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Abstract

This dissertation focuses on the analyses of the non-linear time-fractional stochastic reaction-

diffusion equations of the type

∂βt ut(x) = −ν(−∆)α/2ut(x) + I1−β[b(u) + σ(u)
·
F (t, x)] (0.0.1)

in (d+ 1) dimensions, where ν > 0, β ∈ (0, 1), α ∈ (0, 2] and d is a positive integer. The operator ∂βt is

the Caputo fractional derivative while −(−∆)α/2 is the generator of an isotropic α-stable Lévy process

and I1−β is the Riesz fractional integral operator. The forcing noise denoted by
·
F (t, x) is a Gaussian or

white noise. These equations might be used as a model for materials with random thermal memory.

The first part of the dissertation studies intermittency fronts for the solution of the stochastic equa-

tion of Eq.(0.0.1) when b ≡ 0. Under some appropriate conditions on the parameters we prove that

solutions to the initial value problem of Eq.(0.0.1) with nonempty measurable initial function with com-

pact support and strictly positive on an open subset of (0,∞)d have positive intermittency lower front.

Furthermore, we also identified the parameters regions ensuring that the solutions to the initial value

problem of Eq.(0.0.1) with the same condition on the initial function also have finite intermittency upper

front. Our results recovers as particular cases some known results in the literature. For example, Mijena

and Nane proved in [48] that : (i) absolute moments of the solutions of this equation grow exponentially;

and (ii) the distances to the origin of the farthest high peaks of those moments grow exactly linearly with

time. The last result was proved under the assumptions α = 2 and d = 1. Here, we extend this result to

the case α = 2 and d ∈ {1, 2, 3}.

Next, we study the phenomena of finite-time blow up and non-existence of solutions of (0.0.1).

In particular, when the term σ(u) satisfies σ(u) > |x|1+γ for some positive number γ, we prove that

solution to the initial value problem of Eq.(0.0.1) with strictly positive initial distribution have infinite

second moment for t large enough. We derive non-existence (blow-up) of global random field solutions

ii



under some additional conditions, most notably on b, σ and the initial condition. Our results complement

those of P. Chow in [19], [20], and Foondun et al. in [29], [32] among others.
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Chapter 1

Introduction

Recently time-fractional diffusion equations were studied by researchers in many applied and theoretical

fields of science and engineering. These equations are related with anomalous diffusions or diffusions

in non-homogeneous media, with random fractal structures; see, for instance, [44]. A typical form of

the time fractional diffusion equations is

∂βt u = ν∆u (1.0.1)

with ν > 0, β ∈ (0, 1), where ∆u is the Laplace transform of u and ∂βt u denotes its Caputo fractional

derivative defined by

∂βt ut(x) =
1

Γ(1− β)

∫ t

0

∂ur(x)

∂r

dr

(t− r)β
(1.0.2)

where Γ(1−β) is the Gamma function evaluated at 1−β. The expression ∂βt u is referred to as the Caputo

fractional derivative due to the pioneering work by Caputo [9]. We note that the Laplace transform of

∂βt ut(x) is ∫ ∞
0

e−st∂βt ut(x) dt = sβũs(x)− sβ−1u0(x), (1.0.3)

where ũs(x) =
∫∞

0
e−stut(x)dt and incorporates the initial value in the same way as the first derivative.

For any γ > 0, define the fractional integral by

Iγt f(t) :=
1

Γ(γ)

∫ t

0

(t− τ)γ−1f(τ)dτ.

Then, for every γ > 0, and g ∈ L∞(R+) or g ∈ C(R+), we have the following relation

∂γt I
γ
t g(t) = g(t).
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Hence the Caputo fractional derivative ∂βt is the left inverse of Riesz fractional integral Iβ . It is well

known that the stochastic solutions to fractional diffusion equations (1.0.1) can be realized through

time-change by inverse stable subordinators and therefore we obtain time-changed processes. A couple

of recent works in this field are [43, 44, 46, 53]. For some deep and rigorous mathematical approaches

to time fractional diffusion (heat type) equations see [38, 51, 52, 57]. A natural extension of the time-

fractional diffusion equation (1.0.1) is a stochastic partial differential equation of the form

∂βt ut(x) = ∆ut(x)+
·
W (t, x); ut(x)|t=0 = u0(x), (1.0.4)

where
·
W (t, x) is a space-time white noise with x ∈ Rd.

Mijena and Nane [47] have given an argument using the time fractional Duhamel’s principle to

obtain the following equation:

∂βt ut(x) = −ν(−∆)α/2ut(x) + I1−β
t [σ(u)

·
W (t, x)], t > 0, x ∈ Rd;

ut(x)|t=0 = u0(x),

(1.0.5)

where the initial datum u0 is Lp(Ω)-bounded (p > 2), that is,

sup
x∈Rd

E[|u0(x)|p] <∞, (1.0.6)

−(−∆)α/2 is the fractional Laplacian with α ∈ (0, 2], and
·
W (t, x) is a space-time white noise with

x ∈ Rd, modeling the random effects. The fractional integral above in equation (1.0.5) when σ(u) = 1

for functions φ ∈ L2(Rd) is defined as

∫
Rd
φ(x)I1−β

t [
·
W (t, x)]dx =

1

Γ(1− β)

∫
Rd

∫ t

0

(t− τ)−βφ(x)W (dτ, dx)

it is well defined only when 0 < β < 1/2. It is a type of Rieman-Liouville process.

In reality, the environments of many living organisms are spatially and temporally heterogeneous.

It would be nice to consider the equation (1.0.5) with the space-time white noise without the fractional

integral. For related time fractional stochastic equations with different noise terms see [11, 12, 13, 35].
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In this dissertation we study several dynamics features of solutions to

∂βt ut(x) = −ν(−∆)α/2ut(x) + I1−β[b(u) + σ(u)
·
F (t, x)] (1.0.7)

in (d+ 1) dimensions, where ν > 0, β ∈ (0, 1), α ∈ (0, 2] and d is a positive integer. The forcing noise

denoted by
·
F (t, x) is a Gaussian or white noise. We note that (1.0.5) is a particular case of (1.0.7) The

noise
·
W (t, x) is a space-time white noise with x ∈ Rd, which is assumed to be adapted with respect

to a filtered probability space (Ω,F ,Ft,P), where F is complete and the filtration {Ft, t > 0} is right

continuous.

Let Gt(x) denote the heat kernel of the time fractional heat type equation

∂βt Gt(x) = −ν(−∆)α/2Gt(x). (1.0.8)

We say that an Ft-adapted random field {u(t, x), t > 0, x ∈ Rd} is said to be a mild solution of (1.0.5)

with initial value u0 if the following integral equation is fulfilled

ut(x) =

∫
Rd
u0(y)Gt(x− y)dy +

∫ t

0

∫
Rd
σ(ur(y))Gt−r(x− y)W (drdy). (1.0.9)

Let T be a fixed positive number, and let BT,p denote the family of all Ft-adapted random fields

{ut(x), t ∈ [0, T ], x ∈ Rd} satisfying

sup
x∈Rd

sup
t∈[0, T ]

E [|ut(x)|p] <∞, (1.0.10)

with the convention that BT,2 = BT . It is easy to check that for each fixed T and p, BT,p is a Banach

space.

The existence and uniqueness of the solution to (1.0.5) has been studied by Mijena and Nane [47]

under global Lipchitz conditions on σ, using the white noise approach of Walsh [56].

In this dissertation, among others, we prove the following results.
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(i) Let Lσ := infz∈Rd |σ(z)
z
|. If b(u) ≡ 0, Lσ <∞, d < min{2, β−1}α and infz∈Rd u0(z) > 0, then the

solution ut(x) of (1.0.7) has a positive intermittency lower front and a finite inttermittency upper

front (see Theorem 2.1.3 for more detail and (2.1.3) for the definition of intermittency front.)

The study of blow-up or non-existence of solutions has attracted a number of researches, because

they are very useful to applied researchers. In this regard, Mueller and Sowers in [49, 50] prove that

the space-time white noise driven stochastic heat equation with Dirichlet boundary condition will blow

up in finite time with positive probability, if σ(u) = uγ with γ > 3/2. Bonder and Groisman in [8]

also prove the finite time blow-up for almost every initial data when nonnegative convex drift function

satisfying
∫∞

1/f <∞ is taken into consideration. We refer the reader to [6, 19, 20, 27, 33, 29, 40, 41]

for more information on the blow-up phenomenon in the deterministic setting. In this dissertation, we

prove among other results that

(ii) provided that the initial function is bounded below, the second moment will eventually be infinite

for white noise driven equations.

We also prove that

(iii) Suppose that the correlation function f is given by

f(x, y) =
1

|x− y|ω
with ω < d ∧ (αβ−1).

Then for κ > 0, there exists a positive number t̃ such that for all t > t̃ and x ∈ Rd,

E|ut(x)|2 =∞.
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Chapter 2

Intermittency fronts for space-time fractional stochastic partial differential equations in (d+ 1)
dimensions

2.1 Definitions and Mains Results

In this chapter, we study intermittency fronts for the solution of the stochastic equation (1.0.5). We adopt

the definition given in [37, Chapter 7]: The random field ut(x) is called intermittent if infz∈Rd |σ(z)| > 0,

and ηk(x)/k is strictly increasing for k > 2 for all x ∈ Rd, where

ηk(x) := lim inf
t→∞

1

t
logE(|ut(x)|k). (2.1.1)

The following observation of Carmona and Molchanov [10, Theorem 3.1.2] gives a sufficient con-

dition for intermittency: see [37, Proposition 7.2] for a proof of the next proposition.

Proposition 2.1.1. If η(k) <∞ for all sufficiently large k, then the function η is well-defined and convex

on (0,∞). Moreover, If η(k0) > 0 for some k0 > 1, then k → k−1η(k) is strictly increasing on [k0,∞)

Theorem 2.1.2 ([48]). Let d < min{2, β−1}α. If infz∈Rd |u0(z)| > 0, then

inf
x∈Rd

η2(x) > [C∗(Lσ)2Γ(1− βd/α)]
1

(1−βd/α)

where

Lσ := inf
z∈Rd
|σ(z)/z|. (2.1.2)

Therefore, the solution ut(x) of (1.0.5) is weakly intermittent when infz∈Rd |u0(z)| > 0 and Lσ > 0.
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There is a huge literature on the study of intermittency of SPDEs, see, for example, [28, 37].

According to the previous theorem the solution develops tall peaks over time which means that

t → supx∈Rd E|ut(x)|2 grows exponentially rapidly with t. There appears another phenomena called

intermittency fronts, that the distances of the farthest peaks of the moments of the solution to (1.0.5)

grow linearly with time as θt: if θ is sufficiently small, then the quantity sup|x|>θt E|ut(x)|2 grows

exponentially quickly as t → ∞; whereas the preceding quantity vanishes exponentially rapidly if θ is

sufficiently large.

Here, we define for every p > 2 and every θ > 0,

Lp(θ) := lim sup
t→∞

1

t
sup
|x|>θt

logE (|ut(x)|p) . (2.1.3)

We can think of θLp > 0 as an intermittency lower front if Lp(θ) < 0 for all θ > θLp , and of θUp > 0 as

an intermittency upper front if Lp(θ) > 0 whenever θ < θUp .

The following is our main theorem which establishes bounds for θLp and θUp that extend the results

of [22] and [48] to the case of p > 2 and α = 2 and d ∈ {1, 2, 3} for time fractional SPDEs with crucial

nontrivial changes to the methods in [22, 37].

Theorem 2.1.3. Suppose that d < min{2, β−1}α, α = 2, p > 2 and measurable initial function

u0 : Rd → R+ is bounded, has compact support, and is strictly positive in an open subset of (0,∞)d,

and σ satisfies σ(0) = 0. Then the time fractional stochastic heat equation (1.0.5) has a positive

intermittency lower front. In fact,

Lp(θ) < 0 if θ >
p2

4

(
4ν

p

)1/β

(Lipσc0)2( 2−β
2−βd). (2.1.4)

In addition, under the cone condition Lσ > 0−where Lσ was defined in (2.1.2)-there exists θ0 > 0

such that

Lp(θ) > 0 if θ ∈ (0, θ0). (2.1.5)

That is, in this case, the stochastic heat equation has a finite intermittency upper front.

This theorem in the case of d = 1, p = 2 was proved by Mijena and Nane [48]. In the parabolic

Anderson model which is the stochastic heat equation (1.0.5), when β = 1 and σ(x) = cx, it is now

6



known that there exists a sharp intermittency front, namely θL2 = θU2 , see the work of Chen and Dalang

[14]. It would be nice to consider equality of θLp = θUp for (1.0.5) when β ∈ (0, 1). We will carry out

this project in the near future.

Next we want to give an outline of this chapter. In section 2, we recall some preliminary results

on the subject from the literature. Hence proofs of the results here can be found in the literature, in

particular see references therein. Next, we established some useful results that we used in the proof of

our main results.

2.2 Preliminaries

In this section we give some results about the heat kernel Gt(x) of the time fractional heat type equation

(1.0.8), and mention some basic facts about the integral (mild) solution of (1.0.5) in the sense of Walsh

[56]. We know that Gt(x) is the density function of X(Et), where X is an isotropic α-stable Lévy

process in Rd and Et = inf{u : D(u) > t}, is the first passage time of a β-stable subordinator D =

{Dr, r > 0}, or the inverse stable subordinator of index β: see, for example, Bertoin [7] for properties

of these processes, Baeumer and Meerschaert [5] for more on time fractional diffusion equations, and

Meerschaert and Scheffler [45] for properties of the inverse stable subordinator Et.

Let pX(s)(x) and fEt(s) be the densities of X(s) and Et, respectively. Then the Fourier transform

of pX(s)(x) is given by ∫
Rd
eiξ·xpX(s)(x)dx = e−sν|ξ|

α

, (2.2.1)

and

fEt(s) = tβ−1s−1−1/βgβ(ts−1/β), (2.2.2)

where gβ(·) is the density function of D1. The function gβ(u) [cf. Meerschaert and Straka (2013)] is

infinitely differentiable on the entire real line, with gβ(s) = 0 for s 6 0.

By using (2.2.2) and change of variable we can show that

E(D−βk1 ) = E(Ek
1 ) =

∫ ∞
0

w−βkgβ(w)dw (2.2.3)

7



By conditioning, we have

Gt(x) =

∫ ∞
0

p
X(s)

(x)fEt(s)ds. (2.2.4)

Lemma 2.2.1 (Lemma 2.1 in [47]). For d < 2α,

∫
Rd
G2
t (x)dx = C∗t−βd/α (2.2.5)

where C∗ = (ν)−d/α2πd/2

αΓ( d
2

)
1

(2π)d

∫∞
0
zd/α−1(Eβ(−z))2dz.

Lemma 2.2.2 (Lemma 2.2 in [48]). For λ ∈ Rd and α = 2,

∫
Rd
eλ·xGs(x)dx = Eβ(ν|λ|2sβ).

We barrow the following definition from [28]: let Φ be a random field, and for every γ > 0 and

k ∈ [2,∞) define

Nγ,k(Φ) := sup
t>0

sup
x∈Rd

(
e−γt||Φt(x)||k

)
:= sup

t>0
sup
x∈Rd

(
e−γt

[
E|Φt(x)|k

]1/k
)
. (2.2.6)

If we identify a.s.-equal random fields, then every Nγ,k becomes a norm. Moreover, Nγ,k and Nγ′,k are

equivalent norms for all γ, γ′ > 0 and k ∈ [2,∞). Finally, we note that ifNγ,k(Φ) <∞ for some γ > 0

and k ∈ [2,∞), then Nγ,2(Φ) <∞ as well, thanks to Jensen’s inequality.

Definition 2.2.3. We denote by Lγ,2 the completion of the space of all simple random fields in the norm

Nγ,2.

We next recall the Walsh-Dalang Integral briefly: We use the Brownian filtration {Ft} and the

Walsh-Dalang integrals as follows

• (t, x)→ Φt(x) is an elementary random field when ∃0 6 a < b and anFa-measurableX ∈ L2(Ω)

and φ ∈ L2(Rd) such that

Φt(x) = X1[a,b](t)φ(x) (t > 0, x ∈ Rd).

8



• If h = ht(x) is non-random and Φ is elementary, then

∫
hΦdξ := X

∫
(a,b)×Rd

ht(x)φ(x)ξ(dtdx).

• The stochastic integral is Wiener’s; well defined iff ht(x)φ(x) ∈ L2([a, b]× Rd).

• We have Walsh isometry,

E
(∣∣∣∣ ∫ hΦdξ

∣∣∣∣2) =

∫ ∞
0

∫
Rd
dy[hs(y)]2E(|Φs(y)|2).

Given a random field Φ := {Φt(x)}t>0,x∈Rd and space-time noise Ẇ , we define the [space-time]

stochastic convolution G~ Φ to be the random field that is defined as

(G~ Φ)t(x) :=

∫
(0,t)×Rd

Gt−s(y − x)Φs(y)W (dsdy),

for t > 0 and x ∈ Rd, and (G~ Φ)0(x) := 0.

2.2.1 Some Useful Lemmas

We start this subsection with a very important and non trivial result. The next Lemma provides an

estimate which allows us to overcome some difficulties in the proof of the main result.

Lemma 2.2.4. For β ∈ (0, 1), k ∈ N ∪ {0} and d ∈ {1, 2, 3}, define

adk(β) := E(D
−β(k− d

4
)

1 ) =

∫ ∞
0

w−β(k− d
4

)gβ(w)dw.

Then

0 < adk(β) 6 3
Γ(1 + k)

Γ(1 + βk)
, for k > 1. (2.2.7)

9



Proof. First observe that

adk(β) =

∫ ∞
0

gβ(w)

wβ(k− d
4

)
dw

=

∫ 1

0

gβ(w)

wβ(k− d
4

)
dw +

∫ ∞
1

gβ(w)

wβ(k− d
4

)
dw

Since for every k > 1 we have

1

wβ(k− d
4

)
6


1

wβk
if 0 < w < 1

1
wβ(k−1) if w > 1.

Using the uniqueness of Laplace Transform and Remark 3.1 in [45], we can easily show that E(D−βk1 )) =

E(Ek
t ) = Γ(1+k)

Γ(1+βk)
. Then we have that

adk(β) 6
∫ ∞

0

gβ(w)

wβk
dw +

∫ ∞
1

gβ(w)

wβ(k−1)
dw

6
∫ ∞

0

gβ(w)

wβk
dw +

∫ ∞
0

gβ(w)

wβ(k−1)
dw

=
Γ(1 + k)

Γ(1 + βk)
+

Γ(k)

Γ(1 + β(k − 1))

(2.2.8)

But
1

Γ(1 + β(k − 1))
=

1 + β(k − 1)

Γ(1 + β(k − 1) + 1)

Using D. kershaw inequality 1/Γ(x+ 1) < 1/(x+ 1/2)1−λΓ(x+ λ) for x = β(k − 1) + 1 and λ = β,

we obtain that
1

Γ(1 + (β(k − 1) + 1))
6

1

(3
2

+ β(k − 1))1−βΓ(1 + βk)
.

Since 1
( 3
2

+β(k−1))1−β
6 1 and 1 + β(k − 1) 6 2k, it follows that

1

Γ(1 + β(k − 1))
6

2k

Γ(1 + βk)
.

10



Multiplying both sides of the last expression by Γ(k), we get

Γ(k)

Γ(1 + β(k − 1))
6 2

kΓ(k)

Γ(1 + βk)

= 2
Γ(1 + k)

Γ(1 + βk)
.

Adding Γ(1+k)
Γ(1+βk)

to both side of the last expression, and combine with inequality(2.2.8) give the proof of

inequality (2.2.7).

Lemma 2.2.5. For β ∈ (0, 1), k ∈ N ∪ {0} and d ∈ {1, 2, 3} define

adk(β) =

∫ ∞
0

w−β(k− d
4

)gβ(w)dw = E(D
−β(k− d

4
)

1 ).

Then

adk(β)
√

Γ(1 + β(2k − d
2
))

k!
6

3
√

2β(k − d
4
)
√

Γ(2β(1− d
4
))

Γ(1 + β)
2β(k−1) for k > 1. (2.2.9)

Proof. Using the Duplication formula Γ(2x) = 22x−1Γ(x)Γ(x+ 1
2
)/
√
π, we obtain that

Γ

(
1 + β

(
2k − d

2

))
= β(2k − d

2
)

[
22β(k− d

4
)−1Γ

(
β(k − d

4
)
)

Γ(β(k − d
4
) + 1

2
)

√
π

]
(2.2.10)

This combining with (2.2.7) yields that

adk(β)
√

Γ(1 + β(2k − d
2
))

k!
6 3

√
β(2k − d

2
)

2β(k− d
4

)− 1
2

√
Γ(β(k − d

4
))
√

Γ(β(k − d
4
) + 1

2
)

(π)
1
4 Γ(1 + βk)


(2.2.11)

Using the relationship between the Beta and Gamma functions Γ(x)Γ(y) = B(x, y)Γ(x, y) with x =

βk + 1
2
− βd

4
and y = 1

2
+ βd

4
, we obtain that

Γ(β(k − d
4
) + 1

2
)Γ(1

2
+ βd

4
)

Γ(1 + βk)
= B

(
β(k − d

4
) +

1

2
,
1

2
+
βd

4

)
=

∫ 1

0

tβk+ 1
2
−βd

4
−1(1− t)

1
2

+βd
4 dt

11



=

∫ 1

0

tβkt
1
2
−βd

4
−1(1− t)

1
2

+βd
4 dt

6
∫ 1

0

tβt
1
2
−βd

4
−1(1− t)

1
2

+βd
4 dt

=

∫ 1

0

tβ+ 1
2
−βd

4
−1(1− t)

1
2

+βd
4 dt

= B

(
β +

1

2
− βd

4
,
1

2
+
βd

4

)
=

Γ(β + 1
2
− βd

4
)Γ(1

2
+ βd

4
)

Γ(1 + β)

It follows that
Γ(β(k − d

4
) + 1

2
)

Γ(1 + βk)
6

Γ(β(1− d
4
) + 1

2
)

Γ(1 + β)
(2.2.12)

On the other hand, by repeating again the previous arguments with x = β(k − d
4
) and y = 1 + βd

4
we

obtain that
Γ(β(k − d

4
))

Γ(1 + βk)
6

Γ(β(1− d
4
))

Γ(1 + β)
. (2.2.13)

Inequalities (2.2.12) and (2.2.13) combined give

Γ(β(k − d
4
))Γ(β(k − d

4
) + 1

2
)

[Γ(1 + βk)]2
6

Γ(β(1− d
4
) + 1

2
)Γ(β(1− d

4
))

[Γ(1 + β)]2
. (2.2.14)

Duplication formula with x = β(1− d
4
) gives

Γ(β(1− d

4
) +

1

2
)Γ(β(1− d

4
)) = 21−2β(1− d

4
)
√
πΓ(2β(1− d

4
)). (2.2.15)

Combining (2.2.14),(2.2.15) and we obtain that

Γ(β(k − d
4
))Γ(β(k − d

4
) + 1

2
)

[Γ(1 + βk)]2
6

21−2β(1− d
4

)
√
πΓ(2β(1− d

4
))

[Γ(1 + β)]2
.

Taking square root of both side of the last expression, we get

2β(1− d
4

)− 1
2

√
Γ(β(k − d

4
))
√

Γ(β(k − d
4
) + 1

2
)

(π)
1
4 Γ(1 + βk)

6

√
Γ(2β(1− d

4
))

Γ(1 + β)
. (2.2.16)

12



Inequalities (2.2.14) and (2.2.16) complete the proof of (2.2.9).

The next lemma will also be needed in the proof of our main theorem in the next section.

Lemma 2.2.6. For every β ∈ (0, 1) and n, k ∈ N ∪ {0}, and d ∈ {1, 2, 3} satisfying the assumption of

Proposition 2.3.2, define

bk,n(β) =

∫ t

0

e−γssβ(k+n− d
2

)ds.

Then

bk,n(β) 6 [bk,k(β)]
1
2 [bn,n(β)]

1
2 (2.2.17)

and

bk,k(β) 6

(
1

γ

)1+2β(k− d
4

)

Γ(1 + β(2k − d

2
)). (2.2.18)

Proof. Proof of inequality (2.2.17):

bk,n(β) =

∫ t

0

e−γssβ(k+n− d
2

)ds

=

∫ t

0

(
e−

γs
2 sβ(k− d

4
)
)(

e−
γs
2 sβ(n− d

4
)
)
ds

6

(∫ t

0

e−γss2β(k− d
4

)ds

) 1
2
(∫ t

0

e−γss2β(n− d
4

)ds

) 1
2

= [bk,k(β)]
1
2 [bn,n(β)]

1
2 .

Proof of inequality (2.2.18):

bk,k(β) =

∫ t

0

e−γss2βk−βd
2 ds

=

∫ γt

0

e−w
(
w

γ

)2βk−βd
2 dw

γ

=

(
1

γ

)2(βk− d
4

)+1 ∫ γt

0

e−wwβ(2k− d
2

)dw

6

(
1

γ

)2(βk− d
4

)+1

Γ(β(2k − d

2
) + 1).

13



2.3 Intermittency fronts

Here we prove our main result on the intermittency fronts for the solution of equation (1.0.5). Our

results generalize the work of Mejina and Nane see Theorem 4.1 in [48]. In [48] the authors proved

the result for d = 1, p = 2 and α = 2. With the aid of Lemma 2.2.4, Lemma 2.2.5 and Lemma 2.2.6

we are able to overcome the difficulties in their methods and extend the result to d ∈ {1, 2, 3} and

α = 2. Furtheremore, using Burkholder-Davis-Gundy (BDG) inequaility and Minkowski inequality for

integrals, we are able to extend these results to higher moments, that is for p > 2. Assume that σ(·)

in (1.0.5) satisfies the following global Lipschitz condition, i.e. there exists a generic positive constant

Lipσ such that:

|σ(x)− σ(y)| 6 Lipσ‖x− y‖ for all x, y ∈ Rd. (2.3.1)

Clearly, (2.3.1) implies the uniform linear growth condition of σ(·). Recall the definition of L (θ) from

(2.1.3).

2.3.1 Intermittency fronts for the second moment ( case p=2)

We first state a proposition that implies that the solution of equation (1.0.5) is square integrable over

time in the language of partial differential equations.

Proposition 2.3.1 (Proposition 4.2 in [48]). Assume that α ∈ (0, 2], and d < min{2, β−1}α, then

ut ∈ L2(R) a.s. for all t > 0; in fact, for any fixed ε ∈ (0, 1) and t > 0,

E
(
||ut||2L2(Rd)

)
6 ε−1||u0||2L2(Rd) exp

([
C∗Γ(1− βd/α)Lip2

σ

1− ε

] 1
1−βd/α

t

)
(2.3.2)

The proof of Theorem 2.1.3 requires the following “weighted stochastic Young’s inequality” which

is an extension of Proposition 8.3 in [37].

Proposition 2.3.2. Let α = 2 and d < min{2, β−1}α. Define for all γ > 0, c ∈ Rd, and Φ ∈ Lβ,2,

Nγ,c(Φ) := sup
t>0

sup
x∈Rd

[
e−γt+c.xE

(
|Φt(x)|2

) ]1/2

.
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Then,

Nγ,c(G~ Φ) 6 Cd(c, γ, β)Nγ,c(Φ) for all
(γ

2

)β
>
ν‖c‖2

2
,

where Cd(c, γ, β) is a finite constant that depends on d, ‖c‖, γ, and β.

Using Lemma 2.2.4, Lemma 2.2.5, Lemma 2.2.6 and the last two propositions, we are now ready

to give the proof of Theorem 2.1.3.

Proof of Proposition 2.3.2. Using pu(y) = e−
‖y‖2
4uν

(4πuν)
d
2
, direct computations yield

∫
Rd
e−c.y [pu(y)]2 dy =

e
uν‖c‖2

2

(8πuν)
d
2

.

Observe that

[Gs(y)]2 =

∫ ∞
0

pu(y)fEs(u)du

∫ ∞
0

pv(y)fEs(v)dv (2.3.3)

=

∫ ∞
0

∫ ∞
0

pu(y)pv(y)fEs(u)fEs(v)dudv.

We use Holder’s inequality to obtain that

∫
Rd
e−c.y [Gs(y)]2 dy

=

∫
Rd

∫ ∞
0

∫ ∞
0

(
e−

c.y
2 pu(y)fEs(u)

)(
e−

c.y
2 pv(y)fEs(v)

)
dudvdy

=

∫ ∞
0

∫ ∞
0

∫
Rd

[(
e−

c.y
2 pu(y)

)(
e−

c.y
2 pv(y)

)
dy
]
fEs(u)fEs(v)dudv

6
∫ ∞

0

∫ ∞
0

(∫
Rd
e−c.y [pu(y)]2 dy

) 1
2
(∫

Rd
e−c.y [pv(y)]2 dy

) 1
2

fEs(u)fEs(v)dudv

=

[∫ ∞
0

(∫
Rd
e−c.y [pu(y)]2 dy

) 1
2

fEs(u)du

]2

=

∫ ∞
0

(
e
uν‖c‖2

2

(8πuν)
d
2

) 1
2

fEs(u)du

2

=
1

(8πν)
d
2

[∫ ∞
0

e
uν‖c‖2

4

u
d
4

fEs(u)du

]2
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6
1

(8πν)
d
2

 ∞∑
k=0

(
ν‖c‖2

4

)k
k!

∫ ∞
0

uk−
d
4 fEs(u)du


2

=
1

(8πν)
d
2

 ∞∑
k=0

(
ν‖c‖2

4

)k
k!

sβ(k− d
4

)

∫ ∞
0

w−β(k− d
4

)gβ(w)dw


2

=
1

(8πν)
d
2

 ∞∑
k=0

(
ν‖c‖2

4

)k
k!

sβ(k− d
4

)adk(β)


2

6
s−

βd
2

(8πν)
d
2

∞∑
k,n=0

adk(β)adn(β)

n!k!

(
ν‖c‖2

4

)k+n

sβ(k+n)

(2.3.4)

where

adk(β) =

∫ ∞
0

w−β(k− d
4

)gβ(w)dw

From the inequality (2.3.4), we obtain that

∫ t

0

e−γsds

∫
Rd
e−c.y [Gs(y)]2 dy

6
1

(8πν)
d
2

∞∑
k,n=0

adk(β)adn(β)

n!k!

(
ν‖c‖2

4

)k+n ∫ t

0

sβ(k+n− d
2

)e−γsds

=
1

(8πν)
d
2

∞∑
k,n=0

adk(β)adn(β)

n!k!

(
ν‖c‖2

4

)k+n

bn,k(β)

(2.3.5)

Where

bn,k(β) =

∫ t

0

sβ(k+n− d
2

)e−γsds.

Combining inequality (2.3.5) and inequality (2.2.17) of Lemma 2.2.6 we obtain that

∫ t

0

e−γs
[∫

Rd
e−c.y [Gs(y)]2 dy

]
ds

6
1

(8πν)
d
2

∞∑
k,n=0

adk(β)adn(β)

n!k!

(
ν‖c‖2

4

)k+n

[bk,k(β)]
1
2 [bn,n(β)]

1
2
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=
1

(8πν)
d
2

[
∞∑
k=0

adk(β)

k!

(
ν‖c‖2

4

)k
[bk,k(β)]

1
2

]2

Using inequality (2.2.18) of Lemma 2.2.6, the last inequality can be improved to

∫ t

0

e−γs
[∫

Rd
e−c.y [Gs(y)]2 dy

]
ds

6
1

(8πν)
d
2

 ∞∑
k=0

adk(β)
√

Γ(1 + β(2k − d
2
))

k!

(
ν‖c‖2

4

)k (
1

γ

) 1
2

+β(k− d
4

)
2

(2.3.6)

Next, using inequality (2.2.9) of Lemma 2.2.5 and the fact that
√

2k − d
2
6 2k for every k > 1, inequal-

ity (2.3.6) becomes

∫ t

0

e−γs
[∫

Rd
e−c.y [Gs(y)]2 dy

]
ds

6
γ
βd
2
−1

(8πν)
d
2

ad0(β)

√
Γ(1− βd

2
) +

3
√
βΓ(2β(1− d

4
))

2βΓ(1 + β)

∞∑
k=1

(
2βν‖c‖2

4γβ

)k√
2k − d

2

2

6
γ
βd
2
−1

(8πν)
d
2

ad0(β)

√
Γ(1− βd

2
) +

3
√
βΓ(2β(1− d

4
))

2βΓ(1 + β)

∞∑
k=1

(
2β+1ν‖c‖2

4γβ

)k2

6
M2γ

βd
2
−1

(8πν)
d
2

[
1 +

∞∑
k=1

(
2β−1ν‖c‖2

γβ

)k]2

=

[
Mγ

βd
4
− 1

2

(8πν)
d
4

∞∑
k=0

(
2β−1ν‖c‖2

γβ

)k]2

(2.3.7)

where

M = max

ad0(β)

√
Γ(1− βd

2
),

3
√
βΓ(2β(1− d

4
))

2βΓ(1 + β)
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The last series converges if and only if
(
γ
2

)β
> ν‖c‖2

2
. Therefore from inequality (2.3.7), we obtain that

e−γt+c.xE(|(G~ Φ)t(x)|2)

= e−γt+c.x
∫ t

0

[∫
Rd

[Gt−s(y − x)]2 E(|Φs(y)|2)dy

]
ds

6 [Nγ,c(Φ)]2
∫ t

0

e−γs
∫
Rd
e−c.y [Gs(y)]2 dyds

6 [Nγ,c(Φ)]2
[
Mγ

βd
4
− 1

2

(8πν)
d
4

∞∑
k=0

(
2β−1ν‖c‖2

γβ

)k]2

(2.3.8)

The right-hand side is independent of (x, t). Therefore, by optimizing over (x, t) and then square roots

of both side , we get

Nγ,c(G~ Φ) 6 Cd(c, γ, β)Nγ,c(Φ)

with

Cd(c, γ, β) =
Mγ

βd
4
− 1

2

(8πν)
d
4

∞∑
k=0

(
2β−1ν‖c‖2

γβ

)k
=

Mγ
βd
4
− 1

2

(8πν)
d
4

(
1− 2β−1ν‖c‖2

γβ

) . (2.3.9)

Which complete the proof of Proposition 2.3.2.

The next corollary is a generalization of Corollary 4.4 in [48].

Corollary 2.3.3. If ‖c‖1/β−d/2 > Lipσ
√

M2

(2ν)
1
β
− d2 (1−2β−2)2(8πν)

d
2

, then the solution to the tfspde (1.0.5) for

α = 2 satisfies

E(|ut(x)|2) 6 A(‖c‖, β) exp
(
−‖c‖‖x‖+ (2νc2)1/βt

)
, (2.3.10)

simultaneously for all x ∈ Rd and t > 0, where A(‖c‖, β) is a finite constant that depends only on ‖c‖

and β.

Proof. The proof generalizes some of the ideas used in the proof of Corollary 4.4 in [48]. Recall that

for all γ > 0

Nγ,c(u(n+1)) 6 [Nγ,c(Gt ∗ u0)] + [Nγ,c(G~ σ(u(n))]

6 [Nγ,c(Gt ∗ u0)] + Cd(‖c‖, γ, β)[Nγ,c(σ(u(n)))],

18



using Proposition 2.3.2. Because σ(z) 6 Lipσ|z| for all z ∈ Rd,

Nγ,c(σ(u(n)) 6 LipσNγ,c(u(n)).

Also,

e−γt+c.x(Gt ∗ |u0|)(x) = e−γt
∫
Rd
Gt(y − x)e−c.(y−x)ecy|u0(y)|dy

6 e−γtN0,c(u0)

∫
Rd
ec.zGt(z)dz

= e−γtEβ(ν‖c‖2tβ)N0,c(u0). (2.3.11)

We take γβ := 2ν‖c‖2 to see that for all integers k > 0

e−γtEβ(ν‖c‖2tβ) =
∞∑
k=0

νk‖c‖2ktβke−γt

Γ(1 + βk)
=
∞∑
k=0

νk‖c‖2k

γβk
uβke−u

Γ(1 + βk)
6 2,

since uβke−u

Γ(1+βk)
< 1. From equation 2.3.8

Cd(‖c‖, γ, β) =
Mγ

βd
4
− 1

2

(8πν)
d
4

(
1− 2β−1ν‖c‖2

γβ

) =
M(2ν)

d
4
− 1

2β ‖c‖
d
2
− 1
β

(1− 2β−2)(8πν)
d
4

.

and by our assumption

Cd(‖c‖, γ, β)Lipσ < 1.

For every θ ∈ [0, 2π] and ϕ ∈ [0, π], we define c(θ, ϕ) 1 by the expression

c(θ, ϕ) := ‖c‖(cos(ϕ) cos(θ), cos(ϕ) sin(θ), sin(ϕ)).

Since for every θ ∈ [0, 2π] and ϕ ∈ [0, π], we have ‖c(θ, ϕ)‖ = ‖c‖, then for all integers n > 0 we have

N(2ν‖c‖2)1/β ,c(θ,ϕ)(u
(n+1)) 6 2N0,c(θ,ϕ)(u0) + Cd(‖c‖, γ, β)LipσN(2ν‖c‖2)1/β ,c(θ,ϕ)(u

(n)). (2.3.12)

1For d = 2 we define c(θ) := ‖c‖(cos(θ), sin(θ)) for every θ ∈ [0, 2π] while for the case d = 1 we consider c(θ) :=
|c| cos(θ) where θ ∈ {0, π}
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Since u0 has compact support, there is some constant R > 0 such that u0(x) = 0 whenever ‖x‖ > R.

Hence we obtain that

sup
θ∈[0,2π]

sup
ϕ∈[0,π]

N0,c(θ,ϕ)(u0) : = sup
θ∈[0,2π]

sup
ϕ∈[0,π]

sup
x∈Rd

ec(θ,ϕ).xu0(x)

= sup
θ∈[0,2π]

sup
ϕ∈[0,π]

sup
x∈supp(u0)

ec(θ,ϕ).xu0(x)

6 sup
x∈supp(u0)

e‖c(θ,ϕ)‖‖x‖u0(x)

= sup
x∈supp(u0)

e‖c‖‖x‖u0(x)

6 eR‖c‖‖u0‖∞.

Since eR‖c‖‖u0‖∞ <∞, it follows from inequality (2.3.12) that

sup
n>0

sup
θ∈[0,2π]

sup
ϕ∈[0,π]

N(2ν‖c‖2)1/β ,c(θ,ϕ)(u
(n+1)) <∞.

Since u(n+1)
t (x) converges to ut(x) in L2(Ω) as n→∞, Fatou’s lemma implies that

sup
θ∈[0,2π]

sup
ϕ∈[0,π]

N(2ν‖c‖2)1/β ,c(θ,ϕ)(u) <∞.

Since every x ∈ Rd can be written as x = ‖x‖(cos(φx) cos(θx), cos(φx) sin(θx), sin(φx)) and the pre-

ceding supremum is independent of θ and φ, then in particular for θ = θx and φ = φx we obtain that

c(θx, φx).x = ‖c‖‖x‖. The corollary follows readily from this fact.

We are ready to prove Theorem 2.1.3. We do this in two steps adapting the method in [, Chapter 8]

with crucial nontrivial changes: First we derive (2.1.4); and then we establish (2.1.5).

Proof of (2.1.4). Since u0 has compact support, it follows that |u0(x)| = O(e‖c‖‖x‖) for all ‖c‖ > 0.

Therefore, we may apply Corollary 2.3.3 to an arbitrary ‖c‖1/β−d/2 > Lipσ
√

M2

(2ν)
1
β
− d2 (1−2β−2)2(8πν)

d
2

:=
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Lipσc0 in order to see that

L (θ) = lim sup
t→∞

1

t
sup
‖x‖>θt

logE
(
|ut(x)|2

)
6 − sup

‖c‖>(Lip
σ
c0)2β/(2−βd)

[
θ‖c‖ − (2ν‖c‖2)1/β

]
6 −

[
θ(Lipσc0)2β/(2−βd))− (2ν)1/β(Lipσc0)4/(2−βd))

]
, (2.3.13)

obtained by setting ‖c‖ := (Lipσc0)2β/(2−βd) in the maximization problem of the first line of preceding

display. The right-most quantity is strictly negative when

θ > (2ν)1/β(Lipσc0)2( 2−β
2−βd );

this proves(2.1.4).

Proof of (2.1.5). We have that

E(|ut(x)|2)

> |(Gt ∗ u0)(x)|2 + L2
σ

∫ t

0

ds

∫
Rd
dy[Gt−s(y − x)]2E(|us(y)|2). (2.3.14)

For all t > 0 and x ∈ Rd.Define K+
θt := Rd−1× [θt,∞), K−θt := Rd−1×(−∞,−θt] and Kθt = K+

θt∪K
−
θt

for every t > 0 and θ > 0. Then if x, y ∈ Rd, 0 6 s 6 t, and θ > 0, we have

1K+
θt

(x) > 1K+
θ(t−s)

(x− y) · 1K+
θs

(y).

This is a consequence of the triangle inequality. Therefore,

∫
K+
θt

∫ t

0

ds

∫
Rd
dy[Gt−s(y − x)]2E(|us(y)|2)

=

∫ t

0

ds

∫
Rd×Rd

dy[Gt−s(y − x)]2E(|us(y)|2)1K+
θt

(x)dydx

>
∫ t

0

ds

(∫
K+
θ(t−s)

[Gt−s(y)]2dy

)(∫
K+
θs

E(|us(y)|2)dy

)
(2.3.15)
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This and (2.3.14) together show that the function

M+(t) :=

∫
K+
θt

E(|ut(y)|2)dy (2.3.16)

satisfies the following renewal inequality:

M+(t) >
∫
K+
θt

|(Gt ∗ u0)(x)|2dx+ L2
σ(T ∗M+)(t), (2.3.17)

with

T (t) :=

∫
K+
θt

[Gt(z)]2dz.

Because of symmetry we can write T (t) =
∫
K−θt

[Gt(z)]2dz. Therefore, a similar argument shows that the

function

M−(t) :=

∫
K−θt

E(|us(y)|2)dy,

satisfies the following renewal inequality:

M−(t) >
∫
K−θt

|(Gt ∗ u0)(x)|2dx+ L2
σ(T ∗M−)(t). (2.3.18)

Define

M(t) :=

∫
Kθt

E(|ut(y)|2)dy = M+(t) +M−(t),

Define Lφ to be the Laplace transform of any measurable function φ : R+ → R+. That is,

(Lφ)(λ) =

∫ ∞
0

e−λtφ(t)dt (λ > 0).

Then, we have the following inequality of Laplace transforms: For every λ > 0,

(LM)(λ) = (LM+)(λ) + (LM−)(λ)

>
∫ ∞

0

e−λtdt

∫
Kθt

dx|(Gt ∗ u0)(x)|2 + L2
σ(LT )(λ)(LM)(λ).

(2.3.19)
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Since

lim
θ→0

∫
Kθt
|(Gt)(x)|2 dx =

∫
Rd
|(Gt)(x)|2 dx

= C∗t−
βd
α

where the second equality follows from Lemma 2.2.1. On the other hand we have that

(LT )(0) =

∫ ∞
0

dt

∫
Kθt

[Gt(z)]2dz.

Since ∫ ∞
0

C∗t−
βd
α dt =∞,

then we obtain that

lim
θ→0

(LT )(0) =∞.

Therefore, there exists θ0 > 0 such that (LT )(0) > L−2
σ whenever θ ∈ (0, θ0). This and dominated

convergence theorem together imply that there, in turn, will exist λ0 > 0 such that (LT )(λ) > L−2
σ

whenever θ ∈ (0, θ0) and λ ∈ (0, λ0). Since u0 > 0 on a set of positive measure, it follows readily that

∫ ∞
0

e−λtdt

∫
K+
θt

dx|(Gt ∗ u0)(x)|2 > 0,

for all θ, λ > 0, including θ ∈ (0, θ0) and λ ∈ (0, λ0). Therefore, (2.3.19) implies that

(LM)(λ) =∞ for θ ∈ (0, θ0) and λ ∈ (0, λ0). (2.3.20)

Combining this with the fact that

∫
|y|>θt

E(|ut(y)|2)dy >
∫
Kθt

E(|ut(y)|2)dy = M(t),
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one can deduce from this and the definition of M that

lim sup
t→∞

e−λt
∫
|y|>θt

E(|ut(y)|2)dy =∞,

whenever θ ∈ (0, θ0) and λ ∈ (0, λ0). This and the already-proven first part (2.1.4) together show that

lim sup
t→∞

e−λt
∫
θt<|y|<γt

E(|ut(y)|2)dy =∞,

whenever θ ∈ (0, θ0), λ ∈ (0, λ0) and γ > (2ν)1/β(Lipσc0)2( 2−β
2−βd ). Since the last integral is not greater

than (γ − θ)t sup|x|>θt E(|ut(x)|2), it follows that

L2(θ) = lim sup
t→∞

1

t
sup
|x|>θt

logE(|ut(x)|2) > λ0, (2.3.21)

for θ ∈ (0, θ0). This proves (2.1.5) and hence the theorem.

2.3.2 Intermittency fronts for higher moments (case p>2)

In this section, we shall generalize all the results of the previous for p > 2. Since the previous results

cover the case p = 2, we only consider the case p > 2 in this section.

Proposition 2.3.4. Let α = 2 and d < min{2, β−1}α. Define for all γ > 0, c ∈ Rd, and Φ ∈ Lβ,2,

Nγ,c,p(Φ) := sup
t>0

sup
x∈Rd

[
e−γt+c.xE (|Φt(x)|p)

]1/p

.

Then,

Nγ,c,p(G~ Φ) 6 Cd(c, γ, β, p)Nγ,c,p(Φ) for all
(
γ

p

)β
>

2ν‖c‖2

p2
,

where Cd(c, γ, β, p) is a finite constant that depends on d, ‖c‖, γ, β and p.

Proof. Using Burkholder-Davis-Gundy inequality, there is a constant Kp > 0 depending on p such that

E(|(G~ Φ)t(x)|p) 6 KpE
[
< G~ Φ(x) >

p
2
t

]
(2.3.22)
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where

< G~ Φ(x) >t=

∫
[0,t]×Rd

[Gt−s(y − x)Φs(y)]2 dsdy

denotes the quadratic variation of G~ Φ. Now , using Minkowski inequality for integrals, we have

E(< G~ Φ(x) >
p
2
t ) 6

[∫
[0,t]×Rd

[Gt−s(y − x)]2 ‖Φs‖2
pdsdy

] p
2

(2.3.23)

Therefore

e−γt+c.xE(|(G~ Φ)t(x)|p) 6 Kp

(∫
[0,t]×Rd

e
−2γt
p

+ 2c.x
p [Gt−s(y − x)]2 ‖Φs‖2

pdsdy

) p
2

6 Kp

[
N 2
γ,c,p(Φ)

∫ t

0

e
−2γs
p

∫
Rd
e
−2c.y
p [Gs(y)]2 dyds

] p
2

= Kp [Nγ,c,p(Φ)]p
[∫ t

0

e
−2γs
p

∫
Rd
e
−2c.y
p [Gs(y)]2 dyds

] p
2

(2.3.24)

Taking γ̃ = 2γ
p

, c̃ = 2c
p

, by inequality (2.3.7) we have that

e−γt+c.xE(|(G~ Φ)t(x)|p) 6 Kp [Nγ,c,p(Φ)]p
[
Mγ̃

βd
4
− 1

2

(8πν)
d
4

∞∑
k=0

(
2β−1ν‖c̃‖2

γ̃β

)k]p
. (2.3.25)

Since the R.H.S. of the preceding line is independent of (x,t), optimizing over (x,t) and taking the pth

root of both sides, we obtain:

[e−γt+c.xE(|(G~ Φ)t(x)|p)]
1
p 6 K

1
p
p [Nγ,c,p(Φ)]

[
Mγ̃

βd
4
− 1

2

(8πν)
d
4

∞∑
k=0

(
2β−1ν‖c̃‖2

γ̃β

)k]
. (2.3.26)

The last series converges for
(
γ̃
2

)β
> ν‖c̃‖2

2
,which is equivalent to

(
γ
p

)β
> 2ν‖c‖2

p
. By lettingCp(c, γ, β, p)

=K
1
p
p

[
Mγ̃

βd
4 −

1
2

(8πν)
d
4

∑∞
k=0

(
2β−1ν‖c̃‖2

γ̃β

)k]
, we have thatNγ,c,p(G~Φ) 6 Cp(c, γ, β, p)Nγ,c,p(Φ) , which com-

pletes the proof.

The next Corollary generalizes some of the ideas used in the proof of Corollary 4.4 in [48].
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Corollary 2.3.5. If ‖c‖1/β−d/2 > (2
p
)
d
2
− 1
β Lipσ

√
M2

(2ν)
1
β
− d2 (1−2β−2)2(8πν)

d
2

, for all 2 < p < ∞ then the

solution to the tfspde (1.0.5) for α = 2 satisfies

E(|ut(x)|p) 6 Ap(‖c‖, β) exp

(
−2

p
‖c‖‖x‖+

(
4

p
νc2

)1/β

t

)
, (2.3.27)

simultaneously for all x ∈ Rd and t > 0, where Ap(‖c‖, β) is a finite constant that depends only on

‖c‖,p and β.

Proof. Using the same argument as in the proof of Corollary 2.3.3 and equation (2.3.12), we have that

sup
θ∈[0,2π]

sup
ϕ∈[0,π]

N(2ν‖c̃‖2)1/β ,c̃(θ,ϕ)(u) <∞,

with c̃ = 2c
p
. The corollary follows readily from this fact.

We are ready to prove Theorem 2.1.3 for p > 2. We do this in two steps adapting the method in

[37, Chapter 8] with crucial nontrivial changes: First we derive (2.1.4); and then we establish (2.1.5).

Proof of (2.1.4). Since u0 has compact support, it follows that |u0(x)| = O(e‖c‖‖x‖) for all ‖c‖ > 0.

Therefore, we may apply Corollary 2.3.5 to an arbitrary ‖c‖1/β−d/2 >
(

2
p

) d
2
− 1
β

Lipσ
√

M2

(2ν)
1
β
− d2 (1−2β−2)2(8πν)

d
2

:=

(2
p
)
d
2
− 1
β Lipσc0 in order to see that

Lp(θ) = lim sup
t→∞

1

t
sup
‖x‖>θt

logE (|ut(x)|p)

6 − sup
‖c‖> p

2(Lip
σ
c0)

2β/(2−βd)

[
2

p
θ‖c‖ −

(
4ν

p
ν‖c‖2

)1/β ]

6 −
[
θ(Lipσc0)2β/(2−βd))− p2

4

(
4ν

p

) 1
β

(Lipσc0)4/(2−βd))

]
, (2.3.28)

obtained by setting ‖c‖ := p
2

(Lipσc0)2β/(2−βd) in the maximization problem of the first line of preceding

display. The right-most quantity is strictly negative when

θ >
p2

4

(
4ν

p
ν‖c‖2

)1/β

(Lipσc0)2( 2−β
2−βd) ;

this proves(2.1.4).
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Proof of inequality (2.1.5). The fact that (E (|ut(x)|p))
2
p > E (|ut(x)|2) , inequality (2.3.21) and the

non-decreasing property of Lp(θ) for p > 2 , implies the proof of (2.1.5).
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Chapter 3

Blow-up results for space-time fractional stochastic partial differential equations

3.1 Motivation and main results

The study of blow-up or non-existence of solutions has attracted a number of researches, because they

are very useful to applied researchers. In this regard, Mueller and Sowers in [49, 50] prove that the

space-time white noise driven stochastic heat equation with Dirichlet boundary condition will blow up

in finite time with positive probability, if σ(u) = uγ with γ > 3/2. Bonder and Groisman in [8]

also prove the finite time blow-up for almost every initial data when nonnegative convex drift function

satisfying
∫∞

1/f <∞ is taken into consideration. We refer the reader to [6, 19, 20, 27, 33, 29, 40, 41]

for more information on the blow-up phenomenon in the deterministic setting.

We can study the natural extension of the time-fractional diffusion equation ∂βt u = ν∆u with

β ∈ (0, 1) where ∆u denotes the Laplacian of u and ∂βt u denotes the Caputo fractional derivative of u

defined by (1.0.2)

∂βt ut(x) = ∆ut(x)+
·
W (t, x); ut(x)|t=0 = u0(x), (3.1.1)

where
·
W (t, x) is a space-time white noise with x ∈ Rd.

The "correct" form of (3.1.1) can be obtained using time fractional Duhamel’s principle [55] as

follows. Consider the time-fractional PDE with force term f(t, x)

∂βt ut(x) = ∆ut(x) + f(t, x); ut(x)|t=0 = u0(x), (3.1.2)
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whose solution is given by Duhamel’s principle. The role of the external force f(t, x) to the output can

be seen as

∂βt V (r, t, x) = ∆V (r, t, x); V (r, r, x) = ∂1−β
t f(t, x)|t=r, (3.1.3)

with solution

V (t, r, x) =

∫
Rd
Gt−r(x− y)∂1−β

r f(r, y)dy,

where Gt(x) is the fundamental solution of ∂βt u = ∆u. Thus (3.1.2) has solution

u(t, x) =

∫
Rd
Gt(x− y)u0(y)dy +

∫ t

0

∫
Rd
Gt−r(x− y)∂1−β

r f(r, y)dydr.

Now we will write the mild (integral) solution of (3.1.1) using time fractional Duhamel’s principle

as the form (informally):

u(t, x) =

∫
Rd
Gt(x− y)u0(y)dy

+

∫ t

0

∫
Rd
Gt−r(x− y)∂1−β

r [
·
W (r, y)]dydr.

(3.1.4)

For γ > 0, we define the Riesz fractional integral by

Iγf(t) :=
1

Γ(γ)

∫ t

0

(t− τ)γ−1f(τ)dτ.

The Caputo fractional derivative ∂βt is the left inverse of Riesz fractional integral Iβ . That means, for

every β ∈ (0, 1), and h ∈ L∞(R+) or h ∈ C(R+)

∂βt I
βh(t) = h(t).

The fractional derivative of the noise term in (3.1.4) can now be removed as follows. Consider the

time fractional PDE with a force given by f(t, x) = I1−βh(t, x), then by the time fractional Duhamel’s

principle the mild solution to (3.1.2) will be given by
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ut(x) =

∫
Rd
Gt(x− y)u0(y)dy +

∫ t

0

∫
Rd
Gt−r(x− y)∂1−β

r I1−βh(r, y)dydr.

=

∫
Rd
Gt(x− y)u0(y)dy +

∫ t

0

∫
Rd
Gt−r(x− y)h(r, y)dydr.

Hence, the preceding discussion suggest that the “correct” time fractional stochastic PDE is the

following model problem:

∂βt ut(x) = ∆ut(x) + I1−β[
·
W (t, x)]; ut(x)|t=0 = u0(x). (3.1.5)

The fractional integral above in equation (3.1.5) for functions φ ∈ L2(Rd) is defined as

∫
Rd
φ(x)I1−β[

·
W (t, x)]dx =

1

Γ(1− β)

∫
Rd

∫ t

0

(t− τ)−βφ(x)W (dτ, dx),

by using the Walsh isometry.

By the Duhamel’s principle, mentioned above, mild (integral) solution of (3.1.5) will be (infor-

mally):

ut(x) =

∫
Rd
Gt(x− y)u0(y)dy +

∫ t

0

∫
Rd
Gt−r(x− y)W (dydr). (3.1.6)

Next we want to give a Physical motivation to study time fractional stochastic PDEs which is

adapted from [16]. The time fractional stochastic PDEs studied in this chapter may arise naturally by

considering the heat equation in a material with thermal memory. Let ut(x), k(t, x) and
→
H (t, x) denote

the body temperature, internal energy and flux density, respectively. Then the relations

∂tk(t, x) = −div
→
H (t, x),

k(t, x) = βut(x),
→
H (t, x) = −λ∇ut(x),

(3.1.7)

yield the classical heat equation β∂tu = λ∆u.

The speed of heat flow is infinite according to the law of classical heat equation, but since the heat

flow can be disrupted by the response of the material the propagation speed can be finite. In a material
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with thermal memory we might have

k(t, x) = β̄ut(x) +

∫ t

0

n(t− s)us(x)ds,

holds with some appropriate constant β̄ and kernel n. In most cases we would have n(t) = Γ(1 −

β1)−1t−β1 for β1 ∈ (0, 1). The convolution gives the fact that the nearer past affects the present more. If

in addition the internal energy also depends on past random effects, then

k(t, x) = β̄ut(x) +

∫ t

0

n(t− s)us(x)ds

+

∫ t

0

l(t− s)h(s, us(x))W (ds, x),

(3.1.8)

where W is “white noise” modeling the random effects. Take l(t) = Γ(2 − β2)−1t1−β2 for β2 ∈ (0, 1),

then after differentiation (3.1.8) gives

∂β1t u = div
→
F +

1

Γ(2− β2)

∂

∂t

∫ t

0

(t− s)1−β2h(s, us(x))W (ds, x). (3.1.9)

A version of equation (3.1.9) was studied recently by L. Chen and his co-authors: see, for example, [12]

Mijena and Nane [47] proposed to study a class of space-time fractional stochastic heat type equa-

tion as a physical model for heat in a material with random thermal memory. In the current chapter,

we consider the following related space-time fractional stochastic reaction-diffusion type equations in

(d+ 1) dimension

∂βt ut(x) = −ν(−∆)α/2ut(x) + I1−β[b(u) + σ(u)
·
F (t, x)] t > 0 and x ∈ Rd, (3.1.10)

where ν > 0, β ∈ (0, 1), α ∈ (0, 2]. The operator ∂βt is the Caputo fractional derivative while−(−∆)α/2

denotes the fractional Laplacian, the generator of a α-stable Lévy process and I1−β is the Riesz fractional

integral operator. The forcing noise denoted by
·
F (t, x) is a Gaussian noise and will be taken to be white

in time and possibly colored in space. The initial condition will always be assumed to be a non-negative

bounded deterministic function. The functions σ and b are locally Lipschitz functions.
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The fractional integral of the noise term in equation (3.1.10) is not used to get a simple integral

solution. A physical important reason to take the fractional integral of the noise in equation (3.1.10):

Apply the fractional derivative of order 1 − β to both sides of the equation (3.1.10) to see the forcing

function, in the traditional units x/t: see, for example, Meerschaert et al [42]. In this chapter, we work

on a deterministic time fractional equation with an external force, but the same physical principle should

apply for the stochastic equations too.

Recently a numerical approximation of solutions to space-time fractional stochastic equations was

established in [34]. Versions of equation (3.1.10) with or without the fractional integral of the noise term

was the subject of some papers recently: see, for example, [1, 2, 11, 16, 12, 23].

Using the time fractional Duhamel’s principle, as mentioned above, a mild solution to (3.1.10) in

the sense of Walsh [56] is any u which is adapted to the filtration generated by the Gaussian noise and

satisfies the following evolution equation

ut(x) = (Gu)t(x)+

∫
Rd

∫ t

0

Gt−s(x−y)b(us(y))ds dy+

∫
Rd

∫ t

0

Gt−s(x−y)σ(us(y))F (ds dy), (3.1.11)

where

(Gu)t(x) :=

∫
Rd
Gt(x− y)u0(y) dy, (3.1.12)

and Gt(·) denotes the density of the time changed process XEt . More explanation about this process is

given in Section 2.

The existence and uniqueness of the solution to (3.1.10) with the space-time white noise when

d < (2∧ β−1)α has been studied by Mijena and Nane [47] under global Lipschitz condition on σ, using

the white noise approach of Walsh [56]. Foondun and Nane [30] and Foondun et al. [31] established

existence of solutions of space-time fractional equations with space colored noise. Asogwa and Nane

[4], Mijena and Nane [48], show that if σ is globally Lipschitz, then for every non-negative measurable

bounded initial function with non-empty compact support, solution to (3.1.10) is defined for all time

and the distances to the origin of the farthest high peaks of absolute moments of solutions grow exactly

linearly with time. See [4, 48] for more details. In this chapter, we will be concerned with the moments

of the solution.
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If we further have

sup
x∈[0, L]d

sup
t∈[0, T ]

E|ut(x)|k <∞ for all L > 0 and k ∈ [2, ∞], (3.1.13)

then we say that u is a random field solution on [0, T ]. Usually, existence is proved under the assumption

that σ is globally Lipschitz. But this can be proved under the local Lipschitz condition as well. We can

see this by defining

τN := inf{t > 0, sup
x∈Rd
|ut(x)| > N},

then we have |σ(us(x)) − σ(us(y))| 6 KN |us(x) − us(y)| for any s 6 min(T, τN), where KN is a

constant dependent on N . Following the techniques in [37], [47] and [56], we can prove existence and

uniqueness of a local solution in (0,min(T, τN)) provided that 0 < α < 2 and d < (2 ∧ β−1)α; two

conditions which will be in force whenever we are dealing with the above equation.

When (3.1.10) has a solution ut(x) which is defined on Rd × (0, T ) for every T > 0, we say that

the solution is global. The main aim of this chapter is to show that under some additional conditions on

the initial condition and the functions σ and b, (3.1.10) cannot have global random field solutions. The

failure of global solutions usually manifests itself via the ‘blow up’ of certain quantities involving the

solution.

In this chapter, we will work with white and space colored noise driven equations. First, we will

look at the following equation driven by the space-time white noise

∂βt ut(x) = −ν(−∆)α/2ut(x) + I1−β[σ(u)
·
W (t, x)] t > 0 and x ∈ Rd, (3.1.14)

where
·
W (t, x) is a space-time white noise. We will also look at equations driven by noise colored in

space of the following type

∂βt ut(x) = −ν(−∆)α/2ut(x) + I1−β[σ(u)
·
F (t, x)] t > 0 and x ∈ Rd, (3.1.15)
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where
·
F (t, x) is a space colored noise. The corresponding mild solution in the sense of Walsh [56] is

given by

ut(x) = (Gu)t(x) +

∫
Rd

∫ t

0

Gt−s(x− y)σ(us(y))F (ds dy). (3.1.16)

We will again be interested in the random field solution. But for this equation, we will need to impose

some conditions on the noise term. We have

E[Ḟ (s, x)Ḟ (t, y)] = δ0(t− s)f(x, y),

where f(x, y) 6 g(x − y) and g is a locally integrable function on Rd with a possible singularity at 0

satisfying ∫
Rd

ĝ(ξ)

1 + |ξ|α
dξ <∞,

where ĝ denotes the Fourier transform of g.

It is worth mentioning that not a lot of work has been done in this type of problems for space-time

fractional stochastic partial differential equations.

Assumption 3.1.1. The function σ is a locally Lipschitz function satisfying the following growth condi-

tion. There exist a γ > 0 such that

σ(x) > |x|1+γ for all x ∈ Rd. (3.1.17)

Now we are ready to state our findings in detail. For the first couple of our results, we will assume

that the initial condition is bounded below by a positive constant given below

inf
x∈Rd

u0(x) := κ. (3.1.18)

Theorem 3.1.1. Let d < (2 ∧ β−1)α. Suppose that κ > 0 and ut be the solution to (3.1.14). Then there

exists a t0 > 0 such that for all x ∈ Rd,

E|ut(x)|2 =∞ whenever t > t0.

34



This theorem states that provided that the initial function is bounded below, the second moment

will eventually be infinite for white noise driven equations.

Remark 3.1.2. We can also get a blow up for the following equation that was considered by Chen et al

[?] for any γ > 0 and d < 2α + α
β

min(2γ − 1, 0).

∂βt ut(x) = −ν(−∆)α/2ut(x) + Iγ[σ(u)
·
W (t, x)] t > 0 and x ∈ Rd, (3.1.19)

In this case the corresponding mild solution in the sense of Walsh [56] is given by

ut(x) = (Gu)t(x) +

∫
Rd

∫ t

0

Ht−s(x− y)σ(us(y))W (ds dy). (3.1.20)

Where H(t, x) is given by the time fractional derivative of G(t, x). Using Lemma 5.5 in [?] we can get

finite time blow up as in the proof of Theorem 3.1.1.

Here the nonlinear renewal inequality becomes

P (s) > C + C1

∫ t

0

P (s)1+η(t− s)2(β+γ−1)−dβ/αds

where P (s) = infx∈Rd E|us(x)|2 and 2(β+γ−1)−dβ/α > 0. Note that when γ = β−1 this condition

becomes the same condition in Theorem 3.1.1, d < (2 ∧ β−1)α.

We have a slightly more complicated picture for equations with colored noise. We will assume the

following non-degeneracy condition on the spatial correlation of the noise.

Assumption 3.1.2. For fixed R > 0, there exists a positive number Kf such that

inf
x, y∈B(0, R)

f(x, y) > Kf .

Since we mostly setR = 1 when using this condition, the dependence ofKf onR is not necessarily

specified. The above assumption is also very mild. There are a lot of examples including the Riesz

Kernel, exponential kernel, Ornstein-Uhlenbeck-type kernels, Poisson kernels and Cauchy kernels; see,

for example, Example 1.4 in [29] for more details.
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Theorem 3.1.3. Let ut be the solution to (3.1.15) and suppose that Assumption 3.1.2 holds. Fix t0 > 0,

then there exists a positive number κ0 such that for all κ > κ0, and x ∈ Rd we have

E|ut(x)|2 =∞, whenever t > t0.

To establish non-existence of the second moment, in contrast to Theorem 3.1.1, we require that

the initial condition is large enough. This is a result of the spatially correlated nature of the noise,

which induces some extra dissipation effect. In fact, even in the case of the corresponding linear

equation(σ(u) ∝ u), it is known that for some correlation functions, their moments might not grow

exponentially fast. See for instance [17] and [36]. However, if we consider the case when the correlation

function is given by the Riesz Kernel, we have the following stronger result concerning the solution to

(3.1.15).

Theorem 3.1.4. Suppose that the correlation function f is given by

f(x, y) =
1

|x− y|ω
with ω < d ∧ (αβ−1).

Then for κ > 0, there exists a positive number t̃ such that for all t > t̃ and x ∈ Rd,

E|ut(x)|2 =∞.

Remark 3.1.5. We can also get a blow up for the following equation that was considered by Chen et

al [12] for any γ > 0 (where we also need to add the condition from Chen et al [12]about d and other

parameters!)

∂βt ut(x) = −ν(−∆)α/2ut(x) + Iγ[σ(u)
·
F (t, x)] t > 0 and x ∈ Rd, (3.1.21)

In this case the corresponding mild solution in the sense of Walsh [56] is given by

ut(x) = (Gu)t(x) +

∫
Rd

∫ t

0

Ht−s(x− y)σ(us(y))F (ds dy). (3.1.22)
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Where Ht(x) is given by the time fractional derivative of Gt(x). Using Plancharel theorem and equa-

tions (4.8) in [?] we can get finite time blow up as in the proof of Theorem 3.1.4. We need to work on

the following lower bound

∫
Rd×Rd

Gt−s(x1 − y1)Gt−s(x2 − y2)f(y1, y2) dy1dy2 > c(t− s)2β+2γ−2−βw/α.

Hence the nonlinear renewal inequality in this case is

H(t) > C + C

∫ t

0

H(s)1+η(t− s)2β+2γ−2−βw/α

where H(s) = infx∈Rd,y∈Rd E|us(x)us(y)|.

It is also important to mention that all the results established so far in this work are obtained under

the assumption that the initial function is bounded below away from zero. In fact, as we shall see from

the next result, this condition can be weakened.

Assumption 3.1.3. Suppose that initial condition is non-negative and satisfies the following,

∫
B(0, 1)

u0(x) dx := Ku0 > 0.

We have taken B(0, 1) as a matter of convenience.

Theorem 3.1.6. Let d < (2 ∧ β−1)α, and ut be the solution to (3.1.14). Then, under Assumption 3.1.3,

there exists a t0 > 0 such that for all t > t0 and x ∈ Rd,

E|ut(x)|2 =∞ whenever Ku0 > K,

where K is some positive constant.

We have a similar result for the equation driven by space colored noise.
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Theorem 3.1.7. Let ut be the solution to (3.1.15). Then, under Assumptions 3.1.2 and 3.1.3, there exists

a t0 > 0 such that for all t > t0 and x ∈ Rd,

E|ut(x)|2 =∞ whenever Ku0 > K,

where K is a positive constant.

It should be noted that the constant K appearing in the above two results need not be the same. The

concept of our method involves obtaining non-linear renewal-type inequalities whose solutions blow up

in finite time. We adapt the methods in [29] with crucial changes to suit to the space-time fractional

equations. This method is soft and can be adapted to study a wider class of equations. For the colored-

noise case, a crucial quantity we study is E|ut(x)ut(y)| instead of E|ut(x)|2; and a good control of the

deterministic term (Gu)t(x) is crucial in getting the non-existence of the solutions. Our methods depend

on crucial heat kernel estimates for short times and use the fact that we can restart the solution at a later

time. We will explain these methods in the proof of our results.

Our next theorem, extends those of [19] , [20] and [29]. Fix R > 0. We will study the equations

above in the ball B(0, R) with Dirichlet boundary conditions. We will need the following assumption.

Assumption 3.1.4. We assume that the initial condition u0 is a non-negative function whose support,

denoted by Su0 satisfies B(0, R/2) ⊂ Su0 such that infx∈B(0, R/2) u0(x) > κ̃ for some positive constant

κ̃.

Theorem 3.1.8. Fix R > 0 and consider

∂βt ut(x) = −ν(−∆)α/2ut(x) + I1−β[σ(u)
·
F (t, x)] t > 0 and x ∈ B(0, R). (3.1.23)

Here −(−∆)α/2 denotes the generator of a α-stable Lévy process killed upon exiting the ball B(0, R).

The noise Ḟ , when not space-time white noise is taken to be spatially colored with correlation function

satisfying all the conditions stated above. Fix ε > 0, then there exist t0 > 0 and K > 0, such that for

Ku0 > K,

E|ut(x)|2 =∞ for all t > t0 and x ∈ B(0, R− ε).
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Fujita in [33] showed that the only global solution to

∂tut(x) = ∆ut(x) + u(x)1+λ for t > 0 x ∈ Rd,

with initial condition u0 and λ > 0 is the trivial one for λ < 2/d. In the case λ > 2/d, the global solution

exist for small enough u0. A good way to look at this result is that for large λ, the quantity u1+λ becomes

much smaller when the initial condition is small and the dissipative effect of the Laplacian prevents the

solution to grow too big for blow-up to happen. But, when λ is close to zero, regardless of the size of

the initial condition, the dissipative effect of the Laplacian cannot prevent blow up of the solution. For

the reaction-diffusion type space-time fractional stochastic equations, we work with the first moment

E(|ut(x)|). There is still an interplay between the dissipative effect of the operator and the forcing term

and we are able to shed light only on part of the true picture. We show that if the initial condition is large

enough then there is no global solution. It might very well be just like for the deterministic case, if the

non-linearity is high enough, then for small initial condition, there exist global solutions. See the survey

papers [26, 39] for blow-up results for the deterministic equations.

Next we want to state our non-existence results for reaction-diffusion type equations.

Assumption 3.1.5. The function b is locally Lipschitz satisfying the following growth condition. There

exist a η > 0 such that

b(x) > |x|1+η for all x ∈ Rd. (3.1.24)

Theorem 3.1.9. Suppose that σ is globally Lipschitz and b satisfies the conditions in Assumption 3.1.5.

Consider

∂βt ut(x) = −ν(−∆)α/2ut(x) + I1−β[b(ut(x)) + σ(u)
·
F (t, x)] t > 0 and x ∈ Rd. (3.1.25)

Here −(−∆)α/2 denotes the generator of α-stable Lévy process. The noise Ḟ , when not space-time

white noise is taken to be spatially colored. Then (3.1.25) has no random field solution in the following

cases:

1: infx∈Rd u0(x) > κ > 0 and η > 0.

2: ||u0||L1(Rd) > 0, and βdη/α < 1.
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When β = 1, a version of this theorem with α = 2 was considered by Chow [20] and a version

with α ∈ (1, 2) was considered by Foondun and Parshad [32].

The mild solution of equation (3.1.25) is given in the sense of Walsh [56] as follows:

ut(x) = (Gu)t(x)+

∫
Rd

∫ t

0

b(us(y))Gt−s(x−y)ds dy+

∫
Rd

∫ t

0

Gt−s(x−y)σ(us(y))F (ds dy). (3.1.26)

Remark 3.1.10. We can also get a blow up for the following equation that was considered by Chen et

al [12] for any γ > 0 and d < 2α + α
β

min(2γ − 1, 0).

∂βt ut(x) = −ν(−∆)α/2ut(x) + Iγ[b(ut(x)) + σ(u)
·
F (t, x)] t > 0 and x ∈ Rd, (3.1.27)

In this case the corresponding mild solution in the sense of Walsh [56] is given by

ut(x) = (Gu)t(x)+

∫
Rd

∫ t

0

b(us(y))Ht−s(x−y)ds dy+

∫
Rd

∫ t

0

Ht−s(x−y)σ(us(y))F (ds dy). (3.1.28)

Where Ht(x) is given by the time fractional derivative of Gt(x). Using Equation (4.7) in [12] for ξ = 0

to get
∫
Rd Ht(x)dx = tβ+γ−1 we can get finite time blow up as in the proof of Theorem 3.1.9.

Here the nonlinear renewal inequality becomes

F (s) > C + C1

∫ t

0

F (s)1+η(t− s)β+γ−1ds

where F (s) = infx∈Rd E|us(x)|2.

Theorem 3.1.11. Suppose that σ is globally Lipschitz and b satisfies the conditions in Assumption 3.1.5.

Fix R > 0 and consider

∂βt ut(x) = −ν(−∆)α/2ut(x) + I1−β[b(ut(x)) + σ(u)
·
F (t, x)] t > 0 and x ∈ B(0, R). (3.1.29)

Here−(−∆)α/2 denotes the generator of α-stable Lévy process killed upon exiting the ballB(0, R). The

noise Ḟ , when not space-time white noise is taken to be spatially colored. Let φ1 be the first eigenfunction
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of the fractional Laplacian with Dirichlet exterior boundary condition in the ball B = B(0, R). Then

(3.1.29) has no random field solution in the following cases:

1:
∫
B
u0(x)φ1(x) := Ku0,φ1 > 0, and β(1 + η) 6 1

2: β(1 + η) > 1 and for large Ku0,φ1 > 0.

The mild solution of equation (3.1.29) is given in the sense of Walsh [56] as follows:

ut(x) = (GBu)t(x) +

∫
B(0,R)

∫ t

0

b(us(y))GB(t− s, x, y)ds dy

+

∫
B(0,R)

∫ t

0

GB(t− s, x, y)σ(us(y))F (ds dy),

(3.1.30)

where GB(t, x, y) is the density of XEt killed on the exterior of B.

In this chapter, we will denote the ball of radius R by B = B(0, R). For x ∈ Rd, |x| will be the

magnitude of x. The letter c and c∗ with or without subscripts will denote a constant whose value is not

relevant.

The outline of this chapter is the following. Preliminary notions and results needed for the proofs

of the main results are presented in Section 3.2. Section 3.3 contains the proofs of Theorem 3.1.1 and

3.1.3. Theorem 3.1.4 is proved in Section 3.4. In Section 3.5 we give the proofs of Theorems 3.1.6,

3.1.7, and 3.1.8. Finally, in section 3.6 we present the proof of the remaining results. We list a couple of

results we need in the appendix, section 3.7.

3.2 Preliminaries

Now we are ready to give results that are used in the proof of our main results. Let α ∈ (0, 2). LetXt de-

note a symmetric α-stable Lévy process with density function denoted by p(t, x). This is characterized

through the Fourier transform which is given by

p̂(t, ξ) = e−tν|ξ|
α

. (3.2.1)
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Let D = {Dr, r > 0} denote a β-stable subordinator with β ∈ (0, 1) and Et be its first passage

time. It is known that the density of the time changed process XEt is given by Gt(x). By conditioning,

we have

Gt(x) = G(t, x) =

∫ ∞
0

p(s, x)fEt(s)ds, (3.2.2)

where

fEt(x) = tβ−1x−1−1/βgβ(tx−1/β),

where gβ(·) is the density function of D1 and is infinitely differentiable on the entire real line, with

gβ(u) = 0 for u 6 0. Moreover,

gβ(u) ∼ K(β/u)(1−β/2)/(1−β) exp{−|1− β|(u/β)β/(β−1)} as u→ 0+, (3.2.3)

and

gβ(u) ∼ β

Γ(1− β)
u−β−1 as u→∞. (3.2.4)

We will also need the following estimates given in Lemma 2.1 in [30],

c1

(
t−βd/α ∧ tβ

|x|d+α

)
6 Gt(x), (3.2.5)

and

Gt(x) 6 c2

(
t−βd/α ∧ tβ

|x|d+α

)
, (3.2.6)

when α > d.

Let D ⊂ Rd be a bounded domain. Let pD(t, x, y) denote the heat kernel of the equation (3.1.14)

when β = 1 and σ = 0. This is the space fractional diffusion equation with Dirichlet exterior boundary

conditions. A well known fact is that

pD(t, x, y) 6 p(s, x, y) for all x, y ∈ D, t > 0. (3.2.7)
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Let GD(t, x, y) denote the heat kernel of the equation (3.1.14) when σ = 0. This is the space-time

fractional diffusion equation with Dirichlet exterior boundary conditions. Using the representation from

Meerschaert et al. [18] and [43]

GD(t, x, y) =

∫ ∞
0

pD(s, x, y)fEt(s)ds.

and using equation (3.2.7) we get

GD(t, x, y) 6 G(t, x, y) = Gt(x− y) for all x, y ∈ D, t > 0. (3.2.8)

The next proposition is crucial in proving the lower bounds in Theorem 3.1.8.

Proposition 3.2.1 (Proposition 2.1 in [31]). Fix ε > 0, then there exists t0 > 0 such that for all x, y ∈

B(0, R− ε) and for all t < t0 and |x− y| < tβ/α we have

GB(t, x, y) > Ct−βd/α,

for some constant C > 0.

For notational convenience, we set

(Gu)t(x) :=

∫
Rd
Gt(x− y)u0(y) dy.

and

(G̃u)t(x) :=

∫
Rd
p(t, x− y)u0(y) dy.

Proposition 3.2.2. Let x ∈ B(0, 1) and Assumption 3.1.3 holds. Then there exists a positive number t0

such that for t ∈ (0, t0], we have

(Gu)t+t0(x) > cKu0 ,

where

Ku0 :=

∫
B(0, 1)

u0(x) dx > 0. (3.2.9)
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Proof. By definition and Proposition 2.1 in [29], we have

(Gu)t+t0(x) =

∫
Rd
Gt+t0(x− y)u0(y) dy

=

∫
Rd

∫ ∞
0

p(s, x− y)fEt+t0 (s) ds u0(y)dy

=

∫ ∞
0

(G̃u)s(x)fEt+t0 (s) ds

> c1Ku0

∫ 2t0

t0

fEt+t0 (s) ds

= c1Ku0

∫ 2t0

t0

(t+ t0)β−1s−1−1/βgβ((t+ t0)s−1/β) ds

= c1Ku0

∫ t+t0

t
1/β
0

t+t0

(2t0)
1/β

gβ(u) du

> c1Ku0

∫ t0

t
1/β
0

2t0

(2t0)
1/β

gβ(u) du

= c2Ku0 ,

where c2 depends on t0. The last equality before the last inequality follows by substitution.

Define

(GBu)t(x) :=

∫
B(0, R)

GB(t, x, y)u0(y) dy.

The following proposition will be used in the proof of Theorem 3.1.8.

Proposition 3.2.3. Let t 6
(
R
2

)α and R > 0. Under Assumption 3.1.4, we have

(GBu)t(x) > c, for all x ∈ B(0, R/2),

where c is some positive constant.

Proof. By a simple conditioning and Proposition 2.2 in [29], we have

(GBu)t(x) =

∫
B(0, R)

GB(t, x, y)u0(y) dy

=

∫ ∞
0

(G̃Bu)s(x)fEt(s) ds

>
∫ (R/2)α

0

(G̃Bu)s(x)fEt(s) ds
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> c1

∫ (R/2)α

0

fEt(s) ds

= c1

∫ (R/2)α

0

tβ−1s−1−1/βgβ(ts−1/β) ds

= c1

∫ ∞
t/(R/2)α/β

gβ(u) du

> c1

∫ ∞
(R/2)/(R/2)α/β

gβ(u) du

= c.

Proposition 3.2.4. Suppose that t 6
(
R
2

)α and R > 0. Then for all x1, x2 ∈ B(0, R), we have

∫
B(0, R)×B(0, R)

Gt−s(x1 − y1)Gt−s(x2 − y2)f(y1, y2) dy1dy2 > cKf ,

where s 6 t and c is some positive constant.

Proof. By assumption 3.1.2, we observe

∫
B(0, R)×B(0, R)

Gt−s(x1 − y1)Gt−s(x2 − y2)f(y1, y2) dy1dy2

> Kf

∫
B(0, R)×B(0, R)

Gt−s(x1 − y1)Gt−s(x2 − y2) dy1dy2.

Let

Ai := {yi ∈ B(0, R); |xi − yi| 6 (t− s)β/α}, for i = 1, 2.

Since t 6
(
R
2

)α we observe that |Ai| = c|t − s|βd/α for some constant c. Using the estimates given by

(3.2.5) for Gt(x), we have

Kf

∫
B(0, R)×B(0, R)

Gt−s(x1 − y1)Gt−s(x2 − y2) dy1dy2

> Kf

∫
A1×A2

Gt−s(x1 − y1)Gt−s(x2 − y2) dy1dy2

> Kf

∫
A1×A2

C(t− s)−2βd/α dy1dy2

= c2Kf .
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This completes the proof.

We need to introduce a version of the above result for the killed space-time fractional kernel using

Proposition 3.2.1.

Proposition 3.2.5. Let R > 0 and fix ε > 0. Then for all x1, x2 ∈ B(0, R− ε) and t 6
(
R
2

)α, we have

∫
B(0, R)×B(0, R)

GB(t− s, x1 − y1)GB(t− s, x2 − y2)f(y1, y2) dy1dy2 > cKf ,

where s 6 t and c is some positive constant.

Proof. Assumption 3.1.2 gives

∫
B(0, R)×B(0, R)

GB(t− s, x1 − y1)GB(t− s, x2 − y2)f(y1, y2) dy1dy2

> Kf

∫
B(0, R−ε)×B(0, R−ε)

GB(t− s, x1 − y1)GB(t− s, x2 − y2) dy1dy2.

Since t 6
(
R
2

)α if we set

Ai := {yi ∈ B(0, R− ε); |xi − yi| 6 (t− s)β/α} for i = 1, 2,

then |Ai| = c1|t− s|βd/α for some c1. We therefore have using Proposition 3.2.1

∫
B(0, R−ε)×B(0, R−ε)

GB(t− s, x1 − y1)GB(t− s, x2 − y2) dy1dy2

>
∫
A1×A2

GB(t− s, x1 − y1)GB(t− s, x2 − y2) dy1dy2

>
∫
A1×A2

C(t− s)−2βd/α dy1dy2

= c2,

This proves the required inequality.

Remark 3.2.6. Under the same assumption of Proposition 3.2.5, we clearly have

∫
B(0, R−ε)×B(0, R−ε)

GB(t− s, x1 − y1)GB(t− s, x2 − y2)f(y1, y2) dy1dy2 > cKf ,
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where s 6 t and c is some positive constant.

In the next two propositions we will give the renewal inequalities needed to prove non-existence

results.

Proposition 3.2.7. Fix T > 0 and suppose that h is a non-negative function satisfying the following

non-linear integral inequality,

h(t) > C +D

∫ t

0

h(s)1+γ

(t− s)dβ/α
ds, for 0 < t 6 T,

where C, D and γ are positive numbers. Then for any t0 ∈ (0, T ], there exists an C0 such that for

C > C0

h(t) =∞ whenever t > t0.

Proof. Since t 6 T the inequality reduces to

h(t) > C +
D

T dβ/α

∫ t

0

h(s)1+γ ds.

Thanks to comparison principle, it suffices to consider

h(t) = C +
D

T dβ/α

∫ t

0

h(s)1+γ ds, for t 6 T,

which is equivalent to the following non-linear ordinary differential equation,

h′(t)

h(t)1+γ
=

D

T dβ/α
,

with initial condition h(0) = C, whose solution is given by

1

h(t)γ
=

1

Cγ
− γDt

T dβ/α
, for t 6 T.
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Thus the blowup occurs at t = T dβ/α

CγDγ
. Choose C >

(
T dβ/α

Dγt0

)1/γ

for any fixed t0 < T . The conclusion

follows since h(t) is increasing on (0,∞) and blow-up occurs before time t0.

Next we will give a slightly modified renewal inequalities needed for the proof of our main results.

Proposition 3.2.8. Let 0 < (1 + γ)dβ/α < 1. Suppose h is a non-negative function satisfying the

following non-linear integral inequality,

h(t) > C +D

∫ t

0

h(s)1+γ

(t− s)dβ/α
ds, for t > 0,

where C, D and γ are positive numbers. Then for any C > 0 there exists t0 > 0 such that h(t) =∞ for

all t > t0.

Proof. Since 0 < t− s 6 t, we get

h(t) > C +D

∫ t

0

h(s)1+γ

tdβ/α
ds, for t > 0.

Now let q(t) := tdβ/αh(t) and since we can always assume t0 > 1, the above inequality becomes

q(t) > C +D

∫ t

0

q(s)1+γ

s(1+γ)dβ/α
ds, for t > 1.

We only need to consider the following ordinary differential equation,

q′(t)

[q(t)]1+γ
=

D

t(1+γ)dβ/α
, for t > 1,

with initial condition q(1) = C. The solution of this equation is given by

1

q(t)γ
=

1

Cγ
+

γD

1− (1+γ)dβ
α

− γDt1−
(1+γ)dβ

α

1− (1+γ)dβ
α

, for t > 1.

Since (1 + γ)dβ/α < 1 the blowup occurs when t is equal to t0 given by

t0 :=

(
1− (1+γ)dβ

α

γD

(
1

Cγ
+

γD

1− (1+γ)dβ
α

))1/(1− (1+γ)dβ
α

)

.
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Thus, h(t) =∞ for t > t0 since h(t) is increasing on (0,∞).

Remark 3.2.9. The above Proposition 3.2.8 is also true when h satisfies

h(t) > Ct−dβ/α +D

∫ t

0

h(s)1+γ

(t− s)dβ/α
ds, for t > 0.

In this case t0 is given by

t0 :=

(
1− (1+γ)dβ

α

γDCγ

)1/(1− (1+γ)dβ
α

)

.

Remark 3.2.10. The above proposition holds when (1 + γ)/α > 1 as well. This is because we can

always write γ = γ0 + (γ − γ0) so that γ0 < γ and (1 + γ0)/α < 1. Now we use the fact that h(t) > A

for all t > 0 to reduce the integral inequality to

h(t) > C +D

∫ t

0

h(s)1+γ

(t− s)dβ/α
ds > C +DCγ−γ0

∫ t

0

h(s)1+γ0

(t− s)dβ/α
ds, for t > 0.

The result now follows by Proposition 3.2.8.

Next we state a general version of the proposition 3.2.8.

Proposition 3.2.11. Let 0 < θ. Suppose h is a non-negative function satisfying the following non-linear

integral inequality,

h(t) > C +D

∫ t

0

h(s)1+γ

(t− s)θ
ds, for t > 0

where C, D and γ are positive numbers. Then for any C > 0 there exists t0 > 0 such that h(t) =∞ for

all t > t0.

Proof. The proof is similar to the proof of Proposition 3.2.8 and Remark 3.2.10. So it is omitted here.
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3.3 Proof of Theorems 3.1.1 and 3.1.3

Proof of Theorem 3.1.1. To start the proof of the theorem with the use of the mild formulation of the

solution given by (3.7.2), then take second moment and use the Walsh isometry to get

E|ut(x)|2 = |(Gu)t(x)|2 +

∫ t

0

∫
Rd
G2
t−s(x− y)E|σ(us(y))|2 dy ds

:= I1 + I2.

Using the fact that the initial condition is bounded below gives

I1 > κ2.

This follows since
∫
Rd Gt(x − y)dy = 1. By utilizing the growth condition on σ, Jensen’s inequality,

and Lemma 2.2.1 we bound I2 as follows

I2 >
∫ t

0

(
inf
x∈Rd

E|us(x)|2
)1+γ ∫

Rd
G2
t−s(x− y) dy ds

> C∗
∫ t

0

(
inf
x∈Rd

E|us(x)|2
)1+γ

1

(t− s)βd/α
ds.

If we set

P (s) := inf
x∈Rd

E|us(x)|2,

the inequalities becomes

P (t) > C + C∗
∫ t

0

P (s)1+γ

(t− s)dβ/α
ds.

Proposition 3.2.7 now completes the proof of the theorem.

For the proof of Theorem 3.1.3 we need the following proposition.
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Proposition 3.3.1. Suppose that there exists a κ0 > 0 and t0 > 0 such that the lower bound of u0 in

(3.1.18) satisfies κ > κ0. Then for all t0 < t 6 (1/2)α, we have

E|ut(x)ut(y)| =∞ for all, x, y ∈ B(0, 1).

Proof. By the mild formulation (3.7.2) we observe

E|ut(x)ut(y)|

> Gut(x)Gut(y) +

∫ t

0

∫
Rd×Rd

Gt−s(x− z)Gt−s(y − w)f(z, w) (E|us(z)us(w)|)1+γ dzdwds

:= I1 + I2.

First consider the term I1. Using the fact that the initial condition is bounded below by κ gives

I1 > κ2.

By Proposition 3.2.4 for t <
(

1
2

)α the second part becomes

I2 >
∫ t

0

(
inf

z, w∈B(0, 1)
E|us(z)us(w)|

)1+γ ∫
B(0, 1)×B(0, 1)

Gt−s(x− z)Gt−s(y − w)f(z, w) dzdwds

> c1Kf

∫ t

0

(
inf

z, w∈B(0, 1)
E|us(z)us(w)|

)1+γ

ds.

Letting

H(s) := inf
x, y∈B(0, 1)

E|us(x)us(y)|,

and combining the above estimates, we have

H(t) > c2κ2 + c1Kf

∫ t

0

H(s)1+γ ds, for t 6

(
1

2

)α
.

By taking κ big enough, we can make sure that t0 is as small as we wish by Proposition 3.2.7. This

finishes the proof of the proposition.
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Proof of Theorem 3.1.3. We can now easily prove the theorem. From the mild formulation and Propo-

sition 3.3.1, we have

E|ut(x)|2

> c2κ2 +

∫ t

0

∫
B(0, 1)×B(0, 1)

Gt−s(x− y)Gt−s(x− w)f(y, w) (E|us(y)us(w)|)1+γ dydwds

> c2κ2 +

∫ t

t0

∫
B(0, 1)×B(0, 1)

Gt−s(x− y)Gt−s(x− w)f(y, w) (E|us(y)us(w)|)1+γ dydwds

=∞,

when κ is large.

3.4 Proof of Theorem 3.1.4

Before presenting the proof of our theorem, we need to give some important results given in the propo-

sitions bellow. In the remainder of this section, ut will be the solution to (3.1.15) and the correlation

function is always given by the Riesz kernel, that is

f(x, y) =
1

|x− y|ω
, ω < d ∧ (αβ−1).

In this case the colored noise converges to the white noise when ω → 1 .

Proposition 3.4.1. For x, y ∈ B(0, tβ/α), there exists a constant c such that

∫
Rd×Rd

Gt(x− z)Gt(y − w)f(z, w) dzdw >
c

tωβ/α
.

Proof. By the bounds given by (3.2.5) we observe

∫
Rd×Rd

Gt(x− z)Gt(y − w)f(z, w) dzdw

>
∫
B(0, tβ/α)×B(0, tβ/α)

Gt(x− z)Gt(y − w)f(z, w) dzdw

>
c1

t2dβ/α

∫
B(0, tβ/α)×B(0, tβ/α)

f(z, w) dzdw
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>
c1

t2dβ/α
c∗

tωβ/α

∫
B(0, tβ/α)×B(0, tβ/α)

dzdw

=
c

tωβ/α
.

The last inequality follows since |z − w| 6 2tβ/α for z, w ∈ B(0, tβ/α).

The following proposition now easily follows by the last result.

Proposition 3.4.2. For fixed t > 0, we have

E|ut(x)ut(y)| > ct(α−ωβ)/α, for all x, y ∈ B(0, tβ/α),

where c is some constant.

Proof. Since initial condition is non-negative and E|ut(x)ut(y)| > κ, then by the above proposition, we

get

E|ut(x)ut(y)| > κ1+λ

∫ t

0

∫
Rd×Rd

Gs(x− z)Gs(y − w)f(z, w) dzdwds

> ct(α−ωβ)/α.

To give the proof of Theorem 3.1.4 we will need the following proposition.

Proposition 3.4.3. Fix t > 0 and let t0 6 t/3. Then for x, y ∈ B(0, tβ/α), we have

∫ t

0

∫
Rd×Rd

Gt+t0−s(x− z)Gt+t0−s(y − w)E|us(z)us(w)|1+γf(z, w) dz dw > ct2(α−ωβ)/α,

for some constant c.
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Proof. First observe that, if s > (t + t0)/2, then s > t − s + t0 and also, if s 6 3(t + t0)/4, then

s 6 3(t− s+ t0). Using this, the fact that E|ut(x)ut(y)| > κ and Proposition 3.4.2, we write

∫ t

0

∫
Rd×Rd

Gt+t0−s(x− z)Gt+t0−s(y − w)E|us(z)us(w)|1+γf(z, w) dz dw ds

> κγ
∫ t

0

s(α−2ωβ)/α

∫
B(0, sβ/α)×B(0, sβ/α)

Gt+t0−s(x− z)Gt+t0−s(y − w) dz dw ds

> κγ
∫ 3(t+t0)/4

(t+t0)/2

s(α−2ω)/α

×
∫
B(0, (t+t0−s)β/α)×B(0, (t+t0−s)β/α)

Gt+t0−s(x− z)Gt+t0−s(y − w) dz dw ds.

Note that

|x− z| 6 tβ/α + (t− s+ t0)β/α

6 (t− s+ t0 + s)β/α + (t− s+ t0)β/α

6 c1(t− s+ t0)β/α,

for some constant c1. The last inequality is true since f(t) = tβ/α is increasing for t > 0 and s 6

3(t− s+ t0) in our last integral above. By the bound on Gt(x) in (3.2.5), we get the following not sharp

bound which is sufficient for our needs:

∫ 3(t+t0)/4

(t+t0)/2

s(α−2ωβ)/α

∫
B(0, (t+t0−s)β/α)×B(0, (t+t0−s)β/α)

Gt+t0−s(x− z)Gt+t0−s(y − w) dz dw ds

>
∫ 3(t+t0)/4

(t+t0)/2

s(α−2ωβ)/αc1(t− s+ t0)−dβ/α

×
∫
B(0, (t+t0−s)β/α)×B(0, (t+t0−s)β/α)

dz dw ds

> c2t
2(α−ωβ)/α.

Proof of Theorem 3.1.4. With the above propositions at hand, we are ready to give the proof of our the-

orem. By the mild formulation, the fact that initial condition is bounded below and change of variables
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give

E|uT+t(x)uT+t(y)|

> κ2 +

∫ T+t

0

∫
Rd×Rd

GT+t−s(x− z)GT+t−s(y − w)E|us(z)us(w)|1+λf(z, w)dzdwds

= κ2 +

∫ T

0

∫
Rd×Rd

GT+t−s(x− z)GT+t−s(y − w)E|us(z)us(w)|1+γf(z, w)dzdwds

+

∫ t

0

∫
Rd×Rd

Gt−s(x− z)Gt−s(y − w)E|uT+s(z)uT+s(w)|1+γf(z, w)dzdwds

> κ2 +

∫ T

0

∫
Rd×Rd

GT+t−s(x− z)GT+t−s(y − w)E|us(z)us(w)|1+γf(z, w)dzdwds

+

∫ t

0

∫
B(0,1)×B(0,1)

Gt−s(x− z)Gt−s(y − w)E|uT+s(z)uT+s(w)|1+γf(z, w)dzdwds.

(3.4.1)

Take T � 1 and t 6 T/3, so that we can use the previous Proposition to bound the second term. To

bound the third term, we use similar arguments as in the proof of Theorem 3.1.3. If we let

Q(s) := inf
x, y∈B(0, 1)

E|uT+s(x)uT+s(y)|,

we observe

Q(t) > κ2 + cT 2(α−ωβ)/α + c1

∫ t

0

Q(s)1+γ ds.

It suffices to consider, the following differential equation

Q′(t)

Q(t)1+γ
= c1,

with initial condition Q(0) = κ2 + cT 2(α−ωβ)/α := A. Solving this equation, we get

1

Q(t)1+γ
=

1

Aγ
− c1γt.

The blow up occurs at t = 1
c1γAγ

. That means, as long as κ is strictly positive, we will have blow up of

Q for any fixed small time; we just need to take T large enough. To finish the proof we use the mild

55



formulation and the above result to write

E|uT+t(x)|2

> c2κ2 +

∫ T+t

0

∫
Rd×Rd

GT+t−s(x− z)GT+t−s(y − w)(E|us(z)us(w)|)1+γf(z, w)dzdwds

> c2κ2 +

∫ T+t

T

∫
Rd×Rd

GT+t−s(x− z)GT+t−s(y − w)(E|us(z)us(w)|)1+γf(z, w)dzdwds

=∞, (3.4.2)

when κ is large.

3.5 Proof of Theorems 3.1.6, 3.1.7 and 3.1.8

The following proposition is crucial in the proof of Theorem 3.1.6.

Proposition 3.5.1. Under Assumption 3.1.3, there exist t∗, K > 0 such that for all t > t∗, we have

inf
x∈B(0, 1)

E|ut(x)|2 =∞, for Ku0 > K.

Proof. By Walsh isometry, we have

E|ut(x)|2 = |(Gu)t(x)|2 +

∫ t

0

∫
Rd
G2
t−s(x− y)E|σ(us(y))|2 dy ds.

We can always assume t∗ to be large. Otherwise, there is nothing to prove. So instead of looking at time

t, we will look at t+ t0 and fix t0 > 0 later. We have

E|ut+t0(x)|2 = |(Gu)t+t0(x)|2 +

∫ t+t0

0

∫
Rd
G2
t+t0−s(x− y)E|σ(us(y))|2 dy ds

> |(Gu)t+t0(x)|2 +

∫ t+t0

t0

∫
Rd
G2
t+t0−s(x− y)E|σ(us(y))|2 dy ds

By substituting S = s− t0 in the second part, we obtain

E|ut+t0(x)|2 > |(Gu)t+t0(x)|2 +

∫ t

0

∫
Rd
G2
t−S(x− y)E|σ(uS+t0(y))|2 dy dS
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:= I1 + I2.

We will assume that t < 1 for most of the rest of the proof. We find a lower bound on I1 first. Let

x ∈ B(0, 1), then we fix t0 as in Proposition 3.2.2. This gives us

I1 > cK2
u0
,

where the constant c depends on t0. We now look at the second term:

I2 >
∫ t

0

(
inf

y∈B(0, 1)
E|uS+t0(y)|2

)1+γ ∫
B(0, 1)

G2
t−S(x− y) dy dS

> c1

∫ t

0

(
inf

y∈B(0, 1)
E|uS+t0(x)|2

)1+γ
1

(t− S)dβ/α
dS

For the last inequality, we used the fact that t < 1, the fact that {y ∈ B(0, 1) : |x− y| < tβ/α} ⊂ {y ∈

B(0, 1) : |x− y| < 1}, and the inequality (3.2.5).

Letting R(S) := infx∈B(0, 1) E|uS+t0(x)|2, we obtain

R(t) > cK2
u0

+ c1

∫ t

0

R(S)1+γ

(t− S)dβ/α
dS for t 6 1.

Now by Proposition 3.2.7 we have the desired result.

Proof of Theorem 3.1.6. Let t > t∗ where t∗ is as given in the above proposition. The proof of the

theorem now follows from Walsh isometry, Jensen’s inequality and Proposition 3.5.1

E|ut(x)|2 > |(Gu)t(x)|2 +

∫ t

0

∫
Rd
G2
t−s(x− y)

(
E|us(y))|2

)1+γ
dy ds

> |(Gu)t(x)|2 +

∫ t

t∗

∫
B(0, 1)

G2
t−s(x− y)

(
E|us(y))|2

)1+γ
dy ds

=∞.

This follows since the first term of the above display is strictly positive for any x ∈ Rd.
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Proposition 3.5.2. Suppose that Assumptions 3.1.2 and 3.1.3 hold. Let ut be the solution to (3.1.15).

Then, there exists a t∗ > 0 such that for all t > t∗, we have

inf
x, y∈B(0, 1)

E|ut(x)ut(y)| =∞, whenever Ku0 > K,

where K is some positive constant.

Proof. We can always assume that t∗ to be large like in proof of Proposition 3.5.1. So instead of looking

at time t, we will look at t + t0 and fix t0 > 0 later. From the mild formulation and appropriate change

of variables as in Proposition 3.5.1, we obtain

E|ut+t0(x)ut+t0(y)|

> (Gu)t+t0(x)(Gu)t+t0(y)

+

∫ t+t0

0

∫
Rd×Rd

Gt+t0−s(x− z)Gt+t0−s(y − w)f(z − w)E|σ(us(z))σ(us(w))| dzdwds

> (Gu)t+t0(x)(Gu)t+t0(y)

+

∫ t

0

∫
B(0,1)×B(0,1)

Gt−s(x− z)Gt−s(y − w)f(z − w)E|us+t0(z)us+t0(w)|1+γ dzdwds.

The proof essentially follows the same idea as in Proposition 3.5.1. The key idea is to take t0 as in

Proposition 3.2.2 and set

G(s) := inf
x, y∈B(0, 1)

E|us+t0(x)us+t0(y)|.

By following the ideas in Proposition 3.3.1, we get

G(t) > cK2
u0

+ c1Kf

∫ t

0

G(s)1+γds,

valid for a suitable range of t. Now we have the desired result using Proposition 3.2.7.

Proof of Theorem 3.1.7. With the above Proposition, the proof of theorem is now very similar to that

of Theorem 3.1.6. Again by Walsh isometry, we have

E|ut(x)|2
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> |Gu)t(x)|2

+

∫ t

t∗

∫
B(0,1)×B(0,1)

Gt−s(x− z)Gt−s(y − w)f(z − w)(E|us(z)us(w)|)1+γ dzdwds.

Proposition 3.5.2 completes the proof since the first term of the above inequality is strictly positive for

any x ∈ Rd.

To prove Theorem 3.1.8 we will follow a similar pattern of the proof of the previous results. We

emphasize that in the case of (3.1.23), the mild solution in the sense of Walsh [56] is given by

ut(x) = (GBu)t(x) +

∫
Rd

∫ t

0

GB(t− s, x− y)σ(us(y))F (ds dy). (3.5.1)

Proof of Theorem 3.1.8. Before giving the proof of our theorem we need the following result.

E|ut(x)ut(y)|

> (GBu)t(x)(GBu)t(y)

+

∫ t

0

∫
B(0, R)×B(0, R)

GB(t− s, x− z)GB(t− s, y − w)f(z − w) (E|us(z))us(w)|)1+γ dz dw ds

:= I1 + I2.

We look at I1 first. By Proposition 3.2.3, if x, y ∈ B(0, R/2) and t is small enough, we have I1 > c1κ
2.

We now turn our attention to the second term.

I2 >
∫ t

0

(
inf

x, y∈B(0, R/2)
E|us(x)us(y)|

)1+γ

×
∫
B(0, R/2)×B(0, R/2)

GB(t− s, x− z)GB(t− s, y − w)f(z − w) dz dw ds.

Fix ε = R/4 and Proposition 3.2.5 with t 6
(
R
4

)α to obtain

∫
B(0, R/2)×B(0, R/2)

GB(t− s, x− z)GB(t− s, y − w)f(z − w) dz dw

> c1Kf .
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We then have

I2 > c2Kf

∫ t

0

(
inf

x, y∈B(0, R/2)
E|us(x)us(y)|

)1+γ

ds.

If we let

H(s) := inf
x, y∈B(0, R/2)

E|us(x)us(y)|,

then we get

H(t) > c1κ
2 + c2Kf

∫ t

0

H(s)1+γ ds.

By comparison principle, it is enough to consider

H ′(t)

H(t)1+γ
= c2Kf ,

with initial condition c1κ
2. Hence the blowup occurs at t = 1

(c1κ2)γγc2Kf
. Fix any t0 <

(
R
2

)α and take

κ0 >
1

c0.51 (γc2Kf t0)1/2γ
such that for κ > κ0, H(s) = ∞ for all s > t0. Using the above result we can

easily prove our result. Observe that

E|ut(x)|2

> |(GBu)t(x)|2

+

∫ t

t0

∫
Rd×Rd

GB(t− s, x− z)GB(t− s, x− w)f(z − w) (E|(us(z))(us(y))|)1+γ dz dw ds

=∞.

This is true since all the relevant terms involved in the above inequality are positive.
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3.6 Proofs of results for reaction-diffusion type equations; Theorems 3.1.11 and 3.1.9

Proof of Theorem 3.1.11. Let B := B(0, R). Suppose by contradiction that there is a random field

solution of equation (3.1.29). This means that

sup
t>0

sup
x∈B

E|ut(x)|2 <∞.

Then since E|ut(x)| 6 (E|ut(x)|2)1/2 we have

sup
t>0

sup
x∈B

E|ut(x)| <∞.

The eigenfunctions {φn : n ∈ N} of fractional Laplacian−(−∆)α/2 in B form an orthonormal basis for

L2(B). It is well-known that the first eigenfunction φ1(x) > 0 for all x ∈ B. Now we also have

sup
t>0

Q(t) := sup
t>0

∫
B

E[|ut(x)|]φ1(x)dx 6 sup
t>0

sup
x∈B

E|ut(x)|
∫
B

φ1(x)dx <∞. (3.6.1)

Next, we start with taking expectation of both sides of equation (3.1.30) to get

E[ut(x)] = (GBu0)t(x) +

∫
B(0,R)

∫ t

0

E[b(us(y))]GB(t− s, x, y)ds dy. (3.6.2)

Multiply both sides of (3.6.2) by the first eigenfunction φ1(x) of−(−∆)α/2 on the ballB and integrating

over B we get

Q(t) :=

∫
B

E[|ut(x)|]φ1(x)dx

>
∫
B

(GBu0)t(x)φ1(x)dx+

∫
B

[ ∫
B

∫ t

0

E[b(us(y))]GB(t− s, x− y)ds dy

]
φ1(x)dx

>
∫
B

(GBu0)t(x)φ1(x)dx+

∫
B

[ ∫
B

∫ t

0

E[|us(y)|1+η]GB(t− s, x− y)ds dy

]
φ1(x)dx

>
∫
B

(GBu0)t(x)φ1(x)dx+

∫
B

[ ∫
B

∫ t

0

(
E[|us(y)|

)1+η

GB(t− s, x− y)ds dy

]
φ1(x)dx,

= I1 + I2.

(3.6.3)
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where the last inequality follows from Jensen’s inequality.

We only give the proof in one of the cases below for the convenience of the reader. For other cases,

see Asogwa et al. [3]

The eigenfunctions {φn : n ∈ N} of fractional Laplacian −(−∆)α/2 in B form an orthonormal

basis for L2(B). We have an eigenfunction expansion of the kernel

GB(t, x, y) =
∑
n=1

Eβ(−µntβ)φn(x)φn(y). (3.6.4)

See, for example, Chen et al. [18] and Meerschaert et al. [43]. From this equation we can easily get

∫
B

GB(t, x, y)φ1(x)dx = Eβ(−µ1t
β)φ1(y) (3.6.5)

It is a well-know fact that φ1(x) > 0 for x ∈ B. Now consider first I1, since u0(x) > κ by assumption

we obtain

I1 > κ

∫
B

∫
B

GB(t, x, y)φ1(x)dydx = κ

∫
B

Eβ(−µ1t
β)φ1(y)dy

= κEβ(−µ1t
β)

∫
B

φ1(y)dy = Cκ,φ1Eβ(−µ1t
β)

(3.6.6)

Next we estimate I2. By Fubini theorem and equation (3.6.5)

I2 =

∫ t

0

∫
B

Eβ(−µ1(t− s)β)φ1(y)E[|us(y)|1+η]dy ds (3.6.7)

Applying the Jensen’s inequality twice using the fact that 0 < A :=
∫
B
φ1dx < ∞, and by using

the fact that the Mittag-leffler function is a decreasing function, we get
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I2 >
∫ t

0

Eβ(−µ1(t− s)β)A

[ ∫
B

E[|us(y)|]φ1(y)

A
dy

]1+η

ds

= A−η
∫ t

0

Eβ(−µ1(t− s)β)

[ ∫
B

E[|us(y)|]φ1(y)dy

]1+η

ds

> A−ηEβ(−µ1t
β)

∫ t

0

[ ∫
B

E[|us(y)|]φ1(y)dy

]1+η

ds

(3.6.8)

We have the uniform estimate of Mittag-Leffler function in [54, Theorem 4]

1

1 + Γ(1− β)t
6 Eβ(−t) 6 1

1 + Γ(1 + β)−1t
for any t > 0. (3.6.9)

Using equation (3.6.9) we get

Q(t) =

∫
B

E[|ut(x)|]φ1(x)dx

> C1
1

1 + µ1Γ(1− β)tβ
+ C2

1

1 + µ1Γ(1− β)tβ

∫ t

0

Q(s)1+η ds

(3.6.10)

Hence for t > 1 we get

Q(t) =

∫
B

E[|ut(x)|]φ1(x)dx

> C3t
−β + C4t

−β
∫ t

1

Q(s)1+η ds

(3.6.11)

Set P (t) = tβQ(t) and multiply both sides of equation (3.6.11) by tβ to get

P (t) = tβ
∫
B

E[|ut(x)|]φ1(x)dx

> C3 + C4

∫ t

1

(sβQ(s))1+η

sβ(1+η)
ds

= C3 + C4

∫ t

1

P (s)1+η

sβ(1+η)
ds

(3.6.12)
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Now we have three cases: When β(1 + η) < 1, β(1 + η) > 1 and β(1 + η) = 1. We only give the proof

in the first case β(1 + η) < 1. In this case it is enough to consider the following equation

P ′(t)

P 1+η(t)
=

C4

tβ(1+η)
, t > 1 and P (1) = C3.

This equation has a solution that satisfies

P−η(t) = C−η3 −
ηC4

1− β(1 + η)

(
t1−β(1+η) − 1

)
(3.6.13)

this blows up at t = t0 > 1 that makes the right hand side of the last equation zero;

t
1−β(1+η)
0 = 1 +

C−η3

ηC4

(1− β(1 + η))

Since the solution P (t) is a non-decreasing function, P (t) =∞ for all t > t0.

The other cases are handled similarly.

Hence by Theorem 3.7.2 V (t, x) = E[|ut(x)|] blows up in finite time. This is a contradiction to

inequality (3.6.1).

Proof of Theorem 3.1.9. Now suppose by contradiction that there is a random field solution of equation

(3.1.25). This means that

sup
t>0

sup
x∈Rd

E|ut(x)|2 <∞.

Then since E|ut(x)| 6 (E|ut(x)|2)1/2 we have

sup
t>0

sup
x∈B(0,R)

E|ut(x)| <∞. (3.6.14)

Now we start with taking expectation of the both sides of equation (3.1.26) to get

E[ut(x)] =

∫
Rd
Gt(x− y)u0(y)dy +

∫
Rd

∫ t

0

E[b(us(y))]G(t− s, x, y)ds dy. (3.6.15)
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Hence by the Jensen’s inequality we get

E[|ut(x)|] > (Gt ∗ u0)(x) +

∫
Rd

∫ t

0

[E|us(y)|]1+ηG(t− s, x, y)ds dy

= I + II.

(3.6.16)

We give the proof when infx∈Rd u0(x) > κ: in this case, I > κ. Since G(t− s, x, y) is a probability

density function on Rd we get

II >
∫ t

0

F (s)1+ηds (3.6.17)

where F (s) = infy∈Rd E|us(y)|. Hence we obtain

F (t) > κ+

∫ t

0

F (s)1+ηds

Now if κ > 0, then blow up happens at some t0 = κ−η/η for any η > 0. Hence V (t, x) = E[|ut(x)|]

blows up in finite time. Hence we have a contradiction to equation (3.6.14).

The other case in the theorem is more complicated and it follows from Theorem 3.7.1 by making

the following observation: From equation (3.6.15), the function V (t, x) = E[|ut(x)|] is a super solution

of the following deterministic equation (this follows by using the Fractional Duhamels’ principle in the

reverse order!)

∂βt V (t, x) = −ν(−∆)α/2V (t, x) + I1−β[(V (t, x))1+η] t > 0 and x ∈ Rd;

V (0, x) = u0(x), x ∈ Rd.

(3.6.18)

By Theorem 3.7.1 V (t, x) = E[|ut(x)|] blows up in finite time. Hence we have a contradiction to

equation (3.6.14).
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3.7 Appendix

In this section, we consider the following space-time fractional reaction-diffusion type equations in

(d+ 1) dimension:

∂βt V (t, x) = −ν(−∆)α/2V (t, x) + I1−β[b(V (t, x))] t > 0 and x ∈ Rd,

V (0, x) = V0(x) x ∈ Rd.

(3.7.1)

The operator −(−∆)α/2 denotes the fractional Laplacian, the generator of a α-stable Lévy process.

The initial condition will always be assumed to be a non-negative bounded deterministic function. The

function b is a locally Lipschitz function.

For every given T > 0, a mild solution to (3.7.1) on (0, T ) is any V that satisfies the following

evolution equation–this is also called the mild/integral solution of equation (3.7.1)– which follows by

the fractional Duhamel’s principle [55]

V (t, x) =

∫
Rd
Gt(x− y)V0(y) dy +

∫
Rd

∫ t

0

Gt−s(x− y)b(V (s, y))ds dy, (3.7.2)

for 0 < t < T where Gt(·) denotes the density of the time changed process XEt .

Theorem 3.7.1 (Theorem 1.1 in Asogwa et al. [3]). Suppose that 0 < η 6 α/βd and V0 6≡ 0, then

there is no global solution to (3.7.1) in the sense that there exists a t0 > 0 such that V (t, x) =∞ for all

t > t0 and x ∈ Rd.

Next result gives conditions for non-existence of global mild solutions in bounded domains.

Theorem 3.7.2 (Theorem 1.4 in Asogwa et al. [3]). Suppose b satisfies the conditions in Assumption

3.1.5. Fix R > 0 and consider

∂βt V (t, x) = −ν(−∆)α/2V (t, x) + I1−β[b(V (t, x))] t > 0 and x ∈ B(0, R),

V (t, x) = 0 x ∈ B(0, R)C

V (0, x) = V0(x) x ∈ B(0, R).

(3.7.3)
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Here −(−∆)α/2 denotes the generator of α-stable Lévy process killed upon exiting the ball B(0, R).

Suppose that 0 < η < 1/β − 1, then there is no global solution to (3.7.3) whenever KV0,φ1 :=∫
B
V0(x)φ1(x)dx > 0. For any η > 0, there is no global solution whenever KV0,φ1 > 0 is large

enough.

The mild solution of equation (3.7.3) is given by using the fractional Duhamel’s principle [55] as

follows

V (t, x) =

∫
B(0,R)

GB(t, x, y)V0(y)dy +

∫
B(0,R)

∫ t

0

b(V (s, y))GB(t− s, x, y)ds dy, (3.7.4)

where GB(t, x, y) is the density of X(Et) killed on the exterior of B.
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Chapter 4

On Going and Future Work

4.1 Large space, fixed time properties:space-time white noise

Recently, Conus, Joseph and Khoshnevisan [21] established the large x-behavior of ut(x) at a fixed time

t > 0. Consider the parabolic Anderson model

∂tu(t, x) =
κ

2
∆u(t, x) + u

·
W (t, x); u(0, x) = 1, (4.1.1)

Outside a P-null set ut(x) > 0 for all t > 0 and x ∈ Rd.

This follows from Mueller’s Comparison principle. Hence we can replace log |ut(x)| by log ut(x).

The random field ht(x) := log ut(x) is the "Cole-Hopf solution to the KPZ equation" of statistical

mechanics, Kardar, Parisi and Zhang (1986):

∂th =
κ

2
∂2
xu(t, x)− [∂xh]2+

·
W (t, x).

Since ut(x) is nonnegative we get that ||ut(x)||1 = E(ut(x)) = 1 for all t > 0 and x ∈ R. Hence by

Fatou’s lemma we get

E(lim inf
|x|→∞

|ut(x)|) 6 1.

Therefore lim inf |x|→∞ |ut(x)| is finite a.s.

As a corollary we obtain

lim inf
|x|→∞

log |ut(x)|
(log |x|)2/3

= 0 a.s.
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Large space, fixed time properties: spatially colored noise

∂tu(t, x) =
κ

2
∆u(t, x) + u

·
F (t, x); u(0, x) = u0(x), (4.1.2)

where Ḟ (t, x) is a spatially colored noise with x ∈ Rd.

Theorem 4.1.1 (Conus, Joseph, Khoshnevisan, and Shiu; 2012). If f(x) = ||x||−γ for some γ ∈ (0, d∧2)

then for every t > 0 there exists positive and finite constant C1, C2–depending only on (t, d, γ)– such

that
C1

κγ/(4−γ)
< lim sup
||x||→∞

log |ut(x)|
(log ||x||)2/(4−γ)

<
C2

κγ/(4−γ)
a.s.

(i) Large-Space Asymptotic behavior : We intend to extend the work of Conus, Joseph and Khosh-

nevisan [21] to fractional SPDE. In this direction we have the following preliminary results

Theorem 4.1.2. There exists a constant L > 0 such that

sup
x∈Rd

E
(
|ut(x)|k

)
6 Lk exp(Lk1+α/(α−βd)t).

For every fixed t, we get

E
[
exp

(
γ
(
log+ |ut(x)|

) 2α−βd
α

)]
<∞ for some γ > 0. (4.1.3)

Theorem 4.1.3.

−∞ < lim inf
z→∞

logP (|ut(x)| > z)

(log z)(2α−βd)/α
6 lim sup

z→∞

logP (|ut(x)| > z)

(log z)(2α−βd)/α
< 0,

uniformly for all x ∈ R.

Proposition 4.1.4. Let d < min{2, β−1}α. If ε0 := infz∈Rd σ(z) > 0, then for all t > 0,

inf
x∈Rd

E(|ut(x)|2k) > (o(1) +
√

2)(µtk)k as k →∞, (4.1.4)
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where the ”o(1)” term depends only on k, and

µt :=
2

e
· ε

2
0C
∗t1−(βd)/α

1− (βd)/α
. (4.1.5)

Proposition 4.1.5. Let d < min{2, β−1}α. If there exists ε0 > 0 such that σ(x) > ε0 for all x ∈ Rd,

then there exists a universal constant C ∈ (0,∞) that depends only on Lip, and supz∈Rd |u0(z)| such

that for all t > 0,

lim inf
λ→∞

1

λ2+ 2α
α−βd

inf
x∈Rd

logP (|ut(x) > λ) >
−C

ε
2+ 2α

α−βd
0 t

α−βd
α

(4.1.6)

4.2 Growth Indices

For β = 1, 1
2
< α < 1 and d = 1, Le Chen and Robert C. Dalang [15] proved that the distances to the

origin of the farthest high peaks of the absolute moments of solutions of (3.1.2) grow exponentially with

time. So, we intend to extend this result to the case β ∈ (0, 1), α ∈ (0, 2), and d < min{2, β−1}α.
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