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Abstract

The Electron Propagator Theory is useful for calculating vertical electron detachment en-
ergies and Dyson orbitals of neutral molecules and anions. The Electron Propagator Theory
is a second quantization method that can be improved systematically by increasing the Super—
Operator space or improving the order of couplings. In this work, a software (DROGON.D4) is
used to obtain expressions, plots and program 316 fourth—order Brandow—type diagrams.

The combination of high correlation methods with complete basis sets is usually unfeasi-
ble for moderate—large molecular systems. For this reason, composite approaches are common
for the high accuracy prediction of molecular and thermochemical properties. In this work,
the exploration of the composite approach begins with an Electron Propagator Benchmark of
methods for neutral molecules and anions in addition to the statistical study of additive proper-
ties of basis sets and high correlation effects. Then, composite electron propagator methods are
defined and tested: CP3+/34, CN/34 are good approximations for neutral molecules with mean
unsigned errors of 0.08 and 0.14 eV, respectively. For anions, CP3+/a23, CP3+/a34, CNR2/a23
and CNR2/a34 yield mean unsigned errors of 0.11, 0.12, 0.15 and 0.12 eV, respectively.

Case studies of several anions of interest are analyzed: P,Nj is a pentagonal ring with
several accessible electronic states for its neutral form. The first vertical electron detachment
energy is 4.41 eV and corresponds to a 2A; state. Its lower energy isomer, NoPNP- is also a
pentagonal ring with a lower vertical electron detachment energy of 3.73 eV corresponding to
a 2B, final state. In addition, vertical electron detachment energies for superhalides have been

studied for AI(BOQ )Z , Mgg (CN)g , CHB; HII , CHB; 1FII and CHB{; Clh .
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Chapter 1

Introduction

1.1 Ionization energies and electron affinities

The ionization energy (IE) is the energy needed to remove an electron from a molecule and
the electron affinity (EA) is the energy released when adding an electron to a molecule. In
addition, solving for the wavefunction of this molecule provides both occupied and unoccupied
molecular spin—orbitals and their eigenvalues. A simple way of calculating the lower IEs and
EAs for a molecule is by using the Koopmans’s theorem (KT) in which the IE and EA are
equal to the negative eigenvalue of the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO), respectively.

Photoelectron spectroscopy (PES) is an experimental technique in which a high energy
photon hits a molecule with enough energy to eject an electron from its spin—orbital. The

binding energy of the electron can be obtained using the Einstein’s photoelectric equation,
Ey = hv — ¢y, (1.1)

where I is the kinetic energy of the electron, hv is the energy of the photon and ¢ is the
binding energy of the electron. Then, the lowest binding energy of a neutral molecule is the IE
and the lowest binding energy of an anion is the EA (when the anionic and neutral geometries

are similar).



When the neutral high correlation effects coming from localized lone pairs or excess of 7
electrons are present, the lowest IE might not come from the HOMO but instead the HOMO-
1. This is called a Koopmans’s defect and it occurs in the N, molecule. One can obtain
orbital relaxation and correlation effects in the calculation of both the neutral and cation total
energies by using AE methods. Then, there will be an IE for each molecular orbital related to
each electronic final state (in the cation). AE methods have been used to assign peaks in PES

providing an electronic structure detail of the valence molecular orbitals of neutral molecules.?

1.2 Electron Propagator Theory

Electron Propagator Theory (EPT) provides the theoretical background for the high accuracy
prediction of vertical electron detachment energies (VEDEs) and vertical electron attachment
energies (VEAEs).3 Among the best properties of EPT or Green’s function methods is that we
can obtain several binding energies for the respective electronic state using a single reference
determinant. In comparison, a AE method will need one calculation for the reference state and
another calculation for each electronic final state. In addition, EPT provides Dyson orbitals
which give a physical description of the ionization process and are useful when compared with
spin—density contours of final electronic states when starting from a closed shell state.®

Solving for eigenvalues and eigenvectors of the superoperator Hamiltonian,

HC = Cuw, (1.2)

yields all the binding energies and Dyson orbitals for a particular operator manifold. For ex-
ample, we can have operators for ionization and electron affinity transitions involving two—
occupied and one—virtual orbitals (2hp for the hole and particle analogy to occupied and vir-
tual, respectively) and two—virtual and one—occupied (2ph) obtaining a super Hamiltonian with
dimensions equal to (h+p+h?p+p?h). This matrix is extremely large to store and diagonalize.
In addition, not all ionization and electron affinities are chemically important and their compu-

tation can be omitted by using the Davidson algorithm in the valence transitions.’



The superoperator problem can be simplified using the inverse form of the Dyson equation

and finding poles of the electron propagator where

[F+3(E)]C = EC, (1.3)

where F includes coulombic and exchange interactions at the canonical Hartree—Fock reference
state and is equal to F).; = d,4€,, F is the binding energy for the particular Dyson orbital C and

3.(F) is the self-energy operator.

1.3 Composite Methods

Thermochemical data of high accuracy can be approximated with composite methods by using
the additivity of the basis set and high correlation effects. In other words, using high—order
correlation methods at a small basis—set, to obtain the correlation effect, in combination with
second—order correlation methods at the complete basis set limit (CBS), to obtain the basis—set
effect. The addition of these two effects attains high accuracy electronic energy.3-!7

Basis—set extrapolations have been successfully applied in quantum chemistry calculations
of Hartree-Fock total energy, correlation energy and electron propagator methods. 182! These
results show a saturation in the basis effect and allow the CBS limit prediction by using either
a cubic or exponential extrapolation. In Chapter 4, a composite approach for EPT is proposed
and tested using the G2-IP test—set. 12!

A CBS limitation is the need for correlation—consistent basis—sets which are quite demand-
ing and not adequate for diffuse Rydberg—like anions. However, previous EPT studies have
also shown good cancelation of errors when using Pople basis sets, compared with experimen-
tal results.?*2! In addition, adding extra diffuse functions while retaining the highest angular
momentum constant has been quite successful at obtaining binding energies of Rydberg—like
diffuse electrons.??>-2* Therefore, CBS effects might not always be the best approach for EPT

methods but are quite accurate and successful in the case of valence bound electrons.



1.4 Anions

A popular way of discovering new molecules and anions with subtle chemical bonding is
through photoelectron spectroscopy and computational quantum chemistry. Photoelectron spec-
troscopy provides a fingerprint characteristic of the molecular ion. In addition, theoretical cal-
culations assign the signals to particular electronic transitions of new molecular structures. For
example, anionic photoelectron spectroscopy, structure search algorithms, electron affinities
and excitation energies calculations have enabled the discovery of boron clusters with quite
interesting structures and chemical bonding.?’

Another successful story of excellent agreement between experiment and theory is the
discovery of double-Rydberg anions, e.g. (NH})?-, in which photoelectron spectra have a
low energy sharp peak that agrees with the VEDE of the tetrahedral anionic structure EPT
results.?6?” The discovery of double-Rydberg anions changes the perspective of transference
of electrons in solvated media with the possibility of outer—sphere—electron mechanisms.

In Chapter 5, a benchmark for prediction of VEDEs of closed shell anions with EPT has
been performed and several recommendations are provided.?® The golden standard ACCSD(T)/CBS
for theoretical chemistry calculations was used to provide a high accuracy benchmark of VEDEs
and compared against EPT approximations. The best EPT approximations were OVGF-A, P3+
and NR2 using either CBS or composite approaches (CP3+, for example) giving mean un-
signed errors and error standard deviations below 0.15 eV. However, a problematic case study
is the F-—H50 complex in which the OVGF-A approximation has a considerable error of 0.4
eV while P3+ and NR2 are within 0.15 eV from the computed standard.

The Outer Valence Green’s Function (OVGF) approximation provides a selection algo-
rithm between the A, B and C versions which is quite accurate for closed shell neutral small
to medium molecules.?! However, in the case of anions this selection algorithm usually selects
the OVGF-B approximation which gives larger errors than OVGF-A. For this reason, it is sug-
gested to use the OVGF-A version or P3+ (which is faster and easier to calculate than OVGF)

for VEDE calculations in anions.



The extremely useful and accurate results obtained with NR2 can be obtained with the
Gaussian 16 quantum chemistry package.?® However in order to use this approximation, a
thorough understanding of Dyson orbitals, KT and Davidson’s diagonalization algorithm is
required. For this reason, the Ortiz research group is working to provide a thorough documen-
tation for the calculation and performance of Non—diagonal EPT methods. On the other hand,
diagonal EPT calculations can be quickly achieved and are a good entry point for the under-
standing of Dyson orbitals and KT. In addition, Chapters 4 and 6 will provide examples of
CBS extrapolations, composite additions, applications and exceptions KT and Dyson orbitals

usefulness.

1.5 Super Halogens

Superhalogens are clusters with central atoms and highly electronegative ligands that have elec-
tron affinities higher than 3.6 eV, the electron affinity of Chlorine and the highest electron affin-
ity in the periodic table. Superhalides are the corresponding anions and are usually closed shell
anions with high symmetrical features and valence bound electrons.®3%-33 A simple superhalo-
gen is the combination of a metal with valence X with X+1 halogen atoms, for example MgFs,
where two of the halogen ligands take an electron from the metal and the remaining neutral
ligand has a strong potential to fill its valence shell.

There can be composite superhalogens where a ligand is substituted with an organic group,
like ethylene. These systems have higher electron affinities than their organic parents and
might be used in synthesis and chemical bond activations. In addition, superhalides tend to be
extremely stable basic systems and their conjugated Brgnsted—Lowry acids have super acidic
properties. Therefore, superhalogens can be used in two of the most important types of basic
chemistry, acid-base and redox chemistry.

In Chapter 6, EPT approximations show good agreement when compared against the
CCSD(T) method for several superhalogens.%23-393! For example, electron affinities of compos-
ite superhalogens were calculated with OVGF and accurate predictions of the vertical transi-

tions and final electronic states were provided.3? Accurate prediction of superhalogens electron



affinities is not trivial due to high correlation effects, spin—contamination and close electronic
excited states. A simple solution to these problems is to obtain VEDEs from the anionic ref-
erence state, which is a closed shell singlet, using an EPT approximation. In this way we can
elude the spin—contamination and use Dyson orbitals to predict the ground state for the neutral
species and its excitation energies to nearby electronic states, where the excitation energies are

equal to the differences of vertical electron detachment energies.

1.6 Carboranes

Boranes are clusters composed of boron and hydrogen atoms; they can be neutral or anionic.
For example, BoHg is a diborane and its chemistry is interesting because of the formation of
three—center two—electrons (3c-2e) bonds. This phenomenon is due to the electron deficiency
of Boron and when more boron atoms are present in the borane highly symmetric cage—like
(closo) dianions are formed.

The closo-B13H3, borane cluster point group is I, with a boron atom occupying each
icosahedron vertex. Each boron is bonded to a hydrogen atom. This borane, is quite an sta-
ble dianion and a boron atom can be substituted with a carbon atom to obtain a carborane,
CHB,;H7,. Protonated carboranes are superacidic and their conjugated basis are superhalides
which are interesting properties for a cluster with no highly electronegative atoms or ligands.
If the hydrogen atoms connected to boron atoms are substituted with fluorine or chlorine atoms
halogenated carboranes are obtained, CHB;; X7, for X = F or Cl.

In Chapter 4, the electronic structure of the neutral carboranes is explored and found o
be quite interesting because of their high electron affinities (>6 eV) and the highly delocalized
frontier orbitals.** In addition, the anionic carboranes have a delocalized negative charge that
mainly accumulates on the side opposite to the carbon atom. Therefore, the protonated carbo-
ranes will have the acidic proton on the same side. In the case of X = H, the proton is bound to
three boron atoms, pushing three hydrogens aside. For X = F and Cl, the proton binds between

two halogen atoms, closer to the one that is opposite to carbon.



No correlation was found between the proton binding energies and the VEDEs for the
HOMO and this might be due to the nodal structure of the Dyson orbital at the protonation
side. However, for the HOMO-2 Dyson orbital (HOMO-1 and HOMO are degenerate) there
are amplitudes available at the protonation side and, therefore, increasing the VEDE of this

orbital will increase the superacidity of the protonated carborane.

1.7 Double-Rydberg Anions

Binding an extra electron to a closed—shell saturated cation is not a typical process. The elec-
tron tends to occupy a highly diffuse orbital with a small binding energy and is known as a
molecular Rydberg radical. For example, the neutral NH, has a diffuse electron in the periph-
ery of the NH} cation, (NH} ). The addition of an extra electron forms a double-Rydberg anion
((NH})?") in which there is a doubly occupied orbital in the periphery of the NH cation. 26?7
All three structures are tetrahedrals with similar bond lengths and vibronic structures account-
ing for sharp peaks and high Franck—Condon overlap.

Research in solvated double—-Rydberg anionic clusters has been performed and diverse
chemical interactions between the anions and the ammonia molecules have been discovered. 3336

In Chapter 7, double—-Rydberg anions with more nitrogen atoms have been found thanks to
the formation of strong hydrogen—bonding interactions, (NoH¥)?~, (N3H7,)*", (N4Hj;)*" and
(N5H{¢)?". In addition, ion—dipole interactions with ammonia monomers and dimers have also
been encountered, where the anion is more stable, increasing the VEDE by 0.1 and 0.2 eV for
the monomer and dimer, respectively.

Other interesting possibilities explored are protonated amines, singly protonated diamines
and protonated aminoacids due to their importance in chemical reactivity, pH regulation and
biochemistry. When having two sites that can allocate Rydberg-like orbitals the presence of
excited triplets for double—Rydberg anions is possible. Therefore, open—shell Rydberg anions
could initiate radical chemistry like polymerization or halogenation reactions at low tempera-

tures.



1.8 Electron Propagator Diagrams

The description of correlation and relaxation effects in the electron propagator can be described
in an efficient and graphical way by using Feynman—type diagrams. The second and third
order electron propagator diagrams provide the terms belonging to the self—energy operator and
represent the advanced mathematics and linear algebra corresponding to the EPT in graphical
and condensed way.*

In Chapter 3, a vectorial representation is proposed for each Brandow’s electron propaga-
tor diagram for third and fourth order. A computer algorithm named DROGON.D4 has been
developed within the research leading to this dissertation and generated all possible vectors and
combined them to obtain their corresponding diagrams. There are two types of diagrams that
can be obtained: The Goldstone—type diagrams have all the information needed to obtain the
self—energy term. The Hugenholtz diagrams are useful for discarding duplicated Goldstone dia-
grams. For this reason, both Goldstone and Hugenholtz vectorial representations are generated
and compared.

Previously, Schirmer et al?” obtained 228 fourth—order diagrams that are labeled in Ap-
pendix A as type-U, type—V and type—W diagrams. In agreement with Schirmer, DROGON.D4
obtained all these 228 diagrams plus 72 constant diagrams. However, DROGON.D4 also ob-

tained 16 new diagrams, which 8 of them can be reduced to 2ph—2hp terms.



Chapter 2

Theory

In order to give a background for Electron Propagator Theory (EPT), we will discuss the fol-

lowing concepts in this chapter:

Schrodinger equation

Born—Oppenheimer approximation

* Variational principle

Hartree products

Slater determinants

Hartree—Fock method

* Second quantization

Electron propagator theory

2.1 The Schrodinger equation

The time-independent non-relativistic Schrodinger equation reads,

Hy = By, 2.1



where 1) is the system’s wavefunction, F is the system’s energy and H is the Hamiltonian

operator. The Hamiltonian operator is defined as,

N h? N 1
H = Y —Va+V(r,ra,...,ry), (2.2)

2 Hmy

where £ is Planck’s constant divided by 27 (h = %), n is the particle index, m,, is the mass
for particle n, N is the total number of particles, V' is the potential energy operator, r,, is the
position vector for particle n and V? is the laplacian operator,

0?2 0* 0

v = + + =
"o0x2  Oy2 022

(2.3)

The Schrodinger equation can be solved exactly for some special cases: 33

Particle in a box

¢ Harmonic oscillator

Rigid rotor

Hydrogen atom

However, for the helium atom as well as Hj cation it cannot be solved exactly. Let us suppose

the general problem of two nuclei and one electron (A and B are nuclei, e is electron)

Figure 2.1: AB™* cation, we can have A as hydrogen 1, B as hydrogen 2, e as an electron to
have HJ.
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Then, the Schrodinger equation for this system reads,

- h? [ 02 0? 0?
Hy(AB - AB
h2 82 82 82
- AB,
oms (aBg " oB2 " oB? ) v(AB.e)
n? (9% 09?02
- a 9 a9 NG A’B’
2me (86% ’ oe2 ’ 8eg)w( ©)
2 2 2
+|- © - ¢ + ¢ P (A,B,e)
Admep|A —e|  dmeg|B —e|  4dmeg|A - B|
= E¢(A,B,e) (2.4)

where A, B and e are space vectors for particles A, B and e, respectively. A, A, and A, are cartesian
components of A; B, B, and B, are cartesian components of B; e;, e, and e, are cartesian components
of e. Eq. (2.4) can’t be separated due to its dependency on coordinates |A — B|, |A — e| and |B - e|. For
this reason, the Born-Oppenheimer approximation is quite popular in order to solve the Schrodinger

equation.

2.2 The Born—Oppenheimer approximation

The Born-Oppenheimer approximation consists in separating the system’s molecular coordinates in fixed
coordinates for the nuclei and moving coordinates for the electrons. This approximation is based in the
fact that nuclei are thousands of times more massive than electrons and therefore their moving time-scale
is slower.

In a molecular system, the Hamiltonian operator can be separated in five terms:

. h? h? Z €2 ZaZpe? e?

H=-—Yv-y —v2-y -4 AZD : (2.5)
2m 5 7 2My A dmeorai  ssp4meoRaB =5 4megri;
where i, j are electron indexes, A, B are nuclear indexes.>® Eq. (2.5) in atomic units is simpler,
H=--¥Yv2_-S__—v2_S"24, +y —. (2.6)
2 ZZ: ‘ ZA: M, A % rai  Asp Ram ; Tij
We can have the Hamiltonian operator as a function of operators,

H=Ty(R) +To(r) + Vn (R) + Vyn (R) + Vee (1), 2.7)
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where R is the set of nuclei coordinates and r is the set of electronic coordinates. TN is the nuclear
kinetic energy operator, T.. is the electronic kinetic operator, V. is the potential energy operator between
nuclei and electrons, Vy v is the potential energy operator between nuclei and Vee is the potential energy
operator between electrons.

Unfortunately, V. ~(1,R) operator does not allow a separation of nuclei and electron contribu-
tions, in which case we could write the wavefunction as the product of the nuclear and electronic terms
¥ (n,R) = ¥(r)x(R). The Born—-Oppenheimer approximation consists in changing the dependency of R
to a parametric dependency. In this way the wavefunction is given by, 9)(r,R) ~ 1 (r;R)x(R).* Then,
fixing the nuclei coordinates R to a parameter value, R,, we can solve for the electronic wavefunction
1 (r;R,), which now depends on R as a parameter. If this is solved for different R values we obtain a
potential energy curve or hypersurface with respect to the nuclei movement.

Then, we can define the electronic Hamiltonian operator H e

H, = T.(r) + Von (r3R) + Ve (1) (2.8)

and the Schrodinger equation for the electronic contribution is: >

H.p(r;R) = Ep(13R). (2.9)

2.3 Variational principle

The variational principle reads,*

E4 > E. (2.10)

where Ej; is the energy of a guess wavefunction ¢ and Ej is the energy of the ground—state wavefunction

1. Ep and Ey can be obtained with the following equations,

[y Hobodr
Ey = T izvedr 2.11)
* Ae d
Ey = —f}bqﬁ%j;- (2.12)
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Then, using the variational principle we can use trial functions as approximations to the ground—
state wavefunction. These trial functions will have parameters that can be optimized with respect to the

energy in order to obtain the lowest energy possible.

Trial function Wavefunction
W(r, ) =/ sech(fr)  S(r) = Jee

W(r,B)

1'1- S(r) :

Figure 2.2: Trial function (¢)(r, 5)) and ground-state wavefunction (S(r)) for the hydrogen
atom.

As shown in Figure 2.2, the trial function (¢ (r, 3)) reproduces the shape and values of the ground—
state wavefunction (S(r)) to a certain level.
The trial function can also be chosen in the form of a linear combination of simpler basis func-

3

tions,*® such that each coefficient in each function can be optimized with respect to the energy in order

to provide a better approximation to the ground—state wavefunction,

N N 9
¢=2 cifj=D e 2.13)
Pt '

7=1

Then, the trial function becomes a linear combination of basis functions (basis set) in which each
one of these functions has a parameter o; and a coefficient ¢;. Using the variational principle, the coef-
ficients are optimized by minimizing the energy and Table 2.1 shows that the more complete the basis
set is the more exact the trial function becomes. This applies to every method based on the variational

principle, such as the Hartree—Fock approximation.
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Table 2.1: Trial function (optimizing c; and «; for Eq. 2.13) energy as a function of the number
of basis functions for the ground state energy of the hydrogen atom, the exact value is —0.50000
au.

N Epin/(mee*/16m2€3h)
1 -0.42441
-0.48581
-0.49697
-0.49928
-0.49976
-0.49988
-0.49992
-0.49998

0N L B W

[S—
(@)

2.4 Hartree products

The Hartree products method consists of approximating the wavefunction as a product of NV functions,

¢HP(X1,X2, . ,XN) = Xi(Xl)Xj(XQ) . 'Xk(XN)v (214)

where N is the number of electrons in the system, ¢//'” is the Hartree product (HP) wavefunction,
X1,X2,...,Xy are the coordinates for electron 1, 2, ..., N, respectively, x;(X1),x;j(X2),..., xx(Xn),
are the occupied spin—orbitals ¢, j, ..., k by electrons 1,2, ..., N, respectively.

Without electron—electron interaction, the simpler hamiltonian operator H reads

N
=5 "), (2.15)
=1

where 177 (i) is a monoelectronic operator which describes the kinetic and potential energy of electron
i. The potential energy in A"/F’ (i) can have an average way of including nuclear attraction and electron—
electron repulsion.* =3

This operator has eigenvalues and eigenfunctions,

P () (xi) = ejxi(xi), (2.16)

AP = pypf?, (2.17)
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where the energy is the summation of all eigenvalues,

E=Ye. (2.18)

7

2.5 Slater Determinants

Fermions are indistinguishable particles with antisymmetric wavefunctions, such that when two fermions
exchange their positions in direct spin space the wavefunction is the same but with the opposite sign.

Electrons are fermions and the Slater determinants are useful at antisymmetrizing Hartree wavefunc-

tions: 40
xi(x1)  xj(x1) - xk(x1)
1| oxa(xe) o xg(x2) e xe(x2)
[ (x1,X2,...,Xn)) = (N!)72 ,
xi(xn)  xi(xn) o xk(xN)
where [1)(X1,X2, ...,Xx)) is the antisymmetric wavefunction of N electrons called Slater determinant,
1
(N!)72 is a normalization constant, columns contain spin—orbitals x;, X;, .. ., X% and rows occupy the
spin—orbitals with electrons at coordinates X1, X2, ..., Xy. If two electrons are exchanged, the Slater de-

terminant will change sign. Slater determinants can be represented as a vector composed of the diagonal

elements in the determinant (|x; Xj"'Xk))- Using this notation, the wavefunction of N electrons reads,

[V(X1,X2,. .., XN)) = [XaXj " Xk) (2.19)

where it is implicit that spin-orbitals x;, X;,...,xx are occupied with electrons at the coordinates

X1,X2, ..., Xy, respectively.

2.6 Hartree—Fock method

Using the Born—Oppenheimer approximation and the Slater determinants we can separate the problem
of many electrons into many problems of one electron, where electron—electron repulsion is treated in

an average way.*? This will be the Hartree—Fock method and the average field is represented by the
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electronic density, the square of the wavefunction. The Slater determinant is composed of trial functions
that are optimized using the variational principle.

The ground-state energy in the Hartree—Fock method is:

Eo = (o|H 1) (2.20)

where Ej is the ground-state energy, (10| H [t)p) is the integral over all space of the ground—state wave-
function multiplying the Hamiltonian operator operating the ground-state wavefunction, known as the
energy expectation value. This is for a real wavefunction. In the case of a complex wavefunction, the
complex conjugate must be multiplying the Hamiltonian operator.

Then, the Hartree—Fock energy can be obtained using the Slater determinant: *0:44

N N

1
Ey = (a|h|a) + 3 > (abl|ab), (2.21)

a ab

where a and b are indexes for occupied spin—orbitals, (a|h|a) is the integral over all space of spin—orbital
a multiplying the monoelectronic operator h which operates on spin-orbital a and the term (abl||ab)
is the antisymmetrized two electron repulsion integral, which contains the coulombic and exchange
interactions between electrons occupying the spin—orbitals a and b.

The antisymmetrized two electron repulsion integral can be separated in two coulombic integrals,
(j][kL) = (ij|kl) = (ij|lk), (2.22)

where ¢, j, k and [ are spin—orbitals from the Slater determinant, these spin—orbitals can be occupied or

unoccupied (called virtual). The coulombic integral, {ij|kl), reads,*’

(ijlk) = [ dxadxax; (x0)x (k)i (x)a(x2), (223)

where rl_zl is the distance between the coordinates of electrons (x; and x2), x; and X; are the complex
conjugates of spin—orbitals ; and x;, respectively.

Then, eigenvalues and eigenfunctions read,

f(i)Xa(Xi) = eaXa(Xi)a (2.24)
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where f(7) is the Fock operator for electron 4, x,(X;) is the occupied spin—orbital a by electron 7 and ¢,
is its eigenvalue.

The Fock operator is defined as:

N
f(@) = (i) + Y [Jp(i) - Kp(4)], (2.25)
b

where Jj,(7) is the coulomb operator and K3 (%) is the exchange operator and these are the interactions
between spin—orbital a (occupied with electron ¢) and spin—orbital b (occupied with electron j).

The monoelectronic operator h reads,

h(i) = —%V? -> é, (2.26)

A TiA

where A is the index for the nuclei in the system, Z 4 is the nuclear charge for nuclei A and ;4 is the
distance between electron 7 and nuclei A

The coulomb operator, J, is defined as:

Tixa() = | [ i ridox) (). .20

The exchange operator, K, reads,

Ko(ixa(x) = | [ i (xpridna(xi) o). 2.28)

The Hartree—Fock energy can be shown to contain the terms mentioned in Section 2.2. The oper-
ator h(7) includes kinetic energy (1) for electrons and potential energy between nuclei and electrons
(Vo). In addition, the coulombic (Jp(7)) and exchange (K (7)) operators are consequences of coulom-

bic repulsions between electrons operator (Vee).

2.7 Second quantization

The antisymmetry principle and the Schrédinger equations are axioms of quantum mechanics. Slater
determinants assure that the wavefunction will be antisymmetric. Second quantization is a formalism
in which antisymmetry is assured using algebraic operators. In this way, second quantization is another

way of treating many electron systems in an elegant and sophisticated way.
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This formalism has been used extensively in the many electron problems literature. In addition,

electron propagator theory can be elegantly described using second quantization.

Creation and annihilation operators

Second quantization formalism is built by showing that Slater determinants’ properties can be transferred

"

to algebraic operators. For example, the creation operator a,; creates an electron in the occupied spin-

orbital ; and is defined by its action on a general Slater determinant |xy . .. x;) such that:4°

allxe - xa) = ixe- - xa), (2.29)

+

where a; occupies the spin—orbital x; with an electron. The order of creation operators is key, for

example:

alallxe.-xa) = allxe--x)) = axaxe---xa) (2.30)
alallxe.--xi) = albaxe---x1) = Doxixe---xi) (2.31)
= —[xaxgxe---xi)- (2.32)
Then the following anticommutation relation has been proved,
[aj, a;.]J, = a;.ra;f + a;faj =0. (2.33)

This shows that two electrons cannot be created in the same spin—orbital, in accordance with the Pauli
exclusion principle.
The annihilation operator, a;, is the Hermitian conjugate (adjoint operator) of the creation operator,

aZT (.e., (aZ)Jr = a;), and it operates in a general Slater determinant such that:

@il XiXrk ---X1) =[xk - x1)5 (2.34)

Note that in second quantization operators have no accent. This will be relevant when introducing
superoperator notation for second quantization.
Therefore, a; annihilates or destroys an electron in the spin—orbital x;. The annihilation operator

can only operate on a determinant if the spin—orbital which is going to be operated upon is at the left
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of the determinant. If not, the determinant must exchange columns, changing the sign in the process.

Specifically,

ailxexiXi) = —ailXixiXe) = =IXixk) = [xeXxi)- (2.35)

The annihilation operator anticommutation relation is similar to Eq. (2.33),
[ai, aj]+ =aia; +a;a; = 0. (236)
Ensuring that an electron not present cannot be annihilated,

ailxxx1) = 0. (2.37)
The last anticommutation relation is about both annihilation and creation operators,

[a;, a;]+ = aia; + a;ai = 0ij, (2.38)

where d;; is a Kronecker delta and is equal to 1 when 7 = j or 0 when 7 # j.

The second quantization Hamiltonian is given by:

1
H =3 hpgagaq + 5 3 (palrs)ayajasar, (2.39)
p?q p7q7r7s

where h,,, is the monoelectronic term that includes kinetic energy and the nuclei—electron potential

energy.

2.8 Electron Propagator Theory

The Electron Propagator Theory 34353

is one of the most powerful tools for ab initio calculations
of electron binding energies (EBEs). This theory is equivalent to other formulations like one electron
Green’s functions or equation of motion and provides interpretation to EBEs with Dyson orbitals in a
direct and straightforward way.

The EBEs and Dyson orbitals are eigenvalues and eigenfunctions of one electron equations that

include their potential, which is known as the self-energy. The Dyson orbitals are related with transition

amplitudes of addition or removal of one electron. In addition, the sum of EBEs and their corresponding
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Dyson orbitals are related to the one electron properties or total energies. Electron propagator meth-
ods can be improved systematically by improving the approximation operator—space or by increasing
the basis—set. The one electron operator equations in EPT are similar to KT and provide correlation
expressions for the one electron transitions. Finally, there are diagrammatic expressions for the self—
energy operator relating the many body theory with the sum of several correlation and relaxation terms.
Electron propagator methods are derived from generalizations of multiple times and density matrices.
A summary of electron propagator basic concepts follows, discussing poles, residues and their
physical meaning in terms of EBEs and Dyson orbitals. Approximations are obtained by coupling of
the propagator to higher propagators and using the superoperator notation. Then, the electron propa-
gator matrix is obtained by using partition techniques. Reference states and transition properties are
related with the inverse form of the Dyson equation which provides a correlated generalization and

self—consistent field.

Spectral Form: Electronic binding energies and Dyson orbitals

The electron propagator can be expressed in terms of field operators that annihilate or create electrons
in a finite set of spin—orbitals, orthonormal among them, with indexes r, s, ¢, ... such that the spectral

form for the electron propagator matrix element r, s is:

Grs(B) = Y U Uns(E = D)™ 4 S Vit Vi (B = Ay 7Y, (2.40)

Where U,,s = (N - 1,n|as|N,0) and V;,, = (N + 1,m|a/|N,0) are residues in the electron propagator
matrix,” indexes n and m run over states with N —1 or N +1 electrons, respectively. The reference state,
|N,0), is the ground state of the system with N electrons and has energy Ey(N), ionization energies
(IEs), D), = Eo(N) - E,,(N —1), and electron affinities (EAs), A, = E,,,(N +1) — Ey(N). Poles occur
when E = D, or when F = A,,, obtaining IEs or electron affinities EAs, respectively.

Dyson orbitals for ionization energies are defined as follows:

. 1 *
(pgyson(xl) =Nz fwN(XI;XLXS,u-;XN)wn,N_l(XZ;X&Xmu-;XN)dXZdX3dX4‘-'dXN- (2.41)
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Also, we can define the Dyson orbitals for electron affinities:

Dys 1
0 (x1) = (N+1)2 f¢m,N+1(X17X2aX37-~-aXN,XN+1)¢]*V(X2aX3aX47~~aXNaXN+1)dX2dX3dX4--~dXNdXN+1-

(2.42)

Superoperator notation

The electron propagator can be expressed as a series,

I
=

=

o

{af; as)

+ o (2.43)

where we can use the following notation, which highlights the role of field operators (G,s(F) =

{af;as)):
Grs(E) = (afa,). (2.44)

A concise expression of Eq. (2.43) can be obtained by defining the superoperator vectorial space. >34

First, we define the inner product between two operators y and v,

(ulv) = (N,0|[u",v].|N,0). (2.45)

Then, for every operator A, including the Hamiltonian operator, we define a superoperator A whose

action reads,

~

Ap=[p, Al = pA-Ap. (2.46)

To complete the vectorial linear space, it is necessary to define the identity superoperator I as
follows,

Ip=p, (2.47)
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and the Hamiltonian superoperator
Hp={p, H] = pH - Hp.
Therefore, the electron propagator matrix can be expressed in superoperator notation,
(al;as) = E7 (ar|as) + E2(ay|Has) + E73(ay|H?as) + B~ (ay|H3as) + . ..
By separating a E~! term the H superoperator powers and E are related as follows,
(alsas) = E7' [(arlas) + E™ (ar|Has) + E%(a, | H?as) + E7(ar| H as) +....],
which is similar to the geometric series:

“l+z+a+2>+...

1-x

where z = H /E and its superoperator notation becomes,

Then, multiplying the % and the inner product we obtain

<(a:;as>> = (ar‘|(Ef_ f])_I%) =Grs(E).

Operator space partitioning

A vector of creation operators, with range R equal to the spin—orbital basis, is defined as follows,

a = [alala]...al].

Then the electron propagator matrix reads,

G(E) = (a|(EI - H)a).

22
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The inversion of a superoperator can be avoided by having a matrix inversion instead performing
an inner projection. This set of field operators product includes a elements (simple annihilators), as well

as products of n creators and 7 + 1 annihilators for n =1, 2, 3,... and is arranged in the vector w,

G(E) = (a|lw)(w|(EI - H)w) (wla). (2.56)

The inner projection space can be partitioned into primary and secondary space, which is orthogo-
nal to the primary space and contains triples, quintuples and higher annihilation and creation operators
products. >’

G(E) = (ala;f)(a;f|(EI - H)a;f) ! (a;f]a). (2.57)

Separating the matrix in primary, secondary and mixed blocks gives,

(ala) = 1, (2.58)
(flf) = 1y (2.59)
(alf) = Oaxy (2.60)
(fla) = Ofxa. (2.61)
Eq (2.57) can be simplified as follows,
G(E) = [1a0axs ] (asf|(ET = H)aif) ' [1a00xs]" . (2.62)

where the electron propagator matrix structure implies that the left superior block from the central unit
((a;f|(EI — H)a;f)™") of the inverse matrix is identical to G(F). This can be proved by solving the

following two equations simultaneously:>
(al(E] - H)2)G(E) + (al(EI - H)f)gfa(E) = 1a, (2.63)

(F(EI - H)a)G(E) + (f|(El - H)f)ga(E) = 04xq. (2.64)

Solving for the term g, (F) in Eq. (2.64),
(F1(ET - 0)E)gga(E) - ~(E(E] - ()a)G(E) (265)
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gra(E) = —(£|(EI - H)f)™ (f|(EI - H)a)G(E) (2.66)

and inserting this into Eq. (2.63) we obtain,
(a|(EI - H)a)G(E) - (a|(EI - H)f)(f|(EI - H)f) " (f|(EI - H)a)G(E) = 1,, (2.67)
We then factorize G(E),
[(al(E] - H)a) - (al(EI - H)Y)(FI(E] - H))™ (B - H)a)]G(E) = 1, (2.68)
and simplify the following terms according to Eq. (2.58), Eq. (2.59), Eq. (2.60) and Eq. (2.61)

(a|(EI - H)f) E(a|If) - (a|Hf) = E(alf) - (a|Hf) = —(a|Hf) (2.69)

(f|(EI - H)a) E(f|Ia) - (f|Ha) = E(f|a) - (f|Ha) = —(f|Ha). (2.70)

Then, Eq. (2.68) is multiplied at the right by the electron propagator matrix, (G~!(£)) and we obtain
the following:

G YE) = (a|(EI - H)a) - (alHf)(£|(EI - H)f) " (f|Ha). (2.71)

Dyson equation

Partitioning the operator space can bring about efficient procedures to find poles and residues. One of

these procedures is using the electron propagator matrix inverse from Eq. (2.71),3

G Y(E) = E1-(alHa) - (a|Hf)[E1 - (f|Hf)]  (f|Ha), (2.72)

and separating the zeroth order terms,

Gy (E)ps = 0,5(E —€,), (2.73)

where it can be seen that poles are equivalent to the results of KT.*? Then, the electron propagator

inverse matrix can be related to its zeroth order analog,

G YE)=G; (E)-2(E), (2.74)
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leading to the Dyson equation (Eq. (2.74)) and the correction to the zeroth order electron propagator
matrix, 3 (E), is the self-energy.

The self—energy is then separated in terms that depend on £ and independent terms,

S(E) = o(E) + (o), (2.75)

when E tends to infinity only 3(o0) survives and is equal to:

2. (00) = X (rtllsu)piy™ (2.76)
s tu
where pf.'" is the tu element of the correlation density matrix, p°°" which includes the correlation

contribution to the one electron density matrix.>

On the other hand, terms that depend on E are:

o(E) = (a|Hf)[E1 - (f|Hf)] "L (f|Ha). (2.77)

In order to solve the Dyson equation, the self-energy matrix can be approximated to a perturbation
order using the Mgller—Plesset partitioning of the Hamiltonian (H = Hy + V').>® For first order, the
self-energy has no additional corrections to the zeroth order self-energy matrix.* For second order, we

obtain the following:?
»®(E) = (al HE)V[EL - (£)HE) O (£] Ha) D, (2.78)

where the order is in the superscripts of the matrix elements.

The matrix elements from the inner products needed for second order are:3

(aplHalaia )V = (pallij) (2.79)
(aglHalaaa,)V = (qillab) (2.80)
(alamﬂﬁaiakal)(o) = Oaplirdjif€i + €j — €q] (2.81)
(afaaap|Halacag)® = 6ij6acobalea + €, — €, (2.82)

where Eq. (2.81) requires that ¢ < j and k < [, and Eq. (2.82) requires that a < b and ¢ < d.
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Using the previous matrix elements we can combine them in order to obtain the second order

self—energy:*>

) g ) . .
SO (E)-Ly {pallij){ijliaa) , {pil|ab){abl|gi) 7 (2.83)
pe 20 FE+e—€i—€5 23 E+e—€,—€

aij
where ¢ and j (a and b) are occupied spin—orbitals (virtuals), €4, €, € and ¢; are the Hartree—Fock

eigenvalues for a, b, ¢ and j spin—orbitals, respectively.

Pole search

Searching for poles from the Dyson equation leads to ionization energies and electron affinities for
occupied and virtual orbitals, respectively. To find poles in the second order electron propagator one
can use the diagonal approximation, also called the quasiparticle approximation. This approximation
consists in making zero all the non—diagonal elements in the self—energy matrix. Then, the element pp
of the self—energy matrix belongs to either an occupied (ionization energy) or virtual (electron affinity)

spin—orbital,

1 . . o . 1 N -
52 (py- Ly (pallij){ijllpa) | 1 <~ {pillab){ablipi) (2.84)
2aijE+€(z_€i_€j 2iabE+6i_€“_6b

A simple way of solving for F is to guess the first value equal to ¢, obtaining the first self—energy

from this guess. Then solving for F' again in the following equation (Eq. (2.85)),
E=¢e,+X,(E). (2.85)

In addition, using the Newton—Raphson method to find poles is suggested,? and it usually takes 3
to 4 iterations to reach a convergence value with a threshold of 10~° hartree. Residues for poles obtained

with the quasiparticle approximation are known as pole strengths and are calculated as follows:

dzpp (E)

-1
7Tp= (1—7) 5 (286)

where 0 < 7, < 1 and the approximation is correct when 7, > 0.85 because the pole consists mainly of

one single determinant.
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Chapter 3

Electron propagator Brandow (Feynman) diagrams.

Electron propagator diagrams are graphic tools that simplify the description of quantum correlation.
Second and third order electron propagator diagrams are quite useful in building the self-energy operator.
In addition, they efficiently represent advanced mathematics and linear algebra. In this work, we propose
a vectorial representation for each diagram, and using computer software to create all possible vectors,
plot diagrams, obtain self-energy expressions and program the expressions for fourth order electron

propagator diagrams.

3.1 Introduction

The Brueckner-Goldstone many-body perturbation theory, >’

with perturbation corrections expressed
in terms of Feynman-like diagrams,>® has found widespread application in many fields. It was first
applied to atomic systems by Kelly® and has since been successfully used to calculate a variety of
atomic and molecular properties. An extension of the method to systems with degenerate or nearly
degenerate unperturbed states was put forward by Bloch and Horowitz,®' and recast in a connected-
diagram, energy-independent form by Brandow.®? Brandow’s diagrams are used as graphic tools in
electron propagator theory;* this is because they simplify the quantum correlation description avoiding
the employment of long algebraic treatments and obtaining the expression of the self-energy matrix
elements in a graphic way.

This work focuses on the automatic generation of Brandow’s electron propagator diagrams, for
third and fourth order. In order to obtain an automatic generation of the diagrams we first need to

represent them as vectors. Then, we can link the diagram vectors with a graphic tool and a script to

obtain third and fourth order diagrams, self-energy expressions and to compute the diagrams.
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Figure 3.1: Fig. : 2ph second order diagram.
q

Figure 3.2: Fig. : 2hp second order diagram.

Brandow diagram construction

Brandow’s electron propagator diagrams are a graphical representation of the self-energy matrix ele-
ments. In order to construct them, some rules must be followed. Each perturbation is represented by a
horizontal wavy line, there are as many perturbation lines as the diagram order, and each perturbation
line must be drawn at a different height or level. Each of these perturbation lines links two dots called
nodes, the node in the left side is for the electron / and the node in the right side for the electron 2.
Every dot has two propagation lines with two arrows: one arrow enters and the other leaves the node.
The propagation lines connect nodes in the same electron at different levels, except for two horizontal
arrows of electron / which are disconnected such that one that enters and the other leaves the diagram.
When the propagation lines are going up, they represent particles or unoccupied orbitals (a,b,c,d). Holes
or occupied orbitals are present when the arrows are going down (i,j,k,1) and the general indexes (p,q)
are used in the horizontal arrows.

Following these rules we can obtain the two Brandow second-order, electron propagator diagrams

of Fig. 3.1 and Fig. 3.2.
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Obtaining self-energy terms from diagrams

In order to solve for the Green’s function poles, we need to calculate the self-energy expressions. Each
self-energy expression is a summation of a product of electron repulsion integrals in the molecular—
orbital basis and inverses of molecular—orbital energy differences. We can separate each self energy

expression in these parts:

e Sign.

Factor.

¢ Numerator.

¢ Denominator.

Summation.

Sign

The sign of the diagram is defined as Sign = (—1)h+l

, where [ is the number of closed loops and h the
number of lines which represent spin-orbital occupied, arrows pointing down. The diagram in Fig. 3.1
has one loop formed by b and 4 (I = 1) and one propagation line going down, i (h = 1). Thus Sign = +1
Factor
A factor of (%)n is included, where n is the number of pairs of equivalent lines. Two lines are considered
equivalent if both come from and finish in the same perturbation line. The diagram in Fig. 3.1 has a
n=1anda % factor, because the propagator lines a and b are equivalent.
Numerator
The numerator is a product of antisymmetrized two electron repulsion integrals; for each perturbation

line, there is an integral. The integral, in Dirac notation has the form: (pg|rs), where each index is

chosen according to the label of the propagation lines entering the nodes on the perturbation lines.
1. p=electron 1 (left), leaving arrow.
2. g =-electron 2 (right), leaving arrow.
3. r=electron 1 (left), entering arrow.
4. s =electron 2 (right), entering arrow.

29



Then, the numerator obtained for Fig. 3.1 is (pi|lab)(ab]qi).

Denominator
The denominator is a sum of the spin-orbital energies. In order to get these terms, an imaginary horizon-
tal line is drawn in the middle of two consecutive perturbation lines and a positive eigenvalue is added
for each propagation line that crosses the imaginary line going down (a negative eigenvalue is added for
each propagation arrow that crosses upward). There is another E term using an imaginary arrow going
from ¢ to p. For example, the diagram in Fig. 3.1 has the denominator E + ¢€; — €, — €p.

Summation
The summation runs over the orbitals present in the diagram, which are the indices in the propagation
lines. The diagram in Fig. 3.1, runs over the orbitals i, a, b.

Finally, we obtain the following self—energy expression for the diagram in Fig. 3.1:

! Giledobla) an

z,a,bE+6i_6a_€b

3.2 Methodology

Brandow’s propagator diagrams in vectorial representation
In order to represent Brandow’s electron propagator diagrams as vectors we follow the next procedure:

1. Select order of diagram: second, third or fourth.

[\

. If diagram is second order separate the diagram in two electrons.

W

. If diagram is third order separate the diagram in two or three electrons.

N

. If diagram is fourth order separate the diagram in two, three or four electrons.

|91

. Build path vector for each electron.

Consider the diagram on the left side of Fig. 3.1. For electron one, we ignore the perturbation lines
uniting the nodes and describe the electron route beginning with the level at which the orbital g enters
at level one. Then, orbital a leaves level one and enters level two. Finally, orbital p leaves level two.
We have defined the electron route (see matrix in Table 3.1). The right side is a loop and we define the

beginning from level one to level two (b) and close the loop with i.
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o
(S

N =

[S==Y

Table 3.1: 2ph second order diagram vectorial representation.

Using this representation we can now generate Brandow’s third order propagator diagrams. Then,
we use the vectors to generate self—energy terms, both dependent and independent of FE, and plot the
generated diagrams.

The program DROGON.D4 has been created for generation of Brandow’s electron propagator dia-
grams. The first part of the algorithm uses FORTRAN 90 and defines the diagram’s order and structure.
It generates all possible vectors for electrons one, two and three and then combines these individual
vectors to obtain the vectorial representation of the diagram. The second part of the algorithm uses a
bash script to plot the diagram via METAPOST. The third part of the algorithm uses FORTRAN 90 for

the creation of the self-energy expressions in LATEX.

3.3 D3 Brandow’s diagrams

We can define the structure of a diagram by how many levels and electrons are present. For example,
a second order diagram will be 2-22 where the first number is the diagram level and the other two
numbers are the number of nodes in electron one and two, respectively. For third order, we will have
more possible structures: 3-330, 3-132 and 3-222. Drogon.D4 generates 12 diagrams for structure 3-330
(see type-A diagrams in Fig. 3.3), 6 diagrams for structure 3-132 (see type-B diagrams in Fig. 3.4) and
6 diagrams for structure 3-222 (see type-C diagrams in 3.5).

Using DROGON.D4 we can obtain all possible Brandow’s diagrams. However, there are only
12 diagrams for third order electron propagator® and Drogon.D4 obtained 18, duplicating 6 type-A
diagrams with type-C diagrams. For example, we can use in Fig. 3.6 a Hugenholtz diagram equivalent
to both A2 and C2 diagrams.

A fourth—order Hugenholtz diagram has only one column, one arrow entering and another arrow
leaving the diagram, each dot has two arrows entering and two arrows leaving, and the diagram can’t be
pulled apart. In addition, Hugenholtz diagrams for EPT should have at least two arrows between dots (a

denominator with at least two eigenvalues). Collapsing a Brandow diagram into a Hugenholtz diagram
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A5

A9

A2

A10
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Figure 3.3: A-type third order diagrams
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B2 B3

q

B6

B

4 B5

Figure 3.4: B-type third order diagrams

C1 (A3) C2 (A2) C3 (A8)

C4 (AS5) G5 (A1l C6 (A10)

Figure 3.5: C-type third order diagrams
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A2 Hugenholtz

s AVAVAVAVAVAVAC

Figure 3.6: Equivalent third order diagrams

consist in converting the interaction lines into a single dots with two entering arrows and two leaving
arrows.

Using the Hugenholtz diagrams, we can collapse all the type-C diagrams into type-A diagrams.
This will be extremely helpful for selecting the unique diagrams at fourth order. Then, we will use
DROGON.D4 to obtain both the LATEX expressions and METAPOST images. We will have twelve
diagrams that are self-energy dependent (Eqns: 3.2-3.13) and six self-energy independent diagrams

(Eqns: 3.14-3.19):

aoal g (il i) )
4 i,a,b,c,d (E+e—¢€o—€)(E+e—ep—eq) '

pooo y — (oilac)ailli)el) .
ifabe (E+ei—€o—€)(E+ej—e,—¢€c) ’

ooy ot acla) .
ijane (B+e€j—€a—e€c)(€+€ —€—€p) '

PR SS 1110 s
4, Fab (E+er—€a—€p)(€i+€ —€q—€p) )

f5o Y toilbaclis) bl o
ijabe (E+ej—€o—ep)(€+€j—€a—€c) :

P S 1 Y 1 .
4 i,5.k,a,b (E+ €~ € — €p) (€ + € —€a —€p) .

o (el islab) able) .
4i,j,a,b,c (ei+ej—E—¢€.)(€i+€—€q—€p) ’

AS < + {pbl[ik)(ijllab){akllqs) (3.9)

iiap (€t ex—E—ep)(ei+€j—€a—€)
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Ag=_L {pbllac){ac]|ij){ijllgb)

3.10
4i,j,a,b,c (€i T € —E—Eb)(6i+6j —€q—€c) ( )
Al0=+ 3 (pk||aj){abl|ik){ij|lgb) G
iitan (€t € —E—e)(€& +ep — € —€p)
All=+ Y (pbllik)(ial|jb)(ik[lga) G.12)
1,5,k,a,b (€j +ep— B - Ea)(fi +e, - FE— Eb)
A2t 5 (pal|il){il]|jk){jk|lga) 5.13)
4 i,9.k,l,a (6j tep— B - 6a)(ei +e¢—-F- Ea)
g1l {pblgi){ij]ac){ac|bj) Gt
2 i,5,a,b,c (€ —ep)(ei + €j — €a — €c)
Ba-_L {paqj)(ik]ab){jblik) G1s)
2 i,5,k,a,b (ej —€a)(€i+€p —€a—€p)
B3=L Y {palgb)(ijlac)(belij) G.16)
2, fahe(6itej—ea—€)(e+e—ep—€c)
_ 1 ¥ (pjllgé){ik|ab){ab] jk) 317
2 Jk,a b(fy+6k_6a—€b)(€z+6k—6a—ﬁb) '
1 . g
B5 =L {pilga)(be|ij){aj|bc) G.18)
2 ij,a.b,c (e + €j — € — €c)(€i—€q)
B6 =1 > (pi] ga)(ab|jk){jk|ib) (3.19)

2, 5 (65 + e —€a— ) (€ — €a)

3.4 D4 Brandow’s diagrams

Appendix A has all the diagrams and equations obtained with DROGON.D4 for fourth—order electron

propagator self-energy. Previously, Schirmer ez al*’

obtained 228 fourth—order diagrams that are labeled
in Appendix A as type-U, type—V and type—W diagrams. There are 16 type—U diagrams and 16 type—V
diagrams which contain f7 couplings ((E + €; + €j + €, — €4 — € — €c — ed)_l). However, this terms
can be reduced to f3 terms by performing an algebraic reduction®’. In addition, DROGON.D4 obtained

more diagrams that appear to be pseudo—f7 terms and diagrams that can be reduced to one diagram with

2ph—2hp terms.
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Figure 3.7: Fourth order f7 diagrams

dul02a dul05a dul06a dull2a
dul02b dul05b dul06b

Q

i

Algebraic reduction of pseudo-f; diagrams

Figure 3.7 shows diagrams corresponding to the U1 row for fourth—order EPT, and their mirror image.
Each of these diagrams have pseudo—f; couplings. However as shown before,?’ these diagrams can be

decomposed into simpler expressions.

dul02a= Y (pjllad)(acllij){ik|[bc){bd]|gk) (3.20)
a,bye,dyi gk (Et+ep—ep—eq)(E+e+ej+ep—€a—ey—ec—eq)(E+ej—eqa—€q) '

dul0sa= Y (pjllad){ac||ij)(ik|[bc)(bdllqk) 3.21)
apedijr(Brer—ep—e)(E+ei+ej+ep—ca—ep—ec—eq)(ei+ep—ep—€)

dul06a = (pjllad)(acllij)(ik|[bc){bd]|gk) 322)
a,b,c,d,ijk (6i +€5j— € — Ec)(E +€ teEjTEp—€ —€p— € — ed)(E +€j —€q Ed) :

dull2a = (pjllad)(acllij)(ik|[bc){bd]|gk) (3.23)
a,b,c,dyi,j,k (ei t € — €~ 66)(E T €+ €+ € —€ —€p— € — ed)(ei + € —€p— ec) '

du102b=- (pcllil)(abl|jk){ik|ac)(j![[pb) 3.24)
a,b,c,i,5,k,l (eive—E—-e€)(ei+ej+ep+e—E-eq—€ey—€)(ej+e—E—¢€) ’
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(pcllit)(ab||jk){ik||ac){;||pb) (3.25)

dul0bb = —
! abeiiki(Giter—€ca—e)(e+ejreprea—E—eg—ep—ec)(€j+a—E—ep)
dul06b = — (pcllit)(abl|jk){(ik||lac){;|[pb) (3.26)
abedkl (ei+a—E—-e)(ei+ej+ep+e—E—eg—ep—€)(€+ep—€q—€c) '
dull2b = — (pcl|il){abl|jk){ik||lac){jl||pb) 3.27)

aboikl (ej+ex—€a—€p)(ei+ej+ep+e—E—€q—€ep—€)(€+€p—€q—€c)

Equations 3.20, 3.21, 3.22 and 3.23 can be added together,

dul02a + dul05a + dul06a + dull2a

(pillad){ac||ij){(ik||bc)(bd||qk)
e tejtep—€g—€y—€.—¢€q

-
I

a/7b767d7i,j,
1 1
X +
(E+ex—ep—€q)(E+ej—€a—€q) (E+ep—en—€q)(€i+ep—€p—€c)
1 1
4 + . (3.28)
(ei+€j—€a—€)(E+ej—€s—€q) (€ +€j—€q—€c)(€+e,—ep—€c)
This, can be written in a simpler way
D= (pjllad){acliij)(ik|lbc)(bd||gk)d, (3.29)
a7b7c7d7i’j?k
where
d = Ep(BEl'Es'+ Bl + Byl + lerh),
Eips = E+e+ej+e,—€ —€— € —€q,
E1 = E+€k—€b—€d,
Es = E+e¢j-¢€,—¢q,
€1 = € t€g— € — €,
€ = € +€ —€— €. (3.30)
Now, d can be rearranged
d=EET Eylei e (E1Fy + Ereg + Eyes + €162), (3.31)
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where the following can be proved

1
E1E2 + E1€1 + EQEQ + €1€9 = §E12 (E1 + E2 + €1+ 62) s (332)

First, we obtain all the terms for 1 Fy + F1€e1 + Eyeg + €1€9:

E1E,

Ei1e1

Esea

€1€2

= E'2+E'ej +Eep—FEeq—Eep—2FEeg+ejep—€j€p—€j€4—€€a—€LEGHEEYTEq Ed+€b€d+63,
= FEe¢+Fep—FEep—Fecte; ek—ei—ei €p—€;€4—2€LEp—€L ec—ek€d+eg +EpEctEpEqtEcEy,
= FEe+FEej—FEeq—FEecteie; —e?—eiea—qed—%j €a—€j€c—€; ed+eg+eaec+eaed+eced,

= 612+Ei6j+Ei6k+€jek—62‘6(1—61'61)—261'66—6]'61)—6]‘Ec—€k€a—Ekec+€a6b+€aEc+6bec+€z, (333)

where the total 64 terms are repeated in the following 128 terms:

Ei2E1 =

Ei2Ey =

Ei2e1 =

Ei2ea =

E2+Eei+Eej+2Eek—Eea—2Eeb—Eéc—2Eed+5iek+ejek+ei—5ieb—eied—6j6b—6jed
—€p€a—2€p€p—€pEc—2 2 2 2

€k€aq— L€ Ep—€ERCE—LELEGTEGERTEGEGTEY HEYECTLELEGHECEGTEY,
E2+Eei+2Eej+Eek—2Eea—Eeb—Eec—2Eed+ei6j+e]2.+6jek—eiea—eied—QeJ-ea—Ejeb—ejec—QEjed
—EkEa—EkEd+€3+6aEb+EaEc+2Ea6d+€b€d+ecéd+€3,
Eei+Eek—Eeb—Eec+e?+eie]-+26iek+e]-ek+ei—eiea—2eieb—26iec—eied—6jeb—6jec

_ =) ) _ 2 2

€} €Eq—2€ELEL— L€ EC Ek€d+6a6b+6aec+€b+2€bec+6b6d+€c+eced,
EE,L‘JrECj7E€a7E€c+6?+26¢6j+6i6k+6?+6jEk*261'6&767;61,7261'6(;762‘Ed*26j6a76j6b726j6576j6d
€ €q—€EpEcteR teqept2eqEcteq€qtepectertecey.

(3.34)

Then, using Eq. 3.32 in Eq. 3.31

1
d= §E;1Eglqle;1 (E1+Ey+e +e), (3.35)
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Now, D has the form:

p - 1L (pjllad){ac|lij){ik|lbc){bd]|qk)
2 ab,c,dij.k (E+ex—ep—eq) (B + €j — € — €q)(€+ep—ep—€c)(€ + €j —€q — €c)
x [(E+ex—ep—€q)+(E+ej—€a—€q)+(ei+ex—ep—€c)+(€i+€j—€q—€c)]
D = dul02a’+ dul05a’ + dul06a’ + dull2d’, (3.36)
where

du102a’ - ~ (pjllad){ac|lij){ikl[bc)(bd|gk)
2 oncdijn (Etrep—en—ea)(E+e—ea—€q)(€+ e, — ey —€c)

dulosa = - D (pjllad){acl|ij)(ik||bc)(bd]|gk)
2 apcdigr (E+exn—en—€q)(€+ e —€ep—€c) (€ + € —€a —€c)

dulo6a - - 5 (pjllad){ac||ij)(ik|[bc){bd]|qk)
2 apcdijr (Etrer—en—€i)(E+ej—eo—eq)(ei+ € —€a—€)

dull2d’ - L 3 (pjllad){ac||ij)(ik|[bc)(bd|lqk) 33
2 ab,c,di,j.k (E+ej—eq—eq)(ei+ep—ep—ec)(ei+ €5 —€a—€c)

A similar approach can be used for all apparent f7 diagrams. Note that for the diagonal case (¢ = p)
we could exchange a for b and j for k for dul06a’ resulting in an equivalent expression of d102a’ and
similarly for d112a’. Then, the four diagrams (dul102a’, du105a’, dul06a’, dul12a’) are added in two

diagrams labeled du121a and dul23a.

Algebraic reduction of pseudo—triple excitations

Figure 3.8 shows fourth-order EPT diagrams found with DROGON.D4 only and their mirror images.
Each of these diagrams have apparent triple excitations that can be decomposed in simpler expressions,

following an approach similar to that used previously.>’

o (pcllij){akl|bd) {ijl|ac){bd]|lgk)
te(D)lal = 0'250%1)’0%;@-7]-7,{ (ei+vej—E—-e)(ei+ej+ep—€en—ec—€q)(€+€j—€q—€) (3.38)
_ (igllpe)(bdllak){acllij){qk|[bd)
te(@)le] = 0'250%1770%;@]% (i+ej—€eo—€)(ei+tej+ep—€ep—€ec—€1)(E+ e —€,—€q) (5-39)
] o020 S (pelig)akl o illac) (b jgk) 510

abedijr (B+er—e—€i)(€+€j+ep— ey —€c—€q)(€ + €5 — €4 — €c)
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Figure 3.8: Fourth order diagrams with apparent triple excitations

17|lpe){bd||ak) (acl|if Y qk||bd
3 (ijllpc)(bd]|ak){aclij){qk||bd)

te(4)[a] = -0.250
la] abcdijk (€iT€ —€a—€)(€i+€j+ex—ep—€ec—€q)(€+€;— E—€c)

te()[b] =0.250 3 (pk||ab){abl|ik){ic||51){jl]|gc)
' a,b,cy,5,k,1 (ei+ver—€eo—ep)(ej+ep+e—€a—€ep—€)(E+ep—€u—€p)

<0250 3 (abllpk) (ikab) {jlic) {gelljl)
apeighl (GG ra—E—e)(ej+ep+e—ea—ep—ec)(€i+ep—€a—ep)

{pkllab){abl|ik){icll1){illlgc)

te(3)[b] = 0.250
)] 2 (ci+er—€a—e)(g+ren+e—ca—ep—€)(ej+e—E—c)

a7b767i7j7k7l

{abllpk)(ikl|ab){jlllic){qcllil)

te(4)[b] = 0.250
e( )[] Z (E+€k;—Ea_eb)(€j+€k+€l_ea_eb_ec)(€i+6k_€a_€b)

a’b7c7i7j7k7l

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

Equations 3.38, 3.39, 3.40 and 3.41 can be added together, using the following rules (pq||rs) = (pq|rs) -

(pqlsT) = —(pql|s)

D = te(1)[a] +te(2)[a] +te(3)[a] +te(4)[a]
- 0250 % (pcllij)ak([bd){ij||ac)(bd||gk)
abedigk € TE TEE €€~ €d

1 1

x +

(ei+ej—E—e€)(ei+€ej—€a—€) (€i+€j—€x—€)(E+er—ep—€q)

1 1

+

+ )
(E+ep—ep—€q)(ei+ej—ea—€) (€+€j—€—€)(e+€j—E—¢€)
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This, can be written in a simpler way

D=-0.250 > (pcllij){ak||bd){ijllac)(bdl|qk)d, (3.47)
a,b,c,d,i,j,k

where

d = epet (2B +2E51),

€12 = €i+€j + €L —€p — €c — €y,
FEy = E+€k—€b—€d,
EQ = 6i+6j—E—ec,
€1 = € +€ — €~ €. (3.48)
Now, d can be rearranged
d=2e1ae] BT ES Y (B + Es), (3.49)
where
E1 + E2 = €12 (350)
Then, using Eq. 3.50 in Eq. 3.49
d=2e BT ES (3.51)
Now, D has the form:
p - ! (pcllij){ak|bd){ij||ac){bdllgk)
2 oncdijr (BE+er—en—eq)(ei+€j—E—ec)(ei+ € — € —¢€c)
D = te’[a]. (3.52)

The same can be done for the mirror image diagrams.

Total D4 Brandow’s diagrams

Finally, fourth—order diagonal electron propagator is composed of 72 constant diagrams, 120 type—-U
diagrams, 48 type—V diagrams, 60 type—W diagrams and the following expressions, obtained only with

DROGON.D4:
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d47b22 = -0.25

5 (pgllcb) (ijl[be)(ikllad){dal|pk)

d47a21 = -0.25

apedigk (B+€—ep—e)(E+ep—€q—€q)(ei+ €5 — € —€)
47022 =-025 Y (pgllcb){igllbe){ikllad){dallpk)

abedijr (Bte—en—ec)(€i+€j—€p—€)(€ +€x — € — €q)
d4Th21=025 % (pellgl){ikllab)(jl]|ac){ik|[pb)

abiogikd (E+ep—€i—€x)(E+e.—€j—€)(€+€x—€q—€p)
(pcll ) (ik||ab){jl]|ac)(ik||pb)
abeiikl (B+ey—€i—ep)(€j+e—eq—ec)(€+ex— € —€p)

a1 05 (o) kallde) b el k)
abedik (E+ep—€ec—€q)(ei+ej—€eqa—ep)(€i+€j—E—ep)

' (E+ej—es—ep)(ei+ej—€o—ep)(ex+e—E—ec)

a,b,c,i,5,k,l

42

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)



3.5 Implementation of D4

All 306-D4 diagrams have been implemented in a modified version of Gaussian Development Version

(GDV).% The following implementation procedure was followed:

1. A diagram or set of diagrams was programmed for an unrestricted Hartree—Fock determinant in

a PYTHON using NUMPY libraries for the water molecule with the 6-31G(d) basis—set.

2. A diagram or set of diagrams was programmed for an unrestricted Hartree—Fock determinant in

a GDV. Then, results were compared.

3. When all the diagrams were programmed, their derivatives with respect to £/ where programed
analytically and numerically and compared. Now, there is a benchmark for each diagram and its

derivative.

4. Some diagrams are equivalent when using the diagonal approximation. Numerical comparisons
of both the diagram and its derivative helped identify these diagrams.
2.5

5. Linear algebra was used to diminish the N7 scaling in the most demanding diagrams (ov%, 0%v

and 0%v?).

6. A comparison was performed with HoO—H to test for errors when having a different number of

electrons in the system.

The implementation was successful and the identical D4-diagrams are identified in Table 3.2.
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Constant:
dc028=dc001
dc029=dc002
dc031=dc009
dc032=dc003
dc033=dc011
dc034=dc012
dc035=dc005
dc036=dc006
dc037=dc014
dc038=dc015
dc039=dc016
dc040=dc017
dc041=dc008
dc042=dc018
dc043=dc019
dc044=dc021
dc045=dc022
dc046=dc024
dc047=dc030
dc054=dc050
dc056=dc004
dc057=dc013
dc058=dc023
dc059=dc025
dc061=dc007
dc062=dc010
dc063=dc020
dc064=dc026
dc065=dc027
dc066=dc048
dc067=dc051
dc068=dc052
dc069=dc060
dc070=dc049
dc071=dc053
dc072=dc055

Type-U:
dul04a=dul03a
dul104b=du103b
dul06a=dul05a
dul06b=dul05b
dul08a=dul07a
dul108b=dul07b
dul10a=dul09a
dul10b=dul09b
du204a=du203a
du204b=du203b
du206a=du205a
du206b=du205b
du208a=du207a
du208b=du207b
du210a=du209a
du210b=du209b
dud40la=du301la
du401b=du301b
du402a=du302a
du402b=du302b
du404a=du303a
du404b=du303b
du403a=du304a
du403b=du304b
du406a=du305a
du406b=du305b
du405a=du306a
du405b=du306b
du408a=du307a
du408b=du307b
du407a=du308a
du407b=du308b
du410a=du309a
du410b=du309b
du409a=du310a
du409b=du310b
dud4lla=du3lla
du411b=du311b
du412a=du312a
du412b=du312b
du504a=du503a
du504b=du503b
du506a=du505a
du506b=du505b
du508a=du507a
du508b=du507b
du510a=du509a
du510b=du509b

Type-V:
dv104a=dv103a
dv104b=dv103b
dv106a=dv105a
dv106b=dv105b
dv108a=dv107a
dv108b=dv107b
dv110a=dv109a
dv110b=dv109b
dv204a=dv203a
dv204b=dv203b
dv206a=dv205a
dv206b=dv205b
dv208a=dv207a
dv208b=dv207b
dv210a=dv209a
dv210b=dv209b

Type-W:
dw104a=dw103a
dw104b=dw103b
dw108a=dw107a
dw108b=dw107b
dw202a=dw201a
dw202b=dw201b
dw206a=dw203a
dw206b=dw203b
dw205a=dw204a
dw205b=dw204b
dw210a=dw207a
dw210b=dw207b
dw209a=dw208a
dw209b=dw208b
dw212a=dw211a
dw212b=dw211b
dw304a=dw303a
dw304b=dw303b
dw306a=dw305a
dw306b=dw305b
dw308a=dw307a
dw308b=dw307b
dw310a=dw309a
dw310b=dw309b

Table 3.2: Equivalent D4—diagrams for the diagonal case.
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Chapter 4

Composite Electron Propagator Method for Calculating
Ionization Energies and Electron Affinities

In this section we will summarize the most important findings and results for references 21,34, regarding

the composite electron propagator method.

4.1 Composite Electron Propagator Method

High accuracy results for Hartree—Fock and correlation energies can be inferred with complete basis set
limit (CBS) schemes. '®!° In addition, previous works have shown that CBS extrapolations can be used
with electron propagator methods.2%2!.

In order to predict Hartree—Fock energies at the CBS limit an exponential extrapolation is recom-

mended, '8

E(X) = Ecpg + Ae B, 4.1

where X is the maximum angular momentum for a basis set, E(X) is the predicted energy with cc-
pVXZ, Ecpg is the predicted energy for a complete basis set and A and B are fitting parameters.
Therefore, at least three points are needed to extrapolate to CBS.

In order to predict correlation energies at the CBS limit, an inverse cubic function is recom-
mended, !°

A
E(X) =Ecps + X3 (4.2)

where A is the only fitting parameter and the extrapolation is performed with two points. For example,

aug-cc-pV(DT)Z will be the CBS limit when using the aug-cc-pVDZ and aug-cc-pVTZ results. Then,
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we define CBS1 and CBS2 as cc-pV(DT)Z and cc-pV(TQ)Z, respectively, while CBS3 is the exponential
extrapolation using X = 2,3, 4.

Previously, the validity of CBS extrapolations was tested with respect to EP/cc-pV5Z results.?!
Both extrapolations predicted results with mean unsigned errors (MUEs) < 0.07 eV. The exponential
extrapolation yields more accurate results than the inverse cubic ones with MUEs of 0.01 eV while
CBS1 is the least accurate with MUEs of 0.03—0.07 eV. In general, for prediction and assignment of
PES peaks, all three extrapolations are satisfactory and using augmented correlation consistent basis—
sets shows no advantage for the prediction of IEs.

In addition to CBS effects, the composite approach assumes the separation of basis—set and corre-
lation effects. For example, in the CEP method we first obtain poles with a relatively small basis,

EM - ¢, + SM(EM), (4.3)

)

where the M superscript designates the self—energy approximation. Then, diagonal second order elec-
tron propagator results, D2, are obtained with a larger basis set such that

EP? = ¢+ SPX(BP?), (4.4)

3 1

Finally, the CEP result for method M is:

EM = EM + EP? - EP?. (4.5)

A CEP approximation will consist of three selections: M which is the high order correlation
method, X, and X ps are the basis—set at which M and D2 are calculated, respectively. The best
options for Xps are CBS1 and CBS2 methods, where X, is cc-pVDZ or cc-PVTZ for CBS1 or CBS2,
respectively. See Table 4.1 for definitions of composite methods. Diagonal electron propagator methods
include partial third order (P3), renormalized partial third order (P3+) and the Outer Valence Green’s
Function (OVGF).> Non—diagonal Renormalized second order (NR2) is one of the most efficient and

accurate EP methods. 2°
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Table 4.1: Composite methods

CEP M X X D2
CP3/23 P3 cc-pVDZ CBS1
CP3+/23 P3+ cc-pVDZ CBSI1
CN/23  OVGF-N cc-pVDZ CBSI1
CNR2/23 NR2 cc-pVDZ CBS1
CP3/a23 P3 aug-cc-pVDZ CBS1

CP3+/a23 P3+ aug-cc-pVDZ CBS1
CN/a23  OVGF-N aug-cc-pvVDZ CBSI1
CNR2/a23 NR2 aug-cc-pVDZ CBS1

CP3/34 P3 cc-pVTZ CBS2
CP3+/34 P3+ cc-pVTZ CBS2
CN/34  OVGEF-N cc-pVTZ CBS2
CNR2/34 NR2 cc-pVTZ CBS2

4.2 Application of Composite Electron Propagator Methods to

Ionization Energies

In order to test the CEP methods, a test set was defined.?' This test set consists of 52 closed shell
molecules and atoms with different properties, both organic and inorganic. Standards were calculated
with ACCSD(T)/CBS,

E = Bup/cc - pVQZ + By [cc — pV(TQ) Z + 6550 " Jec — pV T Z, (4.6)

where Eyrp/cc-pVQZ is the total energy at the Hartree-Fock/cc-pVQZ level, Expp,/cc-pV(TQ)Z is the
correlation energy at the MP2/cc-pV(TQ)Z level and 61(\:4%§D(T)/cc—pVTZ is the difference between CCSD(T)/cc-
pVTZ% and MP2/cc-pVTZ correlation energies. Adiabatic corrections are obtained at the B3LYP/6-
31G(2df,p) level including zero-point energies (ZPEs) for both the neutral and the cation.

Comparisons between the diagonal CEP methods and the CCSD(T) standards can be seen in Fig-
ure 4.1 for both vertical and adiabatic ionization energies. A vertical ionization energy is the difference
between the minimum neutral energy and the cation energy at the neutral geometry. An adiabatic ion-
ization energy consists of differences between the neutral and cation energy, including zero-point energy
corrections, at their corresponding minimums. Mean unsigned errors (MUEs) and standard deviations
(o) of 0.1-0.2 eV are obtained for vertical ionization energies (VIEs). Improvements by using aug-

mented basis sets are seen for composite methods based on P3 and P3+ but are not seen when based on
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Table 4.2: Electron Propagator Methods

Acronym Method Arithmetic scaling®
KT Koopmans’s theorem

D2 Diagonal Second Order ov?

D3 Diagonal Third Order ov+4
OVGF-A Outer Valence Green’s Function-A ov4
OVGEF-B Outer Valence Green’s Function-B ov+
OVGE-C Outer Valence Green’s Function-C ov4
OVGEF-N Outer Valence Green’s Function-von Niessen ov4

P3 Partial Third Order 02Vv3

P3+ Renormalized Partial Third Order 023

3O = number of occupied orbitals, V' = number of virtual orbitals.

OVGE. The CN/34 model offers higher accuracy with a MUE of 0.08 eV but has larger arithmetic and
storage requirements, see Table 4.2 for EPT requirements. For adiabatic ionization energies (AIEs), the
error indices are slightly larger, but trends are similar to VIEs.

The histograms in Figure 4.2 display mean signed errors (1), MUE and o data for each Composite
Electron Propagator method (CEP). It can be observed that as the basis set increases the absolute value
of u decreases for CP3 and CP3+ models. Use of aug—cc—pVDZ with CN yields larger errors than
regular cc-pVDZ. The best statistics for these standards are CN/34 with MUE of 0.08 eV and ¢ of 0.10

eV in comparison with P3+/34 with MUE of 0.14 eV and o of 0.17 eV.

4.3 Application of Composite Electron Propagator Methods to Electron

Affinities of Carboranes

Shallow, uniform electrostatic potentials, large electron detachment energies and nodal structures in
Dyson orbitals are properties of conjugate anions of superacidic protonated carboranes.>*

This section presents ab initio composite electron propagator theory calculations (CEP) for vertical
electron detachment energies (VEDESs) and Dyson orbitals of CHB11X7; (X =H, F, Cl) carboranes with
final states, 2Ey < 2E;. Comparisons, between CEP methods (renormalized partial third order (CP3+)

and non-diagonal, renormalized, second-order (CNR2)) and anion photoelectron spectra are in good

agreement. %
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Figure 4.1: Composite EP methods vs CCSD(T)%?) (eV)
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Figure 4.2: Vertical IE Error Distribution (eV, vs CCSD(T)): CEP Methods.®)
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Table 4.3: Carborane VEDEs (eV) with composite EP methods

Anion Final State Basis set CP3+ CNR2
CHB;H;; XZ2E; a34 6.20 6.19
A 2E, a34 6.38 6.33
B 2E, a34 6.75 6.70
C2A, a34 6.89 6.83
D 2E; a34 7.51 7.48
CHB,F;; XZ2E; a23 6.95 6.85
A 2E, a23 7.49 7.39
B 2A; a23 9.88 9.76
C 2E, a23 10.01 991
D 2E; a23 10.71  10.59
CHB,,Cl;; XZ2E, a23 7.10 7.04
A 2E, a23 7.39 7.33
B 2A, a23 8.21
C2E; a23 8.25
D 2A; a23 8.51

Calculations yield a close correlation between the second VEDE of the anionic base (electron
affinities of the neutral clusters) and acidity of the conjugated acid. In addition, the doublet neutral
radicals are superhalogens due to their high electron affinities (>6 eV). Calculations were obtained using
Gaussian 16 software. %

Table 4.3 contains VEDEs for the carborane anions calculated with the composite methods CP3+
and CNR2. For the CHB;H7; cluster, CP3+/a34 and CNR2/a34 results are available. For the CHB;Fy;
and CHB1;Clj; clusters, only CP3+/a23 and CNR2/a23 results are available. This is because the latter
two clusters have more correlated electrons and basis functions than the first cluster.

The VEDE of CHB1;Cl;; have been measured experimentally using photoelectron spectroscopy. 65
A VEDE of 7.0-7.1 eV was measured and is in good agreement with both CEP methods, 7.10 and 7.04
for CP3+ and CNR2, respectively.

Front and backs of Dyson orbitals for CHB11H7; are reported in Figure 4.3. The first electronic
state is Es and it can be seen that all boron atoms that are neighbors to the boron atom in the back have
nodal surfaces. The electronic density is localized in the boron atoms and there is no delocalization to
the hydrogen atoms. The second electronic state is 2E; and there are some boron atoms in the back that
have positive or negative contributions in them. Therefore, when protonating this cluster we can predict

the addition to these boron atoms.
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State Dyson orbital cP3+ cNR2
Front Back

X 2Eq 6.20 6.19
A 2E, 6.38 6.33
B 2E, 6.75 6.70
C2A, 6.89 6.83
D 2E,; 7.51 7.48

Figure 4.3: Dyson orbitals (isovalue = 0.02) and VEDEs (eV) for CHB,;H7,
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Front and backs of Dyson orbitals for CHB1;F; are reported in Figure 4.4. The first two electronic
states are Ey and E1, respectively. Boron atoms in the back of the cluster have nodal surfaces in the
first electronic state. However, there are boron atoms that contain positive or negative amplitudes for the
second electronic state. The electronic density is localized in the boron atoms and there is antibonding
delocalization to the fluorine atoms in both electronic states. Protonation of this cluster will be close to
a fluorine atom in the back of the cluster.

Similar to CHB11F7;, front and backs of Dyson orbitals for CHB11Cl7; are reported in Figure 4.5.
The first two electronic states are 2E; and 2E;, respectively. Boron atoms in the back of the cluster
have nodal surfaces in the first electronic state. However, there are boron atoms that contain positive
or negative amplitudes for the second electronic state. The electronic density is localized in the boron
atoms and there is antibonding delocalization to the chlorine atoms in both electronic states. Protonation
of this cluster will be close to a chlorine atom in the back of the cluster.

The order of the electronic states varies between clusters: 2Eg <?E; <?Eg <?A; <?E; for CHB;H11,
By <?E1 <?A; <?E, <?E; for CHB11F1; and 2Ey <?E; <?Ag ~?E; <?A; for CHB1;Cly1. However, all
clusters have the 2E5 <2E; first two states and this work predicts the second state to be involved in the
acidity of these clusters.

Figure 4.6 shows contours and electrostatic potential for all clusters. The more negative values are
in red and they are in the back of the cluster. Distribution of the negative charge over these large volumes
in combination with large VEDESs contribute to the strong acidity of their conjugated acids.

Optimized structures for the conjugate acids of the three anions can be seen in Figure 4.6 where the
extra proton is in red color. The proton settles in the back of the clusters due to the antipodal effect.% For
CHB;1H;;-H, the acidic proton is close to three boron atoms, ignoring the neighboring hydrogens. For
both CHB;;F;;-H and CHB1;Cl;;-H, the acidic proton is coordinated to two halogen atoms, closer to
one of them. These modes of bonding are in accord with both the most negative values of the electrostatic
potentials and the non-nodal surfaces for the 2E; electronic state. Calculated protonation energies at the
B3LYP/6-311++G(2df,p) level are 11.30,9.69 and 10.34 eV for CHB;H7;, CHB1;F;; and CHB,Cl};,
respectively. When compared with protonation energies of anionic carboxylates (14—15 eV) these values

are too low and closer to protonation energies of neutral amines (9—10 eV).%’
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State Dyson orbital cP3+ cNR2
Front Back

%

X 2E, 6.95  6.85
9

B
A 2B, ? 749  7.39
B 24, i 9.88  9.76
C 2E, E E 10.01  9.91

EQE

D 2E, o 10.71  10.59

Figure 4.4: Dyson orbitals (isovalue = 0.02) and VEDEs (eV) for CHB,,F7;

54



State Dyson orbital cP3+ cNR2
Front

X 2E, 7.10  7.04
A 2E; 7.39  7.33
B 2A, 8.21
C 2E, 8.25
D 2A, 8.51

Figure 4.5: Dyson orbitals (isovalue = 0.02) and VEDESs (eV) for CHB;;Cl,
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Cluster Electrostatic potential Acid
Front Back

CHB,, H},

CHBy,F7,

CHBy; Cl;;

Figure 4.6: Electrostatic potential (isovalue = 0.0004 and a range of -0.147 to 0.147)

4.4 Conclusions

In this chapter the Composite Electron Propagator Methods have been defined and applied to the pre-
diction of vertical and adiabatic ionization energies of neutral and closed—shell molecules. In addition,
CEP methods have been applied to calculate the electron affinities of open—shell neutral doublets by
calculating the vertical detachment energies of their corresponding closed—shell anions.

CN and CP3+ methods are recommended for neutral molecules with MUEs of 0.08 and 0.14 eV
for CN/34 and CP3+/34, respectively. Similar results are obtained for adiabatic ionization energies.

CP3+ and CNR2 are excellent methods for the prediction of anionic VEDEs. Results from both
of these methods are in excellent agreement with experimental photoelectron spectroscopy data. For
anionic carboranes, the use of Dyson orbitals, VEDEs and protonation energies gives insight into the

chemical bonding of their conjugated superacids.

56



Chapter 5

Electron-Propagator Methods for Vertical
Electron—-Detachment Energies of Anions: Benchmarks and
Case Studies

In this chapter we will summarize the most important results obtained for reference 28, regarding bench-
marks and case studies of EPT for VEDEs of anions.

A set of small, closed—shell, molecular anions of the first three periods is used as a benchmark for
the accuracy of EP methods in the prediction of VEDESs of anions. First, a statistical analysis of this
benchmark is produced and discussed. Then, case studies of the cyclopentadienyl anion, two pentagonal
isomers PoN35 and NoPNP™ and the AI(BO»); superhalide VEDEs were predicted with EP methods and

compared to ACCSD(T) standards.

5.1 Small anions

First, the EP diagonal methods used in this chapter are: Koopmans theorem (KT), diagonal second order
(D2), diagonal third order (D3), Outer Valence Green’s Function version A (A), version B (B), version
C (O), partial third order (P3) and renormalized partial third order (P3+). The EP non—diagonal methods
used in this chapter are: two—particle—one—hole Tamm-Dancoff approximation (TDA), non-diagonal
renormalized second order (NR2), third—order algebraic, diagrammatic construction (ADC(3)) and the
renormalized third—order method (3+).3?

Benchmark standards were generated using ACCSD(T)/CBS in a test—set consisting of 36 anions,
see Table 5.1, and 55 VEDEs. Figures 5.1 and 5.2 show the error distributions of diagonal and non-

diagonal EP methods, respectively. Each histogram show p, MUE and o.
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Table 5.1: Point groups, bond lengths (A) and angles (°) of test anions

XY~ PG rxy XH; PG rXH HHXH HXY~- PG THX eHXY rxXy
BO- (., 124 |F HBN- (O, 1.19 180.0 1.28
BS- C., 1.69|CI HBF~- C 1.27 104.4 1.39
AlO- (Cu, 165|0OH (s, 096 HAIP- (., 1.61 180.0 2.12
AlS- Cu, 211 |SH- (C, 134 HAICI- C 1.68 954 230
CN- (Cs, 1.18 | NH; (, 103 101.2 | HCC- (., 1.07 180.0 1.25
Cp- (&, 161 |PH; (3 143 917 | HCO- C(; .22 109.7 1.24
SiN©- (U, 174 | CH; (5, 1.10 108.0 | HSiSi~ C 1.51 154.0 2.13
SiP~ (O, 2.13|SiH; 5, 1.54 951 | HSiS- C 1.56 1029 2.06
OF (., 152 |BH; 1T 1.24 HNB- (C., 1.00 180.0 1.29
OCl- C., 171 |AlH; 1T 1.64 HNF- 1.03 953 1.55
SF-  (Cuy 1.74 HPAI-  C; 145 725 224
SCI- (U, 2.13 HPCl- C; 143 929 221

HOO- C, 096 973 1.53

HSS- Cs 1.35 101.3 2.12

Higher VEDEs and a shift to the right are observed in the histograms when the basis set is increased,
similar to results obtained in Chapter 4. Error cancelation can provide small errors from calculations with
aug—cc—pVDZ or aug-cc-pVTZ. The best results are obtained with OVGF-A and P3+, MUEs are 0.14
and 0.13 eV, respectively. The OVGF-N’s selection procedure,>*? created for the accurate prediction of
ionization energies of neutral molecules, usually recommends the OVGF-B function instead of OVGF-
A. In addition, P3+/CBS results are in good agreement with CCSD(T) and they mostly overestimate
VEDE:s.

For non—diagonal methods, NR2 obtains the best results with MUE of 0.11 eV. Results obtained
with other methods have either two maxima or cases with large errors, larger than 0.8 eV. The o for
NR2 is notably smaller and the histogram is more smooth and gaussian—like. Results for NR2/CBS have

slightly better statistics than those of P3+/CBS.

5.2 Cyclopentadienyl anion

The cyclopentadienyl anion (CsHj) is a ligand with the capacity of binding with one, three or five atoms
to atomic metal cations.®® The first VEDE for CsH; has been measured experimentally, 1.808 eV. 69
ACCSD(T)/CBS overestimates the VEDE value to 2.04 eV by little less than 0.2 eV, see Table 5.2. This
is typical for VEDE predictions, when a high correlation method with a saturated basis set overestimates

the experimental result by 0.1-0.2 eV. OVGF-A is in good agreement with experiment with a VEDE of
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Figure 5.1: Error distributions (eV) for small anions: diagonal methods
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Figure 5.2: Error distributions (eV) for small anions: non—diagonal methods
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1.82 eV. OVGF-C is in excellent agreement with ACCSD(T) and P3+ overestimates by 0.16 eV. Results
obtained with non—diagonal EP methods are also in good agreement with ACCSD(T) except for TDA,
which drastically underestimates at 1.54 eV.

For the second VEDE, the experimental result is close to 6.1 eV.% and the ACCSD(T) value is in
excellent agreement at 6.12 eV. EP methods are apparently in good agreement but the low pole strengths
(0.66-0.69 for non—diagonal and 0.79-0.82 for diagonal methods) indicate that the Koopmans picture
is not valid due to important shake—up character. Therefore, diagonal methods yield fortuitously good
predictions but only the non-diagonal methods give accurate predictions and reasonable Dyson orbitals.

Figures 5.3 and 5.4 show relative times for the calculations of CsHz with EP, MP2 and CCSD(T)
methods as a function of augmented correlation consistent basis sets. First, Figure 5.3 shows relative
times for the post Hartree-Fock calculations and it can be seen that CCSD(T) takes more time and is
followed by D3, OVGF, TDA, ADC(3) and 3+. The fastest method is D2 and is followed by P3, P3+,
NR2. When the time required for the integral transformation is included, it can be seen that this step

governs diagonal EP methods and NR2 calculations, see Figure 5.4.
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Table 5.2: CsH; VEDEs, eV

Diagonal Methods®

State®) | Basis® | KT D2 D3 A B C P3 P3+ | ACCSD(T)
122E7 | aTZ | 197 1.62 218 175 1.88 2.01 2.16 2.06

122E7 | aQZ | 198 1.69 218 1.79 1.88 2.03 224 2.14

122E7 | CBS | 198 1.74 218 1.82 1.88 2.04 230 220 2.04
112A7 aTZ | 7.66 557 6.71 6.14 6.25 636 6.22 6.06

11247 | aQZ |7.66 563 671 6.16 624 638 630 6.14

11247 | CBS |7.66 567 671 6.18 624 640 636 6.20 6.12

@) A, B and C stand for OVGF-A, OVGF-B and OVGF-C, respectively. OVGF-N (recommended value) is shown in bold type.

YAl pole strengths for the 11 2A’2’ state are between 0.79-0.82.
) aXZ = aug-cc-pVXZ. CBS = (431E(aQZ)-331E(aTZ))/(43-33)
Non-diagonal Methods®)

State | Basis? TDA NR2 ADC(3) 3+ ACCSD(T)
122E7 | aTZ 1.45 1.95 2.02 1.95
122E7 | aQZ 1.50 2.03 2.06 1.95
122E7 | CBS 1.54 2.09 2.09 1.95 2.04
11247 | aTZ | 4.97(0.67) 5.71(0.66) 6.21(0.68) 6.17(0.68)

11247 | aQZ | 5.00(0.67) 5.78(0.66) 6.25(0.68) 6.17(0.69)

11247 | CBS | 5.02(0.67) 5.83(0.66) 6.28(0.68) 6.17(0.68) 6.12

@) Pole strength in parentheses when lower than 0.85.

)aXZ = aug-cc-pVXZ. CBS = (431E(aQZ)-331E(aTZ))/(43-33)

Figure 5.3: Post Hartree-Fock relative time as a function of valence basis functions. Times are
normalized to the maximum time overall.
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Figure 5.4: Post Hartree-Fock and integral transformation relative time as a function of valence
basis functions. Times are normalized to the maximum time overall.
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5.3 P>Nj Pentagons

Geometry optimizations for Po N3 and NoPNP™ pentagonal rings are shown in Table 5.3. PoN3 has been

i 70 28

synthesized by Velian ef al.”” However, this is not the most stable pentagonal isomer.

The adiabatic electron detachment energy was measured experimentally to be 3.76 eV.”! In ad-
dition, VEDEs have been predicted using ACCSD(T) and IP-EOM-CCSD to be 4.27 and 4.22 eV,
respectively.’!”? The large discrepancies between the adiabatic and vertical transitions are due to large,
symmetry lowering, nuclear relaxation effects. Both calculations had a 2A; final state or a ¢ hole. In
addition, IP-EOM-CCSD calculations accessed excited states and their VEDEs can be seen in Tables
5.4 and 5.5.

In this chapter, standards generated using ACCSD(T)/CBS are compared to previous IP-EOM-
CCSD results and they agree in the order of the final states. However, the difference between the
first two states is only 0.02 eV for CCSD(T) and is 0.16 eV for IP-EOM-CCSD. Figure 5.5 shows
Dyson orbitals used to build reference UHF states for the CCSD(T) calculations on doublets. The large
discrepancies between the spin densities of UHF and CCSD reveal important correlation effects and
the order of the states is different from that of KT. Therefore, there is a Koopmans’s defect in these

anions and the Dyson orbital of the anionic HOMO does not correlate to the lowest electronic state of

the neutral radical doublet.
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Table 5.3: NoPNP- and P,N; pentagonal structures and relative energies®

N,PNP- PyN3
Relative Energy (eV) 0.00 0.77
Adiabatic Detachment Energy (eV) 3.21 (3By) 3.68 (2A;)
Point Group Co, Cs,
Distance (A) P-N 1.675 P-P 2.100
Distance (A) P-N° 1658 | P-N 1.701
Distance (A) N-N 1355 N-N 1323
Angle (°) P-N'-P 1094 | P-P-N 93.1
Angle (°) N-N-P 113.8 | N-N-N 1194

a) CCSD(T)/6-311+G(2df)

Results obtained with P3+/CBS reverse the order of the first two states but are in close numerical
agreement to ACCSD(T)/CBS. The results for OVGF-N/CBS have VEDEs in reasonable agreement but
the ordering of final states is different, 2B1, 2A1, 2A4, ?As, ?By. NR2/CBS gives the best results for
non-diagonal methods and its discrepancies with ACCSD(T) are of 0.15 eV or less.

The pentagonal NoPNP~ isomer is lower in energy by 0.77 eV with respect to PoN3, see Table
5.3. The VEDE was predicted to be 3.73 eV (see Tables 5.6 and Tables 5.7) by calculations with
ACCSD(T)/CBS. Strong correlation effects and large spin contamination of the UHF wavefunctions
can be seen in Figure 5.6. However, the CCSD(T) method should be able to minimize these errors.
Results obtained with P3+/CBS and OVGF-N/CBS are within 0.2 eV of CCSD(T) standards. In addition,
NR2/CBS results are the best ones for non—diagonal methods. These results should be useful when the

more stable isomer is synthesized or if both isomers are mixed in the experimental sample.

5.4 Superhalide A1(BO,),

The anion Al(BO2), has a very large VEDE and the corresponding neutral molecule will have an elec-
tron affinity larger that 3.6 eV, the largest electron affinity of atoms which belongs to Cl. When a cluster
has a higher electron affinity than chlorine, it is known as a superhalogen.3>3*73 Therefore, Al(BO5)4
is a superhalogen and Al(BO2), is a superhalide.

Previous data from Gutsev et al,’* show discrepancies between the ACCSD(T) and OVGF results
of close to 0.4 eV. The findings listed on Table 5.8 agree with these results but it also shows good
agreement between ACCSD(T) and P3+. In addition, the efficient non—diagonal method NR2 is able to

predict the VEDE:s of this large superhalogen, see Table 5.9. The agreement between ACCSD(T) and
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Table 5.4: P,N; VEDES, eV, with Diagonal Methods®)

State | Basis®? | KT D29 D3 A B C P3  P3+9 | ACCSD(T) EOM%

132B; | aTZ |4.10 4.18 429 4.17 4.13 426 445 4.40 4.35 4.38
132B; | aQZ |4.10 425 431 424 415 430 452 448 4.40
132B; | CBS |4.10 430 432 429 416 433 457 454 4.43
1224, | aTZ |5.19 420 487 448 4.53 4.67 476 4.65 4.50 4.70
1224, | aQZ |5.19 428 491 452 456 473 485 4.73 4.59
1224, | CBS |5.19 434 494 455 458 477 492 479 4.65
1124, | aTZ | 522 439 541 475 490 504 529 5.09 4.92 4.97
1124, | aQZ | 522 447 542 477 490 507 538 5.18 4.98
11245, | CBS |522 453 543 478 490 5.09 545 525 5.03
102A, | aTZ |5.76 341 546 436 447 4.67 489 451 4.30 4.22
1024, | aQZ |576 349 549 439 448 471 500 4.60 4.36
1024; | CBS |576 355 551 441 449 474 508 4.67 4.41
92B, aTZ | 637 356 6.16 4.80 497 5.11 528 4.82 4.64 4.71

92B, aQZ | 637 3.65 6.19 483 498 5.15 538 492 4.71
92B, | CBS |637 372 621 485 499 518 545 499 4.76

@) A, B and C stand for OVGF-A, OVGF-B and OVGF-C, respectively. OVGF-N (recommended value) is shown in bold type.

)aXZ = aug-cc-pVXZ. CBS = (431E(aQZ)-331E(aTZ))/(43-33)
©)D2 values in italics have 0.80<PS<0.83. P3+ values in italics have PS = 0.84
@) IP-EOM-CCSD/aug-cc-pVTZ//CCSD/aug-cc-pVTZ 72

Table 5.5: PoN; VEDES, eV, with Non-diagonal Methods

State | Basis® | TDA NR2 ADC@3) 3+ | ACCSD(T) EOMY
132B; aTZ 390 4.27 4.23 4.18 4.35 4.38
132B; aQZ 394 4.35 4.28 4.20 4.40

13 2B, CBS 397 441 4.32 4.21 4.43

1224, aTZ 4.07 4.60 4.64 4.63 4.50 4.70
12 24, aQZ 4.12 4.68 4.70 4.66 4.59

122A, | CBS | 416 4.74 4.74 4.68 4.65

112A4, aTZ 420 4.92 4.97 4.97 4.92 4.97
1124, | aQzZ | 425 5.00 5.02 4.98 4.98

112A4, CBS 429 5.06 5.06 4.99 5.03

10 24, aTZ 341 4.40 4.78 4.77 4.30 422
10 24, aQZ 346 4.49 4.83 4.79 4.36

1024, CBS 3.50 4.56 4.87 4.80 441

928, aTZ 3.63 4.74 5.22 5.26 4.64 4.71
92D, aQZ 3.69 4.83 5.28 5.28 4.71

928, CBS 373  4.90 5.32 5.29 4.76
@)aX7 = aug-cc-pVXZ. CBS = (431E(aQZ)-331E(aTZ))/(43-33)
b)IP—EOM-CCSD/aug-cc-pVTZ//CCSD/aug-Cc-pVTZ72
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Figure 5.5: Comparison between the spin density (isovalue = 0.02) and canonical molecular
orbitals (isovalue = 0.05) for PoN3
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Table 5.6: NoPNP- VEDEs, eV, with Diagonal Methods®

State | Basis® | KT D29 D3 A B C P3  P3+9 | ACCSD(T)

1324, | aTZ | 344 356 3.84 352 364 376 395 3.89 3.79
1324, | aQZ | 344 3.63 3.86 3.57 364 3.79 4.02 396 3.83
1324, | CBS |344 3.68 3.87 3.61 364 381 407 4.01 3.86
122By | aTZ | 494 282 4.66 3.68 3.80 397 4.12 3.80 3.64
122B, | aQZ | 494 290 4.69 370 381 401 422 3.88 3.68

122B, | CBS |494 296 471 371 3.82 4.04 429 394 3.73

112B; | aTZ |6.16 500 621 549 5.64 577 599 5.77 5.64
112B, | aQZ |6.17 509 623 552 565 581 6.09 587 5.70
112B; | CBS |6.18 516 624 554 566 584 6.16 594 5.74

102B, | aTZ | 6.82 476 646 556 570 585 591 5.63
102B, | aQZ | 6.82 484 6.50 560 572 589 6.01 572
102B, | CBS |6.82 490 653 563 573 592 6.08 5.79

924, aTZ | 7.14 4.06 685 543 5.59 575 590 541 5.27
924, aQZ | 7.14 4.17 6.87 546 5.60 580 6.02 5.52 5.33
924, | CBS |7.14 4.25 688 548 5.61 584 6.11 5.60 5.38

@) A, B and C stand for OVGF-A, OVGF-B and OVGF-C, respectively. OVGF-N (recommended value) is shown in bold type.
b)aXZ = aug-cc-pVXZ. CBS = (431E(aQZ)-331E(aTZ))/(43-33)
<) D2 values in italics have 0.80<PS<0.83. P3+ values in italics have PS = 0.84

Table 5.7: NoPNP~ VEDEs, eV, with Non-diagonal Methods
State | Basis® | TDA NR2 ADC@3) 3+ | ACCSD(T)
1324, | aTZ 338 3.77 3.70 3.70 3.79
1324, | aQZ | 2.74 3.84 3.74 3.72 3.83
1324, | CBS | 2.74 3.89 3.77 3.73 3.86
1228y | aTZ 2.69 3.66 4.01 4.01 3.64
122B, | aQZ | 274 3.75 4.06 4.03 3.68
122B, | CBS | 2.78 3.82 4.10 4.04 3.73
1128, aTZ 478 5.53 5.66 5.64 5.64
112B; | aQZ | 484 5.62 5.72 5.67 5.70
112B, | CBS | 488 5.69 5.76 5.69 5.74
1028y | aTZ 490 5.55 5.82 5.84
102B, | aQZ | 494 5.62 5.88 5.87
102B, | CBS | 497 5.67 5.92 5.89
924, aTZ 425 5.36 5.83 5.87 5.27
024, aQZ | 432 547 5.90 5.90 5.33
924, CBS | 437 5.55 5.95 5.92 5.38

@)aX7 = aug-cc-pVXZ. CBS = (431E(aQZ)-331E(aTZ))/(43-33)
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Figure 5.6: Comparison between the spin density (isovalue = 0.02) and canonical molecular
orbitals (isovalue = 0.05) for NoPNP-
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Table 5.8: AI(BO,); VEDEs, eV, with Diagonal Methods®?)

State | Basis®) | KT D2 D3 A B C P3 P3+ | ACCSD(T)d
3027, | TZ1 995 7.58 942 870 8909 8.88 8.75 8.55 8.36¢)
3027, | TZ2 993 779 9.62 8.83 9.099 9.08 894 8.74 8.60
30 27, aTZ 992 779 964 885 911 9.10 895 8.75 8.62
3027, | aQZ 992 790 969 888 915 9.16 9.07 8.86
3027, | CBS 992 798 973 890 9.18 920 9.16 8.94 8.76
28 2F TZ1 10.16 7.88 9.73 899 920 9.18 9.03 8.82 8.69
28 2F TZ2 10.14 805 991 9.10 938 9.36 9.20 9.00 8.91
28 2 aTZ 10.13 8.06 994 9.12 940 938 9.21 9.01 8.93
282F | aQZ |10.13 8.16 998 9.15 943 944 933 9.12
282F | CBS |[10.13 823 10.01 9.17 945 948 942 9.20 9.06
2527, | TZ1 10.18 790 9775 9.01 923 920 9.04 8.84 8.72
2527, | TZ2 10.15 8.07 993 9.12 940 9.38 9.22 9.02 8.94
25 2T, aTZ 10.14 8.08 996 9.14 942 940 9.23 9.03 8.96
2527, | aQZ | 10.14 8.18 10.00 9.17 945 946 935 9.14
2527, | CBS |10.14 825 10.03 9.19 947 950 944 9.22 9.09

@) Structure obtained from Ref.”*

) A, B and C stand for OVGF-A, OVGF-B and OVGF-C, respectively. OVGF-N (recommended value) is shown in bold type.
©)aXZ = aug-cc-pVXZ. CBS = (431E(aQZ)-331E(aTZ))/(43-33)

TZ1=6-311+G(d) and TZ2=6-311+G(3df)

DMP2a(TQ)Z+5 1o ™ fa(DTYZ

©)Values reported previously in Ref.7*

NR2 is excellent and the predicted VEDE is 8.8 eV for the 2T, final state. Two excited states, 2E and
2Ty, are 0.3 eV higher than the lowest final state. The order of these excited states remains uncertain

due to how close in energy they are.

5.5 Composite Methods

In Chapter 4, the usefulness of CEP to predict high—accuracy VEDEs was discussed.?! In addition, pre-
vious results within this chapter have shown the great accuracy of both P3+ and NR2 for the prediction
of VEDEs for anions. For these reasons, the composite methods CP3+/a23, CNR2/a23, CP3+/a34 and
CNR2/a34 will be compared against the generated ACCSD(T)/CBS standards. Figure 5.7 shows the
error distributions for small anions with statistical measures below 0.15 eV for all four composite meth-
ods. These results are in excellent agreement with ACCSD(T) and when comparing with the VEDEs

obtained for the case studies in previous sections of this chapter (see Figure 5.8), similar encouraging
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Table 5.9: AI(BO,); VEDEs, eV, with Non-diagonal Methods®

State | Basis?) | NR2 |  ACCSD(T)%)
3027, | TZ1 8.41 8.36%
3027, | TZ2 | 8.60 8.60
30 27, aTZ 8.61 8.62
3027, | aQZ | 8.72
3027, | CBS | 8.80 8.76
28 2F TZ1 8.70 8.69
28 2F TZ2 8.87 8.91
28 2F aTZ 8.88 8.93
282F | aQZ | 8.99
282F | CBS | 9.07 9.06
2527, | TZ1 8.72 8.72
2527, | TZ2 8.89 8.94
25 2T, aTZ 8.90 8.96
2527, | aQZ | 9.01
2527, | CBS | 9.09 9.09

@) Structure obtained from Ref.”#
)aXZ = aug-cc-pVXZ. CBS = (431E(aQZ)-331E(aTZ))/(43-33)
TZ1=6-311+G(d). TZ2=6-311+G(3df)

IMP2ATQZ+5S 5 1a(DT)Z

) Value reported previously in Ref.”*

results are obtained. In general, CP3+ methods tend to overestimate whereas CNR2/a23 underestimate

VEDE values. CNR2/a34 has a well behaved and symmetric gaussian curve.

5.6 Conclusions

In this chapter, VEDEs of closed—shell anions were accurately predicted with EP methods which have
lower computational requirements than the ACCSD(T) standards. The best results for closed—shell
small anions of the first three periods were obtained with OVGF-A, P3+ and NR2 EP methods. From
these methods, P3+ has the lowest computational demands in addition to not having numerical param-
eters. For the non—diagonal EP methods, NR2 is both the more computationally efficient and accurate.
OVGF methods require the four index virtual molecular two electron repulsion integrals and are more
demanding than P3+ and NR2. In addition, the OVGE-N selection algorithm usually selects the OVGF-
B method instead of the most accurate OVGF-A method.

The potential of electron propagator methods is displayed by accurate predictions of both organic

and inorganic compounds in the case studies. For CsH;, the first VEDE is accurately predicted with
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Figure 5.7: Error distributions (eV) for small anions: composite methods

Figure 5.8: Error distributions (eV) for large anions: composite methods
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OVGEF, P3+ and NR2 but the second VEDE has low pole strengths. For this reason, only results obtained
with NR2 are accurate and yield correct Dyson orbitals. When dealing with the PoN5 and NoPNP~
anions, high correlation effects are observed when comparing the Dyson orbitals to the spin densities
obtained with the UHF and UCCSD methods. However, results obtained with both P3+ and NR2 are in
good agreement with the ACCSD(T) and IP-EOM-CCSD methods. Finally, both P3+ and NR2 succeed
in predicting with high accuracy VEDESs for the AlI(BO3); superhalide, promising to be useful tools in
the discovery of new superhalogens.

In addition, results obtained with CEP methods based on the P3+ and NR2 approximations are in
excellent agreement with the ACCSD(T) standards. These composite methods were applied success-
fully to large carborane anions in Chapter 4. The accurate and balanced treatment of both initial-state
correlation, final—state orbital relaxation and polarization effects by both P3+ and NR2 methods accounts

for their accuracy and stability.
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Chapter 6

Prediction of Vertical Electron Detachment Energies of
Superhalides with Electron Propagator Methods

This chapter summarizes the most important findings of references 6,30,31 regarding the use of EPT to
predict VEDEs of superhalides.

Halogens are elements in the periodic table that have large electron affinities and their anions or
halides are closed—shell and valence bound electrons. The halogen with the highest electron affinity is
chlorine with an electron affinity of 3.6 eV. Clusters with low electronegativity central atoms and highly
electronegative ligands can have electron affinities higher than 3.6 and are known as superhalogens. 3233
For example, MgFs will be a super halogen which consists of a metallic central atom with valence two
and three fluorine ligands and the predicted EA is 7.66 eV.”

In addition, bridged superhalogens have two or more central atoms and electronegative ligands
binding them together. These superhalogens can have larger EAs than their corresponding single super-
halogens. When one of the ligands is substituted by an organic group, like ethylene, a composite super-
halogen is formed. Composite superhalogens have larger electron affinities than their organic groups but

lower than their respective superhalogen. Therefore, chemical synthesis and bond activations might be

performed with these systems.

6.1 Prediction of VEDEs of Composite Superhalides with Electron

Propagator Theory

Previous results by Li ef al regarding the calculation of composite superhalides VEDEs”> with the Outer

3,48,76 ) 64

Valence Green’s Function seem to be in disagreement with results obtained using ACCSD(T
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Figure 6.1: Comparison between VEDE values at the OVGF and CCSD(T) levels; full and
dashed lines are for 2A” and 2A’ final states, respectively.
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Unfortunately, Li et al failed to compare the right electronic states for these comparisons. For example,
when a molecule has a plane of symmetry (C, point group) there are two electronic states available,
2A’ and 2A”. This chapter shows that results obtained with both ACCSD(T) and OVGF are in excellent
agreement when comparing the correct electronic transitions, see Table 6.1 and Figure 6.1. The compos-
ite superhalides considered can be seen in Figure 6.2 and the calculations were performed with Gaussian
09.77 Results in bold type (see Table 6.1) are for final doublet states ignored by Li et al. Discrepancies
between OVGF and ACCSD(T) have 1, MUE and o of 0.07, 0.10 and 0.12 eV, respectively. In addition,
OVGEF is faster than CCSD(T) as has been demonstrated in Chapter 5.

Li et al fail to assign the correct Dyson orbital to the electronic final state by using the HOMO
regardless of having different symmetry. When using EPT, the KT assigns the IE or EA to the negative
of the HOMO or LUMO eigenvalue. This assumes that there are not strong correlation and orbital re-
laxation effects. When these effects are present, the lowest electronic state might have a different Dyson
orbital than the HOMO and using the orbital symmetry can help to map the right vertical transitions.
This is because the Dyson orbital should have the same irreducible representation as the doublet final

state.

6.2 Prediction of VEDEs of doubly-bridged Superhalides with Electron

Propagator Theory
Previous results obtained by Li et al claim large discrepancies between the OVGF and ACCSD(T)

levels of theory for the prediction of doubly—bridged superhalide VEDEs. ! In this section, calculations

of VEDE:s for six Mgo(CN)5 isomers have been performed with Gaussian 09 using the same methods
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Table 6.1: Vertical Electron Detachment Energies (eV) of C, Superhalides®
A’ Anion State?  Orbital) MP2 OVGFY CCSD CCSD(T)

A A HOMO 5.46 5.32 5.23 5.37

A 2N HOMO-1 5.05 4.70 4.61 4.63
B®) N HOMO  3.89 3.89 3.79 3.83

C N HOMO 491 5.00 4.61 4.60

C 2A”  HOMO-1 5.69 5.24 5.24 5.32
A A HOMO 5.71 5.59 5.46 5.59
A 2N HOMO-1 531 4.94 4.83 4.84
B¢ N HOMO 4.19 4.18 4.06 4.09
Al ZA” HOMO 6.14 6.00 5.92 6.06
Al 2N HOMO-1 597 5.60 5.51 5.55
A2 A HOMO  6.90 6.77 6.69 6.83
A2 2N HOMO-1 6.84 6.54 6.40 6.43
A3 ZA” HOMO  5.65 5.51 5.43 5.57
A3 2 HOMO-1 5.36 5.00 4.90 4.93
Al A HOMO 6.34 6.23 6.10 6.23
Al A HOMO-1 6.16 5.81 5.68 5.70
B1’ 2N HOMO 4.99 5.00 4.87 4.91
BI’ 2A”  HOMO-1 7.24 7.23 7.08 6.96
B2’ N HOMO 5.74 5.74 5.61 5.64
B2’ 2A”  HOMO-1 6.59 6.60 6.48 6.40

)Values in bold type pertain to final state doublets that were
ignored by Li et al”>

b)Electronic state of superhalogen molecule

c)Reference canonical Hartree—Fock orbital

4) All Pole strengths are above 0.85

¢)This system has no Koopmans defect; only one VEDE is needed
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Figure 6.2: Superhalogen composite structure anions.

B1’ B2’
H = light gray, C = black, F = light green, Cl = green, and Mg = purple.
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Table 6.2: VEDEs of Mg,(CN); superhalides (eV).®)

Isomer State? CMO* OVGF? CCSD(T)
A 2A” HOMO 7.14 6.90
B 2A” HOMO 7.13 6.89
C 2A HOMO-2 6.99 6.89
D 2N HOMO-5 8.15 8.05
E 2A HOMO-2 6.98 6.87
F 2N HOMO-2 8.20 8.10
1 2A, HOMO-3 8.25 8.15
2 2N HOMO-2 7.01 6.91
2 2A” HOMO-1 8.24 8.17
3 2A, HOMO-4 8.11 8.00
4 2A, HOMO-3 8.19 8.13
5 2B, HOMO 7.14 6.93
6 2N HOMO-2 6.95 6.82
6 2A” HOMO-1 8.20 8.12
7 2N HOMO-2 7.02 6.92
7 2A” HOMO-1 8.24 8.19
8 2B, HOMO 7.12 6.85
9 2B, HOMO 7.15 6.94
10 2A, HOMO-3 8.19 8.11
11 2N HOMO-2 6.96 6.83
11 2A” HOMO-1 8.20 8.13
12 2N HOMO-1 7.07 6.86

“)Values in bold type pertain to final-state doublets ignored by Li et al.
b)Electronic state of superhalogen molecule.
)Reference canonical Hartree—Fock orbital.

9 All pole strengths are above 0.85.

and basis sets as Li et al, see Table 6.3 for basis set definitions. Table 6.2 and Figure 6.3 show results
for the prediction of VEDEs with MUE and ¢ of 0.13 and 0.07, respectively. Optimized structures for
the six superhalogens are reported in Figure 6.4.

Koopmans defects occur in species like No with 7 bonds and ¢ lone pairs. In addition, OVGF
calculations have been used to predict the correct ordering of final states obtained at the Koopmans
level. However, this case is more subtle due to the final ordering of states with the same symmetry. In
this case, comparisons between Dyson orbitals and final state spin densities are necessary to obtain the

correct assignment of states, see Figure 6.5.
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Table 6.3: Basis-set abbreviations.
Basis C &N Mg
TZ1  6-311+G*7870 TZVP80sl
TZ2 6-311+G(3df) TZVP
TZ3 TZVP+¥ Def2-TZVP3?

@) Diffuse basis from 6-311+G.

Figure 6.3: Comparison between VEDEs predicted with OVGF and CCSD(T). Full lines are for
2A’ and 2A final states. Dashed lines are for 2A” final states. Previous OVGF results obtained
by Li et al' with their TZ2 basis set are included for comparison.
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Figure 6.4: MP2/TZ1 structures of [Mgs(CN);]~ superhalides.
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Figure 6.5: Unrestricted Hartree—Fock spin densities of ground-state superhalogens versus
HOMO and HOMO-2 contours for superhalide anions with Koopmans defects.

Isomer Spin Density HOMO HOMO-2
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Table 6.4: Basis-set abbreviations.

Basis C&N Mg

TZ1 6-311+G*787°  TZVP303l
TZ2 6-311+G(3df)®> TZVP

TZ3 TZVP+%) Def2-TZVP3?

2Diffuse basis from 6-311+G.

6.3 Prediction of VEDEs of triply-bridged Superhalides with Electron

Propagator Theory

OVGF Dyson orbitals provide reliable results for the calculation of VEDEs of superhalides. In addi-
tion, Dyson orbitals are useful for the mapping and prediction of VEDEs when using AE methods like
ACCSD(T). Superhalogens have several high energy orbitals that compete through correlation and or-
bital relaxation effects to obtain the lowest energy doublet. In addition, spin contamination can add more
difficulties to the calculation of VEDEs using A methods.

Previously, Yin ez al claimed®? that calculations on VEDEs of triply—bridged Mgs(CN)5 super-
halides performed with the OVGF3#87684 method yield discrepancies of over 1 eV, for isomers D, E
and F (see Figure 6.6) when comparing with the ACCSD(T) method. %*

Unfortunately, using these methods as a black box can bring erroneous results and conclusions.
Not only did Yin et al fail in making the right comparisons between Dyson orbitals and final doublet
states, they also failed to obtain all the relevant vertical transitions for each isomer.®

This section involves results obtained for structures shown in Figure 6.6 using the same basis
sets (see Table 6.4) as Yin et al for both OVGF and ACCSD(T) levels of theory using Gaussian 09.””
Table 6.5 and Figure 6.7 show VEDE:s for triply bridged superhalides with both OVGF and ACCSD(T).
Excellent agreement between methods is seen with 1, MUE and o of 0.09, 0.09 and 0.05 eV. In order

to obtain the correct assignments, comparisons between Dyson orbitals and neutral state doublet’s spin

contamination contours are displayed in Figure 6.8.

6.4 Conclusions

The utility of OVGF in order to accurately predict VEDEs and Koopmans defects for superhalides has

been proved in this chapter. OVGF is an EP method with an arithmetic scaling of ov* while the other
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Table 6.5: Vertical Electron Detachment Energies of Mgy (CN); Isomers (eV)*

Isomer State® Orbital® OVGF? CCSD(T) Isomer State’ Orbital® OVGF? CCSD(T)
A A HOMO 8.49 8.41 F A HOMO 8.50 8.42
A 2N HOMO-1  8.49 8.41 F 2N HOMO-1  8.49 8.42
A 2A”  HOMO-2  8.57 8.49 Fe A HOMO-2  7.31 7.23
A 2N HOMO-3  8.57 8.50 F 2A”  HOMO-3  8.72 8.65
B ’E HOMO 8.42 8.32 G 2A; HOMO 7.20 7.07
B 2A9 HOMO-4  9.08 9.13 G ’E HOMO-1  8.69 8.50
c¢ 2A; HOMO 7.20 7.06 G° 2A;, HOMO-3 1737 7.32
C ’E HOMO-1  8.67 8.49 G ’E HOMO-4  8.77 8.74
D ’E HOMO 8.42 8.33 H¢ 2N HOMO 7.26 7.15
D¢ %A,  HOMO-2 17.36 7.31 H 2A”  HOMO-1  8.71 8.59
E 2A”  HOMO 8.57 8.51 H¢  2A HOMO-2 7.41 7.24
E 2N HOMO-1  8.58 8.51 H 2N HOMO-3  8.61 8.59
E° 2N HOMO-2  17.25 7.14 H 2A”  HOMO-4 8.74 8.71
E 2A” HOMO-3  8.70 8.58

@ Bold type: doublets ignored in ref.%*

b Electronic state of Mgy (CN)s
¢ Canonical Hartree—Fock orbital of Mg»(CN)5
4 All pole strengths exceed 0.85
¢ States with < S% >y = 1.24-1.25 and T diagnostic® = 0.037-0.038

Figure 6.6: MP2/TZ1 structures of Mg,(CN); triply-bridged superhalides. Mg: white, C: red,

N: blue.
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Figure 6.7: Comparison between first VEDESs predicted with OVGF and CCSD(T)
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Figure 6.8: UHF spin densities for Mg, (CN); and canonical molecular orbitals (isovalue = 0.02
a.u.) for Mg, (CN);
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alternatives of CCSD and CCSD(T) have an arithmetic scaling of N® or N7. In addition, one simple
calculation of OVGF can produce several Dyson orbitals and their VEDEs whereas AE methods have
to perform separate calculations for each electronic state. Several calculations in doublet states can also
have large spin contamination or converge to excited states. Therefore, it is highly recommended that
VEDE:s predictions include EP methods such as OVGFE.

Yin et al have claimed several times that OVGF fails to reproduce results obtained with ACCSD(T)
for VEDEs of superhalides with Mg atoms. These claims have been refuted three times based on sym-
metry criteria and comparisons between Dyson orbitals and their corresponding doublet state’s spin
densities. Despite erroneous claims, OVGF is a great tool for predicting the right order of final states
and Koopmans defects. In addition, OVGF predicts accurate VEDEs for superhalides based in cyano

groups with MUEs below 0.1 eV.
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Chapter 7

Double—-Rydberg Anions: Using Electron Propagator Theory
to find binding energies and Dyson orbitals

In this chapter, EPT will be used to obtain electron binding energies (EBEs) and Dyson orbitals of
double-Rydberg Anions (DRAs). Predicted EBEs will be compared to experiment when available and

when not these predictions will be useful for spectra assignment in future research.

7.1 Double-Rydberg anions based on ammonium-amines, N, H; _, for

n=1-5

Neutral cluster—like systems composed of a closed-shell cation and a hydrogenic electron are known as
Rydberg radicals.®” For example, NH, is a simple ammonium Rydberg radical (NHj)~. The Rydberg
character in chemistry is important to predict intermediates in hydrogen atom transfer reactions and
hydrated electrons.® When an extra electron is added to a Rydberg radical a DRA is synthesized, con-
sisting of a closed-shell cationic core and two Rydberg—like electrons. For example, the DRA (NH})?
was discovered by Bowen’s group?® by its anion photoelectron spectrum and it was confirmed by theo-
retical studies. 27899

The tetrahedral anion has been found to be a stable species with vibrational frequencies and molec-
ular structure similar to that of the NH, radical. Therefore, a fine sharp peak is observed in the pho-
toelectron spectrum.?”¥7 The HOMO orbital is diffuse and symmetric with two radial nodes, one of
which occurs near the hydrogen atoms and the other around the nitrogen atom. The size and shape of
this orbital has been related to Na~.°!

Other DRAs have been measured, >>%8 (N,,Hs,,,1)~ for n = 2-53, through photoelectron spectra with

dominating narrow peaks at low electron binding energies (0.4-0.5 eV). Besides the DRAs complexes

84



between ammonia molecules and either hydride or a DRA are observed with the formulas (H™)(NH3),,
or (NH})"(NH3),,1, respectively.

This work,%> provides a confirmation of previous results by means of high quality theoretical
predictions using CCSD? optimized structures and Brueckner-doubles triple field operator method
(BDT1)>+ electron propagator binding energies. Agreement between experimental and calculated
results are within 0.05 eV (on average the difference is only 0.02 eV) confirming the interpretation of

vertical detachment energy peaks for DRAs and solvated anions.

Methodology

Structures of anions were optimized at the coupled—cluster singles and doubles (CCSD) level® with
the 6-311++G(d,p) basis set 785 plus extra diffuse functions (exponents: H s 0.01080, N sp 0.01917)
or 6-3114+242G(d,p). All frequencies were real. Electron binding energies were predicted with BDT1
EPT>%4% and the 6-31 1+2+2G(2df,2pd) basis set, where +2 stands for double diffuse functions. Brueckner—
doubles coupled—cluster (BD)*7%8 calculations were performed with the oldfcbd and nosymm options.
All pole strengths (norms of Dyson orbitals) were 0.85 or higher.

All calculations were executed with the GDV version of Gaussian.®® Dyson orbitals of electron
detachment from anions and electron attachment of cations were plotted using Gaussview *° from a cube
file generated with an enhanced edge size in Molden. '’ Isovalues in the orbital plots are equal to 0.02

forn =1,2,3 and are equal to 0.012 for n = 4, 5.

Results

Tables 7.1-7.3 and Figures 7.1-7.7 display numerical and graphical results on various isomers of N, Hg ;.
For n = 1 (NH}), the hydride-ammonia complex is considerably more stable than the tetrahedral
DRA, NH;,. For the hydride complex, a single N-H bond in ammonia approaches the hydride in a C,
structure and increases the VEDE from 0.75 to 1.11 eV. The Dyson orbital can be seen in Figure 7.1
where the electrons are mainly in the hydride with some antibonding character in the approaching N-H
bond. For the NH; DRA, a symmetric Dyson orbital envelops the whole molecule like a membrane. In
addition, the bond lengths are nearly unchanged with respect to the Rydberg radical or NH} confirming

the unimportance of any antibonding character in the Dyson orbital. The low relative intensity of the
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Table 7.1: N,,H3, ., isomerization and electron binding energies (eV)

3n+
n Isomer AEPD  Theory Expt.?

1 H-(NH3) 0 1.079 1.110

NH; 0.49 0.477 0472

2 H~(NHj;)- 0 1.497 1.460

NH} (NH3) 0.76 0.596  0.578

N.H- 0.63 0.407 0.415

3 H~(NH3);3 0 1.829 1.820
(NH3)NH} (NH3) 1.05 0.713

NH; [NH;], 0.96 0.679  0.660

NyH7(NH3) 0.93 0.498  0.495

N3;Hj, 0.73 0.398 0424

4 H-(NHj;), 0 2.159 2.111
(NH;);NH; 108 0743
[NH3]oNH;, (NH3) 1.19 0.795
NH, [NH3]3 1.27 0.919
(NH3)N,HZ(NH3) 1.16 0.860
N,H: [NH; ] 107 0.564
N;H;,(NH;) 097 0471

N,H;, 072 0398 0427

5 H~(NHj;); 0 2420  2.360

NsH7, 0.71 0.389  0.434

peak observed in PES results from the relative instability of the DRA with respect to the hydride—
ammonia complex.

For n = 2 (NoH7), three structures appear in the photoelectron spectrum.> A complex of hydride
with two ammonia molecules in Co symmetry is the most stable structure (see Figure 7.2). The VEDE
increases an additional 0.35 eV to a total value of 1.46 eV. There is a small delocalization onto the am-
monia molecules but the Dyson Orbital remains localized in the hydride. The complex of NH} (NH3) is
also formed and the VEDE is about 0.1 eV larger than for the NH; DRA. The coordinating ammonia
molecule points the three hydrogen atoms towards the tetrahedral DRA and the Dyson orbital is mainly
localized around the DRA. The remaining structure, resembles the cation NoH* where there is a hydro-
gen bond between NH} and NH3. Adding two electrons to this cation yields the NoH7 DRA with a Cs,,
structure. The binding energy is slightly lower than for NH; (0.415 eV) and the Dyson orbital is mainly
localized on the hydrogen atoms that are bound to the cationic nitrogen. Agreement between this work,

previous calculations and experiment is excellent. 333692
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Figure 7.1: n = 1 structures and Dyson orbitals of electron detachment from anions

For n = 3 (N3Hj,), the spectrum is more complicated. First, the complex of hydride with three
ammonia molecules in a Cz structure (see Figure 7.3) has a binding energy about 0.35 eV higher (1.82
eV). Second, the DRA based on the N3H7, cationic Cy, structure is also observed at 0.424 eV. Then,
combinations between DRAs and ammonia molecules can appear. However, not all of them are observed
in the spectrum. This work, predicts VEDEs for (NH3)NH, (NH3), where both ammonia molecules co-
ordinate from different angles, NH; [NH3]> where the DRA coordinates to an ammonia dimer (square
brackets designate a hydrogen—bonded cluster) and to the NoH> (NH3) complex. The experimental spec-
trum has signals for NH; [NH3]> and NoH7 (NH3) complexes but no signal for (NH3)NH; (NH3). This
can be explained using the calculated relative energies, where the lowest structure is the hydride, then
the relative energies for the DRA and DRA complexes are as follows: N3H;; 0.73 eV, NH;[NH3]2 0.96
eV, NoH7 (NH3) 0.93 eV and (NH3)NH}; (NH3) 1.05 eV. In addition, kinetic and orientation effects in the
gas phase can also limit the formation of the last complex due to the need for a trimolecular interaction.
Dyson orbitals appear in the DRA and VEDEs increase by about 0.1 eV when adding one ammonia
molecule and about 0.2 eV when adding an ammonia hydrogen-bonded dimer. There is good agreement
between this work and experiment. 32

For n = 4 (N4H73), the spectrum is quite simple.® The hydride with four ammonia molecules

arranges itself in a Cq structure (see Figure 7.4) and has a binding energy about 0.3 eV higher for a total
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Figure 7.2: n = 2 structures and Dyson orbitals of electron detachment from anions
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Figure 7.3: n = 3 structures and Dyson orbitals of electron detachment from anions
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Figure 7.4: n = 4 structures and Dyson orbitals of electron detachment from anions

of 2.111 eV. The Dyson orbital is mainly localized in the hydride with some antibonding character in
the N-H bonds. The DRA based on the NyH7; cation where an ammonium is hydrogen bound to three
ammonia molecules in a Cs,, structure has a VEDE of 0.427 eV. The Dyson orbital is delocalized around
the hydrogen atoms of the neighboring amines and completely envelops the DRA. Agreement between
experiment and this work is excellent.*? In addition, this work predicts VEDEs and Dyson orbitals
for DRAs complexes with ammonia molecules. (see Table 7.1 and Figure 7.4 for VEDEs and figures,
respectively.) However, they are not observed in the spectrum. The relative energies between the DRAs
complexes with ammonia for n = 3 and n = 4 are similar and the predicted complexes for n = 4 could
be synthesized and studied spectroscopically.

For n =5 (N5sH), the spectrum is also quite simple. 35 The hydride with five ammonia molecules
arranges itself in a structure without symmetry (see Figure 7.5) where four ammonia molecules coor-
dinate to the hydride in the first solvation shell and the remaining ammonia is hydrogen—bound to two
ammonia units. The VEDE increases by 0.25 eV to a total of 2.36 eV and the Dyson orbital is dom-
inated by the hydride orbital and antibonding character between the N-H bonds in the first solvation
shell. The DRA corresponding to the N5H;; cation has completed the first solvation sphere in a tetrahe-

dral structure. The Dyson orbital is symmetric around the tetrahedral structure and envelops the twelve
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N5H16

Figure 7.5: n = 5 structures and Dyson orbitals of electron detachment from anions

outer hydrogen atoms at an isovalue of 0.012. Computational predictions for n = 2,3,4,5 for DRAs
are between 0.39 and 0.41 eV while the experimental results are within 0.415 and 0.43 eV. Therefore,
agreement between experiment and theory is excellent. 32

Isomerization energies for n = 4,5 DRAs are close to 0.7 eV but their peaks have high intensities
in comparison with their corresponding hydrides. Meanwhile, the isomerization energy for NH is only
0.5 eV and the peak is relatively faint. Therefore, the experimental samples are far from equilibrium and
kinetic products are available in the spectrum.

The photoelectron spectra contains additional peaks assigned to vibrational shifts and correlation
final states. In this work, correlation final states occur when the Rydberg radical electron is excited to
higher energy orbital and can be predicted by computational calculations of electron affinities of the
closed—shell cations. Then, the excitation energies (EEs) of the Rydberg neutral radical are equal to the
differences of the electron affinities. '°!192 Experimentally, these excitation energies can also be inferred
from differences of VEDEs in PES.® For n = 4,5, correlation states are observed in the spectrum
and in Table 7.2 computational results show good agreement with experiments.3>19%1%4 Because one
experimental technique departs from the anion and the other departs from the neutral, the agreement
between them and theory implies minor nuclear relaxation between the charged and neutral clusters.

The largest electron affinity is designated as EAg and correlates with the ground state of the Ry-

dberg radical (*A; or s-like). Figures 7.6 and 7.7 show Dyson orbitals for the electron affinities of the
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Table 7.2: N, HZ

, electron affinities and N,,H3,,.; excitation energies (eV)

In+
n EAy EA; EA, EEs-Theory EE-Expt.’® EE-Expt.!103104
4 2814 2111 2.069 0.70,0.75 0.83 0.81
5 2570 1.988 0.58 0.70 0.71

Table 7.3: N,,Hs,,,1 excitation energies (eV)

I |n Term Energy |n Term Energy

s | 4 2A1 0 5 2A1 0

p ’E 0.703 2T, 0.582
2A; 0745

d A, 1.368 2Ty 1.200
’E 1.390 ’E 1.250
) 1.464

S 2A; 1.596 2A; 1409

f ’E 1.865 T 1.673
2A; 1921 2T, 1.757
A, 1956 2A, 1.913
’E 2.143
2A; 2.156

p ’E 2.370 T, 2177
A, 2373

d ) 2.424 2T, 2.193
2A, 2547 ’E 2.200
’E 2.572

closed—shell cations for n = 4 and 5, respectively. The Dyson orbitals for the first electron affinity of
the cation and the first ionization energy of the anion are quite similar for both clusters. These Dyson
orbitals have a semi-spherical shape with an approximate 1 quantum number of 0 (s—like) based in a
hydrogenic characterization. For the second electron affinities of cations (EA1), the Dyson orbitals have
an approximate 1 quantum number of 1 (p-like) and for n = 4 there is a small energy difference of 0.05
eV between the p. and the p,, or degenerate p,, orbitals. However for n = 5 all p-like states have the
same energy. Table 7.3 displays excitation energies for n = 4 and 5 and their approximate 1 quantum

numbers are based on a hydrogenic characterization of the Dyson orbitals. For both radicals, a pattern

is observed: s, p, d, s, f, p and d.

92



NyHy3
Structure EA, EA, EA,
& : 9,

Figure 7.6: N4H7, structure and Dyson orbitals of electron attachment to cation
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Figure 7.7: NsH, structure and Dyson orbitals of electron attachment to cation
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7.2 Double-Rydberg anions based on methylammmoniums,

(CH3),NH_

Substitution of one or more hydrogen atoms by a methyl group in NH yields (CH3),,NH}_,, clusters, for
n =1,2,3,4. These clusters resemble protonated methyl amines and in their cationic forms are stable
in aqueous solutions. Addition of one extra electron to these methylammoniums produces Rydberg
neutral radicals. In this work, high quality calculations predict that the addition of two electrons to these
methylammoniums would produce stable DRAs with VEDEs between 0.24 and 0.39 eV. In addition,

Dyson orbitals obtained for these systems resemble Dyson orbitals obtained in the previous section.

Methodology

Structures of anions were optimized at the coupled—cluster singles and doubles (CCSD) level >* with the
6-311++G(d,p) basis set’®7%8 plus extra diffuse functions (exponents: H s 0.01080, N sp 0.01917).
All frequencies were real. Electron binding energies were predicted with ACCSD(T)% and BDTI

EPT>%+% ysing the augmented correlation consistent triple ¢ basis—set '93-107

plus extra diffuse func-
tions consisting of multiplying the most diffuse exponent by 0.3 of each angular momentum in all atoms
(aug2-cc—pVTZ). Brueckner—doubles coupled—cluster (BD) 9798 calculations were performed with the
oldfcbd and nosymm options.

All calculations were executed with the GDV version of Gaussian. %
Dyson orbitals of electron detachment from anions were plotted using Gaussview®® from a cube

file generated with an enhanced edge size in Molden. '’ Isovalues in the orbital plots are equal to 0.02

for n = 1,2 and are equal to 0.01 for n = 3, 4.

Results

Predicted electron binding energies with both methods (ACCSD(T) and BDT1) are in good agreement
with discrepancies lower than 0.025 eV, see Table 7.4. Dyson orbitals and optimized structures are shown
in Figures 7.8-7.11. Anions with n = 1 and 4 have higher vertical electron binding energies (0.327 and
0.385 eV, respectively) and anions with n = 2 and 3 have lower binding energies (0.251 and 0.244 eV,
respectively). The decrease of the binding energy by increasing the anion size have been seen also in the

N, Hj,, . anions but the changes are less drastic that in this case. In addition, these methylammonium
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Table 7.4: (CH3),,NH;_,, predicted electron binding energies (eV)
DRA Point group ~ BDTI1¢  ACCSD(T)®

n
1 (CH3)NH; Cs, 0.350(0.84) 0.327
2 (CHj3)2NH; Cay 0.275(0.81) 0.251
3 (CHs)sNH~- Csy 0.278(0.77) 0.244
4 (CHs)4N- ty 0.394(0.87) 0.385

b BDT1/aug?-cc-pVTZ, PS values in parenthesis.
¢ ACCSD(T)/aug?-cc-pVTZ.

CH;NH;

R

Figure 7.8: CH3NH; Optimized structure (CCSD/6-311+2+2G(d,p)) and Dyson orbitals (iso-
value = 0.02, HF/aug?-cc-pVTZ)

DRAs have stronger correlation effects and different electronic states can be accessed complicating the

accurate solution of these systems.

9%y 2&’

Figure 7.9: (CH3):NH; Optimized structure (CCSD/6-311+2+2G(d,p)) and Dyson orbitals
(isovalue = 0.02, HF/aug?-cc-pVTZ)
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(CH3)3sNH~

*f%f’

Figure 7.10: (CH3)3NH~ Optimized structure (CCSD/6-311+2+2G(d,p)) and Dyson orbitals
(isovalue = 0.01, HF/aug?-cc-pVTZ)

(CHj3)4N~

Figure 7.11: (CH3)4N- Optimized structure (CCSD/6-311+%+2G(d,p)) and Dyson orbitals (iso-
value = 0.01, HF/aug?-cc-pVTZ)
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7.3 Double-Rydberg anions based on a protonated diamine,

NH2(CH3)2NH§

An interesting system to work with is NH2(CH3)oNH3 because of the hydrogen bonding interaction
between the nitrogen atoms. The global minimum calculated at the CCSD/6-311+2+2G(d,p) level (the
basis set has extra diffuse functions with exponents: H s 0.01080, N sp 0.01917) is at 49.2 degrees in
the dihedral angle between the N-C—C-N atoms, allowing the hydrogen bond to have a distance of 2.25

A while negating the steric interactions by having a gauche configuration.

Methodology

The structure of the DRA NHy(CH3)2NH3 was optimized with the CCSD method and the 6-31 l+2+2G(d,p)
basis—set. All frequencies were real. The vertical electron binding energy for the first ionization energy
was predicted with ACCSD(T) and BDT1 using aug?-cc-pVTZ. Brueckner—doubles coupled—cluster
(BD) calculations were performed with the oldfcbd and nosymm options. Calculations were executed
63

with the GDV version of Gaussian.

The Dyson orbital for the first ionization energy was plotted using Gaussview ** with 0.02 isovalue.

Results

The predicted electron binding energy is 0.311 and 0.299 eV with BDT1 and ACCSD(T), respectively.
This result is similar to (CH3)2NH; and we seem to predict that the substitution of hydrogen for carbon
decreases the binding energy. This can be due to the inductive effect of carbon to stabilize the cationic
core. In general, a stable covalent cation has a delocalized charge in a large and polarizable structure,
like a soft acid. Then, the respective DRA will be less bound.

Calculations performed with the CCSD/6-311+2+2G(d,p) give rotational barriers of 0.15 and 0.30
eV at 0 and 120 degrees in the dihedral angle. In addition, ACCSD results yield a decrease of 0.05 eV
in the binding energy when the dihedral angle is close to 120 degrees instead of 49 while the binding

energy increases by 0.02 eV when going close to zero degrees.

97



Table 7.5: NHy(CHs3),NH3 predicted electron binding energy (eV)
dih® BDT1? ACCSD(T)¢
49.2 0.311(0.794) 0.299

@ Dihedral angle between NCCN atoms.
b BDT1/aug?-cc-pVTZ,

PS values in parenthesis.

¢ ACCSD(T)/aug?-cc-pVTZ.

NH, (CH3)2NH§

o @

Figure 7.12: NH,(CHj3),NH; Optimized structure (CCSD/6-311+2+2G(d,p)) and Dyson orbital
(isovalue = 0.02, HF/aug?-cc-pVTZ)

7.4 Double-Rydberg anions triplet states, NH,NH; NH;CH;

In this section, triplet DRAs are predicted to exist for NH4NH3 and NH3CHj5. High level calculations
are used for geometry optimization and VEDEs prediction. Both structures have Cs, symmetry and
both Rydberg electrons are in an a; orbital. For DRAs, triplet states require more diffuse functions
than singlets to converge optimizations and VEDEs. Optimizations with quadruple augmentations are
needed for NH4NH;. For NH3CH3, convergence of bonds and angles are obtained only with hextuple

augmentations. Predicted VEDESs are 0.113 and 0.014 eV. for NH4NH;5 and NH3CHj, respectively.

Methodology

The structures of the triplets DRAs were optimized with the CCSD method using the 6-311+*+*G(d,p)
and 6-311+%+5G(d,p) basis—sets for the NH4NH3 and NH3CHj clusters, respectively. All frequencies
were real.

The vertical electron binding energy for the first ionization energy was predicted with the ACCSD(T)
and P3+ % methods using the aug?-cc-pVTZ basis set. Calculations were executed with the G16 version

of Gaussian.
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3A, NH,NH;
HOMO-1 Structure HOMO

@ -}aq’

Figure 7.13: 3A; NH,NH; Optimized structure (CCSD/6-311+4+*G(d,p)) and Dyson orbitals
(isovalue = 0.015, HF/aug*-cc-pVTZ)

. 4

Optimizations and VEDEs were augmented until convergence of bond distances, angles and VEDEs

was reached. The Dyson orbitals for the first ionization energy were plotted using Gaussview *

using
cube files generated with extended dimensions using Molden. The isovalues were 0.015 and 0.006 for

NH4NH; and NH3CH3, respectively.

Results

For the triplet DRA NH4;NH3 (3Ay), the structure is Cs, and the Rydberg electrons are localized in
opposite sides of the anion. The HOMO is localized on the NHj3 side while the HOMO-1 is localized
on the NHy side, see Figure 7.13. Labeling the NHy nitrogen as a and the NHj3 nitrogen as b, the
distances N,~H, N,~H,,;4, Ny—H and N,—H,,,;4 are 1.0323, 1.0656, 1.0211 and 1.7788 A, respectively.
The H,,;—N,—H and H,,,;;—N;—H angles are 111.14 and 113.54 degrees, respectively.

For the triplet DRA NH3CHj5 (3A), the structure is also Cs, and the Rydberg electrons are lo-
calized in opposite sides of the anion. The HOMO is localized in the CH3 side while the HOMO-1
is localized in the NH3 side, see Figure 7.14. The distances N-H, N-C, C—H are 1.0395, 1.5042 and
1.0905 A, respectively. The C-N-H and N—-C—H angles are 112.02 and 108.22 degrees, respectively.

The predicted VEDE for the triplet DRA NH4;NH3 (3A1) is 0.113 eV at the ACCSD(T) level
(0.148 eV at the P3+ level) with a relative energy of 0.310 eV with respect to the singlet NH4NHj5
(1A1). Also, the predicted VEDE for the triplet DRA NH3CHj3 (3A1) is 0.014 eV at the ACCSD(T)
level (0.023 eV at the P3+ level) with a relative energy of 0.316 eV with respect to the singlet NH3CHjz
(*A}). Therefore, this DRAs could be detected in PES experiments because high energy DRAs have

been observed previously. 263388
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Figure 7.14: 3A; NH3CH; Optimized structure (CCSD/6-311+5+5G(d,p)) and Dyson orbitals
(isovalue = 0.006, HF/aug*-cc-pVTZ)

7.5 Conclusions

This work first shows an excellent agreement between experimental results and the BDT1 electron prop-
agator method for DRAs of the formula N, Hj,, ; for the prediction of VEDEs. VEDEs for DRAs are
between 0.47 and 0.43 eV. The minimum in energy for these clusters is the hydride coordinated to ammo-
nia molecules and high energy hydrogen bonded DRAs and DRAs interacting with the dipole of ammo-
nia molecules or clusters are also observed in the spectra. Then, calculations for methylic amines were
performed with similar optimization techniques and now including comparisons between ACCSD(T)
and BDT1. Lower VEDE:s are obtained for these systems, 0.24 to 0.39 eV. Extra calculations in excited
Rydberg neutral radicals and complexes with ammonia molecules could yield interesting results in the
future. Good agreement between ACCSD(T) and BDT1 motivates the search for these DRAs experi-
mentally. For NH2(CH3)oNH3, CCSD optimizations find a minimum when the dihedral angle between
the N-C-C-N angle is 49.2 degrees. The predicted VEDE is 0.299 eV at the ACCSD level and in close
agreement with BDT1. Change of the dihedral angle can either increase or decrease the VEDE. More
calculations can be performed by double protonation and double reduction. This system is quite interest-
ing because bonding and antibonding character might be found between the two Rydberg—like electrons.
Finally, spherical DRAs like NH;; and N5H cannot have triplet DRAs because in order to do that they
need to promote both electrons to p-like orbitals. However, systems like NH4NH; and NH3CH3 have
two similar a; orbitals localized on opposite sides of the molecule. Both triplet DRAs are bound and

could be observed in PES experiments.
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Appendix A

Fourth order electron propagator Brandow (Feynman)
diagrams.

This appendix shows all fourth order diagrams and their respective equations. These diagrams were
implemented in a diagonal approximation and for this reason g was substituted for p in each equation.
First, section A.1 displays all 72 constant diagrams for fourth order electron propagator. Secondly,
section A.2 displays all 120 U-type diagrams and their corresponding equations. In addition, eight
more equations are shown corresponding to the algebraic reduction of pseudo—f7 into fs—type diagrams.
Thirdly, section A.3 displays all 48 V-type diagrams and their corresponding equations. In addition,
eight more equations are shown corresponding to the algebraic reduction of pseudo—f7 into fs—type
diagrams. Finally, section A.4 displays all 60 W-type diagrams and their corresponding equations.

These type of diagrams don’t have pseudo—f diagrams.
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Figure A.5: Fourth order constant diagrams
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Figure A.6: Fourth order diagrams
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Figure A.7: Fourth order diagrams
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Figure A.8: Fourth order diagrams
du302a du303a

137



Figure A.9: Fourth order diagrams
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Figure A.10: Fourth order diagrams
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Figure A.11: Fourth order diagrams
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Figure A.12: Fourth order diagrams
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Figure A.13: Fourth order diagrams
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Figure A.14: Fourth order diagrams
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Figure A.15: Fourth order diagrams
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Figure A.17: Fourth order diagrams
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Figure A.18: Fourth order diagrams
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Figure A.19: Fourth order diagrams
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A.4 Type-W fourth-order diagrams
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Figure A.20: Fourth order diagrams
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Figure A.21: Fourth order diagrams
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Figure A.22: Fourth order diagrams
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Figure A.23: Fourth order diagrams
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Figure A.24: Fourth order diagrams
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Figure A.25: Fourth order diagrams
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