,

edges are only considered if the weight/distance is less than the connection radius of the

radio. This idea is developed further in Section 2.3.3, after some discussion of graph theory

and its application to the MANET framework.

2.3.1 Minimum Spanning Tree

The Minimum Spanning Tree (MST) is a special type of connected graph that uses the

minimal distance set of edges. Kruskal’s Algorithm for MST shows that even simple methods

can yield decent results [79]. Kruskal’s solution is, in fact, an optimal solution for connecting

any network. In the framework of MANETs, the MST is applicable for not only creating a
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connected network but also the max bandwidth network (assuming maximum bandwidth is

directly related to distance and not hop-count or effects of interference).

Graham and Hell [26] review the origin and history of the MST as well as three algo-

rithms for solving it. Each algorithm uses the basic idea of the Kuskal’s MST heuristic to

solve, with some key differences.

• Algorithm 1 - sort edges by length, start with shortest and add next shortest edge

(Kruskal’s Algorithm)

• Algorithm 2 - sort edges by length, start with a random edge, add next shortest edge

(variation of Kruskal’s Algorithm)

• Algorithm 3 - sort by node index, for each node, add the closest neighboring node

(Boruvka Alogorithm)

These algorithms provide a way to connect a network but do not consider the addition

of nodes in real space which could reduce a graph’s total edge length in the way a Steiner

Tree solution does. Figures 2.2b and 2.2c show how the total edge length could potentially be

reduced [24]. Figures 2.2b and 2.2c are the same network, with the total edge length of the

MST solution equal to 2 and the STP solution equal to
√

3. Furthermore, the MST problem

does not have a limitation on edge length, a feature vital to a communications framework

where signals decay with distance.

The Steiner Tree Problem addresses the need for additional points not in the original set

of vertices that are placed anywhere in real space. The rectilinear version is more applicable

to transportation frameworks. The Euclidean Steiner Tree Problem most aptly fits the

MANET framework. Such formulations will be discussed in the next section. Later, the

inclusion of an edge length constraint and minimization of number of Steiner points are also

presented.
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2.3.2 Euclidean Steiner Tree Problem

Given a graph G = (V,E), the Euclidean Steiner Tree Problem (ESTP) is to determine

the placement of Steiner points that will minimize the sum of all edge lengths while creating

a connected network. The solution to the STP is a Steiner Minimal Tree (SMT). Classically,

Steiner points in a Steiner tree are defined as points that have a degree of three, |G| = 3

[24]. Optimal SMTs have Steiner points with a degree of three, with the angle between edges

equal to 120 degrees, detailed by Gilbert and Pollak [24]. The minimum degree assumption is

logical in that a single vertex would not need a Steiner point; two vertices would only require

a point midway between the two; three vertices would need a Steiner point to minimize the

sum of all edge lengths.

Steiner points are defined as a separate set of nodes S /∈ V , in Euclidean solution space.

The completed graph using Steiner points is G = (V ∪S,E). There is also a form, where both

the existing vertices V and the Steiner points S are given and the STP can be formulated

as a NP-Complete decision problem. For the agent node locating problem, the Euclidean

space problem is considered.

Figure 2.2 shows a sample graph with V represented by solid circles. In cases with two

vertices, the shortest path between them is a straight line; they can be connected directly.

For three (or more) vertices, to connect them all, MST solution methods provide a simple

connected network solution. The Steiner minimal tree uses an additional point in S, that

minimizes the total network edge length.

b b

(a)

b b

b

(b)

b b

b

(c)

Figure 2.2: Graphs showing a.) Linear points b.) Minimum Spanning Tree c.) Steiner
Minimum Tree

20



There is an upper limit to the number of vertices that a Steiner point can connect. Lin

and Xue [40] state that this limit is five in a bounded edge length problem. This will be

expounded upon in the following section.

2.3.3 STP with Minimum Number of Steiner Points and Bounded Edge Length

The addition of the bounded edge length assumes that each node has a physical, limited

radius of connectivity that may not always be connected as the MST and nodal graphs

would imply. If in an MST solution two vertices are connected, but if the edge length

between the two nodes is larger than the connection radius, then the nodes can not be

physically connected. To resolve this, Lin and Xue [40] prove that the Steiner tree problem

with minimum number of Steiner points and bounded edge-length, or STP-MSPBEL, is NP-

Complete and develop a polynomial time approximation algorithm. This Minimum Spanning

Tree Heuristic derives a worst-case performance ratio of at most five times the total length

that of the optimal solution. This heuristic is an approximation that uses Kruskal’s algorithm

to obtain the MST solution. It then considers each edge of the MST solution, if greater than

the edge bound, and replaces the edge with multiple nodes of degree two. Figure 2.2 is

modified to illustrate the additional number of nodes required in BEL cases shown in Figure

2.3.

b bbc bc

(a)

b b

b

bc bc

(b)

b b

b

bc

(c)

Figure 2.3: Bounded edge length graphs showing a.) Linear points b.) Minimum Spanning
Tree c.) Steiner Minimum Tree

In general for the MST-BEL, the node degree upper limit of five can be shown by

examining a set of vertices in a regular hexagon inscribed in a circle of radius r, with the

bound on edge length equal to r, having all edge lengths equal to the circle’s radius. See
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Figure 2.4. The bounded edge length connected network, without Steiner points is defined

as G. The length and cardinality of G are defined as L(G) and |G|. For the given network

L(G) = 6× r and |G| = 2.

The SMT solution, G′ places a Steiner point at the center of the circle, Figure 2.4b.

Assume that the edges of G′ are only those connecting vertices to the Steiner point, thus,

|G′| = 6 and L|G′| = 6 × r. In such a case, Lin and Xue state that the maximum |G′|, is

five. Any edge connecting a vertex and Steiner point can be moved to connect two adjacent

nodes, creating a new graph, G′′. The resultant network is degenerate, in that the lengths

are equal but cardinality is reduced, Figure 2.4c.

This upper bound was later disputed by Mǎndoiu and Zelikovsky [47] and then Chen

et al. [10]. Mǎndoiu shows that the upper bound of the cardinality of Steiner points can be

reduced to four, Figure 2.4d.
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Figure 2.4: Degrees of Steiner points a.) Hexagonal graph G b.) SMT solution |G′| = 6 c.)
SMT solution |G′′| = 5 d.) SMT solution |G∗| = 4

The Euclidean Steiner Minimal Tree (ESMT) is NP-Complete in complexity [23]. Thus,

solving larger problems is significantly difficult. Comparatively, the MST can offer decent

solutions for very small computation time, generally O(m log n) [81]. Gilbert and Pollak

[24] take advantage of their definition of Steiner points to enumerate all combinations of

vertices and resultant Steiner points using branch and bound methods to prune sub-optimal

solutions.

The STP alone is not enough to represent the MANET agent node placement problem.

It has an accurate representation of using additional nodes to connect a network while
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minimizing total network length, but does not consider radio connection radius limitations

and limits connectivity of nodes in V to S to three. For this research, there is the important

requirement of minimizing the number of Steiner points (agent nodes).

Kruskal’s algorithm requires that as a solution is being constructed, no added edge

creates a cycle. Cycles are counter-productive in an MST. For this research, this constraint

must be relaxed. An addition of a node may create a local cycle due to the closeness of

nodes, but cycles are not detrimental.

Detailed later (Section 4.1), groups of user nodes can be connected using fewer nodes by

placing an agent nodes at the centroid. Group determination and centroid placement must

be added to Lin and Xue’s MST Heuristic.

Chen et al. [10] consider the occurrence of groups. First, given the maximum connec-

tion radius r, if there are nodes that can be connected without additional nodes, they are

connected. Then, for groups of three or four nodes that can all be connected by adding a

node interior to the group, a Steiner point is added at that location. Lastly, Steiner points

are added to connect previously connected sub-graphs to the rest of the network.

Connectible nodes, then groups, then the remaining subnetworks are connected in that

order. With the exclusion of the size of the group of nodes considered for interior Steiner

point insertion, the work of Chen et al. is very similar to the MMST methodology developed

in this dissertation.

A variation of the formulations of the STP is given by Goemans and Myung [25], specif-

ically, a rooted STP, creating a Steiner arborescence. A Steiner arborescence has one node

that all nodes proceed from, like a tournament tree. In a military (or search and rescue)

framework, a control node is defined, and could be interpreted to be the root node of a

Steiner arborescence. It is desired for all other nodes, agent and user, to have a direct or

network connection to the control node. Goemans and Myung reviewed these problems in
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both digraphs and graph contexts, noting that the specification of the root node is unim-

portant. This is beneficial and logical in that if all nodes are connected, then root nodes do

not need to be specified.

Srinivas et al. [59] use a two-stage method to solve the Mobile Backbone Network prob-

lem. Phase 1 finds a minimum backbone node solution to connect all regular nodes, ensuring

that each is connected to at least one backbone node. The second phase is the STP-MSP

problem to connect the remainder of the network. Though both static and mobile regular

node networks were evaluated, the requirement that each regular node be connected to a

backbone node differentiates this dissertation from that of Srinivas et al.

The STP-MSPBEL, as described by Lin and Xue [40] is the same problem as locating

agent nodes in the MANET scenario. Both instances want to minimize the number of agents

or Steiner points needed. Lin and Xue’s added edge-length constraint simulates connection

distance limitations. Both Gilbert and Pollak [24], and Lin and Xue [40] use Steiner points

with maximum degree of three. Here, this constraint can be relaxed, allowing any number

of nodes to be connected to a Steiner node. And, as in Srinivas’s work, there is not a

requirement for each user node to be connected to an agent node. The MANET system

requires that all nodes be connected to a control node, similar to a Steiner arborescence

problem. Goemans and Myung [25] show that specification of a root node is not required,

so specification of the MANET network as a Steiner arborescence problem is unnecessary.

Lastly, placement of added Steiner points is not limited to only the edges of the MST as in

Lin and Xue’s work.

Extending the works of Gilbert and Pollak, and Lin and Xue, this dissertation will de-

viate from Kruskal’s Algorithm for MST via relaxation of the cycle and edge constraints,

elimination of node degree constraints, addition of group and centroid placement, and al-

lowance of an unconnected graph as input. As a solution method for the STP-MSPBEL,

similar to Chakraverty et al. [9] and Yan et al. [84], the Dynamic Modified Minimum Span-

ning Tree (DMMST) heuristic is presented in section 4.2.
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2.3.4 Dynamic Node Location Methods

One approach to solve the STP-MSPBEL is to use moving (Steiner) points. Chakraverty

et al. [9] implement a process where Players (moving points) are initially co-located at each

of the unconnected nodes, moving towards adjacent Players, converging to a common Steiner

tree backbone (see Figure 2.5a). Unlike this dissertation, the methodology of Chakraverty et

al. is implemented for graph networks where candidate Steiner point locations are included

in the problem formulation.

Yan et al. [84] also creates a process for rectilinear space that initializes a network with

hidden Steiner points at existing network nodes. As the algorithm progresses, potential

Steiner locations are computed based on interconnection timing delays per arc until feasible

Steiner point locations are found. The problem and solution method of Yan et al. works

well for problems like chip design, often defined in rectilinear space. The work herein is in

Euclidean space, and does not consider timing delays from a source to sink nodes.

In this research, a moving node method is also developed, expounded upon in Section

4.2. Here, however, the point’s movements are based on the MMST solution.

(a) (b)

Figure 2.5: Moving point methods for the static problem a.) Chakerverty’s players chasing
their adjacent players leading to convergence at centroid b.) Yan’s calculation of Steiner
points

2.4 Chapter Summary

A large part of the MANET literature is based on connectivity, clustering, positioning,

and routing for improved network connectivity. The existing path planning research is done
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on nodal networks with tasks at nodes (such as attack or survey). Most of these methods use

distributed, not centralized, logic and are reactive, assuming no knowledge of the movement

of user nodes. They also assume an unplanned stochastic environment. This is assumed

because any practical applications would be in a stochastic environment. However, the

assumption that neither the control nor user nodes have any prior information about their

tours is not. There arises a need to address foreknowledge of user node movement when

path planning for agent nodes. It is more reasonable to assume that user node movement is

known a priori but that there is a possibility of encountering path deviating uncertainties.

Here, using pre-deployment planning is leveraged to improve the performance of the

MANET. This will be done by solving a series of continuous space static Minimum Steiner

Tree Bounded Edge Length Minimum Steiner Point (MST-BELMSP) problems. This will be

done assuming that the measure of node to node connection is binary (based on a connection

radius as opposed to bandwidth based). With the inclusion of a bandwidth calculation, a

constraint on the bandwidth of links would be needed. Since bandwidth is based on distance,

a link bandwidth constraint can be generalized to be just a distance constraint.

Additionally, for most cases, all node types are assumed to be homogeneous in technical

capabilities. This is in regard to the movement rate and connection radius. With heteroge-

neous connectivity radii, a connection between two nodes to enable two-way communication

is dependent on the minimum radii. This alternate assumption could be incorporated but

would require proper definition of one-way communication assumptions for such an adap-

tation. In regard to movement rate, assume uniform movement rates for simplicity, though

this can easily be modified to accommodate multiple movement rates.

Lastly, also for simplicity, only consider one static control node. This dissertation would

still be applicable if movement of the control node is allowed. Using multiple control nodes

would add complications about which control node the other nodes need to be connected to.

As is the case in the Steiner arborescence, the specification of root nodes is unimportant.
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Chapter 3

Mobile Ad-hoc Network Model

Detailed in this chapter is the general framework for modeling the MANET including

node types and their functions. The graph form for which a problem instance represented is

presented. In addition, the problem sizes are defined.

3.1 Node Types

A node represents the individual or group in the system. There are three basic types

of nodes used in the MANET model: control, user, and agent. A node can be only one of

these defined types. Assume node locations are defined only in two dimensions. Each node

at time t is represented as nti =< x, y, k >, a vector representing the location and type of

the ith node where

x, y location coordinates {(x, y) : x, y ∈ R2}

k type of node {‘c’, ‘u’, ‘a’}

and node type sets are defined as

Ct {ni|ni[k] = ‘c’}, control nodes

Ut {ni|ni[k] = ‘u’}, user nodes

At {ni|ni[k] = ‘a’}, agent nodes

The set of nodes containing all node types is defined as Nt = Ct ∪ Ut ∪ At.

Time increments, represented by t, describe the discrete intervals of the MANET model’s

progression. The MANET model starts at t = 0 with user nodes moving from their initial

location, usually the control node, and ends once all user nodes complete their tours at t = T ,

27



In a real world environment, time is continuous and nodes are continually moving. Define

the actual time between increments τ ∈ R so that the increments of t are representative of

t × τ actual elapsed time. As part of the model design, this value would be the maximum

amount of time the system could operate without updating node locations. The continuous

movement of nodes between each time step is not modeled; the result of the movement is

modeled by a node’s location at each t. Practically, this means that nodes would report

their location, send/receive commands at time t × τ . There are several other complexities

associated with managing a complex network such as message propagation time, bandwidth

limits, energy requirements that will not be considered in this model. As such, assume

connectivity at a discrete time t is sufficient to send/receive network information. It is

assumed that the movement between time steps is linear.

There are also checkpoints, generally defined as tuples (t, x, y). Each tuple represents

a (x, y) location at time t. Assume that checkpoints are only defined at the discrete time

intervals of t. All nodes can be specified to move along a path defined by a set of checkpoints,

here however, only user and agent nodes are mobile. The control nodes are fixed. This is

to differentiate the capabilities and responsibilities of node types. The checkpoint subsets,

termed also as the user and agent node tours, are represented as M and Q will be detailed

later. Figure 3.1 shows how the nodes are graphically represented in the MANET models.

Each of these is detailed in the following sections.

b rs
generic control user agent checkpoint

Figure 3.1: Node types

All nodes have a similar base functionality to move, similar to user nodes detailed in

Section 3.1.2. In addition each node type has specific rules, dependent on the node’s state,

network status, and passed commands that will determine how it will move. If the desired
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movement location is too far, then the node will move in the direction of the desired location,

bound by a predetermined maximum move rate, v ∈ R.

As nodes move through the field of operation, the connections between nodes, Et, are

updated. For a given network configuration, the control node can determine which nodes it

can communicate with by a depth-first tree search.

3.1.1 Control Node

The control node is the head of the system’s operation. It is assumed that the com-

manding officers, leaders, or decision makers of the operation are stationed here. Mission

information is created, distributed, and held at this node. The plans for node movement,

number of units deployed, and real-time mission updates come from the control node. For

this reason, it is assumed that all nodes must be either directly or network connected to

the control node to receive instructions from and to send status updates back to the control

node. For this dissertation, assume that there is only one control node, |Ct| = 1.

In both deterministic and stochastic cases, user nodes will attempt to follow the planned

tour from the control node but will operate independently. Thus, in either case, the control

node will manage agent node movement. Movement plans for agent nodes are derived from

the methods of this dissertation contained in Chapter 5.

Update Network State

During the deployment of a MANET, for each time step, the control node updates its

internal model of the system. If there is a path between the control node and any other node

j, then the status and exact location of node j are transmitted back to the control node. In

a deterministic case, regardless of the network connectivity state, the control node’s internal

model always represents where the user node will be at any time t. This is because each

user node will follow the tour given by the control node. This differs from Cho’s [12] work
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in that user nodes’ movements were not deterministic and the future predictions had to be

derived from historical data.

For operation of the MANET in a stochastic environment, the control node will use the

internal model as an approximation of the actual network state as all information may not

be available to the control node in the cases of an unconnected network state. If there is

not a path from a user node to a control node, then the control node attempts to use the

planned and most recent movement behavior of the user node to estimate its current location.

Similarly, for an agent node, if there is not a path to the control node, then the control node

uses the agent node’s recent movement history, movement logic, and the commands that

were previously given to estimate its location. The following set of control node functions

and abilities are presented to be used primarily in the stochastic environment.

Forecast User Node Locations

The internal model is used to forecast user node locations s time steps in the future.

The forecast method is dependent on the user node’s adherence or deviation from its tour

and its connectivity.

If the user node is connected and has not shown signs of deviation within the previous

t−s to t time steps, the internal model user node location will be updated based on continued

movement according to its tour. It is possible for a user node to transition to a deviating

state and remain connected to the network. Such a case is preferred as the information about

its deviation can be communicated to the control node. Thus the control node will obtain

the deviating user node’s modified trajectory and forecast accordingly.

If a user node is disconnected but its most recent history does not indicate any deviation

from its tour, the estimate of its location would be based on adherence to the tour. Similarly,

if the most recent history indicates deviation, the estimate of its location will be based on

continuing with the deviation trajectory. When a user node deviates or returns to its tour

(from deviating) while disconnected, the control node will not have knowledge of the state
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change until the user node is reconnected to the network. If its deviation state changes while

disconnected, the control node compares the user nodes expected location (based on the

internal model) with the network state to infer the user node’s state. Else, the control node

will have to assume that the user node is either still deviating or continuing with its tour

based on its state when last connected to the network.

The difficulty of determining these state changes is dependent on the frequency of net-

work status updates, τ . With smaller values, deviations per time step would be small and

would potentially grow with larger values.

User node locations are forecast using double exponential smoothing as was found in

Konak et al. [35]. The control node maintains a history of all user node locations and, using

the previous three time steps (and current location), estimates locations at time t+ s using:

Ut+s,i[x̂] = Uti[x̄] + svUti[x] (3.1)

Ut+s,i[ŷ] = Uti[ȳ] + svUti[y] (3.2)

where Ut+s,i[x̂] is the estimate of user node i’s x coordinate location at the future time t+ s,

Uti[x̄] is the moving average of the x coordinate and vUti[x] is the estimated velocity. The

moving average of the location x coordinate and the velocity estimates are modified by

Uti[x̄] = α1Uti[x] + (1− α1)Ut−1,i[x̄] (3.3)

vUti[x] = α2(Uti[x̄]− Ut−1,i[x̄]) + (1− α2)vUt−1,i[x] (3.4)

where α1 and α2 are the smoothing parameters that bias the impact of new (or historical)

data. The values for the y coordinate are found similarly.

Measure Network Disruptions

User node deviations as a function of their movement are presented in Section 3.1.2.

For the control node, with its knowledge and assumptions (about undetermined unconnected
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user node locations) about the system must determine how well the user nodes adhere to

their planned tours.

Determine Agent Node Locations

The control node will evaluate the network at time t + s, using user node location

forecasts, to decide if the agent node assigned tours need to be modified. Based on the

magnitude of network deviation the control node’s actions are either continue with tours or

re-plan, defined next.

Continue Tour

Allowing a minimal level of network disruption, assuming the assignment plans are still

valid, the agent nodes will proceed based on the existing tours. How this is performed in

a physical solution is based on the amount of autonomy the agent node is capable of. If

remotely controlled from the control node, the agent nodes will be commanded through the

network. Otherwise, the agent nodes will move according to their tour until commanded by

the control node.

Re-Plan

With large disruptions that significantly affect network connectivity the control node

can decide to re-solve to determine new tours. This would imply that the previously assigned

agent node tours are no longer effective. The threshold for determining to re-solve balances

the quality of the network connectivity with computational effort to determine new agent

node tours. If this value is too low, new plans will be needed often. If it is too high, then

the average network connectivity will likely suffer.

Re-solving would not be beneficial if the computation time for a new solution (pre-solve

and assignment) is longer than the real time network update interval, τ . If this is true, then

the new solution would be determined after the time step in which it was needed. These
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cases are likely to occur in either a very large network (large computation time) or when τ

approaches zero. Here, assume unlimited computation power where the computation time

is significantly less than τ . The new agent node assignment replaces tours from time t to T

using the re-plan solution.

Reactive

A reactive approach is incorporated in the control node decision process. At a defined

frequency or each time step, the control node can implement any of the static locating

solution methods presented in Section 5. The locations of the connecting points in the

solution are then sent to connected agent nodes. The reactive positioning method is also

used to compare the effectiveness of using the pre-plan and assignment method. This is

in contrast to the meta-heuristics, particle swarm and genetic algorithm, used in previous

works.

Send Locations

The new locations will be sent to all agent nodes that are network connected to the

control node. If an agent node is not network connected, it will continue following its

assigned tour. If it is disconnected and there are no new checkpoints on its tour to move

toward, then the agent node will return to the control node.

3.1.2 User Node

Representing individuals such as search and rescue responders or infantry, these nodes

are the end users of the system and often the leaf nodes of the connection tree. This set,

Ut, is assumed to be homogeneous in type. Receiving a predetermined plan from the control

node, these nodes can proceed to carry out missions without further instruction or without

a connectivity requirement.
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Tour and Movement

During the planning stage, the control node defines the user node tours. This is to

represent a mission planner giving the users their tasks. This could be to survey a given

area, move to a new location, or complete a tour of points. Movement patterns are specified

in the following sections as they are dependent on the problem size and context. User

node tours are the instructions dictated by the control node and are represented by Mtn =

{(t, x, y) : t ∈ [0, T ], x, y ∈ R2, the location (x, y)} for node n at time t.

User Tour Definition - Polar

Here, a random walk method is used to define the user node tour. For each user node,

the first checkpoint was at the control node’s location. Each node’s tour will have a length,

L, or a number of checkpoints. This would include initial and final locations. If it is required

for the user node to return to the control node after tour completion, then the number of

randomly determined locations is L− 2, else the number of random locations is L− 1. Each

additional checkpoint is added with some level of angular variation, v and some distance, S:

Mtn = (t,Mt−1,n[x] + cos(θ + δR())S, Mt−1,n[y] + sin(θ + δR())S,R()v) (3.5)

Mtn Location at time t ∈ [0, L] for user node n ∈ Ut
δ Variation between checkpoints

S Steps between checkpoint

R() A random number generator ∈ (0, 1)

θ Initial angle of movement

The combination of the magnitude of S and, even more, the magnitude of δ directly

determines the dispersion of the network. For example, if δ = 0 all nodes would travel

in rays away from the control node at a distance of S between checkpoints. Increasing δ

results in increased randomness in the direction of successive checkpoints, with a distance of

S between them. Appendix B elaborates on a few of these parameters. During the planning
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stage or operation of a MANET, the node would go from checkpoint to checkpoint until all

have been visited.

User Tour Definition - Random

As an alternative to disseminating from the control node, a random start within the

field of operation and successive locations determined in a polar method define a random

tour. The initial checkpoint is defined by M0n = (R()W,R()H) where R() is the random

number generator, W is the field of operations width and H the height.

User Tour Definition - Context Specific

The U.S. Army Field Manuals specify movement formation and patterns for several

types of units as well as different circumstances. Those of interest are the patrol and travel

patterns defined by [69, 67, 73]. The patrol patterns require a user node to leave the control

node and travel an elliptical tour of an area near the control node. The travel pattern moves

user nodes from one side of the area of operation to the other.

For the SAR (search and rescue) context, the Australian Coast Guard Field Manual

[80] details methods of defining search areas based on topographic maps and theoretical

or statistical travel distances of lost persons. It specifies move patterns for search teams

including the Track Sweep or Point and Flank patterns. The manual does not give insight

into the macro coordination of movement of all search teams. Each user node is assigned an

area to search.

Though there is randomness in determining these points, during a deterministic case,

the user nodes will follow them exactly. In the stochastic case, there would be another

mechanism to determine the randomness of a user nodes movement (or the deviation from

the defined tour).
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Stochastic Environment Deviations

In the stochastic environment it is assumed that user nodes travel in a straight line to

successive checkpoints with probabilistic deviations. Practically, this could be a blockage of a

previously available pathway or some adverse entity. Cho [12] considered the Random Way-

point Model (RWM), as well as two directed movement plans, the Convoy and Defense (CD)

and the Search and Rescue (SR) methods for user node movement. The latter two methods

have points, similar those defined as checkpoints in this dissertation, to move towards. Each

of Cho’s methods considered some degree of perturbation in user node movements to simu-

late real movement, not a straight line between waypoints. Random deviations from a user

node’s tour, regardless of the cause, will define the uncertainty of the stochastic case. The

resultant user node tour with stochastic deviations will be referred to as a “realized” tour.

For any simulation environment, at time t = 0, all user nodes will proceed with their

planned tour and have no deviation scheduled. At any time step, t > 0, there is a chance of

deviating. A user node can be scheduled for only one deviation at a time.

Define βmax as the vector of the maximum (minimum) deviation parameter’s angle,

percent velocity modification, deviation duration, and cool-down time. The probability of

deviation is held constant at 10%.

βmax =< θmax, vmax, ηmax, cmax > (3.6)

Define N̂ as the Gaussian distribution based random number sample from

N (µ, σ) = µ+ σ ∗
√
−2 ∗ log(R()) ∗ sin (2 ∗ π ∗ R()) (3.7)
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Define βtn, the Gaussian random number transformed parameters used to modify user node

movement.

βtn =<N̂ + θmax, N̂ vmax, t+
ηmax

2
+ dN̂ η

max

4
e, βtn[η] +

cmax

2
+ dN̂ c

max

4
e > (3.8)

This vector βtn specifies at time t, user node n would move with an angle modification

within the range of (−βmax[θ], βmax[θ]) added to the current trajectory θtnm (the angle be-

tween node n and its next checkpoint m) with additional variation of βtn[θ] at each successive

time step until time βtn[c]. A velocity deviation could be an increase or decrease to move

rate, v + βtn[v]. The the Gaussian random deviation and cool-down values are converted

to completion times. To ensure only positive values, the deviation mean is defined as ηmax

2
.

Similarly the maximum increment/decrement for transforming N̂ to deviation duration is

defined as ηmax

4
and likewise for cool-down duration ( c

max

2
). From time βtn[n] to βtn[c] no other

deviation can be scheduled as the user node returns to a point in its tour with additional

variation of N̂ π
8

at each successive time step.

Heuristic 1: Deviation Mechanism

1 if R() < 0.1 & not deviating & after cool-down then
2 get new deviation

3 if deviating then
4 modify movement by θ + variability

5 else
6 determine best checkpoint to continue to
7 continue using tour

For a deviating user node u, determining the best checkpoint to continue the tour is a

function of the current time and candidate checkpoints and their associated parameters (x, y

location and time). At time t each checkpoint m of its tour where m[t] > t is evaluated.

Determining the best to continue to is based on a comparison of the distance between the
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user node and candidate checkpoint du,m and the ratio du,m
u[v]∗(m[t]−1)

. This proportion provides

a means for determining the feasibility of continuing the tour to checkpoint m based on the

time to get to m.

3.1.3 Agent Node

The set At is used to bridge the network connections among the control node, connected

nodes, and unconnected nodes. Any type of platform that is able to transmit and receive

network signals can be used as an agent node. Here, unmanned vehicles such as Unmanned

Aerial Vehicles (UAVs) or Unmanned Ground Vehicles (UGVs) are to be used to bridge

these connections. It is assumed agent nodes are semi-autonomous.

The movement rate of these nodes should be comparable to user nodes. It is possible

that agent nodes could have significantly higher movement rates (due to the ability to fly

UAVs) or equal (UGVs) to user nodes. The tour for agent nodes is defined as a collection

of checkpoint locations Qtn = {(t, x, y) : t ∈ [0, T ], x, y ∈ R2, }, the decision variable matrix

representing agent node tours. This is the (x, y) location of agent node n at time t and

is this dissertation’s principal set of decision variable. The control node’s planning defines

Qtn for all agent nodes at all times used to ensure network connectivity over the course of a

MANET’s operation. In the deterministic case, Qtn is followed explicitly. In the stochastic

case it may be necessary to re-evaluate Qtn if any uncertainty invalidates the planned Qtn.

This dissertation will determine Qtn for deterministic cases and, in stochastic cases,

provide a means of re-evaluation of successive values of Qtn to maintain network connectivity

over the course of a MANET’s operation.

3.1.4 Graphs

Define a graph Gt = (Nt, Et) for t ∈ [0, T ] that represents all nodes and the connecting

edges where etij ∈ Et is the edge at time t defined by {(nti, ntj) ∈ Nt|dij < r}. The distance

between locations i and j is defined as dij and the maximum connectivity distance is r.
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Two nodes i and j, regardless of type, are connected if ∃ etij ∈ Et. This requires each

node to be within the radius of connectivity of the other node. If all nodes have identical

connection radii, r, then the maximum distance at which the two connected nodes can be

from each other is r. This representation is similar to unit disk graph. Any distance greater

than r but less than 2× r can be bridged by an additional node. Any distance greater than

2 × r must be bridged by multiple nodes. Though not allowed in this dissertation, nodes

with different size radii must be within a distance less than the smaller of the radii to enable

two-way communication. Figure 3.2 illustrates the modeled connection types.

b b
r

(a)

b b

(b)

b b

(c)

Figure 3.2: Pairs of nodes showing a.) connected nodes b.) overlapping coverage c.) distant
nodes

If a network is not connected, additional nodes are needed. The added set of locations

where nodes can be placed to connect Gt is defined as Pt = {(x, y) : x, y ∈ R}. The collection

of points Pt identifies locations that are beneficial for an agent node placement. Pt is not an

assignment for any specific agent node.

An acyclic path between nodes and/or points i and j will be defined by Hij = {etil =

(nti, ntl), ..., etlm = (ntl, ntm), ..., etmj = (ntm, ntj)|etil, etlm, etmj ∈ Et;nti, ntj, ntl, ntm ∈ Nt ∪

Pt}. If etij ∈ Et then Htij = {etij}. If a node is connected to the control node via the

network, the existence of a path Hij for i ∈ Ct, j ∈ Nt \ Ct, will indicate this.

Define the connected network at time t ∈ [0, T ] where there exists a path Htij for an

i ∈ Ct and all j ∈ Ut is defined as G∗t = (Nt ∪ Pt, Et). If the path Hij exists for i ∈ Ct and

j ∈ Nt \ Ct then a node is connected via the network to the control node. If all nodes are

network connected to every other node, then the network is also a connected graph. Any
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alteration in a connected network that would result in one or more nodes to not be network

connected would disqualify the network from being fully connected.

3.2 Operational Context

The node types that were previously detailed will play a part in the operation of MANET

scenarios. In a scenario, there is a single control node and each of the user and agent node’s

initial locations are defined by the tour type. After the MANET model is initiated, user and

agent nodes move according to their tours.

As the user nodes carry out their missions, they may become disconnected from the

network. Moving beyond the range of communication with other nodes would cause this. If

a connection is broken and results in disconnecting any number of nodes from the rest of the

network, then the network state changes to unconnected. Adding agent nodes can help to

bridge the connection.

Figure 3.3 shows how the network evolves as user nodes move towards their checkpoints.

Specifically, Figure 3.3a shows the deterministic user node tours. As they move in this

direction, the agent nodes will be deployed from the control node to maintain network

connectivity, Figures 3.3b and 3.3c.

(a) (b) (c)

Figure 3.3: Network states a.) Given user node tours b.) Intermediate connected network
c.) Final connected network
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In the MANET models, communication is important and sometimes even vital. It

is necessary that the control node be able to obtain the locations and status of each of

its deployed user and agent nodes. In the event that any of the nodes encounter some

uncertainty, the control node should be relayed this information. Other tactical information

can also be transmitted to manage the future operation and maintain connectivity.

3.3 Experimentation Design

To evaluate the effectiveness of the positioning methods developed herein, both static

and dynamic problems will be used. These problems will be generated based on either a

military or a search and rescue (SAR) context. The different contexts are used to determine

problem size (as a factor of the number of nodes and the area of the field of operation) as

well as to illustrate the applicability of the developed methods.

In any problem, there are user nodes that move to carry out a mission taking them

further than the range of radio connectivity with the control node. Realistically, the user

nodes will always be moving and so would the deployed agent nodes assigned to maintain

network connectivity.

3.3.1 Military Context Parameters

Basic military unit sizes are listed in Table 1.1 and provide a basis to define the number

of user nodes a problem would require. With the definition of each unit size and their

described interoperability [68], assume that each soldier does not need to be modeled as a

user node. For example, a fireteam consists of two to four soldiers that work as one unit.

Also assume that all soldiers within a unit move together and are always within range of

direct communication and would not require radios. With this, for platoon to company

size problems, define one user node to represent a fireteam. Similarly, when evaluating

larger units, battalion size or greater, redefine the user node to be a squad based on similar

assumptions of proximity of sub-units and uniform movement. Table 3.1 lists the number
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of user nodes required for problem size definitions based on U.S. Army unit sizes [68]. In it,

the abbreviations F, S, P, C, represent the fireteam, squad, platoon, and company military

units.

Table 3.1: Military Problem Size

Simulation Number Area

Class User |Ut| of Soldiers (km x km)

Platoon Fireteam 5 S x 2 F = 10 45 128 x 128

Company3 Fireteam 3 P x 5 S x 2 F = 30 135 256 x 128

Company6 Fireteam 6 P x 5 S x 2 F = 60 270 256 x 128

Battalion2 Squad 2 C x 6 P x 5 S = 60 540 256 x 256

The area of operation was derived by extrapolating from several assumptions of soldier

movement rates, number of soldiers and duration of missions. From U.S. Army FM 3-21.20

[65], movement rates for foot marches during different conditions are specified and listed in

Table 3.2. The average travel distance per day is stated to be 20 to 32 kilometers, marching

from five to eight hours at a rate of four kilometers per hour, with an absolute maximum of

56 kilometers in 24 hours during a forced march.

Table 3.2: Dismounted Rates of March (normal terrain)

Roads Cross-Country

Day 4.0kph 2.4kph

Night 3.2kph 1.6kph

The assumption was made that movement is during day time on a mix of roads and

cross-country travel, averaging the rate of travel to be 3.2 kph resulting in a per day move

rate of 16 to 25.6 kilometers for a five to eight hour march. Assume this reduction to

the maximum move rate will also take into consideration pauses or breaks for any reason.

It will also consider the fact that movement is the coordination of many sub-units where

synchronization of movements may reduce move rate.

42



If it can be assumed that each problem is over the span of a maximum of five days and

all user nodes originate at the control node and are allowed to move in any direction (±x, y)

at the above specified rate of 25.6 kilometers per day, define the maximum area of operation

to be (2× 5× 25.6)2 = 65, 536 square kilometers.

Assume that this maximum area is applicable for a foot march of a large Battalion.

Assume also that each sub-unit will have a smaller maximum area of operation. The areas

for each size class are defined in Table 3.1.

These values were defined for the move rate of the missions used here. These are

only parameters and can be modified to fit alternate missions. Should the mission call for

mounted/motorized units, the maximum move rates could be adjusted to reflect a faster

movement of nodes. In addition, the maximum mission distance would also be modified.

3.3.2 Search and Rescue (SAR) Context Parameters

For large magnitude natural disasters hurricanes, earthquakes, and tsunamis are con-

sidered. Generally, the impact of such events is most drastically pronounced in densely

populated areas such as major cities. In 2005 Hurricane Katrina brought devastation to

New Orleans, Louisiana and in 2008 Hurricane Ike made landfall in Galveston, Texas. The

resultant tsunami that affected the surrounding countries after the 2004 Indian Ocean earth-

quake decimated the capital city, Banda Aceh, of the Aceh province in Thailand. Natural

disasters like these have brought destruction to each country’s infrastructure resulting in

challenging SAR operations.

Though such events can be large enough to affect entire countries (depending on size),

such large scales were not considered. The largest problem defined in the SAR context was

that of a city sized search. This will allow generalization and categorization of the surface

area needed to cover during SAR operations.

Man-made disasters usually do not have the same effect on such a large area as natural

disasters, but are rather concentrated. As an example, the September 11th terrorist attacks
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in 2001 was a focused attack that, along with the thousands of deaths, impaired the com-

munication system that first responders relied on for status updates. The communications

range of first responser’s radios was diminished when used inside and around buildings [21].

The area associated with this type of response and probable number of needed user nodes

was generalized to be a small SAR problem. Table 3.3 lists the land areas of the mentioned

cities and event locations [72]. Auburn, AL is listed as a point of reference.

Table 3.3: Land Areas of Affected Cities

Area

City (km2)

Auburn, Alabama 140.80

Banda Aceh, Thailand 61.36

Galveston, Texas 106.75

New Orleans, Louisiana 438.80

World Trade Center (NY) 1.00

To classify SAR areas, assume a city is defined as an area larger than 300 square kilome-

ters. Based on the definition of a city block to be a 175 x 175 meter area [69], the successively

smaller areas are defined as fractions of the larger based on the size of a city block. The

smallest area is defined as a neighborhood, similar in size to the World Trade Center example

in Table 3.3.

To specify the number of user nodes, assume a search team consists of three to five

people [80] and define a user node to be one search team. Defining the search area for a

single user node to be approximately one square kilometer and assuming a move rate of 3.2

kph or slower (to allow for visual scanning) [65], would roughly equate to a 6 x 6 block area

or 7.35 kilometers of travel. At the defined maximum SAR move rate, this would be 2.3

hours of travel. Adding miscellaneous time for breaks, a single SAR shift can defined as

three hours. This would be a reasonable amount of work, as searchers may be volunteers

and environmental conditions could be taxing. Also, because the search area could be very
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large, and have search teams composed of volunteers, assume that only a portion of the total

required number of search teams are available. For this dissertation, arbitrarily consider

only sixty percent of needed users nodes are present.

For a city size search (greater than or equal to 300 km2), at least 300 user nodes

are needed. This would be considered a very large problem dependent on the search area.

Limitations on the largeness of the problem are the reasonable size of searching or the number

of user nodes that can be simulated in a timely manner. That is to say, extending searches

beyond a city would require coordinating mechanisms that would superceed the focus of this

research. Additionally, the computational effort required to do the simple tree search for

network connectivity would greatly increase the computation time required for a solution.

Table 3.4: SAR Problem Size

Class |Ut| Area (km× km) Note

Neighborhood 9 4 × 4 6 × 6 (175m) blocks

District 41 8 × 8 7 × Neighborhood

Region 141 16 × 16 4 × District

City 240 20 × 20 1.5 × Region

3.3.3 Static Locating Problem

Consider the topology of a MANET at a single time to be the static problem. For

evaluation define G by randomly placing user nodes in the area of operation having the

control node centralized among the user nodes. In section 2.3.3 this was defined as the static

minimum node locating problem for MANET and was equivalent to the STP-MSPBEL. The

following sub-sections detail the experimentation regarding the static problems (the military

and the SAR contexts) in section 3.3.3 and dynamic problems in section 3.3.4.
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Static Problem Size Definition

Using the network parameters (area and |Ut|) defined in the previous sections, the size

classes for the static method are derived from the expected size of the solution network. Since

the MST solution provides an upper bound, it is used to determine the expected degree of

the set of connecting points E[|P |] for a network configuration. These sizes were then divided

into small, medium, large, and extra large class sizes (S, M, L, X). The static problem class

sizes are detailed in Table 3.5.

Table 3.5: Static Problem Size Classification

Class Area (km2) |U | E[|P |] E[|N ∪ P |]

S 10 4 10 14

S 16384 10 15 25

M 16384 10 20 30

M 1024 20 10 30

L 121 41 30 71

X 32768 60 40 100

Static Locating Formulation

The static problem assumes only one time step, t = 1; the network variables Gt, Nt, Ct,

Ut, At, Et, and Pt can be represented as G, N , C, U , A, E, and P . The static problem has

a simple objective to minimize the size of the set of additional points needed to connect G.

Given G = (N,E), determine G∗ that minimizes |P | (3.9)

In the static locating problem, the set of points, P , are a means for defining locations for a

deployed set of agent nodes, A.
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3.3.4 Dynamic Locating Problem

Dynamic Problem Size Definition

Experimentation of the dynamic problem used the same problem size classifications as

the static problem with the addition of specifying user node tour type. Table 3.6 lists the

classes used to test the dynamic (both deterministic and stochastic) problem.

Table 3.6: Dynamic Problem Size Classification

Class Context Tour Area (km2) |Ut| |At| |Nt|

S Search Track/Sweep 11.56 4 10 14

S Military Travel 16384 10 15 25

M Military Travel 1024 20 10 30

M Military Patrol 16384 10 20 30

M Military Polar 16384 10 20 30

M Military* Random 16384 10 25 35

L Search Track/Sweep 121 41 30 71

X Military Polar 32768 60 40 100

*not specified by Army documentation.

Military Context

The patrol, travel [67, 69, 73], polar, and random tour types were used in testing. These

can require that the control node is also mobile, but for this dissertation, it will remain

stationary. The random checkpoint definition provides the opportunity to show that the

solution methods are not dependent on well formed user node movement patterns. The

polar checkpoint definition is not completely random but has some level of randomness as it

radially disperses user nodes away from the control node. Figure 3.4 shows a sample of each

type of movement pattern.
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(a) (b)

(c) (d)

Figure 3.4: Sample military context maps showing a.) patrol b.) travel c.) polar d.) random
user node tours

Search and Rescue (SAR) Context

Assume that at the start of a SAR problem, each search team will start at the first point

of their tour, not at the control node. The search team’s pattern within its area was modeled

using the track and sweep pattern. Four different orientations of this pattern are modeled

and randomly chosen (top-left to bottom right, top-right to bottom-left, bottom-right to

top-left, and bottom-left to top-right). Figure 3.5 shows an S-SAR size problem. As a result

of the previously stated 60% availability of staff needed, not all areas are covered.

Using the aforementioned movement patterns to define user node tours, the deterministic

and stochastic environments will be discussed in the following sections.
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Figure 3.5: Sample SAR context map of user node tours with 60% availability

Dynamic Deterministic Environment

Heuristic 2 shows the sequence of events for the deterministic MANET model. Since

the control node will have perfect knowledge of all of the node locations it has no additional

responsibilities. In a real world application, the control node could actually be receiving

network state updates and sending agent node locations. For simplicity, these functions are

omitted leaving only the need to calculate the network metrics.

Heuristic 2: Deterministic Model Logic

Input: Number of steps T , agent node tours Q

1 for t = 0 to T do
2 MOVE user nodes toward checkpoint
3 MOVE agent nodes according to Q
4 CALCULATE metrics

Dynamic Stochastic Environments

Heuristic 3 shows the events for the stochastic MANET model. Since there is possibility

of user node deviations, the control node receives updates from the system and makes agent

node location decisions. The addition of the deviation vector, the control node’s FORECAST
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and DETERMINE steps differentiate the stochastic from the deterministic environment

simulation.

Heuristic 3: Stochastic Model Logic

Input: Number of time steps T , agent node tours Q, deviation vector βn

1 for t = 0 to T do
2 UPDATE control node’s knowledge of the network topology
3 FORECAST network topology for s steps in the future (control node)
4 DETERMINE new agent node locations (control node)
5 SEND new agent node locations from control node

6 MOVE user nodes toward checkpoint f(βn)
7 MOVE agent nodes

8 CALCULATE metrics

User node movement has been described in Section 3.1.2. The control node determines

which nodes it is connected to and obtains their actual locations and any additional pertinent

information. With this information, the control node can use a few locating methods to

determine the desired future agent node locations. For all connected agent nodes, this new

locating information is sent to them, and they act accordingly. In previous works, this was

done with meta-heuristics: genetic algorithm [18] and particle swarm optimization [12, 13].

Dynamic Locating Formulation

To evaluate the effectiveness of the locating methods throughout a dynamic problem,

metrics are defined and recorded at the end of each time step. Cho [12] used the average

number of connected users, average number of node hops per connected user node, average

loss of bandwidth due to enemy node jamming, and mission completeness rate as metrics.

Some of these are applicable for the current implementation.

The number of hops per connected node is not necessary given the modifications of

this methodology. Minimizing the number of agent nodes in the simulation could result in

an increase or decrease in the number of hops for a connected node. For example, it is

possible for a case to exist where having more nodes would allow for a more direct line of
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communication to the control node via fewer node hops. However, without such additional

nodes, the path to the control node could be circuitous and require more node hops. As a

result, this metric will not be considered for evaluation.

The total number of agent nodes needed over the course of the mission for a fully

connected network is the primary metric and objective and is defined as:

min max
t
|At| t ∈ [0, T ] (3.10)

It is also important to ensure that all user nodes are network connected for each time

step. The average network connectivity over the mission will provide this insight. Though

it may be possible for the network to be disconnected between time steps, it is ensured to

connect at real world time t × τ . As a result, the Average Number of Connected Users

(ANCU ) is an approximation of the real world network connectivity due to the defined

discrete time intervals t = (0, T). This secondary objective is defined as:

ANCU =

∑T
t=0

∑|Ut|
j=1{1|∃Ht,i,Ut[j]}
T + 1

i ∈ Ct (3.11)

With Cho’s inclusion of jamming enemy nodes, maximizing bandwidth was an impor-

tant metric to ensure communication between friendly nodes was maintained. Here, it was

assumed that there is no interference that would degrade network bandwidth. And assume

uncapacitated bandwidth between nodes; nodes will always be able to transmit and receive.

Instead, the robustness of the network based on node degree was considered. The robust-

ness/connectivity metric is defined by the assortativity metric of the network [48]. At a

time t the assortativity metric range is [-1,1] representing a disjoint and well connected net-

work, respectively. This value has been normalized within the range [0,1] to avoid possible

confusion. Define the robustness metric at a given time Bt .
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Bt =

∑
etij∈Et(Dti − D̄t)(Dtj − D̄t)∑

etij∈Et(Dti − D̄t)2
(3.12)

where

Dti remaining degree of node i at time t (not including connecting edge)

D̄t
1
|Et|

∑
etij∈Et Dti

It is beneficial to include a measure of movement rate violations. This is so that solutions

that connect the network over all time steps with high robustness scores are not considered

optimal while allowing agent nodes to violate movement constraints. Define noia to be

the number of infeasible assignments, a count of the number of inter-time-step movement

violations:

noia =
T∑

t=0,s=t+1

|At|∑
n=0

{1|dij > At,n[v],∀i, j ∈ At[Mt]} (3.13)

Among other measures, Manzano et al. [45] detailed the Endurance, Quantitative, and

Qualitative Robustness Metrics which consider node reliability, which is not in the scope of

this dissertation. Similarly, Sydney et al. [61] investigated network robustness in regard to

node failure and malicious attacks, developing the Elasticity metric. There are several other

metrics such as the distance, average degree, and clustering detailed by Mahadevan et al.

[43] that do not provide the level of complex interrelationships that the assortativity metric

does. The assortativity metric is most applicable in that it provides a better indication of

the level of interconnectedness, focusing on high degree nodes, of the network.

The main focus of this dissertation is the dynamic locating problem. This is done in

two steps. The first involves determining the connecting solutions Pt for each t ∈ T . Second,

Pt is used to determine the size of the agent node set, |At|, and the assignment of points to
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their tours. To do this, pre-solve for Pt:

Given Gt, determine G∗t = (Nt ∪ Pt) that minimizes |Pt| for t ∈ [0, T ] (3.14)

Then, solve the assignment problem: Given Gt and Pt, determine Qtn for agent nodes n at

times t to cover all points in Pt for t ∈ [0, T ] by solving Formulation 3.15.

min z = |At| (3.15)

s.t.

|At|∑
n=1

{1|Qtn = Pti} = 1 i ≤ |Pt|, t < T (3.15a)

(t− s)v − dij ≥ 0 i = Qsn, j = Qtn, n ≤ |At|, s < t < T, v ∈ R (3.15b)

|C0|∑
i=1

{1|Q0n = C0i[x, y]} n ≤ |At| (3.15c)∑T
t=0

∑|Ut|
j=1{1|∃Ht,i,Ut[u]}
T + 1

≥ w w = [0, 1], i ∈ Ct (3.15d)

The primary objective is to determine the minimum size set At used to connect the

network at all times. This will be done subject to some assignment restrictions based on

time and distance. Constraint 3.15a ensures that Qt covers all points in Pt. Constraint 3.15b

considers the movement rate (v) of agent node n , and the time between successive assigned

points (Qsn and Qtn) s and t. Where applicable, to ensure all nodes start at the control

node, constraint 3.15c assigns the first point in each agent node n’s tour, Q0n, to be the

location of the control node. Lastly, a service requirement is defined, constraint 3.15d, to

meet a given level of connectivity, w, at each time where Qt is defined. In a deterministic

environment, where node movements are predictable and there is perfect knowledge of node

tours, w = 1 always. In a stochastic environment, this is not the case. For military contexts,

it is desired to have w approach 1. For other contexts, this value could be less than one

based on the service requirements of the network.
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The deterministic environment formulation, given binary connectivity, does not inher-

ently require a robustness metric because it is assumed that it will always be connected.

Adding the robustness metric to the deterministic environment assignment problem could

result in better connected networks, i.e. increased number of paths or throughput (if it were

being measured). Adding the robustness metric to the assignment method with addition of

the noia metric could improve the performance of the assignment solutions when deployed in

a stochastic environment. Combining the additional metrics, noia and Bt , the formulation

becomes:

min z = |At| −
T∑
t

Bt + noia (3.16)

s.t.

|At|∑
n=1

{1|Qtn = Pti} = 1 i ≤ |Pt|, t < T (3.16a)

(t− s)v − dij ≥ 0 i = Qsn, j = Qtn, n ≤ |At|, s < t < T, v ∈ R (3.16b)

|C0|∑
i=1

{1|Q0n = C0i[x, y]} n ≤ |At| (3.16c)∑T
t=0

∑|Ut|
j=1{1|∃Ht,i,Ut[u]}
T + 1

≥ w w = [0, 1], i ∈ Ct (3.16d)

3.4 Chapter Summary

In this chapter the problem contexts, the notation, and formulations have been defined.

The solution methods for the static problem are presented in Chapter 4 followed by the

dynamic problem solution methods for the deterministic and stochastic environments in

Chapter 5. The solution methods provided include methods described by this dissertation,

validation methods, and the previous works in the literature.
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Chapter 4

Static Problem Solution Methods

In previous works, user nodes move using the Random Waypoint Model (RWM), or some

variation, to traverse the field of operation [13]. Unlike Cho, it can be assumed that before

deploying units, all operations would have some level of planning, whether it is informal or

explicit. This research intends to leverage control knowledge, and pre-deployment planning to

improve system performance during operation of the MANET models. With the assumption

of deterministic (straight-line) movement, all user node locations at any given time can be

determined. In a planning state, the system would be able to efficiently locate agent nodes

to maintain connectivity of the network. This would help improve the performance of the

Mobile Ad hoc Network compared with a reactive agent node locating method.

Dividing the mission time into discrete time steps makes tour planning tractable. Solving

the static location problem at each time step provides a basis for developing agent node tour

plans for the dynamic problem. The following methods provide a static locating heuristic

solution, P , and a mathematical validation model is discussed.

4.1 Modified Minimum Spanning Tree Method

Because the Minimum Spanning Tree, MST, is an easily calculable solution for con-

necting networks, it was used as a starting point for developing a locating method. As was

presented by Lin and Xue [24], their modified version of Kruskal’s algorithm solves the MST

with bounded edge lengths (MST-BEL) problem, inserting Steiner points on each MST edge

with length greater than the edge bound. For the discussion in the following sections, the

MST solution method is in reference to Lin and Xue’s MST-BEL solution method. Addition-

ally, the term “point” will refer to potential location for an agent node. In this dissertation,
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to potentially reduce the number of Steiner points compared to Lin and Xue’s approach, the

MST method was modified.

If there are unconnected nodes, the Modified MST (MMST) will attempt to bridge all

connections by checking for groups (defined below), then, starting with the shortest node to

node distance, bridge the connection with additional points, pi. The following lists the cases

in which each method would be used. Figure 4.1 shows this graphically.

Case 1: Nodes are within r, require no additional connecting point.

Case 2: Nodes are within 2× r and can be bridged by a single point.

Case 3: Nodes are further than 2× r and must be bridged by more than one point.

Case 4: Nodes are in a group and placing a point at the centroid would increase connectivity.

Case 5: Nodes are in a group and placing a point at the centroid would not increase con-

nectivity.

b b
r

( case 1 )

b b

( case 2 )

b b

( case 3 )

b b

b

( case 4 )

b b

b

( case 5 )

Figure 4.1: Connection types of pairs and groups of nodes

A group is defined as any number of nodes that are all within 2 × r from each other.

This is just an extension of the 2×r connectivity rule. This implies that there is overlapping
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coverage area. When multiple nodes’ coverage areas overlap, a single point can be placed

between the nodes in the overlapping area to connect them. Such sets of nodes are defined

as a “group”. In Heuristic 4, lines 3 - 8 detail how groups are identified.

From the Steiner point literature, the degree of such a centrally placed connecting node

in a group should be three [24, 20]. However, Lin and Xue [40] and Chen et al. [10], show

that the maximum Steiner point node degree is five. There is a case where there are at most

five unconnected nodes that are all within 2 × r from each other. If all five nodes can be

connected by placing a node in the center, then this is the case that Lin and Xue describe.

For this reason, groups are considered to be from three to five nodes in size.

In this dissertation, the classification for a centroid placed Steiner point does not require

all additional points to have a minimum degree of three. Linearly placed nodes bridging a

connection between a pair of noes can have a minimum degree of two. Figure 4.1 case 2

and 4.1 case 3 demonstrate such instances.

Given a graph with connection radius of r, five nodes can be arranged in a regular

pentagon resulting in an unconnected network, Figure 4.2a. Lin and Xue’s MST based

solution would require four additional nodes to connect this network, Figure 4.2b. However,

the graph can be connected with a centroid placed Steiner point, Figure 4.2c. This is optimal.

Any number of nodes arranged in a regular n-sided polygon, where n > 5 would inherently

be connected, Figure 4.2d. Any other polygon would have sub networks that can be reduced

to one of the aforementioned cases.

r

(a) (b) (c) (d)

Figure 4.2: Steiner points in polygons a.) regular pentagon with radius r b.) Lin and
Xue’s MST solution c.) SMT solution d.) connected regular hexagon with radius r and a
redundant Steiner point
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Figure 4.1 case 4 shows three nodes with overlapping area where a single point can be

used to connect three previously unconnected nodes. There is, however, a case where each

of the nodes is within 2× r of each other, but a single point cannot connect them. In such a

case, this formation is considered as multiple instances of case 2 and should be bridged with

linearly placed points located equidistant between each pair of nodes.

Three possible methods are used to find this centroid point: average, mid-point, and

circumcenter. The tests offer different solutions and are done sequentially; the first one that

connects the group is used and the remaining tests are not evaluated.

The average point is the mean of the coordinates in a group. This is tested first and

can consider the maximum number of points in a group (5). Midpoint finds the midpoint

between the maximum and minimum coordinates of the group. These first two tests offering

slightly different solutions work well for most cases where the circumcenter does not.

The circumcenter point is found by determining the center point of a circle with its

circumference passing through each of the nodes. Because it can only determine the center

of three points, it is tested last. It is easiest to see its applicability in a graph where nodes

form a regular triangle. It is also beneficial since the distance from each point to the center

will be equal. The circumcenter may not find a connecting point if two points are very close,

and another far from them. The equations of each method are as follows for points A,B and

C, with the complete centroid placement heuristic pseudo code in Heuristic 10.

Average point:

Px =
Ax +Bx + Cx

3

Py =
Ay +By + Cy

3

Mid-point:

Px =
Max(Ax, Bx, Cx)−Min(Ax, Bx, Cx)

2

Py =
Max(Ay, By, Cy)−Min(Ay, By, Cy)

2
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Circumcenter point:

Px =
(A2

x + A2
y)(By − Cy) + (B2

x +B2
y)(Cy − Ay) + (C2

x + C2
y )(Ay −By)

D

Py =
(A2

x + A2
y)(Cx −Bx) + (B2

x +B2
y)(Ax − Cx) + (C2

x + C2
y )(Bx − Ax)

D

where:

D = 2(Ax(By − Cy) +Bx(Cy − Ay) + Cx(Ay −By))

Bridging is the process of adding points, in a straight line, from an unconnected node,

to a control network connected node. The method determines the number of points needed

to bridge the connection and how the nodes will be placed. If only one point is required,

then it is placed half-way between the two unconnected nodes. If multiple points are needed,

then the additional points are placed equidistant based on the value of r.

Heuristic 4 shows the pseudo code for the MMST. It is used to connect a network given

a maximum number of additional points, m, that can be placed. The heuristic checks for

groups of nodes that would benefit by centroid placed points. Line 4 references the grouping

and centroid placement methods detailed in Heuristics 10 and 11. If none exist, then the

closest unconnected node is bridged to the closest control network connected node by adding

points to Pt. This is done recursively, with all existing nodes, including points in Pt, used in

each calculation.

4.2 Dynamic MMST

Similar to Chakraverty et al. [9] and Yan et al. [84], the Dynamic MMST (DMMST) is a

method of moving additional points to derive a good, if not optimal, Steiner Minimum Tree

solution for the static problem. Unlike the reviewed works, here, the movement of points is

based on iteratively created MMST solutions. Heuristic 5 outlines this process.

Given a static graph G = (C ∪ U,E) (Figure 4.3a) where the user nodes are dispersed

throughout the field of operation, the MMST solution (Figure 4.3c) is used to define the
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Heuristic 4: Modified Minimum Spanning Tree (MMST) Method

Data: connection radius r, maximum number of agent nodes m
Input: network G = {C ∪ U,E}
Output: connected network G∗ = {C ∪ U ∪ P,E}

1 while |P | ≤ m− 1 do
2 if G is not connected then
3 if FindCentroids(G, r) then
4 add centroids from FindCentroids to P

5 else
6 find closest pair of unconnected nodes i and j
7 if dij < 2× r then
8 add the midpoint of i and j to P

9 else

10 add ddi,j
r
e new points to P evenly between i and j

11 else
12 return P

13 return null

initial set of additional connecting points P . The MST solution is provided in 4.3b for

comparison.

At a frequency of fDMMST time steps, a new MMST solution is found for the updated

network and each point pi ∈ P moves towards the new MMST solution points. Each suc-

cessive time step uses G = (C ∪ U ∪ P,E) to calculate the new connecting MMST solution.

Iteratively using the MMST as an agent node locating method results in the additional

points always attempting to move towards a connected solution. This process will always

connect the network if at least |P |MMST number of additional points are available.

If there exists an STP solution with |P | < |P |MMST , the continual calculation of MMST

solutions, combined with motion of the points, and iterative removal of points can yield

the needed Steiner tree points. Figure 4.4 illustrates an example of the evolution of the

DMMST method into the Steiner Minimum Tree solution. Here, the starting solution P is a

|P |MMST − 1 node solution with a randomly chosen point removed (4.4a). The intermediate

step, 4.4b, shows the movement of the remaining points based on a newly calculated MMST
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(a) (b) (c)

Figure 4.3: Example network a.) Given network G b.) MST-BEL solution where |P | = 7
c.) MMST solution G ∪ P where |P | = 6

solution. Finally, 4.4c shows the resultant connected network using |P |MMST − 1 number of

nodes. The iterative removal of a point and search are the basis of the Reduction method,

discussed in the following section.

(a) (b) (c)

Figure 4.4: Progression of Dynamic MMST locating method a.) MMST solution with |P | =
|P |MMST − 1 = 5 points b.) Intermediate DMMST network where |P | = 5 points are moved
c.) DMMST Steiner point solution for the |P | = 5 network

4.3 Reduction

With the knowledge that any static configuration can be connected with the MMST

methodology, the |P |MMST number of points is then defined as an upper bound on the number

of points needed. Previous works [35, 34, 17, 18, 12, 13] used particle swarm optimization as

a method of finding a connected network but can require long run times to find a connected
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Heuristic 5: Dynamic MMST Method

Data: number of DMMST iterations IDMMST

Input: network G = (C ∪ U,E), time t, MMST calculation frequency, fDMMST

Output: G∗ = (C ∪ U ∪ P,E)

1 define PMMST the set of locations for MMST solution
2 for i = 1 to IDMMST do
3 if i% fDMMST = 0 then
4 update PMMST with the MMST solution for G = (C ∪ U ∪ P,E)

5 foreach Point pi in P do
6 move pi towards closest point in PMMST

7 return G∗ = (C ∪ U ∪ P,E)

solution. The DMMST method is significantly faster than a replicated particle swarm, and

can be used as part of a process to find a connected network. It can also be used with |P |−n

number of additional points where n ∈ I to attempt to find a connected network.

The Reduction method uses the DMMST(|P |MMST ) as the initial test of feasibility.

Starting at the control node, points in P are moved towards an MMST solution. With a

frequency of fDMMST ≥ 1 a new MMST solution is computed. This prevents convergence

around local optima. When fDMMST is small, ex. fDMMST = 1, an MMST solution is

computed each iteration. At such a rate, oscillation between two MMST solutions is likely

to occur without sufficient time for points to be moved toward either location.

A lower limit on the number of allowable points, pm is defined as a parameter. This is

to address unit deployment requirements. For example, if it is necessary for a minimum of

four units to be deployed, then pm = 4.

If there are enough available points, |P | > pm, then one can be removed with the

modified network being defined as G−. If G− can be connected using the DMMST method,

then |P | is reduced by removing a random point pr ∈ P . This is the first iteration of the

recursive removal and relocating of points that comprise the Reduction method.

If a connected solution for G−DMMST can be found, then G∗ is set to that DMMST

modified solution, G−, and recurses. If for any value of n > 0, the DMMST(|P |−n) is unable
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to connect the network, this may mean that the network cannot be connected with |P | − n

additional points, or that the Reduction method has simply failed to find the solution. This

process continues, removing additional points, until the method cannot connect the network

(see Heuristic 6).

Heuristic 6: Reduction Method
Input: connected network G = (C ∪ U ∪ P,E),
minimum number of points allowed pm, MMST calculation frequency fDMMST

Output: Best found minimum point connected network G∗

1 G∗ ← G
2 determine a point to remove, pr ∈ P
3 define the modified network as G−

4 if |P | ≥ pm then
5 remove pr from G
6 G− ← G− pr
7 else
8 return G

9 if DMMST (G−, 0, fDMMST ) is connected then
10 G∗ ← G−DMMST

11 return Reduction(G−DMMST , p
m, fDMMST )

12 return G∗

Figure 4.5 is provided to detail this process graphically. Given an irregular pentagon,

Figure 4.5a, the MST and MMST solutions (not shown) are identical and place connecting

points on four of the five edges of the pentagon. This solution defines the upper bound on

number of points needed and the starting set of four movable points. The Reduction method

uses the DMMST to find a connecting solution. With a frequency of fDMMST , new MMST

solutions are determined. Figure 4.5b shows an intermediate MMST solution with a red

circled point and dashed lines showing how it connects the network. Each of the four points

are moved until the network is connected, Figure 4.5c.

The next iteration of the Reduction method randomly removes the node that was located

at the red double-circled location, Figure 4.5d. Similarly, the movable points are directed to

connecting solutions (Figure 4.5e) until the three point solution is determined (Figure 4.5f).

63



(a) (b) (c)

(d) (e) (f)

Figure 4.5: Progression of the Reduction locating method a.) given network (|P |MST =
|P |MST = 4, though not shown) b.) at iteration 151 a new MMST solution is determined,
indicated by the circled red point. Each point in P moves towards the closest point in the new
MMST solution c.) DMMST solution with four points d.) randomly chosen point removed,
indicated by double red rings e.) remaining points move toward new MMST solutions f.)
the Reduction solution requiring three points

4.4 Quadratic Linear Program Validation

The mathematical model was developed to compare the Reduction solutions of smaller

problems to an exact search. The following formulation is derived from Konak et al.’s ALOC

model [35] that maximized flow of commodities, similar to a max flow problem. The static

network is modeled to consider all user node to user node pairs as the set of commodities

C. The flows over edges e that are within a distance of r (di,j < r) to another (user or

agent) node are represented by fce. The supply/demand of all commodity pairs is regulated

by Fc. These and a few other necessary variables are defined here, followed by the static

mathematical formulation. Define:

min z =
∑
i∈A

ui (4.1)

s.t.
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ui (0, 1) ∀i ∈ A use agent node i variable

Xi, Yi R ∀i ∈ A x, y location variables for agent node i

C {< i, j > | i, j ∈ U, i < j} commodity: user-user network connection

fce (0, 1) ∀c ∈ C flow variables of commodity c over edge e ∈ E

vij (0, 1) ∀i, j ∈ N use arc variables from node i to node j

Fc (0, 1) ∀c ∈ C supply/demand of all commodities

r R connection radius

M R big-M method

−
∑
enj∈E

fce +
∑
ein∈E

fce = 0 ∀c ∈ C, e[i] 6= c[i], e[j] 6= c[j]

(4.1a)

−
∑
eij∈E
e[i]=c[i]

fce +
∑
eij∈E
e[j]=c[i]

fce = Fc ∀c ∈ C (4.1b)

−
∑
eij∈E
e[i]=c[j]

fce +
∑
enj∈E
e[j]=c[j]

fce = −Fc ∀c ∈ C (4.1c)

(Ui[x]− Uj[x])2 + (Ui[y]− Uj[y])2 − r2 ≤M(1− vij) ∀i, j ∈ U, i 6= j (4.1d)

(Ui[x]−Xj)
2 + (Ui[y]− Yj)2 − r2 ≤M(1− vij) ∀i ∈ U, j ∈ A (4.1e)

(Xi − Uj[x])2 + (Yi − Uj[y])2 − r2 ≤M(1− vij) ∀i ∈ A, j ∈ U (4.1f)

(Xi −Xj)
2 + (Yi − Yj)2 − r2 ≤M(1− vij) ∀i, j ∈ A (4.1g)

fce ≤ ui ∀c ∈ C, eij ∈ E, e[i] ∈ A

(4.1h)

fce ≤ uj ∀c ∈ C, eij ∈ E, e[j] ∈ A

(4.1i)

fce ≤ vij ∀c ∈ C, e ∈ E (4.1j)

Fc ≥ 1 ∀c ∈ C (4.1k)
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With the primary objective of minimizing the number of agent nodes, the objective

function was defined the sum of the number of nodes used. Constraints 4.1a - 4.1c manage

flow of commodities through the network. Constraint 4.1a maintains zero net flow on all

non-commodity source and sink nodes. Constraints 4.1b and 4.1c maintain sink and source

properties of commodities at nodes.

To model connectivity, constraints 4.1d - 4.1g consider arc usage based on distance.

Because the locations of agent nodes are defined by variables Xti and Yti, each type of node

pair (user-user, user-agent, agent-user, agent-agent) are defined respectively. Constraints

4.1h and 4.1i define the inbound and outbound flow of a commodity to an agent node based

on usage (of the edge). Similarly, constraint 4.1j allows flow on an arc only if the arc is used.

Constraint 4.1k ensures that all commodities are sent, i.e. all node pairs are connected.

4.5 Chapter Summary

Here, the Reduction method and its underlying functions, the MMST and DMMST, are

described. The Reduction method iteratively randomly removes additional points, attempt-

ing to minimize |Pt|. The DMMST method provides a means for connecting the network

with fewer than |P |MMST points. Searching for clusters and using heuristic placed nodes, the

MMST seeks to improve upon the solution process described by Lin and Xue [40]. Evaluat-

ing a single topology of a network at a given time, these static methods can be used to solve

locating problems at discrete time steps of a dynamic problem. Next, the static methods are

used in the dynamic problem locating methods.
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Chapter 5

Dynamic Problem Solution Methods

The main focus of this Chapter is the dynamic locating problem. The static solution

methods were developed to aid in solving the connectivity problem at each discrete time

step. A solution method was developed to solve the collection of static problems via the set

of added points, Pt, for each t ∈ [0, T ]. The locations of the method’s solution are then used

in an agent nodes assignment problem.

5.1 Deterministic Environment Pre-Solve Method

To solve Formulation 3.14, define the Reduction per Time Interval Method (RTI) as

the per time interval method of finding Pt at each time t ∈ [0, T ]. It is based on the

Reduction method that yields good, if not optimal, minimum number of additional node

connected solutions for a static problem. The RTI method uses the Reduction method with

frequency t < fRTI < T throughout the course of the MANET model’s operation. In a real

world stochastic environment the value and relationships of parameters t and fRTI should

be carefully considered by the system designer. The time interval between t and t+1 should

represent the absolute minimum required update rate to monitor the system. Similarly, with

the deployment of agent nodes, the time interval t, t+ fRTI represents the usage of the agent

nodes.

The additional points needed to connect the network are added to Pt for each t ∈ [0, T ].

Heuristic 7 shows the general logic during the RTI method. This may result in several sizes

of Pt for different times. From the sets of Pt, a lower bound on the number of agent nodes

needed, maxt Pt, can be deduced. However, there may still be movement infeasibilities with
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|At| = maxt Pt in which case additional agent nodes are needed. Thus, in formulation 3.15,

the objective function attempts to minimize |At|.

Heuristic 7: Reduction per Time Interval Method

Data: Number of time steps T
Input: network Gt = (Ct ∪ Ut) where each user node, n, has a checkpoint list Mtn

Output: set of points Pt

1 for t = 0 to T do
2 foreach user node u in Ut do
3 move u towards next checkpoint in Mtn

4 if t% fRTI = 0 then
5 Pt ← Reduction(Gt, 0, 0)

6 return Pt

Figures 5.1 illustrate the progression of the RTI method. Assuming fRTI = 15, r = 100

meters, and user nodes move at a rate of ten meters per time step. For t = [0, 10], the

network is connected, but the RTI method is not used until t = 15 where it was determined

only one additional point was needed. At the next few RTI evaluations, t = 30, 45, ..75, the

network requires multiple additional points. In this example, all user nodes’ tours end at the

control node at t = 90, requiring no additional points. The collection of additional points

shown graphically in Figure 5.1 is also shown in Table 5.1. The notion Pt,n refers to the nth

connection point required at time t.

Table 5.1: Tabular format of Pt = {(x, y)}∀t ∈ T

t Pt1 Pt2 Pt3 Pt4 Pt5 Pt6
0 (100,300)
15 (180,300)
30 (199,310) (299,320) (349,310)
45 (197,275) (314,193) (295,291) (350,375)
60 (165,354) (231,409) (296,463) (214,286) (263,218) (312,150)
75 (173,361) (173,239)
90 (100,300)
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(a) (b)

(c) (d)

Figure 5.1: Progression of the RTI method where checkpoint boxes represent connection
points. a.) Gt, showing the user node tours. b.) At t = 15 one additional point is needed,
highlighted in yellow. c.) At t = 45 multiple points are needed and are highlighted in yellow,
shown with previously found additional points. d.) At t = 90 all points found with the most
recently found points (at t = 75) highlighted in yellow.

5.2 Deterministic Environment Point Assignment Method

After pre-solving for Pt for t ∈ [0, T ] (Formulation 3.14), the agent node tour optimiza-

tion is done by solving the assignment problem, Formulation 3.15. Maximizing robustness

is a conflicting objective. Increasing Bt would inherently require additional agent nodes to
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improve the node degree relationships. Additional agent nodes would also benefit the av-

erage network connectivity. Though these are benefits, it is desirable to minimize |At|; see

Formulation 3.15.

Next, a meta-heuristic that searches the agent node tour assignments solution space

to yield good solutions is presented. Following it, a mathematical model is presented to

optimally solve the agent node tour assignment problem for validation, Formulation 3.15.

5.2.1 Meta-heuristics Overview

A guided search with a meta-heuristic can find good solutions in a relatively shorter time

(compared to the mathematical model). Previous works use a particle swarm optimization

for a reactive positioning approach. A genetic algorithm was believed to be a good fit for the

assignment combinatorial problem. The ability to include infrequent alterations/ mutations

furthering solution diversity should be beneficial.

The following sections detail the encoding and mechanics to apply this problem to a

meta-heuristic search, specifically the genetic algorithm. It does not use the formulation of

the mathematical model, but incorporates the objectives of the dynamic problem (min |At|,

max ANCU , max Bt , min noia) into the objective function. For example, constraint 3.16d

where w = 1 is inherently part of the mathematical problem. However, in a meta-heuristic,

enforcing this constraint would result in a majority of the candidate solutions being consid-

ered infeasible. Instead of a constraint, it was incorporated into the objective function and

measured as ANCU .

Also, as stated in section 5.1, with |At| = maxt |Pt|, there may be movement constraint

violations. That is to say that based on the identified points of Pt there may not be a

consecutive assignment of locations that an agent node can travel from/to given its limited

move rate, v and the time available to get to the next point. This type of violation is counted

in noia and is part of the genetic algorithm’s objective function. Lastly, the primary objective
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to minimize |At| is offset by the option to add additional agent nodes that would improve

ANCU or Bt .

5.2.2 Genetic Algorithm Encoding

The metaheuristic method assigns connection points from the pre-solve matrix P to the

agent node assignment matrix Q. Assume initially that the size of Q is determined by the

size of Pt. The matrix Q will be of size T ×maxt |Pt| but may vary in width due to the

addition of agent nodes by the metaheuristic search. For any element of Q where there is

no assignment, a null location, indicated by “-”, is used to ensure the vector has a uniform

width over all time steps. Table 5.2 provides an example pre-solve solution and encoded

assignment solution for use with a meta-heuristic.

Table 5.2: Example pre-solve matrix P and padded assignment matrix Q

t Pt,1 Pt,2 Pt,3 Pt,4
0 P0,1

10 P10,1 P10,2

20 P20,1 P20,2 P20,3 P20,4

30 P30,1

t A1 A2 A3 A4

0 - - P0,1 -
10 P10,2 - - P10,1

20 P20,1 P20,3 P20,4 P20,2

30 P30,1 - - -

Define Ω as the population of solutions and Ωihtn as the hth heuristic determined assignment

at iteration i = (1, IAssign) of a point in Pt to an agent node n at a time t.

5.2.3 Genetic Algorithm Mechanics

The basic mechanics of the GA will be described here with the mutation method detailed

in the following section.

• Initialize Population - The initial population Ω0 of size popsize is randomly gener-

ated based on Pt.

• Parent Selection - For each time step, the population Ωi will be sorted by OFV and

the best popsize
4

pairs are selected for the parent sub-population ΩParents
i .
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• Generate Offspring - For each pair of parents, two offspring will be generated using

uniform crossover. For each t in Qt, the offspring will inherit from a randomly selected

parent the assignments at that time.

• Mutation - Three types are defined and when a mutation is done one type is randomly

selected. See section 5.2.4

• Evaluate - Define the function Z(G) to be the weighted difference of the number

of agent nodes, average number of connected users, robustness score, and number of

infeasible assignments to determine the goodness of a solution. (A solution includes

Gt, the user node tours, and agent node assignment solution Ωih.)

Z(Gt ∪Qt) =γ1|Ωih0| − γ2ANCU − γ3

T∑
t

Bt + γ4noia (5.1)

where γ1, γ2, γ3, γ4 = (0, 1)

• Control Population - At the end of each iteration, the population consists of the

general population and offspring. For any assignment solution where there is an agent

node column, Ωihtn that consists of all ”-” values for all t ∈(0,T), remove that column.

The population is then sorted and the lowest scoring solutions are culled to return to

a size of popsize.

5.2.4 Genetic Algorithm Mutations

The canonical idea of mutation is to provide some perturbation of a solution. Here,

a simple swap mechanism provides this. To accommodate finding feasible solutions (by

loosening the constriction of the inter-time-step movement constraints) a method to add

agent nodes is provided. Also, a method to remove an agent node is provided to address

the objective of minimizing |At|. For a given population member, only one mutation per
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iteration can be performed at a maximum rate defined as fMutate. These methods are shown

in Heuristic 8, lines 7-17.

Swap

Define Ψ =< t, n1, n2 > as the swap vector of assignments for nodes n1 and n2 at time

t where n1 6= n2. When used in Heuristic 8, assume n1 and n2 are randomly chosen unless

specified with another value. Table 5.3 shows an example swap Ψ =< 10, A1, A4 >.

Table 5.3: Example Swap in Ωih

t A1 A2 A3 A4

0 P0,1 - - -
10 P10,1 P10,2 - -
20 P20,1 P20,2 P20,3 P20,4

30 P30,1 - - -

t A1 A2 A3 A4

0 P0,1 - - -

10 − P10,2 - P10,1

20 P20,1 P20,2 P20,3 P20,4

30 P30,1 - - -

Agent Node Column Addition

This method adds an agent node column to the assignment matrix Ωih. It performs

a swap where one of the nodes is the newly added agent node, Ψ =< R()T,Ωiht[last], n2 >.

Table 5.4 shows the addition of an agent node column, A5, and a swap that included that

node, Ψ =< 20, A5, A2 >.

Table 5.4: Example Agent Node Column Addition and Swap in Ωih

t A1 A2 A3 A4

0 P0,1 - - -
10 P10,1 P10,2 - -
20 P20,1 P20,2 P20,3 P20,4

30 P30,1 - - -

t A1 A2 A3 A4 A5

0 P0,1 - - - -
10 - P10,2 - P10,1 -

20 P20,1 − P20,3 P20,4 P20,2

30 P30,1 - - - -

Agent Node Column Removal

If an assignment solution has added agent nodes where |Ωih0| > maxt |Pt|, then a node

can be removed. If |Ωih0| < maxt |Pt|, the solution is infeasible because it would not be
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possible to assign all points in Pt to Q, violating constraint 3.15a. This type of constraint

violation is not allowed. Randomly choose a node to remove, reassigning any checkpoints

associated with the removed node to the other agent nodes, and remove it form Ωih. Table

5.5 shows the reassigning of P20,3 to A2 so that A3 can be removed.

Table 5.5: Example Reassign Checkpoints and Agent Node Column Removal in Ωih

t A1 A2 A3 A4 A5

0 P0,1 - - - -
10 - P10,2 - P10,1 -

20 P20,1 - P20,3 P20,4 P20,2

30 P30,1 - - - -

t A1 A2 A4 A5

0 P0,1 - - -
10 P10,2 P10,2 P10,1 -

20 P20,1 P20,3 P20,4 P20,2

30 P30,1 - - -

Heuristic 8: Tour Assignment - Genetic Algorithm
Input: set of connection Points P
Output: agent node tour assignments Q

1 define starting population Ω0

2 for h = 0 to |Ωi| do
3 Evaluate Ωi,h

4 for i = 0 to IAssign do
5 Choose parents
6 Create offspring and add to Ωi

7 for h = 0 to |Ωi| do
8 if R() < fMutate

4 then
9 if |Ωi,h,0| > maxt Pt then

10 randomly select agent to remove A−

11 reassign checkpoints from A−

12 remove A−

13 else if R() < fMutate

2 then
14 add A+ to Ωi,h

15 swap Ψ =< R()T,A+, n2 >

16 else if R() < fMutate then
17 swap Ψ =< R()T, n1, n2 >

18 Evaluate Ωi,h

19 Control population
20 Store best solution

21 return best solution
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5.3 Assignment Mathematical Model for Validation

The mathematical model, equation 5.2, is used to validate the performance of the de-

terministic environment pre-plan and assignment methods. With perfect knowledge and no

variability in user node movement, the solutions should provide an always connected solution.

The pre-plan and assign method should perform as well as the mathematical model.

The dynamic environment mathematical model is identical to the static formulation,

derived from the ALOC formulation of Konak et al. [35], with the addition of a time index

and the last two constraints. To manage inter-time-step constraints, 5.2l ensures that the

agent nodes used are consistent over time steps and 5.2m is the agent node movement

constraint. Essentially, it solves the multiple static problems (based on the time index),

checking the inter-time-movement distance and ensuring consistent agent node usage over

time. A description of the notation follows. Note that the Robustness objective formulation

(see Equation 3.16) is complex and non-linear and is not included in this mathematical

formulation.

min z =
∑
i∈At
t∈T

ut,i (5.2)

s.t.

−
∑
etnj∈E

ftce +
∑
etin∈E

ftce = 0 c ∈ Ct, e[i] 6= c[i], e[j] 6= c[j], t ∈ T (5.2a)

−
∑
etij∈E
e[i]=c[i]

ftce +
∑
etij∈E
e[j]=c[i]

ftce = Ftc ∀c ∈ Ct, t ∈ T (5.2b)

−
∑
etij∈E
e[i]=c[j]

ftce +
∑
etnj∈E
e[j]=c[j]

ftce = −Ftc ∀c ∈ Ct, t ∈ T (5.2c)

(Uti[x]− Utj[x])2 + (Uti[y]− Utj[y])2 − r2

≤M(1− vtij) ∀i, j ∈ Ut, i 6= j, t ∈ T (5.2d)

(Uti[x]−Xtj)
2 + (Uti[y]− Ytj)2 − r2
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≤M(1− vtij) ∀i ∈ Ut, j ∈ At, t ∈ T (5.2e)

(Xti − Utj[x])2 + (Yti − Utj[y])2 − r2

≤M(1− vtij) ∀i ∈ At, j ∈ Ut, t ∈ T (5.2f)

(Xti −Xtj)
2 + (Yti − Ytj)2 − r2

≤M(1− vtij) ∀i, j ∈ At, t ∈ T (5.2g)

ftce ≤ uti ∀c ∈ Ct, eij ∈ E, e[i] ∈ At, t ∈ T (5.2h)

ftce ≤ utj ∀c ∈ Ct, eij ∈ E, e[j] ∈ At, t ∈ T (5.2i)

ftce ≤ vtij ∀c ∈ Ct, e ∈ E (5.2j)

Ftc ≥ 1 ∀c ∈ Ct (5.2k)

usi = uti ∀i ∈ At, t = s+ 1, s, t ∈ T (5.2l)

(Xti −Xsi)
2 + (Yti − Ysi)2 −m2

≤M(1− usi) ∀i ∈ At, t = s+ 1, s, t ∈ T (5.2m)

Ct {< i, j > | i, j ∈ Ut, i 6= j} commodity representing user-user network signal

uti (0, 1) ∀i ∈ At use agent node i at time t

ftce (0, 1) ∀c ∈ Ct flow of commodity over all etij ∈ Et at time t

vtij (0, 1) ∀i, j ∈ Nt use arc from node i to node j

Xti, Yti R ∀a ∈ At x, y location variables for agent node i at time t

Uti[x], Uti[y] R ∀u ∈ Ut x, y location variables for user node i at time t

Ftc (0, 1) ∀c ∈ Ct used to ensure flow of all commodities at time t

r R connection radius

m R maximum move distance between time steps

M R for big-M method
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5.4 Stochastic Environment Positioning Methods

To evaluate the stochastic environment, three levels of randomness are defined. Level

1 randomness was previously presented in the dynamic deterministic environment problem

but not labeled as such. Level 1 randomness is used to evaluate the variation due to seed (of

the random number generator) of the pre-plan and assignment process in the deterministic

environment. Define the term “Plan” as the result of the Level 1 testing. Note that the

randomness required to generate the instances used as input here is not considered. Level 2

randomness is used to generate the user node tour realizations in the stochastic environment.

Level 3 randomness is used to evaluate the variation due to seed (of the random number

generator) of the usage of the Plan solution with possible re-planning in the stochastic

environment.

After completing the Plan experimentation, there are ninety instances (nine types, ten

instances) and three replications of each (270 total replications). Preliminary testing revealed

very low variance between replications allowing for a small run size. From each run of three

replications, it can be logically assumed that the decision maker will select the best Plan

solution. The best of each of the Level 1 runs will be used to generate five realizations (Level

2). Each realization will define a Level 3 run of three replications. Figure 5.2 shows this

graphically, illustrating the three Plan replications, selection of the best solution (indicated

by ∗), generation of realizations, and the use of the Plan method (with possibility of re-

planning) in a stochastic environment.

For example, a solution labeled M SAR 09 1003 2004 3002 is the second replication of

the fourth realization of the best found Plan replication of the ninth instance of an M size

problem with a SAR tour type. Figure 5.3 shows a few of the maps from this process with

user node tours, drawn in green 5.3a, of an S SAR instance, the selected best Plan solution

5.3b, and two stochastic environment user node tours drawn in black, 5.3c and 5.3d.

Practically, the decision maker plans the mission in the deterministic environment and

deploys the system in a stochastic environment. Assume that during the mission, the size
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Figure 5.2: Levels of Randomness

(a) (b) (c) (d)

Figure 5.3: Instance S SAR 01 a.) user node tours b.) pre-plan and assignment solution
1001 c.) realization 2001 d.) realization 2002

of the set of agent nodes can be increased or decreased. The control node will then manage

agent node tours and locations.

5.4.1 Simulation with Re-plan Option

Define MANET as the application of the best Level 1 Plan replication in a stochastic

environment with the option to re-plan given user node deviations exceed a given threshold.

For every time step, the control node will update its internal model of the network, forecast

user node locations, and then determine agent node positions. The macro-level stochastic
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environment logic was presented in Heuristic 3. Heuristic 9 expounds upon the control

node’s logic given the network Gt at each time step t. The number of forecast time steps

was defined to be s = 6 in section 3.1.1. Define gt, the control node’s copy of Gt used to

model the control node’s limited knowledge of the system when not fully connected, node

movement, and determine connecting solutions.

Heuristic 9: Control Node Decision Logic in a Simulation

Input: time t, network Gt, Plan solution
Output: updated agent node tour, gt+s

1 foreach u ∈ Ut do
2 if u is connected to Ct then
3 UPDATE gt[u] position to u

4 else
5 MODEL gt[u] movement to t

6 RECORD gt[u] position
7 FORECAST movements at gt+s[u]

8 foreach a ∈ At do
9 FORECAST movements at gt+s[a]

10 UPDATE connectivity of gt+s
11 MEASURE deviations of gt+s

12 if percentage of deviating user nodes ≥ ∆replan then
13 DETERMINE agent node tours with GA(RTI(gt)) ∀(t, T )

14 else
15 DETERMINE agent node in gt+1 position with Plan

16 return gt+s

Model, Update, and Forecast Network Locations

With the assumption that the control node can only determine locations of connected

nodes in Gt, if a node is disconnected, its location is assumed based on adherence to node

tours. The locations of all nodes are recorded and then used to forecast locations, gt+s. The

connectivity state of gt+s is then determined. The gt+s is used to determine the degree of

deviation in the forecast network.
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Measuring Deviations

At each time step, comparing gt+s and the original user node’s planned tour, Gt, the

distance from the planned tour can be determined. The distance between the user node’s

current position, i, and the original tour location, c, at a given time, is indicated by dic.

Define ddev as the threshold for a user node’s deviation to be considered significant. It can be

reasoned to be a percentage of the connection radius where deviations beyond this threshold

would disconnect the network. Define ∆replan as the threshold (percentage of deviating

user nodes) to trigger re-planning agent node solutions. Its value should be comparable to

the service constraint requirement w (Constraint 3.16d). For example, given ∆replan = 0.3,

|Ut:dic>ddev |
|Ut| > ∆replan, t = 7 and T=12, the GA(RTI) method will be used to determine agent

node tours from t = 8 to 12.

Additionally, the network connected state based on user node location forecasts is con-

sidered. If at t + s, the network is forecast to be connected, there is no need to re-plan.

Agent nodes will continue to follow their assigned tours.

Define IDMMST, IGA to be the number of iterations for the DMMST used in the re-

planning (RTI) and assignment search (genetic algorithm). The run length of each method

is dependent on problem size. Specifically, for IDMMST, the size of the area of operation and

number of agent nodes factor into determining the number of iterations. The value of IGA

is dependent on the number of agent nodes and the T−t, the size of the re-plan assignment

matrix. For both, IDMMST and IGA, their values should allow convergence. Define a 5-tuple

for the parameters used in the re-preplanning method:

< ddev,∆replan, IDMMST, IGA, s > (5.3)

The evaluation time is limited to t = {0,T} defined by original tour for a consistent

basis when comparing to the deterministic environment. Thus, when deviations delay a user

node’s tour, it will not finish its tour.
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One assumption was made for the search and rescue (SAR) and random (RAN) tour

types that do not start at the control node. The positions of the agent nodes at t = 0 will be

those determined by the pre-plan method. All other methods will have all nodes originate

at the control node.

Determine Agent Node Tour Modifications

The logic of the control node used to modify agent node tours is the main contribution

to the MANET path planning research area. It is what differentiates itself from a reactive

approach. In reference to the Heuristic 9, lines 10-15 deal with agent node positioning.

This logic is also used in the deterministic case allowing only Plan solution positions to be

returned.

If it is determined that the percentage of deviating user nodes is more than the threshold

∆replan, then gt is modified before being passed to the re-plan method. Only time steps t

to T are considered, excluding points at earlier times, 0 to t-1. The control node then uses

the RTI pre-plan method , Heuristic 5.1, to determine connecting points. These points are

assigned to agent nodes by the genetic algorithm search. Unlike the pre-plan process, the

re-plan GA does not allow removal or addition of agent nodes.

Update Agent Node Tours

Concluding each time step, the control node will attempt to send the locations of its

internal model, gt. Depending on the network’s state, this network is either in accordance

with the agent node’s previously assigned tour or a modified tour. Note, the case may exist

where a modification was communicated at a previous time step, and the successive issued

commands are in accordance with the new tour, not the original. These cases are dependent

on an agent node being network connected to the control node.

When an agent node is not network connected, it will continue following its tour. It

would not receive any modifications to its tour until reconnected. Generally speaking, each
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agent node will have a tour that covers all time steps, t = 0 to T . Thus, with no additional

instruction, the agent node will continue to operate, potentially with outdated instructions,

until the end of the simulation.

5.4.2 Reactive

Define the Reactive method as the use of the deterministic DMMST method for deter-

mining agent node positions. Similar to the MANET method, for each time step, the control

node will update gt, forecast user node locations at time t + s, then determine agent node

locations.

Inherently, using a reactive method results in a limited span of instructions of only one

time step. An additional instruction is needed for disconnected networks. If an agent node

becomes disconnected, and there is no instruction for the t+1 time step, it will move towards

the control node. If it is not connected and there are points in its tour to follow, continue

to follow the tour. If it is connected, its tour is overwritten from t to t + s and it moves

according to this new tour.

5.5 Chapter Summary

The dynamic deterministic and dynamic stochastic problems, have been presented with

solution methods for each. In a deterministic environment, the RTI and genetic algorithm

method were developed to pre-plan and assign agent node tours, respectively. As a deci-

sion maker, after deterministic environment agent node tour assignment, the best plan was

selected. Realizations of the operation of the network in a stochastic environment were

generated to test the usage of these agent node assignments. Methods for measuring and

responding to user node deviations by re-planning where necessary were presented.
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Chapter 6

Validation, Experimentation, and Analysis

This dissertation seeks to provide a method to use prior knowledge of user node tours

to pre-plan and re-plan if necessary. When testing the static problem, the validation process

attempts to determine if the performance of the Reduction method is as good as a mathe-

matical model for small size problems. The Reduction method is then used to investigate if

it performs as well as the existing research of Lin and Xue [40].

In the dynamic problem the performance in deterministic and stochastic environments

is evaluated. With perfect knowledge in a deterministic environment, the Plan (pre-plan

and assign) method is validated by comparing it to a mathematical model, limited to small

problems. The benefit of the Plan solution is then compared to the Reactive method. In the

stochastic environment, the MANET (using the Plan method with possible re-planning) is

evaluated to determine its benefit over the Reactive only positioning method.

6.1 Static Problem

Given any static graph, during the planning stage the objective is to return a connected

network with the minimum number of added points and, subsequently, the minimum number

of agent nodes. Connected networks can always be found if there is an unlimited number

of points/agents that can be placed. It is assumed that there is no limit but the number of

agent nodes should be minimized.

To compare the performance of this dissertation with the literature, Lin and Xue’s MST

method was used as a basis. This method provides an easily computed upper bound for the

objective of minimizing |At|. The Reduction method uses repetitive DMMST calculations to

direct movable points to a connecting solution. Because the method has a potential random
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removal of a node as part of the search, a run of four replications (varying seeds) was used

in the analysis.

6.1.1 Validation

To validate these solution methods they were compared to the optimal solution obtained

from the mathematical model (Math). Define the null hypothesis:

H0 : µ|P |Reduction = |P |Math (6.1)

For a run of the Reduction method, this tests if the average size of the set of additional

points, µ|P |Reduction , is comparable to the size of the set found by the mathematical model,

|P |Math.

The math model was developed for CPLEX on Auburn University’s High Performance

Cluster (HPC). Some preliminary experimentation was conducted on the NEOS server [16,

19, 27]. The problem instances used for validation were only S class or smaller due to

math model computation time requirements. A total of 33 problems where |U | = 5 and 27

additional problems where |U | = 10 were evaluated. Seven (|U | = 10) problems did not

finish (dnf) within thirty hours of computation time on Auburn’s HPC.

A one sample two-tailed t-test was used to determine statistical differences between the

values of µ|P |Reduction and |P |Math. Table 6.1 list a sample of the results of these tests with

(α = 0.95, d.f. = 2) tcritical = 4.30. Appendix Table C.1 fully lists these results. The t-stat

could only be determined for runs where the standard deviation of the number of connecting

points σ|P |Reduction > 0. In all but one run of the Reduction method σ|P |Reduction = 0 making

the t-statistic incalculable. Only 1.7% (1/60) runs could be determined to be statistically

equivalent. Contradictory to the desired outcome, there was only one run where |P |Math <

µ|P |Reduction ; 1.7% (1/60) cases had a better math solution.
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Since there were so few runs that could be compared with the t-test, the values of

|P | were compared via ratios. Most important of these, the Reduction
Math

ratio shows that the

Reduction method performs as well as the math model by finding optimal solutions in 86.7%

(52/60) test problems. If the proportion of problems where the math model did not finish

is not considered then the Reduction method finds the optimal solution in 98.1% (52/53) of

the runs. Similarly, if the Reduction method can be considered to perform better than the

math model for problems where the math model did not finish, then the Reduction method

performs as well as the math model in 98.3% (59/60) of all runs. Figure 6.1a shows the

proportion of runs where µ|P |Reduction = |P |Math. Assuming that this performance scales to

larger problems, then the Reduction method is suitable to connect networks at discrete time

steps of a dynamic problem.

6.1.2 Experimentation and Analysis

Table 6.1 also lists |P |MST and |P |MMST . In all cases, the MMST finds a solution with

less than or equal to the number of additional points of a MST solution. Similarly, comparing

the Reduction, MST, and MMST solutions, shows that the Reduction method can always

find a solution with less than or equal to the number of additional points required by the MST

or the MMST method. Figure 6.1b shows the proportion of runs where |P |MST > µ|P |Reduction .

This verifies the improvements of this dissertation over the Lin and Xue [40] MST method.

Table 6.1: Sample Static Problem Results and Analysis of |P |

Graph |P |Math |P |MST |P |MMST µ|P |Reduction
σ|P |Reduction

t-stat
5-000 2 2 2 2.00 - -
5-008 3 3 3 3.00 - -
5R-00 4 4 4 4.00 - -
5R-01 4 4 4 4.00 - -
10-13 dnf 7 6 6.00 - -
10-34 6 8 7 6.25 0.5 1

In approximately 37% (22/60) of the runs |P |MST = µ|P |Reduction . In these runs, there

was no way to reduce |P | due to the topology of the problem instance. Figure 6.2 is an

example of this, showing that the MST, MMST, and Reduction methods result in the same
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85.0%

11.7%

3.3%

Math=Reduction Math dnf Math is better

63.3%

36.7%

Reduction is better MST=Reduction

Figure 6.1: Proportion of runs where a.) the Reduction method performs as well as the
math model and b.) the Reduction method performs better than the MST method

topology. The mathematical model’s solution supports the idea that there is no improvement

as almost all these runs also have |P |Math = |P |MST = µ|P |Reduction . This is a testament to

the goodness of the MST, MMST, and Reduction methods, as they can sometimes find an

optimal |P | connected solution.

(a) (b) (c) (d)

Figure 6.2: Similar solutions a.) mathematical model solution with |A|Math = 5 b.) MST
solution with |A| = 5 c.) MMST solution with |A| = 5 d.) Reduction solution with |A| = 5

The Reduction method determined a connected network solution significantly faster

than the mathematical model. Each run of four replications of the Reduction method,

run on a personal computer (PC), was faster than an exact search on the HPC. Table 6.2
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compares the total computation time of the two methods for a few problem instances where

|U | = 10. The full table of computation times is found in Appendix Table C.2.

Table 6.2: Sample Static Problem Computation Time

Math Reduction
Graph |U | (HPC hh:mm:ss) (PC seconds)
5-000 5 0:00:02 6.830
5-008 5 0:00:19 9.833
5R-00 5 0:00:35 3.608
5R-01 5 0:02:35 4.862
10-13 10 >30:00:00 0.724
10-34 10 1:11:35 1.627

6.2 Dynamic Problem

Network metrics, |At|, ANCU , and Bt (when applicable), were recorded at each time

step. Each metric with the addition of the weighted objective function, OFV , was used to

evaluate the performance of the network. To validate using the Plan method in the determin-

istic environment, its performance was compared to a mathematical model solution based on

the weighted sum of |At| and ANCU . Recall, that Bt was not included in the mathematical

model. The resultant deterministic environment Plan solutions were then compared to the

Reactive method. The Reactive method defined in this dissertation is a deterministic solu-

tion process, see Section 5.4.2, requiring only one replication for a given instance/realization.

Lastly, the performance of the usage of the two methods in a stochastic environment was

compared. Table 6.3 shows the experimental design for the dynamic problem.

6.2.1 Deterministic Validation

A mathematical model was developed for CPLEX on Auburn University’s HPC for

validation of dynamic deterministic problems. Its performance was compared with the Plan

method. The goal of this experiment is to determine if the Plan method can perform as well
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Table 6.3: Dynamic Experimentation Design

Deterministic Stochastic
Size tour Math Plan Reactive MANET Reactive
S RAN � �
S SAR • • ◦ �
S TRA • • ◦ �
M PAT • • ◦ �
M POL • • ◦ �
M RAN • • ◦ �
M SAR • • ◦ �
M TRA • • ◦ �
L SAR • • ◦ �
X POL • • ◦ �
�Validation only : |Ut| < 8. •10 runs of 3 replications.

◦For best Plan solution per run, 5 realizations of 3 replications.

�For best Plan solution per run, 5 realizations. 1 deterministic replication

as the mathematical model. Define the hypothesis:

H0 : µOFVPlan = OFVMath (6.2)

where OFV = γ1|At| − γ2ANCU . The tested problems were small to accommodate the

mathematical model’s computation time requirements. The dynamic problem’s mathemati-

cal model is more computationally difficult than a similar sized static problem. The math-

ematical model must solve multiple static problems with the inclusion of the movement

constraints, interdependence, and precedence of assignments between time steps.

Fifteen problems were evaluated using the math model and the Plan method. For these

problems, each user node had a random tour of length three with a random starting location

in a 1000×1000 km area of operation. The movement rate (used to define the polar tour)

and connection radius varied between problems. The number of user nodes ranged from

three to ten.

Table 6.4 lists a sample of the results of the Plan and math model solutions. The

complete listing of validation results is provided in the Appendix, Table C.3. Each run of
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the Plan method (consisting of three replications) had a low standard deviation for each

metric. This is indicative of the convergence of the pre-plan with RTI and genetic algorithm

assignment methods to good solutions within a run. For twelve of the fifteen runs σ|At|Plan =

σANCUPlan = σOFVPlan = 0; the t-statistic could not be calculated. For the three runs where

σOFVPlan > 0, the t-statistic determined statistical differences.

Table 6.4: Sample Dynamic Deterministic Validation Results

Graph µ|At| σ|At| µANCU σANCU µOFV σOFV |A|Math ANCU Math OFV Math

v 01 2.0 0.0 3.0 0.0 -25.0 0.0 2 3 -25
v 02 5.0 0.0 3.0 0.0 -22.0 0.0 5 3 -22
v 15 7.0 1.0 5.0 0.0 -38.0 1.0 4 4 -32
v 16 10.0 1.0 7.0 0.0 -53.0 1.0 8 8 -64
v 21 8.3 0.6 5.0 0.0 -36.7 0.6 9 5 -36

When σOFVPlan = 0, then µOFVPlan was assumed to be constant and compared directly

to OFVMath; they were only equal or not equal. The result of each of the fifteen runs of the

Plan method when compared to the math model fit one of five categories:

Outcome 1: Reject H0 and the math model performed better

Outcome 2: Do not reject H0

Outcome 3: σOFVPlan = 0 and Plan performs as well as the math model

Outcome 4: σOFVPlan = 0 and Plan performs better

Outcome 5: σOFVPlan = 0 and the math model performs better

Cases 2, 3, and 4 support the null hypothesis that the Plan method performs as well as

or better than the math model. Figure 6.3 shows the proportion of runs of each outcome.

The bracket to the right of each metric groups these run outcomes that support the null

hypothesis. The OFV outcomes show that the Plan method does as well or better than

the math model in 66.7% (10/15) of the runs. Though the OFV is the primary metric

for comparing solution methods, it is promising to see that the Plan method did well in
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minimizing |At| and maximizing ANCU when compared to the math model. In a majority

of the runs, the Plan method did perform as well as the math model.

6.7%

20.0%

46.7%

100.0%

40.0%

6.7%

6.7%

26.7%

26.7%

13.3%
6.7%

| A  | A N C U O F V

do not reject Ho σ=0, Math = Plan σ=0, Plan is better σ=0, Math is better reject Ho

t

Figure 6.3: Dynamic Deterministic Validation Results

Alternatively, because in many runs the variation in metric scores within a run of the

Plan method was zero, the ratio Plan
Math

provides a means for comparison of each metric. Figure

6.4 shows the proportion of runs that validate the Plan’s performance compared to the math

model. Here, there are three outcomes; outcomes 1 and 2 support the null hypothesis.

Outcome 1: Plan performed better ( Plan
Math

< 1)

Outcome 2: Plan performed as good as the math model ( Plan
Math

= 1)

Outcome 3: Math model performed better ( Plan
Math

> 1)

The bracket to the right of each metric bar groups the run outcomes that support the null

hypothesis. The primary objective to minimize |At| was better or equal to the math model

in 60% (9/12) of runs (
µ|At|Plan

|At|Math
≤ 1). The ANCU is the secondary objective and the Plan

method found solutions as good as the math model in all runs (
µANCUPlan

ANCUMath
= 1). The OFV

is the primary metric by which the solution methods are compared had a resultant 80.0%
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(12/15) of the runs where
µOFVPlan

OFVMath
≤ 1. In many cases the performance of the Plan method

is just as good as the math model.

13.3%

40.0%

46.7%

100.0%

40.0%

40.0%

20.0%

| A  | A N C U O F V

Plan is better Math = Plan Math is better

t

Figure 6.4: Dynamic Deterministic Validation Results : Ratios

The computation time required to determine math and Plan solutions are shown in Table

6.5. The computation time for the math method was recorded from Auburn University’s

HPC. The time recorded for the Plan method are the sum of three replications on a PC. It

can be seen that the computation time of the Plan method is significantly lower, yielding

comparable results (as shown in the previous section). Even in cases where the Plan solution

requires more time than the math solution, the computer power difference between an HPC

and PC should mitigate this difference.

Note that the large variation in the math model computation time, ex. graph v 21, is

a result of problem size. The resultant solution for graph v 21 required almost double the

number of agent nodes needed for any other graph. But the increase in search space, number

of variables, and constraints is non-linear with number of user/agent nodes.

When comparing the primary and secondary objectives, in a majority of the runs, the

Plan method performed as well as the math model. Comparison of the OFV metric also
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Table 6.5: Dynamic Deterministic Validation Computation Time

Math Plan
Graph (h:mm:ss) (m:ss)
v 01 0:00:08 1:09
v 02 3:21:25 1:35
v 05 1:06:06 1:36
v 06 0:00:01 1:18
v 07 2:33:14 1:34
v 08 0:10:55 1:35
v 09 0:09:53 1:53
v 10 0:02:44 1:59

Math Plan
Graph (h:mm:ss) (m:ss)
v 11 0:00:13 2:26
v 12 0:34:33 1:52
v 15 0:07:46 0:02
v 16 0:26:16 0:11
v 19 1:27:06 3:03
v 20 0:12:12 2:16
v 21 11:34:27 0:03

shows that the Plan method performs as well as the math model in most runs. The Plan

method was shown to have a significantly lower computation time requirement. With the

combination of good comparative performances and significantly lower computation time,

the Plan method is a sufficient solution process.

6.2.2 Deterministic Experimentation and Analysis

An average of the runs of the Plan method in a deterministic environment was compared

to the single replications of the Reactive method to determine if planning is beneficial. In

such a case, the null hypothesis should be rejected. Define:

H0 : µOFV Plan
= OFV Reactive (6.3)

where OFV = γ1|At| − γ2ANCU . Because the DMMST method used as the reactive po-

sitioning is a deterministic solution method, only a single replication is required. However,

each replication of the Plan method potentially yields a different size |At|. For a fair com-

parison, |At|Reactive was set to the size of |At|Plan and the Reactive method was evaluated for

each replication of the Plan. The Reactive method was evaluated for each replication of the

Plan.

To compare the Plan and Reactive method, because of the aforementioned factors,

only the ANCU and Bt metrics were considered. The OFV was the primary measure
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of comparison and was defined as the weighted sum of these two values. Similar to the

OFV for the assignment problem, |At| and noia which are not applicable in the simulation

environment were excluded. For each run for each metric, the mean and standard deviation,

µ and σ were determined. Table 6.6 lists a sample of the obtained values from both methods.

The entire list of results for the dynamic deterministic experimentation is found in Table

C.1.

Table 6.6: Sample Dynamic Deterministic Experimentation Results

Plan Reactive
ANCU Bt OFV ANCU Bt OFV

Graph µ σ µ σ µ σ µ σ µ σ µ σ

S SAR 1002 4 0 0.90 0.01 -567.7 0.23 3.98 0.01 0.95 0.0 -567.9 1.83
S SAR 1003 4 0 0.88 0.01 -566.9 0.66 3.92 0.06 0.94 0.0 -559.2 7.14
M POL 1001 10 0 0.92 0.01 -773.1 0.15 9.19 0.14 0.97 0.0 -742.2 10.88
M POL 1002 10 0 0.92 0.01 -772.9 0.15 9.40 0.04 0.97 0.0 -758.2 3.45
X POL 1009 60 0 0.91 0.00 -4703.8 0.05 58.37 0.08 0.98 0.0 -4578.6 6.25
X POL 1010 60 0 0.92 0.00 -4704.1 0.11 58.23 0.10 0.98 0.0 -4567.6 7.94

Five outcomes were defined based on the results of a t-test. Figure 6.5 shows the

proportion of each outcome.

Outcome 1: Reject H0 and MANET is better

Outcome 2: Do not reject H0

Outcome 3: Reject H0 and Reactive is better

Outcome 4: σOFV Plan
= 0 and Plan performs better

Outcome 5: σOFV Plan
= 0 and Reactive performs better

There was a statistical difference in ANCU , favoring the Plan method, in 63.3% (57/90)

of the runs. Contrarily, there were 33.3% (30/90) of runs where the ANCU for the Plan and

Reactive method were statistically equivalent but with 27/30 of the runs where the Reactive

solution was not connected at all time steps and the Plan solution was. For all runs the

Reactive method had a better robustness score, but was not as well connected. Recall that

93



63.3%
56.7%

2.2%

1.1%

33.3%

2.2%

37.8%

97.8%

5.6%

A N C U B O F V

Plan is better s=0, Plan is better s=0, Reactive is better do not reject Ho Reactive is better

Figure 6.5: Dynamic Deterministic Experimentation Results

the Assortativity metric, used here to measure robustness, has a few cases that lead to false

positive-like results. For example, a network with several disconnected sub-networks may

have a better Bt score but would have poor overall network connectivity.

The Plan method performed (strictly) better for only 56.7% (51/90) of runs when com-

paring the OFV metric. There is a large proportion of runs, 37.8% (34/90), that are statis-

tically equivalent. But, in 29/40 of these runs the Plan method maintains full connectivity

and the Reactive method does not. Similarly, 5.6% (5/90) of runs resulted in statistically

equivalent Plan and Reactive solutions but in 4/5 runs the Reactive solution was not con-

nected at all time steps and the Plan solution was. If the number of runs where the Plan

and Reactive methods are statistically equivalent but the Reactive solution is sub-optimal

(ANCU < |Ut|) is combined with the number of runs where the Plan is statistically better,

then the MANET performs better in 93.3% (84/90) of all runs.

There were 4.5% (4/90) of the runs where all three replications resulted in infeasible

solutions, ANCU < |Ut|. For these, the genetic algorithm did not converge to a feasible

solution within the alloted 10,000 iterations. Improving solutions were found well into the
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9,000s. Additional time was given but the algorithm did not converge to a feasible solution.

To determine if there is a solution given |At| a combinatorial assignment mathematical

model could be developed. If there is a solution to the mathematical model, the the genetic

algorithm has failed. If there is no feasible solution with |At| an infeasible solution could be

fixed by adding agent nodes until a feasible solution could be found.

Though there were a few cases where the genetic algorithm was unable to determine

a connected solution, approximately 77% (69/90) of runs resulted in σANCUPlan
= 0 and

ANCU = |Ut| indicating the genetic algorithm converged to a fully connected solution. This

is expected given the 100% service requirement. The maximum coefficient of variation for

the robustness metric was small, c.v.BtPlan
= 0.07. Similarly for the OFV , incorporating

incorporating both the ANCU and Bt , the maximum coefficient of variation was also small

c.v.OFV Plan
= −0.4. The low degree of variation within a run shows the genetic algorithm’s

convergence to good solutions.

Generally, for each problem type-instance, the Plan method required significantly more

computation time than the Reactive method. For the comparison of the Plan and Reactive

methods, the computational effort is noted but not used to determine the superiority of

either method. All runs in this comparison were done on a high-end personal computer [54].

The average computation time per run for each problem instance and each solution method

is provided in Appendix Table C.5.

For a decision maker, the computation time could be the deciding factor in determining

which method to use. As was discussed previously, there is a large portion of runs where

there was no statistical difference in ANCU or OFV but they were infeasible. The decision

maker would have to determine if it is worth the compromise to use the Reactive method over

the Plan method. That is to say, if 100% connectivity is required, then the computational

time required of the MANET method is worth its usage.

It can be concluded that the Plan method performed better than the Reactive at the

cost of computational effort. The improvement in performance is even more pronounced
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because the same mechanism used in the Reactive method, the DMMST, is an underlying

function of the Plan method.

6.2.3 Stochastic

After obtaining a solution from the Plan method, its usage in the stochastic environment

is evaluated. Recall that 4.4% (4/90) of the runs were infeasible, |ANCU | < |Ut|, and were

not considered in the following experimentation.

Comparison of the Plan and Reactive Methods

In the stochastic environment where user nodes can deviate from their tours, it is possible

for the network to become disconnected. The control node attempts to mitigate this by

modifying the assigned agent node tours. It is expected that MANET will perform better

than the Reactive method in the stochastic environment, i.e. reject H0 (Equation 6.3).

The best found replication per run (90 Plan solutions [Level 1]) was used to generate

five stochastic instances of the given map [Level 2] and tested across three replications of

the MANET method [Level 3]. The Reactive method is deterministic, thus it only needs to

be run once per realization.

The ANCU , Bt , and OFV metrics are compared. The |At| is constant within a run.

Thus, the ANCU metric is supplemented with the robustness metric to determine its value.

Table 6.7 provides a sample of the results. Here, the graph label is the concatenation of

the problem type, instance, best Plan solution (per run), and stochastic path identification

numbers.

A one sample two-tailed t-test was used to compare the three replications of the MANET

(Level 3: 3001-3003) with the Reactive method. There were five outcomes when the MANET

runs were compared with a Reactive solution.

Outcome 1: Reject H0 and MANET performs better

Outcome 2: Do not reject H0
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Outcome 3: Reject H0 and Reactive performs better

Outcome 4: σOFVMANET
= 0 and MANET performs better

Outcome 5: σOFVMANET
= 0 and Reactive performs better

Figure 6.6 shows the proportion of runs of each of these outcomes when comparing the

MANET and Reactive methods. Outcomes 1 and 4 support the rejection of the null hypoth-

esis, that the MANET method performs better than the Reactive method. The bracket to

the right of each metric bar groups these run outcomes.

Comparing the ANCU , in 77.4% (333/430) of runs the MANET performed better.

This shows that using this pre-plan, assign, and possible re-planning is beneficial in keeping

the network connected a majority of the runs. The MANET had a better value of Bt for

68.8% (296/430) of the runs. Using this number alone can be misleading when there are

highly connected subnetworks and not a fully connected network. The primary metric,

OFV , shows that the MANET method performed better in 79.5% (342/430) of all runs.

Because the weighted OFV has ANCU as a sub-component, the performance rate of these

two are very similar. The portion of runs where the Reactive method does as well as the

MANET model (outcome 2) can be based on the inability of MANET method maintain full

connectivity in a stochastic environment which can be expected.

However, there remains 14.2% (61/430) of the runs where the Reactive method performs

better than the MANET when comparing the OFV . These results do not support the

Table 6.7: Sample Dynamic Stochastic Simulation Results

MANET REACT
ANCU Bt OFV

Graph µ σ µ σ µ σ ANCU Bt OFV

S SAR 01-1002-1403296479 3.86 0 0.944 0 -551.54 0 -548.03 0.93 3.84
S SAR 01-1002-241471907 4.00 0 0.944 0 -569.53 0 -562.99 0.93 3.95
S SAR 01-1002-253537267 3.82 0 0.945 0 -545.59 0 -551.12 0.93 3.86
M TRA 01-1003-1397660399 20.00 0 0.946 0 -853.25 0 -853.28 0.95 20.00
M TRA 01-1003-147115108 19.36 0 0.947 0 -826.25 0 -826.27 0.95 19.36
X POL 10-1001-90240878 60.00 0 0.997 0 -4705.91 0 -4663.87 0.99 59.46
X POL 10-1001-963671391 59.77 0 0.997 0 -4687.92 0 -4624.87 0.99 58.96
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Figure 6.6: Dynamic Stochastic Experimentation Results

objective of this dissertation to assert that the MANET method performs better than the

Reactive method. These runs also have ANCU Reactive > ANCU MANET , a loss of connectivity

of user nodes. Figure 6.7 shows the proportion of runs that had either outcomes 3 or 5,

divided by type. It is evident that the M TRA problem type is difficult for the MANET to

solve.

For the M TRA problem type 62% (31/50) of its runs result in the Reactive outper-

forming the MANET method. And, it accounts for 50.8% (31/61) of all runs where Reactive

performs better. These maps have a medium number of user nodes (|Ut| = 20) in a small area

(3.2 × 3.2km). The mission time averages about 18 time steps. The resultant agent node set

is small (|At| ∼ 5). This type may be problematic in analyzing the difference between the

MANET and Reactive methods in a stochastic environment because the network remains

well connected most of the time, even with multiple node deviations.

When the network is determined to be deviating, the deviation parameters have an

effect on the responsiveness of the MANET method. The ∆replan parameter had a large

effect on these poor performing runs. For any value of ∆replan > 0% it is possible to not
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re-plan for a disconnected forecast network state if the amount of deviation does not exceed

this threshold. Also, the re-plan cool down rule (see Heuristic 3) makes it possible to have a

disconnected network before allowing the next re-plan. Not allowing consecutive re-plans was

incorporated to prevent re-planning at each step, which could be interpreted as a Reactive

method.

In a similar way, the M SAR type resulted in 16.4% (10/61) of the runs in the third

case. These maps have a medium number of user nodes (|Ut| = 20) in a small area (6.9 x

6.9 km). The resultant number of agent nodes is approximately 40. This network is also

somewhat dense and deviations are absorbed because of this. Further analysis of the runs

where the Reactive method is statistically better seems to indicate that the problem type

and selected re-planning parameters are important.
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2 2
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SAR TRA POL RAN SAR TRA SAR POL

S M L X

reject Ho, Reactive is better σ=0, Reactive is better

Figure 6.7: Dynamic Stochastic Experimentation Where Reactive is Superior by Type

Computation time for each stochastic environment type is found in the Appendix, Table

C.7. It lists the average computation time of the runs (three replications) of five realizations

of the best found Plan solution. The type of problem affects the computation time. Generally,

when solving the SAR type problems (of S, M, and L size class) the computation time of the

MANET and Reactive methods are comparable. The MANET method computation time

is approximately ten times that of the Reactive method for TRA type problems (regardless

of size). The M PAT problem type also shows that the MANET method requires about
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ten times more computation time. The remaining types require at most about five times

more computation time to solve with the MANET compared to the Reactive method. This

shows that for some problem types the Reactive method should not be discounted, as it does

provide good results for a significant portion of the stochastic environment runs.

For a decision maker, the computation effort required to use the MANET has to be

compared with the connectivity requirements of the system. If 100% connectivity is required,

the increase in computation time would be justified by typically better network management.

Additionally, the problem type may influence the selection of solution method. Recall the

definition of the time-steps t and its relationship to a real-world time interval τ . When the

computation time of a positioning method is less than τ , its use is justified. For example,

search and rescue missions may suffice with large values of τ , such as hourly updates, allowing

for complex positioning methods like the MANET. Alternatively, military missions (TRA,

PAT, and POL types) may require smaller values of τ requiring fast generation of solutions.

6.3 Chapter Summary

The effectiveness of the Reduction method as a static problem solution method has been

validated with a mathematical model and shown to be better than methods provided in the

literature. For the dynamic deterministic environment problem, the Plan method, pre-plan

with the RTI method and assign with a genetic algorithm, has been show to efficiently de-

termine minimum |At| connected solutions. Also validated with a mathematical model, the

Plan method maintains network connectivity better than the Reactive method. In the in-

stance where the Plan method returns an infeasible solution and the service level requirement

is 100%, the decision maker can manually add agent nodes assigning them the locations that

connect the network. With user node deviations in the stochastic environment, the MANET

method, using the Plan method with the possibility to re-plan, was shown in most runs to

perform better than the Reactive method, though at a higher computational cost.
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Chapter 7

Conclusions and Research Extensions

The primary research objective for this dissertation was to develop a method for and

evaluate the effectiveness of using pre-deployment planning in a mobile ad-hoc network. This

was done by measuring/evaluating a network’s state at discrete time steps as it progressed.

Using planning information was hypothesized to result in better performance when compared

to a purely reactive method.

7.1 Static Problem Research Objectives

The static problem was to determine agent node locations to connect a disconnected

network while minimizing |P | . The Reduction method starts by connecting the network

with the MMST solution. It iteratively removes a random connecting node and repositions

the remaining nodes using the DMMST. The resultant network is either the MMST solution

or one with fewer |P | that connects the network.

To validate the Reduction method a modified version of Konak et al.’s ALOC [34]

formulation of a network as a maximum flow problem was solved in CPLEX. This method

yielded optimal minimum |P | solutions but at the cost of computation time. In almost all

runs the Reduction performed as well as the exact mathematical model to connect a given

network and minimize |P |. In addition, a run of the Reduction method is significantly faster

than the mathematical model.

A secondary objective of this dissertation was to provide a better static problem position

solution than was found in the literature (Lin and Xue’s method [40]). From the testing in

this dissertation, the Reduction method performed better than the Lin and Xue’s [40].
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7.2 Dynamic Problem Research Objectives

Based on the Reduction method, the Reduction per Time Interval (RTI) method solved

sequential static problems to determine a set of connecting points for each time step, Pt.

A genetic algorithm determined assignments of points in Pt to the set of agent nodes At

(where |At| = maxt Pt). The genetic algorithm measures |At|, ANCU , Bt , and noia (number

of infeasible assignments). The Bt metric is defined by a normalized Assortativity score.

Most of the assignment solutions had a minimized |At|, equal to the mathematical model

solutions, and always connected the network (ANCU = |Ut|) with only 4.5% (4/90) of the

runs where no feasible solution was found (ANCU < |Ut|).

The Reactive method forecasts user node positions and directs agent nodes to connecting

points determined by the DMMST method. It does not have the ability to determine the size

of the agent node set. Thus, for the Reactive method, |At| is set a priori. In this dissertation,

for an equal basis of comparison, the Reactive method experimentation was conducted after

the Plan method so that |At|Reactive could be set to |At|Plan .

In the stochastic environment, in addition to the aforementioned metrics, user node

deviations were also measured. Re-planning was done for future time steps when the forecast

network topology was disconnected and deviating. Using the Plan with the possibility of

re-planning was defined as the MANET method. For a majority of the runs, the MANET

method outperformed the Reactive method.

There was a portion of runs where the Reactive method performed better than the

MANET method. Part of this was attributed to the problem type. Networks that had

dense node clumping, even during user node deviating events, remained well (though not

necessarily fully) connected. As a result, the MANET method had a low rate of re-planning

(approximately once during a mission). The Reactive method, however, reacts in accor-

dance with the forecast network at each time step. The inability of the MANET method

to maintain a better connected network than the Reactive method can be attributed to the

limitations defined for re-planning (i.e. re-plan threshold, re-plan cooldown, no re-plan if
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forecast network is connected). Also, the potential deficiency in the genetic algorithm imple-

mentation could be a factor, considering its inability to find feasible solutions for the 4.4%

of the dynamic deterministic runs.

Barring this unforeseen anomaly caused by the combination of the problem type defini-

tion and re-plan parameters, a majority of the stochastic environment simulation runs showed

a benefit from planning and re-planning. This benefit is further supported by the fact that

the Plan method relies on the DMMST method that is used as the Reactive method. Using

pre-deployment planning to maintain network connectivity has been shown to be beneficial

when compared to the Reactive positioning method.

7.3 Future Work

There are several modifications to the existing dissertation that could be investigated.

The genetic algorithm could benefit from modifications to population reproduction, mutation

and culling methods. A few parameters could be changed or eliminated to investigate the

performance of the MANET. For example, the re-plan three time step cool-down parameters

could be eliminated allowing for re-plans as often as possible. As was discovered post-

experimentation, the user node tour definition can negatively impact the performance of the

planning searches. New tour types should be developed or alternatively obtain empirical

mobile network data.

Incorporating a reactive method into the MANET may be beneficial. This would require

an additional threshold, ex. ∆reactive, that would define when the agent nodes should be

explicitly directed instead of following a (modified) tour. For example, if the network forecast

is not fully connected and is either not deviating enough for re-plan or in re-plan cool-

down, the Reactive method could be employed. The re-plan method could be used when

the network deviates beyond the threshold ∆replan, or if the Reactive method is used too

frequently indicating a need to re-plan. Combining a reactive method with agent node tours,

could mitigate the shortcomings of having a re-plan cool-down time.
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This dissertation seeks to determine the minimum number of agent nodes to connect

the network over the course of the simulation. This is based on the assumption that an

unlimited, though minimized, number of agent nodes can be obtained. If |At| is limited then

several modifications to the existing formulation would be needed. Initially, determining

the maximum value of |Pt| needs to be addressed. The deterministic environment pre-

plan methodology would then seek to determine locations of connecting points to maximize

connectivity with a constraint on Pt. The constraint requiring 100% connectivity has to be

replaced with a minimum service goal. The assignment method would then be very similar

to what has been defined but with a constraint on |At|.

As an example, consider a network with a tight constraint on |At|. The likelihood of

partially connected networks is high. If the resultant ANCU is about 50% of all nodes,

then each solution is likely to have a different assignment of points in Pt to Qt. The assign-

ment method solutions would likely have a higher variability between replication. Similarly,

evaluating the MANET method in the stochastic environment could result in higher vari-

ability per replication. The run size (number of replications) should be adjusted for both

the assignment and MANET methods to accommodate this likely increase in variability.
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Appendix A

Pseudo Code

A.1 Grouping

Multiple unconnected nodes that have overlapping coverage areas, (diij < 2 × r) for

i, j ∈ N , can be considered as a group. When identified, an additional centroid placed node

can be determined to connect these nodes. The following details the logic to determine a

group. The resultant matrix of nodes, Λ, is indexed by the group number g and node number

in that group i.

Heuristic 10: FindGroups

Input: List of nodes N , Connection radius R
Output: List of groups Λ = {ngi}

1 define Λ = {}
2 for g = 0 to |N | do
3 add Ng to Λg

4 for i = 0 to |N | do
5 for j = 0 to |Λg| do
6 if 0 < dNg ,Λgj < 2×R &
7 Ng 6= Λgj

8 & Ng is not connected to Λgj then
9 add Ni to Λg

10 return Λ

A.2 Find Centroids

The method FindCentroids identifies clusters nodes that would benefit by a centroid

placed point. By looking at all combinations of size 3 to 5 nodes, three tests are sequentially
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performed to determine the location of a centroid node: average coordinate, midpoint, and

circumcenter.

Heuristic 11: FindCentroids
Data: List of nodes N , Connection radius R
Input: Matrix of groups of nodes Λ = FindGroups(N,R)
Output: Connecting centroid location n = (nx, ny)

1 define n = (0, 0)
2 for h = 0 to |Λ| do
3 for i = 0 to |Λh| do
4 for j = i to |Λh| do
5 for k = j to |Λh| do
6 for l = k to |Λh| do
7 for m = l to |Λh| do
8 n← average(Λhi,Λhj,Λhk,Λhl,Λhm)
9 If n connects Λh then return n

10 n← midpoint(Λhi,Λhj,Λhk,Λhl,Λhm)
11 If n connects Λh then return n

12 n← average(Λhi,Λhj,Λhk,Λhl)
13 If n connects Λh then return n
14 n← midpoint(Λhi,Λhj,Λhk,Λhl)
15 If n connects Λh then return n

16 n← average(Λhi,Λhj,Λhk)
17 If n connects Λh then return n
18 n← midpoint(Λhi,Λhj,Λhk)
19 If n connects Λh then return n
20 n← circumcenter(Λhi,Λhj,Λhk)
21 If n connects Λh then return n
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Appendix B

Checkpoint Definition

This section discusses the influence of the magnitude of user node movement rate, v, on

tour definition.

B.1 Small Variation Between Checkpoints (Linear)

A smaller magnitude of v results in a smaller degree in angular change between check-

points. This will result in a more linear set of checkpoints. At v = 0, the checkpoints will

be created in a ray, starting at the control node, with a distance of S between them.

B.2 Large Variation Between Checkpoints (Random)

Increasing the magnitude of v increases the randomness of checkpoint definition. Each

checkpoint will still have a distance of S between them, but can result in any polygonal

arrangement. In such a case, there is a higher likelihood of user node’s paths crossing.

Instead of a network expanding with each checkpoint, it could be folded in on itself.
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Appendix C

Experimental Results

Table C.1: Static Problem Experimentation Results

Graph |P |Math |P |MST |P |MMST µ|P |Reduction σ|P |Reduction
|P |MST

|P |Math

|P |MMST

|P |Math

µ|P |Reduction
|P |Math

5-000 2 2 2 2.0 0.0 1.00 1.00 1.00

5-008 3 3 3 3.0 0.0 1.00 1.00 1.00

5-012 4 4 4 4.0 0.0 1.00 1.00 1.00

5-028 3 3 3 3.0 0.0 1.00 1.00 1.00

5-031 3 3 3 3.0 0.0 1.00 1.00 1.00

5-033 2 2 2 2.0 0.0 1.00 1.00 1.00

5-051 3 3 3 3.0 0.0 1.00 1.00 1.00

5-071 4 4 4 4.0 0.0 1.00 1.00 1.00

5-077 4 4 4 4.0 0.0 1.00 1.00 1.00

5-081 2 2 2 2.0 0.0 1.00 1.00 1.00

5-092 3 3 3 3.0 0.0 1.00 1.00 1.00

5-102 3 3 3 3.0 0.0 1.00 1.00 1.00

5-104 3 3 3 3.0 0.0 1.00 1.00 1.00

5-107 2 2 2 2.0 0.0 1.00 1.00 1.00

5-122 2 2 2 2.0 0.0 1.00 1.00 1.00

5-124 3 3 3 3.0 0.0 1.00 1.00 1.00

5-126 4 4 4 4.0 0.0 1.00 1.00 1.00

5-130 3 3 3 3.0 0.0 1.00 1.00 1.00

5-150 3 3 3 3.0 0.0 1.00 1.00 1.00

5-153 3 3 3 3.0 0.0 1.00 1.00 1.00

5-154 3 3 3 3.0 0.0 1.00 1.00 1.00

5-181 2 2 2 2.0 0.0 1.00 1.00 1.00

5-191 3 3 3 3.0 0.0 1.00 1.00 1.00

5-193 2 2 2 2.0 0.0 1.00 1.00 1.00

5-199 2 2 2 2.0 0.0 1.00 1.00 1.00

5R-00 4 4 4 4.0 0.0 1.00 1.00 1.00

5R-01 4 4 4 4.0 0.0 1.00 1.00 1.00

5R-02 3 3 3 3.0 0.0 1.00 1.00 1.00

5R-03 3 3 3 3.0 0.0 1.00 1.00 1.00

Continued on next page
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Table C.1 – continued from previous page

Graph |P |Math |P |MST |P |MMST µ|P |Reduction σ|P |Reduction
|P |MST

|P |Math

|P |MMST

|P |Math

µ|P |Reduction
|P |Math

5R-04 4 4 4 4.0 0.0 1.00 1.00 1.00

5R-05 4 6 6 4.0 0.0 1.50 1.50 1.00

5R-06 4 4 4 4.0 0.0 1.00 1.00 1.00

5R-08 3 3 3 3.0 0.0 1.00 1.00 1.00

10-02 dnf 6 7 6.0 0.0 - - -

10-06 5 7 7 5.0 0.0 1.40 1.40 1.00

10-07 6 7 7 6.0 0.0 1.17 1.17 1.00

10-09 dnf 7 6 5.0 0.0 - - -

10-10 4 5 6 4.0 0.0 1.25 1.50 1.00

10-11 5 6 5 5.0 0.0 1.20 1.00 1.00

10-12 dnf 7 7 6.0 0.0 - - -

10-13 dnf 7 6 6.0 0.0 - - -

10-20 4 6 5 4.0 0.0 1.50 1.25 1.00

10-21 4 6 4 4.0 0.0 1.50 1.00 1.00

10-22 5 6 5 5.0 0.0 1.20 1.00 1.00

10-23 dnf 4 4 4.0 0.0 - - -

10-24 3 5 3 3.0 0.0 1.67 1.00 1.00

10-25 dnf 5 5 5.0 0.0 - - -

10-26 5 6 6 6.0 0.0 1.20 1.20 1.20

10-27 5 7 7 5.0 0.0 1.40 1.40 1.00

10-28 dnf 7 6 6.0 0.0 - - -

10-29 5 6 5 5.0 0.0 1.20 1.00 1.00

10-30 5 8 5 5.0 0.0 1.60 1.00 1.00

10-31 5 6 5 5.0 0.0 1.20 1.00 1.00

10-32 6 8 6 6.0 0.0 1.33 1.00 1.00

10-33 4 5 4 4.0 0.0 1.25 1.00 1.00

10-34 6 8 7 6.3 0.5 1.33 1.17 1.04

10-36 4 6 6 4.0 0.0 1.50 1.50 1.00

10-37 4 4 4 4.0 0.0 1.00 1.00 1.00

10-38 5 5 5 5.0 0.0 1.00 1.00 1.00

10-39 4 5 4 4.0 0.0 1.25 1.00 1.00
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Table C.2: Static Problem Validation and Experimentation Computation Time

Math Reduction

Map |U | (HPC hh:mm:ss) (PC seconds)

5-000 5 0:00:02 2.611

5-008 5 0:00:19 40.254

5-012 5 0:00:18 20.099

5-028 5 0:00:04 2.718

5-031 5 0:00:15 20.827

5-033 5 0:00:04 2.625

5-051 5 0:01:57 2.473

5-071 5 0:04:52 3.04

5-077 5 0:05:55 2.23

5-081 5 0:00:03 1.627

5-092 5 0:00:23 2.692

5-102 5 0:00:25 4.002

5-104 5 0:00:25 2.598

5-107 5 0:00:06 2.161

5-122 5 0:00:06 2.231

5-124 5 0:01:18 0.959

5-126 5 0:01:22 1.391

5-130 5 0:00:06 1.032

5-150 5 0:00:10 0.969

5-153 5 0:00:06 1.031

5-154 5 0:01:15 0.837

5-181 5 0:00:02 0.734

5-191 5 0:01:20 0.771

5-193 5 0:00:00 0.739

5-199 5 0:00:02 0.724

5R-00 5 0:00:35 1.962

5R-01 5 0:02:35 1.788

5R-02 5 0:00:06 1.366

5R-03 5 0:00:04 1.843

5R-04 5 0:00:25 1.996

5R-05 5 0:00:08 2.34

5R-06 5 0:00:10 2.199

5R-08 5 0:00:08 0.941

10-02 10 >30:00:00 6.83

10-06 10 1:01:46 9.833

10-07 10 1:32:32 8.124

Continued on next page
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Table C.2 – continued from previous page

Math Reduction

Map |U | (HPC hh:mm:ss) (PC seconds)

10-09 10 >30:00:00 8.324

10-10 10 0:26:41 4.217

10-11 10 16:32:00 5.12

10-12 10 >30:00:00 6.823

10-13 10 >30:00:00 6.315

10-20 10 4:01:47 4.676

10-21 10 0:32:20 4.414

10-22 10 7:20:59 6.009

10-23 10 >30:00:00 3.782

10-24 10 0:02:56 3.434

10-25 10 >30:00:00 5.178

10-26 10 14:44:19 6.393

10-27 10 2:12:24 6.009

10-28 10 >30:00:00 6.929

10-29 10 0:10:58 5.097

10-30 10 5:09:46 5.825

10-31 10 15:31:42 5.727

10-32 10 1:56:43 6.164

10-33 10 3:02:58 4.629

10-34 10 1:11:35 8.018

10-36 10 3:26:00 6.346

10-37 10 17:07:42 3.608

10-38 10 9:40:27 4.862

10-39 10 10:08:17 4.414

Mean 6:47:05 4.882

Std.Dev 13:26:52 6.002

”>30:00:00” treated as 30 hours when calculating mean and std.dev.
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Table C.3: Dynamic Deterministic Validation Results

Graph µ|At| σ|At| µANCU σANCU µOFV σOFV |A|Math ANCUMath OFVMath

v 01 2.0 0.0 3.0 0.0 -25.0 0.0 2 3 -25
v 02 5.0 0.0 3.0 0.0 -22.0 0.0 5 3 -22
v 05 5.0 0.0 3.0 0.0 -22.0 0.0 5 3 -22
v 06 3.0 0.0 3.0 0.0 -24.0 0.0 2 3 -25
v 07 5.0 0.0 3.0 0.0 -22.0 0.0 5 3 -22
v 08 3.0 0.0 5.0 0.0 -42.0 0.0 4 5 -41
v 09 5.0 0.0 5.0 0.0 -40.0 0.0 4 5 -41
v 10 5.0 0.0 5.0 0.0 -40.0 0.0 4 5 -41
v 11 3.0 0.0 5.0 0.0 -42.0 0.0 3 5 -42
v 12 5.0 0.0 5.0 0.0 -40.0 0.0 5 5 -40
v 15 7.0 1.0 5.0 0.0 -38.0 1.0 4 4 -32
v 16 10.0 1.0 7.0 0.0 -53.0 1.0 8 8 -64
v 19 7.0 0.0 7.0 0.0 -56.0 0.0 6 7 -57
v 20 6.0 0.0 5.0 0.0 -39.0 0.0 6 5 -39
v 21 8.3 0.6 5.0 0.0 -36.7 0.6 9 5 -36

119



Table C.4: Dynamic Deterministic Plan and Reactive Experimentation Results

MANET Reactive

ANCU B OFV ANCU B OFV

Graph-Replication µ σ µ σ µ σ µ σ µ σ µ σ

S SAR 1002 4.00 0.00 0.90 0.01 -567.71 0.23 3.98 0.01 0.95 0.00 -567.91 1.83

S SAR 1003 4.00 0.00 0.88 0.01 -566.85 0.66 3.92 0.06 0.94 0.01 -559.16 7.14

S SAR 1004 4.00 0.00 0.89 0.01 -567.08 0.31 3.92 0.07 0.93 0.01 -558.91 9.75

S SAR 1005 4.00 0.00 0.88 0.04 -566.70 1.63 3.96 0.03 0.95 0.02 -564.60 4.74

S SAR 1006 4.00 0.00 0.86 0.02 -565.70 0.87 4.00 0.00 0.94 0.00 -569.18 0.15

S SAR 1007 4.00 0.00 0.87 0.00 -566.43 0.10 3.87 0.03 0.94 0.01 -552.25 5.02

S SAR 1008 4.00 0.00 0.88 0.02 -566.69 0.92 3.98 0.03 0.94 0.01 -567.21 3.53

S SAR 1009 4.00 0.00 0.89 0.01 -567.25 0.56 3.96 0.03 0.95 0.00 -564.63 4.44

S SAR 1010 4.00 0.00 0.87 0.06 -566.44 2.71 3.95 0.02 0.95 0.00 -563.96 2.89

S TRA 1001 10.00 0.00 0.95 0.00 -1888.17 0.17 8.16 0.27 0.99 0.00 -1578.37 50.40

S TRA 1002 9.79 0.37 0.95 0.00 -1909.74 69.45 6.04 0.65 0.99 0.00 -1222.18 124.13

S TRA 1003 10.00 0.00 0.95 0.00 -1825.83 0.10 6.42 0.25 0.99 0.00 -1214.27 45.44

S TRA 1004 9.89 0.19 0.95 0.01 -1867.91 34.13 5.76 2.20 0.99 0.00 -1132.14 409.09

S TRA 1005 10.00 0.00 0.94 0.01 -1887.13 0.52 5.62 1.67 0.99 0.00 -1107.26 310.66

S TRA 1006 10.00 0.00 0.95 0.00 -1950.14 0.21 5.95 0.40 0.99 0.00 -1206.27 77.63

S TRA 1007 10.00 0.00 0.96 0.00 -1919.36 0.07 7.62 0.26 0.99 0.00 -1502.20 49.60

S TRA 1008 10.00 0.00 0.94 0.01 -2011.40 0.47 7.28 0.14 0.99 0.00 -1506.16 27.03

S TRA 1009 10.00 0.00 0.94 0.01 -1918.23 0.53 6.45 0.41 0.99 0.00 -1281.29 77.13

S TRA 1010 10.00 0.00 0.95 0.01 -1950.02 0.32 6.69 0.52 0.99 0.00 -1347.24 99.89

M PAT 1001 9.96 0.04 0.95 0.00 -1727.04 5.89 7.99 0.23 0.99 0.00 -1423.35 38.70

M PAT 1002 9.90 0.18 0.94 0.01 -1470.11 25.98 7.56 0.11 0.99 0.00 -1159.40 16.52

M PAT 1003 9.98 0.04 0.94 0.00 -1728.92 7.01 7.71 0.04 0.99 0.00 -1375.36 7.55

M PAT 1004 9.82 0.07 0.94 0.00 -1551.11 10.65 7.09 0.37 0.99 0.00 -1157.34 58.06

M PAT 1005 9.99 0.02 0.93 0.00 -1575.66 3.32 8.56 0.08 0.99 0.00 -1387.33 12.49

M PAT 1006 9.90 0.09 0.95 0.00 -1655.18 15.15 7.04 0.34 0.99 0.00 -1193.42 37.51

M PAT 1007 9.78 0.12 0.95 0.00 -1665.98 19.69 7.09 0.29 0.99 0.00 -1246.36 49.11

M PAT 1008 9.90 0.13 0.94 0.00 -1715.81 22.03 7.20 0.11 0.99 0.00 -1287.37 18.34

M PAT 1009 9.98 0.04 0.94 0.01 -1697.71 6.93 7.53 0.10 0.99 0.00 -1320.39 16.56

M PAT 1010 9.83 0.09 0.94 0.00 -1734.59 15.13 7.94 0.17 0.99 0.00 -1438.96 15.71

M POL 1001 10.00 0.00 0.92 0.01 -773.10 0.15 9.19 0.14 0.97 0.00 -742.17 10.88

M POL 1002 10.00 0.00 0.92 0.01 -772.92 0.15 9.40 0.04 0.97 0.00 -758.21 3.45

M POL 1003 10.00 0.00 0.92 0.01 -772.90 0.20 8.88 0.28 0.97 0.00 -718.24 21.69

M POL 1004 10.00 0.00 0.88 0.01 -771.93 0.14 8.64 0.21 0.97 0.00 -699.10 16.58

M POL 1005 9.97 0.02 0.91 0.01 -770.92 1.96 8.69 0.14 0.97 0.00 -703.12 10.91

M POL 1006 10.00 0.00 0.90 0.01 -772.40 0.21 8.95 0.10 0.97 0.00 -723.19 7.57

M POL 1007 10.00 0.00 0.91 0.00 -772.70 0.04 8.71 0.02 0.97 0.00 -704.15 1.72

M POL 1008 10.00 0.00 0.93 0.01 -773.15 0.16 8.59 0.21 0.97 0.00 -695.15 16.52

M POL 1009 10.00 0.00 0.91 0.02 -772.64 0.48 9.13 0.08 0.96 0.00 -737.06 6.25

M POL 1010 10.00 0.00 0.92 0.01 -772.91 0.28 9.18 0.12 0.97 0.00 -741.16 9.67

M RAN 1001 9.99 0.02 0.92 0.01 -772.14 1.38 8.91 0.10 1.00 0.00 -720.99 7.55

M RAN 1002 9.72 0.39 0.92 0.01 -751.72 29.65 8.47 0.24 1.00 0.00 -686.99 19.05

M RAN 1003 10.00 0.00 0.92 0.01 -772.95 0.30 9.03 0.22 1.00 0.00 -730.00 17.06

M RAN 1004 10.00 0.00 0.93 0.01 -773.31 0.16 8.55 0.72 1.00 0.00 -692.99 56.47

M RAN 1005 9.99 0.02 0.93 0.01 -772.20 1.63 9.45 0.09 1.00 0.00 -762.97 6.93

M RAN 1006 9.95 0.09 0.92 0.02 -769.19 6.57 8.86 0.24 1.00 0.00 -716.99 18.33

M RAN 1007 9.47 0.04 0.93 0.01 -733.85 3.19 9.28 0.08 1.00 0.00 -750.00 6.25

M RAN 1008 9.96 0.04 0.93 0.01 -770.43 3.09 9.28 0.08 1.00 0.00 -749.99 6.25

M RAN 1009 10.00 0.00 0.94 0.01 -773.44 0.13 8.49 0.06 1.00 0.00 -687.99 4.58

M RAN 1010 9.79 0.36 0.93 0.01 -757.93 26.53 9.01 0.61 1.00 0.00 -729.00 47.84

M SAR 1001 20.00 0.00 0.91 0.00 -2619.27 0.15 19.92 0.05 1.00 0.00 -2309.02 633.88
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Table C.4 – continued from previous page
MANET Reactive

ANCU B OFV ANCU B OFV

Graph-Replication µ σ µ σ µ σ µ σ µ σ µ σ

M SAR 1002 20.00 0.00 0.92 0.01 -2619.46 0.46 19.89 0.08 1.00 0.00 -2669.95 10.54

M SAR 1003 20.00 0.00 0.93 0.00 -2619.90 0.18 19.75 0.06 1.00 0.00 -2650.97 7.94

M SAR 1004 20.00 0.00 0.90 0.01 -2618.73 0.35 19.76 0.28 1.00 0.00 -2651.97 37.27

M SAR 1005 20.00 0.00 0.90 0.01 -2618.78 0.53 19.58 0.15 1.00 0.00 -2627.95 20.42

M SAR 1006 20.00 0.00 0.90 0.00 -2618.65 0.16 19.43 0.30 1.00 0.00 -2608.97 39.01

M SAR 1007 20.00 0.00 0.92 0.01 -2619.35 0.26 19.85 0.09 1.00 0.00 -2663.96 12.49

M SAR 1008 20.00 0.00 0.92 0.00 -2619.61 0.15 19.70 0.11 1.00 0.00 -2644.96 15.01

M SAR 1009 20.00 0.00 0.92 0.01 -2619.65 0.25 19.60 0.17 1.00 0.00 -2630.95 22.12

M SAR 1010 20.00 0.00 0.90 0.01 -2618.81 0.25 19.67 0.09 1.00 0.00 -2639.96 12.13

M TRA 1001 20.00 0.00 0.94 0.00 -1096.92 0.06 18.95 1.05 0.96 0.00 -1098.33 60.01

M TRA 1002 20.00 0.00 0.94 0.00 -1036.06 0.01 19.26 1.28 0.96 0.00 -1057.36 69.28

M TRA 1003 20.00 0.00 0.93 0.00 -1096.79 0.06 18.95 0.00 0.96 0.00 -1098.25 0.01

M TRA 1004 20.00 0.00 0.95 0.01 -1036.12 0.09 18.15 1.70 0.96 0.00 -997.36 91.65

M TRA 1005 20.00 0.00 0.95 0.00 -1097.07 0.04 16.14 0.61 0.97 0.00 -938.38 34.65

M TRA 1006 20.00 0.00 0.95 0.01 -1097.18 0.10 17.89 0.00 0.97 0.00 -1038.44 0.01

M TRA 1007 20.00 0.00 0.95 0.01 -1097.11 0.10 15.79 3.16 0.97 0.00 -918.41 180.00

M TRA 1008 20.00 0.00 0.95 0.00 -1157.98 0.06 16.67 2.52 0.97 0.00 -1019.35 151.01

M TRA 1009 20.00 0.00 0.95 0.00 -1158.02 0.06 17.95 2.65 0.97 0.00 -1096.32 158.73

M TRA 1010 20.00 0.00 0.94 0.00 -1096.94 0.06 15.79 0.00 0.96 0.00 -918.29 0.01

L SAR 1001 41.00 0.00 0.91 0.03 -5452.01 1.24 40.39 0.24 1.00 0.00 -5375.00 31.61

L SAR 1002 41.00 0.00 0.92 0.00 -5452.59 0.22 40.33 0.21 1.00 0.00 -5367.00 27.87

L SAR 1003 41.00 0.00 0.92 0.01 -5452.48 0.32 40.85 0.13 1.00 0.00 -5436.00 17.58

L SAR 1004 41.00 0.00 0.91 0.01 -5451.87 0.42 40.82 0.04 1.00 0.00 -5432.00 5.20

L SAR 1005 41.00 0.00 0.91 0.01 -5452.11 0.58 40.42 0.27 1.00 0.00 -5379.99 35.79

L SAR 1006 41.00 0.00 0.91 0.02 -5452.19 0.81 40.55 0.10 1.00 0.00 -5397.00 13.86

L SAR 1007 41.00 0.00 0.93 0.01 -5452.74 0.30 40.81 0.21 1.00 0.00 -5431.00 27.87

L SAR 1008 41.00 0.00 0.91 0.01 -5451.94 0.60 40.42 0.34 1.00 0.00 -5380.00 45.13

L SAR 1009 41.00 0.00 0.91 0.00 -5451.95 0.13 40.48 0.25 1.00 0.00 -5388.00 32.36

L SAR 1010 41.00 0.00 0.92 0.00 -5452.43 0.14 40.77 0.18 1.00 0.00 -5426.00 24.00

X POL 1001 60.00 0.00 0.90 0.00 -4703.52 0.01 58.44 0.16 0.99 0.00 -4583.64 12.48

X POL 1002 59.99 0.02 0.92 0.00 -4703.01 1.71 58.17 0.14 0.99 0.00 -4562.64 10.54

X POL 1003 60.00 0.00 0.91 0.00 -4703.78 0.11 58.73 0.17 0.98 0.00 -4606.59 13.08

X POL 1004 60.00 0.00 0.92 0.01 -4703.81 0.16 57.19 0.24 0.98 0.00 -4486.56 18.73

X POL 1005 60.00 0.00 0.91 0.00 -4703.73 0.12 58.17 0.36 0.98 0.00 -4562.58 28.36

X POL 1006 60.00 0.00 0.92 0.00 -4703.92 0.05 58.74 0.31 0.98 0.00 -4607.61 24.42

X POL 1007 60.00 0.00 0.92 0.01 -4703.97 0.14 57.95 0.06 0.98 0.00 -4545.59 4.55

X POL 1008 60.00 0.00 0.92 0.01 -4703.90 0.14 57.71 0.23 0.98 0.00 -4526.59 17.57

X POL 1009 60.00 0.00 0.91 0.00 -4703.78 0.05 58.37 0.08 0.98 0.00 -4578.58 6.25

X POL 1010 60.00 0.00 0.92 0.00 -4704.03 0.11 58.23 0.10 0.98 0.00 -4567.55 7.94
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Table C.5: Dynamic Deterministic Experimentation Computation Time per Instance

RTI GA Reactive

Instance (hh:mm:ss) (hh:mm:ss) (hh:mm:ss)

S SAR 1001 00:00:34 00:44:41 00:00:41

S SAR 1002 00:00:31 00:44:29 00:00:22

S SAR 1003 00:00:26 00:40:31 00:00:00

S SAR 1004 00:00:53 00:42:10 00:00:26

S SAR 1005 00:00:55 00:51:31 00:00:05

S SAR 1006 00:00:07 00:34:02 00:00:19

S SAR 1007 00:00:22 00:36:19 00:00:41

S SAR 1008 00:00:41 00:37:53 00:00:58

S SAR 1009 00:00:19 00:45:19 00:00:48

S SAR 1010 00:00:02 00:35:10 00:00:46

S TRA 1001 00:07:50 06:53:24 00:01:14

S TRA 1002 00:09:14 07:39:24 00:01:29

S TRA 1003 00:07:10 06:14:36 00:01:00

S TRA 1004 00:06:46 04:28:24 00:01:34

S TRA 1005 00:06:14 05:15:00 00:01:22

S TRA 1006 00:08:19 06:09:24 00:01:26

S TRA 1007 00:07:02 05:48:12 00:01:00

S TRA 1008 00:09:41 06:58:48 00:01:43

S TRA 1009 00:06:46 04:54:48 00:00:48

S TRA 1010 00:07:34 06:40:00 00:01:48

M SAR 1001 00:18:07 08:20:48 00:02:38

M SAR 1002 00:10:55 06:03:00 00:01:19

M SAR 1003 00:18:12 08:51:36 00:03:12

M SAR 1004 00:18:17 08:05:24 00:01:43

M SAR 1005 00:13:58 06:34:12 00:02:41

M SAR 1006 00:17:55 07:44:12 00:02:24

M SAR 1007 00:12:12 06:17:24 00:01:46

M SAR 1008 00:12:07 06:45:00 00:02:53

M SAR 1009 00:14:10 06:15:48 00:02:48

M SAR 1010 00:10:00 05:28:24 00:01:22

M TRA 1001 00:01:19 00:00:17 00:00:43

M TRA 1002 00:01:55 00:00:02 00:00:24

M TRA 1003 00:01:55 00:01:02 00:00:43

M TRA 1004 00:01:38 00:28:38 00:00:29

M TRA 1005 00:02:55 00:25:02 00:00:24

M TRA 1006 00:01:43 00:00:48 00:00:14
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Table C.5 – continued from previous page

M TRA 1007 00:02:14 00:37:24 00:00:17

M TRA 1008 00:02:26 01:01:29 00:00:31

M TRA 1009 00:02:53 01:02:38 00:00:38

M TRA 1010 00:01:02 00:33:24 00:00:19

M POL 1001 00:01:31 02:08:38 00:00:48

M POL 1002 00:01:36 01:47:38 00:00:07

M POL 1003 00:02:53 02:12:02 00:00:17

M POL 1004 00:01:26 01:18:24 00:00:17

M POL 1005 00:01:38 01:48:12 00:00:24

M POL 1006 00:01:10 01:16:29 00:00:50

M POL 1007 00:02:41 01:56:10 00:00:26

M POL 1008 00:02:22 01:37:43 00:00:12

M POL 1009 00:00:41 01:11:24 00:00:17

M POL 1010 00:01:31 01:54:00 00:00:34

M RAN 1001 00:30:05 10:46:24 00:02:41

M RAN 1002 00:52:14 10:56:00 00:03:38

M RAN 1003 00:58:41 15:06:12 00:04:12

M RAN 1004 00:33:50 08:05:24 00:03:10

M RAN 1005 00:07:26 03:39:12 00:00:17

M RAN 1006 00:19:55 05:21:00 00:01:17

M RAN 1007 00:46:58 13:13:48 00:04:10

M RAN 1008 00:30:12 08:57:36 00:02:14

M RAN 1009 00:29:19 06:59:48 00:02:17

M RAN 1010 00:36:50 08:14:24 00:03:41

M PAT 1001 00:48:36 05:22:12 00:02:22

M PAT 1002 01:05:41 14:35:24 00:04:10

M PAT 1003 01:04:02 08:12:12 00:04:12

M PAT 1004 00:52:34 03:33:48 00:04:43

M PAT 1005 00:15:05 13:51:12 00:01:02

M PAT 1006 00:36:19 20:49:48 00:03:48

M PAT 1007 00:42:02 23:38:00 00:04:58

M PAT 1008 00:53:46 02:25:12 00:04:24

M PAT 1009 00:37:14 19:56:24 00:03:41

M PAT 1010 00:44:12 23:14:12 00:03:17

L SAR 1001 04:43:48 15:10:00 00:31:43

L SAR 1002 04:29:12 13:04:00 00:30:24

L SAR 1003 03:38:24 12:49:00 00:20:24

L SAR 1004 03:30:24 09:18:00 00:19:48

L SAR 1005 03:20:24 13:34:00 00:17:50
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Table C.5 – continued from previous page

L SAR 1006 03:51:36 15:50:00 00:27:29

L SAR 1007 03:48:24 13:03:00 00:22:58

L SAR 1008 03:55:24 10:09:00 00:22:29

L SAR 1009 03:23:12 10:45:00 00:19:50

L SAR 1010 04:00:12 13:32:00 00:24:14

X POL 1001 00:50:10 10:35:00 00:04:29

X POL 1002 00:55:41 09:53:24 00:07:31

X POL 1003 00:43:53 10:05:24 00:05:38

X POL 1004 00:56:07 10:43:24 00:06:50

X POL 1005 00:47:26 09:37:12 00:04:00

X POL 1006 00:40:22 08:43:48 00:03:46

X POL 1007 00:55:38 09:58:00 00:04:26

X POL 1008 00:51:05 09:40:12 00:05:36

X POL 1009 00:48:34 10:24:00 00:05:26

X POL 1010 00:59:38 09:57:12 00:06:46

Mean 00:43:29 10:49:50 00:04:56

Std.Dev. 01:10:40 12:00:55 00:07:23
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Table C.6: Dynamic Stochastic MANET and Reactive Experimentation Results

MANET Reactive

ANCU B OFV

Graph-Replication µ σ µ σ µ σ ANCU B OFV

S SAR 01-1002-1403296479 3.86 0.000 0.944 0.000 -551.54 0.000000 3.84 0.93 -548.03

S SAR 01-1002-241471907 4.00 0.000 0.944 0.000 -569.53 0.000000 3.95 0.93 -562.99

S SAR 01-1002-253537267 3.82 0.000 0.945 0.000 -545.59 0.000000 3.86 0.93 -551.12

S SAR 01-1002-580778438 3.95 0.000 0.939 0.000 -563.34 0.000000 3.89 0.93 -553.87

S SAR 01-1002-972075082 3.91 0.000 0.944 0.000 -557.56 0.000000 4.00 0.93 -568.97

S SAR 02-1002-106190266 4.00 0.000 0.944 0.000 -569.52 0.000000 3.98 0.95 -566.79

S SAR 02-1002-1103914701 3.98 0.000 0.943 0.000 -566.50 0.000000 3.84 0.95 -548.62

S SAR 02-1002-317592740 3.86 0.000 0.942 0.000 -551.43 0.000000 3.86 0.94 -551.48

S SAR 02-1002-696824024 4.00 0.000 0.941 0.000 -569.42 0.000000 3.89 0.94 -554.56

S SAR 02-1002-724683417 4.00 0.000 0.941 0.000 -569.39 0.000000 3.98 0.94 -566.54

S SAR 03-1003-1367307288 4.00 0.000 0.933 0.000 -569.07 0.000000 3.98 0.93 -566.07

S SAR 03-1003-1774397965 4.00 0.000 0.934 0.000 -569.07 0.000000 4.00 0.93 -569.08

S SAR 03-1003-217548076 4.00 0.000 0.934 0.000 -569.10 0.000000 4.00 0.93 -568.99

S SAR 03-1003-6145602 3.98 0.000 0.930 0.000 -565.92 0.000000 3.93 0.93 -560.12

S SAR 03-1003-976010644 4.00 0.000 0.928 0.000 -568.82 0.000000 3.98 0.93 -565.88

S SAR 04-1001-1028000757 3.93 0.000 0.944 0.000 -560.56 0.000000 3.89 0.92 -553.53

S SAR 04-1001-1618634515 3.86 0.000 0.943 0.000 -551.48 0.000000 3.80 0.92 -541.49

S SAR 04-1001-1646493908 3.61 0.000 0.941 0.000 -518.39 0.000000 3.57 0.92 -511.60

S SAR 04-1001-2025725192 3.89 0.000 0.943 0.000 -554.51 0.000000 3.77 0.92 -538.39

S SAR 04-1001-468875303 3.98 0.000 0.946 0.000 -566.61 0.000000 3.95 0.92 -562.61

S SAR 05-1001-1139358567 3.98 0.000 0.967 0.000 -567.53 0.000000 3.89 0.95 -554.69

S SAR 05-1001-1670624628 3.95 0.000 0.967 0.000 -564.57 0.000000 3.84 0.94 -548.55

S SAR 05-1001-1698484021 4.00 0.000 0.965 0.000 -570.45 0.000000 3.95 0.94 -563.43

S SAR 05-1001-520865416 3.98 0.000 0.964 0.000 -567.42 0.000000 3.95 0.94 -563.33

S SAR 05-1001-912162060 3.95 0.000 0.966 0.000 -564.49 0.000000 3.80 0.94 -542.47

S SAR 06-1001-1031936319 4.00 0.000 0.931 0.000 -568.98 0.000000 3.98 0.93 -565.73

S SAR 06-1001-1343383457 4.00 0.000 0.935 0.000 -569.13 0.000000 4.00 0.93 -568.82

S SAR 06-1001-1435298323 3.98 0.010 0.936 0.000 -567.19 1.720000 4.00 0.93 -568.93

S SAR 06-1001-1463157716 4.00 0.000 0.933 0.000 -569.07 0.000000 3.98 0.93 -565.77

S SAR 06-1001-46277244 3.98 0.000 0.933 0.000 -566.03 0.000000 3.98 0.92 -565.67

S SAR 07-1003-1108057152 3.70 0.000 0.930 0.000 -529.92 0.000000 3.68 0.92 -526.67

S SAR 07-1003-1135916545 4.00 0.000 0.935 0.000 -569.12 0.000000 3.86 0.93 -550.88

S SAR 07-1003-1515147829 3.65 0.010 0.931 0.000 -522.94 1.740000 3.61 0.92 -517.66

S SAR 07-1003-517423394 4.00 0.000 0.931 0.000 -568.96 0.000000 3.86 0.92 -550.60

S SAR 07-1003-728825868 4.00 0.000 0.928 0.000 -568.83 0.000000 3.84 0.92 -547.62

S SAR 08-1001-1227831411 3.98 0.000 0.934 0.000 -566.11 0.000000 3.89 0.92 -553.61

S SAR 08-1001-1607062695 4.00 0.000 0.931 0.000 -568.98 0.000000 3.89 0.92 -553.41

S SAR 08-1001-441509450 3.80 0.010 0.935 0.000 -543.13 1.730000 3.59 0.92 -514.55

S SAR 08-1001-820740734 3.91 0.000 0.937 0.000 -557.21 0.000000 3.93 0.92 -559.66

S SAR 08-1001-848600127 3.91 0.000 0.934 0.000 -557.09 0.000000 3.84 0.92 -547.52

S SAR 09-1002-1563695920 4.00 0.000 0.947 0.000 -569.65 0.000000 3.95 0.94 -563.26

S SAR 09-1002-1591555313 3.95 0.000 0.946 0.000 -563.63 0.000000 4.00 0.94 -569.41

S SAR 09-1002-386077315 3.91 0.000 0.946 0.000 -557.63 0.000000 3.91 0.94 -557.14

S SAR 09-1002-593830878 4.00 0.000 0.947 0.000 -569.67 0.000000 3.91 0.94 -557.36

S SAR 09-1002-765308599 3.80 0.000 0.946 0.000 -542.63 0.000000 3.86 0.94 -551.30

S SAR 10-1002-1264314142 4.00 0.000 0.960 0.000 -570.26 0.000000 3.95 0.94 -563.41

S SAR 10-1002-1854947900 3.73 0.000 0.963 0.000 -534.39 0.000000 3.45 0.94 -497.53

S SAR 10-1002-857223465 4.00 0.000 0.959 0.000 -570.20 0.000000 3.86 0.94 -551.39

S SAR 10-1002-885082858 4.00 0.000 0.962 0.000 -570.32 0.000000 3.86 0.94 -551.40

S SAR 10-1002-98760897 4.00 0.000 0.960 0.000 -570.26 0.000000 3.95 0.94 -563.41

Continued on next page

125



Table C.6 – continued from previous page
MANET Reactive

ANCU B OFV

Graph-Replication µ σ µ σ µ σ ANCU B OFV

S TRA 01-1001-1079990669 9.26 0.000 0.991 0.000 -1783.42 0.000000 9.23 0.99 -1777.21

S TRA 01-1001-1412661031 8.51 0.260 0.991 0.000 -1643.43 47.650000 8.65 0.99 -1669.14

S TRA 01-1001-1591061572 9.48 0.000 0.991 0.000 -1825.44 0.000000 9.44 0.99 -1816.22

S TRA 01-1001-1855947788 8.75 0.190 0.991 0.000 -1688.43 35.540000 8.56 0.99 -1654.31

S TRA 01-1001-907019319 8.78 0.010 0.991 0.000 -1695.43 1.730000 8.95 0.99 -1726.23

S TRA 02-1003-1004531489 9.28 0.080 0.991 0.000 -1845.44 15.590000 8.23 0.99 -1644.12

S TRA 02-1003-1155943389 9.66 0.010 0.992 0.000 -1918.46 1.730000 8.19 0.99 -1635.27

S TRA 02-1003-1371865526 9.49 0.010 0.992 0.000 -1885.48 1.730000 9.28 0.99 -1845.28

S TRA 02-1003-575426598 9.40 0.010 0.991 0.000 -1867.45 1.730000 7.91 0.99 -1581.06

S TRA 02-1003-627248598 9.38 0.000 0.992 0.000 -1863.46 0.000000 5.69 0.98 -1155.03

S TRA 03-1003-1103439179 9.53 0.000 0.990 0.000 -1775.42 0.000000 7.70 0.98 -1445.00

S TRA 03-1003-153521420 8.70 0.000 0.990 0.000 -1625.42 0.000000 7.68 0.98 -1442.07

S TRA 03-1003-2046789732 9.38 0.000 0.990 0.000 -1748.38 0.000000 7.78 0.98 -1459.94

S TRA 03-1003-407736755 9.30 0.000 0.991 0.000 -1733.45 0.000000 7.80 0.98 -1463.08

S TRA 03-1003-661952090 9.32 0.000 0.990 0.000 -1736.42 0.000000 8.20 0.98 -1535.09

S TRA 04-1002-1499640246 9.60 0.000 0.990 0.000 -1846.37 0.000000 8.85 0.99 -1708.12

S TRA 04-1002-209170202 9.69 0.010 0.989 0.000 -1863.34 1.730000 8.89 0.99 -1714.17

S TRA 04-1002-2091767633 9.44 0.060 0.990 0.000 -1816.38 10.820000 8.56 0.99 -1654.14

S TRA 04-1002-449925698 9.65 0.000 0.990 0.000 -1855.36 0.000000 9.31 0.99 -1792.18

S TRA 04-1002-536411373 9.42 0.020 0.990 0.000 -1813.37 3.000000 7.77 0.99 -1507.14

S TRA 05-1003-1242922604 9.19 0.000 0.991 0.000 -1771.42 0.000000 7.47 0.99 -1450.32

S TRA 05-1003-1251793817 9.20 0.040 0.991 0.000 -1772.43 6.930000 7.77 0.99 -1507.11

S TRA 05-1003-1689651383 8.94 0.000 0.990 0.000 -1723.40 0.000000 7.53 0.99 -1462.23

S TRA 05-1003-558880351 8.81 0.000 0.991 0.000 -1699.42 0.000000 8.34 0.99 -1612.29

S TRA 05-1003-737280892 9.30 0.080 0.990 0.000 -1791.40 14.800000 8.79 0.99 -1696.32

S TRA 06-1002-1020987175 9.02 0.010 0.992 0.000 -1795.49 1.730000 8.36 0.99 -1668.32

S TRA 06-1002-224548247 9.04 0.020 0.992 0.000 -1798.49 3.460000 8.67 0.99 -1728.39

S TRA 06-1002-440470384 9.11 0.020 0.992 0.000 -1813.49 3.460000 8.59 0.99 -1713.36

S TRA 06-1002-466381384 8.83 0.000 0.992 0.000 -1758.49 0.000000 8.23 0.99 -1644.40

S TRA 06-1002-843664275 8.79 0.010 0.992 0.000 -1750.48 1.730000 7.84 0.99 -1569.34

S TRA 07-1003-1359254841 8.84 0.000 0.994 0.000 -1733.61 0.000000 7.02 0.99 -1388.29

S TRA 07-1003-1504653449 8.93 0.030 0.993 0.000 -1749.58 6.240000 8.71 0.99 -1709.35

S TRA 07-1003-1650052057 9.62 0.000 0.993 0.000 -1880.55 0.000000 7.59 0.99 -1496.30

S TRA 07-1003-418494946 9.70 0.000 0.993 0.000 -1895.57 0.000000 8.90 0.99 -1745.34

S TRA 07-1003-794700196 8.89 0.010 0.993 0.000 -1743.54 1.730000 8.44 0.99 -1658.31

S TRA 08-1003-1095446266 9.56 0.000 0.993 0.000 -1958.51 0.000000 8.21 0.99 -1691.26

S TRA 08-1003-1902002161 9.33 0.010 0.993 0.000 -1941.54 3.000000 8.55 0.99 -1785.31

S TRA 08-1003-208170113 9.33 0.010 0.993 0.000 -1941.51 3.000000 7.91 0.99 -1656.27

S TRA 08-1003-342126238 9.25 0.000 0.993 0.000 -1926.53 0.000000 8.21 0.99 -1716.33

S TRA 08-1003-997518108 9.13 0.000 0.993 0.000 -1902.54 0.000000 8.03 0.99 -1680.37

S TRA 09-1003-1307303504 9.23 0.010 0.989 0.000 -1806.31 1.730000 8.32 0.99 -1634.11

S TRA 09-1003-1452702112 9.41 0.000 0.989 0.000 -1841.31 0.000000 8.71 0.99 -1709.09

S TRA 09-1003-1556227574 9.55 0.010 0.989 0.000 -1867.28 1.730000 7.54 0.99 -1487.10

S TRA 09-1003-1701626182 9.19 0.000 0.989 0.000 -1799.30 0.000000 7.76 0.99 -1529.08

S TRA 09-1003-991672929 9.86 0.100 0.989 0.000 -1926.30 19.050000 8.05 0.99 -1583.07

S TRA 10-1001-1123967312 9.30 0.010 0.994 0.000 -1849.61 1.730000 8.63 0.99 -1719.38

S TRA 10-1001-1233506066 9.80 0.000 0.994 0.000 -1944.60 0.000000 9.14 0.99 -1818.35

S TRA 10-1001-124294484 8.96 0.010 0.994 0.000 -1783.59 1.730000 8.80 0.99 -1752.42

S TRA 10-1001-1285328066 9.56 0.010 0.994 0.000 -1898.59 1.730000 9.00 0.99 -1791.36

S TRA 10-1001-2029944994 9.34 0.010 0.994 0.000 -1856.61 1.730000 9.23 0.99 -1836.41

M PAT 01-1001-1151405807 9.72 0.020 0.999 0.000 -1718.92 3.000000 8.18 1.00 -1454.84
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M PAT 01-1001-1399793545 9.43 0.020 0.999 0.000 -1668.92 3.470000 7.95 1.00 -1415.84

M PAT 01-1001-1787977610 9.63 0.000 0.999 0.000 -1703.92 0.000000 8.40 1.00 -1493.83

M PAT 01-1001-430383267 9.07 0.020 0.999 0.000 -1607.92 3.000000 7.58 1.00 -1352.84

M PAT 01-1001-931132120 9.49 0.030 0.999 0.000 -1678.92 4.580000 8.26 1.00 -1469.83

M PAT 02-1003-1025450143 9.46 0.080 0.999 0.000 -1439.95 12.120000 8.04 1.00 -1230.85

M PAT 02-1003-1067491402 9.51 0.040 0.999 0.000 -1446.94 6.000000 7.92 1.00 -1212.86

M PAT 02-1003-1492747276 9.34 0.010 0.999 0.000 -1421.95 1.730000 7.73 1.00 -1185.85

M PAT 02-1003-1802077908 9.26 0.080 0.999 0.000 -1409.95 12.120000 7.88 1.00 -1206.85

M PAT 02-1003-758160770 9.08 0.040 0.999 0.000 -1383.94 5.200000 7.92 1.00 -1212.86

M PAT 03-1002-144105714 8.31 0.140 0.999 0.000 -1477.94 24.250000 7.58 1.00 -1352.85

M PAT 03-1002-1480179383 9.49 0.020 0.999 0.000 -1678.94 3.460000 8.33 1.00 -1481.85

M PAT 03-1002-2092707011 9.23 0.090 0.999 0.000 -1635.94 15.100000 7.96 1.00 -1418.85

M PAT 03-1002-302106014 8.95 0.060 0.999 0.000 -1587.94 9.640000 8.04 1.00 -1430.85

M PAT 03-1002-323497351 9.02 0.030 0.999 0.000 -1598.94 5.200000 8.56 1.00 -1520.84

M PAT 05-1002-1122507549 9.34 0.090 0.998 0.000 -1508.91 14.800000 7.87 1.00 -1278.83

M PAT 05-1002-1239423887 9.22 0.020 0.998 0.000 -1490.91 3.460000 8.15 1.00 -1323.79

M PAT 05-1002-2128696202 9.51 0.040 0.998 0.000 -1534.91 6.240000 8.04 1.00 -1305.82

M PAT 05-1002-654219320 9.27 0.000 0.998 0.000 -1497.91 0.000000 8.02 1.00 -1302.82

M PAT 05-1002-98128893 9.53 0.110 0.998 0.000 -1538.91 17.320000 7.90 1.00 -1284.82

M PAT 06-1001-1113468223 9.32 0.130 0.998 0.000 -1591.91 22.110000 7.84 1.00 -1347.83

M PAT 06-1001-1261438101 9.33 0.100 0.998 0.000 -1594.92 17.320000 7.80 1.00 -1341.82

M PAT 06-1001-1936904785 9.02 0.020 0.998 0.000 -1542.92 3.000000 7.53 1.00 -1296.82

M PAT 06-1001-435941795 9.04 0.020 0.998 0.000 -1545.92 3.000000 7.82 1.00 -1344.83

M PAT 06-1001-802189198 9.04 0.130 0.998 0.000 -1545.92 20.780000 7.49 1.00 -1290.82

M PAT 08-1001-1387689409 9.31 0.020 0.999 0.000 -1648.94 3.460000 6.98 1.00 -1250.87

M PAT 08-1001-1489712249 8.95 0.030 0.999 0.000 -1586.94 5.200000 7.84 1.00 -1397.88

M PAT 08-1001-1540178950 9.26 0.070 0.999 0.000 -1639.94 12.490000 7.51 1.00 -1340.87

M PAT 08-1001-730794917 9.11 0.010 0.999 0.000 -1614.94 1.730000 7.53 1.00 -1343.87

M PAT 08-1001-929677267 9.52 0.050 0.999 0.000 -1684.94 8.660000 7.75 1.00 -1382.86

M PAT 09-1001-1436228507 9.18 0.060 0.999 0.000 -1597.92 10.390000 6.89 1.00 -1213.83

M PAT 09-1001-167149800 9.07 0.050 0.999 0.000 -1579.92 7.940000 7.45 1.00 -1306.82

M PAT 09-1001-2144826461 8.98 0.040 0.999 0.000 -1563.92 6.930000 7.25 1.00 -1273.83

M PAT 09-1001-495893593 9.71 0.000 0.999 0.000 -1687.92 0.000000 7.63 1.00 -1336.83

M PAT 09-1001-677311175 9.65 0.030 0.999 0.000 -1676.92 4.580000 7.43 1.00 -1303.83

M POL 01-1001-1228650629 9.50 0.000 0.992 0.000 -766.78 0.000000 8.77 0.98 -709.58

M POL 01-1001-1383711440 9.92 0.000 0.992 0.000 -799.78 0.000000 9.15 0.98 -739.51

M POL 01-1001-1821232780 9.85 0.000 0.991 0.000 -793.77 0.000000 9.46 0.98 -763.54

M POL 01-1001-266331284 8.92 0.000 0.992 0.000 -721.78 0.000000 8.42 0.98 -682.59

M POL 01-1001-439757398 9.77 0.000 0.992 0.000 -787.78 0.000000 8.81 0.98 -712.58

M POL 02-1003-1674340543 9.96 0.000 0.988 0.000 -802.68 0.000000 9.35 0.98 -754.58

M POL 02-1003-1847766657 9.77 0.000 0.987 0.000 -787.67 0.000000 9.50 0.98 -766.52

M POL 02-1003-662602355 9.77 0.000 0.987 0.000 -787.67 0.000000 9.46 0.98 -763.52

M POL 02-1003-667122018 9.88 0.000 0.988 0.000 -796.68 0.000000 9.58 0.98 -772.50

M POL 02-1003-840548132 9.77 0.000 0.987 0.000 -787.67 0.000000 9.04 0.98 -730.47

M POL 03-1002-1585906475 9.50 0.000 0.991 0.000 -766.78 0.000000 9.27 0.98 -748.60

M POL 03-1002-1590426138 9.81 0.000 0.992 0.000 -790.78 0.000000 9.23 0.98 -745.60

M POL 03-1002-386896533 9.95 0.020 0.991 0.000 -801.77 1.730000 9.31 0.99 -751.62

M POL 03-1002-391416196 9.38 0.000 0.992 0.000 -757.78 0.000000 9.42 0.99 -760.64

M POL 03-1002-943905481 9.81 0.000 0.991 0.000 -790.77 0.000000 9.27 0.99 -748.62

M POL 04-1003-1443533901 9.73 0.000 0.987 0.000 -784.67 0.000000 9.23 0.97 -745.23

M POL 04-1003-1621479678 9.81 0.000 0.987 0.000 -790.67 0.000000 9.12 0.98 -736.43
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M POL 04-1003-1799425455 9.40 0.020 0.988 0.000 -758.68 1.730000 8.81 0.98 -712.35

M POL 04-1003-262889262 9.38 0.000 0.986 0.000 -757.65 0.000000 9.12 0.97 -736.27

M POL 04-1003-855471413 9.77 0.000 0.987 0.000 -787.67 0.000000 9.23 0.98 -745.45

M POL 05-1002-1764929893 9.77 0.000 0.992 0.000 -787.78 0.000000 9.31 0.98 -751.59

M POL 05-1002-214548060 9.38 0.000 0.991 0.000 -757.78 0.000000 9.15 0.98 -739.56

M POL 05-1002-41121946 9.88 0.000 0.991 0.000 -796.77 0.000000 9.73 0.98 -784.55

M POL 05-1002-584285254 9.86 0.020 0.992 0.000 -794.78 1.730000 9.19 0.98 -742.60

M POL 05-1002-825495514 9.96 0.000 0.992 0.000 -802.78 0.000000 9.58 0.98 -772.59

M POL 06-1002-1088433337 9.77 0.000 0.989 0.000 -787.73 0.000000 9.23 0.98 -745.58

M POL 06-1002-139959632 9.27 0.000 0.989 0.000 -748.72 0.000000 8.65 0.99 -700.63

M POL 06-1002-1690341465 9.92 0.000 0.989 0.000 -799.72 0.000000 9.08 0.99 -733.62

M POL 06-1002-1699380791 10.00 0.000 0.990 0.000 -805.74 0.000000 9.04 0.99 -730.64

M POL 06-1002-1872806905 8.51 0.020 0.990 0.000 -689.74 1.730000 8.58 0.99 -694.64

M POL 07-1001-1009325246 9.85 0.000 0.992 0.000 -793.78 0.000000 9.62 0.98 -775.54

M POL 07-1001-1013844909 9.69 0.000 0.992 0.000 -781.79 0.000000 9.35 0.98 -754.58

M POL 07-1001-1018364572 9.19 0.000 0.992 0.000 -742.79 0.000000 9.12 0.98 -736.59

M POL 07-1001-1606427060 9.81 0.000 0.992 0.000 -790.79 0.000000 9.54 0.98 -769.54

M POL 07-1001-1962318614 9.88 0.000 0.992 0.000 -796.80 0.000000 9.15 0.98 -739.57

M POL 08-1001-1464054486 10.00 0.000 0.994 0.000 -805.85 0.000000 9.38 0.99 -757.75

M POL 08-1001-1833791680 10.00 0.000 0.994 0.000 -805.85 0.000000 9.42 0.99 -760.74

M POL 08-1001-2056636637 9.77 0.000 0.994 0.000 -787.85 0.000000 9.15 0.99 -739.74

M POL 08-1001-278890184 10.00 0.000 0.994 0.000 -805.85 0.000000 9.88 0.99 -796.70

M POL 08-1001-871472335 9.92 0.000 0.994 0.000 -799.84 0.000000 9.38 0.99 -757.74

M POL 09-1002-1206713967 9.88 0.000 0.986 0.000 -796.64 0.000000 9.54 0.99 -769.61

M POL 09-1002-1794776455 9.92 0.040 0.986 0.000 -799.63 3.000000 9.73 0.98 -784.57

M POL 09-1002-1799296118 9.27 0.000 0.987 0.000 -748.66 0.000000 9.08 0.98 -733.54

M POL 09-1002-595766513 9.69 0.000 0.987 0.000 -781.67 0.000000 9.38 0.99 -757.62

M POL 09-1002-614131816 9.50 0.000 0.985 0.000 -766.62 0.000000 9.35 0.98 -754.45

M POL 10-1002-1183829001 9.50 0.000 0.994 0.000 -766.83 0.000000 8.77 0.99 -709.65

M POL 10-1002-1357255115 9.38 0.000 0.994 0.000 -757.83 0.000000 8.46 0.99 -685.64

M POL 10-1002-1429558924 9.96 0.000 0.993 0.000 -802.83 0.000000 9.00 0.99 -727.69

M POL 10-1002-1771891489 9.76 0.020 0.993 0.000 -786.83 1.730000 9.27 0.99 -748.64

M POL 10-1002-760153301 9.88 0.000 0.994 0.000 -796.83 0.000000 9.23 0.99 -745.66

M RAN 01-1002-142114914 9.65 0.000 1.000 0.000 -778.99 0.000000 9.08 1.00 -733.99

M RAN 01-1002-378805511 9.09 0.020 1.000 0.000 -734.99 1.730000 8.88 1.00 -718.99

M RAN 01-1002-383325174 9.54 0.000 1.000 0.000 -769.99 0.000000 8.85 1.00 -715.99

M RAN 01-1002-556751288 9.54 0.000 1.000 0.000 -769.99 0.000000 8.31 1.00 -673.99

M RAN 01-1002-784115908 9.12 0.000 1.000 0.000 -736.99 0.000000 8.27 1.00 -670.99

M RAN 02-1001-112139015 9.73 0.000 1.000 0.000 -785.00 0.000000 9.04 1.00 -731.00

M RAN 02-1001-1123877203 9.63 0.020 1.000 0.000 -777.00 1.730000 8.92 1.00 -722.00

M RAN 02-1001-1538513577 9.08 0.000 1.000 0.000 -734.00 0.000000 9.04 1.00 -731.00

M RAN 02-1001-1716459354 9.65 0.000 1.000 0.000 -779.00 0.000000 9.00 1.00 -728.00

M RAN 02-1001-334983972 9.33 0.020 1.000 0.000 -754.00 1.730000 8.42 1.00 -683.00

M RAN 03-1002-1023832539 9.05 0.020 1.000 0.000 -732.00 1.730000 8.27 1.00 -671.00

M RAN 03-1002-1201778316 9.35 0.000 1.000 0.000 -755.00 0.000000 8.42 1.00 -683.00

M RAN 03-1002-1744941624 9.81 0.000 1.000 0.000 -791.00 0.000000 9.04 1.00 -731.00

M RAN 03-1002-190040128 7.68 0.160 1.000 0.000 -625.00 12.120000 7.50 1.00 -611.00

M RAN 03-1002-381831545 10.00 0.000 1.000 0.000 -806.00 0.000000 9.04 1.00 -731.00

M RAN 04-1001-1644896960 9.50 0.000 1.000 0.000 -767.00 0.000000 8.58 1.00 -694.99

M RAN 04-1001-405794152 9.88 0.000 1.000 0.000 -797.00 0.000000 9.50 1.00 -766.99

M RAN 04-1001-445887018 9.46 0.000 1.000 0.000 -764.00 0.000000 8.50 1.00 -688.99
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M RAN 04-1001-459732658 8.40 0.090 1.000 0.000 -681.00 6.930000 7.50 1.00 -610.99

M RAN 04-1001-583739929 9.88 0.000 1.000 0.000 -797.00 0.000000 9.00 1.00 -727.99

M RAN 05-1002-1319772295 9.58 0.000 0.999 0.000 -772.97 0.000000 9.58 1.00 -772.98

M RAN 05-1002-371298590 9.77 0.000 0.999 0.000 -787.97 0.000000 9.73 1.00 -784.98

M RAN 05-1002-553764030 8.74 0.040 0.999 0.000 -707.97 3.460000 8.77 1.00 -709.98

M RAN 05-1002-727190144 9.12 0.000 0.999 0.000 -736.97 0.000000 8.81 1.00 -712.98

M RAN 05-1002-963880741 9.85 0.000 0.999 0.000 -793.97 0.000000 9.58 1.00 -772.98

M RAN 06-1001-1165789125 9.85 0.000 1.000 0.000 -793.99 0.000000 8.35 1.00 -676.99

M RAN 06-1001-1289796396 9.68 0.020 1.000 0.000 -780.99 1.730000 8.77 1.00 -709.99

M RAN 06-1001-154050937 9.19 0.000 1.000 0.000 -742.99 0.000000 8.35 1.00 -676.99

M RAN 06-1001-2074169964 8.96 0.000 1.000 0.000 -724.99 0.000000 8.42 1.00 -682.99

M RAN 06-1001-711059885 9.50 0.000 1.000 0.000 -766.99 0.000000 8.23 1.00 -667.99

M RAN 08-1001-124075038 9.87 0.020 1.000 0.000 -795.99 1.730000 9.38 1.00 -758.00

M RAN 08-1001-1866248288 9.91 0.020 1.000 0.000 -798.99 1.730000 9.42 1.00 -761.00

M RAN 08-1001-1870767951 9.72 0.020 1.000 0.000 -783.99 1.730000 9.00 1.00 -727.99

M RAN 08-1001-2044194065 9.77 0.000 1.000 0.000 -787.99 0.000000 9.27 1.00 -749.00

M RAN 08-1001-716657189 9.96 0.000 1.000 0.000 -802.99 0.000000 9.42 1.00 -761.00

M RAN 09-1002-1281237400 9.81 0.000 1.000 0.000 -790.99 0.000000 9.00 1.00 -727.99

M RAN 09-1002-381895887 9.31 0.000 1.000 0.000 -751.99 0.000000 8.81 1.00 -712.99

M RAN 09-1002-672238339 9.92 0.000 1.000 0.000 -799.99 0.000000 9.04 1.00 -730.99

M RAN 09-1002-676758002 9.42 0.040 1.000 0.000 -760.99 3.000000 8.81 1.00 -712.99

M RAN 09-1002-962580791 9.90 0.020 1.000 0.000 -797.99 1.730000 9.38 1.00 -757.99

M RAN 10-1003-1054470091 9.81 0.000 1.000 0.000 -791.00 0.000000 9.46 1.00 -764.00

M RAN 10-1003-1103888934 8.99 0.020 1.000 0.000 -727.00 1.730000 8.85 1.00 -716.00

M RAN 10-1003-1281834711 9.19 0.000 1.000 0.000 -743.00 0.000000 9.46 1.00 -764.00

M RAN 10-1003-2066208279 9.85 0.000 1.000 0.000 -794.00 0.000000 9.38 1.00 -758.00

M RAN 10-1003-319515366 9.54 0.000 1.000 0.000 -770.00 0.000000 9.19 1.00 -743.00

M SAR 01-1001-1024494192 19.66 0.000 0.999 0.000 -2638.97 0.000000 19.75 1.00 -2650.97

M SAR 01-1001-144595623 19.98 0.010 0.999 0.000 -2681.97 1.730000 20.00 1.00 -2683.97

M SAR 01-1001-1601114197 19.73 0.000 0.999 0.000 -2647.97 0.000000 19.84 1.00 -2662.98

M SAR 01-1001-1987268301 19.80 0.000 0.999 0.000 -2656.97 0.000000 19.98 1.00 -2680.97

M SAR 01-1001-525775300 19.86 0.000 0.999 0.000 -2665.97 0.000000 19.77 1.00 -2653.97

M SAR 02-1001-1067444979 19.73 0.000 0.999 0.000 -2647.94 0.000000 19.59 1.00 -2629.95

M SAR 02-1001-1344228442 19.64 0.000 0.999 0.000 -2635.94 0.000000 19.73 1.00 -2647.95

M SAR 02-1001-1758410052 19.89 0.000 0.999 0.000 -2668.94 0.000000 19.77 1.00 -2653.94

M SAR 02-1001-1847921761 19.77 0.000 0.999 0.000 -2653.94 0.000000 19.59 1.00 -2629.94

M SAR 02-1001-2030219088 20.00 0.000 0.999 0.000 -2683.94 0.000000 19.68 1.00 -2641.94

M SAR 03-1002-1693483827 19.93 0.000 0.999 0.000 -2674.97 0.000000 19.93 1.00 -2674.97

M SAR 03-1002-1965292863 20.00 0.000 0.999 0.000 -2683.97 0.000000 19.84 1.00 -2662.97

M SAR 03-1002-2038219549 19.84 0.000 0.999 0.000 -2662.97 0.000000 19.75 1.00 -2650.97

M SAR 03-1002-321502535 19.85 0.010 0.999 0.000 -2663.97 1.730000 19.66 1.00 -2638.97

M SAR 03-1002-581700975 19.78 0.030 0.999 0.000 -2654.97 3.460000 19.68 1.00 -2641.97

M SAR 04-1002-1050443968 19.89 0.000 0.999 0.000 -2668.97 0.000000 19.91 1.00 -2671.97

M SAR 04-1002-217106321 18.67 0.010 0.999 0.000 -2507.97 1.730000 19.41 1.00 -2605.97

M SAR 04-1002-551725076 19.73 0.000 0.999 0.000 -2647.97 0.000000 19.84 1.00 -2662.97

M SAR 04-1002-8107004 20.00 0.000 0.999 0.000 -2683.97 0.000000 19.89 1.00 -2668.97

M SAR 04-1002-908071394 19.84 0.000 0.999 0.000 -2662.97 0.000000 19.82 1.00 -2659.97

M SAR 05-1001-102593140 19.85 0.010 0.999 0.000 -2663.96 1.730000 19.75 1.00 -2650.95

M SAR 05-1001-1416739140 19.82 0.000 0.999 0.000 -2659.96 0.000000 19.77 1.00 -2653.96

M SAR 05-1001-147492320 19.64 0.010 0.999 0.000 -2636.96 1.730000 19.66 1.00 -2638.95

M SAR 05-1001-374402176 19.89 0.000 0.999 0.000 -2668.96 0.000000 19.59 1.00 -2629.96
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M SAR 05-1001-770673247 19.80 0.000 0.999 0.000 -2656.96 0.000000 19.73 1.00 -2647.95

M SAR 06-1001-10094173 19.93 0.000 0.999 0.000 -2674.97 0.000000 19.91 1.00 -2671.97

M SAR 06-1001-281903209 19.61 0.010 0.999 0.000 -2631.97 1.730000 19.55 1.00 -2623.97

M SAR 06-1001-384351030 19.80 0.000 0.999 0.000 -2656.97 0.000000 19.80 1.00 -2656.97

M SAR 06-1001-656160066 19.98 0.000 0.999 0.000 -2680.97 0.000000 20.00 1.00 -2683.97

M SAR 06-1001-927969102 19.77 0.000 0.999 0.000 -2653.97 0.000000 19.68 1.00 -2641.97

M SAR 07-1003-1057405564 19.86 0.000 0.999 0.000 -2665.96 0.000000 19.98 1.00 -2680.96

M SAR 07-1003-1556124456 19.73 0.000 0.999 0.000 -2647.96 0.000000 19.73 1.00 -2647.96

M SAR 07-1003-2099742528 19.98 0.000 0.999 0.000 -2680.97 0.000000 19.95 1.00 -2677.97

M SAR 07-1003-2104716955 19.78 0.030 0.999 0.000 -2654.96 3.460000 19.77 1.00 -2653.97

M SAR 07-1003-643223954 19.80 0.000 0.999 0.000 -2656.97 0.000000 19.68 1.00 -2641.96

M SAR 08-1003-1428675163 19.65 0.010 0.999 0.000 -2637.96 1.730000 19.57 1.00 -2626.96

M SAR 08-1003-1718394738 19.95 0.010 0.999 0.000 -2676.95 1.730000 19.80 1.00 -2656.95

M SAR 08-1003-465901054 19.84 0.000 0.999 0.000 -2662.95 0.000000 19.68 1.00 -2641.95

M SAR 08-1003-613248055 19.93 0.000 0.999 0.000 -2674.96 0.000000 19.75 1.00 -2650.95

M SAR 08-1003-737710090 19.75 0.000 0.999 0.000 -2650.95 0.000000 19.84 1.00 -2662.96

M SAR 09-1001-1523161299 19.90 0.010 0.999 0.000 -2670.95 1.730000 19.73 1.00 -2647.95

M SAR 09-1001-1937342909 19.80 0.010 0.999 0.000 -2657.95 1.730000 19.34 1.00 -2596.95

M SAR 09-1001-2084689910 19.93 0.000 0.999 0.000 -2674.94 0.000000 19.59 1.00 -2629.95

M SAR 09-1001-623196909 19.91 0.000 0.999 0.000 -2671.94 0.000000 19.66 1.00 -2638.95

M SAR 09-1001-832196226 19.96 0.010 0.999 0.000 -2678.94 1.730000 19.80 1.00 -2656.95

M SAR 10-1001-1493185400 19.95 0.000 0.999 0.000 -2677.95 0.000000 19.66 1.00 -2638.95

M SAR 10-1001-179039400 19.82 0.000 0.999 0.000 -2659.94 0.000000 19.45 1.00 -2611.95

M SAR 10-1001-1917315864 19.84 0.000 0.999 0.000 -2662.94 0.000000 19.64 1.00 -2635.95

M SAR 10-1001-455822863 19.89 0.000 0.999 0.000 -2668.95 0.000000 19.80 1.00 -2656.96

M SAR 10-1001-802220327 19.91 0.000 0.999 0.000 -2671.95 0.000000 19.50 1.00 -2617.95

M TRA 01-1003-1397660399 20.00 0.000 0.946 0.000 -853.25 0.000000 20.00 0.95 -853.28

M TRA 01-1003-147115108 19.36 0.000 0.947 0.000 -826.25 0.000000 19.36 0.95 -826.27

M TRA 01-1003-313450289 19.64 0.000 0.946 0.000 -838.25 0.000000 19.64 0.95 -838.29

M TRA 01-1003-606195898 19.64 0.000 0.946 0.000 -838.24 0.000000 19.64 0.95 -838.26

M TRA 01-1003-812169181 19.43 0.000 0.948 0.000 -829.28 0.000000 19.43 0.95 -829.32

M TRA 02-1001-1035014138 19.06 0.060 0.940 0.000 -930.04 3.000000 19.13 0.95 -933.14

M TRA 02-1001-1655455682 20.00 0.000 0.939 0.000 -975.02 0.000000 20.00 0.94 -975.07

M TRA 02-1001-1791528313 19.19 0.000 0.940 0.000 -936.03 0.000000 19.06 0.94 -930.10

M TRA 02-1001-2020841326 19.90 0.040 0.936 0.000 -969.97 1.730000 19.88 0.94 -969.06

M TRA 02-1001-887499024 19.31 0.000 0.942 0.000 -942.07 0.000000 19.38 0.94 -945.11

M TRA 03-1003-1105369554 19.83 0.000 0.948 0.000 -1088.06 0.000000 19.83 0.95 -1088.02

M TRA 03-1003-1236754409 19.89 0.000 0.949 0.000 -1091.07 0.000000 19.89 0.95 -1091.09

M TRA 03-1003-1765903964 19.67 0.000 0.952 0.000 -1079.13 0.000000 19.72 0.95 -1082.11

M TRA 03-1003-829208968 19.96 0.030 0.948 0.000 -1095.07 1.730000 20.00 0.95 -1097.10

M TRA 03-1003-906487204 19.78 0.000 0.951 0.000 -1085.11 0.010000 19.78 0.95 -1085.15

M TRA 04-1002-1770916966 19.50 0.000 0.946 0.000 -1070.03 0.000000 19.72 0.95 -1082.09

M TRA 04-1002-1899898664 19.54 0.030 0.951 0.000 -1072.11 1.730000 17.67 0.96 -971.21

M TRA 04-1002-73188132 18.91 0.080 0.940 0.000 -1037.92 4.580000 19.11 0.95 -1049.10

M TRA 04-1002-803623194 20.00 0.000 0.947 0.000 -1097.05 0.010000 20.00 0.95 -1097.14

M TRA 04-1002-902006116 20.00 0.000 0.948 0.000 -1097.07 0.000000 20.00 0.95 -1097.14

M TRA 05-1001-1513744560 19.47 0.000 0.949 0.000 -1128.04 0.000000 19.53 0.95 -1131.13

M TRA 05-1001-1811009832 19.32 0.000 0.956 0.000 -1119.16 0.000000 19.58 0.96 -1134.23

M TRA 05-1001-1822907079 20.00 0.000 0.951 0.000 -1158.07 0.000000 20.00 0.95 -1158.14

M TRA 05-1001-1844011765 19.89 0.000 0.953 0.000 -1152.12 0.000000 19.89 0.96 -1152.19

M TRA 05-1001-412949427 19.65 0.030 0.956 0.000 -1138.17 1.730000 17.05 0.96 -990.25
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M TRA 06-1003-1020000095 19.74 0.000 0.949 0.000 -1143.03 0.000000 19.95 0.95 -1155.09

M TRA 06-1003-1317265367 19.63 0.000 0.956 0.000 -1137.16 0.000000 19.63 0.96 -1137.25

M TRA 06-1003-1338370053 19.47 0.000 0.953 0.000 -1128.11 0.010000 19.58 0.96 -1134.17

M TRA 06-1003-1647532572 19.63 0.000 0.949 0.000 -1137.04 0.000000 19.63 0.96 -1137.15

M TRA 06-1003-237574920 19.84 0.000 0.954 0.000 -1149.13 0.000000 19.84 0.96 -1149.17

M TRA 07-1001-1493262751 20.00 0.000 0.955 0.000 -1158.14 0.000000 20.00 0.96 -1158.15

M TRA 07-1001-1802425270 20.00 0.000 0.961 0.000 -1158.26 0.000000 20.00 0.96 -1158.26

M TRA 07-1001-1823529956 20.00 0.000 0.959 0.000 -1158.22 0.000000 20.00 0.96 -1158.21

M TRA 07-1001-392467618 19.79 0.000 0.961 0.000 -1146.26 0.000000 19.79 0.96 -1146.26

M TRA 07-1001-755736756 20.00 0.000 0.957 0.000 -1158.19 0.000000 20.00 0.96 -1158.22

M TRA 08-1001-1109511804 19.85 0.000 0.962 0.000 -1210.23 0.000000 19.85 0.96 -1210.26

M TRA 08-1001-1111914961 19.90 0.000 0.964 0.000 -1213.27 0.000000 18.90 0.96 -1153.29

M TRA 08-1001-1320291401 19.25 0.050 0.963 0.001 -1174.26 3.010000 19.10 0.96 -1165.30

M TRA 08-1001-1924316035 19.85 0.000 0.963 0.000 -1210.27 0.010000 18.90 0.96 -1153.28

M TRA 08-1001-297110730 19.45 0.000 0.961 0.000 -1186.23 0.000000 19.50 0.96 -1189.25

M TRA 09-1003-1184841647 19.90 0.000 0.949 0.000 -1212.98 0.000000 19.90 0.96 -1213.14

M TRA 09-1003-1578086684 19.87 0.030 0.953 0.000 -1211.05 1.740000 19.85 0.96 -1210.16

M TRA 09-1003-1746993135 19.60 0.000 0.949 0.000 -1194.98 0.000000 19.75 0.96 -1204.15

M TRA 09-1003-763282453 19.85 0.000 0.952 0.000 -1210.04 0.000000 19.80 0.96 -1207.13

M TRA 09-1003-974062050 20.00 0.000 0.950 0.000 -1219.00 0.010000 20.00 0.96 -1219.17

M TRA 10-1001-1054079669 19.47 0.000 0.952 0.000 -1128.08 0.000000 19.47 0.96 -1128.16

M TRA 10-1001-1363242188 19.68 0.000 0.950 0.000 -1140.05 0.000000 19.63 0.95 -1137.08

M TRA 10-1001-1384346874 19.72 0.030 0.947 0.000 -1142.00 1.730000 19.74 0.95 -1143.03

M TRA 10-1001-1770500978 19.61 0.030 0.948 0.001 -1136.01 1.750000 19.63 0.95 -1137.07

M TRA 10-1001-2100768183 19.49 0.060 0.948 0.000 -1129.01 3.470000 19.53 0.95 -1131.10

L SAR 01-1002-1636428977 40.45 0.000 1.000 0.000 -5384.00 0.000000 40.61 1.00 -5405.00

L SAR 01-1002-1907615136 40.73 0.040 1.000 0.000 -5420.00 5.200000 40.20 1.00 -5351.00

L SAR 01-1002-2121420767 40.61 0.000 1.000 0.000 -5405.00 0.000000 40.55 1.00 -5396.00

L SAR 01-1002-212289459 40.84 0.000 1.000 0.000 -5435.00 0.000000 40.66 1.00 -5411.00

L SAR 01-1002-322737741 40.95 0.000 1.000 0.000 -5450.00 0.000000 40.73 1.00 -5420.00

L SAR 02-1002-318840955 40.83 0.010 1.000 0.000 -5433.00 1.730000 40.84 1.00 -5435.00

L SAR 02-1002-384676708 40.68 0.000 1.000 0.000 -5414.00 0.000000 40.55 1.00 -5396.00

L SAR 02-1002-82437009 40.57 0.000 1.000 0.000 -5399.00 0.000000 40.45 1.00 -5384.00

L SAR 02-1002-859432993 40.86 0.010 1.000 0.000 -5437.00 1.730000 40.86 1.00 -5438.00

L SAR 02-1002-974400938 40.80 0.010 1.000 0.000 -5430.00 1.730000 40.57 1.00 -5399.00

L SAR 03-1002-1186258176 40.75 0.000 1.000 0.000 -5423.00 0.000000 40.75 1.00 -5423.00

L SAR 03-1002-1270172581 40.77 0.130 1.000 0.000 -5425.00 17.320000 40.89 1.00 -5441.00

L SAR 03-1002-1832778833 40.75 0.000 1.000 0.000 -5423.00 0.000000 40.64 1.00 -5408.00

L SAR 03-1002-2127927599 40.80 0.020 1.000 0.000 -5429.00 3.000000 40.82 1.00 -5432.00

L SAR 03-1002-958893556 40.86 0.000 1.000 0.000 -5438.00 0.000000 40.80 1.00 -5429.00

L SAR 04-1002-1002299107 40.74 0.010 1.000 0.000 -5422.00 1.730000 40.68 1.00 -5414.00

L SAR 04-1002-1198610187 40.16 0.020 1.000 0.000 -5345.00 3.000000 40.23 1.00 -5354.00

L SAR 04-1002-1880704047 40.77 0.000 1.000 0.000 -5426.00 0.000000 40.70 1.00 -5417.00

L SAR 04-1002-236290842 40.73 0.010 1.000 0.000 -5421.00 1.730000 40.66 1.00 -5411.00

L SAR 04-1002-671577138 40.57 0.000 1.000 0.000 -5399.00 0.000000 40.80 1.00 -5429.00

L SAR 05-1001-1518512550 40.75 0.000 1.000 0.000 -5423.00 0.000000 40.68 1.00 -5413.99

L SAR 05-1001-249433843 40.80 0.000 1.000 0.000 -5429.00 0.000000 40.59 1.00 -5401.99

L SAR 05-1001-492137732 40.48 0.000 1.000 0.000 -5387.00 0.000000 40.41 1.00 -5377.99

L SAR 05-1001-532230598 40.82 0.000 1.000 0.000 -5432.00 0.000000 40.23 1.00 -5353.99

L SAR 05-1001-827379364 40.28 0.010 1.000 0.000 -5361.00 1.730000 40.52 1.00 -5392.99

L SAR 06-1001-1116228187 40.92 0.010 1.000 0.000 -5445.00 1.730000 40.66 1.00 -5411.00
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L SAR 06-1001-1151801390 40.84 0.000 1.000 0.000 -5435.00 0.000000 40.75 1.00 -5423.00

L SAR 06-1001-469707530 40.93 0.000 1.000 0.000 -5447.00 0.000000 40.82 1.00 -5432.00

L SAR 06-1001-573064879 40.71 0.010 1.000 0.000 -5418.00 1.730000 40.73 1.00 -5420.00

L SAR 06-1001-608638082 40.95 0.000 1.000 0.000 -5450.00 0.000000 40.82 1.00 -5432.00

L SAR 07-1002-1175763997 40.83 0.010 1.000 0.000 -5434.00 1.730000 40.55 1.00 -5396.00

L SAR 07-1002-177871449 40.43 0.000 1.000 0.000 -5381.00 0.000000 40.77 1.00 -5426.00

L SAR 07-1002-1822284654 40.80 0.040 1.000 0.000 -5429.00 5.200000 40.68 1.00 -5414.00

L SAR 07-1002-1925642003 40.64 0.000 1.000 0.000 -5408.00 0.000000 40.57 1.00 -5399.00

L SAR 07-1002-859965309 40.91 0.000 1.000 0.000 -5444.00 0.000000 40.57 1.00 -5399.00

L SAR 08-1001-1415480628 40.52 0.000 1.000 0.000 -5393.00 0.000000 40.34 1.00 -5369.00

L SAR 08-1001-1558930843 40.73 0.010 1.000 0.000 -5421.00 1.730000 40.75 1.00 -5423.00

L SAR 08-1001-1642845248 40.84 0.000 1.000 0.000 -5435.00 0.000000 40.61 1.00 -5405.00

L SAR 08-1001-1682938114 40.84 0.040 1.000 0.000 -5435.00 5.200000 40.34 1.00 -5369.00

L SAR 08-1001-537075688 40.68 0.000 1.000 0.000 -5414.00 0.000000 40.41 1.00 -5378.00

L SAR 09-1001-1128164210 40.65 0.010 1.000 0.000 -5410.00 1.730000 40.45 1.00 -5384.00

L SAR 09-1001-1582893450 40.76 0.010 1.000 0.000 -5424.00 1.730000 40.77 1.00 -5426.00

L SAR 09-1001-1706900721 40.84 0.000 1.000 0.000 -5435.00 0.000000 40.50 1.00 -5390.00

L SAR 09-1001-81930460 40.83 0.010 1.000 0.000 -5433.00 1.730000 40.68 1.00 -5414.00

L SAR 09-1001-847938725 40.95 0.000 1.000 0.000 -5450.00 0.000000 40.93 1.00 -5447.00

L SAR 10-1001-1187700020 40.90 0.010 1.000 0.000 -5443.00 1.730000 40.50 1.00 -5390.00

L SAR 10-1001-1211662627 40.86 0.000 1.000 0.000 -5438.00 0.000000 40.50 1.00 -5390.00

L SAR 10-1001-1295577032 40.55 0.010 1.000 0.000 -5397.00 1.730000 40.55 1.00 -5396.00

L SAR 10-1001-1439027247 40.86 0.020 1.000 0.000 -5438.00 3.000000 40.68 1.00 -5414.00

L SAR 10-1001-565141970 40.89 0.000 1.000 0.000 -5441.00 0.000000 40.36 1.00 -5372.00

X POL 01-1001-1290835010 59.81 0.000 0.997 0.000 -4690.92 0.000000 59.15 0.99 -4639.87

X POL 01-1001-16781876 59.96 0.000 0.997 0.000 -4702.91 0.000000 59.35 0.99 -4654.87

X POL 01-1001-349620351 59.69 0.000 0.997 0.000 -4681.91 0.000000 59.27 0.99 -4648.87

X POL 01-1001-853145557 59.41 0.020 0.997 0.000 -4659.91 1.730000 58.92 0.99 -4621.87

X POL 01-1001-890212389 59.88 0.000 0.997 0.000 -4696.91 0.000000 59.19 0.99 -4642.86

X POL 02-1002-1195478122 59.92 0.000 0.997 0.000 -4699.92 0.000000 59.31 1.00 -4651.89

X POL 02-1002-1717536744 59.65 0.000 0.997 0.000 -4678.92 0.000000 59.38 1.00 -4657.89

X POL 02-1002-1947472634 59.96 0.000 0.997 0.000 -4702.92 0.000000 59.19 1.00 -4642.89

X POL 02-1002-322047609 59.42 0.000 0.997 0.000 -4660.92 0.000000 58.96 1.00 -4624.89

X POL 02-1002-862639647 59.96 0.000 0.997 0.000 -4702.92 0.000000 59.31 1.00 -4651.88

X POL 03-1001-1100121234 59.96 0.000 0.997 0.000 -4702.91 0.000000 59.04 0.99 -4630.86

X POL 03-1001-116242439 59.81 0.000 0.997 0.000 -4690.91 0.000000 58.31 0.99 -4573.86

X POL 03-1001-1203023819 59.92 0.000 0.997 0.000 -4699.91 0.000000 58.77 0.99 -4609.86

X POL 03-1001-1268859572 59.96 0.000 0.997 0.000 -4702.91 0.000000 59.08 0.99 -4633.85

X POL 03-1001-765334366 59.73 0.000 0.997 0.000 -4684.91 0.000000 59.50 0.99 -4666.86

X POL 04-1002-121839743 59.73 0.000 0.997 0.000 -4684.91 0.000000 59.04 0.99 -4630.86

X POL 04-1002-1414426293 59.69 0.000 0.997 0.000 -4681.92 0.000000 58.38 0.99 -4579.86

X POL 04-1002-206208912 59.92 0.000 0.997 0.000 -4699.92 0.000000 59.04 0.99 -4630.86

X POL 04-1002-290578081 59.49 0.020 0.997 0.000 -4665.92 1.730000 58.58 0.99 -4594.86

X POL 04-1002-627313342 59.81 0.040 0.997 0.000 -4690.92 3.000000 58.62 0.99 -4597.85

X POL 05-1003-1052066683 59.49 0.310 0.997 0.000 -4665.92 24.250000 59.15 0.99 -4639.87

X POL 05-1003-1154969268 59.65 0.070 0.997 0.000 -4678.92 5.200000 59.04 1.00 -4630.87

X POL 05-1003-1257871853 59.64 0.060 0.997 0.000 -4677.92 4.580000 58.69 0.99 -4603.86

X POL 05-1003-178636170 59.00 0.000 0.997 0.000 -4627.92 0.000000 58.96 0.99 -4624.87

X POL 05-1003-427105476 59.46 0.000 0.997 0.000 -4663.92 0.000000 59.23 0.99 -4645.87

X POL 06-1002-1162514965 59.83 0.020 0.997 0.000 -4692.91 1.730000 58.96 0.99 -4624.87

X POL 06-1002-1246884134 60.00 0.000 0.997 0.000 -4705.91 0.000000 59.23 1.00 -4645.87
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X POL 06-1002-1476820024 59.54 0.000 0.996 0.000 -4669.91 0.000000 59.77 0.99 -4687.87

X POL 06-1002-202766890 59.60 0.040 0.997 0.000 -4674.91 3.460000 59.19 0.99 -4642.87

X POL 06-1002-2101781231 59.96 0.000 0.996 0.000 -4702.90 0.000000 59.12 0.99 -4636.87

X POL 07-1001-184688238 60.00 0.000 0.996 0.000 -4705.90 0.000000 59.38 0.99 -4657.86

X POL 07-1001-1886936735 59.50 0.000 0.997 0.000 -4666.91 0.000000 59.46 0.99 -4663.87

X POL 07-1001-296630149 59.85 0.070 0.996 0.000 -4693.91 5.200000 59.23 0.99 -4645.86

X POL 07-1001-380999318 59.17 0.020 0.997 0.000 -4640.91 1.730000 59.54 0.99 -4669.87

X POL 07-1001-407078431 59.77 0.000 0.997 0.000 -4687.91 0.000000 58.62 0.99 -4597.87

X POL 08-1001-1365332877 60.00 0.000 0.997 0.000 -4705.91 0.000000 59.00 0.99 -4627.86

X POL 08-1001-1801073937 59.65 0.000 0.997 0.000 -4678.91 0.000000 58.88 0.99 -4618.86

X POL 08-1001-1885443106 59.27 0.230 0.997 0.000 -4648.91 18.250000 58.27 0.99 -4570.86

X POL 08-1001-861807671 59.73 0.000 0.997 0.000 -4684.91 0.000000 58.85 0.99 -4615.87

X POL 08-1001-964710256 59.71 0.020 0.997 0.000 -4682.91 1.730000 58.08 0.99 -4555.86

X POL 09-1002-1670598610 59.62 0.000 0.997 0.000 -4675.92 0.000000 58.23 1.00 -4567.88

X POL 09-1002-2124873086 59.54 0.000 0.997 0.000 -4669.92 0.000000 59.23 1.00 -4645.88

X POL 09-1002-602350646 59.40 0.020 0.997 0.000 -4658.92 1.730000 58.81 1.00 -4612.88

X POL 09-1002-850819952 59.31 0.140 0.997 0.000 -4651.92 10.820000 59.19 1.00 -4642.88

X POL 09-1002-98825440 59.85 0.000 0.997 0.000 -4693.92 0.000000 59.73 1.00 -4684.88

X POL 10-1001-1799580308 59.85 0.040 0.997 0.000 -4693.91 3.000000 58.96 0.99 -4624.87

X POL 10-1001-338710184 60.00 0.000 0.997 0.000 -4705.91 0.000000 59.04 0.99 -4630.87

X POL 10-1001-842235390 59.73 0.000 0.997 0.000 -4684.91 0.000000 58.77 0.99 -4609.87

X POL 10-1001-90240878 60.00 0.000 0.997 0.000 -4705.91 0.000000 59.46 0.99 -4663.87

X POL 10-1001-963671391 59.77 0.000 0.997 0.000 -4687.92 0.000000 58.96 0.99 -4624.87

133



Table C.7: Dynamic Stochastic Experimentation Average Instance Computation Time

Instance MANET Reactive

(3 replications x 5 realizations) (h:mm:ss) (h:mm:ss)

S SAR 1001 0:00:06 0:00:06

S SAR 1002 0:00:05 0:00:08

S SAR 1003 0:00:09 0:00:08

S SAR 1004 0:00:13 0:00:06

S SAR 1005 0:00:08 0:00:06

S SAR 1006 0:00:08 0:00:06

S SAR 1007 0:00:10 0:00:10

S SAR 1008 0:00:10 0:00:05

S SAR 1009 0:00:11 0:00:11

S SAR 1010 0:00:09 0:00:09

S TRA 1001 0:30:47 0:02:53

S TRA 1002 0:37:39 0:03:39

S TRA 1003* 7:29:11 0:01:46

S TRA 1004 0:31:02 0:02:50

S TRA 1005 0:33:06 0:03:18

S TRA 1006 0:56:24 0:04:22

S TRA 1007 0:50:05 0:03:52

S TRA 1008 0:53:03 0:05:02

S TRA 1009 0:47:24 0:03:48

S TRA 1010 0:46:56 0:03:52

M PAT 1001 3:02:58 0:18:30

M PAT 1002 4:15:51 0:24:59

M PAT 1003 4:33:36 0:21:15

M PAT 1005 1:29:08 0:10:09

M PAT 1006 3:36:27 0:18:19

M PAT 1008 4:48:50 0:33:35

M PAT 1009 3:38:30 0:19:00

M POL 1001 0:02:56 0:00:43

M POL 1002 0:01:49 0:00:35

M POL 1003 0:03:19 0:00:39

M POL 1004 0:03:41 0:00:20

M POL 1005 0:04:02 0:00:43

M POL 1006 0:02:12 0:00:29

M POL 1007 0:04:56 0:00:39

M POL 1008 0:01:36 0:00:54

M POL 1009 0:03:17 0:00:22

Continued on next page
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Table C.7 – continued from previous page

Instance MANET Reactive

(3 replications x 5 realizations) (h:mm:ss) (h:mm:ss)

M POL 1010 0:03:51 0:00:38

M RAN 1001 0:37:11 0:11:06

M RAN 1002 0:43:30 0:20:29

M RAN 1003 1:26:04 0:26:36

M RAN 1004 1:10:05 0:22:10

M RAN 1005 0:07:40 0:02:03

M RAN 1006 0:17:15 0:08:20

M RAN 1008 0:42:03 0:10:49

M RAN 1009 1:02:37 0:16:12

M RAN 1010 1:11:03 0:19:37

M SAR 1001 0:08:41 0:07:14

M SAR 1002 0:04:48 0:02:37

M SAR 1003 0:08:17 0:07:36

M SAR 1004 0:23:33 0:05:51

M SAR 1005 0:06:43 0:04:26

M SAR 1006 0:09:18 0:05:57

M SAR 1007 0:06:04 0:03:47

M SAR 1008 0:08:06 0:05:52

M SAR 1009 0:09:53 0:05:44

M SAR 1010 0:05:04 0:03:41

M TRA 1001 0:01:17 0:00:10

M TRA 1002 0:02:01 0:00:18

M TRA 1003 0:02:51 0:00:49

M TRA 1004 0:05:14 0:00:54

M TRA 1005 0:03:41 0:00:25

M TRA 1006 0:03:16 0:00:47

M TRA 1007 0:01:07 0:00:51

M TRA 1008 0:06:47 0:00:48

M TRA 1009 0:04:03 0:01:36

M TRA 1010 0:06:15 0:01:06

L SAR 1001 2:56:11 2:22:44

L SAR 1002 3:38:50 2:31:59

L SAR 1003 2:19:31 2:13:15

L SAR 1004 2:34:56 2:10:04

L SAR 1005 2:12:37 1:50:55

L SAR 1006 2:58:44 2:45:19

L SAR 1007 2:09:24 2:07:19

Continued on next page
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Table C.7 – continued from previous page

Instance MANET Reactive

(3 replications x 5 realizations) (h:mm:ss) (h:mm:ss)

L SAR 1008 2:03:57 2:12:23

L SAR 1009 1:50:45 1:58:15

L SAR 1010 2:40:25 2:13:31

X POL 1001 3:11:18 0:18:39

X POL 1002 3:00:49 0:28:41

X POL 1003 2:21:20 0:34:13

X POL 1004 4:48:53 0:39:59

X POL 1005 2:15:43 0:27:02

X POL 1006 2:55:15 0:19:56

X POL 1007 3:00:47 0:19:09

X POL 1008 2:26:44 0:25:22

X POL 1009 3:32:45 0:33:59

X POL 1010 2:07:57 0:28:59

Mean 1:12:51 0:23:21

Std.Dev 1:32:41 0:42:08

*Data was lost. Re-evaluated with different code base leading to increased computation time.

136


