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Abstract

In this dissertation, we study several stochastic partial differential equations (SPDEs) in

the open and bounded domain D, subset of Rd for d ≥ 1, driven by a multiplicative noise. We

are interested in bounds and asymptotic properties of the random field solution.

We study the nonlinear stochastic fractional heat equation driven by three types of noise.

Existence and uniqueness of the solution is proved using a Picard iteration scheme. Upper and

lower bounds on all pth moments, for p ≥ 2, of the solution are obtained when the noise is

spatially homogeneous (or spatially colored) with the space correlation function given by the

Riesz kernel and when the noise is space-time homogeneous, with the time correlation function

given by the fractional Brownian motion (fBm) while the space correlation function is given by

the Riesz kernel in space. We also show that under exterior boundary conditions, in the long

run, the pth-moment of the solution grows exponentially fast for large values of the noise level.

However, for small values of the noise level, we observe eventually an exponential decay of the

pth-moment of this solution.
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Chapter 1

Introduction

Stochastic Partial Differential Equations(SPDEs) have been studied a lot recently due to many

challenging open problems in the area but also due to their deep applications in disciplines that

range from applied mathematics, statistical mechanics, and theoretical physics, to theoretical

neuroscience, theory of complex chemical reactions [including polymer science], fluid dynam-

ics, and mathematical finance, see for example [23] for an extensive list of literature devoted to

the subject. On the other hand, SPDEs driven by a random noise which is white in time but col-

ored in space have increasingly received a lot of attention recently, following the foundational

work of [11]. One difference with SPDEs driven by space-time white noise is that they can be

used to model more complex physical phenomena which are subject to random perturbations.

Two phenomena of interest are usually observed when studying these SPDEs: ”intermittency”

and ”phase transitions”. See for example [1], [2], [3], [4], [16] , [19] and [20] for the former

and [14], [18], [19], [26] and [38] for the latter.

In this thesis, we consider the fractional stochastic heat equation driven by a space-time

colored noise on D := BR(0), the open ball of radius R centered at the origin in Rd, d ≥ 1,

with zero exterior Dirichlet boundary conditions:


∂
∂t
ut(x) = −(−∆)α/2ut(x) + ξσ(ut(x))Ḟ (t, x) x ∈ D, t > 0,

ut(x) = 0 x ∈ Dc,

(1.0.1)
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where α ∈ (0, 2], −(−∆)α/2 is the L2−generator of a symmetric α−stable process in Rd

”killed” upon exiting the domain D and can be written in the form

−(−∆)
α
2 u(x) = c(α, d) lim

ε↓0

∫
{y∈Rd:|y−x|>ε}

(
u(y)− u(x)

)
dy

|y − x|d+α
.

The initial condition u0(·) is a bounded and nonnegative function. The coefficient ξ denotes

the level of the noise; σ : R → R is a globally Lipschitz function satisfying some growth

conditions. When σ = Id, the identity map, the resulting equation is called the Parabolic

Anderson Model (PAM) and has been studied extensively in [1, 2, 4]. The mean zero Gaussian

process Ḟ is a space-time colored noise, i.e

E
(
Ḟ (t, x)Ḟ (s, y)

)
= γ(t− s)Λ(x− y), (1.0.2)

where γ : R → R+ and Λ : Rd → R+ are general nonnegative and nonnegative definite

(generalized) functions satisfying some integrability conditions. The Fourier transform of the

latter, Λ̂ = µ is a tempered measure. When γ = δ0 and Λ = δ0, where δ0 is the Delta-Dirac

distribution, the noise is said to be a space-time white noise.

When γ = δ0, following Dalang [11], it is well-known that, if the spectral measure satisfies

condition (1.0.3) (known as Dalang’s condition):

∫
Rd

µ(ζ)

1 + |ζ|α
<∞, (1.0.3)

then there exists a unique random field solution of (1.0.1). We provide the proof of existence

and uniqueness of the random field solution in Chapter 5.

Some examples of space correlation functions satisfying condition (1.0.3) include

• Space-time white noise: Λ = δ0 in which case µ(dζ) = dζ and (1.0.3) holds only when

α > d which implies d = 1 and 1 < α ≤ 2.

• Riesz Kernel: Λ(x) = |x|−β, 0 < β < d. Here, µ(dζ) = c|ζ|−(d−β)dζ and (1.0.3)

holds whenever β < α.
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• Bessel kernel: Λ(x) =
∫∞

0
y
η−d
2 e−ye−

|x|2
4y dy. In this case, µ(dζ) = c(1 + |ζ|2)−

η
2 dζ and

(1.0.3) implies η > d− α.

• Fractional Kernel: Λ(x) =
∏d

i=1 |xi|2Hi−2. µ(ζ) = c
∏d

i=1 |xi|1−2Hidζ and (1.0.3)

holds whenever
∑d

i=1Hi > d− α
2
.

We refer the interested reader to [17] for more examples of such functions.

Since stable Lévy processes will be mentioned many times throughout this thesis, we give

a brief description of symmetric stable Lévy motions (processes) in the next few lines. For

more general and detailed results about stable processes, we refer the reader to [35]. The next

few definitions give an exposition to the Theory of Probability.

Let
(
Ω,F ,P

)
be a probability space and let B be the Borel σ− field on [0,∞).

Definition 1.0.1. A stochastic process, denoted Xt(ω) or just Xt, is a map: R+×Ω→ R, that

is measurable w.r.t the product σ− field B × F .

Definition 1.0.2. Two (stochastic) processes Xt and Yt defined on the same index set T are

versions of one another if Xt = Yt a.s for each t ∈ T.

In the special case that T = Rd or R+, we note that two continuous or right-continuous

versions X and Y of the same process are indistinguishable, in the sense that X ≡ Y. In

general, the latter notion is clearly stronger.

Definition 1.0.3. Fix an arbitrary index set T ⊂ R̄. A filtration on T is a nondecreasing family

of σ− fields Ft ⊂ F , t ∈ T.

We say that a process X is adapted to the filtration {Ft}t∈T if Xt is Ft− measurable for every

t ∈ T.

Definition 1.0.4. A (continuous-time) martingale is an integrable and adapted process M sat-

isfying, for all s ≤ t,

Ms = E
[
Mt|Fs

]
a.s.
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Definition 1.0.5. A stochastic process {Xt}t≥0 is a one-dimensional Brownian motion or Wiener

process (started at 0) if

(1) X0 = 0 a.s.

(2) Xt −Xs is a mean zero Gaussian r.v with Var(Xt −Xs) = |t− s|

(3) for all s < t, Xt−Xs is independent of σ(Xr; r ≤ s), where σ(Xr; r ≤ s) is the smallest

σ− field w.r.t which each Xr is measurable, r ≤ s.

Note also that for a Brownian motion, the covariance function is given by

Cov
(
Xt, Xs

)
=

1

2

(
t+ s− |t− s|

)
s, t > 0. (1.0.4)

Definition 1.0.6. A r.v X is said to be symmetric α− stable if there are parameters 0 < α ≤ 2

and τ ≥ 0 such that its characteristic function is given by

EeiθX = e−τ
α|θ|α ,

and we will denote that by X ∼ S(α, τ). Note that when α = 2, X is a Gaussian r.v.

Definition 1.0.7. Let 0 < α ≤ 2. A stochastic process {Xt}t≥0 is called symmetric α-stable

Lévy motion (process) if

(1) X0 = 0 a.s.

(2) X has independent increments.

(3) Xt −Xs ∼ S
(
α, |t− s|1/α

)
for all s, t ≥ 0

When α = 2, this process correspond to the famed Wiener process or Browian motion.

Understanding the noise is essential in solving our main problem. Therefore, we give a

few details about the noise below.

Let L (Rd) denote the ring of all Borel-measurables subsets of Rd that have finite Lebesgue

measure.
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Definition 1.0.8 (Wiener, 1923). A white noise on Rd is a mean-zero set-indexed Gaussian

random field (GRF) {W (A)}A∈L (Rd) with covariance

E
(
W (Ai)W (Aj)

)
= |Ai ∩ Aj| (Al ∈ L (Rd)),

where | · | denotes the d-dimensional Lebesgue measure.

It is not hard to show that a white noise exists and is an L2(Ω)-valued countably-additive

measure on L (Rd). It is actually possible to construct interesting processes from a white noise,

as shown in the next few examples. We also refer the reader to [23] for more examples.

Example 1.0.9. Let W denote a white noise on R. Then the map t 7→ Bt := W ([0, t]) is a

one-dimensional Brownian motion for all t > 0. Clearly, B is a mean-zero Gaussian process

sinceW is. Therefore, we only have to check if its covariances function satisfies (1.0.4). W.l.o.g

pick 0 < s ≤ t. Then

E
(
BtBs

)
=
∣∣∣[0, t] ∩ [0, s]

∣∣∣ = s.

and this proves the desired result.

Another interesting process that can be constructed from a white noise a Brownian sheet.

Definition 1.0.10 (Čencov, 1956). A Brownian sheet indexed by Rd is a mean-zero Gaussian

random field {B(x)}x∈Rd with covariance

E
[
B(x)B(y)

]
=

d∏
i=1

min
(
|xi|, |yi|

)
1[0,∞)(xiyi), x, y ∈ Rd.

One way to show the existence of a Brownian sheet is to check that the identity in the definition

above is indeed a covariance function on Rd. But the next example gives a more informative

method for proving the existence of such process.

Example 1.0.11. Let W denote a white noise on Rd and define B(x) := W
(
R(x)

)
for all

x ∈ Rd, where R(x) denotes the smallest aligned hypercube in Rd that contains the origin

and x as its two extremal vertices, and whose faces are parallel to the axes- for example,
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B(x) = W
[
[0, x1]× [0, x2]× · · · × [0, xd]

]
if x1, x2, · · · , xd > 0. Then, B defines a Brownian

sheet. Note also that a one-dimensional Brownian sheet is just a Brownian Motion.

The following Proposition shows that a Brownian sheet is the CDF of a white noise.

Proposition 1.0.12. [23] Let B denote the Brownian sheet that we just constructed from the

white noise W . Then for all φ ∈ C∞0 (Rd),

∫
φdW = (−1)d

∫
Rd

∂dφ(x)

∂x1 · · · ∂xd
B(x)dx a.s,

where the mixed derivative is interpreted in a ”generalized sense”.

Because a white noise is an L2(Ω)-valued measure, it makes sense to imagine integrating

various functions against it (like in the Proposition above, for example). This turns out to be

the case, and the resulting L2(Ω)-valued integral is called a Wiener integral. The construction

of a Wiener integral is modeled on the the Lebesgue integration. We follow ideas from [23].

Fact: we can identify the L2(Ω)-valued measure W with an L2(Ω)-valued integral as follows:

Recall that a function h : Rd → R is simple–in the Lebesgue’s sense– if

h(x) :=
n∑
i=1

ci1Ai(x), where Ai ∈ L (Rd) are disjoint and ci ∈ R.

Let S (Rd) denote the collection of all simple functions on Rd.

• Pick h ∈ S (Rd). Then,

W (h) :=

∫
hdW :=

∫
h(x)W (dx) :=

n∑
i=1

ciW (Ai)

is linear in h (a.s), a GRF indexed by all elementary functions h. Moreover it is centered

and

‖W (h)‖2
L2(Ω) := E

(
|W (h)|2

)
= ‖h‖2

L2(Rd). (1.0.5)

Identity (1.0.5) is known as the Wiener isometry.
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Next, define

W (h) :=

∫
hdW :=

∫
h(x)W (dx) for all h ∈ L2

(
Rd
)

by density.

The stochastic integral
∫
hdW is called the Wiener integral of the non-random function h ∈

L2(Rd) against the white noise W . The following facts hold:

•

L2(Rd) 3 h 7→ W (h) ∈ L2(Ω)

is a GRF, a linear isometry ;

• EW (h) = 0 for all h ∈ L2(Rd);

• for all g, h ∈ L2(Rd),

Cov

(∫
gdW,

∫
hdW

)
=

∫
g(x)h(x)dx.

• If h ∈ L2(Rd) and A ∈ L (Rd), then we may write the definite stochastic integral of h

on A as follows:

∫
A

hdW :=

∫
A

h(x)W (dx) =

∫
h1AdW.

In this way, we can think of the Wiener isometry (1.0.5) as the assertion that the stochastic

integration map h 7→
∫
hdW is a linear isometric embedding L2(Rd) ↪→ L2(Ω).

Next, as we shall see later in this thesis, the solution of (1.0.1) is a random field (RF).

Thus, we are interested in constructing an Itô-like integral to handle our computations. That is,

we wish to construct an Itô-like stochastic integral
∫
hΨdW , where h ∈ L2(R+ × Rd) is non-

random and Ψ is a ”nice random field.” Now we sketch a construction of the ”Walsh stochastic

integral” w.r.t the white noise W .This construction is taken from [23] and follows ideas from

[11, 37]. For this reason, the resulting integral is sometimes referred to as the ”Walsh-Dalang”

integral. We have the following facts:

7



• If h ∈ L2(R+ × Rd), then the Gaussian process

0 < t 7→ Xt(h) :=

∫
(0,t)×Rd

hdW

is a continuous L2(Ω)-martingale.

• (t, x) 7→ Ψt(x) is an elementary random field if there exist 0 ≤ a < b and an Fa-

measurable r.v X ∈ L2(Ω) and a non-random, bounded, and measurable function φ ∈

L2(Rd) such that

Ψt(x) = X1(a,b](t)φ(x), t > 0, x ∈ Rd.

• A random field Ψ is simple if there exist elementary random fields Ψ(1), ....,Ψ(n) with

disjoint supports such that Ψ =
∑n

i=1 Ψ(i).

• If h = ht(x) and Ψ is elementary, then it is natural to define the stochastic integral

∫
(a,b]×Rd

hΨdW := X

∫
(a,b]×Rd

ht(x)φ(x)W (dt, dx).

Note that h is non-random, and the stochastic integral
∫
hΨdW is Wiener and it is well-

defined iff ht(x)φ(x) ∈ L2([a, b]×Rd). We can then approximate h by simple functions–

in the sense of Lebesgue–in order to see that in this case, the stochastic integral
∫
hΨdW

is Fb− measurable.

• If Ψ is a simple random field, then

∫
hΨdW :=

n∑
i=1

∫
hΨ(i)dW.

The defining properties of Wiener integrals imply readily that the preceding integral is

well defined. Moreover,

• for every simple RF Ψ,

E
∫
hΨdW = 0

8



• and more significantly, the following property holds:

E

(∣∣∣∣∣
∫
hΨdW

∣∣∣∣∣
2)

=

∫ ∞
0

ds

∫
Rd
dy[hs(y)]2E

(
|Ψs|2

)
. (1.0.6)

The identity (1.0.6) is a Hilbert-space isometry–known as the Walsh isometry– and has a char-

acter that is similar to the Itô isometry in the theory of ordinary stochastic integration.

Now that we know the meaning of stochastic integrals appearing in the study of SPDEs,

we can now proceed to explore the problem of interest. But not before the following definition.

Definition 1.0.13. Assume γ = δ0. Following Walsh [37], a random field {ut(x)}t>0,x∈D is

called a mild solution of (1.0.1) in the Walsh-Dalang sense if

1. ut(x) is jointly measurable in t ≥ 0 and x ∈ D;

2. for all (t, x) ∈ R+ ×D, the stochastic integral

∫ t

0

∫
D

pD(t− s, x, y)σ
(
us(y)

)
F (dy, ds)

is well-defined in L2(Ω); Moreover,

sup
t>0

sup
x∈D

E|ut(x)|p <∞, for all p ≥ 2; (1.0.7)

3. The following integral equation holds in L2(Ω):

ut(x) =
(
GDu0

)
t
(x) + ξ

∫ t

0

∫
D

pD(t− s, x, y)σ
(
us(y)

)
F (dy, ds), (1.0.8)

where (
GDu0

)
t
(x) :=

∫
D

pD(t, x, y)u0(y)dy

and pD(t, x, y) denotes the Dirichlet heat kernel of the stable Lévy process. It is the

transition density of the stable Lévy process killed in the exterior of D and the stochastic

integral is understood in the Walsh-Dalang sense (extended Itô sense).
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Because the Dirichlet heat kernel will play a major role in the proof of our main results,

we give a few details about it. We define the ”killed process”:

XD
t =


Xt t < τD

0 t ≥ τD,

where τD = inf{t > 0 : Xt /∈ D} is the first exiting time. Next, define

rD(t, x, y) := Ex[p(t− τD, XτD , y); τD < t].

Then

pD(t, x, y) = p(t, x, y)− rD(t, x, y),

where p(t, ·) is the transition density of the ”unkilled process” Xt. Note that p(t, x, y) is also

written p(t, x− y) in some literature.

When α = 2, Xt corresponds to a Brownian motion (Bt)t≥0 with variance 2t, and in this

case p(t, ·) is explicitely given by

p(t, x, y) = (4πt)−d/2e−
|x−y|2

4t for all x, y ∈ Rd. (1.0.9)

When α ∈ (0, 2), then Xt coincides with an α-stable Lévy process given by Xt = BSt ,

where (St)t≥0 is an α/2-stable subordinator with Lévy measure

ν(dx) =
α/2

Γ(1− α/2)
x−1−α/21{x>0}dx.

No explicit expression is known for p(t, ·) in this case, but the following approximation

holds:

C1 min

(
t−d/α,

t

|x− y|α+d

)
≤ p(t, x, y) ≤ C2 min

(
t−d/α,

t

|x− y|α+d

)
(1.0.10)
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for some positive constants C1 and C2. See for example [9] and the references therein. One

important property of the heat kernel p(.) is the Chapman-Kolmogorov identity (also known as

the semigroup property), i.e

∫
Rd
p(t, x, z)p(s, y, z)dz = p(t+ s, x, y) for all x, y ∈ Rd and s, t > 0. (1.0.11)

It is an easy fact that pD(.) also satisfies the Chapman-Kolmogorov identity. Recall that the

Dirichlet heat kernel pD(t, x, y) has the spectral decomposition

pD(t, x, y) =
∞∑
n=1

e−µntφn(x)φn(y), for all x, y ∈ D, t > 0,

where {φn}n≥1 is an orthonormal basis of L2(D) and 0 < µ1 ≤ µ2 ≤ ... ≤ µn ≤ ... is a

sequence of positive numbers satisfying, for all n ≥ 1 :


−(−∆)α/2φn(x) = −µnφn(x) x ∈ D

φn(x) = 0 x ∈ Dc.

For all n ≥ 1, it is well-known that

c1n
α/d ≤ µn ≤ c2n

α/d (1.0.12)

for some constants c1, c2 > 0. See for example [7, Theorem 2.3], for more details. Moreover

by [8, Theorem 4.2], for all x ∈ D,

c−1(R− |x|)α/2 ≤ φ1(x) ≤ c(R− |x|)α/2, for some c > 1. (1.0.13)

For example, when α = 2 and D = (−1, 1), we get for n = 1, 2, ...

φn(x) = sin
(nπ

2
(x+ 1)

)
and µn =

(nπ
2

)2

.
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The following assumptions will be needed when proving the main results:

Assumption 1.0.14. γ : R→ R+ is locally integrable.

Assumption 1.0.15. There exist constants C1 and C2 and 0 < β < α ∧ d such that for all

x ∈ Rd,

C1|x|−β ≤ Λ(x) ≤ C2|x|−β.

Assumption 1.0.16. There exist positive constants lσ and Lσ such that for all x ∈ Rd,

lσ|x| ≤ σ(x) ≤ Lσ|x|.

Assumption 1.0.17. There is ε ∈
(
0, R

2

)
such that

inf
x∈Dε

u0(x) > 0,

where Dε := BR−ε(0)

Assumption 1.0.18. There exists a positive constant KR such that

inf
x∈Dε

Λ(x) ≥ KR

When the noise term is a space-time colored noise, the definition provided above for the

random field solution doesn’t apply. Therefore, a new approach is necessary in understand-

ing the solution. The following definition provides a different interpretation of the solution.

Unfortunately, this approach works only for the PAM.

Definition 1.0.19. Assume σ = Id. An adapted random field u := {ut(x)}t>0,x∈D such that

E[ut(x)]2 <∞ for all (t, x) is a mild solution to (1.0.1) in the Skorohod sense if for any (t, x) ∈

R+×D, the process {pD(t− s, x, y)us(y)1[0,t](s) : s ≥ 0, y ∈ D} is Skorohod integrable with

respect to the Gaussian differential F (δs, δy) and the following integral equation holds:

ut(x) =
(
GDu0

)
t
(x) + ξ

∫ t

0

∫
D

pD(t− s, x, y)us(y)F (δs, δy). (1.0.14)
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It is well-known that a unique mild solution (1.0.14) exists in the Skorohod sense provided

that the time correlation γ is locally integrable and the space correlation Λ satisfies condition

(1.0.3). One of the time correlation functions that has received a lot of attention lately is the

correlation function of the so-called fractional Brownian motion (of index H .)

Definition 1.0.20 (Mandelbrot Van Ness, 1968)). A Fractional Brownian Motion with index H,

denoted fBm(H), is a centered Gaussian process {Xt}t≥0 with X0 = 0 and satisfying

E
∣∣Xt −Xs

∣∣2 = |t− s|2H , s, t ≥ 0.

When a fBm(H) exists, its covariance is given by

Cov(Xt, Xs) =
1

2

(
t2H + s2H − |t− s|2H

)
.

Therefore, a fBm(H) exists iff H ∈ (0, 1). Note that a fBm(1/2) is a Brownian motion.

For the sake of simplicity and uniformity with other authors, we consider the time-correlation

function as

γ(r) = CH |r|2H−2, for H ∈
(
1/2, 1

)
and CH = H(2H − 1). (1.0.15)

We refer the interested reader to [1] and the references therein for more information about this

function. When handling the mild solution in the Skorohod sense, we shall make use of the

Wiener-chaos expansion.

Recall that the covariance given by (1.0.2) is a mere formal notation. Let C∞0 (R+ × Rd)

be the space of test functions on R+×Rd. Then on a complete probability space (Ω,F ,P), we

consider a family of centered Gaussian r.v indexed by the test function
{
F (ϕ), ϕ ∈ C∞0 (R+ ×

Rd)
}

with covariance

E
[
Ḟ (ϕ)Ḟ (ψ)

]
=

∫
R2
+×R2d

ϕ(t, x)ψ(s, y)γ(t− s)Λ(x− y)dxdydtds. (1.0.16)

13



We write equation (1.0.16) formally as (1.0.2). LetH be the completion of C∞0 (R+×Rd) w.r.t

the inner product

〈ϕ, ψ〉H =

∫
R2
+×R2d

ϕ(t, x)ψ(s, y)γ(t− s)Λ(x− y)dxdydtds.

The mapping ϕ 7→ F (ϕ) ∈ L2(Ω) is an isometry which can be extended toH. We denote

this map by

F (ϕ) =

∫
R+×Rd

ϕ(t, x)F (dt, dx), ϕ ∈ H.

Note that if ϕ, ψ ∈ H,

E
[
Ḟ (ϕ)Ḟ (ψ)

]
= 〈ϕ, ψ〉H.

Furthermore,H contains the space of measurable functions ϕ on R+ × Rd such that

∫
R2
+×R2d

|ϕ(t, x)ϕ(s, y)|γ(t− s)Λ(x− y)dxdydtds <∞.

For n ≥ 0, denote by Hn the nth Wiener-chaos of F . Recall that H0 is just R and for n ≥ 1,

Hn is the closed linear subspace of L2(Ω) generated by the random variables

{Hn(F (h)), h ∈ H, ‖h‖H = 1} where Hn is the nth Hermite polynomial. For n ≥ 1, we

denote by H⊗n(resp.Hn) the nth tensor product (resp. the nth symmetric tensor product) of

H. Then, the mapping In(h⊗n) = Hn(F (h)) can be extended to a linear isometry betweenHn

(equipped with the modified norm
√
n!‖.‖H⊗n) and Hn, see for example [29] and [31] and the

references therein.
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Consider now a random variable X ∈ L2(Ω) measurable with respect to the σ−field FF

generated by F. This random variable can be expressed as

X = E[X] +
∞∑
n=1

In(fn),

where the series converges in L2(Ω) and the elements fn ∈ Hn, n ≥ 1 are determined by

X . This identity is known as the Wiener-chaos expansion. Please refer to [29] and [31] for a

complete description on the matter.

With everything set, we can now state state and prove or main results. But before we jump

into this important aspect of this work, we give a detailed organization of this dissertation. The

rest of thesis is organized as follows: in Chapter 2, we state our main results when equation

1.0.1 is driven by a space-time white, Chapter 3 is devoted to case where the noise is white

in time and colored in space while Chapter 4 deals with the space-time colored noise case.

Finally, all our main results including the existence-uniqueness result are proved in Chapter 5.

We close this dissertation with concluding remarks in Chapter 6. Also throughout this work,

the letter c (upper or lower case) with or without a subscript is a positive constant whose value

is not of primary interest for this dissertation.
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Chapter 2

Fractional Stochastic heat equation driven by a space-time white noise.

We first study the fractional stochastic heat equation (1.0.1) driven by a space-time white noise,

i.e, we look at the equation


∂
∂t
ut(x) = −(−∆)α/2ut(x) + ξσ(ut(x))Ẇ (t, x) x ∈ D, t > 0,

ut(x) = 0 x ∈ Dc,

(2.0.1)

where 0 < α < 2 and the noise term Ẇ has the following covariance structure:

E
(
Ḟ (t, x)Ḟ (s, y)

)
= δ0(t− s)δ0(x− y), (2.0.2)

and δ0 is the Delta-Dirac distribution.

In [18], the authors considered the following stochastic heat equation,

∂tut(x) = Lut(x) + ξσ(ut(x))Ḟ (t, x), (2.0.3)

where L = ∆ is the Dirichlet Laplacian on BR(0), the ball of radius R centered at the origin.

Under some appropriate conditions, it was shown that the long time behaviour of the solution

is dependent on the noise level, that is on the values of ξ. More precisely, it was shown that

for large values of ξ, the moments of the solution grow exponentially with time while for

small values of ξ, the moments decay exponentially. In [30], the author found explicit bounds

for the pth moments of the solution to (2.0.1) with 0 < α ≤ 2, also proving the dichotomy
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phenomenon described above. In this chapter, we extend the results obtained in [18] for the

fractional Laplacian operator. We first obtain the results for the second moment of the random

field solution and then extend it to higher order moments (greater than 2). We are also interested

in the effect of the noise level ξ on the [expected] energy of the solution.

2.1 Main results

Theorem 2.1.1. Suppose that σ satisfies Assumption 1.0.16. Let ut(x) be the unique mild so-

lution of equation (2.0.1), then there exists ξ0 > 0 such that for all ξ < ξ0 and x ∈ D,

−∞ < lim sup
t→∞

1

t
logE|ut(x)|2 < 0.

Fix ε > 0, then there exists ξ1 > 0 such that for all ξ > ξ1 and x ∈ Dε,

0 < lim inf
t→∞

1

t
logE|ut(x)|2 <∞.

Remark 2.1.2. It is not hard to see that ξ0 ≤ ξ1. Otherwise there will be an obvious contra-

diction in Theorem 2.1.1. In Remark 5.3.3, we provide some estimates for ξ0 and ξ1 defined

above.

As in [18, 24], we define the [expected] energy of the solution at time t by the following

quantity,

Et(ξ) =
(
E‖ut‖2

L2(D)

)1/2

. (2.1.1)

The study of Et(ξ) as ξ gets large was initiated in [24, 25]. In [24], it was shown that Et(ξ)

grows like ceξ4 as ξ gets large. However, the next corollary shows that Et(ξ) exhibits a behavior

similar to that of the second moment of the solution of (2.0.1).

Corollary 2.1.3. With ξ0 and ξ1 as in Theorem 2.1.1, we have

−∞ < lim sup
t→∞

1

t
log Et(ξ) < 0 for all ξ < ξ0
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and

0 < lim inf
t→∞

1

t
log Et(ξ) <∞ for all ξ > ξ1.

The following Theorem provides an extension of the results in Theorem 2.1.1 to higher

moments:

Theorem 2.1.4. Suppose that σ satisfies Assumption 1.0.16. If ut is the unique mild solution to

(2.0.1), then for all p ≥ 2, there exists ξ0(p)> 0 such that for all ξ < ξ0(p) and x ∈ D,

−∞ < lim sup
t→∞

1

t
logE|ut(x)|p < 0.

On the other hand, for all ε > 0, there exists ξ1(p)> 0 such that for all ξ > ξ1(p) and x ∈ Dε,

0 < lim inf
t→∞

1

t
logE|ut(x)|p <∞.

In the next Chapter, we consider the main equation driven by a noise that is white in time

and colored in space. Many similarities with the space-time white noise case are observed.
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Chapter 3

Fractional Stochastic heat equation driven by a spatially-colored noise

In this section we consider equation (1.0.1) driven by a noise that is white in time but colored

in space, i.e, we are looking at:


∂
∂t
ut(x) = −(−∆)α/2ut(x) + ξσ(ut(x))Ḟ (t, x) x ∈ D, t > 0,

ut(x) = 0 x ∈ Dc,

(3.0.1)

where 0 < α < 2 and the noise term Ḟ has the following covariance structure:

E
(
Ḟ (t, x)Ḟ (s, y)

)
= δ0(t− s)Λ(x− y) (3.0.2)

We can state the main results in this section.

3.1 Main results

Theorem 3.1.1. Suppose that Λ satisfies Assumption 1.0.18 and σ satisfies Assumption 1.0.16.

Let ut(x) be the unique mild solution to (3.0.1), then there exists ξ2 > 0 such that for all ξ < ξ2

and x ∈ D

−∞ < lim sup
t→∞

1

t
logE|ut(x)|2 < 0.

On the other hand, for all ε > 0, there exists ξ3 > 0 such that for all ξ > ξ3 and x ∈ Dε

0 < lim inf
t→∞

1

t
logE|ut(x)|2 <∞.
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As defined previously, see for example [18, 24], we define the [expected] energy of the

solution (of equation 3.0.1) at time t by

Et(ξ) =
(
E‖ut‖2

L2(D)

)1/2

. (3.1.1)

Unsurprisingly, the dichotomy phenomenon is again observed with the energy of the solution,

just like in the case where equation 1.0.1 is driven by a space-time white noise. We provide this

result below:

Corollary 3.1.2. With ξ2 and ξ3 as in Theorem 3.1.1, we have

−∞ < lim sup
t→∞

1

t
log Et(ξ) < 0 for all ξ < ξ0

and

0 < lim inf
t→∞

1

t
log Et(ξ) <∞ for all ξ > ξ1.

More importantly, Theorem 3.1.1 can also be extended to the case p > 2, offering again

another similarity with the space-time white noise case.

Theorem 3.1.3. Suppose that Λ satisfies Assumption 1.0.18 and σ satisfies Assumption 1.0.16.

Let ut(x) be the unique mild solution to (3.0.1), then for all p ≥ 2 there exists ξ2(p) > 0 such

that for all ξ < ξ2(p) and x ∈ D

−∞ < lim sup
t→∞

1

t
logE|ut(x)|p < 0.

On the other hand, for all ε > 0, there exists ξ3(p) > 0 such that for all ξ > ξ3(p) and x ∈ Dε

0 < lim inf
t→∞

1

t
logE|ut(x)|p <∞.
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We conclude this section with special case of equation 3.0.1 when the space correlation

function satisfies Assumption 1.0.15. In this case, explicit bounds for the pth moments of the

solution are found. The next Theorem provide these details:

Theorem 3.1.4. Suppose that Λ satisfies Assumption 1.0.15 and σ satisfies Assumption 1.0.16.

Then for all t > 0 and p ≥ 2, there exist positive constants c1, c2(α, β, d, lσ), C1 andC2(α, β, d, Lσ)

such that for all ξ > 0 and δ > 0,

cp1e
pt

(
c2ξ

2α
α−β −µ1

)
≤ inf

x∈Dε
E|ut(x)|p ≤ sup

x∈D
E|ut(x)|p ≤ Cp

1e
pt

(
C2ξ

2α
α−β z

2α
α−β
p −(1−δ)µ1

)
,

where zp is the constant in the Burkhölder-Davis-Gundy’s inequality.

This theorem also provides an extension to [15] where similar bounds were obtained but

only for the second moments of the solution to equation (1.0.1). This theorem also shows that

the rate at which the moments of the solution to equation (1.0.1) exponentially grow or decay

depends explicitly on the non-local operator −(−∆)α/2, the noise level ξ and the noise term

via the quantity ξ
2α
α−β . This result provides an extension to [30] where the author used equation

(1.0.1) with σ = Id, an essential assumption when using the Wiener-Chaos expansion in the

proofs. However, the proof we provide for this theorem uses a different argument. Moreover,

this Theorem implies Theorems 3.1.1 and 3.1.3.

Note that in Theorem 3.1.4, when ξ <
(
µ1/C(p, δ)

)α−β
2α

, then the solution u is not weakly-

intermittent. However, quite the opposite situation occurs for the same random field u when

ξ >
(
µ1/C1(p)

)α−β
2α
.
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Chapter 4

Fractional Stochastic heat equation driven by a space-time colored noise

In this section, we consider equation (1.0.1) driven by a space-time colored noise, whose covari-

ance function is given by (1.0.2). Several papers have examined SPDEs driven by a space-time

colored noise: we cite for example [1, 2, 4, 20, 21]. The time correlation function considered

in most cases is the fBm(H) and the space-correlation functions include the Riez Kernel, the

fractional Brownian motion (please see P. 2-3 of this thesis). However, all these problems were

considered on the spatial variable space Rd. In our case, the time correlation function is the

fBm(H) and the space correlation function is the Riez kernel. The Theorem below provides the

details.

4.1 Main result

Theorem 4.1.1. Assume σ(x) = x, γ satisfies assumption 1.0.14 and Λ satisfies Assumption

1.0.15. Then for all t > 0 and p ≥ 2, there exist constants C1 and C2(α, β) such that for all

ξ > 0 and δ > 0,

sup
x∈D

E|ut(x)|p ≤ Cp
1e
C2p

(
(p−1)

α
α−β t

2Hα−β
α−β ξ

2α
α−β −(µ1−δ)t

)

With all the Assumptions in Theorem 4.1.1 valid, We also conjecture that

lim inf
t→∞

1

tρ
logE|ut(x)|2 > 0 for all x ∈ Dε, where ρ =

2Hα− β
α− β

> 1.
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Though this bound might not be very sharp, to the best of our knowledge, this dissertation is

the first ever to examine the moments of the solution of SPDEs driven by such type of noise

in bounded domains. Notice again the dependence of moments with the noise level. Note that

Similar results were obtained in [1, 20] but on the whole Euclidean space Rd.

Define the pth upper Liapounov moment of the random field u := {ut(x)}t>0,x∈D at x0 ∈ D as

γ(p) := lim sup
t→∞

1

t
logE|ut(x0)|p for all p ∈ (0,∞).

Following [16], the random field u is said to be weakly intermittent if:

for all x ∈ D, γ(2) > 0 and γ(p) <∞ for all p ∈ (2,∞).

It is said to be fully intermittent if:

p 7→ γ(p)

p
is strictly increasing for all p ≥ 2 and x ∈ D.

If γ(1) = 0 and u ≥ 0, then weak intermittency implies full intermittency. Intuitively, full

intermittency shows that for p > q,

lim sup
t→∞

‖u(t, x)‖p
‖u(t, x)‖q

=∞,

where ‖u‖p denotes the norm in Lp(Ω). In other words, for p > q, asymptotically, the pth mo-

ment of u is significantly larger than its qth moment. This suggests that the random field u may

take very large values with small (but significant) probabilities, and therefore it develops high

peaks, when t is large. We refer to [6, 16] for a detailed explanation of this phenomenon. Theo-

rem 4.1.1 combined with the conjecture right below shows in fact that u is weakly-intermittent

for all ξ > 0 since 2Hα−β
α−β > 1.

We are now ready to prove our main results.
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Chapter 5

Proofs of the main results

5.1 Existence and uniqueness for the solution

The proof for the existence of a solution of equation (1.0.1) driven by a space-time white noise

or when the noise is white in time and colored in space follows a Picard’s iteration scheme. We

follow ideas from [15, 23]. The details are provided below:

Let u0
t (x) = GDu0(x) and for n ≥ 1,

un+1
t (x) =

(
GDu0

)
t
(x) + ξ

∫ t

0

∫
D

pD(t− s, x, y)σ
(
uns (y)

)
F (ds, dy).

The stochastic integral is well defined even when the correlation function is restricted to D.

This fact actually follows from Walsh [37]. Let Dn(t, x) = un+1
t (x)− unt (x). It follows that

Dn(t, x) = ξ

∫ t

0

∫
D

pD(t− s, x, y)
[
σ
(
uns (y)

)
− σ

(
un−1
s (y)

)]
F (ds, dy).

Now using Burkhölder’s inequality and Assumption 1.0.16, we get

E
∣∣Dn(t, x)

∣∣p ≤ Cpξ
pLpσ

[∫ t

0

∫
D2

pD(t− s, x, y)pD(t− s, x, z)Λ(y − z)

× sup
y∈D

E
[
Dn−1(s, y)

]2
dydzds

]p/2
.
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Now let

Hn(t, x) = sup
x∈D

sup
0<t≤T

E
∣∣Dn(t, x)

∣∣p and F (t) =

∫ t

0

∫
D2

pD(t−s, x, y)pD(t−s, x, z)Λ(y−z)dydzds.

Note that

F (t) ≤
∫ ∞

0

∫
Rd×Rd

p(t− s, x, y)p(t− s, x, z)Λ(y − z)dydzds

≤c
∫
Rd

µ(ζ)

1 + |ζ|α
.

Thus, F (t) < ∞ whenever Dalang’s condition (1.0.3) holds. Note also that, combining the

semigroup property of the Dirichlet kernel with Lemma A.0.3,

G(t) =
∫
D2 pD(t− s, x, y)pD(t− s, x, z)dydz <∞ for 0 ≤ t ≤ T. We now use Hölder’s

inequality to obtain

Hn(t, x) ≤ Cpξ
pLpσF (t)p/2−1

∫ t

0

Hn−1(s)ds. (5.1.1)

Thus, by Gronwall’s lemma, Lemma A.0.9, we have
∑∞

n=1 Hn(t) < ∞. Therefore, unt (x)

converges in L2(P ) to some ut(x) for each t and x. This also proves that

lim
n→∞

∫ t

0

∫
D

pD(t− s, x, y)σ
(
us(y)

)
W (ds, dy) =

∫ t

0

∫
D

pD(t− s, x, y)σ
(
us(y)

)
W (ds, dy).

where the convergence holds in L2(P ). This proves that u is a solution to (1.0.1) when the noise

term is either a space-time white noise or white in time and colored in space.

For the uniqueness, assume that u and v are both solution of (1.0.1) driven by a space-time

white noise and noise that is white in time and colored in space, both satisfying the integrability

condition (1.0.7). We show that one these solutions is a modification of the other.
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Let D(x, t) = ut(x)− vt(x). Then,

D(t, x) = ξ

∫ t

0

∫
D

pD(t− s, x, y)
[
σ
(
us(y)

)
− σ

(
vs(y)

)]
F (ds, dy).

Using Assumption 1.0.16, we get

E
∣∣∣D(t, x)

∣∣∣2 ≤ ξ2L2
σ

∫ t

0

∫
D2

pD(t− s, x, y)pD(t− s, x, z)Λ(y − z) sup
y∈D

E
∣∣∣D(s, y)

∣∣∣2dydzds.
Now, set H(t) = sup

0<s≤t
sup
x∈D

E
∣∣D(s, x)

∣∣2. It follows that

H(t) ≤ Cξ2L2
σ

∫ t

0

H(s)N(t− s)ds,

where

N(r) ≤


c1r
−1/α, when Λ = δ0

c2r
−β/α when Λ satisfies Assumption 1.0.15.

Now choose and fix some q ∈ (1, 2) and let r be its conjugate exponent, i.e q−1 + r−1 = 1.

Next, Apply Hölder’s inequality to find that there exists some constant A = AT (ξ, Lσ), such

that uniformly for all 0 ≤ t ≤ T ,

H(t) ≤ A

(∫ t

0

Hr(s)ds

)1/r

.

Finally, apply Gronwall’s Lemma with a1 = a2 = · · · = Hr to find that H(t) ≡ 0 and this

concludes the proof.

With the existence-uniqueness result out of the way, we can now focus on proving our

main results. The following estimates on the Dirichlet heat kernel will be used significantly

when proving Theorems 2.1.1, 2.1.4 and 3.1.1.
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5.2 Some estimates

The estimates in this section are mainly taken from [9]. They will be used a lot in the proof of

Theorems 2.1.1, 2.1.4, 3.1.1 and 3.1.3.

•

pD(t, x, y) ≤ c1(t−
d
α ∧ t

|x− y|d+α
). (5.2.1)

We will often use the above inequality in the form of pD(t, x, y) ≤ c1p(t, x− y).

• Fix ε > 0 and let x, y ∈ Dε, then for all t ≤ εα,

pD(t, x, y) ≥ c2(t−
d
α ∧ t

|x− y|d+α
). (5.2.2)

• There exist t0 > 0 and µ1 > 0 such that,

c1e
−µ1t ≤ pD(t, x, y) ≤ c2e

−µ1t for t ≥ t0. (5.2.3)

The upper bound is valid for any x, y ∈ D while the lower bound is only valid for

x, y ∈ Dε with ε > 0.

We first consider the case where equation 1.0.1 is driven by a space-time white noise.
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5.3 The space-time white noise case

Recall that equation 1.0.1 driven by a space-time white noise has a unique solution only when

d = 1 and 1 < α ≤ 2. So we will assume that these two conditions hold throughout this

section. Also, [18] have covered the case α = 2, so we will focus only on the case 1 < α < 2.

Lemma 5.3.1. There exists a constant Kυ,µ1,α depending only on υ, µ1 and α such that for all

υ ∈ (0, µ1) and x ∈ D, we have

∫ ∞
0

eυtpD(t, x, x)dt ≤ Kυ,µ1,α.

Proof. We begin by writing

∫ ∞
0

eυtpD(t, x, x)dt =

∫ t0

0

eυtpD(t, x, x)dt+

∫ ∞
t0

eυtpD(t, x, x)dt,

where t0 is as in (5.2.3). Now using (5.2.1), we have

∫ t0

0

eυtpD(t, x, x)dt ≤ c3

∫ t0

0

eυtt−
1
αdt.

It is now clear that the above integral has an upper bound depending on υ . Next, since υ < µ1,

we can use (5.2.3) to write

∫ ∞
t0

eυtpD(t, x, x)dt ≤ c5

∫ ∞
to

e−(µ1−υ)tdt

≤ c6

µ1 − υ
.

Combining the estimates, we obtain the result.

Lemma 5.3.2. Let υ ∈ (0, µ1) and x ∈ D. Then there exists a constant cµ1,α depending on µ1

and α such that for all t > 0

∫
D

eυtpD(t, x, y)dy ≤ cµ1,α.
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Proof. Again fix t0 as in (5.2.3).

For 0 < t < t0, we have

∫
D

eυtpD(t, x, y)dy ≤ eυt
∫
Rd
p(t, x, y)dy

≤ eυt0 .

And for t ≥ t0 we use (5.2.3) to get

∫
D

eυtpD(t, x, y)dy ≤ c2e
−(µ1−υ)t0 .

The result now easily follows from the two inequalities above.

We are now ready to prove our main results in this section.

Proof of Theorem 2.1.1. Using (1.0.8) and the Walsh isometry, we have

E
∣∣ut(x)

∣∣2 =
∣∣∣(GDu0)t(x)

∣∣∣2 + ξ2

∫ t

0

∫
D

pD
2(t− s, x, y)E

∣∣σ(us(y))
∣∣2dyds, (5.3.1)

from which we obtain

E|ut(x)|2 ≥
∣∣∣(GDu0)t(x)

∣∣∣2. (5.3.2)

Using Assumption 1.0.17, we have for ε > 0 small enough,

(GDu0)t(x) =

∫
D

u0(y)pD(t, x, y)dy

≥
∫
Dε

u0(y)pD(t, x, y)dy

≥ c1e
−µ1t,

whenever t ≥ t0 with t0 as in (5.2.3) and x ∈ Dε. This immediately gives

lim inf
t→∞

1

t
logE|ut(x)|2 > −∞ for x ∈ Dε.
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We now look at the upper bound. We will assume that υ ∈ (0, 2µ1). From (5.3.1) and Assump-

tion 1.0.16, we have

E|ut(x)|2 ≤
∣∣∣(GDu0)t(x)

∣∣∣2 + ξ2L2
σ

∫ t

0

∫
D

pD
2(t− s, x, y)E

∣∣us(y)
∣∣2dyds

:= I1 + I2.

Using Lemma 5.3.2, we have

I1 ≤ c2e
−υt
∣∣∣∣∫
D

e
υt
2 pD(t, x, y)dy

∣∣∣∣2
≤ c3e

−υt.

We then look at the second term I2. Using Chapman-Kolmogorov’s identity and Lemma 5.3.1,

we have

I2 = ξ2L2
σe
−υt
∫ t

0

∫
D

eυ(t−s)p2
D(t− s, x, y)eυsE|us(y)|2dyds

≤ ξ2L2
σe
−υt sup

t>0
sup
x∈D

eυtE|ut(x)|2
∫ t

0

∫
D

eυ(t−s)p2
D(t− s, x, y)dyds

≤ ξ2L2
σe
−υt sup

t>0
sup
x∈D

eυtE|ut(x)|2
∫ t

0

eυspD(2s, x, x)ds

≤ Kυ,µ1,αξ
2L2

σe
−υt sup

t>0
sup
x∈D

eυtE|ut(x)|2.

Combining the inequalities above, we have

sup
t>0

sup
x∈D

eυtE|ut(x)|2 ≤ c3 +Kυ,µ1,αξ
2L2

σ sup
t>0

sup
x∈D

eυtE|ut(x)|2. (5.3.3)

We now choose ξ0 such that for ξ ≤ ξ0, we have Kυ,µ1,αξ
2L2

σ <
1
2
. This immediately gives

lim sup
t→∞

1

t
logE|ut(x)|2 < 0.
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We have thus proved the first half of the theorem. For the second half, we look at the following

Laplace transform,

Iυ :=

∫ ∞
0

e−υt inf
x∈Dε

E|ut(x)|2 dt.

Again, using (5.3.1) and Assumption 1.0.16, we have

E|ut(x)|2 ≥
∣∣∣(GDu0)t(x)

∣∣∣2 + ξ2l2σ

∫ t

0

∫
D

pD
2(t− s, x, y)E|us(y)|2dyds.

From the inequality above, we have Iυ ≥ J1 +J2, where J1 and J2 are respectively the Laplace

transforms of the first and second term of the display above. We look at J1 first. Note that for

fixed ε > 0,

inf
x∈Dε

(GDu0)t(x) ≥
∫
Dε

u0(y)pD(t, x, y)dy

≥ c4 inf
x,y∈Dε

pD(t, x, y).

Using (5.2.3), for t ≥ t0, we have

J1 ≥
∫ ∞
t0

e−υt inf
x∈Dε

∣∣∣(GDu0)t(x)
∣∣∣2dt

≥ c3e
−(υ+2µ1)t0

υ + 2µ1

.

For the second term, we obtain

J2 ≥ ξ2l2σIυ

∫ ∞
t0

e−υs inf
x∈Dε

p2
D(s, x, y)dy

≥ c4ξ
2l2σIυ

e−(υ+2µ1)t0

υ + 2µ1

.

Combining the inequalities above yields

Iυ ≥
c3e
−(υ+2µ1)t0

υ + 2µ1

+ c4ξ
2l2σIυ

e−(υ+2µ1)t0

υ + 2µ1

.
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We can now choose ξ1 large enough so that for all ξ ≥ ξ1, we have

Iυ ≥
c5e
−(υ+2µ1)t0

υ + 2µ1

+ 2Iυ, (5.3.4)

which gives us Iυ =∞. This proves

lim inf
t→∞

1

t
logE|ut(x)|2 > 0.

The fact that

lim inf
t→∞

1

t
logE|ut(x)|2 <∞

easily follows from the ideas in [16, 23]. We leave it to the reader to fill in the details.

Remark 5.3.3. From the proof above, we can get some estimates for ξ0 and ξ1. In fact, from

inequality 5.3.3 , it is enough to set ξ0 =
(

2Kυ,µ1L
2
σ

)−1/2

. In a similar way, choosing ξ1 =(
2(υ+2µ1)et0(υ+2µ1)

c5l2σ

)2

will suffice in Theorem 2.1.1.

Proof of Corollary 2.1.3. The proof follows essentially from Theorem 2.1.1 and the definition

of the energy of the solution together with the following estimate

|Dε| inf
x∈Dε

E|ut(x)|2 ≤
∫
D

E|ut(x)|2dx ≤ |D| sup
x∈D

E|ut(x)|2.

We now prove the result for higher moments. The proof is similar to that of Theorem

2.1.1.

Proof of Theorem 2.1.4. Since p
2
≥ 1, using Jensens inequality we get

(
E|ut(x)|2

)p/2
≤ E|ut(x)|p. (5.3.5)
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This means that E|ut(x)|p will also grow exponentially if E|ut(x)|2 does. So by Theorem 2.1.1,

it follows that for all ξ > ξ1(p), and x ∈ Dε,

0 < lim inf
t→∞

1

t
logE|ut(x)|p.

Again following the ideas of Foondun and Khoshnevisan [16], we can prove that

lim inf
t→∞

1

t
logE|ut(x)|p <∞.

Next, in order to prove

lim sup
t→∞

1

t
logE|ut(x)|p < 0,

we choose υ ∈ (0, 2µ1) and define the following norm:

‖u‖p,υ,α = sup
t>0

sup
x∈D

e
υpt
2 E|ut(x)|p.

Its clear that if we show ‖u‖p,υ,α <∞, the result will follow.

Since p ≥ 2, we have

|ut(x)|p =

∣∣∣∣∣(GDu0

)
t
(x) + ξ

∫ t

0

∫
D

pD(t− s, x, y)σ
(
us(y)

)
W (dy, ds)

∣∣∣∣∣
p

≤Cp

[∣∣∣(GDu0

)
t
(x)
∣∣∣p + ξp

∣∣∣∣∣
∫ t

0

∫
D

pD(t− s, x, y)σ
(
us(y)

)
W (dy, ds)

∣∣∣∣∣
p]
.

Now using the Burkhölder’s inequality combined with Assumption 1.0.16, we get

E|ut(x)|p ≤zp

[∣∣∣(GDu0

)
t
(x)
∣∣∣p + ξpLpσ

(∫ t

0

∫
D

p2
D(t− s, x, y)E|us(y)|2dyds

)p/2]

:=K1 +K2.

Since u0 is bounded, using Lemma 5.3.2,
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K1 ≤ c6e
− pυt

2

∣∣∣∣∫
D

e
υt
2 pD(t, x, y)dy

∣∣∣∣p
≤ c7e

− pυt
2 .

Next, using again the Chapman-Kolmogorov’s identity combined with Lemma 5.3.1, we have

K2 =ξpLpσ

(∫ t

0

∫
D

eυ(t−s)p2
D(t− s, x, y)e−υ(t−s)E|us(y)|2dyds

)p/2

≤‖u‖p,υ,αξ
pLpσe

− pυt
2

(∫ t

0

∫
D

eυsp2
D(t− s, x, y)dyds

)p/2

≤‖u‖p,υ,αξ
pLpσe

− pυt
2

(∫ ∞
0

eυspD(2s, x, x)ds

)p/2

≤‖u‖p,υ,αξ
pLpσe

− pυt
2 K

p
2
υ,µ1,α.

Combining the estimates on K1 and K2, we get

E|ut(x)|p ≤ c7e
− pυt

2 + ‖u‖p,υ,αξ
pLpσe

− pυt
2 K

p
2
υ,µ1,α,

from which it follows that

‖u‖p,υ,α ≤ c7 + c8‖u‖p,υ,αξ
pLpσ.K

p
2
υ,µ1,α

So if we choose ξ small enough so that c8ξ
pLpσ.K

p
2
υ,µ1,α < 1, then we will have ‖u‖p,υ,α <

∞.

Finally, combining (5.3.2) and (5.3.5), we get

E|ut(x)|p ≥
(
E|ut(x)|2

)p/2
≥
(

(GDu0)t(x)
)p
.
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But it is well know that (GDu0)t(x) decays exponentially fast for large time, it follows that

E|ut(x)|p cannot decay faster, so by a similar argument to the case p = 2, we get

lim sup
t→∞

1

t
logE|ut(x)|p > −∞,

for all ξ < ξ0(p) and x ∈ D.

5.4 The spatially homogeneous noise case

While one can expect that the proof of Theorem 3.1.1 follows easily from that of Theorem

2.1.4, the noise term is now colored in space. Thus the proof is harder and requires a new idea.

Lemma 5.4.1. Let υ ∈ (0, 2µ1). Then there exists a constant cυ,µ1 depending on υ and µ1 such

that ∫ ∞
0

eυt
∫
D2

pD(t, x1, y1)pD(t, x2, y2)Λ(y1 − y2)dtdy1dy2 ≤ cυ,µ1 , (5.4.1)

for all x1, x2, y1, y2 ∈ D.

Proof. We again use (5.2.3). So we fix t0 accordingly. We begin by splitting the integral as

follows:

∫ ∞
0

eυt
∫
D2

pD(t, x1, y1)pD(t, x2, y2)Λ(y1 − y2)dtdy1dy2

=

∫ t0

0

eυt
∫
D2

pD(t, x1, y1)pD(t, x2, y2)Λ(y1 − y2)dtdy1dy2

+

∫ ∞
t0

eυt
∫
D2

pD(t, x1, y1)pD(t, x2, y2)Λ(y1 − y2)dtdy1dy2

:= I1

+ I2.
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I1 can be bounded as follows: we use (5.2.1) to obtain

I1 ≤ eυt0
∫ t0

0

e−υteυt
∫
D2

pD(t, x1, y1)pD(t, x2, y2)Λ(y1 − y2)dtdy1dy2

≤ e2υt0

∫ ∞
0

e−υt
∫
Rd×Rd

p(t, x1, y1)p(t, x2, y2)Λ(y1 − y2)dtdy1dy2

≤ c1e
2υt0 .

The last inequality holds since Dalang’s condition (1.0.3) holds here.

For I2, we use (5.2.3) to write

I2 ≤
∫ ∞
t0

eυt sup
y1,y2∈D

pD(t, x1, y1)pD(t, x2, y2) dt

∫
D2

Λ(y1 − y2)dy1dy2

≤ c2

∫ ∞
0

e−(2µ1−υ)tdt.

Combining the above estimates yields the desired result.

Lemma 5.4.2. Fix ε > 0. Then, there exist t0 > 0 and a constant cυ,µ1,t0 such that for all

υ > 0,

∫ ∞
0

e−υtpD(t, x1, y1)pD(t, x2, y2)dt ≥ cυ,µ1,t0 ,

whenever x1, x2, y1, y2 ∈ Dε. The constant cυ,µ1,t0 depends on υ, µ1 and t0.

Proof. Using (5.2.3), we have

∫ ∞
0

e−υtpD(t, x1, y1)pD(t, x2, y2)dt ≥
∫ ∞
t0

e−υtpD(t, x1, y1)pD(t, x2, y2)dt

≥ c3

∫ ∞
t0

e−υte−2µ1tdt

=
c3e
−(υ+2µ1)t0

υ + 2µ1

.
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Proof of Theorem 3.1.1. Using the mild formulation of the solution and Assumption 1.0.16, we

obtain

E
∣∣ut(x)

∣∣2 =
∣∣∣(GDu0)t(x)

∣∣∣2 + ξ2

∫ t

0

∫
D2

pD(t− s, x, y1)pD(t− s, x, y2)Λ(y1, y2)

× E|σ(us(y1))σ(us(y2))|dy1dy2ds

≤
∣∣∣(GDu0)t(x)

∣∣∣2 + ξ2L2
σ

∫ t

0

∫
D2

pD(t− s, x, y1)pD(t− s, x, y2)Λ(y1 − y2)

× E|us(y1)us(y2)|dy1dy2ds

= I1 + I2.

Pick υ ∈ (0, 2µ1) and t0 as in (5.2.3). As is the proof of Theorem 2.1.1, we have

I1 ≤ c1e
−υt whenever t > t0.

We now bound I2 using Lemma 5.4.1.

I2 ≤ ξ2L2
σe
−υt sup

t>0
sup
x∈D

eυtE|ut(x)|2
∫ ∞

0

eυt
∫
D2

pD(t, x, y1)pD(t, x, y2)Λ(y1 − y2)dy1dy2dt

≤ c2ξ
2L2

σe
−υt sup

t>0
sup
x∈D

eυtE|ut(x)|2.

Using the two bounds above, we can use the arguments of the first part of the proof of Theorem

2.1.1 to show that

lim sup
t→∞

1

t
logE|ut(x)|2 < 0.

The first part of our first theorem also gives us

lim inf
t→∞

1

t
logE|ut(x)|2 > −∞ for x ∈ Dε.
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We now turn our attention to the final part of the proof. To this aim, fix υ, ε > 0 and consider

the following Laplace transform:

Jυ :=

∫ ∞
0

e−υt inf
x,y∈Dε

E|ut(x)ut(y)|dt.

From the mild solution, we have

E
(
ut(x1)ut(x2)

)
= (GDu0)t(x1)(GDu0)(x2) + ξ2

∫ t

0

∫
D2

pD(t− s, x1, y1)

× pD(t− s, x2, y2)Λ(y1 − y2)E
(
σ
(
us(y1)

)
σ
(
us(y2)

))
dy1dy2ds. (5.4.2)

Now using again Assumption 1.0.16, we have

E
(
|ut(x1)ut(x2)|

)
≥
∣∣∣(GDu0)t(x1)(GDu0)(x2)

∣∣∣
+ ξ2l2σ

∫ t

0

∫
D2

pD(t− s, x1, y1)pD(t− s, x2, y2)Λ(y1 − y2)E
∣∣us(y1)us(y2)

∣∣dy1dy2ds

:= J1 + J2.

We bound J2 first by using Assumption 1.0.18.

J2 ≥ ξ2l2σKR

∫ t

0

∫
D2
ε

pD(t− s, x1, y1)pD(t− s, x2, y2)E
(
|us(y1)us(y2)|

)
dy1dy2ds

≥ c3ξ
2l2σKR

∫ t

0

inf
y1, y2∈Dε

pD(t− s, x1, y1)pD(t− s, x2, y2)E(|us(y1)us(y2)|)ds.

Using these estimates, we have

Jυ ≥ J̃1 + J̃2,
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where J̃1 and J̃2 are the Laplace transforms of J1 and J2 respectively. As in the proof of

Theorem 2.1.1, we have

J̃1 ≥
∫ ∞

0

e−υt
∣∣(GDu0)t(x1)(GDu0)(x2)

∣∣dt
≥ c4e

−(υ+2µ1)t0

υ + 2µ1

for x1, x2 ∈ Dε.

J̃2 can be estimated using Lemma 5.4.2 as follows.

J̃2 ≥ c5ξ
2l2σKRJυ

e−(υ+2µ1)t0

υ + 2µ1

.

We therefore have

Jυ ≥
c4e
−(υ+2µ1)t0

υ + µ1

+ c5ξ
2l2σKRJυ

e−(υ+2µ1)t0

υ + 2µ1

.

Therefore there exists ξ3 > 0 such that we have Jυ =∞ for all ξ ≥ ξ3. Using the ideas above,

we have

∫ ∞
0

e−υtE|ut(x)|2dt ≥ c5KRJυ
e−(υ+2µ1)t0

υ + 2µ1

for x ∈ Dε.

Therefore for all ξ ≥ ξ3, we obtain

∫ ∞
0

e−υtE|ut(x)|2dt =∞,

which implies that

lim inf
t→∞

1

t
logE|ut(x)|2 > 0 for x ∈ Dε.

Again the ideas of [16] give

lim inf
t→∞

1

t
logE|ut(x)|2 <∞.
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The first step of theorem is therefore proved.

The proof of Corollary 3.1.2 is omitted since it is similar to that of Corollary 2.1.3

Proof of Theorem 3.1.3. We follow the same ideas as in the one dimensional case.

By Jensens inequality, we have

(
E|ut(x)|2

)p/2
≤ E|ut(x)|p. (5.4.3)

This means that E|ut(x)|p will also grow exponentially if E|ut(x)|2 does. So by Theorem 3.1.1,

it follows that for all ξ > ξ3(p), and x ∈ Dε,

0 < lim inf
t→∞

1

t
logE|ut(x)|p.

The same Jensens inequality and Theorem 3.1.1 shows that for ξ small enough and x ∈ D,

lim sup
t→∞

1

t
logE|ut(x)|p > −∞.

Again following the ideas of Foondun and Khoshnevisan [16], we can prove that

lim inf
t→∞

1

t
logE|ut(x)|p <∞.

Finally, to prove

lim sup
t→∞

1

t
logE|ut(x)|p < 0,

we choose υ ∈ (0, 2µ1) and define the following norm:

‖u‖p,υ,α = sup
t>0

sup
x∈D

e
υpt
2 E|ut(x)|p.

Its clear that if we show ‖u‖p,υ,α <∞, the result will follow.
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Since p ≥ 2, we have

|ut(x)|p =

∣∣∣∣∣(GDu0

)
t
(x) + ξ

∫ t

0

∫
D

pD(t− s, x, y)σ
(
us(y)

)
F (dy, ds)

∣∣∣∣∣
p

≤Cp

[∣∣∣(GDu0

)
t
(x)
∣∣∣p + ξp

∣∣∣∣∣
∫ t

0

∫
D

pD(t− s, x, y)σ
(
us(y)

)
F (dy, ds)

∣∣∣∣∣
p]
.

Now using the Burkhölders inequality combined with Assumption 1.0.16, we get

E|ut(x)|p ≤zp

[∣∣∣(GDu0

)
t
(x)
∣∣∣p

+ ξpLpσ

(∫ t

0

∫
D2

pD(t− s, x, y)pD(t− s, x, z)Λ(y − z)E|us(y)us(z)|dydzds

)p/2]

:= K1

+K2.

In our quest for upper bounds for K1 and K2 , we use the boundedness of u0 and Lemma 5.3.2

to get,

K1 ≤ c1e
− pυt

2

∣∣∣∣∫
D

e
υt
2 pD(t, x, y)dy

∣∣∣∣p
≤ c2e

− pυt
2 provided that υ ∈ (0, 2µ1).

Next, using Lemma 5.4.1, we have
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K2 =ξpLpσ

(∫ t

0

∫
D2

eυ(t−s)pD(t− s, x, y)pD(t− s, x, z)Λ(y − z)e−υ(t−s)E|us(y)us(z)|dydzds

)p/2

=ξpLpσe
− pυt

2

(∫ t

0

∫
D2

eυ(t−s)pD(t− s, x, y)pD(t− s, x, z)Λ(y − z)eυs sup
w∈D

E|us(w)|2dydzds

)p/2

≤‖u‖p,υ,αξ
pLpσe

− pυt
2

(∫ t

0

∫
D2

eυspD(s, x, y)pD(s, x, z)Λ(y − z)dydzds

)p/2

≤‖u‖p,υ,αξ
pLpσe

− pυt
2 c

p
2
υ,µ1 .

Combining the estimates on K1 and K2, we get

E|ut(x)|p ≤ c2e
− pυt

2 + ‖u‖p,υ,αξ
pLpσe

− pυt
2 c

p
2
υ,µ1 ,

which yield

‖u‖p,υ,α ≤ c2 + ‖u‖p,υ,αξ
pLpσ.c

p
2
υ,µ1 .

So if we choose ξ small enough so that ξpLpσc
p
2
υ,µ1 < 1, then we will have ‖u‖p,υ,α <∞.

and this concludes the proof.

We shall need the following estimates to prove Theorem 3.1.4 (and Theorem 4.1.1). The

first two follow from applications of Theorems A.0.5 and A.0.4.

Proposition 5.4.3. Fix ε ∈ (0, 1
2
). Then for any x, y ∈ Dε such that |x− y| < t1/α, we have

pD(t, x, y) ≥ ct−d/αe−µ1t for all t > 0

and some positive constant c.
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Proof. We first prove the Lemma for α = 2. Assume |x− y| <
√
t. We apply Theorem A.0.5

to get

pD(t, x, y) ≥C1 min

(
1,
φ1(x)φ1(y)

1 ∧ t

)
e−µ1t

e−c1
|x−y|2

t

1 ∧ td/2

≥C2e
−µ1t

{
min

(
1,
ε2

t

)
e−c1

|x−y|2
t

td/2
1{t<1} + min

(
1, ε2

)
e−c1

|x−y|2
t 1{t≥1}

}

= C2e
−µ1t

{
e−c1

|x−y|2
t

td/2
1{t<ε2} + ε2

e−c1
|x−y|2

t

t1+d/2
1{ε2≤t<1} + min

(
1, ε2

)
e−c1

|x−y|2
t 1{t≥1}

}

≥ C3e
−µ1tt−d/2

{
1{t<ε2} +

ε2

t
1{ε2≤t<1} + c(ε)td/21{t≥1}

}

≥ C4e
−µ1tt−d/2.

Note the use of (1.0.13) in the second inequality above since x, y ∈ Dε. This proves the

inequality for α = 2.

Now suppose 0 < α < 2. Assuming |x− y| < t1/α, we apply Theorem A.0.4 to get

pD(t, x, y) ≥C1e
−µ1t

[
min

(
1,
φ1(x)√

t

)
min

(
1,
φ1(y)√

t

)
min

(
t−d/α,

t

|x− y|α+d

)
1{t<1} + φ1(x)φ1(y)1{t≥1}

]

≥C2e
−µ1t

{
min

(
1,
ε2

t

)
min

(
t−d/α,

t

|x− y|α+d

)
1{t<1} + εα1{t≥1}

}

≥C3e
−µ1t

{
min

(
t−d/α,

t

|x− y|α+d

)
1{t<εα} +

εα

t
min

(
t−d/α,

t

|x− y|α+d

)
1{εα≤t<1}

+ εα1{t≥1}

}

=C3e
−µ1tt−d/α

{
min

(
1,

(
t1/α

|x− y|

)α+d)
1{t<εα} +

εα

t
min

(
1,

(
t1/α

|x− y|

)α+d)
1{εα≤t<1}

+ εαtd/α1{t≥1}

}

= C3e
−µ1tt−d/α

{
1{t<εα} +

εα

t
1{εα≤t<1} + εαtd/α1{t≥1}

}

≥ C4e
−µ1tt−d/α.
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Again note the use of (1.0.13) in the second inequality above. This concludes the proof.

Lemma 5.4.4. For all δ > 0, there exists c2(δ) > 0 such that for all x, w ∈ D and s, t > 0,

∫
D×D

pD(t, x, y)pD(s, w, z)Λ(y − z)dydz ≤ c2e
−(1−δ)µ1(t+s)

(
s+ t

)−β/α
Proof. As usual, we first prove the result for α = 2 . By Theorem A.0.5, we have

∫
D×D

pD(t, x, y)pD(s, w, z)Λ(y − z)dydz

≤ C1e
−µ1(t+s)

∫
D×D

min

(
1,
φ1(x)φ1(y)

1 ∧ t

)
min

(
1,
φ1(w)φ1(z)

1 ∧ s

)
e−c1

|x−y|2
t

1 ∧ td/2
e−c2

|w−z|2
s

1 ∧ sd/2
Λ(y − z)dydz

≤ C2e
−µ1(t+s)

{∫
Rd×Rd

p(t, x, y)p(s, w, z)Λ(y − z)dydz1{t<1,s<1} +

∫
Rd
p(t, x, y)Λ(y − z)dy1{t<1,s≥1}

+

∫
Rd
p(s, w, z)Λ(y − z)dz1{t≥1,s<1} + c1{t≥1, s≥1}

}

= C2e
−µ1(t+s)

{∫
Rd×Rd

p(t+ s, x− w, y)Λ(y)dy1{t<1,s<1} +

∫
Rd
p(t, x, y)Λ(y − z)dy1{t<1,s≥1}

+

∫
Rd
p(s, w, z)Λ(y − z)dz1{t≥1,s<1} + c1{t≥1, s≥1}

}

≤ C3e
−µ1(t+s)

{
c1(t+ s)−β/21{t<1,s<1} + c2t

−β/21{t<1,s≥1} + c3s
−β/21{t≥1,s<1} + c1{t≥1, s≥1}

}

= C3e
−µ1(t+s)(t+ s)−β/2

{
c11{t<1,s<1} + c2

(
1 +

s

t

)β/2
1{t<1,s≥1} + c3

(
1 +

t

s

)β/2
1{t≥1,s<1}

+ (t+ s)β/21{t≥1, s≥1}

}

≤ C5e
−(1−δ)µ1(t+s)(t+ s)−β/2 for all δ > 0.

Note the use of (1.0.9) in the second inequality, the Chapman-Kolmogorov identity (1.0.11) in

the first integral in the third inequality and Proposition A.0.8 in the fourth inequality.
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The proof for the case 0 < α < 2 follows a very similar argument. By Theorem A.0.4, we

have

∫
D×D

pD(t, x, y)pD(s, w, z)Λ(y − z)dydz

≤ C1e
−µ1(t+s)

{∫
D×D

min

(
t−d/α,

t

|x− y|α+d

)
min

(
s−d/α,

s

|w − z|α+d

)
Λ(y − z)dydz1{t<1,s<1}

+

∫
D×D

min

(
t−d/α,

t

|x− y|α+d

)
Λ(y − z)dydz1{t<1,s≥1}

+

∫
D×D

min

(
s−d/α,

t

|w − z|α+d

)
Λ(y − z)dydz1{t≥1,s<1} + c1{t≥1,s≥1}

}

≤ C2e
−µ1(t+s)

{∫
Rd×Rd

p(t, x, y)p(s, w, z)Λ(y − z)dydz1{t<1,s<1} +

∫
Rd
p(t, x, y)Λ(y − z)dy1{t<1,s≥1}

+

∫
Rd
p(s, w, z)Λ(y − z)dz1{t≥1,s<1} + c1{t≥1, s≥1}

}

= C2e
−µ1(t+s)

{∫
Rd×Rd

p(t+ s, x− w, y)Λ(y)dy1{t<1,s<1} +

∫
Rd
p(t, x, y)Λ(y − z)dy1{t<1,s≥1}

+

∫
Rd
p(s, w, z)Λ(y − z)dz1{t≥1,s<1} + c1{t≥1, s≥1}

}

≤ C4e
−µ1(t+s)

{
c1(t+ s)−β/α1{t<1,s<1} + c2t

−β/α1{t<1,s≥1} + c3s
−β/α1{t≥1,s<1} + c1{t≥1, s≥1}

}

≤ C5e
−µ1(t+s)(t+ s)−β/α

{
c11{t<1,s<1} + c2

(
1 +

s

t

)β/α
1{t<1,s≥1} + c3

(
1 +

t

s

)β/α
1{t≥1,s<1}

+ (t+ s)β/α1{t≥1, s≥1}

}

≤ C6e
−(1−δ)µ1(t+s)(t+ s)−β/α for all δ > 0.

Again notice the use of (1.0.10) in the second inequality, the semigroup property (1.0.11) in

the first integral in the third inequality and Proposition A.0.8 in the fourth inequality. This

concludes the proof.
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Lemma 5.4.5. Suppose a ≥ 0 and ζ > −1. Then

Iζn(a, b) :=

∫
{a<r1<r2<···<rn<b}

[
(r2 − r1)(r3 − r2) · · · (b− rn)

]ζ
dr1dr2 · · · drn

=
Γ(1 + ζ)n+1(b− a)n(1+ζ)

Γ
(
n(1 + ζ) + 1

) ,

where Γ(.) is the Euler’s gamma function.

Proof. We shall consider two cases here:

When a = 0, this is just [4, Lemma 3.5].

Assume now that a > 0, then integrating iteratively yields:

starting with

∫ r2

a

(r2 − r1)ζdr1 =
(r2 − a)1+ζ

1 + ζ
.

Next,

∫ r3

a

(r2 − a)1+ζ(r3 − r2)ζdr2 =

∫ r3−a

0

r1+ζ
2 (r3 − a− r2)ζdr2

=(r3 − a)2(1+ζ)B
(

(1 + ζ) + 1, ζ + 1
)
,

where we have used successively the change of variables r2 → r2 − a and r2 → r2
r3−a and

B(., .) is the Euler’s Beta function, i.e

B(c, d) =

∫ 1

0

uc−1(1− u)d−1du, c > 0, d > 0.

Continuing this way, we end up with
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Iζn(a, b) =
1

1 + ζ

[
B
(

(1 + ζ) + 1, ζ + 1
)
B
(

2(1 + ζ) + 1, ζ + 1
)
· · ·B

(
(n− 2)(1 + ζ), ζ + 1

)
×
∫ b

a

(rn − a)(n−1)(1+ζ)(b− rn)ζdrn

]

=
(b− a)n(1+ζ)

1 + ζ

[
B
(

(1 + ζ) + 1, ζ + 1
)
B
(

2(1 + ζ) + 1, ζ + 1
)
· · ·B

(
(n− 2)(1 + ζ), ζ + 1

)
×B

(
(n− 1)(1 + ζ), ζ + 1

)]
.

The fact that Γ(z + 1) = zΓ(z) for all z > 0 together with B(c, d) = Γ(c)Γ(d)
Γ(c+d)

concludes the

proof.

The following result is essential for the proof of the lower bound in Theorem 3.1.4.

Proposition 5.4.6. Fix ε > 0. Let u be the solution of (1.0.1) with γ = δ0. Then for all x ∈ Dε,

we have

E|ut(x)|2 ≥ ce−2µ1t

∞∑
n=1

(
Cξlσ

)2n
(
tn

n!

)(α−β
α

)
,

for some positive constants c and C = C(α, β, d)

Proof. By squaring the mild solution (1.0.8), we get

E|ut(x)|2 =
(
Gu0

)2

t
(x) + ξ2

∫ t

0

∫
D2

pD(t− s, x, y)pD(t− s, x, z)E
∣∣σ(us(y)

)
σ
(
us(z)

)∣∣Λ(y − z)dydzds.

Now using Assumption 1.0.16, we get

E|ut(x)|2 ≥
(
Gu0

)2

t
(x) + ξ2l2σ

∫ t

0

∫
D2
ε

pD(t− s, x, y)pD(t− s, x, z)E
∣∣us(y)us(z)

∣∣Λ(y − z)dydzds.

But we also have from the mild solution and Assumption 1.0.16 that
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E
∣∣us(y)us(z)

∣∣ ≥E[us(y)us(z)
]

≥
(
Gu0

)
s
(y)
(
Gu0

)
s
(z) + ξ2l2σ

∫ s

0

∫
D2
ε

pD(s− s1, y, y1)pD(s− s1, z, z1)E
∣∣us1(y1)us1(z1)

∣∣
× Λ(y1 − z1)dy1dz1ds1.

Thus, combining this inequality with the previous one, we get

E|ut(x)|2 ≥
(
Gu0

)2

t
(x) + ξ2l2σ

∫ t

0

∫
D2
ε

pD(t− s, x, y)pD(t− s, x, z)
∣∣∣(Gu0

)
s
(y)
(
Gu0

)
s
(z)
∣∣∣Λ(y − z)dydzds

+
(
ξ2l2σ

)2
∫ t

0

∫
D2
ε

pD(t− s, x, y)pD(t− s, x, z)

∫ s

0

∫
D2
ε

pD(s− s1, y, y1)pD(s− s1, z, z1)

× E
∣∣us1(y1)us1(z1)

∣∣Λ(y1 − z1)dy1dz1ds1dydzds.

Continuing this iteration and possibly relabeling the variables, we end up with

E|ut(x)|2 ≥
(
Gu0

)2

t
(x) +

∞∑
n=1

(
ξ2l2σ

)n ∫ t

0

∫
D2
ε

∫ s1

0

∫
D2
ε

∫ s2

0

∫
D2
ε

...

∫ sn−1

0

∫
D2
ε

(
Gu0

)
sn

(yn)
(
Gu0

)
sn

(zn)

×
n∏
i=1

pD(si−1 − si, yi, yi−1)pD(si−1 − si, zi, zi−1)Λ(xi − yi)dyidzidsi

≥
(
Gu0

)2

t
(x) +

∞∑
n=1

(
ξ2l2σ

)n ∫ t

0

∫ s1

0

∫ s2

0

...

∫ sn−1

0

∫
D2n
ε

(
Gu0

)
sn

(yn)
(
Gu0

)
sn

(zn)

×
n∏
i=1

pD(si−1 − si, yi, yi−1)pD(si−1 − si, zi, zi−1)Λ(xi − yi)dyidzidsi

where we have set y0 := x =: z0 and s0 := t. Now for x ∈ Dε, and for i = 1, 2, ..., n, choose

xi and yi such that

yi ∈ B

(
x,

(si−1 − si)1/α

3

)
∩B

(
yi−1,

(si−1 − si)1/α

3

)

and
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zi ∈ B

(
x,

(si−1 − si)1/α

3

)
∩B

(
zi−1,

(si−1 − si)1/α

3

)
so that

|zi − zi−1| < (si−1 − si)1/α and |yi − yi−1| < (si−1 − si)1/α.

Furthermore,

|zi − yi| < (si−1 − si)1/α.

These estimates will ensure that, for all i = 1, 2, ..., n,

pD(si−1 − si, yi, yi−1) ≥ C1(si−1 − si)−d/αe−µ1(si−1−si),

pD(si−1 − si, zi, zi−1) ≥ C2(si−1 − si)−d/αe−µ1(si−1−si)

and

Λ(yi − zi) ≥ C3(si−1 − si)−β/α

for some positive constants C1, C2 and C3, thanks to Proposition 5.4.3 and Assumption 1.0.15.

Moreover, since the initial solution u0 is bounded, using Lemma A.0.2, we get

(
Gu0

)
sn

(yn)
(
Gu0

)
sn

(zn) ≥ C4e
−2µ1sn .

Combining these estimates yields

E|ut(x)|2 ≥C5e
−2µ1t

∞∑
n=1

(
ξ2l2σ

)n ∫
Θn(t)

∫
A1×B1

∫
A2×B2

· · ·
∫
An×Bn

n∏
i=1

(si−1 − si)−β/α(si−1 − si)−2d/αdyidzidsi
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Where Θn(t) :=
{

(s0, s1, ..., sn−1) ∈ Rn
+ : s0 > s1 > ... > sn−1

}
,

Ai :=

{
yi ∈ B

(
x, (si−1−si)1/α

3

)
∩B

(
yi−1,

(si−1−si)1/α
3

)}

and Bi :=

{
zi ∈ B

(
x, (si−1−si)1/α

3

)
∩B

(
zi−1,

(si−1−si)1/α
3

)}
.

It is not hard to see that Volume(Ai)∧Volume(Bi) ≥ C6(si−1−si)d/α for all i = 1, 2, ..., n.

Taking into account the latter gives

E|ut(x)|2 ≥C7e
−2µ1t

∞∑
n=1

(
ξ2l2σ

)n ∫
Θn(t)

n∏
i=1

(si−1 − si)−β/αdsi

= C8e
−2µ1t

∞∑
n=1

(
C9ξ

2l2σ

)n
tn(1−β/α)

Γ
(
n(1− β/α) + 1

) , C9 = C9(α, β) > 0,

where we have used Lemma 5.4.5 with a = 0 and b = t. Finally applying Stirling’s approxi-

mation A.0.1 from Proposition A.0.6 yields the desired result.

Proof of Theorem 3.1.4. For the upper bound, we combine the Burkhölder-Davis-Gundy’s, Minkowski’s

and Jensen’s inequalities after taking the pth power of the mild solution to get

E|ut(x)|p

≤ 2p−1

{(
(GDu0)t(x)

)p
+ ξpzpp

(∫ t

0

∫
D2

pD(t− s, x, y)pD(t− s, x, z)Λ(y − z)E|σ(us(y))σ(us(z))|dydzds

)p/2}

≤ 2p−1

{(
(GDu0)t(x)

)p
+ ξpzpp

(∫ t

0

(
sup
y∈D

E|σ(us(y))|p
)2/p

∫
D2

pD(t− s, x, y)pD(t− s, x, z)Λ(y − z)dydzds

)p/2}
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Where zp is as in Theorem 3.1.4, See for example [16]. Note that we have also used the

following fact straight from Hölder’s inequality:

E|σ(us(y))σ(us(z))| ≤
[(

E
∣∣σ(us(y)

)∣∣2)1/2(
E
∣∣σ(us(z)

)∣∣2)1/2]
≤ sup

y∈D
E
∣∣σ(us(y))

∣∣2.
Because u0 is bounded, using Assumption 1.0.16 and Lemma A.0.3, we get

∫ t

0

(
sup
y∈D

E|σ(us(y))|p
)2/p

∫
D2

pD(t− s, x, y)pD(t− s, x, z)Λ(y − z)dydzds

≤ L2
σ

∫ t

0

(
sup
y∈D

E|us(y)|p
)2/p

∫
D2

pD(t− s, x, y)pD(t− s, x, z)Λ(y − z)dydzds

≤ L2
σ

∫ t

0

f(s)e−(2−δ)µ1(t−s)(t− s)−β/αds,

where f(t) :=
(

sup
x∈D

E|ut(x)|p
)2/p

. Thus, defining a new function F (t) := e(2−δ)µ1tf(t),

we get for all t > 0,

F (t) ≤ c1 + c2ξ
2z2
p

∫ t

0

F (s)(t− s)−β/αds.

Finally applying Proposition A.0.1 with ρ = 1− β/α yields the desired upper bound.

For the lower bound, we combine Proposition 5.4.6 and Proposition A.0.7 with υ = α−β
α

> 0,

together with Jensen’s inequality to get the expected bound.

5.5 The space-time colored noise case

We would like to point out that at the time this thesis was written, we were only able to prove

the upper bound result in Theorem 4.1.1 but we conjecture that the lower bound is true. Thus,

we only provide the proof for the upper bound in this section. The existence-uniqueness result

is proved along the way.
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Proof of Theorem 4.1.1. The solution to (1.0.1) (when σ = Id ) when it exists, has the follow-

ing Wiener-chaos expansion in L2(Ω) :

ut(x) =
∞∑
n=0

ξnIn

(
hn(., t, x)

)
, (5.5.1)

where I0 is the identity map on R and In denotes the multiple Wiener integral with respect to

F in Rn
+ ×Dn for any n ≥ 1, and for any (t1, ..., tn) ∈ Rn

+, x1, ..., xn ∈ D, and for each (t, x),

hn(., t, x) is a symmetric element in H⊗n. To find an explicit expression for the kernels, we

follow ideas from [21, Section 4.1] as follow:

Substituting equation (5.5.1) into the Skorohod integral in equation (1.0.14), we get

∫ t

0

∫
D

pD(t− s, x, y)us(y)F (δs, δy) =
∞∑
n=0

∫ t

0

∫
D

In
(
pD(t− s, x, y)hn(., s, y)

)
F (δs, δy)

=
∞∑
n=0

In+1

(
˜pD(t− s, x, y)hn(., s, y)

)
,

where ˜pD(t− s, x, y)hn(., s, y) is the symmetrization of the function

pD(t−s, x, y)hn(s1, x1, s2, x2, · · · , sn, xn, s, y) in the variables (s1, x1), (s2, x2), · · · , (sn, xn), (s, y),

i.e.,

˜pD(t− s, x, y)hn(., s, y) =
1

n+ 1

[
pD(t− s, x, y)hn(s1, x1, s2, x2, · · · , sn, xn, s, y)

+
n∑
i=1

pD(t− sj, x, yj)hn(s1, x1, s2, x2, · · · , sj−1, xj−1, s, y, sj+1, xj+1, · · · , sn, xn, sj, xj)
]
.

Hence, equation (1.0.14) is equivalent to equation (5.5.1) with h0(t, x) = (Gu0)t(x) and

hn+1(., t, x) = ˜pD(t− s, x, y)hn(., s, y). (5.5.2)
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The adaptability property of the R.F u implies that hn(s1, x1, s2, x2, · · · , sn, xn, s, y) = 0 if

sj > t for some j. This leads to the following formula for the kernels hn, for all n ≥ 1:

hn(t1, x1, ..., tn, xn, t, x) =
1

n!

n∏
i=1

pD(tτ(i+1) − tτ(i), xτ(i+1), xτ(i))(Gu0)tτ(1)(xτ(1)), (5.5.3)

where τ denotes the permutation of {1, 2, · · · , n} such that 0 < tτ(1) < tτ(2) < · · · < tτ(n) < t,

with tτ(n+1) := t and xτ(n+1) := x.

This shows that there exists a unique solution to equation (1.0.14) and the kernels of its

Wiener-chaos expansion are given by (5.5.3). In order to show the existence of a solution, it

suffices to check that the kernels defined in (5.5.3) determine an adapted random field satisfying

the conditions of Definition 1.0.19. This is equivalent to showing that for all (t, x) we have

∞∑
n=0

ξ2nn!‖hn(., t, x)‖2
H⊗n <∞. (5.5.4)

In which case,

E|ut(x)|2 =
∞∑
n=0

ξ2nn!‖hn(., t, x)‖2
H⊗n .

To show (5.5.4), we start with

n!‖hn(., t, x)‖2
H⊗n =

1

n!

∫
[0,t]2n

∫
D2n

n∏
i=1

pD(tτ(i+1) − tτ(i), xτ(i+1), xτ(i))(Gu0)tτ(1)(xτ(1))

×
n∏
i=1

pD(sι(i+1) − sι(i), yι(i+1), yι(i))(Gu0)sι(1)(yι(1))
n∏
i=1

γ(ti − si)
n∏
i=1

Λ(xi − yi)dxdydtds

(5.5.5)

Notice that, for simplicity, we write dt = dt1...dtn, ds = ds1...dsn, dx = dx1...dxn and

dy = dy1...dyn and the permutations τ and ι of {1, 2, · · · , n} are such that

0 < tτ(1) < tτ(2) < · · · < tτ(n) < t and 0 < sι(1) < sι(2) < · · · < sι(n) < t
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with tτ(n+1) = sι(n+1) = t and xτ(n+1) = yι(n+1) = x.

Now apply Lemma 5.3.1 iteratively to get

n!‖hn(., t, x)‖2
H⊗n ≤

1

n!
C1e

−(2−δ)µ1t
∫

[0,t]2n

n∏
i=1

γ(ti − si)
n∏
i=1

(
tτ(i+1) + sι(i+1) − (tτ(i) + sι(i))

)−β/α
dtds.

It follows that

n!‖hn(., t, x)‖2
H⊗n ≤

1

n!
C1e

−(2−δ)µ1t
∫

[0,t]2n

n∏
i=1

γ(ti − si)
n∏
i=1

(
tτ(i+1) − tτ(i)

)−β/α
dtds.

We first take care of the integrals
∫

[0,t]n

∏n
i=1 γ(ti − si)ds. For i = 1, 2, · · ·n,

∫ t

0

γ(ti − si)dsi =

∫ ti

ti−t
γ(r)dr

≤
∫ 0

−t
γ(r)dr +

∫ t

0

γ(r)dr.

since γ satisfies Assumption 1.0.14. Therefore, setting κ(t) :=
∫ t

0
[γ(−r) + γ(r)]dr, we have:

∫
[0,t]2n

n∏
i=1

γ(ti − si)
n∏
i=1

(
tτ(i+1) − tτ(i)

)−β/α
dtds ≤ κ(t)n

∫
[0,t]n

n∏
i=1

(
tτ(i+1) − tτ(i)

)−β/α
dt

≤ κ(t)nn!Cn+1
1 tn(1−β/α)

Γ
(
n(1− β/α) + 1

) , C1 = C1(α, β).

Note the use of Proposition 5.4.5 with a = 0 and b = t in the second inequality. Now using

Stirling’s approximation (A.0.1) from Proposition A.0.6, we have for n = 0, 1, 2, · · ·

∞∑
n=0

ξ2nn!‖hn(., t, x)‖2
H⊗n ≤ C2e

−(2−δ)µ1t
∑
n≥0

(
C1ξ

2κ
)n
tn(1−β/α)

(n!)1−β/α .

This proves (5.5.4).
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Moreover, using Minkowski’s inequality and the equivalence of norms in a fixed Wiener chaos

space, it follows that

(
E|ut(x)|p

)1/p

≤
∞∑
n=0

(p− 1)n/2ξn
(
n!‖hn(., t, x)‖2

H⊗n

)1/2

≤ C2e
−(1−δ)µ1t

∞∑
n=0

(p− 1)n/2ξn
κn/2tn(α−β)/2α

(n!)(α−β)/2α
.

Finally, using Proposition A.0.6 with ν = (α− β)/2α and with

κ(t) = 2CH

∫ t

0

r2H−2 = C2t
2H−1

yields the desired upper bound in Theorem 4.1.1 .
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Chapter 6

Concluding remarks

In this thesis, we investigate the SPDE (1.0.1) driven by three types of noise: a space-time

white noise, a spatially-colored noise and a space-time colored noise. In the first two cases, a

phase transition phenomenon was observed for the pth moments of the solution, with p ≥ 2;

while another physical phenomenon– intermittency– was observed for the third type of noise.

We also noted that the moments of the solution of the equation driven by the first two types of

noise exhibit a similar behavior.

In the near future, in addition to our current research, we plan to investigate the following

problems: inverse problems for SPDEs, inverse problems for PDEs and numerical approaches

to solve these problems.
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plicative Gaussian noises: Hölder continuity and intermittency., Electron. J. Probab. 20

(2015), no. 55, 1-50.

58



[21] Hu Y and Nualart D. Stochastic heat equation driven by fractional noise and local time.

Probab Theory Relat Fields (2009) 143: 285-328.

[22] Kallenberg O. Foundations of modern probability. 2nd Ed. Probability and its Applica-

tions, Springer, NY(2001).

[23] Koshnevisan D. Analysis of stochastic partial differential equations. CBMS Regional

Conference series in Mathematics, (2010) 119. Published for CBMS, Washington, DC,

by AMS.

[24] Khoshnevisan D and Kim K. Non-linear noise excitation and intermittency under high

disorder. Proc. Am. Math. Soc. 143(9), 40734083 (2015)

[25] Khoshnevisan D and Kim K. Nonlinear noise excitation of intermittent stochastic PDEs

and the topology of LCA groups. The Annals of Probability 2015, Vol. 43, No. 4,

19441991. DOI: 10.1214/14-AOP925

[26] Liu W, Tian K and Foondun M,. On some properties of a class of fractional stochastic

heat equations., J Theor Probab (2016) DOI 10.1007/s10959-016-0684-6

[27] Marcus M. B and Rosen J. Markov processes, Gaussian processes and local times. Cam-

bridge studies in advanced mathematics 100 (2006).

[28] Meerschaert M. M and Sikorskii A. Stochastic models for fractional calculus. Studies in

Mathematics 43 DeGruyter (2012)

[29] Nualart D. Malliavin calculus. (2006) Second edition, Springer

[30] Nualart E. Moments bonds for some fractional stochastic heat equations on the ball. Elec-

tron. Commun. Probab. 23 (2018), no. 41, 112.

[31] Di Nunno G, Øksendal B and Proske F. Malliavin Calculus for Lévy Processes with Ap-
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Appendix A

Some useful results

We compile in this section some results from other authors that we have used in our paper.

Proposition A.0.1. [15, Proposition 2.5] Let ρ > 0 and suppose that f(t) is a locally integrable

function satisfying

f(t) ≤ c1 + κ

∫ t

0

(t− s)ρ−1f(s)ds for all t > 0,

where c1 is some positive constant. Then, we have

f(t) ≤ c2e
c3

(
Γ(ρ)κ

)1/ρ
t for all t > 0,

for some positive constants c2 and c3.

Lemma A.0.2. [30, Proposition 3.1] For any ε ∈ (0, 1
2
), there exist positive constants c1(ε)

such that for all x, w ∈ Dε and t > 0 ,

a)

∫
Dε

pD(t, x, y)dy ≥ c1e
−µ1t.

If we further impose |x− w| ≤ t1/α, then there exists a positive constant c2(ε) such that

b)

∫
Dε×Dε

pD(t, x, y)pD(t, w, z)Λ(y − z)dydz ≥ c2e
−2µ1tt−β/α.

Lemma A.0.3. [30, Proposition 3.2] For all δ > 0, there exists c2(δ) > 0 such that for all

x, w ∈ D and t > 0,
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a)

∫
D

pD(t, x, y)dy ≤ ce−µ1t

b)

∫
D×D

pD(t, x, y)pD(t, w, z)Λ(y − z)dydz ≤ c2e
−(2−δ)µ1tt−β/α.

Theorem A.0.4. [9, theorem 1.1] Assume α ∈ (0, 2). There exists a positive constant C such

that for all x, y ∈ D and t > 0,

C−1e−µ1t

[
min

(
1,
φ1(x)√

t

)
min

(
1,
φ1(y)√

t

)
min

(
t−d/α,

t

|x− y|α+d

)
1{t<1} + φ1(x)φ1(y)1{t≥1}

]

≤ pD(t, x, y) ≤

Ce−µ1t

[
min

(
1,
φ1(x)√

t

)
min

(
1,
φ1(y)√

t

)
min

(
t−d/α,

t

|x− y|α+d

)
1{t<1} + φ1(x)φ1(y)1{t≥1}

]

Theorem A.0.5. [34, theorem 2.2] Asume α = 2. Then there exist positive constants c1, C1, c2

and C2 such that for all x, y ∈ D and t > 0,

C1 min

(
1,
φ1(x)φ1(y)

1 ∧ t

)
e−µ1t

e−c1
|x−y|2

t

1 ∧ td/2
≤ pD(t, x, y) ≤ C2 min

(
1,
φ1(x)φ1(y)

1 ∧ t

)
e−µ1t

e−c2
|x−y|2

t

1 ∧ td/2

Proposition A.0.6. [2, Lemma A.1] For any ν > 0,

∞∑
k=0

xk

(k!)ν
≤ C1e

c1x1/ν , x > 0,

for some constants c1(ν) and C1(ν) > 0.

Moreover,

Γ
(
nτ + 1

)
∼ Cn(n!)τ , τ > 0, (A.0.1)

where Cn is such that λ−n ≤ Cn ≤ λn for some λ(α, β) > 1.
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Proposition A.0.7. [3, Lemma 5.2] For any ν > 0,

∞∑
k=1

xk

(k!)υ
≥ c1e

c2x1/υ , x > 0,

for some constants c1(υ) > 0 and c2(υ) > 0.

Proposition A.0.8. [1, Lemma 2.2] For any t > 0 and w ∈ Rd,

∫
Rd
e−t|υ|

α|ω − υ|−d+βdυ ≤ Kd,α,βt
−β/α,

where

Kd,α,β := sup
w∈Rd

∫
Rd

|υ|−d+β

1 + |ω − υ|α
dυ.

Lemma A.0.9. [12, Lemma 6.5] Suppose a1, a2, · · · : [0, T ] → R+ are measurable and non-

decreasing. Suppose also that there exist a constant A such that for all integers n ≥ 1, and all

t ∈ [0, T ],

an+1(t) ≤ A

∫ t

0

an(s)ds.

Then,

an(t) ≤ a1(T )
(At)n−1

(n− 1)!
for all n ≥ 1 and t ∈ [0, T ].
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received in 2007 a Diplôme Universitaire d’Etudes Scientifiques (Associate degree) in Mathe-
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