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ABSTRACT 
 
 

Neural networks have a wide range of applications such as building complex equations 
using the input and output characteristics of functions, predictions of outputs, error detections, 
monitoring complex systems, etc. Neural network’s capabilities of monitoring the system, error 
detection, and predictions merged with Programmable Logic Controllers (PLC) can improve the 
fault tolerance and error detections in automation systems. While the PLC program is being 
tested in the simulated environment before it is implemented in the automation system, the 
values of PLC’s I/O ports, timers and critical variables during the execution of the program can 
be used to train a neural network and prepare it to monitor the system. Execution of the trained 
neural network in parallel with the PLC’s execution where the inputs and the outputs to the PLC 
are also supplied to the trained neural network, adds an artificial intelligence inspired system 
monitor. A neural network based system monitor learns the characteristics of the automation 
system using PLC’s port values and internal variables during the training. A successfully trained 
neural network can detect a malfunction or abnormal behavior in the automation system when 
the outputs to the automation system generated by the PLC and the outputs generated by the 
neural network are compared. The abnormal behavior of an automated system could have been 
caused by intrusions in which the PLC code has been altered by external entities, hardware faults, 
malfunctions on PLC’s I/O ports, mishandling of the system by the operators, etc. Addition of 
AI-based monitor to the automation system provides an additional layer of security and helps 
the system run efficiently since neural network’s prediction capability can alert the operators if 
abnormal behavior in the system starts to take place before it is too late to recover. 
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1. CHAPTER-1: PROBLEM DESCRIPTION  
 

 
PLC, also known as Programmable Logic Controllers, are referred to as the heart of 

industrial automation. They operate substantial automation systems such as car assembly lines, 

manufacturing plants, high voltage distribution systems, automated boilers, etc., all of which are 

complicated systems where a malfunction can have a significant financial impact or put lives at 

risk. 

This places the onus on system designers and programmers to program PLCs so that they 

not only perform useful functions but also detect if an error has occurred and recover if possible. 

This has always been a difficult task due to having to work with unique or specialized devices 

that are not equipped with feedback sensors capable of reporting a failure, relegating to 

supervisory controllers the job of detecting problems. The difficulty of the task has been 

heightened as industrial automation systems have become networked. Instead of just dealing 

with the mechanical and process soundness of systems, developers have to take into account how 

resilient the system is to malicious cyber activity.  It is not hard to imagine the damage that could 

result if a PLC in a dairy that controls a large boiler used to homogenize milk had its temperature 

parameters changed to the point where the pressure caused an explosion.  Such an event could 

be caused by a malfunctioning temperature sensor, faulty pressure sensor, human error, or a 

cyber exploit.   

While computing platforms were once too immature to detect similar scenarios in the 

past, improvements in hardware and software now offer possible solutions.  For example, so-
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called do-it-yourself hardware, such as Arduino and Raspberry Pi, put forward the notion of 

ultra-low-cost computing and connectivity. Artificial intelligence, too, has advanced to the stage 

where it is possible to observe the behavior of a mechanical system, learn what constitutes 

“normal” operation, and alert when functions exceed a certain threshold.   

The solution proposed here is to employ neural networks to monitor the behavior of off-

the-shelf PLCs with the purpose of detecting abnormal behavior.   The neural network observes 

PLC input and output over time in order to develop a model that predicts what output should 

occur given an input. Actual outputs that fall outside a threshold of predicted outputs signals 

abnormal behavior that might be caused by a hardware malfunction or cyber intrusion.  

The specific goals of this research are the following: 

1. Determine how to gather training data from an already programmed PLC. 

2. Identify the correct neural network architecture and training algorithm that will predict 

outputs from inputs. 

3. Employing the prediction model to discriminate normal from abnormal PLC operations. 
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2. CHAPTER-2: PREVIOUS WORK 
 
 

This chapter surveys previous work done on making automation systems more fault 

tolerant and more secure. Additionally, chapter 2 explores how the concept of machine learning 

can be used to improve the system as a whole. 

 

2.1 PROTOCOLS: 

Leading automation companies such as Siemens, Allen Bradley, and Honeywell have 

developed secure protocols to prevent communication breaches in automated systems. For 

example, Siemens PLCs securely communicate through the PROFIBUS protocol, is based on 

recognized international standards. The protocol architecture uses the OSI (Open System 

Interconnection) reference model in which the second Layer of the OSI reference model aids this 

protocol to regulate the data security and data transmission in PROFIBUS networks [6] [13].  

These protocols are made only for communication among PLCs and any network-related 

devices attached to them. They can detect an error in communication through error detecting 

codes employed in the protocol. However, they cannot detect if the error is caused by corrupted 

data from either malfunction or intentional breaches. Constantly monitoring the data being sent 

to and received by the PLC would provide better reliability and security. It is impossible to verify 

the correctness of the data using only errors. Correctness requires knowledge of the context in 

which the data is used. Individual data elements may be free of errors, but they may not produce 

the intended result when taken together. 
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2.2 SIGNAL FEEDBACKS FROM EDGE DEVICES: 

Automation systems are made of edge devices such as motors, sensors, actuators, etc., 

controlled by programmable logic controllers. Malfunctions in edge devices or PLCs can occur 

for various reasons. Since protocols fail to detect some of those malfunctions, system designers 

implement feedback signals on edge devices to determine if the device is either in the working 

state or not [8]. These feedback signals are usually a one-bit line that connects an edge device to 

a PLC’s I/O port. If the edge device stops working for any reason, the value of the feedback signal 

from the edge device is automatically inverted, to signal a change in state. These feedback signals 

are interlocked within the PLC code to detect if any of the edge devices have stopped working.  

This solution still does not solve the problem of verification of correctness of the data 

received from edge devices. Also, not all hardware can support a feedback system. Feedback-

supported edge devices increase cost in the manufacturing of an automation system, possibly 

rendering it beyond the reach of customer budgets. 

 

2.3 HUMAN MACHINE INTERFACE (HMI): 

HMI also is known as Human Machine Interface is a live graphical representation of an 

automated system with added controls for humans to access it. It usually consists of a live feed 

of the data and parameters from edge devices, together with controls to change or handle the 

parameters of the system manually. The purpose of an HMI is to monitor the automated system 

and provide controls for it to change the settings, turn on/off connected devices, force start 

certain parts of the system, emergency stop, manual override, etc. These features add an 

additional layer of security to the system since the human element can be a part of the system. 
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Figure-1 illustrates an HMI of an automated turbine system. The HMI displays the core 

temperature of the turbine, Rotations per minute, a live feed of the oil cooling system and 

vibrations on the turbine shaft. Maintenance engineers can monitor the system for abnormal and 

possibly shut down the system in case of an emergency. 

 

Figure 1: HMI of an automated turbine system (example)[10] 

The drawback of HMI is that humans do the monitoring part of the system, leading to the 

possibility of human error. Someone with malicious intent gaining unauthorized access to the 

HMI can manipulate the system using the access provided on the HMI. These HMIs are connected 

to the PLC as network devices, making it vulnerable to distant hacks. 

 

2.4 MACHINE LEARNING: 

Given the unprecedented availability of data and computing resources, there is 

widespread renewed interest in applying data-driven machine learning methods to problems for 

which the development of conventional engineering solutions is challenged by modeling or 

algorithmic deficiencies [21].  
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Figure 2: Machine Learning methodology [21] 

Machine learning is an efficient tool to predict the output from a set of inputs. A data set 

made of several inputs and corresponding outputs provides to the machine learning code, and 

the program learns how inputs are related to outputs during the training process. The training 

process is done through machine learning algorithms (refer to Fig-2). Once the training process 

is finished, the code can predict the output from the given input without having to manually 

figure out the relation between inputs and outputs. One of the popular approaches to machine 

learning is neural networking. 

2.4.1 ARTIFICIAL NEURAL NETWORKS(ANN): 

Artificial neural networks are computational systems inspired by the biological neuron’s 

network inside an animal brain. “The recipe for understanding natural intelligence and achieving 

strong AI is simple. If we can construct synthetic brains that mimic the adaptive behavior 

displayed by biological brains in all its splendor, then our mission has succeeded” [12]. A neural 

network is not an algorithm but a framework for many different machine learning algorithms to 

work together and process large data sets or data inputs [2]. It models connections of neurons in 

a brain where each neuron is a node connected to other nodes.  
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Figure 3: Number of input neurons for one-step-ahead forecasting [19] 

Figure-3 represents an example of a neural network structure to predict an output from 

multiple inputs. Inputs pass through the web of neurons where every connection within the 

network has a weighted multiplier. The desired output is generated through the series of 

arithmetic operations done on inputs based on multipliers on every connection with neurons 

[19]. 

There are various algorithms to calculate weighted multipliers on the connections 

between neurons. The algorithm generates values of weighted multipliers using the provided set 

of expected output and input [19]. This process is called the training of neural networks. Once 

the training process is finished, the trained neural network is ready to predict the output based 

on inputs. This trained neural network can be deployed and run actively to generate outputs 

dynamically from provided inputs. Gradient descent, Newton's method, Conjugate Scaled 

Gradient, Quasi-Newton method, Levenberg-Marquardt are a few examples of popular training 

algorithms for neural networks [29]. 
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2.5 MERGING NEURAL NETWORKS TO PLC OPERATIONS: 

A PLC can be envisioned as a box that accepts various inputs from edge devices such as 

sensors and switches. It transforms the inputs into output signals that control edge devices such 

as motors, conveyor belts, solenoid valves, etc. Briefly, it can be said that there is a set of inputs 

and a set of outputs, and are related to each other through a box that is the PLC. This scenario 

can be compared to a neural network where there is a set of inputs and a set of outputs that are 

related to each other through a box, which is the neural network. Neural networks cannot re-do 

the functionality of the PLC; instead, they predict the chances of an output resulting from a set 

of specific inputs. 

The neural network runs in parallel to the PLC. Both get the same inputs. The PLC’s 

output deviating from what is predicted by the neural network signifies the possibility of an edge 

device generating corrupt data [18]. 

Employing a neural network in parallel with PLC operation solves the problem of 

verifying the correctness of the data coming from edge devices or the data generated by PLC since 

the network learns how the automation system on the PLC operates. It also eliminates the need 

to monitoring the system manually using HMI, thus eliminating the possibility of human error.  
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3. CHAPTER-3: SOLUTION 
 
 
The objectives of this measure are as follows:  

1. Determine how to gather training data from an already programmed PLC. 

2. Identify the correct neural network architecture and training algorithm that will predict 

outputs from inputs. 

3. Employing the prediction model to discriminate normal from abnormal PLC operations. 

This chapter describes solutions to these problems. 

 

3.1 THE CONCEPTUAL DESIGN: 

As described in chapter 2, PLCs and neural networks can be visualized as black boxes that 

accept various inputs and generate appropriate outputs. Implementation of a neural network 

integrated PLC (NNPLC) was done as follows: 

1. A PLC program for an automation system was built as per provided system requirements 

using a PLC and needed edge devices. 

2. A separate machine was prepared with proper connections made with the automation 

system, and a neural network core (NN core) was implemented in it with fitting 

parameters. 

3. The neural network core was put in training mode, and the automation system's was 

simulated in the lab environment. This step is divided into two phases. 



   

 10 

a. Gathering of training data 

b. Feeding training data to the NN core while it was in training mode 

4. Upon achieving the acceptable training error, the trained NN core was deployed and 

executed in parallel with the PLC. 

5. The PLC generated outputs and the neural network core generated outputs were 

compared, and the difference was computed to see if there were any errors. 

In step 5, appropriate statistical model to identify actual errors was implemented to differentiate 

between the errors caused by abnormal behavior of the PLC program and the errors caused due 

to the leftover training error during the training of the neural network core. 

3.1.1 NNPLC IN TRAINING CONFIGURATION: 

 

Figure 4: Block diagram of training configuration 
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Fig-4 shows the training configuration of NNPLC. As per this block diagram, the PLC was 

built with digital I/O modules, analog I/O modules, and timers. Timers are usually part of the 

PLC core but are shown as separate components to explain the training configuration. PLC core’s 

job is to execute the program. 

In the experiment, an untrained neural network core was implemented with the 

feedforward network architecture and a training algorithm. The untrained neural network core 

gathered data from modules while running the simulation of the PLC code and created a data set 

for the training algorithm. After enough training data was gathered from normal PLC operation, 

the training algorithm started training the network with provided parameters and generated data 

set, and generated the final training error. The neural network core was ready to be deployed as 

soon as the acceptable training error was achieved. 

3.1.2 NNPLC IN DEPLOYED CONFIGURATION: 

 

Figure 5: Block diagram of the deployed configuration 
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Fig-5 shows the block diagram of NNPLC configuration in its deployed mode. As shown 

in fig-5, PLC core and NN core receive the same inputs from PLC’s timers, analog input module, 

and digital input module. Since the NN core was trained during the simulation of the PLC 

program, both PLC and NN core should ideally generate similar outputs. Here it was made sure 

that the NN core had the least possible training error. The difference between the PLC generated 

outputs (actual outputs) and the NN core generated outputs (predicted outputs) were calculated 

through a mathematical comparator. The percentage error plot produced by the comparator 

showed a significant difference in outputs produced by both PLC and NN core if the PLC started 

producing abnormal outputs due to any reasons (i.e., malfunction of edge devices, intrusions in 

the system, injection of malware or viruses, modification of the PLC program, etc.). This result 

happened because the NN core predicted outputs that were the same as how the normal 

operation of the PLC would generate, considering that it was trained with the data gathered 

during the normal operation of the PLC.  

 

3.2 TACKLING KEY CHALLENGES TO IMPLEMENT THE CONCEPT DESIGN: 

To implement the concept design of NNPLC, there were three major challenges that 

needed to be tackled. Solutions to these problems required fundamental knowledge of electrical 

engineering, neural networking, and software engineering. 

 

3.3 CHALLENGE#1: 

Problem description: Determine how to gather training data from an already programmed PLC. 

An important question in neuroscience is how neural representations of sensory input 

are functionally organized. Güçlü and Van Gerven show that neural responses to sensory input 
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can be modeled using recurrent neural networks that can be trained end-to-end [7] [12]. For any 

neural network to work, it requires data to be trained. In our case, the training data was the set 

of inputs given to the PLC and the set of outputs produced by the PLC. The training data set for 

NN core was obtained from PLC’s visible parts, i.e., external digital and analog ports. This data 

was organized in such a way that values read on the ports were time synchronized. The capture 

time interval to read the data from PLC’s ports was calculated using the following relation.  

𝑪𝒂𝒑𝒕𝒖𝒓𝒆	𝑻𝒊𝒎𝒆	𝑰𝒏𝒕𝒆𝒓𝒗𝒂𝒍 = 𝑷𝑳𝑪	𝑪𝒚𝒄𝒍𝒆	𝑻𝒊𝒎𝒆	 × 	𝑰𝒏𝒕𝒆𝒈𝒆𝒓	𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒓	𝒏 

To understand this, let’s consider an example of a PLC with the cycle time of 50 

microseconds; meaning that PLC scans the entire ladder logic and updates values of program’s 

variables and corresponding hardware ports every 50 microseconds. The data on the physical 

ports must be captured every 50 microseconds times an integer multiplier. This multiplier could 

be in the range from 1 to infinity. The ideal value of this multiplier should be 1 to prevent the 

missing of the capture of certain PLC program states. It should neither be less than one nor a 

non-integer value because doing so would introduce faulty captures in the training data set, 

meaning captures containing updated input values as well as incompletely processed output 

values. Feeding faulty captures would ostensibly train neural networks to produce faulty outputs. 

Time synchronization during the capture is one of the critical factors to gather the training data 

from PLC. The primary purpose of integer multiplier was to adjust the capture rate. It could be 

increased from one to any higher integer value in order to reduce the capture rate depending on 

the characteristic of the PLC program. 

3.3.1 CONTENTS OF TRAINING DATA SET: 

Most PLC programs handle physical hardware connected to its ports by processing inputs 

collected mainly from sensors and input devices such as switches or latches. Since the inputs and 
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the outputs to a PLC are digital and analog values, the training data set should contain digital 

and analog values. If the PLC uses built-in timers in its logic, then their dynamic values should 

also be captured and recorded in the training data set to include time dependency in the relation 

between inputs and outputs. The format of the training data set should take the following format. 

INPUTS OUTPUTS 

Timer(s) Digital In Analog In Digital Out Analog Out 

300 milliseconds 0 1 1 0 1 1 1 1 3.9 V 1 1 0 0 0 0 0 1 21.5 V 

400 milliseconds 0 0 0 1 0 0 0 0 1.4 V 1 0 0 0 1 0 1 1 5.2 V 

Table 1: Format of training data set (example) 

Table-1 shows an example of a training data set. There could be multiple timers and more 

digital and analog values in the real system. It should be modified based on the number of IO 

available on PLC ports and the number of timers used. Analog and digital values come from the 

capture done on ports. Timer values are not available physically on ports but can be read by 

software integration with PLC’s programming software. 

Why not collect analog and digital values through software integration? If it is not done 

externally then, in case of damaged/interrupted output lines to an edge device, faulty values may 

be physically present on the port. The NN core will not detect them since it would be reading the 

internal values of port variables instead of the actual values on ports. To build this data set, we 

had to harvest digital values, analog values, and timer values from PLC. 
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3.3.2 HARVESTING DIGITAL VALUES:  

Digital values on the PLC’s I/O ports can be viewed as parallel values. The shift registers were 

used to convert parallel values to a serial value to harvest all of the digital values from ports. 

These values were stored in the training data set. 

 

Figure 6: Harvest Digital IO values using shift registers 

Fig-6 shows a data flow diagram on how to harvest digital I/O with shift registers. As 

shown in the diagram, digital values on PLC ports go through two stages, the step-down voltage 

converter and the shift registers, to store them into the training data set.  

Generally, PLCs operate on 24 V. Most of the shift registers available in the market are 

made to work with low power circuits that usually operate on 5 V and 3.3 V. The first step to 

harvest digital I/O from PLC is to design an interface card between PLC and shift registers. The 

interface card is made of DC-DC buck converters [22]. Digital systems have two states, ‘1’ and ‘0’. 

PLCs consider 24 V signal as the digital state 1, and 0 V signal as the digital state 0. The DC-DC 

buck converter can step down any voltage signal greater than 24 V signal to 5 V signal and any 

voltage signal less than 5 V signal to 0 V signal with proper configuration. At the output side of 

the interface card represents the digital state ‘1’ as the 5 V signal and the digital state ‘0’ as the 

0 V signal. We used LM2596 buck converters to design the interface card. 
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Fig-7 shows LM2596 buck converter and its voltage adjustment instructions. We adjusted 

each buck converter to transform 24 V signal to 5 V signal. We dedicated a configured converter 

to each digital I/O. Once the interface card was configured, it was used as the communication 

bridge between the PLC’s I/O port and shift registers. 

 

Figure 7: E-boot LM2596 buck converter [30] 

The internal structure of a shift register is consisted of a chain of flip-flops in cascade, with 

the output of one flip-flop connected to the input of the next flip-flop. All flip-flops receive 

common clock pulses, which activate the shift of data from one stage to the next” [15]. This 

structure of flip-flops in the shift registers accepts the parallel load and shifts it into the serial 

load. Therefore, we used shift registers to format parallel data in such a way that the neural 

network’s training algorithm could process it. We used Texas instrument’s SN74HC165 shift 

registers. The HC165 devices are 8-bit parallel-load shift registers that, when clocked, shift the 

data toward a serial output [23]. 
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Figure 8: Logic diagram of SN74HC165 Parallel-in/Shift-out [23] 

According to the datasheet provided by Texas Instruments for this device, as shown in 

fig-8 parallel-in access to each stage is provided by eight individual direct data (A−H) inputs that 

are enabled by a low level at the shift/load (SH/LD) input. Clocking is accomplished by a low-to-

high transition of the clock (CLK) input while SH/LD is held high and CLK INH is held low. The 

functions of CLK and CLK INH are interchangeable. Since a low CLK and a low- to-high transition 

of CLK INH also accomplish clocking, CLK INH should be changed to the high level only while 

CLK is high. Parallel loading is inhibited when SH/LD is held high. While SH/LD is low, the 

parallel inputs to the register are enabled independently of the levels of the CLK, CLK INH, or 

serial (SER) inputs [23] [15]. 

This device was operated with driver software to automate parallel to serial conversion. The 

HC165 shift register IC was connected to a Raspberry Pi, and it was operated using a python 

driver to collect digital data from the PLC. The timing diagram for SN74HC165 shown in fig-9 

was referred to develop the logic of python driver for HC165. The timing diagram illustrates the 

logical sequence and the timing sequence of the control signals of the HC165 shift registers that 

need to be set to logical HIGH or logical LOW in order to achieve the parallel to serial conversion. 
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Figure 9: Timing Diagram of SN74HC165 [23] 

The goal of the driver program is to automate and synchronize control signals CLK, CLK 

INH, SER, and SH/LD to achieve parallel to serial conversion.  The shift register IC is made of 

clocked SR latches, as shown in fig-8. These latches are made of two cross-coupled NOR gates or 

two cross-coupled NAND gates [15]. Upon receiving a clock pulse, the input to these latches is 

transferred to the output. As shown in fig-9, Inputs to the shift registers are parallel  inputs (A 

from H)  that need to be converted into the serial output. The CLK INH signal disables the CLK 

signal when it is set to HIGH. While CLK INH is set to HIGH (also called the inhibit period for 

shift registers), SH/LD needs to be set to LOW to load inputs at A to H into SR latches. Once the 

values are loaded into SR latches, SH/LD needs to be set HIGH to prepare SR latches for the shift 
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operation. Now CLK INH could be set to LOW again to start the serial shift. The shift registers 

will start shifting the values into SR latches towards QH, one bit per clock cycle. The values on 

QH can be collected as the serial on every clock cycle. SER is needed to be LOW to enable the IC. 

This control signal can be used to synchronize the shifting operation between multiple shift 

registers. We followed the sequence explained above to develop a python code to drive the shift 

registers to convert parallel data into serial data. 

Our driver program is posted in Appendix-A. This program simulates the timing diagram 

to perform the parallel data to serial data conversion using Raspberry Pi’s GPIO port with proper 

connections made with the shift registers to automate the control signals. The “RPi.GPIO” 

module was a convenient tool for python to use Raspberry Pi’s GPIO port. It provided functions 

such as GPIO.RPi.setup(), GPIO.RPi.output(), and GPIO.RPi.input() to operate on the GPIO port. 

Pins A from H on the shift registers were connected to PLC’s digital I/O ports through the 

interface card. QH and other control signals were connected to the Raspberry Pi’s GPIO port. The 

driver program simulated the timing diagram (fig-9), converted parallel data from the PLC’s 

digital I/O ports into the serial data, transformed the captured data into the format that was 

compatible with training algorithms, and stored it into files named input.txt, output.txt, and 

all.txt. These files were used as the training data for the NN core. In fig-6, there is a scanning 

rate block connected to shift registers, which is the capture time interval explained earlier in this 

chapter. In the experiment, the scanning rate for the shift registers was interpreted as how often 

the control signal SH/LD was used to load the parallel inputs into the shift registers and the time 

period between two load operations was considered as the capture time interval. Our program 

wrote a new row of data in the training data file at the end of every capture time interval. 



   

 20 

3.3.2 HARVESTING ANALOG VALUES: 

 

Figure 10: Harvesting analog values 

Harvesting analog values for the training data set proved to be similar to harvesting digital 

values. The only difference was that it required a dedicated 8-bit shift registers IC for each analog 

input paired with analog to digital converter (A/D converter). As shown in fig-10, voltage scaling 

was required to get the analog voltage in the range of supported voltage rating for shift registers. 

Raspberry Pi and Arduino are digital devices; hence, analog values must be converted into digital 

form so that these devices can process them. The combination of analog to digital converter and 

shift registers were used to convert analog values into digital values. 
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Figure 11 Voltage divider 

To linearly scale the voltage, a simple circuit called “voltage divider” was used. It is a 

circuit which has linear characteristics, and it scales down voltage with a constant which can be 

calculated using the following equation [14]. 

𝑉𝑜𝑢𝑡 = (
𝑅2

𝑅1 + 𝑅2
)𝑉𝑖𝑛 

Usually, a PLC’s analog modules operate in range of 0 V from 24 V, and A/D converters 

operate in range of 0 V from 5 V. The voltage scaler was designed keeping Vin as 24 V and Vout 

as 5 V. The value of resistors R1 and R2 were set in such a way that satisfied the voltage divider 

equation. 

The next step was to Implement A/D converter and shift registers. MCP3004/3008 devices 

developed by Microchip Technology Inc., are successive approximation 10-bit Analog to Digital 

(A/D) converters with on-board sample and hold circuitry [17]. They come with built-in shift 

registers to output digitally converted analog data. This chip was used with Raspberry Pi and run 

using a python program to retrieve analog data. The operation is very similar to shift registers 

74HC165, and the driver code for MCP3008 can be integrated into the driver program to harvest 
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digital I/O. Adafruit® has developed a python library to use MCP3008 with Raspberry Pi called 

Adafruit_MCP3008, which was used to collect an analog value In the experiment [31].  

Since the PLC that was used in the experiment did not have the analog module, we tested 

the capturing of an analog signal with an external variable power supply and checked if it 

converted analog values into digital format to verify that the obtained value could be stored in 

the training data set. The analog values were not part of the neural network training. The purpose 

of this section is to introduce a method to collect analog values in case if the PLC had an analog 

module. 

3.3.3 HARVESTING TIMER VALUES: 

Different PLC manufacturers have designed software to program their own PLCs. The 

software  provides an interface to monitor values of timers and variables during the execution of 

programs on PLC, which means they read PLC’s core to obtain these values. If manufacturers 

decide to implement neural network integration to their PLC, they will have to modify their 

monitoring software to store timer values into the training data set. We used a Click PLC and the 

Click programming software in the lab setup to perform the experiment. Code for this software 

is highly protected. Therefore, we were not able to modify the code to obtain timer values. Hence, 

software integration to the programming software is necessary to get timer values. In the 

experiment, timer values were not stored in the training data set. 

 

3.4 CHALLENGE#2: 

Problem description: Identify the correct neural network architecture and training algorithm that will 

predict outputs from inputs. 
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A neural network is a complex network of more than one neuron. In machine learning 

terminology, a neuron is considered as the fundamental element that represents the 

characteristics of a neural network. In more straightforward terms, a neuron represents a 

mathematical function with one or more inputs and an output. These neurons can have 

connections with other neurons. The neural network architecture is the organization of these 

neurons, and it represents how each neuron is connected with other neurons. Training 

algorithms are mathematical approaches to calculate offset-weights on each input to a neuron 

using error corrections through iterative methods. The efficiency of training algorithms depends 

on the architecture of neurons and the type of neurons implemented within the network. 

Neural networks are mighty as nonlinear signal processors, but obtained results are often far 

from satisfactory [28], meaning that there are a few challenges related to neural network’s 

architecture and training algorithms that need to be addressed to make neural network 

applications successful. The following are the critical challenges to neural network applications 

[28]: 

1) Which neural network architecture should be used? 

2) How vast should a neural network be? 

3) Which learning algorithms are most suitable for a chosen architecture? 

Addressing these challenges achieved the successful training of the neural network. 

For our NNPLC application, the neural network architecture can be designed from the 

understanding of ladder logic implemented in the PLC. This approach was only useful for smaller 

PLC applications, but while dealing with complex ladder logic, implementation of standardized 

neural network architectures was crucial for achieving successful training. When manually 

derived architectures became too complex, the available training algorithms were not able to 
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successfully train the neural network. Below is an example of a neural network derived from the 

ladder logic [18]. 

   

(a)           (b) 

 

      (c) 

Figure 12: Neural Networks architecture for automated oil pump [18] 

Fig-12(a) shows the configuration of an automated oil pump. It has two sensors to 

measure the amount of oil in the tank; one to indicate a high level of oil and the other to detect 

low level of oil. These indicators/sensors are inverted binary logic switches with HIGH and LOW 

digital states. The motorized pump starts to fill up the tank as soon as the low-level indicator’s 

state turns to digital LOW. The motor is turned off when the oil reaches to the high-level 

indicator, and its state turns to digital HIGH. This logic is implemented in the ladder logic, as 

shown in fig-12(b). Ladder variable 0000 is the low-level indicator, and 0001 is the high-level 

indicator. Variable 1000 is a logic variable which controls the push button on the motor via PLC’s 
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physical port accessed by the variable 0500. The motor is turned off when high-level and low-

level indicators are on state HIGH and HIGH, respectively. The motor is turned on when both 

indicators are on state LOW. Motor’s operation is not interrupted when the low-level indicator 

is HIGH, and the high-level indicator is LOW. This logic is very similar to the parity-2 problem 

for neural networks [26]. As shown in fig-12(c), the neural network architecture to solve the 

parity-2 problem is implemented and trained to duplicate the logic written in ladder logic. 

Weights and biases within the neural network architecture are determined after training [18]. 

Explained above was an example of simple ladder logic. This approach might get too complicated 

when ladder logics are complex. 

There are neural network architectures already developed for optimal training of complex 

functions. These architectures are derived through researches done over a long period of time on 

deep learning and artificial intelligence.  

    

(a) Multi-layer perceptron network (MLP)                  (b) Counterpropagation network 
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(c) Linear Vector Quantization                 (d) Radial basis functions network (RBF) 

 

(e) Fully Connected Cascade (FCC)    (f) Cascade correlation architecture 
 

Figure 13: Standard Neural Network Architectures [27] [28] 

Fig-13 shows neural network architectures that are popular among researchers. The 

multi-layer perceptron (MLP) architecture, also known as a simple feedforward network, is the 

preferred neural network topology by researchers [1]. It is the oldest neural network architecture, 

and it is compatible with many training software [28]. This architecture usually gives satisfying 

results, but in the case of a large number of neurons, it could take a significant amount of time 

to train. There are several neural network architectures like counterpropagation (fig-13(b)), 

RBF(fig-13(d)), linear vector quantization(fig-13(c)), Fully connected cascade (fig-13(e)), cascade 

correlation architecture(fig-13(f)) that can be used for rapid prototyping, but they require large 

number of neurons. In most cases, these architectures require signal-normalization processes 

[28]. The performance of any neural network architecture depends on the type and the amount 
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of data put in the training data set. For example, if the training dataset contains a small number 

of patterns, then the counterpropagation architecture gives optimal performance because with 

unipolar activation function in the first layer, the network works as a look-up table. When the 

linear activation function (or no activation function at all) is used in the second layer, then the 

network also can be considered as an analog memory [27]. 

How to choose a neural network architectures for our NNPLC application? The content of 

the training data set is one of the essential factors to narrow down to a few suitable neural 

network architectures for the ladder logic implemented in the PLC. There are a few architectures 

which are efficient to train the digital data, and there are a few of them better suited to train non-

digital data. The traditional approach to pick an architecture was used after the search was 

narrowed down to a few suitable architectures. In this conventional approach, neural network 

topologies/architectures are, in most cases, selected by a trial-and-error process [28]. Often, 

success depends on a lucky guess; hence, the search process started with larger architecture, and 

the network was pruned in a more or less organized way [4]. Since there was only the digital data 

to train in the experiment, the search was narrowed down to a few architectures among which 

the counterpropagation and the simple feedforward architectures showed the best results. We 

chose to implement a simple feedforward architecture because counterpropagation 

architecture’s performance degrades for more extensive training data set [27]. The feedforward 

architecture is also known to work well with the Levenberg-Marquardt algorithm which is the 

fastest training algorithm developed till this date. 

The next step was to choose a training algorithm to train the chosen architecture. The 

procedure to carry out the learning process in a neural network is called the 

optimization/training algorithm [29]. There are many algorithms available to train different 
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architectures of neural network. They vary in terms of memory requirements, speed, and 

precision. The training of the neural network is achieved through the minimization of a loss 

index; which is a function that measures the performance of a neural network on the training 

data set. The loss index is made of an error term and a regularization term. The error term 

evaluates how neural network fits the data set, and the regularization term prevents overfitting 

by controlling the effective complexity of the neural network [29]. The goal of training algorithms 

is to minimize the loss index by applying various error corrections. Prevention of overfitting is 

often done with the combination of pruning algorithms and training algorithms. They prune the 

architecture in terms of several neurons and the number of connections within the neural 

network. 

As mentioned earlier there are many training algorithms available and some of the 

popular algorithms are Error Back Propagation algorithm (EBP) [20], Levenberg-Marquardt 

algorithm (LM) [16], Neuron-By-Neuron algorithm (NBN) [25], Bayesian Regularization 

algorithm [24][11] and Scaled Conjugate Gradient [5]. We theoretically compared these 

algorithms to determine what algorithms to choose to test the boundries of  the training 

efficiency of NNPLC application. 

3.4.1 ERROR BACKPROPAGATION ALGORITHM (EBP): [20] 

Backpropagation method of training neural networks is widely accepted by researchers. 

It is the most used algorithm to train complex neural network architectures. The procedure 

repeatedly adjusts the weights of connections in the network to minimize a measure of the 

difference between the actual output vector of the net and the desired output vector [20]. This 

method of training is particularly useful when there are hidden layers introduced in the neural 

network architecture. As a result of the weight adjustments, internal 'hidden' units which are not 
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part of the input or output come to represent important features of the task domain, and the 

regularities in the task are captured by the interactions of these units. The ability to create useful 

new features distinguishes back-propagation from earlier, simpler methods such as the 

perceptron-convergence procedure. 

In this method, during the first iteration of training, weights on each connection within 

neurons are randomly generated. Total error in the performance of the network with a particular 

set of weights can be computed by comparing the actual and desired output vectors for every 

case or training pattern. The total error E is defined as, 

𝐸 =
1
2
FFG𝑦I,K − 𝑑I,KN

O

IK

 

where c is an index over cases (input-output pairs or training pattern), j is an index over output 

units, y is the actual state if an output unit and d is its desired state [20]. In the traditional 

approach to error back propagation, total E is targeted to be minimized by gradient decent where 

partial derivative to E with respect to each weight in the network is computed. This is simply the 

sum of the partial derivatives for each training patterns or input-output cases. For a given case 

partial derivatives are calculated in two passes. For the forward pass, the state of units (or 

neurons) in each layer are determined by the input they receive from lower layers using the 

following equations, 

𝑥I =F𝑦Q𝑤Q,I
Q

 

𝑦I =
1

1 + 𝑒TU
 

Where The total input, xi, to unit j is a linear function of the outputs, yi, of the units that are 

connected to j and of the weights wji on these connections. A unit has a real-valued output, yj, 
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which is a non-linear activation function of its total input. By applying partial derivation with 

respect to total inputs, outputs, and individual weights and taking into account all the 

connections emanating from the unit I, we have the backward pass which propagates derivatives 

from the top layer back to the bottom one, 

𝜕𝐸
𝜕𝑦Q

=F
𝜕𝐸

𝜕𝑥I ∙ 𝑤I,QI

 

 We have now seen how to compute XY
XZ
	for any unit in the penultimate layer when given 

XY
XZ

 for all units in the last layer. We can, therefore, repeat this procedure to compute this term for 

successively earlier layers, computing XY
X[
	for the weights as we go.  

One way of using XY
X[
	is to change the weights after every input-output case. This has the 

advantage that no separate memory is required for the derivatives. An alternative scheme, which 

we used in the research reported here, is to accumulate XY
X[
		overall the input-output cases before 

changing the weights. The simplest version of gradient descent is to change each weight by an 

amount proportional to the accumulated	XY
X[

. 

∆𝑤 =	−𝜀
𝜕𝐸
𝜕𝑤

 

Here, 𝜀 is the proportional relation constant and is called the learning rate of the 

backpropagation. 

By applying this weight change ∆𝑤 in every iteration, the total error E is minimized, and 

the network is trained for optimal performance. This is the traditional approach to error back 

propagation, and it is also known as the steepest-decent gradient algorithm. 
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3.4.2 LEVENBERG-MARQUARDT ALGORITHM (LM): [16][9][29] 

Levenberg-Marquardt algorithm combined with back-propagation is the fastest training 

algorithm till this date. It is an improved version of Newton’s method to minimize the loss 

function of the neural network. Newton’s method is nothing but the second order partial 

derivation method to find the minima of a function. Since there are too many weights in the 

network and each one needs to be corrected, it is required to have a partial derivation of errors 

with respect to each weight. Hence, Newton’s method of training uses a Hessian matrix, which 

is a matrix of all possible partial derivatives. This is a primitive way to train the network and 

often gives non-satisfactory results since the learning rate as the error decreases are not factored 

in. Also, it requires too many precise calculations. The Levenberg-Marquardt algorithm is an 

approximation to Newton’s method.  

This algorithm uses the squared function of errors just as discussed in the error 

backpropagation algorithm. Donald W. Marquardt said, “Most algorithms for the least-squares 

estimation of non-linear parameters have centered about either of two approaches. On the one 

hand, the model may be expanded as a Taylor series and corrections to the several parameters 

calculated at each iteration on the assumption of local linearity. On the other hand, various 

modifications to the method of steepest-descent have been used. Both methods not infrequently 

run aground, the Taylor series method because of divergence of the successive iterates, the 

steepest-descent (or gradient) methods because of agonizingly slow convergence after the first 

few iterations” [16].  

The algorithm follows the same procedure as the error backpropagation. Forward 

computation is done by applying inputs to the network, and the output to each neuron is 

calculated using connected weights to the neuron and its activation function. For backward 
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computation; the loss function 𝑓 of the neural network for this algorithm is defined as the sum 

of squared errors e, 

𝑓 =F𝑒QO
_

Q`a

 

Where a is the number of training patterns/input-output pairs in the training data set. 

This is the approximation of Newton’s method; hence, it works without computing the 

exact Hessian matrix by approximating the Hessian matrix using the gradient vector and the 

Jacobian matrix. In mathematical terms, the Jacobian matrix is the matrix of all first-order partial 

derivatives of a vectored valued function. The Jacobian matrix of the loss function with respect 

to weights can be expressed as, 

𝐽Q,I = 	
𝜕𝑒Q
𝜕𝑤I

 

Here, i goes from 1 to a and j goes from 1 to b, where a is the number of training patterns in the 

data set, and b is the number of weights in the neural network architecture. 

The gradient vector of the loss function is calculated as, 

∇𝑓 = 2𝐽d ∙ 𝑒 

Hence, the Hessian matrix is approximated as, 

𝐻𝑓 ≈ 2𝐽d ∙ 𝐽 + 𝜆𝐼 

Where, 𝜆 is a damping factor that ensures the positiveness of the Hessian and 𝐼 is the identity 

matrix. Evaluating this approximated Hessian matrix yields factors to modify weights which are 

simplified as [16][9], 

𝑤(Qij) = 𝑤(Q) − G𝐽(Q)d ∙ 𝐽(Q) + 𝜆(Q)𝐼N
Tj
∙ G2𝐽(Q)d ∙ 𝑒(Q)N, 𝑖 = 0,1,2, … 

Here, 𝑖 represents the index of connected weights.  
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When the damping parameter λ is zero, this is just Newton's method, using the 

approximate Hessian matrix. On the other hand, when λ is large, this becomes gradient descent 

with a small training rate [29]. 

The parameter λ is initialized to be large so that first updates are small steps in the 

gradient descent direction. If any iteration happens to result in a failure, then λ is increased by 

some factor. Otherwise, as the loss decreases, λ is decreased, so that the Levenberg-Marquardt 

algorithm approaches the Newton method. This process typically accelerates the convergence to 

the minimum [29]. 

Despite being the fastest algorithm, it has one major drawback. The Jacobian matrix can 

get too complex for larger data sets, and therefore, it requires a large amount of memory during 

the execution of training. Hence, it is not ideal for larger training data sets and complex neural 

network architectures in some cases. 

3.4.3 NEURON-BY-NEURON ALGORITHM (NBN): [25] 

It is a similar algorithm to Levenberg-Marquardt modification to error backpropagation. 

This algorithm introduces a new NBN method for calculating the gradients and Jacobian matrix 

for arbitrarily connected feedforward networks. The rest of the computations for weight updates 

and optimization remains the same as the LM algorithm.  

 In the forward calculation, the neurons connected to the network inputs are first 

processed so that their outputs can be used as inputs to the subsequent neurons. The follow- ing 

neurons are then processed as their input values become available. In other words, the selected 

computing sequence has to follow the concept of feedforward networks and signal propagation. 

If a signal reaches the inputs of several neurons at the same time, then these neurons can be 

processed in any sequence. 
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Backward computation starts with the last neuron and continues toward the input. Also, 

for this algorithm, the concept of attenuation vector (𝑎) is introduced. The attenuation vector 

(𝑎)  represents signal attenuation from a network output to the outputs of all other neurons. The 

size of this vector is equal to the number of neurons. Backward computation process starts with 

the values of one assigned to the last element of the (𝑎) vector and zeroes to the remaining 

output neurons. During backward processing for each neuron, the value of the delta of this 

neuron is multiplied by the slope of the neuron activation function and then multiplied by 

neuron input weights. The results are added to the other elements of the (𝑎) vector neurons 

which are not yet processed. 

 The size of the (𝑎) vector is equal to the number of neurons, while the number of Jacobian 

elements in one row is much larger and is equal to the number of weights in the network. To 

obtain all row elements of the Jacobian for the 𝑝th pattern and 𝑜th output, a very simple formula 

can be used to obtain the element of the Jacobian matrix associated with the input k of neuron 

n, 

𝜕𝑒o,p
𝜕𝑤q,r

= 𝑑(𝑛)o,p ∙ 𝑠(𝑛)o ∙ 𝑛𝑜𝑑𝑒(𝑘)o,p 

Where d(n) is the element of the  (𝑎) vector, and  𝑠(𝑛) is the slope calculated during aaforwarding 

computation, with both of them being associated with neuron 𝑛. The	𝑛𝑜𝑑𝑒(𝑘) is the value on the 

𝑘th input of this neuron. 

 The process is repeated for every pattern, and if a neural network has several outputs, it 

is also repeated for every output. The process of gradient computation is the same as the LM, but 

instead of storing values in the Jacobian matrix, they are being summed into one element of the 

gradient vector, 
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𝑔(𝑛, 𝑘) = FF
𝜕𝑒o,p
𝜕𝑤q,r

∙ 𝑒o,p

v

p`j

w

o`j

 

Since the Jacobian is not stored into the memory and used in the computation of the 

gradient vector as we go, it moderately reduces the memory requirements compared to LM. Also, 

since it is not stored in the memory, repeated calculation of the same element can occur, which 

reduces the performance.  

3.4.4 SCALED CONJUGATE GRADIENT: [5][29] 

The conjugate gradient method can be regarded as something intermediate between 

gradient descent and Newton's method. It is motivated by the desire to accelerate the typically 

slow convergence associated with gradient descent. This method also avoids the information 

requirements associated with the evaluation, storage, and inversion of the Hessian matrix, as 

required by Newton's method. 

 Since learning in realistic neural network applications often involves adjustment of 

several thousand weights, only optimization methods that apply to large-scale problems are 

relevant as alternative learning algorithms. The general opinion in the numerical analysis 

community is that especially one class of optimization methods, called the Conjugate Gradient 

Methods, are well suited to handle large-scale problems effectively [3]. 

Let’s start with the basic notations for the algorithm to understand to strategy to implement this 

algorithm. 

 Let an arbitrary feedforward neural network be given. The weights in the network will be 

expressed in vector notation. A weight vector is a vector in the real Euclidean space ℛy, where N 

is the number of weights and biases in the network. A weight vector will often be referred to as a 

point in ℛy or just a point in weight space. Let 𝑤zz⃗  be the weight vector. 
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𝑤zz⃗ = 𝑤jzzzz⃗ + 𝛼j𝑝jzzzz⃗ + ⋯+ 𝛼r𝑝rzzzz⃗  

Where, 𝑤jzzzz⃗  is a point in weight space. Notations  𝑝jzzzz⃗ , 𝑝Ozzzz⃗ … , 𝑝rzzzz⃗  is a subset of a conjugate system 

which is a set of nonzero weigh vectors in ℛy.  

 We assume that a global error function 𝐸(𝑤zz⃗ ) depending on all the weights and biases is 

attached to the neural network. 𝐸(𝑤zz⃗ ) could be the standard least square function or any other 

appropriate error function. 𝐸(𝑤zz⃗ ) can be calculated with one forward pass and the gradient 𝐸′(𝑤zz⃗ ) 

with one forward and one backward pass. 𝐸′(𝑤zz⃗ ) is defined as, 

𝐸�(𝑤zz⃗ ) = �… ,F
𝑑𝐸o
𝑑𝑤Q,I

(�) ,
w

o`j

F
𝑑𝐸o

𝑑𝑤Qij,I
(�) ,

w

o`j

… ,F
𝑑𝐸o
𝑑𝑤y�,I

(�) ,
w

o`j

F
𝑑𝐸o

𝑑𝜃I
(�ij) ,

w

o`j

F
𝑑𝐸o

𝑑𝑤Q,Iij
(�) ,

w

o`j
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Where, 𝑤Q,I
(�) is the weight from unit number 𝑖 in layer number 1 to unit number 𝑗 in layer 

number	𝑙 + 1, 𝑁j is the number of units in layer 𝑗, and 𝜃I
(�ij) is the bias for unit number 𝑗 in layer 

number 𝑙 + 1. 𝑃 is the number of patterns presented to the network during the training and 𝐸o is 

the error associated with pattern 𝑝. 

 The minimization is a local iterative process in which an approximation to the function 

in a neighborhood of the current point in weight space is minimized. The approximation is often 

given by a first or second order Taylor expansion of the function. The following steps are 

executed to minimize the global error function 𝐸(𝑤zz⃗ ). 

1. Choose initial weight vector 𝑤jzzzz⃗  and set 𝑘 = 1. 

2. Determine a search direction 𝑝rzzzz⃗  and a step size 𝛼r so that 𝐸(𝑤rzzzzz⃗ + 𝛼r𝑝rzzzz⃗ ) < 𝐸(	𝑤rzzzzz⃗ 	) 

3. Update vector: 𝑤rijzzzzzzzzzz⃗ = 𝑤rzzzzz⃗ + 𝛼r𝑝rzzzz⃗ . 

4. If 𝐸′(𝑤rzzzzz⃗ ) ≠ 0�  then set 𝑘 = 𝑘 + 1 and go to step 2 else return 𝑤rijzzzzzzzzzz⃗  as the desired 

minimum. 
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 Determining the next current point in this iterative process involves two independent 

steps. First, a search direction has to be determined, i.e., in what direction in weight space do we 

want to go in the search for a new current point. Once the search direction has been found, we 

have to decide how far to go in the specified search direction, i.e., a step size has to be 

determined. 

To put this mathematics in words, the data set is randomized and divided into 

subcategories and multiple training iterations are applied for each subcategory. As we move 

forward from each category the scaling factors for the conjugates to adjust the weights is 

optimized to reach to the minima of the global error function 𝐸(𝑤zz⃗ ) faster when compared to the 

steepest-descent gradient method for error backpropagation. This is also referred to as the 

modified version of error backpropagation through gradient descent for fast supervised learning. 

3.4.5 CHOOSING TRAINING ALGORITHMS FOR NNPLC: 

After understanding the mathematics, advantages, and disadvantages of training 

algorithms explained above, it is concluded that the LM algorithm is the fastest algorithm but it 

used the most amount of memory, whereas the EBP with gradient descent is the slowest of all, 

but it requires the least amount of memory since the Hessian and the Jacobian matrices are 

involved in computation. The research shows that the scaled conjugate method of training 

network requires the same amount of memory, but it is faster than the steepest-gradient decent 

error-backpropagation algorithm. The traditional EBP training process requires 100 to 1,000 

times more iterations than more advanced algorithms such as Levenberg–Marquardt (LM)  or 

neuron by neuron (NBN) [28].  To test the NNPLC application of neural network, EBP with a 

scaled conjugate gradient, which was the slowest, but it had the least memory requirements, and 

the LM algorithm, which was the fastest, but it had larger memory requirements, were chosen to 
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test the boundaries of training efficiency. Both of these algorithms worked well with the 

feedforward architecture of the neural network, and they both yielded accurate results. 

 

3.5 CHALLENGE#3: 

Problem description: Employing the prediction model to discriminate normal from abnormal PLC 

operations. 

This challenge was the last critical challenge to successfully implement the neural 

network with PLC operations. There is often a leftover training error, which is very small in value, 

after the training process has successfully completed. If the training process has achieved a small 

acceptable error, then wrong predictions would occur rarely, but the possibility of such 

occurances would still exist. Therefore while comparing the outputs generated by the PLC with 

the outputs generated by the neural network, distinguishing between the error caused by 

abnormal PLC operation and the error caused by the wrong prediction from the neural network 

was a critical challenge to be addressed. 

Determining how the trained neural network could be deployed in parallel with the 

operating PLC helped address this challenge. We categorized the deployment into two 

categories. 

1. Dynamically deployed 

2. Statically deployed 

These methods are different ways to execute the trained neural network and compare the outputs 

generated from the PLC and the NN core. 
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3.5.1 DYNAMICALLY DEPLOYED: 

In this method of deployment, the neural network runs in parallel with the PLC in real 

time. The operating PLC and the trained neural network, both get the same inputs to generate 

output at the same instant. Outputs produced by both the PLC and the neural network core are 

dynamically compared for each input pattern. The difference in output, if any, is recorded in real 

time. Usually, malfunction errors of edge devices and errors caused by abnormal execution of 

PLC’s code would differ significantly from the data used to train the neural network. Thus, 

causing significantly large errors compared to errors caused by the neural network due to the 

training error. Although, there may be a few cases where it is difficult to determine what caused 

the error.  

To solve the problem, the concept of averaging the root mean squared value of errors is 

used. Root mean squared value of the error for each input pattern is continuously averaged, 

recorded, and plotted. If the plot continues to rise above the training error, then it is concluded 

that there is a malfunction in the PLC operation since errors caused by wrong predictions from 

the neural network would keep converging back to the almost value of training error. 

3.5.2 STATICALLY DEPLOYED: 

In this method of deployment, the trained neural network stays idle while the values of 

inputs and outputs from the PLC are recorded for a predefined interval of time. At the end of the 

time interval, a driver feeds the recorded data to the trained neural network. The neural network 

generates outputs for each input pattern. The testing error is calculated by averaging the root 

mean squared value of the differences from recorded actual PLC outputs and neural network 

outputs. This process is repeated for every predefined interval while the PLC is in operation. The 

testing error is continuously averaged, recorded, plotted, and observed. Before deploying the 
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neural network with the real system, testing errors from a set of randomly chosen patterns from 

the training data set is calculated. This process is repeated for multiple sets of different sizes. 

These random sets must be chosen in such a way that the average testing error for each set is 

more than the training error. The final testing error is calculated by averaging the testing errors 

from all sets. Suppose the predefined testing error, 𝐸o, and the error calculated at the end of 

every predefined time interval actual testing error, 𝐸_. The training error obtained during the 

training process is defined as 𝐸d. The prediction model to discriminate normal from abnormal 

PLC operations can be derived as: 

	𝐸_ ≤ 𝐸d → 𝑁𝑜𝑟𝑚𝑎𝑙	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝐸d < 𝐸_ < 𝐸o → 𝐻𝑖𝑔ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓𝑒𝑟𝑟𝑜𝑟𝑠	𝑓𝑟𝑜𝑚	𝑛𝑒𝑢𝑟𝑎𝑙	𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

𝐸_ ≥ 𝐸o → 𝑀𝑜𝑠𝑡	𝑙𝑖𝑘𝑒𝑙𝑦	𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

The final decision is made by observing 𝐸_. The value of 𝐸_ staying above 𝐸d, implicates 

that averaging of the actual training error is not converging back to the training error found 

during the training process. Meaning, the error was the result of a malfunction in the system or 

an abnormal PLC operation. 

3.5.3 COMPARISON: 

Both methods have their advantages and disadvantages. Dynamically deployed method 

continuously calculates errors in real time. Hence, there is no delay in the detection of abnormal 

operation. This method requires to have synchronization between the neural network and the 

PLC to make sure that outputs from both the PLC and the NN core are generated and compared 

at the same time. Hence, it requires more efforts to implement. The statically deployed method 

does not require any synchronization between the PLC and the neural network. But there could 

be a delay in the detection of abnormal operation since the new error values are evaluated after 
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a time interval. The static deployment factors-in the predefined testing error 𝐸o. As described 

above, it can be used to predict warnings to alert operators of the automation system about the 

possibility of abnormal operation. We tested the NNPLC application using the static deployment 

method since it was easier to implement, and it had more parameters to validate the work. The 

statically deployed neural network seemed more practical approach to validate the research. 

 

3.6 TESTING PLATFORMS FOR NEURAL NETWORKS: 

There are many tools available to implement and test neural networks applications such 

as MATLAB, NeuroSolutions infinity, NBN trainer, etc. There are programming libraries such as 

NumPy, TensorFlow, Blocks, NeuPy, etc., for the python programming language to implement 

neural networks. These libraries contain functions to operate on Hessian and Jacobian matrices, 

to perform vector algebra, to generate architecture matrices, and henceforth.  

 

Figure 14: MATLAB [32] 

In the experiment, MATLAB’s neural network fitting tool (nftool) was used to develop, 

implement, and test the neural network. This tool supported the implementation of simple 

feedforward architecture with hidden layers and with the customizable number of neurons in the 

architecture. It also provided options to train the network using scaled conjugate gradient and 
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LM algorithms. It offered a benefit to test the network with random test cases from the training 

data set, which was useful in implementing the statically deployed prediction model. 

 

Figure 15: Neural network fitting tool (nftool) [32] 

The nftool offered GUI to design, configure, train, and test the network, which made it 

easier to use and demonstrate the results. It calculated numerous parameters such as the training 

error, the testing error, error reduction plots, convergence plot, etc., which proved to be 

advantageous in evaluating the performance of the network. Such features made this tool ideal 

for the research. 
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4. CHAPTER-4: SOLUTION VALIDATION 
 
 
This chapter shows the validation results for the solution described in chapter-3.  

 

Figure 16: Lab setup of NNPLC 

Fig-16 is an actual picture of the setup we built to validate the solution. 

 

4.1 APPARATUS AND SOFTWARE USED FOR NNPLC: 

Below is the list of hardware that was used to implement the NNPLC for validation. 

1. Click PLC (model# C0-01DD2-D) 
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2. Raspberry Pi 3 model B+ 

3. Texas Instruments® 74HC165 shift registers 

4. E-boot LM2596 voltage step-down converters 

These are the necessary hardware required to implement the NNPLC. Some additional 

hardware to build electrical circuits such as printed circuit boards, jumper wires, breadboards, 

etc., are not mentioned above.  

Below is the list of software used for the validation. 

1. MATLAB R2017a 

2. Click Programming Software (Version 2.40) 

3. Python 2.7 

4. Microsoft Excel 2016 

 

4.2 VALIDATION OF THE CONCEPT: 

This section contains validation results for the three critical problems explained in 

chapter-3. The results were obtained during the experiment performed using the Click PLC C0-

01DD2-D, that belongs to a family of Click PLCs with digital I/O ports. The entire validation was 

done from the digital data obtained. Analog values were not used in the ladder logic used for the 

validation. Timer counts were also not harvested and stored in the training data set since certain 

limitation to access the programming software were encountered. 
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4.2.1 LADDER LOGIC IMPLEMENTED IN THE PLC: 

 

Figure 17 : The correct version of ladder logic 

 

Figure 18 : The altered version of ladder logic 

The ladder logic shown in fig-17 was implemented in the PLC. Here, X001, X002, X003, 

and X004 are inputs to the digital port. Y001, Y002, Y003, Y004, Y005, and Y006 are outputs to 

the digital port. T1 is the timer, and TD1 represents the timer count. Fig-17 shows the correct 
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version of the ladder logic. It uses AND conditions for X001, X002, X003, and X004 to turn on the 

timer. Upon achieving the correct condition, the code executs a blinking LED pattern on the PLC 

where the output ports Y001 from Y005 are turned on in a circular pattern for one second each. 

The duration is determined from timer T1. The condition can be expressed in the Boolean form 

as X001 & X002 & X003 & X004. Hence the correct condition to turn on the blinking pattern is 

X001 from X004 being TRUE.  

Fig-18 is the altered version of the ladder logic shown in fig-17. The condition to turn on 

the timer is altered to X001 & X002 & !X003 & X004. Hence the correct condition to turn on the 

blinking pattern is X001 from X004 being TRUE, TRUE, FALSE, and TRUE respectively. The 

altered code simulated the case of alteration of the code caused by the cyber intrusion. 

Table-2 shown below represents the blinking pattern in a tabular form. 

Timer Value TD1 
(Milliseconds) 

Y001 Y002 Y003 Y004 Y005 

0 - 1000 ON OFF OFF OFF OFF 
1001 - 2000 OFF ON OFF OFF OFF 
2001 - 3000 OFF OFF ON OFF OFF 
3001 - 4000 OFF OFF OFF ON OFF 
4001 - 5000 OFF OFF OFF OFF ON 

Table 2: The Blinking pattern 

Digital values obtained from the execution of the ladder logic shown in fig-17 were used 

to train the neural network, and the results were tested using the ladder logic shown in fig-18 to 

detect the malfunction caused from an altered code. 
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4.2.2 GATHERING TRAINING DATA: 

 

Figure 19: Shift registers setup with Raspberry Pi 

Fig-19 shows the setup of shift registers with the Raspberry Pi. This setup was used with 

the driver program implemented in the Raspberry Pi. The diagram follows the standard color 

coding, and it is explained in the table below. The driver program is posted in Appendix-A. 

Wire Color Representation 
Red VCC (Power supply) 

Black Ground/Common 
Gray SH/LD 
Blue CLK 

Orange Serial Data QH 
Brown CLK INH (Chip enable CE) 
Purple Parallel Load (A to H) 

Table 3: Wire color coding description 

The parallel load was connected to the PLC through LM2596 buck converters so that the 

shift registers can get the parallel data from the PLC’s port in 5V signals. The driver program 

stored digital values gathered from the port in text files named all.txt, input.txt, and output.txt. 
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These files were imported into an Excel sheet for the MATLAB to process. Fig-20 shows an 

example of the data gathered. 

 

Figure 20: Example of the data gathered using shift registers 

4.2.3 TRAINING THE NEURAL NETWORK: 

To implement, train, and test the neural network, MATLAB’s neural network fitting tool 

(nftool) was used. The simple feedforward network with 25 neurons in the hidden layer was 

implemented and trained using the Levenberg-Marquardt algorithm (LM) and Scaled conjugate 

gradient (SCG). 

Inputs and manually added timer states, were given to the neural network’s input, and 

output values of the port were given as the targeted output to the neural network as shown in 

fig-22. 

MATLAB’s neural network fitting tool was executed with the command ‘nftool’ in 

MATLAB’s command window. Upon executing this command, MATLAB launched the neural 

network fitting tool as shown in fig-21. 

Following series of figures shows the training of the neural network using nftool. 
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Figure 21: The nftool introduction window 

 

Figure 22: Select inputs and targeted outputs to train the network 
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Figure 23: Setup the data distribution for training 

 

Figure 24: Select the number of neurons in the hidden layer 
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Figure 25: Choose a training algorithm 

 

Figure 26: Training performance of neural network using Levenberg-Marquardt algorithm 
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Figure 27: Training performance result plots 

 

Figure 28: Final training error 
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Figure 29: Testing error obtained from correct IO data 

 

Figure 30: Testing error obtained from corrupt IO data 
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Figure 31: Final training error with Scaled Conjugate Gradient algorithm 
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Figure 32: Training performance of neural network using Scaled Conjugate Gradient 

   

Figure 33: Training performance result plots 
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Figure 34: Testing error obtained from correct IO data 

 

Figure 35: Testing error obtained from corrupt IO data  
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The IO data from the PLC’s port was collected using the shift registers. The correct IO 

data was harvested by executing the first version of the ladder logic shown in fig-17, and the 

corrupt IO data was harvested by executing the altered version of the ladder logic shown in fig-

18. Also, IO port X001, X002, X003, X004, Y001, Y002, Y003, and Y004 were gathered. Y005 was 

part of the blinking pattern but it was not possible to include it in the training data set since the 

external Y005 port is used for supplying power to the output port and cannot be used externally 

to output data. 

The significant difference in MSE (or testing error) was noticeable when comparing the 

testing error obtained with the correct IO data (fig-29) and the corrupt IO data (fig-30), using the 

neural network trained with the Levenberg-Marquardt algorithm.  

Similar results were obtained when Conjugate Scaled Gradient was used to train the 

neural network, which can be observed in fig-34 and fig-35. 

4.2.4 TESTING NNPLC WITH A PREDICTION MODEL: 

Two prediction models were described in chapter-3 section 3.5, named as dynamically 

deployed, and statically deployed. For better testing and validation, the solution was validated 

using the statically deployed prediction model in which the neural network’s mean squared 

testing errors were recorded at specific time intervals. Also, this model required the computation 

of Ep, which was calculated by feeding randomly created subsets of the training data set to the 

neural network and averaging testing errors of each subset that showed the testing error greater 

in value than the value of the training error. The training data set and subsets used for this 

validation are posted in Appendix-B. Corrupt data sets created from executing an altered version 

of the ladder logic are posted in Appendix-C. The same ladder logic that was used in the previous 

validation in section 4.2.3 was also used for this validation. 
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The neural network was trained using Levenberg-Marquardt and Scaled Conjugate 

Gradient algorithms by following the same procedure described in section 4.2.3. The only 

difference was that all data sets created were used in the testing window (fig-30 or fig-35) of 

nftool to generate MSE (mean squared error, also referenced as the testing error) for each data 

set. 

Fig-36 and fig-37 show results obtained from the experiment performed. 

 

Figure 36: Results obtained from the correct IO test data sets 

 

Figure 37: Results obtained from the corrupt IO test data sets 

Fig-36 shows the results of the neural network’s training using the Levenberg-Marquardt 

and the Scaled Conjugate Gradient algorithms. We were not concerned with the R values since 
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the regression performance of the neural network was not necessary for the experiment. A total 

of 15 subsets were created from the training data set to calculate Ep. The Root mean squared 

values of errors from each subset were recorded. The values in green in fig-36 are testing errors 

that were greater in value than the training error, which were later averaged to calculate Ep. The 

values in red are testing errors less than the training errors that were neglected from the Ep 

calculation. The values in yellow are dummy sets of training patterns that showed the least 

training performance. These yellow values were used just for the plotting purposes. These data 

sets can also be considered as test sets for ideal PLC operation since they contain the data from 

the ideal execution of the ladder logic in the PLC.  

Fig-37 shows testing errors obtained from the test data sets that were created by 

executing the altered version of ladder logic. Five input-output patterns were recorded in each 

data set. The plotting points were created by averaging the cumulative RMS in both figures.  

  

     (a)               (b) 

Figure 38: Average cumulative RMS plots (LM) 
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   (a)              (b) 

Figure 39: Average cumulative RMS plot (SCG) 

Fig-38(a) Shows the RMS error plot for the test data sets that contain the digital data from 

the correct version of ladder logic and fig-38(b) shows the same for the altered version of ladder 

logic while the neural network was trained using LM algorithm. Plot (a) shows that when the PLC 

had shown no malfunction, the average RMS stayed below Ep and near the training error. Plot (b) 

shows that when the PLC had executed the altered code, the RMS values went way above the 

training error and Ep. Hence, the malfunction in the PLC was detected. 

  Fig-39(a) Shows the RMS error plot for the test data sets that contain the digital data from 

the correct version of ladder logic and fig-39(b) shows the same for the altered version of ladder 

logic while the neural network was trained using Conjugate Scaled Gradient algorithm. They 

show similar results as fig-38(a) and fig-38(b).  

The values of errors stayed below the training error for the most part in fig-39(a) 

compared to fig-38(a) which leads us to a conclusion that SCG algorithm showed well-distributed 

training for all the patterns in the training data set while LM showed that some of the patterns 

received better training than other patterns in the training data set. The training error obtained 
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using LM was lesser than that of SCG. LM showed better overall training, but SCG showed better 

training distribution for each pattern, meaning that every pattern in the data set received equal 

training in the case of SCG. 

These plots were created using a MATLAB script, which is posted in Appendix-A. The 

values of each column from spreadsheets shown in fig-36 and fig-37 were imported into MATLAB 

workspace as numeric matrices for the MATLAB script to work. 
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5. CHAPTER-5: CONCLUSION AND FUTURE WORK 

 
5.1 CONCLUSION: 

PLC is called the heart of any automation system, and they are widely used in the 

industry. Because of their wide range of applications and usage; improvements to these 

controllers are always beneficial. We introduced the concept to implement machine learning 

onto PLCs, which opens many doors of improvements in PLC driven automation systems. One of 

the most important improvements is better fault detection. After an automation system is 

designed, a neural network can be trained to learn the ideal values of inputs and outputs to the 

PLC during the simulation of an automated system before it is implemented  at the customer’s 

site. The neural network can then be trained further at the customer’s site to learn the 

characteristics of “everyday” operations of the automation system. Once the fully trained neural 

network is deployed to run in parallel with the PLC, it can monitor the activities on the PLC’s 

ports and look for any abnormal values that wouldn’t occur during the normal “everyday” 

operation. These abnormal values may result from a malfunction of edge devices like sensors, 

motors, valves, etc.; cyber intrusions, bugs in the PLC code, and henceforth. Since the neural 

network has learned the ideal characteristics and the behavior of the automation system, it can 

detect if it behaves abnormally. For example, if the PLC starts executing error handlings codes 

that are usually not executed during the “everyday” operation, the neural network’s predictions 
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can alert the operators of the system that the code is not executing the way how it should be on 

an everyday basis. 

It is possible that the system could run into faults that were not factored-in during the 

development of the code since there are many possibilities of what could go wrong. Error 

handling codes for some of those possibilities are often overlooked due to human errors and 

limited understanding of the problem. Thus it may cause the whole system to fail since it lacked 

error handling for such errors. The neural network can detect abnormal behaviors, and its 

predictions can save the system from the failure for such cases that could have a significant 

financial impact or put lives at risk. 

The successful validation of the hypothesis shows that, with more efforts and research, 

the NNPLC concept can become a practical application for real automation systems. 

 

5.2 FUTURE WORK: 

As mentioned in the validation, the concept was tested on a PLC with only digital IO 

ports. Since it was not possible to harvest the timer values at the moment due to the restrictions 

of PLC programming software, this concept was not validated for complex PLC codes 

implemented in real automation systems whose logic ineluctably rely on timers and analog ports 

of the PLC. The solution to extract timer values needs more researching. 

Better suited neural network architectures for complex ladder logics, and training 

algorithms for the NNPLC application can be researched and developed. 

More efforts are needed to implement the dynamic deployment of the neural network 

discussed in chapter-3 since it requires synchronization between the PLC and the neural 

network. 
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The application-specific neural network code should be written as per the requirements 

of the automation system rather than using available general-purpose software to implement 

neural network, i.e., MATLAB, NeuroSolutions, etc., in order to achieve better validation, 

optimization, and  to implement this concept into real systems. Live plots of difference between 

predictions and actual outputs needs to be implemented in order to monitor the system in real 

time. 
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APPENDIX-A 

 
A-1 Shift register’s driver program for Raspberry Pi (PISO.py): 

import RPi.GPIO as GPIO 
import time 
import sys 
 
#-------------------------------------------------------------------------# 
#             Global Definitions           # 
#-------------------------------------------------------------------------# 
 
#SH/LD pin initialized on GPIO pin#3 
shld_pin = 3 
 
#Clock pin initialized on GPIO pin#5 
clk_pin = 5 
 
#Serial data pin for the first shift register initialized on GPIO pin#22 
data_pin = 22 
 
#Serial data pin for the second shift register initialized on GPIO pin#24 
data_pin_1 = 24 
    
#Chip enable pin (CLK INH) for the first shift register initialized on GPIO pin#21 
ce_pin = 21 
  
#Chip enable pin (CLK INH) for the second shift register initialized on GPIO pin#23 
ce_pin_1 = 23    
 
LSB = 0   #LSB to output serial data as the least significant bit first format 
MSB = 1  #MSB to output serial data as the most significant bit first format 
 
#-------------------------------------------------------------------------# 
#        Function Definitions         # 
#-------------------------------------------------------------------------# 
 
#Function to initialize GPIO ports on Raspberry Pi 
def initialize(): 
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GPIO.setmode(GPIO.BOARD) #Enable GPIO port 
GPIO.setup(7, GPIO.OUT)  #Setup GPIO pin#7 in output mode 
GPIO.setup(shld_pin, GPIO.OUT) #GPIO for SH/LD pin in output mode  
GPIO.setup(ce_pin, GPIO.OUT) #GPIO for CLK INH pin in output mode 
GPIO.setup(ce_pin_1,GPIO.OUT) #GPIO for CLK INH pin in output mode 
GPIO.setup(clk_pin,GPIO.OUT) #GPIO for CLK pin in output mode 
GPIO.setup(data_pin, GPIO.IN) #GPIO for serial data pin in input mode 
GPIO.setup(data_pin_1, GPIO.IN) #GPIO for serial data pin in input mode 
GPIO.output(7, 1)   #Set GPIO port#7 to HIGH 
GPIO.output(clk_pin, 1)  #Set GPIO port#5 to HIGH 
GPIO.output(shld_pin, 1)  #Set GPIO port#3 to HIGH 
return; 

 
 #Function to execute the end procedure of the driver 
def endprocess(): 
 print "Cleaning GPIO...", 
 GPIO.cleanup()   #Cleanup GPIO 
 print "Done" 
 print "Closing files...", 
 fh1.close()    #Close file input.txt 
 fh2.close()    #Close file output.txt 
 fh3.close()    #Close file all.txt 
 print "Done" 
 print "Syncing data files on google cloud\n" 
 
#Function to format the serial data to be written into the file 
#Format example: 0 0 1 0 0 1 0 1  
def fmat(var): 
 ns = "" 
 for i in range(0,8): 
  num = (var >> i) & 1 
  if(num == 0): 
   num = "0" 
  else: 
   num = "1" 
  ns += num + " " 
 ns = ns[::-1] 
 return ns; 
 
#Function to execute the timing diagram of the shift register 
#This function operates shift registers to achieve parallel to serial conversion 
def read_shift_regs(data,ce): 
 the_shifted = 0 
 #Set SH/LD pin to LOW to load the parallel data into the shift register 
 GPIO.output(shld_pin, 0) 
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#Hold SH/LD's value as LOW for 5 microseconds  

 time.sleep(5/1000000.0) 
 
 #Set SH/LD pin to HIGH to shift the loaded parallel data to output serial data 
 GPIO.output(shld_pin, 1) 
 
 #Hold SH/LD's value as HIGH for 5 microseconds to initialize the shifting operation 
 time.sleep(5/1000000.0) 
 

#set clock pulse to HIGH 
GPIO.output(clk_pin, 1) 
 
#Set the CLK INH to HIGH to enable the clock signal to the shift registers 
GPIO.output(ce, 0) 
 
#Call ShiftIn function to get the serial data from the shift registers 
the_shifted = ShiftIn(data, clk_pin, MSB) 
 
#Set the CLK INH to LOW to diable the clock signal to the shift registers 
GPIO.output(ce, 1) 
 
return the_shifted; #return the shifted value 

 
#Function to perform the shifting operation and output the serial data 
def ShiftIn(data, clk, order): 

value = 0 
#Perform eight shifts to output 8-bit serial data 
for i in range(0,8): 
#Shift bits on each asynchronous clock pulse 

GPIO.output(clk, 1)    #Set the clock signal to HIGH 
if(order == LSB):    #Check the output order 

value |= GPIO.input(data) << i  #Serial output in LSB fashion 
else: 

value |= GPIO.input(data) << (7-i) #Serial output in MSB fashion 
GPIO.output(clk, 0)    #Set the clock signal to LOW 

return value; 
 
#-------------------------------------------------------------------------# 
#         Main         # 
#-------------------------------------------------------------------------# 
 
initialize()       #Initialize Raspberry Pi 
#Open Files to write mode 
fh1 = open('/home/pi/AIPLC/data/input.txt',"w")  #Open input.txt 
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fh2 = open('/home/pi/AIPLC/data/output.txt',"w")  #Open output.txt 
fh3 = open('/home/pi/AIPLC/data/all.txt',"w")  #Open all.txt 
try: 
 while(True): 
  val = read_shift_regs(data_pin,ce_pin) #Read from the shift register-1 
  val1 = read_shift_regs(data_pin_1,ce_pin_1) #Read from the shift register-2 
  s1 = fmat(val)     #Format the read value 
  s2 = fmat(val1)    #Format the read value 
 
  #Write serial values in files 
  fh1.write(s1 + '' + "\r\n") 
  fh2.write(s2 + '' + "\r\n") 
  fh3.write(s1 + ' ' + s2 + "\r\n") 
 
  #Display serial values on terminal 
  print(s1), 
  print"\t", 
  print(val), 
  print "\t", 
  print(s2), 
  print "\t", 
  print(val1) 
  time.sleep(0.5) 
#End execution in case if a keyboard interrupt detected 
except (KeyboardInterrupt, SystemExit): 
 print "\nKeyboard interrupt detected..." 
 endprocess() 
except: 
 print "Fatal Error" 
 endprocess() 
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A-2 MATLAB script to plot error results: 

clc; 
%Create plotpoints for 15 test sets 
Plotpoints(:,1) = linspace(0,15,15); 
 
%Plot LM performance for no malfunction in PLC code 
figure(1) 
plot(Plotpoints,LM_correct_plotpoints) 
hold on 
plot(Plotpoints,LM_training_error) 
plot(Plotpoints,LM_Ep) 
hold off 
grid 
legend('Average RMS','Training Error Et','Malfunction prediction Ep') 
title('LM test - No malfunction in PLC code') 
xlabel('Plotpoints') 
ylabel('RMS') 
 
%Plot LM performance for a malfunction in PLC code 
figure(2) 
plot(Plotpoints,LM_malfunction_plotpoints) 
hold on 
plot(Plotpoints,LM_training_error) 
plot(Plotpoints,LM_Ep) 
hold off 
grid 
legend('Average RMS','Training Error Et','Malfunction prediction Ep') 
title('LM test - Malfunction in PLC code') 
xlabel('Plotpoints') 
ylabel('RMS') 
 
%Plot SCG performance for no malfunction in PLC code 
figure(3) 
plot(Plotpoints,SCG_correct_plotpoints) 
hold on 
plot(Plotpoints,SCG_training_error) 
plot(Plotpoints,SCG_Ep) 
hold off 
grid 
legend('Average RMS','Training Error Et','Malfunction prediction Ep') 
title('SCG test - No malfunction in PLC code') 
xlabel('Plotpoints') 
ylabel('RMS') 
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%Plot SCG performance for a malfunction in PLC code 
figure(4) 
plot(Plotpoints,SCG_malfunction_plotpoints) 
hold on 
plot(Plotpoints,SCG_training_error) 
plot(Plotpoints,SCG_Ep) 
hold off 
grid 
legend('Average RMS','Training Error Et','Malfunction prediction Ep') 
title('SCG test - Malfunction in PLC code') 
xlabel('Plotpoints') 
ylabel('RMS') 
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APPENDIX-B 

 
B-1 Complete training data set 

Inputs: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
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0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 



   

 77 

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 

 
Outputs: 



   

 78 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
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0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
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0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
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0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 

 

B-2 Training subset-1 

Inputs: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
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Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 

 

B-3 Training subset-2 

Inputs: 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 

 
Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 

 

B-4 Training subset-3 
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Inputs: 

0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 

 
Outputs: 

0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 

 

B-5 Training subset-4 

Inputs: 

0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
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0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 

 
Outputs: 

0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 

 

B-6 Training subset-5 

Inputs: 

0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 

 
Outputs: 

0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
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0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 

 

B-7 Training subset-6 

Inputs: 

0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 

 
Outputs: 

0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
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0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 

 

B-8 Training subset-7 

Inputs: 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 
Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
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0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 

 

B-9 Training subset-8 

Inputs: 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 

 
Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 
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0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 

 

B-10 Training subset-9 

Inputs: 

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 

 
Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 

 

B-11 Training subset-10 

Inputs: 

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 
 
Outputs: 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
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APPENDIX-C 

 
C-1 Test point-1 

Inputs: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 
Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 

 

C-2 Test point-2 

Inputs: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 
Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
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C-3 Test point-2 

Inputs: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

 
Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 

 

C-4 Test point-2 

Inputs: 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 

 
Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 

 

C-5 Test point-2 

Inputs: 

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
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0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 

 
 

Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 

 

C-6 Test point-2 

Inputs: 

0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 

 
Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 1 0 
0 0 0 0 0 1 0 0 

 

C-7 Test point-2 

Inputs: 

0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 

 
Outputs: 
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0 0 0 0 1 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 

 

C-8 Test point-2 

Inputs: 

0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 

 
Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 

 

C-9 Test point-2 

Inputs: 

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 

 
Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 
0 0 0 0 0 0 1 0 
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C-10 Test point-2 

Inputs: 

0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 

 
Outputs: 

0 0 0 0 0 1 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 

 

C-11 Test point-2 

Inputs: 

0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 

 
Outputs: 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 
0 0 0 0 0 0 1 0 

 

C-12 Test point-2 

Inputs: 

0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 
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0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 

 
Outputs: 

0 0 0 0 0 1 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 

 

C-13 Test point-2 

Inputs: 

0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 

 
Outputs: 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 

 

C-14 Test point-2 

Inputs: 

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 

 
Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
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0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 

 

 

C-15 Test point-2 

Inputs: 

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 

 
Outputs: 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 

 

C-16 The complete test set 

Inputs: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
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0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 
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0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 

 
Outputs: 
 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 1 0 0 
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0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
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