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Abstract

Chaos theory is an emerging topic in electronics due to some of the inherent properties that

can be considered advantageous in particular applications. Some of these properties include

topological mixing, continuous power spectral density, and long-term aperiodic behavior. In

particular, the topological mixing and long-term aperiodic behavior can be useful in generat-

ing random numbers for security or encryption applications. Similarly, the continuous power

spectral density could be advantageous in communication and radar systems. Many of these

systems are often defined mathematically using an ideal set of ordinary differential equations.

These systems are usually classified as either autonomous or non-autonomous systems. An

autonomous system is not explicitly dependent on any variable, where as a non-autonomous

system is explicitly dependent on a variable. This variable is often a time dependency. These

dependencies can lead to both systems being implemented in electronics with different types

of challenges. An autonomous system might have an elegant mathematical solution or can be

implemented in a single PCB, but often requires high component count in addition to deal-

ing with finite switching times and propagation delays in the feedback path. These limitations

can lead to difficulty in scaling the hardware realizations to higher frequency applications. A

non-autonomous system may be somewhat difficult to find a closed-form solution to, but it can

be realized in a variety of very simple electronic circuits. These simple circuits are externally

excited, which can be a problem in some applications. This work investigates these challenges

by designing, simulating, and implementing both autonomous and non-autonomous systems in

hardware. Three different systems are presented here in this work. The first is an autonomous

exactly solvable chaotic system with a second-order filter. The second is a similar autonomous

exactly solvable chaotic system with a first-order filter. The third system is a non-autonomous

nonlinear transistor circuit where the forcing function is integrated onto a single PCB.
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Chapter 1

Introduction

In this work, a collection of chaotic systems have been simulated, modeled, and realized in

electronics. Many of these systems have been demonstrated to have advantageous properties

either numerically or analytically; however, these properties may not be easily maintained in

the electronic realization. Since many of the chaotic systems are defined using ideal mathe-

matical equation or set of equations, it is important to investigate the design trade offs between

how easy the system is to analyze mathematically versus the degree of difficulty in implement-

ing these systems in electronics. A majority of the methods for analyzing nonlinear systems

are often significantly more complex than methods used for linear systems. In addition, these

nonlinear methods might be applied only under specific operational range or other restrictive

circumstances. An alternative to analyzing these systems is to linearize them and use tradi-

tional techniques; however, this often omits some of the system’s dynamics that may be very

important.

This work looks at some of the limitations of emulating these systems in electronics. An

example of these limitations would be the finite bandwidth, propagation delay, and switching

times found in physical electronic devices and how they affect the maximum fundamental fre-

quency that can be realized in hardware. In general, as the overall complexity of the electronic

system increases, it becomes increasingly difficult to model the system mathematically. For

this reason, this work also presents alternate toplologies of these systems that could potentially

lead to more simple implementations.

Sometimes these chaotic equations can have a unique structure that can lead to elegant

mathematical solutions [1]. One of these systems is based on an exactly solvable chaotic system
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that is topologically conjugate to the iterated shift map (sometimes called the Bernoulli shift

map) [1], [2]. This system can be rewritten as a linear convolution of symbols with a fixed

basis pulse, which allows for the chaotic system to have an exact analytic solution [1]. This

solution can be used to realize a matched filter for this system, making it an ideal candidate

for chaos based communication systems, since a matched filter is the ideal detection method in

the presence of additive white Gaussian noise (AWGN) [3]. This demonstrates that different

types of chaotic system may be more applicable in certain applications over others. This work

presents a chaotic communication system that was implemented in hardware using one of the

chaotic oscillators developed in this work.

These chaotic systems are often placed into two different categories: autonomous and

non-autonomous [4]. An autonomous system is not explicitly dependent on any particular

variable. Similarly, a non-autonomous system is explicitly dependent on one or more variables.

Typically this variable is time, but it can be any other parameter. These classifications help

define the structure of these systems when they are implemented in electronics. In order to

build an autonomous system, the circuit must be laid out in a manner that allows for a closed-

loop feedback path. The initial conditions of this system need to be non-zero in order to make

the system oscillate since it does not require an external input. This often happens naturally,

because any practical system has thermal or some other external noise. Since the systems

require a feedback path, finite propagation delays, switching times, slew rate, and internal

coupling must be considered in the design. Similarly, external interference could cause the

system to behave unexpectedly. One advantage of autonomous systems is that they can function

as a stand-alone PCB that can be integrated into a larger system.

A non-autonomous system is often a nonlinear passive or active network that is driven by

an external source, such as a function generator. Many of these non-autonomous systems are

excited from a linear forcing function, such as a sine wave. Since these systems are excited

externally, they often do not require any feedback. This also means that a bulky function gener-

ator or similar device is required if it is to be integrated into a larger system. This problem can

be somewhat mitigated by integrating the forcing function onto a single PCB with nonlinear

2



passives. This effectively makes the non-autonomous system functionally the same as an au-

tonomous system. These systems have been shown to be more resistant to external noise when

being synchronized [5].

This work investigated some of the trade-offs associated with implementing both au-

tonomous and non-autonomous chaotic systems in electronics. In order to do this, two similar

autonomous and one non-autonomous system were constructing using PCB technology and

commercial-off-the-shelf (COTS) parts. For these designs, alternate typologies were inves-

tigated for potentially increasing the fundamental operating frequency. While these systems

are designed for different applications, they represent some of the challenges in designing that

particular type of system.

An example of this can be seen in a non-autonomous chaotic nonlinear transistor circuit,

that is composed of a NPN BJT and some passives [6]. This work takes that circuit and inte-

grates the forcing function onto the same PCB. This circuit has also been shown to be capable

of being used in chaotic synchronization [7]. This implementation uses four op-amps, a single

transistor, resistors, and capacitors. No inductor is required. Even with the sinusoidal oscil-

lator included on the board, the physical footprint of the design is only approximately 2.5 cm

by 3.0 cm. The forcing function is generated using a twin-T op-amp oscillator and a non-

linear transistor circuit with two RC integrating constants. Using the appropriate resistor and

capacitor values, the system can be operated from 2 kHz up to 9.6 MHz. This system could

potentially be applied to a wide range of applications, such as an entropy source for random

number generation (RNG).

The second system presented is an autonomous system based on the exactly solvable sys-

tem originally introduced by Saito et al. in 1981 [2]. This system is one that lends itself well

to applications, such as communications systems and radar [1]. This system is analogous to a

negative resonance tank (RLC) circuit with discrete switching events. The negative resistor is

implemented using a NPN BJT, and discrete capacitors and an inductor were used for the res-

onant elements. The switching events were triggered using a mixed-signal feedback network.

The third system is similar to the second one; however, this one is based on a first-order

filter [8]. While this system appears to be relatively simplistic, further modifications can be

3



made in order to reduce the complexity of the system further. These modifications include

replacing op-amps and comparators with inverters, as well as separating the analog and digital

grounds. These modifications allow for the form factor of the system to be reduced as well as

to make it more favorable for increasing the fundamental frequency of the oscillator.
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Chapter 2

Background

In the 1960s, chaos was observed by scientists studying electrical devices [9], meteorological

events [10], and population growth models [11]. Since these early studies, chaos has been

observed and examined in a wide variety of disciplines [12], [13], [14]. Chaos theory has

been used to help provide insight into predicting economical and financial events [15], mod-

eling biological patterns for respiratory diseases [16], [17], studying the philosophy of educa-

tion [18], [19], explaining the seemingly random underlying similarities across different disci-

plines and cultures [20], quantum systems [21], [22], astronomy and astrophysics, [23], [24],

avoiding simulated annealing when solving approximate global optimization problems [25],

modeling and simulation of chemical reactions and kinetics [26], [27], simulation algorithms

for simulating both macroscopic and microscopic dynamics [28], [29], and modeling the the

nonlinear effects of vibrations in physical structures [30], [31], [32].

Chaos is undesirable in some systems, such as some chemical reactions [33], [34], power

electronics with switching DC to DC converters [35], [36], [37], chaotic motion in MEMS

cantilever beam structures and oscillators [38], [39], chaotic vibrations in ground vehicle mod-

els [40], stabilization of an electro-chemical cells [41], control of complex time-varying net-

works [42], stabilization of a chaotic laser [43], [44], built in self test (BIST) for MEMS

devices [45], avoiding arrhythmia or any other irregular heart beat problems [46], [47], and

synchronization of chaotic oscillators [48], [49], [50]. In many of these applications, chaotic

regime of operation is often problematic therefore avoided.

This motivation of modeling a specific phenomenon has now shifted towards taking advan-

tage of the inherent properties found in chaos for various applications, such as communication
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systems [51], [52], [53], [54], radar [55], [56], through-the-wall imaging [57], security and en-

cryption algorithms, [58], [59], [60], random number generation (RNG) [61], [62], [63], [64],

super computing applications [65], image encryption [66], [67], [68], [69], and noise signal

generation [70]. Some of the advantageous properties include continuous power spectral den-

sity for communication, radar and noise signal generation. Additionally, the topological mixing

and long-term aperiodic nature of chaos is beneficial in RNG [4].

While it may seem counterintuitive, but there have been various methods of control used

to avoid chaos or stabilize periodic orbits. There are a wide range of methods used to con-

trol chaos [71], [72]. One method involves using small voltage perturbations that are period-

ically applied to a free running oscillator [73]. This method is sometimes referred to as the

OGY chaos control, named after the authors initials Edward Ott, Celso Grebogi, and James

York. OGY control requires that the desired unstable periodic orbit to be known prior to ap-

plying this method. Another method of chaos control is called proportional feedback con-

trol [74], [75], [76]. This method applies a control signal that is proportional to the difference

of the current value of the oscillator with the desired value. A third method of controlling chaos

is through dynamic limiting [77]. This method involves using a diode that turns off and on at a

specific threshold in order to keep an oscillation at a desired trajectory. This can be can be vi-

sualized as adding or subtracting energy from a system in order to control the oscillator. These

control methods can be used to encode information into a chaotic waveform for use in commu-

nication systems [54]. Another method of chaos control is by adding weak periodic pulses and

noise to the system [78], [79]. This method has proven effective in electronic circuits [80]. A

reliable control method is required in order to encode information into a chaotic waveform for

it to be used in a communication system.

Many of the chaotic systems are defined by ideal autonomous third-order (or higher) or-

dinary differential equations [2], [81], [82]. In order to take advantage of the underlying char-

acteristics of the chaotic systems in various applications, these systems often need to be imple-

mented in electronic circuitry. The structures of autonomous systems often require a feedback

path, which is negligible at lower frequencies. However, when the frequency is significantly

increased, the finite propagation delays, switching times, slew rates, and limited bandwidth
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associated with physical devices can cause problems in recreating the ideal system’s dynam-

ics [83]. One method of trying to minimize the overall propagation delay through the feedback

path is to avoid the use of operational amplifiers and realize a similar function using only tran-

sistors. This can reduce the design complexity if the final product is intended for implemen-

tation in an ASIC [84]. However, some non-autonomous systems might scale more favorably

with frequency when compared with an autonomous systems. [85].

The structure of non-autonomous systems typically consists of a linear forcing function

and some sort of passive nonlinearity. Many of these systems are described in literature using

ideal mathematical definitions, but some of these were observed when analyzing a nonlinear

system in a laboratory environment [86], [87]. Chaos may be observed in nonlinear circuits

possessing transistors or diodes with a tabletop function generator [6], [88]. These experi-

ments are often used as a way to demonstrate the inherent nonlinearities in devices such as

transistors or diodes [89]. While these are effective at demonstrating the underlying nonlinear

dynamics, they are often at very low frequencies (in the range of tens of Hertz) and require

external equipment, which limits in potential applications where high frequency operation can

be beneficial [90].

In order to take advantage of these particular systems, the linear forcing function can be

integrated onto a single printed circuit board (PCB) with these passive nonlinear circuits. There

is a wide range of options to generate the linear sinusoidal oscillators. Some of the simplest

methods to create sinusoidal signals include the usage of operational amplifiers (op-amps),

which are sufficient for low to moderate frequencies. For higher frequencies, a transistor-based

approach would most likely be better; however, circuit topology analysis is more difficult when

transistors are present.

2.1 Autonomous and Non-autonomous Systems

One of the common classifications of dynamical systems is whether it is autonomous or non-

autonomous. Explicit dependence on an independent variable (e.g., time) determines if a sys-

tem is autonomous. This classification does play an important role on how these systems are

realized in electronics.
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An autonomous system relies on feedback in order to oscillate. When seeking high fre-

quency versions of these systems in electronics, the finite propagation delays, switching times,

limited bandwidth, and slew rates can become problematic. An autonomous system is typically

defined mathematically and has been numerically or analytically analyzed using traditional

techniques. To emulate these systems in electronics, it often requires complex functions and a

large amount of components to be realized. One of the primary advantages of an autonomous

system is that it does not require an external trigger in order to oscillate.

Similarly, non-autonomous systems do not require a feedback path, which means that

propagation delay is less of an issue. However, it can still adversely be affected by limited

bandwidth and switching times of physical devices. These systems (when realized in electron-

ics) tend to rely on nonlinear device parameters in order to achieve chaotic motion. Since many

of these devices are somewhat difficult to accurately model, less research efforts have been

utilized to analyze these systems mathematically.

2.2 Autonomous Systems: Chaos Based on First-Order and Second-Order Filters

There are two types of autonomous systems presented in this work. Both of these systems

are topologically conjugate to the iterated shift map. The underlying dynamics of these two

systems will be explained in the following sections.

Both of these systems have been shown in previous work to have an exact analytical so-

lution [1], [8]. This solution can be used to develop a matched fitler for this system [91].

Chaotic communication systems have an elegant methods for encoding information into the

waveform [54]. In order to do this, a system’s allowable grammar must be analyzed. The

grammar of a system is the allowable symbol sequences that a system can exhibit. This is done

by looking at the free-running oscillations of the system. These oscillations are then mapped to

a discrete system, which requires that certain unique segments of the waveform to be identified.

An example of this may be the mapping of a local maxima or minima to the discrete states of a

binary system, which can be done with a bi-polar type of system [54].

As previously stated, the use of small voltage perturbations can control the oscillations to

specific trajectories of free-running waveforms [73]. This is a way of encoding the information
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into the chaotic waveform. One advantage chaotic communication has over other traditional

spread spectrum methods is that encoding a single received symbol can contain the information

of more than one symbol. This is because there are a finite number of allowable sequences of

symbols described by the symbolic dynamics of the system. Restricting the grammar means

that, in order to decode certain symbols, only some of the subsequent symbols need to be

sampled. This means that in order to decode certain symbols, only some of the subsequent

symbols needs to be sampled. This results in a more efficient encoding scheme over other

traditional techniques where every part of the received signal must be sampled.

2.2.1 Exactly Solvable Chaos Based on a Second-Order Filter

Simple systems can sometimes exhibit very complex behavior. An example of this can be

seen in one dimensional maps, where chaotic motion can exist. The one dimensional map of

particular interest is the iterated shift map, which is sometimes referred to as the Bernoulli shift

map or sawtooth map, shown in Fig. 2.1. This map is mathematically defined using the modulo

function, mod, shown in (2.1) [4].

xn+1 = 2xn[mod(1)] (2.1)

This discrete timed map can be described as a binary decimal with an initial condition of

x0 as seen in (2.2). Here, the binary decimal aj can be either a “0” or a “1”.

x0 = 0.a1a2a3... =
∞∑
j=1

2−jaj (2.2)

Each new iterate of the map will result in a bit-shift of the initial condition to the right,

replacing anything before the decimal point with a zero. This process demonstrates that the

more precise bits, which are very insignificant in the initial value, will gradually become more

significant in each iteration. Here, it can be seen that small changes in the starting value can

significantly impact the system’s future states. This is an example of the system’s sensitivity to

initial conditions, a characteristic of chaotic systems.
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A chaotic system that is conjugate to the iterated shift map was previously developed by

Saito and Fujita [2]. This particular chaotic system was synthesized from a linear continuous-

timed, second-order differential equation combined with discrete states. The system is defined

by the differential equation seen in (2.3). Here, the continuous time variable is u and the

nonlinear switching event is s(t).

ü− 2βu̇+ (ω2 + β2)(u− s(t)) = 0 (2.3)

The discrete states of the nonlinear switching event are defined by s(t), as shown in (2.4).

The discrete states switch when a specific guard condition criterion is satisfied.

s(t) =


+1 u(t) ≥ 0, u̇(t) = 0

−1 u(t) < 0, u̇(t) = 0
(2.4)

Figure 2.1: Ideal shift map generated from (2.1).
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For simplification purposes, the system parameter ω is often defined at a normalized fre-

quency, where ω = 2π. The parameter β is a positive Lyapunov exponent of the linear second-

order differential equation that provides energy to the system. β is restricted over the range

0 < β ≤ ln(2). With low values of β, the grammar of the oscillator is restricted. As the value

of β increases, more stable trajectories appear in the oscillations. If β is greater than ln(2), then

the positive Lyapunov exponent dominates, and the system becomes globally unstable. The

initial conditions for this system are defined as x(0) = x0 and ẋ(0) = y0. Together, linear,

second-order ordinary differential equation and the discrete switching function define a chaotic

system with three degrees of freedom.

When the s(t) is defined as s(t) = {+1,−1}, as shown in (2.4), the trajectory resembles a

double-scroll or butterfly attractor. This type of oscillation does not exhibit banding; however,

it is often referred to as the “shift band” or “shift map” oscillator. This electronic oscillator

implementation is designed to operate in the shift band. The nonlinear switching event defined

by s(t) will switch states when the guard condition is satisfied. This condition is met when

there is a simultaneous zero crossing of both output, u(t), and its derivative, u̇(t).

The nonlinear switching function in (2.4) defines the equilibrium points for the system.

The discrete states could be defined as s(t) = {0,−1} or s(t) = {+1, 0}, which results in

similar dynamics to the folded phase space. This system is conjugate to the tent map and is

often referred to simply as the folded band. The selection of the sign of discrete state “1”

determines if the phase space is a right- or left-handed fold.

2.2.2 Exactly Solvable Chaos Based on a First-Order Filter

In the previous subsection, an exactly solvable system based on a second-order filter was dis-

cussed; here, an exactly solvable system based on a first-order filter is discussed. [8]. Like the

second-order system, this system is also topologically conjugate iterated shift map, previously

defined by (2.1), and this system was shown to have an exact analytical solution. One thing

that makes this system different from many other chaotic systems is that it requires an external

clock.
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This system is governed by the equation found in (2.5), where Vs is defined by (2.6). Here,

the states of the system are the two variables V and Vs. The parameter V is the continuous time

state and Vs is the discrete state. The fundamental frequency of the chaotic system is defined

by the time constant of the parameters R and C. As mentioned previously, this system is

clocked. This clock is defined by, fCLK = 1
T

. The system will be chaotic if fCLK ≥ ln2. The

system’s underlying dynamics can be thought of as an asynchronous switching square wave

that is applied to an unstable first-order filter feedback network.

RC
dV

dt
= V − Vs (2.5)

Vs(nT ) =

{
+1, v(nT ) > 0

−1, v(nT ) < 0
(2.6)

This system has been shown to have a closed-form, exact analytical solution. This is done

by writing the discrete states of s(t) as the summation found in (2.7). In this equation, sn ∈ ±1

and Φ is defined by the discrete peicewise function ( 2.8).

s(t) =
+∞∑

n=−∞
sn · Φ(t− nT ) (2.7)

Φ(t) =

{
1, 0 ≤ 0 < T

0, otherwise
(2.8)

Looking at (2.5), you can define V (t) as a first-order equation that is forced by the discrete

feedback signal s(t). From this, V (t) can be solved in an integral form, as seen in (2.9).

u(t) =
∫ +∞

t
s(τ) · e−tdτ (2.9)

By substituting (2.7) into (2.9), we get the resulting equation found in (2.10).

u(t) =
+∞∑

n=−∞
sn ·

∫ +∞

t
Φ(τ − nT ) · et−τdτ (2.10)
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We can then say the variable θ be Defining θ as θ = τ − nT , which means,

∫ +∞

t
Φ(τ − nT ) · et−τdτ = et−τ ·

∫ +∞

t−nT
Φ(θ)e−θdθ (2.11)

This results in the simplified summation,

u(t) =
+∞∑

n=−∞
sn · P (t− nT ) (2.12)

where P is the basis function that is defined as,

u(t) = et ·
∫ +∞

t
Φ(θ)eθdθ (2.13)

Evaluating Φ results in the following simplified piece-wise basis function,

P (t) =


(1− e−T ) · et, t < 0

1− et−T , 0 ≤ t < T

0, T ≤ t

(2.14)

2.3 Non-Autonomous System: Nonlinear Transistor Circuit

There have been a wide range of nonlinear circuits with a relatively simple topology and min-

imal component count [92]. When considering potential systems that could be realized in

electronics, the two types of systems often evaluated are autonomous and non-autonomous

systems [93, 94]. Both of these types of systems have advantages and disadvantages when try-

ing to build them in hardware. Autonomous systems, which are not explicitly dependent on any

other variable (often time), are stand-alone oscillatory systems that can be realized with a feed-

back topology in electronics. One drawback to these autonomous systems at high frequency is

that the propagation delay through the feedback path begins to limit the frequency scaling of

the design [83]. This can make it difficult to realize these systems at very high frequencies.

Non-autonomous systems, which are explicitly dependent on another variable, are forced

by an external source. Since these systems often do not have a feedback topology, they require
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Figure 2.2: Schematic of the single transistor circuit.

some other form of external excitation, which in hardware could be a table-top function gener-

ator. Alternatively, the system’s forcing function could potentially be integrated onto the same

circuit board as the non-autonomous system. These forcing functions are often sinusoidal,

which have a wide range of possible implementations [95, 94, 96, 97].

This work seeks to increase the frequency of operation of the nonlinear transistor circuit,

which was previously discussed in a low frequency topology [6]. This circuit contains only

one active component and four passive components, as seen in Fig. 2.2. The simple circuit was

demonstrated in SPICE and on a prototype board, where the fundamental frequency was in the

low audio frequency range (approximately 1.7 kHz to 2 kHz) [6, 7].

The single active device, an NPN BJT, is connected to two different resistor-capacitor

(RC) filter networks. These two filter networks have different integrating time constants. One

of these constants is associated with the forward active region, and the other is associated with

the reverse active region of the BJT. The BJT oscillates by switching back and forth from

the two integrating constants [6]. The time domain response appears to increase (with higher

frequency oscillations) while in the forward active region, until the BJT switches to the reverse

region. The switching times are aperiodic.

The nonlinear transistor circuit will transition between periodic and chaotic trajectories

as the amplitude and frequency of the forcing function vary. This has been demonstrated in

hardware prototypes on the frequency range from approximately 1 kHz to 8 kHz [98]. This
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can be seen using a table-top variable function generator; however, this implementation of

the circuit includes the forcing function on the same board. This was done using a twin-T

oscillator and a variable gain stage. The frequency of the forcing function remained fixed and

the amplitude was varied using a variable gain amplifier. This still allows for the hardware to

demonstrate the periodic and chaotic solutions of the circuit, by sweeping through different

amplitudes with a constant frequency.
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Chapter 3

Design Approach

Many of these chaotic systems often require a large number of components in order to imple-

ment them in electronics. In order to make this process more manageable, it is often helpful to

divide the system into smaller subsystems. This chapter details how the three electronic circuits

were developed and built by using this process.

The autonomous second-order exactly solvable system can be divided into three subsys-

tems that are typically used in chaos to describe how chaotic systems evolve over time. These

subsystems are the stretch, twist, and folding mechanisms. The first-order system’s original

circuit topology was investigated. It was determined that the system could be implemented

using alternate components while maintaining the same functionality by separating the analog

and digital grounds. This alternate topology is later shown to be favorable for higher frequency

operation.

While the non-autonomous nonlinear transistor circuit is relativity simple since it only

consists of 5 circuit components, it does require an external forcing function. This forcing

function has been integrated onto the PCB with the nonlinear transistor circuit, which defines

the subsystems. These subsystems are the forcing function generator, a variable gain stage, and

the nonlinear transistor circuit.

3.1 Exactly Solvable Chaos

These two exactly solvable chaotic systems share similar characteristics; however, the major

difference is the order of the filter used in the feedback loop. In the electronic realizations of
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these, one of these is based on a second-order RLC resonant tank, while the other is based on

a first-order RC resonant circuit. These next two sections detail how these two systems were

divided into subsystems to make them more easily realized in electronics [51], [99], [100].

3.1.1 Second-Order Filter

The design approach for this oscillator is inspired in part by E. Ott, who described the “stretch-

twist-fold” operation of a chaotic system based on the iterated shift map [4]. He illustrated this

process using a circle. The circle undergoes a stretching process in which the radius increases

in size. When the radius has reached a certain point, the circle undergoes a twisting process

where it is twisted into a figure-8 shape. From this state, the figure-8 shape undergoes a folding

process, in which two loops of the figure-8 are overlaid on top of each other. This process shares

similar characteristics to the system described by (2.3) and (2.4). Therefore, these descriptions

will be used as guidance to define the separate subsystems of the electronic oscillator’s design.

The oscillator design has been divided into three separate subsystems: the stretching mech-

anism, the folding mechanism, and the guard condition in the structure, shown in Fig. 3.1. The

stretching mechanism dynamics can be described as an exponential growth of a sinusoid, sim-

ilar to the stretching process described above for the circle. This subsystem alone is unstable,

and shares characteristics with the parameter β in (2.3). The stretching mechanism supplies

energy to the system, which is required to achieve stable electronic oscillations in a practical

system.

The stretching subsystem is constrained by a feedback network comprising the folding

mechanism and the guard condition. The unstable oscillations of the stretching mechanism are

stabilized by this feedback network. The folding mechanism subsystem acts in a similar manner

to the “twist” and “fold” operation illustrated by the circle example. The third subsystem, the

guard condition, generates an asynchronous clock signal that triggers the folding mechanism

process. The guard condition of this system is triggered when two specific criterion are met

simultaneously. The first is when there is a zero crossing of the output of the oscillator. The

second criterion is triggered when there is a zero crossing of the derivative of the oscillator’s

output.
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Figure 3.1: Generalized block diagram of the oscillator design.

The folding mechanism and the guard condition generate the discrete states of the chaotic

oscillator defined by s(t) in (2.4). In practice, these two subsystems will be composed primarily

of comparators and digital logic components. For this reason, a gain block, A, is included to

convert the equivalent logic levels to the desired ±1 V.

The generalized circuit schematic for the oscillator design is presented in Fig. 3.2. The

electronic implementation of the stretching mechanism uses a single transistor configured in

a common-base amplifier topology. The amplifier is combined in parallel with a LC reso-

nant tank circuit. These three components, plus the biasing resistors for the transistor, define

the stretching mechanism subsystem. The output of the stretching mechanism is taken at the

collector port of the transistor. The simulation results take into account the non-ideal device

properties by using detailed empirical models for the components.

The parallel LC resonant elements set the fundamental frequency of the oscillator, as de-

fined in equation (3.1). As seen in Fig. 3.2, the two capacitors, C1 and C2, are effectively

in series. Using the values from the schematic in Fig. 3.2, the fundamental frequency of the

oscillator should be approximately 18.9 kHz, as shown in equation (3.1).

18



Figure 3.2: Generalized schematic of oscillator with the stretching mechanism (red), folding
mechanism (blue), and guard condition (green) subsystems.

fn =
1

2π
√
L( 1

C1
+ 1

C2
)
≈ 18.9 kHz (3.1)

The folding mechanism and guard condition use the output of the stretching mechanism

to generate the feedback signal, Vs. These two systems complete the feedback network of the

oscillator. The folding mechanism subsystem is implemented using a comparator that deter-

mines the sign of the oscillator’s output. This is fed into the data input terminal, labeled D, on

the D-latch.

The guard condition is implemented using a zero crossing detector of the derivative with

hysteresis. The derivative signal is generated using an analog differentiator. The zero crossing

detector requires two comparators, one to detect the zero crossings of the falling edges and the

other for the rising edges. The hysteresis is applied using feedback resistors in a Schmitt trigger
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topology. The hysteresis is important because it decreases the system’s sensitivity to noise. The

zero crossing detector clocks the D-latch.

3.1.2 Common-base Colpitts Oscillator

The proposed circuit topology replaces the NIC with a common-base Colpitts oscillator. This

circuit topology, found in Fig. 3.3, has been used as a linear oscillator as well as a nonlinear

oscillator that can exhibit chaos [101]. Here, the parameter CBP is the bypass capacitor for the

small signal base connection to ground and the resistors RB1 and RB2 set the bias point of the

transistor. Using the hybird-pi small signal model for the BJT, the schematic simplifies to the

schematic found in Fig. 3.4. The transistor’s transconductance is defined as gm = Ic
VT

, where Ic

is the collector current, Vt is the thermal voltage, and the parameter rπ = β
gm

, where β is the

gain of the transistor.

For the system to oscillate, the Barkhausen criterion must be satisfied such that the loop

gain, A · B = 1 0◦ at the fundamental frequency. For the system to have negative damping,

|A · B| > 1. Breaking the loop between the points A and B in Fig. 3.4, the resistance looking

into the terminal is defined by RA in (3.2). Here the voltage, VT , is the voltage across the lower

capacitor and the current, iT , is the current flowing out of the same capacitor.

RA =
VT
iT

=
1

1
rπ

+ 1
R2

+ gm
(3.2)

By substituting RA into the schematic and breaking the node between A and B from

Fig. 3.4, we get the resulting shcematic found in Fig. 3.5. Using this schematic, the three

voltage nodes, Vin, Vo, and V1, are used to calculate the loop gain, AB. In order to do this,

the two capacitors, C, act as a voltage divider between the voltage node V1 and Vo. Treating

these capacitors as an ideal capacitive transformer leads to the relationship of RA to R1 as

R′A = n2RA. Further simplification yields that 1
n

= 1
2
. Using this, the loop gain terms A and

B can be seen in (3.3) and (3.4), respectively. Combining these two results in the overall loop

gain found in (3.6). When the magnitude of (3.6) is greater than 1, then the system will exhibit

growing oscillations in amplitude.
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Figure 3.3: Schematic of the common-base Colpitts oscillator.
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Figure 3.4: Schematic of the common-base Colpitts oscillator with the hybrid-pi small signal
model.

A =
V1
Vin

=
gm

1
R1

+ 1
4RA

(3.3)

B =
Vo
V1

=
C

C + C
=

1

2
(3.4)

AB =
gm

2( 1
R1

+ 1
4RA

)
≈ gmR1

2(1 + gmR1

4
)

(3.5)

AB =
gmR1

2[1 + R1

4
( 1
rπ

+ 1
R2

+ gm)]
(3.6)

3.1.3 First-Order Filter

The original first-order system was realized using three op-amps, a comparator, a D flip-flop,

and various passives, as seen in Fig. 3.6 [8]. This design used an amplifier that operated on
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Figure 3.5: Schematic of the simplified circuit.

a differential power supply and the digital components operated on a single positive power

supply. This meant that the analog ground of the amplifier and the digital ground were both at

0V, which is why the level shifting circuit was required. The comparator determines when the

analog signal, V, changes signs.

The alternate circuit topology is designed to operate from 0V up to Vdd [102]. This allows

for the digital grounds to stay at 0V, while the analog ground is moved to Vdd/2. This is

important because the typical trip voltage of a CMOS inverter is Vdd/2, which allows for the

inverter to effectively replace the comparator. Since the analog ground is now set at Vdd/2, the

zero crossings of the analog ground can be detected by simply using an inverter. Two inverters

were used in order to maintain the polarity of the original signal. The same D flip-flop was used

for both circuit topologies. This unstable filter network portion of the circuit is equivalent to a

-RC circuit. The -R is realized using an op-amp circuit topology called a negative impedance

converter (NIC), which is combined with the capacitor, C1, to form the filter.
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3.2 Forced Nonlinear Transistor Circuit

The design of the nonlinear transistor circuit can be divided into three separate subsystems,

as defined in Fig. 3.8 [103], [104]. The first subsystem is a linear oscillator that generates

the forcing function. This is realized using a single op-amp and a network of resistors and

capacitors. The next subsystem modifies the linear forcing function so that the magnitude of

the sinusoidal waveform can be adjusted. This is variable gain stage subsystem. The final

subsystem is the non-autonomous nonlinear transistor circuit.

3.2.1 Sinusoidal Forcing Function

The nonlinear transistor circuit is non-autonomous and is often demonstrated in hardware using

a tabletop function generator. This is fine for demonstration purposes; however, there are other

ways that the system can be forced. By integrating the forcing function onto the board with the

nonlinear transistor circuit, the overall system can be viewed as functioning in a similar manner

to an autonomous system.

There are many different ways to generate a linear sinusoidal response in electronics. One

of these methods uses an unstable op-amp topology with a feedback network of resistors and

capacitors. These passive devices are configured in a shape similar to the capital English letter

“T”. The topology uses two of these RC networks, one configured as a high pass filter and the

other as a low pass filter. These are combined in parallel and function as a notch filter with a

large stop band. Therefore, this circuit topology is called the twin-T oscillator.

In order to maintain the linear sinusoidal oscillations, the tolerance on the feedback resis-

tors and capacitors needs to be very tight; otherwise, the oscillation will decrease in amplitude.

This can be somewhat problematic in practice since precision resistors are readily available in

various values with very tight tolerances, while capacitors are more difficult to manufacture at

high tolerances in a wide range of values. The twin-T circuit requires both a nominal capacitor

value and one that is double that value. In order to realize this, capacitors can be combined in

parallel by stacking two capacitors on top of each other on a single 0805 SMD resistor foot-

print. This way, any precision capacitor value can be used without requiring twice the value to
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be manufactured in precision accuracy. By varying only the capacitors in the twin-T oscilla-

tor and the capacitors in the transistor circuit, the PCB was tested at varying frequencies with

promising results. The capacitors of interest are those that set the forcing function’s frequency

(C3, C4, and C5 in Fig. 3.8) and sizing the transistor capacitors appropriately (C1 and C2 in

Fig. 3.8).

3.2.2 Variable Magnitude and Frequency

Since the system undergoes multiple bifurcations based on the magnitude and the frequency of

the sinusoidal forcing function, there needs to be a way to modify the magnitude and frequency

in the circuit in order to see various orbits of the nonlinear transistor. Unfortunately, the twin-T

network oscillates at a fixed frequency and magnitude. In order to change this on the oscillator,

multiple capacitors or resistors need to be variable. For this reason, the forcing function has

been chosen to operate at a fixed frequency; however, an additional circuit is added to the

output of the twin-T to make the magnitude of the sine wave adjustable. This is done using

an inverting op-amp circuit with a potentiometer as the feedback resistor. In order to observe

different frequencies of operation, multiple boards were assembled with different RC values in

the twin-T network.

While this subsystem appears to be one of the simplest of the three, it actually requires the

most board real estate. This is due in part to the relative size of the potentiometer and the fact

that the variable gain stage needs to be buffered from both the twin-T circuit and the nonlinear

transistor circuit. This is done using two unity-gain voltage follower op-amp circuits.

3.2.3 Nonlinear Transistor Circuit

The nonlinear transistor circuit is a non-autonomous system consisting of a single BJT, two

resistors, and two capacitors. The resistors and capacitors are configured such that there are

two RC integrating time constants that are formed with the single transistor. These two RC

integrators effectively oppose each other and this nonlinear interaction on the device level of the

transistor can result in both periodic and chaotic motion. The mode of operation is determined

by the magnitude and frequency of the forcing function. Since the sinusoidal twin-T oscillator
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is held at a fixed frequency based on the populated capacitor values, the mode can be changed

by adjusting the magnitude of the forcing function using the potentiometer.

In order to achieve chaotic motion, both the RC component tolerances and the layout must

be taken into special consideration. In particular, the tolerances on the two capacitors, C1 and

C2 from Fig. 3.8, need to be within 5% of their nominal value. The layout of the transistor

with respect to the resistor, R2, and capacitor, C2, needs to be considered for higher frequency

operation. The trace lengths required to make these connections need to be minimized while

still taking into account any possible stray capacitance that could affect these two components.

For this reason, the two components are located on the back very close to the transistor and

shielded by the back layer of the board’s ground fill on the PCB.
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Figure 3.6: Schematic of the original first-order system with comparator and level shifting
op-amp.
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Figure 3.7: Schematic of the alternate topology of the first-order system.

28



Figure 3.8: Schematic of the complete system, where green box is the sinusoidal forcing func-
tion, red box is the variable magnitude stage, and blue box is the nonlinear transistor circuit
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Chapter 4

Simulation Results

Both of the exactly solvable systems and the nonlinear transistor system were simulated in

SPICE. The simulations used detailed SPICE models of COTS devices where appropriate. The

software used was LTspice. Many different components were simulated to find the best com-

mercially available solutions while still maintaining a reasonable price point. Multiple param-

eters were taken into consideration, such as the bandwidth of the operational amplifiers and

transistors, sensitivity to device tolerances, propagation delay, switching times, and slew rates.

The second-order exactly solvable system was initially designed using mostly operational

amplifiers originally developed by Linear Technologies (LT1220), which was purchased by

Analog Devices. While this device is a great general purpose amplifier, it does unfortunately

come with a relatively high price point. For this reason, a less expensive amplifier (LT1818) is

used as a replacement in some of the designs depicted. Based on the simulations, both of these

devices perform very similarly for a majority of the amplifier configurations. Some exceptions

for this are when the amplifier is configured as integrating or differentiating typologies. The

LT1818 is very unstable in these configurations, and so these topologies should be avoided.

For this reason, the LT1220 is used for the analog differentiation stage on the exactly solvable

chaotic oscillator. The LT1818 is used for all other functions.

The first-order exactly solvable system was designed using the same LT1220 op-amp.

Since the previously mentioned alternate topology contains now other analog components, dig-

ital models were used for the invertors and the D-flip flop. Many different devices were consid-

ered for this design, since the trip voltage of the invertors could vary across a wide range. It was

also noted that some of these invertors have built-in Schmitt trigger inputs for better resistance
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to false switches on noisy input signals. In this case, the Schmitt trigger input would set the

trip voltage at a different voltage than one half the power supply rails. For this reason, inverters

with Schmitt trigger inputs were not used.

The circuit configuration for the nonlinear transistor circuit does not require any integrat-

ing or differentiating amplifiers; therefore, the LT1818 was used for the designs. Multiple tran-

sistors were considered for the nonlinear transistor circuit. Some transistors produced distorted

waveforms, which were easily demonstrated by the phase portraits.

4.1 Exactly Solvable Chaos Simulations

Both of the exactly solvable systems were simulated in LTspice using a wide range of device

models. Both of these systems were intended to be used in a communication or radar applica-

tion, so increasing the fundamental frequency of the oscillators was desirable.

4.1.1 Second-Order Filter

The results of the simulation are in high agreement with the original motivation system’s dy-

namics. All the circuit simulation results were obtained using LTspice. The time domain results

display the aperiodic output of the oscillator and the feedback signal in Fig. 4.2. Plotting the

successive local maxima of the oscillator’s output reconstructs a plot very close to the iterated

shift map, as shown in Fig. 4.1. The code that generates this from the time domain data can be

seen in Appendix A. The gain of the feedback signal and the offset of the oscillator scale the

shift map plot to a range approximately of ±1V.

The system exhibits dense orbits, an indication of topological mixing, that is shown in the

phase space in Fig. 4.3. This implementation also demonstrates sensitivity to initial conditions,

which is shown in Fig. 4.4. This plot displays two different simulation results with an initial

condition of 1 (Red) and 1.0001 (Blue). Initially, the two trajectories are very close. However,

after a short amount of time, the two trajectories diverge.

This topology eliminates the bandwidth limitation associated with the op-amp-based NIC’s

gain bandwidth product (GBP) by using a single transistor that is limited by the device’s unity-

gain current frequency (ft). Generally this frequency will be much higher than an op-amps
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Figure 4.1: Plot of the local successive maxima of the oscillator from the simulated SPICE
model.

GBP. From the simulation results, it was determined that the primary limiting factor in this

design is the propagation delay through the electronic components in the feedback path. This

design constraint is present in both the NIC and the transistor implementations; however, the

NIC’s bandwidth limitations concealed this in previous designs. This limitation of many COTS

designs is somewhat mitigated by using high speed components, where the frequency could be

increased to an order of 1 MHz.

By modifying the resonant tank circuit from Fig. 3.2, this circuit topology simulated from

2 kHz up to 7.8 MHz. For this, the capacitors C1 and C2 were changed to 500 pF, and the

inductor L was changed to 0.8 µH, as shown in equation 4.1. The resulting time domain

response for voltage nodes V and Vs is shown in Fig. 4.5. The corresponding phase space of

the voltage nodes V versus Vd is shown in Fig. 4.6. It is worth noting that in both the time and

phase space plots, there is noticeable distortion and ringing around the switching events for Vs.

This is likely caused by the BJT portion of the circuit that provides the negative resistance. This

is the maximum frequency that could be simulated in this topology. In the higher frequency
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Figure 4.2: Time domain simulation results of the chaotic oscillator, where the output of the
oscillator is plotted as blue and the output of the feedback network, Vs, is plotted as red.

Figure 4.3: Phase space simulation results of the chaotic oscillator.
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Figure 4.4: The initial output voltage of 1 is plotted as blue, and the initial output voltage of
1.0001 is plotted as red.

simulations, the BJT was no longer able to provide a sufficient negative resistance due to a lack

of bandwidth.

fn =
1

2π
√
L( 1

C1
+ 1

C2
)
≈ 7.8 MHz (4.1)

4.1.2 First-Order Filter

The alternate topology was simulated using LTspice. The SPICE model for the LT1220 was

used; however, ideal models with user defined parameters were used for the inverter and the D

flip-flop. The ideal inverters were defined to operate using 5V as a logic high and a trip voltage

of 2.5V. Similarly, the D flip-flop operated at 5V and was given an ideal 1kHz clock. This clock

was used to simulate a function generator.

The time domain response for the voltage nodes V and Vs from Fig. 3.7 can be seen in

Fig. 4.7. By plotting the successive voltage node V at each of the rising edges of the clock

versus the next one, the shift map from Fig. 4.8 can be generated. The simulation results are in

agreement with the original system’s dynamics.
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Figure 4.5: Time domain response of the voltage nodes V and Vs, where the fundamental
frequency is 7.8MHz.

4.2 Forced Nonlinear Transistor Circuit Simulations

In order to provide more insight into how the BJT circuit works, a mathematical model was

derived. If the nonlinear transistor circuit is modeled using traditional small signal techniques,

the resulting system would not exhibit chaos. For the circuit to oscillate in a chaotic manner,

both the forward and reverse active regions must be included in the model. Most of the small

signal models for an NPN transistor are only intended to be used for the forward active region;

however, the Ebers-Moll model does describe both of these regions [105]. This model consists

of two ideal diodes and two ideal voltage-dependent current sources, as shown in the schematic

of Fig. 4.9, where the NPN transistor is replaced with its Ebers-Moll equivalent model. In the

forward active region, the diode D2 is “off”, which blocks the current from IAF, and D1 is

“on”. This means that all of the current flows from the dependent source IAR and through D1.

Similarly, in the reverse active region, D1 is “off”, which blocks the current from IAR, and D2

is “on”. This means that all of the current from the dependent source IAF flows through D2.

Using nodal analysis, the three equations can be written as

v1(t)−Vf
R1

+ c1(v̇1(t)− v̇c(t)) = 0 (4.2)
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Figure 4.6: Shift map generated from the continuous timed waveform from voltage node V ,
where the fundamental frequency is 7.8MHz.

c1(v̇c(t)− v̇1(t)) + (vc(t)−vb(t))
R2

= iR − IAF (4.3)

vb(t)−vc(t)
R2

+ c2v̇b(t) = IAF + IAR− iF − iR (4.4)

where currents are defined as

iF = IES(e
vb(t)

vT − 1) (4.5)

iR = ICS(e
vb(t)−vc(t)

vT − 1) (4.6)

IAF = αF iF (4.7)
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Figure 4.7: Time domain response of the voltage nodes V and Vs.

Parameter Value Units
VT 25.85 mV
R1 0.1 Ω
R2 4.7 kΩ
C1 150 pF
C2 150 pF
αF 0.9973 A/A
αR 0.5 A/A
Is 0.1434 pA
a 3.4 V

Table 4.1: Table of the parameters used in the numerical simulation of equations (4.2)-(4.4).

IAR = αRiR (4.8)

In these equations, the nodes are labeled as v1, vb, and vc, which are, respectively, the

voltage between R1 and C1, the base voltage, and the collector voltage. The circuit parameters

used for the numerical simulation can be found in table 4.1. The forcing function voltage

node is defined as vf = a sin(ωt) where the amplitude of the forcing function is a and the

forcing frequency is ω. The unknown currents are defined as IES = IS
αF

and ICS = IS
αR

.

Here, αF is the forward short-circuit current gain, αR is the reverse current gain, and IS is the

transistor’s reverse saturation current for the Ebers-Moll model. Similarly, the base to emitter

voltage simplifies to be just the base voltage, defined as vBE(t) = vb(t). The base to collector
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Figure 4.8: Shift map generated from the continuous timed waveform from voltage node V .

voltage, vBC(t), is the difference between the base voltage and collector voltage, defined a

vBC(t) = vb(t) − vc(t). Together, (4.2)-(4.4) describe both the forward active region and the

reverse active region of the circuit schematic shown in Fig. 4.9.

The numerical simulations of the time domain and phase space responses using equa-

tions (4.2)-(4.4) are in good agreement with the SPICE and hardware results when compared to

the low frequency prototype previously demonstrated [6, 7]. The time domain plot of the tran-

sistor’s base voltage, when undergoing periodic motion, is shown in Fig. 4.10a with a period-4

solution. The phase space of periodic motion of the base voltage versus the forcing function

can be seen in Fig. 4.10b. The time domain of the transistor’s base voltage shows transitions

between the forward active region, when the forcing frequency is increased. Each time the

transistor enters the reverse active region, Vb becomes negative. This occurs at an aperiodic

interval. This can be seen in the chaotic time domain response in Fig. 4.10c and in the phase

space of the base voltage versus the forcing function in Fig. 4.10d.

The nonlinear transistor circuit demonstrates both periodic and chaotic motion, depending

on the amplitude and frequency of the forcing function, Vf = a sin(ωt). In order to illustrate

that the Ebers-Moll model includes both the forward and reverse active regions of the transistor,
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Figure 4.9: Schematic of the single transistor circuit using the Ebers-Moll model for an NPN
BJT.

bifurcation diagrams were calculated by separately varying the amplitude and frequency. By

varying the forcing amplitude from 0 V to 10 V and finding the Poincaré sections for the base

voltage, the bifurcation diagram for the system was constructed, which is shown in Fig. 4.11.

Similarly, by varying the forcing frequency from 10 Hz to 6 kHz and finding the Poincaré

sections for the base voltage, the bifurcation diagram for the system was constructed, which is

shown in Fig. 4.12. For each bifurcation diagram, the forcing frequency was used as the clock

frequency to find the Poincaré sections of the base voltage.

The circuit from Fig. 3.8 was tested using SPICE simulation software. The op-amp used

for both the twin-T oscillator and the variable gain stage was the LT1818. This op-amp was

chosen because of its high gain-bandwidth product (GBW) and reliable operation. Multiple

transistors were found suitable for operation at lower frequencies; however, the 2N2857 was

found to operate at higher frequencies while minimizing the distortion of the waveform. This

transistor is a general purpose RF BJT that is often used in oscillators for communication

and radar applications. A list of the other NPN BJTs tested for this circuit topology and the

hardware results can be found in Table 4.2. This table includes the maximum collector-base

voltage and collector current ratings for the parts, the type of package, and indicates if the BJTs
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Figure 4.10: By solving equations (4.2)-(4.4) in Mathematica, the following responses were
found. (a) Time domain response of period-4 orbit of the transistors base voltage, where the
forcing function has parameters set as a = 2.53 V and f = 5.1 MHz. (b) Phase space of the
period-4 orbit. (c) Time domain response of chaotic orbit of the transistors base voltage, where
the forcing function has parameters set as a = 3.4 V and f = 5.1 MHz. (d) Phase space of the
chaotic orbit.
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Figure 4.11: For the Ebers-Moll model (equations (4.2) - (4.4)), the bifurcation diagram was
generated by varying the forcing amplitude and and finding the Poincaré sections of the base
voltage. The frequency was held constant at 5.1 MHz. A period-3 region is presented in the
inset figure.
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Figure 4.12: For the Ebers-Moll model (equations (4.2) - (4.4)), the bifurcation diagram was
generated by varying the forcing frequency and finding the Poincaré sections of the base volt-
age. The amplitude was held constant at 3.40 V. A period-3 region is presented in the inset
figure.
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BJT Part No. Vmax (V) Imax (mA) Package Oscillate?
2N5089 25 50 TO-92 Yes

2N2369A 15 200 TO-18 Yes
2SC3837 11 50 SOT-346 No
2SC3838 11 50 SOT-346 No
2N2857 15 40 TO-72 Yes

2N2369A 15 200 TO-18 Yes
2N708 0.5 10 TO-18 No

MMB2369A 15 200 SOT-23 No
MMB2222 40 600 SOT-23 No
CMP2369 15 500 SOT-23 No
2N5179 12 50 TO-72 No

PN2369A 40 100 TO-92 No

Table 4.2: Table of the parameters used in the numerical simulation of equations (4.2)-(4.4).

oscillated or not. The surface mound devices were tested on the breadboard using a breakout

board.

There are a few node voltages and currents from the transistor that are of interest in the

nonlinear transistor circuit. One of these is the transistor’s base voltage. Time domain sim-

ulation results can be seen in Fig. 4.13 where the fundamental frequency of the oscillation is

approximately 700 kHz. This waveform best depicts how the two integration constants are in-

terfering with each other in the transistor circuit. The waveform tends to “reset” itself after an

unpredictable amount of time. This can also be seen in the large current spikes in the collector

current of the transistor, as shown in Fig. 4.14.

Another voltage node is the linear forcing function that is generated by this circuit. This is

best shown when plotted in a phase space of the forcing function versus the base voltage, shown

in Fig. 4.15. This particular phase space is a demonstration of topological mixing represented

in only 2 dimensions in the nonlinear transistor circuit. Another phase space can be seen in the

plots of the collector voltage versus the collector current shown in Fig. 4.16.
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Figure 4.13: Time domain plot of the transistor’s base voltage

Figure 4.14: Time domain plot of the transistor’s collector current

44



Figure 4.15: Phase space plot of the the linear forcing function vs. the transistor’s base voltage

Figure 4.16: Phase space plot of the transistor’s collector voltage vs. the collector current
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Chapter 5

Hardware Results

The simulation schematics were realized in hardware on PCBs using the computer aided design

tool called KiCAD. Some of these PCBs were manufactured by Advanced Circuits; however,

a majority of them were manufactured by OSH Park. Multiple testing points were included in

each of the designs for troubleshooting any problems in the hardware. Each of these designs

went through multiple design iterations. For some of the designs, the static resistors were

replaced with potentiometers in order to tune the chaotic oscillators.

5.1 Exactly Solvable PCB Design

Both of the exactly solvable PCBs were designed using KiCAD. These custom designs were

intended to be used with COTS op-amps, comparators, digital logic, and 0805 passive resistors

and capacitors.

5.1.1 Second-Order Filter

A proof of concept of the oscillator has been implemented in hardware. This design was im-

plemented using COTS parts and a custom PCB designed to operate at 18.4 kHz. Careful con-

sideration went into the PCB design for the mixed-signal oscillator design, as seen in Fig. 5.1.

This prototype includes multiple testing components, buffers, an output voltage level shifting

circuit, and a 50Ω matching network for an SMA connection. The components were placed in

a roughly circular path to minimize the trace length required to complete the feedback loop. A

four layer board was constructed where almost all the traces were on the top copper layer to

further minimize the trace lengths to reduce the use of vias for the signal lines.
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Figure 5.1: Photograph of the populated PCB of the chaotic oscillator.

The remaining three layers were used for power and ground planes. The second layer,

which is directly below the top copper trace layer, was a ground plane to provide isolation from

the third layer which contained the positive and negative power rails. The fourth and bottom

layer was another ground plane to further isolate the power rails. The two ground planes were

used to reduce interference by isolating the devices and signal traces from the power planes.

The ground planes isolate the high speed comparators to minimize false triggers caused by

noise or external signals. Trimmer potentiometers were used for the common-base biasing

resistors to reduce the tolerance required on the parts. This addition to the board eliminated the

oscillator’s sensitivity to thermal effects because they could be manually nulled.

The time domain results of the hardware can be seen in Fig. 5.2 with the output of the

oscillator (yellow), the derivative signal (green), and the feedback signal, Vs (blue). Plotting

the oscillator’s output versus its derivative results in the phase space plot found in Fig. 5.3.

This plot demonstrates that the mixed-signal shift band chaotic oscillator design exhibits thick

solution bands, an indication of the chaotic characteristic of topological mixing. A plot of
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Figure 5.2: Time domain results of the oscillator measured by an oscilloscope (Yellow: Output,
Blue: feedback signal Vs, Green: Derivative of output.)

the successive local maxima of the time domain data results are shown in Fig. 5.4. The code

to generate the shift map from hardware data can be found in Appendix B and Appendix C.

All three of the hardware results in Fig. 5.2-5.4 are in agreement with the original system’s

dynamics and simulations.

Since this system has an exact analytical solution, the hardware matched filter was de-

veloped [91]. For this reason, this system was developed as a communication system. The

system overview for this implementation can be seen in Fig. 5.5. This communication system

was configured to transmit ASCII characters entered in via a computer keyboard or saved in a

text document over a wireless channel to be received by another computer on the other side of

the room that communcates with a microcontroller over a serial connection. This information

was encoded by a microcontroler into the exactly solvable chaotic oscillator with the help of an

analog controller [74].

The control technique used for this implementation is called proportional feedback con-

trol [74]. Two of the desired outputs of the waveforms were saved on the microcontroller
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Figure 5.3: Phase space of the electronic oscillator measured by an oscilloscope.

Figure 5.4: Plot of the local successive maxima of the oscillator from the measured data from
the hardware.
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in a lookup table. These two desired waveforms are then compared with the current state of

the oscillator using an analog controller. The difference between these signals determines the

magnitude of the control effort. The control effort is applied by using small aperodic voltage

perturbations in order to steer the trajectory to the desired one. The time at which the voltage

perturbations are applied is determined by the analog controller. The analog controller takes

the derivative signal off the oscillator board and determines when there is a zero crossing of the

derivative signal. At each zero crossing, the control effort is applied.

This signal is modulated using a commercial FM transmitter, and received by a com-

mercial FM receiver and processed by a custom matched filter, and decoded by a microcon-

troller [91]. A software version of this matched filter was also developed [106]. This message

is then transmitted over a serial connection and displayed on a computer monitor. An example

of the encoding scheme can be seen in the waveforms depicted in Fig 5.6. Here, the green wave-

form is the information to be encoded into the oscillator waveform, the yellow waveform is the

output of the oscillator with the information encoded, the purple waveform is the output of the

matched filter, and the blue waveform is the decoded information sent from the microcontroller

to the displaying computer.

Note that the fundamental frequency of the chaotic oscillator used was approximately

18.9 kHz. This low frequency version of the oscillator did limit the data rate at which the

system could transmit; however, the lower operating frequency of this design was required for

the information to be reliably encoded into the waveform. The propagation delay through the

feedback paths need to be significantly shorter than the period of the fundamental frequency of

the oscillator in order for the controller to work.

The matched filter for this system also means that it is a candidate choice for use in radar

system applications as well [91]. This was demonstrated using a previously developed version

of the same system [52]. One of the fundamental differences between this design and the one

presented in this work is that the previous oscillator used an op-amp based negative impedance

converter. That system’s fundamental frequency was approximently 1.8 MHz, which was too

high to use with the proportional feedback control scheme [74]. However, this oscillator design

is still suitable for radar applications because there is no need to encode information into the
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Figure 5.5: Overview of the the communication system.

Figure 5.6: Oscilloscope capture of the communication system’s input and outputs. Here the
green waveform is the information to be encoded into the oscillator waveform, the yellow
waveform is the output of the oscillator with the information encoded, the purple waveform is
the output of the matched filter, and the blue waveform is the decoded information sent from
the microcontroller to the displaying computer..
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Figure 5.7: Hardware demonstration of the chaos based radar where the oscilloscope (O’scope),
chaotic oscillator (osc), power supplies (PSU), RF transmitting circuitry (Tx), RF receiving
circuitry (Rx), and the matched filter (MF) are marked. A large metal plate was used to shield
(Shield) the transmitting and receiving circuitry.

system. Instead, the oscillator can be left to free run and the transmitted and received wave-

forms can be saved and compared in order to determine the delay between the two waveforms.

Using this system in a radar application has been shown to be effective in field tests, as

shown in Fig. 5.7. Using directional tin-can antennas and COTS parts to create an amplitude

modulated (AM) communication system, this system was used in a radar demonstration. The

transmitting and receiving circuitry was isolated using a large metal plate and the target used

was the back of a sports utility vehicle. Data was collected over three different runs and shows a

somewhat linear response, as seen in Fig. 5.8. These results are in agreement with the measured

distances of the car from the test bench.

5.1.2 First-Order Filter

A low frequency prototype on a custom PCB of the first-order system was constructed using

COTS parts, as shown in Fig. 5.9 and Fig. 5.10. The PCB measures approximately 3 cm by

4 cm and includes multiple testing points. A potentiometer was used for resistor R4 from

Fig. 3.7 so that the gain of the NIC stage could be tuned to the appropriate value to achieve
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Figure 5.8: Plot of the results from the chaos radar demonstration.

both chaotic and periodic responses. Since these chaotic systems have an extreme sensitivity

to initial conditions, the oscillator can be greatly affected by the environment it operates in.

Small changes in things such as the ambient temperature can cause the system to not operate

as expected.

The circuit only required three active ICs. A hex inverter (SN7404N) was used to provide

the four inverting stages. The remaining inputs to the two unused inverters were grounded

to mitigate the affects of noise on the other inverters. The outputs of the unused inverters

were left unconnected. The D flip-flops’ chosen was the MC14175B which is a quad package.

Similarly to the inverters, the unused flip-flops inputs were grounded and the outputs were

left unconnected. The op–amp used for the NIC was the LT1220. This op-amp operates off

of ±15V power rails, while the two digital components operated off a single sided 5V power

supply. The resulting waveforms for the voltage nodes V and Vs are shown in Fig. 5.11.
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Figure 5.9: Front of the PCB of the first-order system.

5.2 Forced Nonlinear Transistor Breadboard Prototype

Before a PCB of the nonlinear transistor oscillator was constructed, a hardware based investi-

gation of the various NPN BJTs was explored, as shown in the schematic shown in Fig. 5.12.

This was done in order to analyze the nonlinear transistor circuit independent of the twin-T

sinusoidal forcing function previously simulated. In order to test a large number of transistors

very quickly, the prototype was built on a breadboard, as shown in Fig. 5.13. In addition to test-

ing multiple transistors, the resistor values for R1 and R2 and the capacitor values for C1 and

C2 were varied. Initially, the values from the original paper were used to demonstrate what is
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Figure 5.10: Back of the PCB of the first-order system.

to be expected from this system. Some of the through-hole transistors that were tested include

the 2N2222, 2N5089, 2N3391A, 2N4401, and the 2N5210B. Of these transistors, the 2N2222

and the 2N5089 were determined to perform the best on the breadboard prototype.

The original transistor circuit was forced by a 2 kHz sinewave. Using the parameters given

in the paper and the 2N5089 transistor, the time domain results can be seen in Fig. 5.14. Here,

the green waveform is the voltage across the base of the transistor and the yellow waveform

is the collector voltage. Note that the collector voltage is not the sinusoidal forcing function;

however, it does demonstrate the nonlinear interactions between the two RC networks. The
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Figure 5.11: Hardware oscilloscope capture of the oscillator, where the voltage node V is in
green and Vs is in yellow.

transistor’s base voltage depicts how the transistor is resting on aperiodic intervals. Plotting the

forcing function versus the base voltage results in the phase space shown in Fig. 5.15. Similarly,

the phase space of the collector voltage versus the base voltage can be seen in Fig. 5.16.

Increasing the frequency of the function generator and a modifying the appropriate circuit

parameters, the system can be pushed to oscillate over 1 MHz. In order to increase the fre-

quency of the oscillations, the values for the capacitors needed to be lowered. An example of

this is shown in Fig. 5.17, where the time domain plots of the collector voltage is in yellow the

and base voltage is in green are shown using the 2N5089. In particular, the base voltage shows

significant distortion when compared to the results in Fig. 5.14. Fig. 5.18 shows the phase

portrait for the sinusoidal forcing function versus the transistor’s base voltage and Fig. 5.19

shows the phase space for the transistor’s collector voltage versus the base voltage. There is

significant distortion in the phase portraits when compared to the phase space plots of the 2 kHz

oscillations.

This design was tested again using the 2N2222 transistor to compare the performance

difference. The time domain results for the collector voltage in yellow and the base voltage

in green are shown in Fig. 5.20. The phase space for the sinusodial forcing function versus
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Figure 5.12: Schematic of the forced non-autonomous system.

Figure 5.13: Breadboard of the forced oscillator using the 2N5089 driven by a table-top func-
tion generator.
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Figure 5.14: Time domain plot of the base voltage (green) and collector voltage (yellow) of the
2 kHz forced oscillator using the 2N5089.

Figure 5.15: Phase space of the sinusoidal forcing function vs. base voltage of the 2 kHz
oscillator using the 2N5089.
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Figure 5.16: Phase space of the collector voltage vs. base voltage of the 2 kHz oscillator using
the 2N5089.

Figure 5.17: Time domain plot of the base voltage (green) and collector voltage (yellow) 1 MHz
forced oscillator using the 2N5089.
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Figure 5.18: Phase space of the sinusoidal forcing function vs. base voltage of the 1 MHz
oscillator using the 2N5089.

Figure 5.19: Phase space of the collector voltage vs. base voltage of the 1 MHz oscillator using
the 2N5089.
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Figure 5.20: Time domain plot of the base voltage (green) and collector voltage (yellow) 1 MHz
forced oscillator using the 2N2222.

the base voltage can be seen in and Fig. 5.21. These results demonstrate that the 2N2222

performance is very similar to the 2N5089. This distortion could potentially be caused in part

from the function generator, but it is more likely a result of the transistor’s limited bandwidth

while operating near the cut off frequency.

5.3 Forced Nonlinear Transistor PCB Design

Two PCBs were constructed in order to demonstrate the nonlinear transistor circuit, as shown

in Fig. 5.22 and Fig. 5.23. One of these boards was populated with appropriate resistors and

capacitors in order to achieve a fundamental frequency of approximately 5.1 MHz, shown in

the top of Fig. 5.23. This board is approximately 2.5 cm by 3.0 cm and a large portion of the

board’s real estate is dedicated to the forcing function and the variable gain stage of the design.

Time domain results for the linear forcing function and the transistor’s base voltage can be seen

in Fig. 5.24. Here, the yellow waveform produced is the output of the twin-T oscillator that is

used as the forcing function and the green waveform is the transistor’s base voltage. Plotting

these two outputs versus each other results in the phase space seen in Fig. 5.25. The included

potentiometer allows for the gain of the forcing function to be tuned into periodic orbits as well.

61



Figure 5.21: Phase space of the sinusoidal forcing function vs. base voltage of the 1 MHz
oscillator using the 2N2222.

An example of this can be seen in Fig. 5.26, where a period-4 orbit of the oscillator is shown

in the base voltage of the transistor. The corresponding phase space of the base voltage versus

the forcing function can be seen in Fig. 5.27.

A second board, shown at the bottom of Fig. 5.23, has been modified so that the collector

current can be measured using a Hall effect sensor, as shown in Fig. 5.28. A demonstration of

this can be seen in Fig. 5.29, where the board is oscillating at approximately 700 kHz. This

phase space is a plot of the collector voltage versus the collector current. This board has a trace

discontinuity that allows for two jumper wire leads to be connected to complete the transis-

tor’s collector current lead. This allows for the current to be measured off the board with the

Hall effect sensor. It is noted that the introduction of the long wire and the Hall effect sensor

introduces some interference in the transistor circuit, which limits the maximum operational

fundamental frequency. These results are in good agreement with the original oscillator’s cir-

cuit dynamics and simulations. Another phase space, depicted in Fig. 5.30, is a plot of the

transistor’s base voltage versus the collector current.
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In a similar manner to the breadboard prototype of the nonlinear transistor circuit, the

values of the capacitors were gradually decreased in order to test the circuit at higher frequen-

cies. In order to further push the frequency of the design, a different transistor was used. The

2N2369A was used over the 2N5089 because of its significantly higher transition frequency of

50 MHz and 300 MHz, respectively. The capacitors on the PCB are surface mount, so a hot air

rework station was used to remove the capacitors. Both the capacitors in the nonlinear transistor

Figure 5.22: Two unpopulated PCBs of the forced transistor circuit with a fundamental fre-
quency of 5.1 MHz (top) and 700 kHz design modified for current measurements (bottom).
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Figure 5.23: Two populated PCBs of the forced transistor circuit with a fundamental frequency
of 5.1 MHz (top) and 700 kHz design modified for current measurements (bottom).
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circuit and the twin-T oscillator have to be changed in order to achieve different fundamental

operating frequencies. By choosing the appropriate capacitor values, the frequency of the os-

cillations was increased. For a capacitor value of 150 pF for C1 and C2, shown in Fig 5.12,

results in a fundamental frequency of approximately 5.1 MHz, shown in Fig 5.31. Plotting the

Figure 5.24: Hardware results for the 5.1 MHz forcing function (yellow) and the transistor’s
base voltage (green).

Figure 5.25: Phase space for the hardware results of the forcing function versus the transistor’s
base voltage.
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Figure 5.26: Time Domain of the oscillator with a period-4 orbit, where the forcing function is
in yellow and the base voltage is in green.

Figure 5.27: Phase space of the oscillator with a period-4 orbit.
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forcing function versus the transistor’s base voltage results in the phase space, which is shown

in Fig. 5.32.

Decreasing the capacitors down to 120 pF increases the fundamental frequency up to

6.25 MHz. The time domain results for the forcing function and the base voltage can be seen

in Fig. 5.33 where the yellow waveform is the forcing function and the green waveform is

the base voltage. Plotting these two versus each other results in the phase space shown in

Fig. 5.34. Comparing the phase space in Fig. 5.32 and the somewhat thinner region of attrac-

tion in Fig. 5.34 indicate that increasing the frequency of the design might restrict the grammar

of the system. However, both frequencies exhibit both periodic and chaotic windows of oscil-

lation, like the lower frequency breadboard design.

Increasing the frequency further to 7.45 MHz requires a capacitor value of 100 pF. The

time domain and phase space results for chaotic motion at 7.45 MHz are shown in Fig. 5.35

where the forcing function is in yellow and the transistor’s base voltage is in green. Plotting the

forcing function versus the base voltage yields the phase space found in Fig. 5.36. Once again,

the bands in the phase portrait seem to be slightly thinner than the lower frequency results. The

distortion is also obvious in the transistor’s base voltage waveform.

Figure 5.28: A close up of the Hall effect current probe connected PCB.
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This trend follows until the oscillator reaches it maximum obtainable frequency at ap-

proximately 10.5 MHz. These results are shown in Fig. 5.37 and Fig. 5.38. While the twin-T

oscillator can be pushed well beyond 10 MHz, there are a number of factors in the transistor

circuit that could contribute to frequency scaling limitations. One of these is that the values of

the capacitors start to become very small, which can be affected significantly by packaging and

layout parasitics. Another limiting factor is that the only active element in nonlinear portion of

Figure 5.29: Phase space for the hardware results of the collector voltage versus the collector
current.
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the circuit is a transistor (2N2369A), that has a transition frequency of 300 MHz. A summary

of all the differnt capactior values and operating frequencies can be found in Table 5.1.

Since the nonlinear transistor circuit transitions from periodic to chaotic solutions based

on the frequency and amplitude of the forcing function, one of these parameters needs to be

variable. For this reason, the twin-T oscillator was set to operate at a fixed frequency by using

static resistors and capacitors in the feedback path. In order to vary the amplitude of the forcing

function, an analog inverting amplifier was used where the feedback resistor was replaced with

Figure 5.30: Phase space for the hardware results of the base voltage versus the collector cur-
rent.
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a potentiometer. By manually tuning this potentiometer, the chaotic time domain trajectory

in Fig. 5.39a was found. The fundamental frequency of this circuit is 795 kHz. The forcing

function is plotted in yellow, while the transistor’s base voltage is plotted in green. The corre-

sponding phase space of the forcing function versus the transistor’s base voltage can be seen in

Fig. 5.39b. Tuning the potentionmeter results in the periodic solution found in Fig. 5.39c and

Figure 5.31: Time domain results (yellow: forcing function, green: base voltage) of the tran-
sistor circuit with capacitor values of 150 pF, which results in a 5.1 MHz oscillation.

Figure 5.32: Phase space plot of the base voltage vs. the sinusoidal forcing function of the
transistor circuit with capacitor values of 150 pF, which results in a 5.1 MHz oscillation.
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Fig. 5.39d. Here, the forcing frequency is approximately 735 kHz, which is plotted in yellow,

and the transistor’s base voltage is plotted in green. The fundamental frequency of this board is

slightly lower than the other different operating frequency of the twin-T oscillator. By changing

values of the capacitors and resistor in the twin-T oscillator, the fundamental frequency of op-

eration can be increased to approximately 5.1 MHz, as shown in Fig. 5.39e. The corresponding

phase space at this frequency can be seen in Fig. 5.39f.

Figure 5.33: Time domain results (yellow: forcing function, green: base voltage) of the tran-
sistor circuit with capacitor values of 120 pF, which results in a 6.25 MHz oscillation.

Figure 5.34: Phase space plot of the base voltage vs the sinusoidal forcing function of the
transistor circuit with capacitor values of 120 pF, which results in a 6.25 MHz oscillation.
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A comparison of the simulation results from equations (4.2)-(4.4) with the hardware re-

sults can be seen in Fig. 5.40. Here, the time domain response of the Ebers-Moll model

(Fig. 5.40a) is seen to be qualitatively similar to the experimental results (Fig. 5.40b). Sim-

ilarly, the phase space of the Ebers-Moll model (Fig. 5.40c) is seen to be qualitatively similar

Figure 5.35: Time domain results (yellow: forcing function, green: base voltage) of the tran-
sistor circuit with capacitor values of 100 pF, which results in a 7.45 MHz oscillation.

Figure 5.36: Phase space plot of the base voltage vs the sinusoidal forcing function of the
transistor circuit with capacitor values of 100 pF, which results in a 7.45 MHz oscillation.
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to the experimental results (Fig. 5.40d). This comparison shows that the simulation model

using the Ebers-Moll model for the BJT is in good agreement with the hardware results.

Figure 5.37: Time domain results (yellow: forcing function, green: base voltage) of the transis-
tor circuit with capacitor values of 68 pF for twin-T and 39 pF for the transistor circuit, which
results in a 10.5 MHz oscillation.

Figure 5.38: Phase space plot of the base voltage vs the sinusoidal forcing function of the
transistor circuit with capacitor values of 68 pF for twin-T and 39 pF for the transistor circuit,
which results in a 10.5 MHz oscillation.
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Frequency (MHz) C1 (pF) C2 (pF)
5.1 150 150

6.25 120 120
7.45 100 100
10.5 39 68

Table 5.1: Table summarizing the capacitor values for C1 and C2 and resulting frequency of the
nonlinear transistor circuit.

Figure 5.39: (a) Time domain plot of the chaotic response, where f = 795 kHz. (b) Phase
space of the chaotic orbits, where f = 795 kHz. (c) Time domain plot of the periodic response,
where f = 735 kHz. (d) Phase space of the periodic orbits, where f = 735 kHz. (e) Time
domain plot of the chaotic response, where f = 5.1 MHz. (f) Phase space of the chaotic orbits,
where f = 5.1 MHz.
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Figure 5.40: (a) Time domain plot of the chaotic response from Ebers-Moll simulation.
(b) Time domain plot of the chaotic response from the experiment. (c) Phase space of the
chaotic orbits from simulation. (d) Phase space of the chaotic orbits from the experiment.
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Chapter 6

Conclusions

Chaos electronics have a wide range of potential applications; however, many of these are

based on theoretical calculations or ideal mathematical definitions which may be difficult or

impractical to realize in electronic circuits. This work investigated some previous work done on

these systems and proposes some potential alternate topologies. These are topologies that may

lend itself to more practical and reliable implementations in electronics. These typologies might

scale more favorable in frequency while still maintaining the original system’s functionality.

In this work, three chaotic systems were analyzed, simulated, and constructed in hard-

ware. Two of these autonomous systems have been shown to have exact analytical solutions,

which were used to develop matched filters for these systems. This makes both of these sys-

tems ideal candidates for communication and radar applications. One of the presented systems

was demonstrated in a chaos based communication system. This system was controlled using

proportional feedback control in order to encode information into the oscillator’s waveform.

While both of these exactly solvable systems share underlying dynamics that are conjugate

to the iterated shift map, the primary difference between them is the order of the filter. One

system is based on a second-order filter and the other is based on a first-order filter. These

designs were simulated using SPICE, where alternate topologies from the original motivation

work were developed. Both of these designs were implemented using COTS parts on custom

designed PCBs.

The second system demonstrated shared the underlying dynamics as the previously men-

tioned system. Both of these systems are conjugate to the iterated shift map; however, this one

was based on a first-order filter instead of a second-order filter. The original circuit proposed
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contained a comparator and level shifting op-amps in the feedback path. By separating the

analog and digital grounds, the feedback componets could be replaced by CMOS invertors.

Since the trip voltage of the comparators is roughly half the power supply voltage, they could

effectively act as a comparator.

This alternate topology was implemented using a custom PCB that was approximately 2.54

cm by 2.54 cm. Multiple ICs were replaced by a single IC while still maintaining functionality.

SMD COTS parts were used to further reduce the form factor of the electronic chaotic system.

The third system was a non-autonomous circuit based on a nonlinear transistor circuit.

This circuit topology was modeled using the Ebers-Moll model for a NPN BJT. From this

model, a system of equations was derived using nodal analysis and numerically simulated.

These results were shown to be qualitatively similar to the SPICE and hardware results. This

system was sinusoidal forced and it could exhibit both chaotic and periodic motion based on

the amplitude and frequency of the forcing function. From varying these two parameters, bi-

furcation diagrams were constructed of the system.

This relatively simple circuit consisted of two capacitors, two resistors, and a single NPN

BJT; it was implemented on a custom PCB. In order to minimize the overall footprint of the de-

sign, the sinusoidal forcing function was integrated onto the PCB with the nonlinear transistor

circuit.

Two PCBs were constructed, one at 5.1 MHz and one at approximately 750 kHz, to

demonstrate high frequency operation and to show the phase space featuring the collector cur-

rent of the transistor. Both of these designs fit on an approximately 2.5 cm by 3.0 cm PCB.

Simulation and hardware results were in were in good agreement with the original motivation.

These designs show that the inherent nonlinearities in electronic devices can be realized in a

relativity small footprint across a wide range of frequencies. This can lead to easier integration

into potential applications, such as RNG, communications, and radar, where chaotic properties

are advantageous.

There are a wide range of applications that could benefit from high frequency chaotic

oscillators, such as communication systems, radar, and RNGs. For this reason, the nonlinear
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transistor circuit was modified to operate at higher frequencies by changing component val-

ues. This design was able to operate at an upper limit of approximately 5.1 MHz, before the

waveform began to deviate from expected operation.
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Chapter 7

Future Work

Much of the work in this dissertation was focused on developing these electronic chaotic sys-

tems. Future work on these systems would include pushing the fundamental frequency of these

designs. One approach to doing this would be to design the chaotic systems into an ASIC. It is

noted that moving to an ASIC would significantly increase the cost as well as take significantly

longer to manufacturer and test. The advantage of quick prototyping is lost on this approach.

The presented design for the exactly solvable chaotic system based on the second-order

filter operated at a fundamental frequency of approximately 18.9 kHz. This frequency was

chosen in order for information to be easily and reliably encoded into the waveform for use in

a communication system. One of the primary advantages of an ASIC for an oscillator is the

reduction of the overall propagation of the feedback path since all the devices are included in a

single package as well as having matching capacitors and transistors. The proposed topology

has advantages over the NIC design since a single transistor oscillator is easier to implement

than a single or a network of op-amps in an ASIC.

Similarly, the design for the exactly solvable chaotic system based on the first-order filter

could benefit from being implemented in an ASIC. A very high bandwidth op-amp could be

designed for the op-amp based NIC, which could greatly increase the fundamental frequency

of the design. This, combined with high speed logic designs, could greatly decrease the propa-

gation delay through the feedback path.

The nonlinear transistor circuit was tested at various frequencies, where the primary limit-

ing factor was found to be the GBP of the transistor and the size of the capacitors in the circuit.
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In the same breathe as the other two designs, moving the design to an ASIC would be benefi-

cial for this design. Since the PCB design of this board is at a moderately high frequency, this

design could also be tested as an RNG. This could be done by using a very precise data logging

oscilloscope and tested using the NIST or Dieharder statistical testing suites.
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Appendix A

MATLAB Code To Generate Shift Map From Simulation Data

%%
%plot shift map from sim

%read in results from "data" which is : by 5 array
time=data(:,1); %time domain points
clk=data(:,2); %system clock for D-flip flop
clk2=data(:,3); %half the frequency of the system clock
V=data(:,4); %voltage node V
Vs=data(:,5); %feed back voltage node Vs

%find zero crossings
% Returns Zero-Crossing Indices Of Argument Vector
zci = @(v) find(v(:).*circshift(v(:), [-1 0]) <= 0);
% Approximate Zero-Crossing Indices
zx = zci(clk2-2.5);

% V=V-mean(V);

%clear arrays
Vzc=[];
Tzc=[];

%find pointers
for i = 1:length(zx)

Vzc(i)=V(zx(i));
Tzc(i)=time(zx(i));

end

% count=1;
% for i = 1:(length(zx)/2)-1
% Vzc(count)=V(zx(count));
% Tzc(count)=time(zx(count));
% count=count+2;
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% end

%Plot the shift map
hold on
for i = 1:100 \%if you want all points (length(zx)-1)

scatter(Vzc(i),Vzc(i+1),’*’,’k’)
end
xlim([0,5]) \%Vcc was 5V
ylim([0,5])
xlabel(’V_n (Volts)’)
ylabel(’V_{n+1} (Volts)’)
set(gca,’FontSize’, 15)
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Appendix B

MATLAB Code To Generate Shift Map From Hardware Data

%%
%plot shift map from hardware

%read in results from "data" which is : by 5 array
time=data(:,1); %time domain points
% clk=data(:,2); %half the frequency of the system clock
clk2=data(:,3); %system clock for D-flip flop
V=data(:,2); %voltage node V
Vs=data(:,4); %feed back voltage node Vs

%find zero crossings
% Returns Zero-Crossing Indices Of Argument Vector
zci = @(v) find(v(:).*circshift(v(:), [-1 0]) <= 0);
% Approximate Zero-Crossing Indices
zx = zci(clk2);
zx = zx(1:2:end); %take every other ZC

% V=V-mean(V);

%clear arrays
Vzc=[];
Tzc=[];

%find pointers
for i = 1:length(zx)

Vzc(i)=V(zx(i));
Tzc(i)=time(zx(i));

end

% count=1;
% for i = 1:(length(zx)/2)-1
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% Vzc(count)=V(zx(count));
% Tzc(count)=time(zx(count));
% count=count+2;
% end

%normalize
% Vzc_max =(max((Vzc)));
Vzc_min =(min((Vzc)));
% % Vzc=(Vzc+Vzc_max)/(Vzc_max);
Vzc=(Vzc-Vzc_min);
Vzc_max =(max((Vzc(2:end))));
Vzc=Vzc/abs(Vzc_max);
%Plot the shift map
hold on
for i = 1:(length(zx)-1)
%if you want all points (length(zx)-1)

scatter(Vzc(i),Vzc(i+1),’.’,’k’)
end
xlim([0,1]) %Vcc was 5V
ylim([0,1])
xlabel(’V_n (Volts)’)
ylabel(’V_{n+1} (Volts)’)
set(gca,’FontSize’, 15)
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Appendix C

MATLAB Code To Generate Shift Map From Hardware Data in Noise

%%
%%input is a single vector array called ’data’
%find the peaks and valleys of the time domain data
signal=1*data(:,2);
%peaks = mag
%
%%note this only works on versions of matlab2014 or newer
clear peaks valleys timeOfPeak timeOfValley max
clear peaksValleys catValleys catPeaks
% [peaks,loc]= findpeaks
(signal,’MinPeakProminence’,0.2,’MinPeakDistance’,100);
[peaks,loc]=
findpeaks(data(:,2),’MinPeakProminence’,.5);
% [peaks,loc]=findpeaks(signal);%,’MINPEAKHEIGHT’,1);
for i = 1:length(peaks)

timeOfPeak(i) = data(loc(i),1);
end
% timeOfPeak=timeOfPeak’;

% h=figure;
% hold on;
% plot(data(:,1),data(:,3),’-r’)
% scatter(timeOfPeak, peaks);

% [valleys,loc2] = findpeaks
(-1*signal,’MinPeakProminence’,0.2,’MinPeakDistance’,100);
[valleys,loc2] =
findpeaks(-1*data(:,2),’MinPeakProminence’,.5);
% [valleys,loc2] =
findpeaks(-1*signal);%,’MinPeakProminence’,0.5);
for j = 1:length(valleys)
timeOfValley(j) = data(loc2(j),1);
end
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% timeOfValley = timeOfValley’;
valleys=valleys*-1;

% scatter(timeOfValley, -1*valleys);
% xlim([0 1e-3])
%find max
max_u=max(signal);
avg=mean(signal);
% avg=0;
% Delete the unwanted outside points
% Q=sortrows(peaksValleys,2);

Q=find((abs(peaks-avg)<0.5));
% Q=find((peaks));
peaks(Q) = [];
timeOfPeak(Q) = [];
%
Q=find((abs(valleys-avg)<0.5));
% Q=find((valleys));
valleys(Q) = [];
timeOfValley(Q) = [];

%%save peaks plot b4 the account for max
% peaks_plot = peaks;
% valleys_plot=valleys;

%account for max
peaks = peaks - max_u+avg;
valleys = valleys + max_u-avg;

%test remove s(t)
% peaks = peaks - 1;
% valleys = valleys - 1;

% peaks = peaks’
%combine all the peaks and valleys into a single array
catPeaks = cat(2,timeOfPeak’, +1*peaks);
catValleys = cat(2,timeOfValley’,+1*valleys);
peaksValleys = cat(1,catPeaks,catValleys);
%sort values
[values, order] = sort(peaksValleys(:,1));
peaksValleys = peaksValleys(order,:);
%old sort values
% peaksValleys=sort(peaksValleys,’ascend’);

peaksValleys = peaksValleys*0.5;
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peaksValleys(:,2) = peaksValleys(:,2)+.5;

h = figure;
hold on
% plot(data(:,1),signal,’-r’)
scatter(peaksValleys(:,1), peaksValleys(:,2))
xlim([0 1e-3]);
% xlim([0 20]);
% xlim([0 15]);
hold off

% %plots the x coordinates of peakValleys
% h=figure;
% hold on
% for i=1:(length(peaksValleys)-1)
% scatter(peaksValleys(i,1),peaksValleys(i+1,1))
% end

%plots the y coordinates of peakValleys
count=1;
h=figure;
hold on
for i=1:(length(peaksValleys)-1)
% for i=1:4
scatter(peaksValleys(count,2),peaksValleys(count+1,2),’.’)
count = count+1;
end
xlabel(’x_n’)
ylabel(’x_{n+1}’)

xlim([0 1])

ylim([0 1])
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