
Application Of Neural Network On PLC-based Automation Systems For Better
Fault Tolerance And Error Detection

By

Bhargav Joshi

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Computer Science and Software Engineering

Auburn, Alabama
August 3, 2019

Keywords: PLC, neural, network,
automation, ladder, python

Approved by

David Umphress, Chair, Professor of CSSE
Bo Liu, Assistant professor of CSSE

Anh Nguyen, Assistant professor of CSSE

 ii

ABSTRACT

Neural networks have a wide range of applications such as building complex equations
using the input and output characteristics of functions, predictions of outputs, error detections,
monitoring complex systems, etc. Neural network’s capabilities of monitoring the system, error
detection, and predictions merged with Programmable Logic Controllers (PLC) can improve the
fault tolerance and error detections in automation systems. While the PLC program is being
tested in the simulated environment before it is implemented in the automation system, the
values of PLC’s I/O ports, timers and critical variables during the execution of the program can
be used to train a neural network and prepare it to monitor the system. Execution of the trained
neural network in parallel with the PLC’s execution where the inputs and the outputs to the PLC
are also supplied to the trained neural network, adds an artificial intelligence inspired system
monitor. A neural network based system monitor learns the characteristics of the automation
system using PLC’s port values and internal variables during the training. A successfully trained
neural network can detect a malfunction or abnormal behavior in the automation system when
the outputs to the automation system generated by the PLC and the outputs generated by the
neural network are compared. The abnormal behavior of an automated system could have been
caused by intrusions in which the PLC code has been altered by external entities, hardware faults,
malfunctions on PLC’s I/O ports, mishandling of the system by the operators, etc. Addition of
AI-based monitor to the automation system provides an additional layer of security and helps
the system run efficiently since neural network’s prediction capability can alert the operators if
abnormal behavior in the system starts to take place before it is too late to recover.

 iii

TABLE OF CONTENTS

ABSTRACT .. II

TABLE OF CONTENTS ... III

LIST OF FIGURES .. V

LIST OF TABLES ... VII

1. CHAPTER-1: PROBLEM DESCRIPTION ... 1

2. CHAPTER-2: PREVIOUS WORK ... 3

2.1 PROTOCOLS: .. 3
2.2 SIGNAL FEEDBACKS FROM EDGE DEVICES: .. 4
2.3 HUMAN MACHINE INTERFACE (HMI): ... 4
2.4 MACHINE LEARNING: .. 5

2.4.1 ARTIFICIAL NEURAL NETWORKS(ANN): .. 6
2.5 MERGING NEURAL NETWORKS TO PLC OPERATIONS: ... 8

3. CHAPTER-3: SOLUTION .. 9

3.1 THE CONCEPTUAL DESIGN: ... 9
3.1.1 NNPLC IN TRAINING CONFIGURATION: .. 10
3.1.2 NNPLC IN DEPLOYED CONFIGURATION: ... 11

3.2 TACKLING KEY CHALLENGES TO IMPLEMENT THE CONCEPT DESIGN: 12
3.3 CHALLENGE#1: ... 12

3.3.1 CONTENTS OF TRAINING DATA SET: ... 13
3.3.2 HARVESTING DIGITAL VALUES: ... 15
3.3.2 HARVESTING ANALOG VALUES: .. 20
3.3.3 HARVESTING TIMER VALUES: .. 22

3.4 CHALLENGE#2: ... 22
3.4.1 ERROR BACKPROPAGATION ALGORITHM (EBP): .. 28
3.4.2 LEVENBERG-MARQUARDT ALGORITHM (LM): .. 31
3.4.3 NEURON-BY-NEURON ALGORITHM (NBN): ... 33
3.4.4 SCALED CONJUGATE GRADIENT: ... 35
3.4.5 CHOOSING TRAINING ALGORITHMS FOR NNPLC: .. 37

3.5 CHALLENGE#3: ... 38
3.5.1 DYNAMICALLY DEPLOYED: .. 39
3.5.2 STATICALLY DEPLOYED: .. 39
3.5.3 COMPARISON: ... 40

3.6 TESTING PLATFORMS FOR NEURAL NETWORKS: ... 41

 iv

4. CHAPTER-4: SOLUTION VALIDATION .. 43

4.1 APPARATUS AND SOFTWARE USED FOR NNPLC: ... 43
4.2 VALIDATION OF THE CONCEPT: ... 44

4.2.1 LADDER LOGIC IMPLEMENTED IN THE PLC: ... 45
4.2.2 GATHERING TRAINING DATA: ... 47
4.2.3 TRAINING THE NEURAL NETWORK: .. 48
4.2.4 TESTING NNPLC WITH A PREDICTION MODEL: .. 57

5. CHAPTER-5: CONCLUSION AND FUTURE WORK ... 62

5.1 CONCLUSION: ... 62
5.2 FUTURE WORK: ... 63

REFERENCES ... 65

APPENDIX-A ... 68

APPENDIX-B .. 74

APPENDIX-C .. 90

ACKNOWLEDGMENTS .. 100

VITA .. 102

 v

LIST OF FIGURES

Figure 1: HMI of an automated turbine system (example)[10] .. 5
Figure 2: Machine Learning methodology [21] ... 6
Figure 3: Number of input neurons for one-step-ahead forecasting [19] 7
Figure 4: Block diagram of training configuration .. 10
Figure 5: Block diagram of the deployed configuration .. 11
Figure 6: Harvest Digital IO values using shift registers ... 15
Figure 7: E-boot LM2596 buck converter [30] ... 16
Figure 8: Logic diagram of SN74HC165 Parallel-in/Shift-out [23] .. 17
Figure 9: Timing Diagram of SN74HC165 [23] .. 18
Figure 10: Harvesting analog values ... 20
Figure 11 Voltage divider .. 21
Figure 12: Neural Networks architecture for automated oil pump [18] 24
Figure 13: Standard Neural Network Architectures [27] [28] .. 26
Figure 14: MATLAB [32] .. 41
Figure 15: Neural network fitting tool (nftool) [32] .. 42
Figure 16: Lab setup of NNPLC ... 43
Figure 17 : The correct version of ladder logic .. 45
Figure 18 : The altered version of ladder logic .. 45
Figure 19: Shift registers setup with Raspberry Pi .. 47
Figure 20: Example of the data gathered using shift registers .. 48
Figure 21: The nftool introduction window .. 49
Figure 22: Select inputs and targeted outputs to train the network ... 49
Figure 23: Setup the data distribution for training ... 50
Figure 24: Select the number of neurons in the hidden layer ... 50
Figure 25: Choose a training algorithm .. 51
Figure 26: Training performance of neural network using Levenberg-Marquardt algorithm 51
Figure 27: Training performance result plots ... 52
Figure 28: Final training error .. 52
Figure 29: Testing error obtained from correct IO data .. 53
Figure 30: Testing error obtained from corrupt IO data ... 53
Figure 31: Final training error with Scaled Conjugate Gradient algorithm 54
Figure 32: Training performance of neural network using Scaled Conjugate Gradient 55
Figure 33: Training performance result plots ... 55
Figure 34: Testing error obtained from correct IO data .. 56
Figure 35: Testing error obtained from corrupt IO data ... 56
Figure 36: Results obtained from the correct IO test data sets ... 58
Figure 37: Results obtained from the corrupt IO test data sets .. 58

 vi

Figure 38: Average cumulative RMS plots (LM) .. 59
Figure 39: Average cumulative RMS plot (SCG) .. 60

 vii

LIST OF TABLES

Table 1: Format of training data set (example) ... 14
Table 2: The Blinking pattern ... 46
Table 3: Wire color coding description ... 47

 1

1. CHAPTER-1: PROBLEM DESCRIPTION

PLC, also known as Programmable Logic Controllers, are referred to as the heart of

industrial automation. They operate substantial automation systems such as car assembly lines,

manufacturing plants, high voltage distribution systems, automated boilers, etc., all of which are

complicated systems where a malfunction can have a significant financial impact or put lives at

risk.

This places the onus on system designers and programmers to program PLCs so that they

not only perform useful functions but also detect if an error has occurred and recover if possible.

This has always been a difficult task due to having to work with unique or specialized devices

that are not equipped with feedback sensors capable of reporting a failure, relegating to

supervisory controllers the job of detecting problems. The difficulty of the task has been

heightened as industrial automation systems have become networked. Instead of just dealing

with the mechanical and process soundness of systems, developers have to take into account how

resilient the system is to malicious cyber activity. It is not hard to imagine the damage that could

result if a PLC in a dairy that controls a large boiler used to homogenize milk had its temperature

parameters changed to the point where the pressure caused an explosion. Such an event could

be caused by a malfunctioning temperature sensor, faulty pressure sensor, human error, or a

cyber exploit.

While computing platforms were once too immature to detect similar scenarios in the

past, improvements in hardware and software now offer possible solutions. For example, so-

 2

called do-it-yourself hardware, such as Arduino and Raspberry Pi, put forward the notion of

ultra-low-cost computing and connectivity. Artificial intelligence, too, has advanced to the stage

where it is possible to observe the behavior of a mechanical system, learn what constitutes

“normal” operation, and alert when functions exceed a certain threshold.

The solution proposed here is to employ neural networks to monitor the behavior of off-

the-shelf PLCs with the purpose of detecting abnormal behavior. The neural network observes

PLC input and output over time in order to develop a model that predicts what output should

occur given an input. Actual outputs that fall outside a threshold of predicted outputs signals

abnormal behavior that might be caused by a hardware malfunction or cyber intrusion.

The specific goals of this research are the following:

1. Determine how to gather training data from an already programmed PLC.

2. Identify the correct neural network architecture and training algorithm that will predict

outputs from inputs.

3. Employing the prediction model to discriminate normal from abnormal PLC operations.

 3

2. CHAPTER-2: PREVIOUS WORK

This chapter surveys previous work done on making automation systems more fault

tolerant and more secure. Additionally, chapter 2 explores how the concept of machine learning

can be used to improve the system as a whole.

2.1 PROTOCOLS:

Leading automation companies such as Siemens, Allen Bradley, and Honeywell have

developed secure protocols to prevent communication breaches in automated systems. For

example, Siemens PLCs securely communicate through the PROFIBUS protocol, is based on

recognized international standards. The protocol architecture uses the OSI (Open System

Interconnection) reference model in which the second Layer of the OSI reference model aids this

protocol to regulate the data security and data transmission in PROFIBUS networks [6] [13].

These protocols are made only for communication among PLCs and any network-related

devices attached to them. They can detect an error in communication through error detecting

codes employed in the protocol. However, they cannot detect if the error is caused by corrupted

data from either malfunction or intentional breaches. Constantly monitoring the data being sent

to and received by the PLC would provide better reliability and security. It is impossible to verify

the correctness of the data using only errors. Correctness requires knowledge of the context in

which the data is used. Individual data elements may be free of errors, but they may not produce

the intended result when taken together.

 4

2.2 SIGNAL FEEDBACKS FROM EDGE DEVICES:

Automation systems are made of edge devices such as motors, sensors, actuators, etc.,

controlled by programmable logic controllers. Malfunctions in edge devices or PLCs can occur

for various reasons. Since protocols fail to detect some of those malfunctions, system designers

implement feedback signals on edge devices to determine if the device is either in the working

state or not [8]. These feedback signals are usually a one-bit line that connects an edge device to

a PLC’s I/O port. If the edge device stops working for any reason, the value of the feedback signal

from the edge device is automatically inverted, to signal a change in state. These feedback signals

are interlocked within the PLC code to detect if any of the edge devices have stopped working.

This solution still does not solve the problem of verification of correctness of the data

received from edge devices. Also, not all hardware can support a feedback system. Feedback-

supported edge devices increase cost in the manufacturing of an automation system, possibly

rendering it beyond the reach of customer budgets.

2.3 HUMAN MACHINE INTERFACE (HMI):

HMI also is known as Human Machine Interface is a live graphical representation of an

automated system with added controls for humans to access it. It usually consists of a live feed

of the data and parameters from edge devices, together with controls to change or handle the

parameters of the system manually. The purpose of an HMI is to monitor the automated system

and provide controls for it to change the settings, turn on/off connected devices, force start

certain parts of the system, emergency stop, manual override, etc. These features add an

additional layer of security to the system since the human element can be a part of the system.

 5

Figure-1 illustrates an HMI of an automated turbine system. The HMI displays the core

temperature of the turbine, Rotations per minute, a live feed of the oil cooling system and

vibrations on the turbine shaft. Maintenance engineers can monitor the system for abnormal and

possibly shut down the system in case of an emergency.

Figure 1: HMI of an automated turbine system (example)[10]

The drawback of HMI is that humans do the monitoring part of the system, leading to the

possibility of human error. Someone with malicious intent gaining unauthorized access to the

HMI can manipulate the system using the access provided on the HMI. These HMIs are connected

to the PLC as network devices, making it vulnerable to distant hacks.

2.4 MACHINE LEARNING:

Given the unprecedented availability of data and computing resources, there is

widespread renewed interest in applying data-driven machine learning methods to problems for

which the development of conventional engineering solutions is challenged by modeling or

algorithmic deficiencies [21].

 6

Figure 2: Machine Learning methodology [21]

Machine learning is an efficient tool to predict the output from a set of inputs. A data set

made of several inputs and corresponding outputs provides to the machine learning code, and

the program learns how inputs are related to outputs during the training process. The training

process is done through machine learning algorithms (refer to Fig-2). Once the training process

is finished, the code can predict the output from the given input without having to manually

figure out the relation between inputs and outputs. One of the popular approaches to machine

learning is neural networking.

2.4.1 ARTIFICIAL NEURAL NETWORKS(ANN):

Artificial neural networks are computational systems inspired by the biological neuron’s

network inside an animal brain. “The recipe for understanding natural intelligence and achieving

strong AI is simple. If we can construct synthetic brains that mimic the adaptive behavior

displayed by biological brains in all its splendor, then our mission has succeeded” [12]. A neural

network is not an algorithm but a framework for many different machine learning algorithms to

work together and process large data sets or data inputs [2]. It models connections of neurons in

a brain where each neuron is a node connected to other nodes.

 7

Figure 3: Number of input neurons for one-step-ahead forecasting [19]

Figure-3 represents an example of a neural network structure to predict an output from

multiple inputs. Inputs pass through the web of neurons where every connection within the

network has a weighted multiplier. The desired output is generated through the series of

arithmetic operations done on inputs based on multipliers on every connection with neurons

[19].

There are various algorithms to calculate weighted multipliers on the connections

between neurons. The algorithm generates values of weighted multipliers using the provided set

of expected output and input [19]. This process is called the training of neural networks. Once

the training process is finished, the trained neural network is ready to predict the output based

on inputs. This trained neural network can be deployed and run actively to generate outputs

dynamically from provided inputs. Gradient descent, Newton's method, Conjugate Scaled

Gradient, Quasi-Newton method, Levenberg-Marquardt are a few examples of popular training

algorithms for neural networks [29].

 8

2.5 MERGING NEURAL NETWORKS TO PLC OPERATIONS:

A PLC can be envisioned as a box that accepts various inputs from edge devices such as

sensors and switches. It transforms the inputs into output signals that control edge devices such

as motors, conveyor belts, solenoid valves, etc. Briefly, it can be said that there is a set of inputs

and a set of outputs, and are related to each other through a box that is the PLC. This scenario

can be compared to a neural network where there is a set of inputs and a set of outputs that are

related to each other through a box, which is the neural network. Neural networks cannot re-do

the functionality of the PLC; instead, they predict the chances of an output resulting from a set

of specific inputs.

The neural network runs in parallel to the PLC. Both get the same inputs. The PLC’s

output deviating from what is predicted by the neural network signifies the possibility of an edge

device generating corrupt data [18].

Employing a neural network in parallel with PLC operation solves the problem of

verifying the correctness of the data coming from edge devices or the data generated by PLC since

the network learns how the automation system on the PLC operates. It also eliminates the need

to monitoring the system manually using HMI, thus eliminating the possibility of human error.

 9

3. CHAPTER-3: SOLUTION

The objectives of this measure are as follows:

1. Determine how to gather training data from an already programmed PLC.

2. Identify the correct neural network architecture and training algorithm that will predict

outputs from inputs.

3. Employing the prediction model to discriminate normal from abnormal PLC operations.

This chapter describes solutions to these problems.

3.1 THE CONCEPTUAL DESIGN:

As described in chapter 2, PLCs and neural networks can be visualized as black boxes that

accept various inputs and generate appropriate outputs. Implementation of a neural network

integrated PLC (NNPLC) was done as follows:

1. A PLC program for an automation system was built as per provided system requirements

using a PLC and needed edge devices.

2. A separate machine was prepared with proper connections made with the automation

system, and a neural network core (NN core) was implemented in it with fitting

parameters.

3. The neural network core was put in training mode, and the automation system's was

simulated in the lab environment. This step is divided into two phases.

 10

a. Gathering of training data

b. Feeding training data to the NN core while it was in training mode

4. Upon achieving the acceptable training error, the trained NN core was deployed and

executed in parallel with the PLC.

5. The PLC generated outputs and the neural network core generated outputs were

compared, and the difference was computed to see if there were any errors.

In step 5, appropriate statistical model to identify actual errors was implemented to differentiate

between the errors caused by abnormal behavior of the PLC program and the errors caused due

to the leftover training error during the training of the neural network core.

3.1.1 NNPLC IN TRAINING CONFIGURATION:

Figure 4: Block diagram of training configuration

 11

Fig-4 shows the training configuration of NNPLC. As per this block diagram, the PLC was

built with digital I/O modules, analog I/O modules, and timers. Timers are usually part of the

PLC core but are shown as separate components to explain the training configuration. PLC core’s

job is to execute the program.

In the experiment, an untrained neural network core was implemented with the

feedforward network architecture and a training algorithm. The untrained neural network core

gathered data from modules while running the simulation of the PLC code and created a data set

for the training algorithm. After enough training data was gathered from normal PLC operation,

the training algorithm started training the network with provided parameters and generated data

set, and generated the final training error. The neural network core was ready to be deployed as

soon as the acceptable training error was achieved.

3.1.2 NNPLC IN DEPLOYED CONFIGURATION:

Figure 5: Block diagram of the deployed configuration

 12

Fig-5 shows the block diagram of NNPLC configuration in its deployed mode. As shown

in fig-5, PLC core and NN core receive the same inputs from PLC’s timers, analog input module,

and digital input module. Since the NN core was trained during the simulation of the PLC

program, both PLC and NN core should ideally generate similar outputs. Here it was made sure

that the NN core had the least possible training error. The difference between the PLC generated

outputs (actual outputs) and the NN core generated outputs (predicted outputs) were calculated

through a mathematical comparator. The percentage error plot produced by the comparator

showed a significant difference in outputs produced by both PLC and NN core if the PLC started

producing abnormal outputs due to any reasons (i.e., malfunction of edge devices, intrusions in

the system, injection of malware or viruses, modification of the PLC program, etc.). This result

happened because the NN core predicted outputs that were the same as how the normal

operation of the PLC would generate, considering that it was trained with the data gathered

during the normal operation of the PLC.

3.2 TACKLING KEY CHALLENGES TO IMPLEMENT THE CONCEPT DESIGN:

To implement the concept design of NNPLC, there were three major challenges that

needed to be tackled. Solutions to these problems required fundamental knowledge of electrical

engineering, neural networking, and software engineering.

3.3 CHALLENGE#1:

Problem description: Determine how to gather training data from an already programmed PLC.

An important question in neuroscience is how neural representations of sensory input

are functionally organized. Güçlü and Van Gerven show that neural responses to sensory input

 13

can be modeled using recurrent neural networks that can be trained end-to-end [7] [12]. For any

neural network to work, it requires data to be trained. In our case, the training data was the set

of inputs given to the PLC and the set of outputs produced by the PLC. The training data set for

NN core was obtained from PLC’s visible parts, i.e., external digital and analog ports. This data

was organized in such a way that values read on the ports were time synchronized. The capture

time interval to read the data from PLC’s ports was calculated using the following relation.

𝑪𝒂𝒑𝒕𝒖𝒓𝒆	𝑻𝒊𝒎𝒆	𝑰𝒏𝒕𝒆𝒓𝒗𝒂𝒍 = 𝑷𝑳𝑪	𝑪𝒚𝒄𝒍𝒆	𝑻𝒊𝒎𝒆	 × 	𝑰𝒏𝒕𝒆𝒈𝒆𝒓	𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒓	𝒏

To understand this, let’s consider an example of a PLC with the cycle time of 50

microseconds; meaning that PLC scans the entire ladder logic and updates values of program’s

variables and corresponding hardware ports every 50 microseconds. The data on the physical

ports must be captured every 50 microseconds times an integer multiplier. This multiplier could

be in the range from 1 to infinity. The ideal value of this multiplier should be 1 to prevent the

missing of the capture of certain PLC program states. It should neither be less than one nor a

non-integer value because doing so would introduce faulty captures in the training data set,

meaning captures containing updated input values as well as incompletely processed output

values. Feeding faulty captures would ostensibly train neural networks to produce faulty outputs.

Time synchronization during the capture is one of the critical factors to gather the training data

from PLC. The primary purpose of integer multiplier was to adjust the capture rate. It could be

increased from one to any higher integer value in order to reduce the capture rate depending on

the characteristic of the PLC program.

3.3.1 CONTENTS OF TRAINING DATA SET:

Most PLC programs handle physical hardware connected to its ports by processing inputs

collected mainly from sensors and input devices such as switches or latches. Since the inputs and

 14

the outputs to a PLC are digital and analog values, the training data set should contain digital

and analog values. If the PLC uses built-in timers in its logic, then their dynamic values should

also be captured and recorded in the training data set to include time dependency in the relation

between inputs and outputs. The format of the training data set should take the following format.

INPUTS OUTPUTS

Timer(s) Digital In Analog In Digital Out Analog Out

300 milliseconds 0 1 1 0 1 1 1 1 3.9 V 1 1 0 0 0 0 0 1 21.5 V

400 milliseconds 0 0 0 1 0 0 0 0 1.4 V 1 0 0 0 1 0 1 1 5.2 V

Table 1: Format of training data set (example)

Table-1 shows an example of a training data set. There could be multiple timers and more

digital and analog values in the real system. It should be modified based on the number of IO

available on PLC ports and the number of timers used. Analog and digital values come from the

capture done on ports. Timer values are not available physically on ports but can be read by

software integration with PLC’s programming software.

Why not collect analog and digital values through software integration? If it is not done

externally then, in case of damaged/interrupted output lines to an edge device, faulty values may

be physically present on the port. The NN core will not detect them since it would be reading the

internal values of port variables instead of the actual values on ports. To build this data set, we

had to harvest digital values, analog values, and timer values from PLC.

 15

3.3.2 HARVESTING DIGITAL VALUES:

Digital values on the PLC’s I/O ports can be viewed as parallel values. The shift registers were

used to convert parallel values to a serial value to harvest all of the digital values from ports.

These values were stored in the training data set.

Figure 6: Harvest Digital IO values using shift registers

Fig-6 shows a data flow diagram on how to harvest digital I/O with shift registers. As

shown in the diagram, digital values on PLC ports go through two stages, the step-down voltage

converter and the shift registers, to store them into the training data set.

Generally, PLCs operate on 24 V. Most of the shift registers available in the market are

made to work with low power circuits that usually operate on 5 V and 3.3 V. The first step to

harvest digital I/O from PLC is to design an interface card between PLC and shift registers. The

interface card is made of DC-DC buck converters [22]. Digital systems have two states, ‘1’ and ‘0’.

PLCs consider 24 V signal as the digital state 1, and 0 V signal as the digital state 0. The DC-DC

buck converter can step down any voltage signal greater than 24 V signal to 5 V signal and any

voltage signal less than 5 V signal to 0 V signal with proper configuration. At the output side of

the interface card represents the digital state ‘1’ as the 5 V signal and the digital state ‘0’ as the

0 V signal. We used LM2596 buck converters to design the interface card.

 16

Fig-7 shows LM2596 buck converter and its voltage adjustment instructions. We adjusted

each buck converter to transform 24 V signal to 5 V signal. We dedicated a configured converter

to each digital I/O. Once the interface card was configured, it was used as the communication

bridge between the PLC’s I/O port and shift registers.

Figure 7: E-boot LM2596 buck converter [30]

The internal structure of a shift register is consisted of a chain of flip-flops in cascade, with

the output of one flip-flop connected to the input of the next flip-flop. All flip-flops receive

common clock pulses, which activate the shift of data from one stage to the next” [15]. This

structure of flip-flops in the shift registers accepts the parallel load and shifts it into the serial

load. Therefore, we used shift registers to format parallel data in such a way that the neural

network’s training algorithm could process it. We used Texas instrument’s SN74HC165 shift

registers. The HC165 devices are 8-bit parallel-load shift registers that, when clocked, shift the

data toward a serial output [23].

 17

Figure 8: Logic diagram of SN74HC165 Parallel-in/Shift-out [23]

According to the datasheet provided by Texas Instruments for this device, as shown in

fig-8 parallel-in access to each stage is provided by eight individual direct data (A−H) inputs that

are enabled by a low level at the shift/load (SH/LD) input. Clocking is accomplished by a low-to-

high transition of the clock (CLK) input while SH/LD is held high and CLK INH is held low. The

functions of CLK and CLK INH are interchangeable. Since a low CLK and a low- to-high transition

of CLK INH also accomplish clocking, CLK INH should be changed to the high level only while

CLK is high. Parallel loading is inhibited when SH/LD is held high. While SH/LD is low, the

parallel inputs to the register are enabled independently of the levels of the CLK, CLK INH, or

serial (SER) inputs [23] [15].

This device was operated with driver software to automate parallel to serial conversion. The

HC165 shift register IC was connected to a Raspberry Pi, and it was operated using a python

driver to collect digital data from the PLC. The timing diagram for SN74HC165 shown in fig-9

was referred to develop the logic of python driver for HC165. The timing diagram illustrates the

logical sequence and the timing sequence of the control signals of the HC165 shift registers that

need to be set to logical HIGH or logical LOW in order to achieve the parallel to serial conversion.

 18

Figure 9: Timing Diagram of SN74HC165 [23]

The goal of the driver program is to automate and synchronize control signals CLK, CLK

INH, SER, and SH/LD to achieve parallel to serial conversion. The shift register IC is made of

clocked SR latches, as shown in fig-8. These latches are made of two cross-coupled NOR gates or

two cross-coupled NAND gates [15]. Upon receiving a clock pulse, the input to these latches is

transferred to the output. As shown in fig-9, Inputs to the shift registers are parallel inputs (A

from H) that need to be converted into the serial output. The CLK INH signal disables the CLK

signal when it is set to HIGH. While CLK INH is set to HIGH (also called the inhibit period for

shift registers), SH/LD needs to be set to LOW to load inputs at A to H into SR latches. Once the

values are loaded into SR latches, SH/LD needs to be set HIGH to prepare SR latches for the shift

 19

operation. Now CLK INH could be set to LOW again to start the serial shift. The shift registers

will start shifting the values into SR latches towards QH, one bit per clock cycle. The values on

QH can be collected as the serial on every clock cycle. SER is needed to be LOW to enable the IC.

This control signal can be used to synchronize the shifting operation between multiple shift

registers. We followed the sequence explained above to develop a python code to drive the shift

registers to convert parallel data into serial data.

Our driver program is posted in Appendix-A. This program simulates the timing diagram

to perform the parallel data to serial data conversion using Raspberry Pi’s GPIO port with proper

connections made with the shift registers to automate the control signals. The “RPi.GPIO”

module was a convenient tool for python to use Raspberry Pi’s GPIO port. It provided functions

such as GPIO.RPi.setup(), GPIO.RPi.output(), and GPIO.RPi.input() to operate on the GPIO port.

Pins A from H on the shift registers were connected to PLC’s digital I/O ports through the

interface card. QH and other control signals were connected to the Raspberry Pi’s GPIO port. The

driver program simulated the timing diagram (fig-9), converted parallel data from the PLC’s

digital I/O ports into the serial data, transformed the captured data into the format that was

compatible with training algorithms, and stored it into files named input.txt, output.txt, and

all.txt. These files were used as the training data for the NN core. In fig-6, there is a scanning

rate block connected to shift registers, which is the capture time interval explained earlier in this

chapter. In the experiment, the scanning rate for the shift registers was interpreted as how often

the control signal SH/LD was used to load the parallel inputs into the shift registers and the time

period between two load operations was considered as the capture time interval. Our program

wrote a new row of data in the training data file at the end of every capture time interval.

 20

3.3.2 HARVESTING ANALOG VALUES:

Figure 10: Harvesting analog values

Harvesting analog values for the training data set proved to be similar to harvesting digital

values. The only difference was that it required a dedicated 8-bit shift registers IC for each analog

input paired with analog to digital converter (A/D converter). As shown in fig-10, voltage scaling

was required to get the analog voltage in the range of supported voltage rating for shift registers.

Raspberry Pi and Arduino are digital devices; hence, analog values must be converted into digital

form so that these devices can process them. The combination of analog to digital converter and

shift registers were used to convert analog values into digital values.

 21

Figure 11 Voltage divider

To linearly scale the voltage, a simple circuit called “voltage divider” was used. It is a

circuit which has linear characteristics, and it scales down voltage with a constant which can be

calculated using the following equation [14].

𝑉𝑜𝑢𝑡 = (
𝑅2

𝑅1 + 𝑅2
)𝑉𝑖𝑛

Usually, a PLC’s analog modules operate in range of 0 V from 24 V, and A/D converters

operate in range of 0 V from 5 V. The voltage scaler was designed keeping Vin as 24 V and Vout

as 5 V. The value of resistors R1 and R2 were set in such a way that satisfied the voltage divider

equation.

The next step was to Implement A/D converter and shift registers. MCP3004/3008 devices

developed by Microchip Technology Inc., are successive approximation 10-bit Analog to Digital

(A/D) converters with on-board sample and hold circuitry [17]. They come with built-in shift

registers to output digitally converted analog data. This chip was used with Raspberry Pi and run

using a python program to retrieve analog data. The operation is very similar to shift registers

74HC165, and the driver code for MCP3008 can be integrated into the driver program to harvest

 22

digital I/O. Adafruit® has developed a python library to use MCP3008 with Raspberry Pi called

Adafruit_MCP3008, which was used to collect an analog value In the experiment [31].

Since the PLC that was used in the experiment did not have the analog module, we tested

the capturing of an analog signal with an external variable power supply and checked if it

converted analog values into digital format to verify that the obtained value could be stored in

the training data set. The analog values were not part of the neural network training. The purpose

of this section is to introduce a method to collect analog values in case if the PLC had an analog

module.

3.3.3 HARVESTING TIMER VALUES:

Different PLC manufacturers have designed software to program their own PLCs. The

software provides an interface to monitor values of timers and variables during the execution of

programs on PLC, which means they read PLC’s core to obtain these values. If manufacturers

decide to implement neural network integration to their PLC, they will have to modify their

monitoring software to store timer values into the training data set. We used a Click PLC and the

Click programming software in the lab setup to perform the experiment. Code for this software

is highly protected. Therefore, we were not able to modify the code to obtain timer values. Hence,

software integration to the programming software is necessary to get timer values. In the

experiment, timer values were not stored in the training data set.

3.4 CHALLENGE#2:

Problem description: Identify the correct neural network architecture and training algorithm that will

predict outputs from inputs.

 23

A neural network is a complex network of more than one neuron. In machine learning

terminology, a neuron is considered as the fundamental element that represents the

characteristics of a neural network. In more straightforward terms, a neuron represents a

mathematical function with one or more inputs and an output. These neurons can have

connections with other neurons. The neural network architecture is the organization of these

neurons, and it represents how each neuron is connected with other neurons. Training

algorithms are mathematical approaches to calculate offset-weights on each input to a neuron

using error corrections through iterative methods. The efficiency of training algorithms depends

on the architecture of neurons and the type of neurons implemented within the network.

Neural networks are mighty as nonlinear signal processors, but obtained results are often far

from satisfactory [28], meaning that there are a few challenges related to neural network’s

architecture and training algorithms that need to be addressed to make neural network

applications successful. The following are the critical challenges to neural network applications

[28]:

1) Which neural network architecture should be used?

2) How vast should a neural network be?

3) Which learning algorithms are most suitable for a chosen architecture?

Addressing these challenges achieved the successful training of the neural network.

For our NNPLC application, the neural network architecture can be designed from the

understanding of ladder logic implemented in the PLC. This approach was only useful for smaller

PLC applications, but while dealing with complex ladder logic, implementation of standardized

neural network architectures was crucial for achieving successful training. When manually

derived architectures became too complex, the available training algorithms were not able to

 24

successfully train the neural network. Below is an example of a neural network derived from the

ladder logic [18].

(a) (b)

 (c)

Figure 12: Neural Networks architecture for automated oil pump [18]

Fig-12(a) shows the configuration of an automated oil pump. It has two sensors to

measure the amount of oil in the tank; one to indicate a high level of oil and the other to detect

low level of oil. These indicators/sensors are inverted binary logic switches with HIGH and LOW

digital states. The motorized pump starts to fill up the tank as soon as the low-level indicator’s

state turns to digital LOW. The motor is turned off when the oil reaches to the high-level

indicator, and its state turns to digital HIGH. This logic is implemented in the ladder logic, as

shown in fig-12(b). Ladder variable 0000 is the low-level indicator, and 0001 is the high-level

indicator. Variable 1000 is a logic variable which controls the push button on the motor via PLC’s

 25

physical port accessed by the variable 0500. The motor is turned off when high-level and low-

level indicators are on state HIGH and HIGH, respectively. The motor is turned on when both

indicators are on state LOW. Motor’s operation is not interrupted when the low-level indicator

is HIGH, and the high-level indicator is LOW. This logic is very similar to the parity-2 problem

for neural networks [26]. As shown in fig-12(c), the neural network architecture to solve the

parity-2 problem is implemented and trained to duplicate the logic written in ladder logic.

Weights and biases within the neural network architecture are determined after training [18].

Explained above was an example of simple ladder logic. This approach might get too complicated

when ladder logics are complex.

There are neural network architectures already developed for optimal training of complex

functions. These architectures are derived through researches done over a long period of time on

deep learning and artificial intelligence.

(a) Multi-layer perceptron network (MLP) (b) Counterpropagation network

 26

(c) Linear Vector Quantization (d) Radial basis functions network (RBF)

(e) Fully Connected Cascade (FCC) (f) Cascade correlation architecture

Figure 13: Standard Neural Network Architectures [27] [28]

Fig-13 shows neural network architectures that are popular among researchers. The

multi-layer perceptron (MLP) architecture, also known as a simple feedforward network, is the

preferred neural network topology by researchers [1]. It is the oldest neural network architecture,

and it is compatible with many training software [28]. This architecture usually gives satisfying

results, but in the case of a large number of neurons, it could take a significant amount of time

to train. There are several neural network architectures like counterpropagation (fig-13(b)),

RBF(fig-13(d)), linear vector quantization(fig-13(c)), Fully connected cascade (fig-13(e)), cascade

correlation architecture(fig-13(f)) that can be used for rapid prototyping, but they require large

number of neurons. In most cases, these architectures require signal-normalization processes

[28]. The performance of any neural network architecture depends on the type and the amount

 27

of data put in the training data set. For example, if the training dataset contains a small number

of patterns, then the counterpropagation architecture gives optimal performance because with

unipolar activation function in the first layer, the network works as a look-up table. When the

linear activation function (or no activation function at all) is used in the second layer, then the

network also can be considered as an analog memory [27].

How to choose a neural network architectures for our NNPLC application? The content of

the training data set is one of the essential factors to narrow down to a few suitable neural

network architectures for the ladder logic implemented in the PLC. There are a few architectures

which are efficient to train the digital data, and there are a few of them better suited to train non-

digital data. The traditional approach to pick an architecture was used after the search was

narrowed down to a few suitable architectures. In this conventional approach, neural network

topologies/architectures are, in most cases, selected by a trial-and-error process [28]. Often,

success depends on a lucky guess; hence, the search process started with larger architecture, and

the network was pruned in a more or less organized way [4]. Since there was only the digital data

to train in the experiment, the search was narrowed down to a few architectures among which

the counterpropagation and the simple feedforward architectures showed the best results. We

chose to implement a simple feedforward architecture because counterpropagation

architecture’s performance degrades for more extensive training data set [27]. The feedforward

architecture is also known to work well with the Levenberg-Marquardt algorithm which is the

fastest training algorithm developed till this date.

The next step was to choose a training algorithm to train the chosen architecture. The

procedure to carry out the learning process in a neural network is called the

optimization/training algorithm [29]. There are many algorithms available to train different

 28

architectures of neural network. They vary in terms of memory requirements, speed, and

precision. The training of the neural network is achieved through the minimization of a loss

index; which is a function that measures the performance of a neural network on the training

data set. The loss index is made of an error term and a regularization term. The error term

evaluates how neural network fits the data set, and the regularization term prevents overfitting

by controlling the effective complexity of the neural network [29]. The goal of training algorithms

is to minimize the loss index by applying various error corrections. Prevention of overfitting is

often done with the combination of pruning algorithms and training algorithms. They prune the

architecture in terms of several neurons and the number of connections within the neural

network.

As mentioned earlier there are many training algorithms available and some of the

popular algorithms are Error Back Propagation algorithm (EBP) [20], Levenberg-Marquardt

algorithm (LM) [16], Neuron-By-Neuron algorithm (NBN) [25], Bayesian Regularization

algorithm [24][11] and Scaled Conjugate Gradient [5]. We theoretically compared these

algorithms to determine what algorithms to choose to test the boundries of the training

efficiency of NNPLC application.

3.4.1 ERROR BACKPROPAGATION ALGORITHM (EBP): [20]

Backpropagation method of training neural networks is widely accepted by researchers.

It is the most used algorithm to train complex neural network architectures. The procedure

repeatedly adjusts the weights of connections in the network to minimize a measure of the

difference between the actual output vector of the net and the desired output vector [20]. This

method of training is particularly useful when there are hidden layers introduced in the neural

network architecture. As a result of the weight adjustments, internal 'hidden' units which are not

 29

part of the input or output come to represent important features of the task domain, and the

regularities in the task are captured by the interactions of these units. The ability to create useful

new features distinguishes back-propagation from earlier, simpler methods such as the

perceptron-convergence procedure.

In this method, during the first iteration of training, weights on each connection within

neurons are randomly generated. Total error in the performance of the network with a particular

set of weights can be computed by comparing the actual and desired output vectors for every

case or training pattern. The total error E is defined as,

𝐸 =
1
2
FFG𝑦I,K − 𝑑I,KN

O

IK

where c is an index over cases (input-output pairs or training pattern), j is an index over output

units, y is the actual state if an output unit and d is its desired state [20]. In the traditional

approach to error back propagation, total E is targeted to be minimized by gradient decent where

partial derivative to E with respect to each weight in the network is computed. This is simply the

sum of the partial derivatives for each training patterns or input-output cases. For a given case

partial derivatives are calculated in two passes. For the forward pass, the state of units (or

neurons) in each layer are determined by the input they receive from lower layers using the

following equations,

𝑥I =F𝑦Q𝑤Q,I
Q

𝑦I =
1

1 + 𝑒TU

Where The total input, xi, to unit j is a linear function of the outputs, yi, of the units that are

connected to j and of the weights wji on these connections. A unit has a real-valued output, yj,

 30

which is a non-linear activation function of its total input. By applying partial derivation with

respect to total inputs, outputs, and individual weights and taking into account all the

connections emanating from the unit I, we have the backward pass which propagates derivatives

from the top layer back to the bottom one,

𝜕𝐸
𝜕𝑦Q

=F
𝜕𝐸

𝜕𝑥I ∙ 𝑤I,QI

 We have now seen how to compute XY
XZ
	for any unit in the penultimate layer when given

XY
XZ

 for all units in the last layer. We can, therefore, repeat this procedure to compute this term for

successively earlier layers, computing XY
X[
	for the weights as we go.

One way of using XY
X[
	is to change the weights after every input-output case. This has the

advantage that no separate memory is required for the derivatives. An alternative scheme, which

we used in the research reported here, is to accumulate XY
X[
		overall the input-output cases before

changing the weights. The simplest version of gradient descent is to change each weight by an

amount proportional to the accumulated	XY
X[

.

∆𝑤 =	−𝜀
𝜕𝐸
𝜕𝑤

Here, 𝜀 is the proportional relation constant and is called the learning rate of the

backpropagation.

By applying this weight change ∆𝑤 in every iteration, the total error E is minimized, and

the network is trained for optimal performance. This is the traditional approach to error back

propagation, and it is also known as the steepest-decent gradient algorithm.

 31

3.4.2 LEVENBERG-MARQUARDT ALGORITHM (LM): [16][9][29]

Levenberg-Marquardt algorithm combined with back-propagation is the fastest training

algorithm till this date. It is an improved version of Newton’s method to minimize the loss

function of the neural network. Newton’s method is nothing but the second order partial

derivation method to find the minima of a function. Since there are too many weights in the

network and each one needs to be corrected, it is required to have a partial derivation of errors

with respect to each weight. Hence, Newton’s method of training uses a Hessian matrix, which

is a matrix of all possible partial derivatives. This is a primitive way to train the network and

often gives non-satisfactory results since the learning rate as the error decreases are not factored

in. Also, it requires too many precise calculations. The Levenberg-Marquardt algorithm is an

approximation to Newton’s method.

This algorithm uses the squared function of errors just as discussed in the error

backpropagation algorithm. Donald W. Marquardt said, “Most algorithms for the least-squares

estimation of non-linear parameters have centered about either of two approaches. On the one

hand, the model may be expanded as a Taylor series and corrections to the several parameters

calculated at each iteration on the assumption of local linearity. On the other hand, various

modifications to the method of steepest-descent have been used. Both methods not infrequently

run aground, the Taylor series method because of divergence of the successive iterates, the

steepest-descent (or gradient) methods because of agonizingly slow convergence after the first

few iterations” [16].

The algorithm follows the same procedure as the error backpropagation. Forward

computation is done by applying inputs to the network, and the output to each neuron is

calculated using connected weights to the neuron and its activation function. For backward

 32

computation; the loss function 𝑓 of the neural network for this algorithm is defined as the sum

of squared errors e,

𝑓 =F𝑒QO
_

Q`a

Where a is the number of training patterns/input-output pairs in the training data set.

This is the approximation of Newton’s method; hence, it works without computing the

exact Hessian matrix by approximating the Hessian matrix using the gradient vector and the

Jacobian matrix. In mathematical terms, the Jacobian matrix is the matrix of all first-order partial

derivatives of a vectored valued function. The Jacobian matrix of the loss function with respect

to weights can be expressed as,

𝐽Q,I = 	
𝜕𝑒Q
𝜕𝑤I

Here, i goes from 1 to a and j goes from 1 to b, where a is the number of training patterns in the

data set, and b is the number of weights in the neural network architecture.

The gradient vector of the loss function is calculated as,

∇𝑓 = 2𝐽d ∙ 𝑒

Hence, the Hessian matrix is approximated as,

𝐻𝑓 ≈ 2𝐽d ∙ 𝐽 + 𝜆𝐼

Where, 𝜆 is a damping factor that ensures the positiveness of the Hessian and 𝐼 is the identity

matrix. Evaluating this approximated Hessian matrix yields factors to modify weights which are

simplified as [16][9],

𝑤(Qij) = 𝑤(Q) − G𝐽(Q)d ∙ 𝐽(Q) + 𝜆(Q)𝐼N
Tj
∙ G2𝐽(Q)d ∙ 𝑒(Q)N, 𝑖 = 0,1,2, …

Here, 𝑖 represents the index of connected weights.

 33

When the damping parameter λ is zero, this is just Newton's method, using the

approximate Hessian matrix. On the other hand, when λ is large, this becomes gradient descent

with a small training rate [29].

The parameter λ is initialized to be large so that first updates are small steps in the

gradient descent direction. If any iteration happens to result in a failure, then λ is increased by

some factor. Otherwise, as the loss decreases, λ is decreased, so that the Levenberg-Marquardt

algorithm approaches the Newton method. This process typically accelerates the convergence to

the minimum [29].

Despite being the fastest algorithm, it has one major drawback. The Jacobian matrix can

get too complex for larger data sets, and therefore, it requires a large amount of memory during

the execution of training. Hence, it is not ideal for larger training data sets and complex neural

network architectures in some cases.

3.4.3 NEURON-BY-NEURON ALGORITHM (NBN): [25]

It is a similar algorithm to Levenberg-Marquardt modification to error backpropagation.

This algorithm introduces a new NBN method for calculating the gradients and Jacobian matrix

for arbitrarily connected feedforward networks. The rest of the computations for weight updates

and optimization remains the same as the LM algorithm.

 In the forward calculation, the neurons connected to the network inputs are first

processed so that their outputs can be used as inputs to the subsequent neurons. The follow- ing

neurons are then processed as their input values become available. In other words, the selected

computing sequence has to follow the concept of feedforward networks and signal propagation.

If a signal reaches the inputs of several neurons at the same time, then these neurons can be

processed in any sequence.

 34

Backward computation starts with the last neuron and continues toward the input. Also,

for this algorithm, the concept of attenuation vector (𝑎) is introduced. The attenuation vector

(𝑎) represents signal attenuation from a network output to the outputs of all other neurons. The

size of this vector is equal to the number of neurons. Backward computation process starts with

the values of one assigned to the last element of the (𝑎) vector and zeroes to the remaining

output neurons. During backward processing for each neuron, the value of the delta of this

neuron is multiplied by the slope of the neuron activation function and then multiplied by

neuron input weights. The results are added to the other elements of the (𝑎) vector neurons

which are not yet processed.

 The size of the (𝑎) vector is equal to the number of neurons, while the number of Jacobian

elements in one row is much larger and is equal to the number of weights in the network. To

obtain all row elements of the Jacobian for the 𝑝th pattern and 𝑜th output, a very simple formula

can be used to obtain the element of the Jacobian matrix associated with the input k of neuron

n,

𝜕𝑒o,p
𝜕𝑤q,r

= 𝑑(𝑛)o,p ∙ 𝑠(𝑛)o ∙ 𝑛𝑜𝑑𝑒(𝑘)o,p

Where d(n) is the element of the (𝑎) vector, and 𝑠(𝑛) is the slope calculated during aaforwarding

computation, with both of them being associated with neuron 𝑛. The	𝑛𝑜𝑑𝑒(𝑘) is the value on the

𝑘th input of this neuron.

 The process is repeated for every pattern, and if a neural network has several outputs, it

is also repeated for every output. The process of gradient computation is the same as the LM, but

instead of storing values in the Jacobian matrix, they are being summed into one element of the

gradient vector,

 35

𝑔(𝑛, 𝑘) = FF
𝜕𝑒o,p
𝜕𝑤q,r

∙ 𝑒o,p

v

p`j

w

o`j

Since the Jacobian is not stored into the memory and used in the computation of the

gradient vector as we go, it moderately reduces the memory requirements compared to LM. Also,

since it is not stored in the memory, repeated calculation of the same element can occur, which

reduces the performance.

3.4.4 SCALED CONJUGATE GRADIENT: [5][29]

The conjugate gradient method can be regarded as something intermediate between

gradient descent and Newton's method. It is motivated by the desire to accelerate the typically

slow convergence associated with gradient descent. This method also avoids the information

requirements associated with the evaluation, storage, and inversion of the Hessian matrix, as

required by Newton's method.

 Since learning in realistic neural network applications often involves adjustment of

several thousand weights, only optimization methods that apply to large-scale problems are

relevant as alternative learning algorithms. The general opinion in the numerical analysis

community is that especially one class of optimization methods, called the Conjugate Gradient

Methods, are well suited to handle large-scale problems effectively [3].

Let’s start with the basic notations for the algorithm to understand to strategy to implement this

algorithm.

 Let an arbitrary feedforward neural network be given. The weights in the network will be

expressed in vector notation. A weight vector is a vector in the real Euclidean space ℛy, where N

is the number of weights and biases in the network. A weight vector will often be referred to as a

point in ℛy or just a point in weight space. Let 𝑤zz⃗ be the weight vector.

 36

𝑤zz⃗ = 𝑤jzzzz⃗ + 𝛼j𝑝jzzzz⃗ + ⋯+ 𝛼r𝑝rzzzz⃗

Where, 𝑤jzzzz⃗ is a point in weight space. Notations 𝑝jzzzz⃗ , 𝑝Ozzzz⃗ … , 𝑝rzzzz⃗ is a subset of a conjugate system

which is a set of nonzero weigh vectors in ℛy.

 We assume that a global error function 𝐸(𝑤zz⃗) depending on all the weights and biases is

attached to the neural network. 𝐸(𝑤zz⃗) could be the standard least square function or any other

appropriate error function. 𝐸(𝑤zz⃗) can be calculated with one forward pass and the gradient 𝐸′(𝑤zz⃗)

with one forward and one backward pass. 𝐸′(𝑤zz⃗) is defined as,

𝐸�(𝑤zz⃗) = �… ,F
𝑑𝐸o
𝑑𝑤Q,I

(�) ,
w

o`j

F
𝑑𝐸o

𝑑𝑤Qij,I
(�) ,

w

o`j

… ,F
𝑑𝐸o
𝑑𝑤y�,I

(�) ,
w

o`j

F
𝑑𝐸o

𝑑𝜃I
(�ij) ,

w

o`j

F
𝑑𝐸o

𝑑𝑤Q,Iij
(�) ,

w

o`j

…�

Where, 𝑤Q,I
(�) is the weight from unit number 𝑖 in layer number 1 to unit number 𝑗 in layer

number	𝑙 + 1, 𝑁j is the number of units in layer 𝑗, and 𝜃I
(�ij) is the bias for unit number 𝑗 in layer

number 𝑙 + 1. 𝑃 is the number of patterns presented to the network during the training and 𝐸o is

the error associated with pattern 𝑝.

 The minimization is a local iterative process in which an approximation to the function

in a neighborhood of the current point in weight space is minimized. The approximation is often

given by a first or second order Taylor expansion of the function. The following steps are

executed to minimize the global error function 𝐸(𝑤zz⃗).

1. Choose initial weight vector 𝑤jzzzz⃗ and set 𝑘 = 1.

2. Determine a search direction 𝑝rzzzz⃗ and a step size 𝛼r so that 𝐸(𝑤rzzzzz⃗ + 𝛼r𝑝rzzzz⃗) < 𝐸(𝑤rzzzzz⃗)

3. Update vector: 𝑤rijzzzzzzzzzz⃗ = 𝑤rzzzzz⃗ + 𝛼r𝑝rzzzz⃗ .

4. If 𝐸′(𝑤rzzzzz⃗) ≠ 0� then set 𝑘 = 𝑘 + 1 and go to step 2 else return 𝑤rijzzzzzzzzzz⃗ as the desired

minimum.

 37

 Determining the next current point in this iterative process involves two independent

steps. First, a search direction has to be determined, i.e., in what direction in weight space do we

want to go in the search for a new current point. Once the search direction has been found, we

have to decide how far to go in the specified search direction, i.e., a step size has to be

determined.

To put this mathematics in words, the data set is randomized and divided into

subcategories and multiple training iterations are applied for each subcategory. As we move

forward from each category the scaling factors for the conjugates to adjust the weights is

optimized to reach to the minima of the global error function 𝐸(𝑤zz⃗) faster when compared to the

steepest-descent gradient method for error backpropagation. This is also referred to as the

modified version of error backpropagation through gradient descent for fast supervised learning.

3.4.5 CHOOSING TRAINING ALGORITHMS FOR NNPLC:

After understanding the mathematics, advantages, and disadvantages of training

algorithms explained above, it is concluded that the LM algorithm is the fastest algorithm but it

used the most amount of memory, whereas the EBP with gradient descent is the slowest of all,

but it requires the least amount of memory since the Hessian and the Jacobian matrices are

involved in computation. The research shows that the scaled conjugate method of training

network requires the same amount of memory, but it is faster than the steepest-gradient decent

error-backpropagation algorithm. The traditional EBP training process requires 100 to 1,000

times more iterations than more advanced algorithms such as Levenberg–Marquardt (LM) or

neuron by neuron (NBN) [28]. To test the NNPLC application of neural network, EBP with a

scaled conjugate gradient, which was the slowest, but it had the least memory requirements, and

the LM algorithm, which was the fastest, but it had larger memory requirements, were chosen to

 38

test the boundaries of training efficiency. Both of these algorithms worked well with the

feedforward architecture of the neural network, and they both yielded accurate results.

3.5 CHALLENGE#3:

Problem description: Employing the prediction model to discriminate normal from abnormal PLC

operations.

This challenge was the last critical challenge to successfully implement the neural

network with PLC operations. There is often a leftover training error, which is very small in value,

after the training process has successfully completed. If the training process has achieved a small

acceptable error, then wrong predictions would occur rarely, but the possibility of such

occurances would still exist. Therefore while comparing the outputs generated by the PLC with

the outputs generated by the neural network, distinguishing between the error caused by

abnormal PLC operation and the error caused by the wrong prediction from the neural network

was a critical challenge to be addressed.

Determining how the trained neural network could be deployed in parallel with the

operating PLC helped address this challenge. We categorized the deployment into two

categories.

1. Dynamically deployed

2. Statically deployed

These methods are different ways to execute the trained neural network and compare the outputs

generated from the PLC and the NN core.

 39

3.5.1 DYNAMICALLY DEPLOYED:

In this method of deployment, the neural network runs in parallel with the PLC in real

time. The operating PLC and the trained neural network, both get the same inputs to generate

output at the same instant. Outputs produced by both the PLC and the neural network core are

dynamically compared for each input pattern. The difference in output, if any, is recorded in real

time. Usually, malfunction errors of edge devices and errors caused by abnormal execution of

PLC’s code would differ significantly from the data used to train the neural network. Thus,

causing significantly large errors compared to errors caused by the neural network due to the

training error. Although, there may be a few cases where it is difficult to determine what caused

the error.

To solve the problem, the concept of averaging the root mean squared value of errors is

used. Root mean squared value of the error for each input pattern is continuously averaged,

recorded, and plotted. If the plot continues to rise above the training error, then it is concluded

that there is a malfunction in the PLC operation since errors caused by wrong predictions from

the neural network would keep converging back to the almost value of training error.

3.5.2 STATICALLY DEPLOYED:

In this method of deployment, the trained neural network stays idle while the values of

inputs and outputs from the PLC are recorded for a predefined interval of time. At the end of the

time interval, a driver feeds the recorded data to the trained neural network. The neural network

generates outputs for each input pattern. The testing error is calculated by averaging the root

mean squared value of the differences from recorded actual PLC outputs and neural network

outputs. This process is repeated for every predefined interval while the PLC is in operation. The

testing error is continuously averaged, recorded, plotted, and observed. Before deploying the

 40

neural network with the real system, testing errors from a set of randomly chosen patterns from

the training data set is calculated. This process is repeated for multiple sets of different sizes.

These random sets must be chosen in such a way that the average testing error for each set is

more than the training error. The final testing error is calculated by averaging the testing errors

from all sets. Suppose the predefined testing error, 𝐸o, and the error calculated at the end of

every predefined time interval actual testing error, 𝐸_. The training error obtained during the

training process is defined as 𝐸d. The prediction model to discriminate normal from abnormal

PLC operations can be derived as:

	𝐸_ ≤ 𝐸d → 𝑁𝑜𝑟𝑚𝑎𝑙	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝐸d < 𝐸_ < 𝐸o → 𝐻𝑖𝑔ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓𝑒𝑟𝑟𝑜𝑟𝑠	𝑓𝑟𝑜𝑚	𝑛𝑒𝑢𝑟𝑎𝑙	𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝐸_ ≥ 𝐸o → 𝑀𝑜𝑠𝑡	𝑙𝑖𝑘𝑒𝑙𝑦	𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

The final decision is made by observing 𝐸_. The value of 𝐸_ staying above 𝐸d, implicates

that averaging of the actual training error is not converging back to the training error found

during the training process. Meaning, the error was the result of a malfunction in the system or

an abnormal PLC operation.

3.5.3 COMPARISON:

Both methods have their advantages and disadvantages. Dynamically deployed method

continuously calculates errors in real time. Hence, there is no delay in the detection of abnormal

operation. This method requires to have synchronization between the neural network and the

PLC to make sure that outputs from both the PLC and the NN core are generated and compared

at the same time. Hence, it requires more efforts to implement. The statically deployed method

does not require any synchronization between the PLC and the neural network. But there could

be a delay in the detection of abnormal operation since the new error values are evaluated after

 41

a time interval. The static deployment factors-in the predefined testing error 𝐸o. As described

above, it can be used to predict warnings to alert operators of the automation system about the

possibility of abnormal operation. We tested the NNPLC application using the static deployment

method since it was easier to implement, and it had more parameters to validate the work. The

statically deployed neural network seemed more practical approach to validate the research.

3.6 TESTING PLATFORMS FOR NEURAL NETWORKS:

There are many tools available to implement and test neural networks applications such

as MATLAB, NeuroSolutions infinity, NBN trainer, etc. There are programming libraries such as

NumPy, TensorFlow, Blocks, NeuPy, etc., for the python programming language to implement

neural networks. These libraries contain functions to operate on Hessian and Jacobian matrices,

to perform vector algebra, to generate architecture matrices, and henceforth.

Figure 14: MATLAB [32]

In the experiment, MATLAB’s neural network fitting tool (nftool) was used to develop,

implement, and test the neural network. This tool supported the implementation of simple

feedforward architecture with hidden layers and with the customizable number of neurons in the

architecture. It also provided options to train the network using scaled conjugate gradient and

 42

LM algorithms. It offered a benefit to test the network with random test cases from the training

data set, which was useful in implementing the statically deployed prediction model.

Figure 15: Neural network fitting tool (nftool) [32]

The nftool offered GUI to design, configure, train, and test the network, which made it

easier to use and demonstrate the results. It calculated numerous parameters such as the training

error, the testing error, error reduction plots, convergence plot, etc., which proved to be

advantageous in evaluating the performance of the network. Such features made this tool ideal

for the research.

 43

4. CHAPTER-4: SOLUTION VALIDATION

This chapter shows the validation results for the solution described in chapter-3.

Figure 16: Lab setup of NNPLC

Fig-16 is an actual picture of the setup we built to validate the solution.

4.1 APPARATUS AND SOFTWARE USED FOR NNPLC:

Below is the list of hardware that was used to implement the NNPLC for validation.

1. Click PLC (model# C0-01DD2-D)

 44

2. Raspberry Pi 3 model B+

3. Texas Instruments® 74HC165 shift registers

4. E-boot LM2596 voltage step-down converters

These are the necessary hardware required to implement the NNPLC. Some additional

hardware to build electrical circuits such as printed circuit boards, jumper wires, breadboards,

etc., are not mentioned above.

Below is the list of software used for the validation.

1. MATLAB R2017a

2. Click Programming Software (Version 2.40)

3. Python 2.7

4. Microsoft Excel 2016

4.2 VALIDATION OF THE CONCEPT:

This section contains validation results for the three critical problems explained in

chapter-3. The results were obtained during the experiment performed using the Click PLC C0-

01DD2-D, that belongs to a family of Click PLCs with digital I/O ports. The entire validation was

done from the digital data obtained. Analog values were not used in the ladder logic used for the

validation. Timer counts were also not harvested and stored in the training data set since certain

limitation to access the programming software were encountered.

 45

4.2.1 LADDER LOGIC IMPLEMENTED IN THE PLC:

Figure 17 : The correct version of ladder logic

Figure 18 : The altered version of ladder logic

The ladder logic shown in fig-17 was implemented in the PLC. Here, X001, X002, X003,

and X004 are inputs to the digital port. Y001, Y002, Y003, Y004, Y005, and Y006 are outputs to

the digital port. T1 is the timer, and TD1 represents the timer count. Fig-17 shows the correct

 46

version of the ladder logic. It uses AND conditions for X001, X002, X003, and X004 to turn on the

timer. Upon achieving the correct condition, the code executs a blinking LED pattern on the PLC

where the output ports Y001 from Y005 are turned on in a circular pattern for one second each.

The duration is determined from timer T1. The condition can be expressed in the Boolean form

as X001 & X002 & X003 & X004. Hence the correct condition to turn on the blinking pattern is

X001 from X004 being TRUE.

Fig-18 is the altered version of the ladder logic shown in fig-17. The condition to turn on

the timer is altered to X001 & X002 & !X003 & X004. Hence the correct condition to turn on the

blinking pattern is X001 from X004 being TRUE, TRUE, FALSE, and TRUE respectively. The

altered code simulated the case of alteration of the code caused by the cyber intrusion.

Table-2 shown below represents the blinking pattern in a tabular form.

Timer Value TD1
(Milliseconds)

Y001 Y002 Y003 Y004 Y005

0 - 1000 ON OFF OFF OFF OFF
1001 - 2000 OFF ON OFF OFF OFF
2001 - 3000 OFF OFF ON OFF OFF
3001 - 4000 OFF OFF OFF ON OFF
4001 - 5000 OFF OFF OFF OFF ON

Table 2: The Blinking pattern

Digital values obtained from the execution of the ladder logic shown in fig-17 were used

to train the neural network, and the results were tested using the ladder logic shown in fig-18 to

detect the malfunction caused from an altered code.

 47

4.2.2 GATHERING TRAINING DATA:

Figure 19: Shift registers setup with Raspberry Pi

Fig-19 shows the setup of shift registers with the Raspberry Pi. This setup was used with

the driver program implemented in the Raspberry Pi. The diagram follows the standard color

coding, and it is explained in the table below. The driver program is posted in Appendix-A.

Wire Color Representation
Red VCC (Power supply)

Black Ground/Common
Gray SH/LD
Blue CLK

Orange Serial Data QH
Brown CLK INH (Chip enable CE)
Purple Parallel Load (A to H)

Table 3: Wire color coding description

The parallel load was connected to the PLC through LM2596 buck converters so that the

shift registers can get the parallel data from the PLC’s port in 5V signals. The driver program

stored digital values gathered from the port in text files named all.txt, input.txt, and output.txt.

 48

These files were imported into an Excel sheet for the MATLAB to process. Fig-20 shows an

example of the data gathered.

Figure 20: Example of the data gathered using shift registers

4.2.3 TRAINING THE NEURAL NETWORK:

To implement, train, and test the neural network, MATLAB’s neural network fitting tool

(nftool) was used. The simple feedforward network with 25 neurons in the hidden layer was

implemented and trained using the Levenberg-Marquardt algorithm (LM) and Scaled conjugate

gradient (SCG).

Inputs and manually added timer states, were given to the neural network’s input, and

output values of the port were given as the targeted output to the neural network as shown in

fig-22.

MATLAB’s neural network fitting tool was executed with the command ‘nftool’ in

MATLAB’s command window. Upon executing this command, MATLAB launched the neural

network fitting tool as shown in fig-21.

Following series of figures shows the training of the neural network using nftool.

 49

Figure 21: The nftool introduction window

Figure 22: Select inputs and targeted outputs to train the network

 50

Figure 23: Setup the data distribution for training

Figure 24: Select the number of neurons in the hidden layer

 51

Figure 25: Choose a training algorithm

Figure 26: Training performance of neural network using Levenberg-Marquardt algorithm

 52

Figure 27: Training performance result plots

Figure 28: Final training error

 53

Figure 29: Testing error obtained from correct IO data

Figure 30: Testing error obtained from corrupt IO data

 54

Figure 31: Final training error with Scaled Conjugate Gradient algorithm

 55

Figure 32: Training performance of neural network using Scaled Conjugate Gradient

Figure 33: Training performance result plots

 56

Figure 34: Testing error obtained from correct IO data

Figure 35: Testing error obtained from corrupt IO data

 57

The IO data from the PLC’s port was collected using the shift registers. The correct IO

data was harvested by executing the first version of the ladder logic shown in fig-17, and the

corrupt IO data was harvested by executing the altered version of the ladder logic shown in fig-

18. Also, IO port X001, X002, X003, X004, Y001, Y002, Y003, and Y004 were gathered. Y005 was

part of the blinking pattern but it was not possible to include it in the training data set since the

external Y005 port is used for supplying power to the output port and cannot be used externally

to output data.

The significant difference in MSE (or testing error) was noticeable when comparing the

testing error obtained with the correct IO data (fig-29) and the corrupt IO data (fig-30), using the

neural network trained with the Levenberg-Marquardt algorithm.

Similar results were obtained when Conjugate Scaled Gradient was used to train the

neural network, which can be observed in fig-34 and fig-35.

4.2.4 TESTING NNPLC WITH A PREDICTION MODEL:

Two prediction models were described in chapter-3 section 3.5, named as dynamically

deployed, and statically deployed. For better testing and validation, the solution was validated

using the statically deployed prediction model in which the neural network’s mean squared

testing errors were recorded at specific time intervals. Also, this model required the computation

of Ep, which was calculated by feeding randomly created subsets of the training data set to the

neural network and averaging testing errors of each subset that showed the testing error greater

in value than the value of the training error. The training data set and subsets used for this

validation are posted in Appendix-B. Corrupt data sets created from executing an altered version

of the ladder logic are posted in Appendix-C. The same ladder logic that was used in the previous

validation in section 4.2.3 was also used for this validation.

 58

The neural network was trained using Levenberg-Marquardt and Scaled Conjugate

Gradient algorithms by following the same procedure described in section 4.2.3. The only

difference was that all data sets created were used in the testing window (fig-30 or fig-35) of

nftool to generate MSE (mean squared error, also referenced as the testing error) for each data

set.

Fig-36 and fig-37 show results obtained from the experiment performed.

Figure 36: Results obtained from the correct IO test data sets

Figure 37: Results obtained from the corrupt IO test data sets

Fig-36 shows the results of the neural network’s training using the Levenberg-Marquardt

and the Scaled Conjugate Gradient algorithms. We were not concerned with the R values since

 59

the regression performance of the neural network was not necessary for the experiment. A total

of 15 subsets were created from the training data set to calculate Ep. The Root mean squared

values of errors from each subset were recorded. The values in green in fig-36 are testing errors

that were greater in value than the training error, which were later averaged to calculate Ep. The

values in red are testing errors less than the training errors that were neglected from the Ep

calculation. The values in yellow are dummy sets of training patterns that showed the least

training performance. These yellow values were used just for the plotting purposes. These data

sets can also be considered as test sets for ideal PLC operation since they contain the data from

the ideal execution of the ladder logic in the PLC.

Fig-37 shows testing errors obtained from the test data sets that were created by

executing the altered version of ladder logic. Five input-output patterns were recorded in each

data set. The plotting points were created by averaging the cumulative RMS in both figures.

 (a) (b)

Figure 38: Average cumulative RMS plots (LM)

 60

 (a) (b)

Figure 39: Average cumulative RMS plot (SCG)

Fig-38(a) Shows the RMS error plot for the test data sets that contain the digital data from

the correct version of ladder logic and fig-38(b) shows the same for the altered version of ladder

logic while the neural network was trained using LM algorithm. Plot (a) shows that when the PLC

had shown no malfunction, the average RMS stayed below Ep and near the training error. Plot (b)

shows that when the PLC had executed the altered code, the RMS values went way above the

training error and Ep. Hence, the malfunction in the PLC was detected.

 Fig-39(a) Shows the RMS error plot for the test data sets that contain the digital data from

the correct version of ladder logic and fig-39(b) shows the same for the altered version of ladder

logic while the neural network was trained using Conjugate Scaled Gradient algorithm. They

show similar results as fig-38(a) and fig-38(b).

The values of errors stayed below the training error for the most part in fig-39(a)

compared to fig-38(a) which leads us to a conclusion that SCG algorithm showed well-distributed

training for all the patterns in the training data set while LM showed that some of the patterns

received better training than other patterns in the training data set. The training error obtained

 61

using LM was lesser than that of SCG. LM showed better overall training, but SCG showed better

training distribution for each pattern, meaning that every pattern in the data set received equal

training in the case of SCG.

These plots were created using a MATLAB script, which is posted in Appendix-A. The

values of each column from spreadsheets shown in fig-36 and fig-37 were imported into MATLAB

workspace as numeric matrices for the MATLAB script to work.

 62

5. CHAPTER-5: CONCLUSION AND FUTURE WORK

5.1 CONCLUSION:

PLC is called the heart of any automation system, and they are widely used in the

industry. Because of their wide range of applications and usage; improvements to these

controllers are always beneficial. We introduced the concept to implement machine learning

onto PLCs, which opens many doors of improvements in PLC driven automation systems. One of

the most important improvements is better fault detection. After an automation system is

designed, a neural network can be trained to learn the ideal values of inputs and outputs to the

PLC during the simulation of an automated system before it is implemented at the customer’s

site. The neural network can then be trained further at the customer’s site to learn the

characteristics of “everyday” operations of the automation system. Once the fully trained neural

network is deployed to run in parallel with the PLC, it can monitor the activities on the PLC’s

ports and look for any abnormal values that wouldn’t occur during the normal “everyday”

operation. These abnormal values may result from a malfunction of edge devices like sensors,

motors, valves, etc.; cyber intrusions, bugs in the PLC code, and henceforth. Since the neural

network has learned the ideal characteristics and the behavior of the automation system, it can

detect if it behaves abnormally. For example, if the PLC starts executing error handlings codes

that are usually not executed during the “everyday” operation, the neural network’s predictions

 63

can alert the operators of the system that the code is not executing the way how it should be on

an everyday basis.

It is possible that the system could run into faults that were not factored-in during the

development of the code since there are many possibilities of what could go wrong. Error

handling codes for some of those possibilities are often overlooked due to human errors and

limited understanding of the problem. Thus it may cause the whole system to fail since it lacked

error handling for such errors. The neural network can detect abnormal behaviors, and its

predictions can save the system from the failure for such cases that could have a significant

financial impact or put lives at risk.

The successful validation of the hypothesis shows that, with more efforts and research,

the NNPLC concept can become a practical application for real automation systems.

5.2 FUTURE WORK:

As mentioned in the validation, the concept was tested on a PLC with only digital IO

ports. Since it was not possible to harvest the timer values at the moment due to the restrictions

of PLC programming software, this concept was not validated for complex PLC codes

implemented in real automation systems whose logic ineluctably rely on timers and analog ports

of the PLC. The solution to extract timer values needs more researching.

Better suited neural network architectures for complex ladder logics, and training

algorithms for the NNPLC application can be researched and developed.

More efforts are needed to implement the dynamic deployment of the neural network

discussed in chapter-3 since it requires synchronization between the PLC and the neural

network.

 64

The application-specific neural network code should be written as per the requirements

of the automation system rather than using available general-purpose software to implement

neural network, i.e., MATLAB, NeuroSolutions, etc., in order to achieve better validation,

optimization, and to implement this concept into real systems. Live plots of difference between

predictions and actual outputs needs to be implemented in order to monitor the system in real

time.

 65

REFERENCES

[1] B.K. Bose. 2009. Power Electronics and Motor Drives Recent Progress and Perspective.

IEEE Trans. Ind. Electron. 56, 2 (February 2009), 581–588.
DOI:https://doi.org/10.1109/TIE.2008.2002726

[2] Deep AI inc. 2018. Neural Network Definition | DeepAI. https://deepai.org. Retrieved
March 7, 2019 from https://deepai.org/machine-learning-glossary-and-terms/neural-
network

[3] R. (Roger) Fletcher. 1987. Practical methods of optimization. Wiley.
[4] N Fnaiech, Farhat Fnaiech, B W Jervis, and Mohamed Cheriet. 2009. The combined

statistical stepwise and iterative neural network pruning algorithm.
[5] Martin Fodslette Møller. 1993. A scaled conjugate gradient algorithm for fast supervised

learning. Neural Networks 6, (1993), 525–533.
[6] Georgel Gabor, Cosmin Pintilie, Catalin Dumitrescu, Nituca Costica, and Adrian Traian

Plesca. 2018. Application of Industrial PROFIBUS-DP Protocol. In EPE 2018 - Proceedings
of the 2018 10th International Conference and Expositions on Electrical And Power
Engineering, 614–617. DOI:https://doi.org/10.1109/ICEPE.2018.8559857

[7] Umut Güçlü and Marcel A. J. van Gerven. 2017. Modeling the Dynamics of Human Brain
Activity with Recurrent Neural Networks. Front. Comput. Neurosci. 11, (February 2017), 7.
DOI:https://doi.org/10.3389/fncom.2017.00007

[8] Shuxiang Guo, Juan Du, Xiufen Ye, Hongtao Gao, and Yizhou Gu. 2010. Real-time
adjusting control method based on attitude sensor signal feedback and its application in
spherical underwater vehicle. 2010 IEEE Int. Conf. Inf. Autom. ICIA 2010 (2010), 1393–
1397. DOI:https://doi.org/10.1109/ICINFA.2010.5512098

[9] M.T. Hagan and M.B. Menhaj. 1994. Training feedforward networks with the Marquardt
algorithm. IEEE Trans. Neural Networks 5, 6 (1994), 989–993.
DOI:https://doi.org/10.1109/72.329697

[10] Bhargav Joshi and Bhavin Patel. 2016. Boiler Automation and Turbine Protection At By.
Dharmsinh Desai University, Nadiad, India.

[11] Murat Kayri. 2016. Predictive Abilities of Bayesian Regularization and Levenberg–
Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on
Social Data. Math. Comput. Appl. 21, 2 (May 2016), 20.
DOI:https://doi.org/10.3390/mca21020020

[12] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. 2015. Artificial Neural Networks as
Models of Neural Information Processing. DOI:https://doi.org/10.1038/nature14539

[13] Yadong Li, Danlan Li, Wenqiang Cui, and Rui Zhang. 2011. Research based on OSI model.
2011 IEEE 3rd Int. Conf. Commun. Softw. Networks, ICCSN 2011 (2011), 554–557.
DOI:https://doi.org/10.1109/ICCSN.2011.6014631

[14] Albert Malvino and David Bates. 2016. Electronic Principles. Retrieved from

 66

http://www.just.edu.jo/CoursesAndLabs/Electronics 1_Phy 231/Syllabus_231.doc
[15] M. Morris Mano and Michael D. Ciletti. 2013. Digital design : with an introduction to the

verilog hdl. Retrieved from http://www.mypearsonstore.com/bookstore/digital-design-
9780132774208

[16] Donald W. Marquardt. 1963. An Algorithm for Least-Squares Estimation of Nonlinear
Parameters. J. Soc. Ind. Appl. Math. 11, 2 (June 1963), 431–441.
DOI:https://doi.org/10.1137/0111030

[17] Microchip. 2008. Mcp3008. (2008). Retrieved from https://cdn-
shop.adafruit.com/datasheets/MCP3008.pdf

[18] Wael A. Monsef and Fayez FG Areed. 2006. Design of a Neural – PLC controller FOR
Industrial Plant. Proc. 2006 Int. Conf. Mach. Learn. (2006).

[19] A.K. Palit and D Popovic. 2005. Neural Networks Approach. Springer. Retrieved from
http://www.springer.com/978-1-85233-948-7

[20] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning
representations by back-propagating errors. Nature 323, 6088 (October 1986), 533–536.
DOI:https://doi.org/10.1038/323533a0

[21] Osvaldo Simeone. 2018. A Very Brief Introduction to Machine Learning with
Applications to Communication Systems. IEEE Trans. Cogn. Commun. Netw. 4, 4 (2018),
648–664. DOI:https://doi.org/10.1109/TCCN.2018.2881442

[22] Gang-Neng Sung, Ching-Lin Wang, Ping-Chang Jui, and Chua-Chin Wang. 2010. A high-
efficiency DC-DC buck converter for sub-3×VDD power supply. In 2010 IEEE International
Conference on Integrated Circuit Design and Technology, 164–167.
DOI:https://doi.org/10.1109/ICICDT.2010.5510269

[23] Texas Instruments. 2013. 8-BIT PARELLEL-LOAD SHIFT REGISTERS. www.ti.com, 26.
Retrieved from http://www.ti.com/product/SN74HC165?qgpn=sn74hc165

[24] D. M. Titterington. 2004. Bayesian Methods for Neural Networks and Related Models.
Stat. Sci. 19, 1 (February 2004), 128–139.
DOI:https://doi.org/10.1214/088342304000000099

[25] B.M. Wilamowski, N.J. Cotton, Okyay Kaynak, and G. Dundar. 2008. Computing Gradient
Vector and Jacobian Matrix in Arbitrarily Connected Neural Networks. IEEE Trans. Ind.
Electron. 55, 10 (October 2008), 3784–3790.
DOI:https://doi.org/10.1109/TIE.2008.2003319

[26] B.M. Wilamowski, D. Hunter, and A. Mabnowski. 2004. Solving parity-N problems with
feedforward neural networks. (2004), 2546–2551.
DOI:https://doi.org/10.1109/ijcnn.2003.1223966

[27] Bogdan Wilamowski. 2011. Neural Network Architectures. (2011), 1–17.
DOI:https://doi.org/10.1201/b10604-9

[28] Bogdan M Wilamowski. 2009. How Not to Be Frustrated with Neural Networks. IEEE Ind.
Electron. Mag. December (2009), 56–63.

[29] 5 algorithms to train a neural network | Neural Designer. Retrieved March 8, 2019 from
https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network

[30] Amazon.com: eBoot 6 Pack LM2596 DC to DC Buck Converter 3.0-40V to 1.5-35V Power
Supply Step Down Module: Automotive. Retrieved March 19, 2019 from
https://www.amazon.com/eBoot-LM2596-Converter-3-0-40V-1-5-35V/dp/B01GJ0SC2C

[31] MCP3008 | Raspberry Pi Analog to Digital Converters | Adafruit Learning System.

 67

Retrieved March 25, 2019 from https://learn.adafruit.com/raspberry-pi-analog-to-
digital-converters/mcp3008

[32] Fit Data with a Shallow Neural Network - MATLAB & Simulink. Retrieved May 1,
2019 from https://www.mathworks.com/help/deeplearning/gs/fit-data-with-a-neural-
network.html

 68

APPENDIX-A

A-1 Shift register’s driver program for Raspberry Pi (PISO.py):

import RPi.GPIO as GPIO
import time
import sys

#---#
Global Definitions #
#---#

#SH/LD pin initialized on GPIO pin#3
shld_pin = 3

#Clock pin initialized on GPIO pin#5
clk_pin = 5

#Serial data pin for the first shift register initialized on GPIO pin#22
data_pin = 22

#Serial data pin for the second shift register initialized on GPIO pin#24
data_pin_1 = 24

#Chip enable pin (CLK INH) for the first shift register initialized on GPIO pin#21
ce_pin = 21

#Chip enable pin (CLK INH) for the second shift register initialized on GPIO pin#23
ce_pin_1 = 23

LSB = 0 #LSB to output serial data as the least significant bit first format
MSB = 1 #MSB to output serial data as the most significant bit first format

#---#
Function Definitions #
#---#

#Function to initialize GPIO ports on Raspberry Pi
def initialize():

 69

GPIO.setmode(GPIO.BOARD) #Enable GPIO port
GPIO.setup(7, GPIO.OUT) #Setup GPIO pin#7 in output mode
GPIO.setup(shld_pin, GPIO.OUT) #GPIO for SH/LD pin in output mode
GPIO.setup(ce_pin, GPIO.OUT) #GPIO for CLK INH pin in output mode
GPIO.setup(ce_pin_1,GPIO.OUT) #GPIO for CLK INH pin in output mode
GPIO.setup(clk_pin,GPIO.OUT) #GPIO for CLK pin in output mode
GPIO.setup(data_pin, GPIO.IN) #GPIO for serial data pin in input mode
GPIO.setup(data_pin_1, GPIO.IN) #GPIO for serial data pin in input mode
GPIO.output(7, 1) #Set GPIO port#7 to HIGH
GPIO.output(clk_pin, 1) #Set GPIO port#5 to HIGH
GPIO.output(shld_pin, 1) #Set GPIO port#3 to HIGH
return;

 #Function to execute the end procedure of the driver
def endprocess():
 print "Cleaning GPIO...",
 GPIO.cleanup() #Cleanup GPIO
 print "Done"
 print "Closing files...",
 fh1.close() #Close file input.txt
 fh2.close() #Close file output.txt
 fh3.close() #Close file all.txt
 print "Done"
 print "Syncing data files on google cloud\n"

#Function to format the serial data to be written into the file
#Format example: 0 0 1 0 0 1 0 1
def fmat(var):
 ns = ""
 for i in range(0,8):
 num = (var >> i) & 1
 if(num == 0):
 num = "0"
 else:
 num = "1"
 ns += num + " "
 ns = ns[::-1]
 return ns;

#Function to execute the timing diagram of the shift register
#This function operates shift registers to achieve parallel to serial conversion
def read_shift_regs(data,ce):
 the_shifted = 0
 #Set SH/LD pin to LOW to load the parallel data into the shift register
 GPIO.output(shld_pin, 0)

 70

#Hold SH/LD's value as LOW for 5 microseconds

 time.sleep(5/1000000.0)

 #Set SH/LD pin to HIGH to shift the loaded parallel data to output serial data
 GPIO.output(shld_pin, 1)

 #Hold SH/LD's value as HIGH for 5 microseconds to initialize the shifting operation
 time.sleep(5/1000000.0)

#set clock pulse to HIGH
GPIO.output(clk_pin, 1)

#Set the CLK INH to HIGH to enable the clock signal to the shift registers
GPIO.output(ce, 0)

#Call ShiftIn function to get the serial data from the shift registers
the_shifted = ShiftIn(data, clk_pin, MSB)

#Set the CLK INH to LOW to diable the clock signal to the shift registers
GPIO.output(ce, 1)

return the_shifted; #return the shifted value

#Function to perform the shifting operation and output the serial data
def ShiftIn(data, clk, order):

value = 0
#Perform eight shifts to output 8-bit serial data
for i in range(0,8):
#Shift bits on each asynchronous clock pulse

GPIO.output(clk, 1) #Set the clock signal to HIGH
if(order == LSB): #Check the output order

value |= GPIO.input(data) << i #Serial output in LSB fashion
else:

value |= GPIO.input(data) << (7-i) #Serial output in MSB fashion
GPIO.output(clk, 0) #Set the clock signal to LOW

return value;

#---#
Main #
#---#

initialize() #Initialize Raspberry Pi
#Open Files to write mode
fh1 = open('/home/pi/AIPLC/data/input.txt',"w") #Open input.txt

 71

fh2 = open('/home/pi/AIPLC/data/output.txt',"w") #Open output.txt
fh3 = open('/home/pi/AIPLC/data/all.txt',"w") #Open all.txt
try:
 while(True):
 val = read_shift_regs(data_pin,ce_pin) #Read from the shift register-1
 val1 = read_shift_regs(data_pin_1,ce_pin_1) #Read from the shift register-2
 s1 = fmat(val) #Format the read value
 s2 = fmat(val1) #Format the read value

 #Write serial values in files
 fh1.write(s1 + '' + "\r\n")
 fh2.write(s2 + '' + "\r\n")
 fh3.write(s1 + ' ' + s2 + "\r\n")

 #Display serial values on terminal
 print(s1),
 print"\t",
 print(val),
 print "\t",
 print(s2),
 print "\t",
 print(val1)
 time.sleep(0.5)
#End execution in case if a keyboard interrupt detected
except (KeyboardInterrupt, SystemExit):
 print "\nKeyboard interrupt detected..."
 endprocess()
except:
 print "Fatal Error"
 endprocess()

 72

A-2 MATLAB script to plot error results:

clc;
%Create plotpoints for 15 test sets
Plotpoints(:,1) = linspace(0,15,15);

%Plot LM performance for no malfunction in PLC code
figure(1)
plot(Plotpoints,LM_correct_plotpoints)
hold on
plot(Plotpoints,LM_training_error)
plot(Plotpoints,LM_Ep)
hold off
grid
legend('Average RMS','Training Error Et','Malfunction prediction Ep')
title('LM test - No malfunction in PLC code')
xlabel('Plotpoints')
ylabel('RMS')

%Plot LM performance for a malfunction in PLC code
figure(2)
plot(Plotpoints,LM_malfunction_plotpoints)
hold on
plot(Plotpoints,LM_training_error)
plot(Plotpoints,LM_Ep)
hold off
grid
legend('Average RMS','Training Error Et','Malfunction prediction Ep')
title('LM test - Malfunction in PLC code')
xlabel('Plotpoints')
ylabel('RMS')

%Plot SCG performance for no malfunction in PLC code
figure(3)
plot(Plotpoints,SCG_correct_plotpoints)
hold on
plot(Plotpoints,SCG_training_error)
plot(Plotpoints,SCG_Ep)
hold off
grid
legend('Average RMS','Training Error Et','Malfunction prediction Ep')
title('SCG test - No malfunction in PLC code')
xlabel('Plotpoints')
ylabel('RMS')

 73

%Plot SCG performance for a malfunction in PLC code
figure(4)
plot(Plotpoints,SCG_malfunction_plotpoints)
hold on
plot(Plotpoints,SCG_training_error)
plot(Plotpoints,SCG_Ep)
hold off
grid
legend('Average RMS','Training Error Et','Malfunction prediction Ep')
title('SCG test - Malfunction in PLC code')
xlabel('Plotpoints')
ylabel('RMS')

 74

APPENDIX-B

B-1 Complete training data set

Inputs:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 75

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0

 76

0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1

 77

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0

Outputs:

 78

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

 79

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

 80

0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

 81

0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0

B-2 Training subset-1

Inputs:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1

 82

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

B-3 Training subset-2

Inputs:

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

B-4 Training subset-3

 83

Inputs:

0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0

Outputs:

0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0

B-5 Training subset-4

Inputs:

0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

 84

0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

B-6 Training subset-5

Inputs:

0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

 85

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

B-7 Training subset-6

Inputs:

0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0

Outputs:

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

 86

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0

B-8 Training subset-7

Inputs:

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

 87

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

B-9 Training subset-8

Inputs:

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0

 88

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

B-10 Training subset-9

Inputs:

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

B-11 Training subset-10

Inputs:

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 89

0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0

Outputs:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 90

APPENDIX-C

C-1 Test point-1

Inputs:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

C-2 Test point-2

Inputs:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

 91

C-3 Test point-2

Inputs:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

C-4 Test point-2

Inputs:

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

C-5 Test point-2

Inputs:

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

 92

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

C-6 Test point-2

Inputs:

0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0

C-7 Test point-2

Inputs:

0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1

Outputs:

 93

0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

C-8 Test point-2

Inputs:

0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

C-9 Test point-2

Inputs:

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0

 94

C-10 Test point-2

Inputs:

0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0

Outputs:

0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0

C-11 Test point-2

Inputs:

0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0

Outputs:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0

C-12 Test point-2

Inputs:

0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0

 95

0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0

Outputs:

0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0

C-13 Test point-2

Inputs:

0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

C-14 Test point-2

Inputs:

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

 96

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

C-15 Test point-2

Inputs:

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

C-16 The complete test set

Inputs:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

 97

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1

 98

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1

Outputs:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0

 99

0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

 100

ACKNOWLEDGMENTS

First and foremost, I want to thank my advisor Dr. David Umphress from the computer

science and software engineering department at Auburn University, Alabama. It has been an

honor to work under him as his graduate research assistant. He helped me understand: the

professional way of developing complex projects and the importance of project planning and

project management. I appreciate all his contributions of time, ideas, vast knowledge, guidance,

and funding to make my master’s program productive and stimulating. His enthusiasm for

innovative ideas and his unconditional support to venture into the world of unsolved problems

has always been very motivational to me. I am thankful for the excellent example he provided as

a successful individual and professor. His down-to-earth attitude towards the failures I

experienced during the development of my thesis helped me stay positive through every failure

I encountered, which eventually turned into successful research. He became my role model as a

true leader.

I also want to thank Dr. Anthony Skjellum, who helped me realize my potential and put

me on the path of being a researcher in the computer science field. He helped me get in contact

with Dr. David Umphress. I am truly grateful to Dr. Bogdan Wilamowski’s teachings and resources

he provided to thoroughly understand the concept of neural networking.

I appreciate the support of my defense committee members: Dr. Bo Liu and Dr. Ahn

Nguyen, for contributing their precious time to take an interest in my research, their insightful

questions, and helpful advice.

 101

I gratefully acknowledge my fellow collogues, my friends, and their contribution to my

personal and professional time at Auburn University. I am especially grateful to Ash Searle, Heba

Alwaneh, Fatma Neda, Fatima Hamade, Vaibhav Gupta, and Nirmit Patel, for being a source of

friendships as well as a source of good advice and collaboration.

Lastly, I would like to thank my family for all their love and encouragement. I want to

thank my father, Dr. Vibhutikumar Joshi, for his crucial financial support, moral

encouragements, and insightful advice. Additionally, I want to thank my mother, Mrs. Nisha

Joshi, for her unconditional love and support. I whole heartily and sincerely appreciate how my

parents raised me; with love, encouragement of science, and their unlimited support in all of my

pursuits.

Bhargav Vibhutikumar Joshi
Auburn University
Jun 2019

 102

VITA

BHARGAV JOSHI
Cell: +1 (334)-332-7446

 Email: bhargav.CSSE@gmail.com
Academic Record

• Auburn University (MS with thesis), AL, USA (Jan 2017 – Aug 2019)
Computer Science and Software Engineering (Awarded Degree)
Electrical Engineering (Extended studies done during Jan 2017 – Dec 2017)

• Dharmsinh Desai University (B.Tech), India (July 2012 – April 2016)
Electronics and Communication Engineering

Work Experience

• Auburn Cyber Research Center (ACRC), Auburn University, AL (Jan 2018 – present)
Position – Graduate Research Assistant
Description – Working for Dr. David Umphress to research on cyber threats to PLC-
based automation systems and SCADA/ICS systems. Worked on a project to secure PLC
based systems using neural network.

• Computer Science and Software Engineering, Auburn University, AL (Jun 2017 –
Jan 2018)
Position – Graduate Research Assistant
Description – Worked for Dr. Anthony Skjellum to explore cyber research field and
introduce myself with industrial systems and industrial internet of things (IIOT)

• Cotmac Electronics Pvt Ltd.
Position – Intern (Dec 2015 – Nov 2016)
Description – Worked at this Company as an Intern to complete my final semester
project in professional environment.

Major Academic Projects Accomplished (June 2014 – Aug 2019)

• Implementation of Neural Network on PLC-based Automation Systems for Better
Fault Tolerance and Error Detection
Implemented a neural network that was trained with a PLC’s analog I/O values, digital
I/O values, timer counts, and values of critical variables of ladder logic obtained during
the simulation of PLC’s code. The trained neural network can then generate predictions
of ideal output values on the PLC’s ports to monitor the system.

• Speech Signal Processing using Microsoft Speech SDK
Speech signal processing algorithm developed by Microsoft speech SDK is used to detect
spoken words in microphone and according to the detected word particular actions were
executed by the program written in C# on Microsoft visual Studio platform.

• Boiler Automation and Turbine Protection
A Siemens S7-300 PLC driven boiler which can very efficiently and automatically
control the parameters of its operation is connected to a turbine. Sensors were designed
and made compatible with PLC using Arduino.

Area of Interest

 103

• Machine Learning
• Neural Network
• Software Process
• Embedded Systems

