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Abstract 

 

 

 Uncertainty is pervasive in ecology and conservation. Ecological systems are 

dynamic, and therefore inference from observations and subsequent decision-making can 

be hampered due to observation and process error. Assessing and characterizing the 

relative impacts of observation and process errors is important for sound ecological 

inference and conservation or management decisions. My research evaluates the effects 

of uncertainty on a threatened species listing decision and explores the reduction of 

uncertainty on predictive measures of species viability, understanding demographic and 

ecological mechanisms influencing population variation, and the impacts of accounting 

for these uncertainties on making conservation decisions. I apply this research to 

spectacled eiders (Somateria fischeri), a federally threatened species listed under the 

Endangered Species Act. My research aims to further our understanding of the effects of 

uncertainty by addressing the following questions; (1) How does uncertainty affect 

conservation decisions? and (2) What is the relative value of accounting for, and 

ultimately reducing those uncertainties for ecological inference and decision-making? I 

specifically address the impacts of imperfect detection, sampling variation, ecological 

uncertainty, and structural uncertainty on gaining ecological knowledge and making 
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conservation decisions. Understanding the role of uncertainty in studying species ecology 

and informing conservation decisions is imperative for effective biodiversity 

conservation strategies. 
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Chapter 1: General Introduction 

Understanding population and ecological processes using observations of a 

system is the primary goal of ecology, conservation, and management. Ecological 

systems are dynamic, and therefore inference from observations can be hampered due to 

partial observability, stochasticity in environmental processes, and uncertainty in model 

and parameter specification. Determining the mechanisms driving population dynamics 

has always been a central focus in ecology and uncertainty has always been a pervasive 

factor hindering our ability to fully understand and predict ecological systems. Assessing 

the relative impact of these sources of uncertainty and characterizing them is important 

for sound ecological inference and natural resource management decisions (Regan et al. 

2005). However, in many cases these uncertainties affecting estimation of population 

state are epistemic and therefore can be reduced through further scientific investigation 

(Regan et al 2002). It logically follows that as our understanding of a system increases 

through data collection and modeling efforts, uncertainty would decrease providing 

stronger ecological understanding and predictive abilities. Using all available population 

data and statistical modeling tools we can decompose uncertainty to improve inference 

and predictions about future states in a probabilistic manner. Furthermore, inference from 

such statistical analyses can be combined with statistical decision theory (SDT) to 
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directly inform decisions while accounting for uncertainties (Berger 1985, Williams and 

Hooten 2016). Despite the potential for such approaches to improve decision-making 

under uncertainty, these methods are relatively new and have yet to be implemented in a 

decision-theoretic framework. 

Many types of uncertainty exist in ecology and conservation and there are 

numerous ways to classify the forms of uncertainty (Regan et al. 2002, Nichols et al. 

2011). Here, I focus on two broad classifications of error sources highly relevant to 

ecological inference and conservation decisions; 1) observation error, and 2) process 

error. Observation error arises as a function of our inability to completely observe natural 

processes. Three major components of observation error include imperfect detection, 

availability bias, and sampling error (Williams et al. 2001, Regan et al. 2002, Nichols and 

Williams 2006, Ahrestani et al. 2013). Process error characterizes the variation in 

population state (size, trend) over time in response to biotic and abiotic processes 

(Ahrestani et al. 2013). The processes that drive population fluctuations are typically the 

subject of interest for ecologists and this information can be used to inform conservation 

strategies. However, observation errors can directly affect our ability to identify, 

understand, and model the processes that govern changes in population state (Nichols and 

Williams 2006). Ecological uncertainty can stem from our lack of knowledge about the 

effects of biotic and abiotic processes on population demography and dynamics 

(Williams et al. 2001, Nichols et al. 2011). Information may be lacking for several 

reasons, but often, it is difficult to obtain the data required to quantify ecological 

relationships with population demography due to imperfect detection or availability 

issues. For instance, certain age or sex classes may be unavailable to monitor or difficult 



 
3 

to detect thereby limiting the scope of inference (Nichols and Williams 2006). Further, a 

lack of information may also produce structural uncertainty regarding the correct model 

structure (i.e. functional form of demographic relationships, or model parameterization) 

for making inference or decisions (Williams et al. 2001, Regan et al. 2002, Nichols et al. 

2011). In this dissertation, I examine the role of imperfect detection, availability bias, 

sampling error, and structural and ecological uncertainty in the context of observation 

and process errors and ultimately their impacts on inferring population dynamics and 

making conservation decisions using statistical modeling.  

When surveying populations, it is difficult (or impossible) to detect every 

individual, sample the entire population (conduct a census), and it is highly likely that 

some portion of the population will be unavailable for detection. First, in order to detect 

an individual, it must be within the sampling area or otherwise available to be detected. 

For many species, surveys may be conducted during the breeding season, when non-

breeding individuals are not available to be detected (Nichols and Williams 2006). 

Alternatively, it may be difficult to detect individuals when present because they may be 

cryptic, demonstrate behavioral aversion, or environmental factors may influence 

sightability (Kellner and Swihart 2014). Further error arises through sampling processes 

due to the constraint of observing a sample of the population and not the entire 

population itself (Nichols and Williams 2006). When using population metrics 

(abundance, trends, demographic rates, etc.) for species classifications, harvest 

regulations, or other management actions, it is important to consider the accuracy and 

precision of those estimates and their influence on the decision (Kéry and Schmidt 2008). 

Abundance estimates are often used as thresholds for use in management decisions. 
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However, estimates of true abundance are difficult or impossible to obtain without 

accounting for observation error. Surveys are often implemented to collect counts over 

time to detect trends and estimate population size. But, these surveys are prone to 

multiple sources of uncertainty related to observation processes, such as imperfect 

detection, sampling error, and availability bias (Kéry and Schmidt 2008, Kellner and 

Swihart 2014). Without accounting for observation errors, abundance estimates will only 

account for a portion of the true population size and changes in abundance may be caused 

by changes in detectability, availability or sampling error and will not accurately reflect 

population dynamics. 

Whenever possible, observation error should be partitioned from process error, 

the variation in population state (size, trend) over time in response to biotic and abiotic 

processes (Ahrestani et al. 2013, Linden and Knape 2009). State-space models (SSM, or; 

hierarchical models) simultaneously account for both process error and observation error 

and can partition these errors for stronger inference (Clark et al. 2004, Linden and Knape 

2009). When both process and observation errors are high, models overestimate 

population declines which may result in poorly informed conservation decisions (Rueda-

Cedial et al. 2015). Errors in estimates of population size are likely to produce estimates 

of population persistence that are of little value for making conservation decisions 

(McLoughlin and Messier 2004). Further, process variation is often of interest whereas 

observation error is typically considered a nuisance for making ecological inference and 

conservation decisions (Clark et al. 2004). The intrinsic and extrinsic factors that drive 

population dynamics are generally the true subject of interest in ecology and are useful 

for informing conservation decisions (Kéry and Schaub 2012).  
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Quantifying drivers of population dynamics is difficult due to complex and often 

unobservable processes acting upon individuals throughout the annual cycle. To account 

for environmental variation, we need to consider which environmental factor(s) are 

important, how they affect population dynamics, and what the magnitude of the 

environmental factor(s) will be in the future. Further uncertainty arises in our models or 

parameter estimates that reflect the biological system. By extending the SSM described 

above to integrate additional data sets (e.g., counts, mark-recapture) in a single modeling 

framework, we can make joint inference on processes driving population state and 

compare competing models of those processes (Schaub and Abadi 2011). Using an 

integrated framework we can address both structural and ecological uncertainty to 

develop the appropriate biological structure of the model. Integration and analysis of 

multiple data sets results in increased precision of parameter estimates, allows for 

estimation of processes not directly measured, and can relate these parameters to changes 

in environmental factors (Schaub and Abadi 2011, Zipkin and Saunders 2018). When 

analyzing only subsets of data (e.g. count data), we cannot identify the demographic 

mechanisms that cause changes in population dynamics. Further, using multiple sources 

of data we can estimate demographic rates for which we have no data and model these 

rates with environmental covariates (Schaub and Abadi 2011). Therefore, we can reduce 

uncertainty in parameter estimates, quantify effects of ecological processes on 

demography (and population dynamics), and identify the influence of each demographic 

rate on population growth. 

Further integration with full annual cycle (FAC) models includes effects of events 

in breeding and non-breeding seasons on population dynamics of migratory species 
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(Hostetler et al. 2015, Rushing et al. 2017). Combined IPM’s and FAC models can be 

used to identify and quantify vulnerability to specific threats throughout the annual cycle, 

estimate population viability, test alternative process models, and reduce uncertainty in 

the true population state. Increased precision of parameter estimates, population size, and 

trend is particularly useful when the objective is to evaluate temporal patterns in 

parameters or to detect population trends (Rhodes et al. 2011). IPM’s separate the 

underlying ecological mechanisms from observation error, thus unravelling process 

variation from sampling variation. Integrated population models outperform their non-

integrated counterparts because the parameter estimates are more precise (Abadi et al 

2010), can be formulated to reduce structural uncertainty, estimate latent parameters, and 

directly estimate demographic responses to stressors. Gains in accuracy and precision in 

parameters are helpful for identifying multiple interacting threatening processes and 

make IPMs useful tools for species conservation (Rhodes et al. 2011, Saunders et al. 

2018).  

Measures of extinction probability are commonly used to assess risk and inform 

conservation actions, such as species classifications status for legal protection. However, 

for listing under the Endangered Species Act, researchers need to assess risk and assign 

species to either endangered, threatened, or not warranted categories. There are no 

explicit guidelines for categorizing a species by risk, therefore, the decision is based on 

both scientific and value judgements for what level of risk warrants protection 

(Cummings et al. 2018). Statistical decision theory uses the results of a statistical analysis 

to reduce uncertainty in a decision problem and help the decision maker choose the 

optimal decision based on the objectives (Williams and Hooten 2016). Integrating 
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decision theoretic methods with SSM’s and IPM’s allows decision makers to consider the 

various sources of uncertainty affecting the decision.  

Spectacled eiders (Somateria fischeri) are used as the primary focus for this 

research because (1) they are a federally threatened species with quantitative listing 

criteria, (2) recent surveys indicate that spectacled eiders have likely met recovery criteria 

but there is considerable uncertainty in population state, and (3) they are Arctic sea ducks 

with a unique combination of life-history traits linked to Arctic marine habitats, making 

them difficult to study but also exposing them to significant threats under global change.  

Spectacled eiders were listed as threatened under the Endangered Species Act 

(ESA, as amended) in 1993 following extreme population declines throughout their 

breeding and nesting range in Alaska (Ely et al. 1994, Flint et al. 2016, Taylor et al. 1996, 

USFWS 2002). Recent surveys indicate that the population of spectacled eiders breeding 

on the Yukon-Kuskokwim Delta of Alaska have likely met recovery criteria (Fischer et 

al. 2017). However, there is considerable uncertainty in population size, trend, and 

environmental factors affecting population dynamics. Spectacled eiders are monitored 

primarily during the breeding season when birds nest in coastal tundra habitats. 

Individuals do not breed until their second or third year and all non-breeding individuals 

are unobservable. Population indices from aerial surveys of spectacled eiders include a 

great deal of observation error due to imperfect detection, availability bias, and sampling 

error making it difficult to estimate population size and detect trends. 

Spectacled eiders are an Arctic sea duck species that inhabit remote and extreme 

environments throughout the annual cycle. Given their listing status, it is imperative to 

understand the underlying mechanisms that influence population dynamics in a rapidly 
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changing climate. Spectacled eiders remain unobservable until reaching breeding age (2-

3+ years old) (Flint et al. 2016). Individuals are widely dispersed in open ocean areas 

along Russian and Alaska during the spring and fall migration periods and the global 

population winters together south of St. Lawrence Island in the northern Bering Sea 

(Sexson et al. 2014). Monitoring during the non-breeding period is logistically 

challenging and thus the species remains unobservable for a majority of the annual cycle. 

The unobservable portion of the population has contributed to uncertainty in population 

state (size, trend), along with uncertainty in demographic rates. Given the paucity of data, 

first and second year survival and effects of environmental factors are inestimable when 

analyzing only survival data. Further, the relative influence of each demographic rate on 

the change in population growth could not be quantified because they have not been 

estimated. The lack of information on this portion of the population introduced 

uncertainty in the optimal model structure, relationships between demographic 

parameters, and effects of environmental factors and further complicates our ability to 

understand population state. I will evaluate the effects of these uncertainties on making 

decisions regarding species listing status and on gaining ecological information about a 

threatened species facing global environmental change. 

Here, I explore the use of breeding population monitoring data for assessing the 

role of uncertainty in making ecological inference and conservation decisions, with a 

focus on spectacled eiders in Alaska. The next four chapters were prepared for 

submission to peer-reviewed journals and written in collaboration with co-authors; 

therefore, I use the third person plural throughout the remainder of this document. In 

Chapter 2, I investigate the effects of imperfect detection on the probability of meeting 
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population thresholds for conservation decisions. I model uncertainty in detection, assess 

the probability of meeting a threshold, and discuss the implications of this uncertainty on 

setting and evaluating population thresholds for management and conservation. In 

Chapter 3, I assess the probability that spectacled eiders have met the quantitative 

recovery criteria for reclassification to delist from threatened under the Endangered 

Species Act (ESA, as amended 1973). I use Bayesian state-space models to partition 

observation and process error, estimate population size and trend for two breeding 

populations of spectacled eiders. Using the estimates of population size, trend, and 

process error, I calculate the probability of extinction and the expected loss associated 

with making the decision to maintain threatened status or to delist. In Chapter 4, I 

develop an integrated population model using abundance data, mark-recapture data, and 

productivity data for spectacled eiders. Using this modeling framework, I quantify the 

demographic responses to environmental factors during the breeding and wintering 

period, and estimated latent demographic rates, population size, and trend. I resolve 

structural uncertainty in the mechanisms governing population dynamics and ecological 

uncertainty in the role of environmental effects on demographic rates. In Chapter 5, I 

compare the estimates of population size, trend, and process error produced by the 

integrated population model and the state-space model to demonstrate the benefits of 

using an integrated model and statistical decision theory for species classification 

decisions. I address the effects of structural uncertainty (model parameterization) and 

ecological uncertainty in assessing threats and making species classification decisions. 
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Chapter 2: Evaluating the probability of meeting population management thresholds 

Abstract 

The recovery of many threatened and endangered species and management of harvested 

species are assessed using population size thresholds. When defined, managers work 

under the assumption that they will be able to determine if the population has met the 

threshold, given available data. Our approach takes a simple problem, where a population 

threshold has been set for a threatened species, to demonstrate how we can break the 

population size threshold into its component parts to determine the values of detection 

probability and level of certainty in those values necessary to determine if the threshold 

was met. We demonstrate this approach using spectacled eiders, a federally listed species, 

as a case study. Mean detection probability and precision had important consequences on 

the ability to determine if a population had met a designated threshold. Certainty in the 

distribution of detection probability had a significant influence on the probability that the 

population met the threshold. There was an increase in the probability that the threshold 

had been met when uncertainty in detection was greater, demonstrating that uncertainty 

in the measurement of detection could lead to improper conclusions about population 

status. In real-world applications, the sensitivity of a threshold to uncertainty should be 

evaluated to make conservation and management decisions using the best available data. 
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Introduction 

Effective conservation and management rely upon monitoring programs to detect changes 

in a system and employ appropriate actions. Classification of conservation status is often 

based on a threshold in metrics (e.g. population size or trend) that serve to trigger or 

inform a change in conservation status (Martin et al. 2009, Connors and Cooper 2014, 

Cook et al. 2016, de Bie et al. 2018). Determining conservation status is an influential 

process that may affect regulatory procedures with potentially significant consequences 

for managing agencies and species. Threatened and endangered species may be classified 

according to thresholds which once met may indicate recovery and trigger delisting 

actions or indicate a decline thus warranting further protection (i.e. reclassification from 

threatened to endangered) (U.S. Endangered Species Act (ESA 1973, as amended)) 

(Lindenmayer et al. 2013). Evaluating whether such thresholds are met is a critical 

component to management and conservation of these species. 

 Establishing thresholds to trigger management actions or changes in conservation 

status implicitly links population monitoring data to management decisions. Many 

monitoring programs are implemented to collect counts or indices of abundance over 

time in an effort to detect change and are often extrapolated to estimate population size 

(Nichols and Williams 2006). Valid inference from counts or abundance indices depends 

on invariable or homogenous detection probability or the assumption of a constant linear 

relationship between counts and abundance throughout a time series (Williams et al. 

2001). However, changes in the number of animals counted over time could be caused by 

observation errors such as detectability rather than actual abundance. Hence, indices of 
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abundance or raw counts may not be sufficient to determine if a population has reached 

the management threshold. 

One of the simplest approaches to estimate abundance from counts or indices and 

correct for detection probability is the use of the canonical population estimator 

(Williams et al. 2001). Population size is estimated as a function of the number of 

individuals counted on a survey of the population, and the probability of detecting an 

individual given that it is present in the population (Williams et al. 2001). The population 

estimator is typically described as N� = 𝐶𝐶 𝑝𝑝⁄ , where 𝑁𝑁� is the estimated population size, 𝐶𝐶 

is the number of individuals counted, and 𝑝𝑝 is the probability of detecting an individual 

(Williams et al. 2001). Accuracy and precision of abundance estimates and subsequent 

decisions are largely dependent on assumptions regarding detection probability and 

inclusive observation processes. Without accounting for detection processes, and 

uncertainty in them, using counts or abundance indices to make decisions regarding 

population size or trend may lead managers to make erroneous conclusions regarding 

population recovery or effects of management actions (White 2005).  

Globally, many endangered and harvested species are monitored using aerial 

surveys due to wide-ranging distributions across large and remote geographic areas 

(Lubow and Ransom 2016, USFWS 2016). Surveys flown in fixed wing planes are prone 

to low detection rates and typically only provide rough indices or raw counts over the 

sampled region (Buckland et al. 2008, Lubow and Ransom 2016, USFWS 2016). When 

lacking information on detectability, managers are required to make decisions regarding 

the population under the assumption that counts are directly related to abundance (White 

2005, Williams et al. 2001). If this assumption is not met, managers risk misclassifying 



 
17 

population status and implementing poor management actions (Williams et al. 2002, 

Buckland et al. 2008, Kellner and Swihart 2014). For species such as spectacled eiders 

(Somateria fischeri), evaluating the probability of meeting the population threshold has 

been problematic due to the difficulty in quantifying the probability of detection on 

surveys and subsequent ability to accurately estimate population size (Flint et al. 2016). 

Challenges associated with estimating detection include, but are not limited to; 

availability bias, observer error, and the logistical and financial constraints of methods 

required to explicitly estimate detection. Managers currently believe that the breeding 

population of spectacled eiders on the Yukon-Kuskokwim Delta (YKD), Alaska has 

increased and has met or is close to meeting the population recovery threshold. Here, we 

estimate the probability that the YKD breeding population of spectacled eiders met the 

population threshold for delisting detailed in the species recovery plan (USFWS 1996) 

using the canonical population estimator. 

 When using population metrics to inform conservation or management actions, it 

is important to consider the accuracy and precision of those estimates and their influence 

on the decision (Kéry and Schmidt 2008). Our objective was to assess the probability of 

meeting a population threshold objective given the relationship between abundance, 

counts, and detection. Further, we sought to examine the effect of uncertainty in detection 

probability on the probability of meeting a population threshold. Here, we identify the 

range of values for detection that indicate the population has met the threshold, and 

explore the effect of the expected value(s) of detection on estimates of abundance and 

thus the probability of meeting a threshold.  
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Methods 

Study species 

Spectacled eiders were listed as threatened under the Endangered Species Act in 

1993 following extreme population declines throughout their breeding and nesting range 

in Alaska (Ely et al. 1994, Taylor et al. 1996, Ryding et al. 2007) . There are two 

subpopulations of Alaskan breeding spectacled eiders, one population on the Yukon-

Kuskokwim Delta (YKD) and the other on the Arctic Coastal Plain (ACP), and a large 

breeding population in Arctic Russia (USFWS 1996, Flint et al. 2016). Both 

subpopulations of Alaskan breeding spectacled eiders have been monitored annually 

since the early 1990’s by aerial surveys (Flint et al. 2016, Platte and Stehn 2015). 

Recovery criteria for the two populations state that the lower 95% confidence interval on 

the population estimate is greater than or equal to 6,000 breeding pairs (12,000 breeding 

birds) and they must have an increasing trend over the last 10 years (USFWS, 1996). For 

simplicity, we focus on estimating abundance using the breeding bird index (number of 

breeding birds) generated from the 2016 aerial survey (𝐶𝐶 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(6336, 511), pers. 

comm. J. Fischer). Indices (𝐶𝐶) are the number of indicated breeding birds observed on 

line transects adjusted for unequal transect lengths and sampling area (Platte and Stehn, 

2015). Aerial survey methods follow standard protocol for Waterfowl Breeding and 

Population Habitat Survey (WBPHS) and count data is analyzed using a ratio estimator 

(Cochran 1977) to calculate mean density of observations for each species (Platte and 

Stehn 2015). Mean density is calculated by dividing the sum of the indicated total or 

observed total birds by the sum of the sampled transect area and the variance of the 
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density estimate was calculated based on the variability among sampling units within 

each stratum. Density was multiplied by stratum area to calculate the population index, 

and the indicated breeding bird number is the sum of the population indices and the sum 

of the variances over the strata (Platte and Stehn 2015). 

Model formulation 

The canonical population estimator relates the estimated abundance to a count and 

detection probability of individuals from the sampled population. The general approach 

began with estimating population size (𝑁𝑁�) using the canonical estimator, with the 2016 

index (𝐶𝐶) from aerial surveys on the YKD breeding grounds, and a series of different 

probability distributions on detection (𝑝𝑝) (Table 2-1)  

𝑁𝑁� =  
𝐶𝐶
𝑝𝑝

. 

We then use the principle of conditional probability which measures the probability of 

event A occurring given that event B has occurred 𝑃𝑃(𝐴𝐴|𝐵𝐵) =  𝑃𝑃(𝐴𝐴,𝐵𝐵) 𝑃𝑃(𝐵𝐵)⁄  where 𝑃𝑃(𝐵𝐵) 

≠ 0. We apply the concept of conditional probability to meeting a population threshold by 

examining the probability of abundance being greater than or equal to the threshold given 

the known number of observed breeding birds (𝐶𝐶) over a range of possible detection 

probabilities written as: 

𝑃𝑃�𝑁𝑁�  ≥ 12,000�𝐶𝐶,𝑝𝑝�. 

Next, we identified the values of detection probability that resulted in estimated 

population sizes greater than or equal to the population recovery threshold: 

𝑃𝑃(𝑝𝑝|𝐶𝐶,𝑁𝑁� ≥ 12,000). 
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To evaluate the probability of meeting the population threshold we used the 

following procedure: 

(1) Generate initial values (here, 𝑛𝑛 = 10,000) for parameter distributions (C, p) and set the 

threshold population size (𝑁𝑁∗ = 12,000). 

(2) Generate a distribution for detection probability and the count (or abundance index) 

using 𝑛𝑛 values. We used a uniform or beta distribution for detection probability and a 

Normal distribution for the abundance index (see Table 2-1). 

(3) Estimate population size using the canonical population estimator, 𝑁𝑁� =  𝐶𝐶
𝑝𝑝
 where 𝐶𝐶 is 

the abundance index distribution and 𝑝𝑝 is the distribution on detection probability. 

(4) Save the values of 𝑁𝑁� ≥  12,000 using logical indexing to preserve the position of 

each value from the distribution on abundance to locate the combined values of detection 

and count that resulted in abundance estimates above the threshold. 

(5) Estimate the probability of meeting the threshold by dividing the number of values of 

𝑁𝑁� ≥  12,000 by the number of initial values 𝑛𝑛. In this example, when the probability of 

meeting the threshold is > 95% the population has met the abundance criteria due to the 

equivalency between the 95% LCL and the 95% probability of exceeding the threshold 

(see Study Species). 

(6) Repeat steps 1-5 for additional scenarios. This framework was repeated for a total of 6 

alternative data scenarios (Table 2-1). The analysis was coded using MATLAB version 

8.4.0.15 (The Mathworks, Inc., Natick, Massachusetts, United States, code available from 

authors). 
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We initialized scenario YKD 1 using the 2016 index with a uniform distribution 

on detection probability to evaluate the relationship between the recent count, detection 

probability, uncertainty, and the probability of meeting the population threshold (Table 2-

1). We initialized six additional scenarios each with a different distribution on detection 

probability (Table 2-1). We generated beta distributions for scenarios YKD 2 through 

YKD 5 to reflect relatively low (𝜇𝜇 = 0.3) and high (𝜇𝜇 = 0.7) mean detection rates, with 

low (𝜎𝜎 = 0.05) and high (𝜎𝜎 = 0.2) error rates, to reflect the level of uncertainty in the 

possible distribution of values for detection probability. Scenarios YKD 6 and YKD 7 

utilize detection probabilities estimated as the inverse of the visibility correction factor 

(VCF) where 𝑃𝑃(𝑝𝑝)  =  1/𝑉𝑉𝑉𝑉𝑉𝑉 estimated for the aerial surveys on the YKD. For YKD 6, 

the traditional visibility correction factor is a general VCF developed in 1968 for all eider 

species on the YKD, calculated as the ratio of ground-observed nest counts to aerially-

observed pair counts (VCF = 3.58; Lensink 1968). Scenario YKD 7 used the VCF 

developed specifically for spectacled eiders, following the addition of extensive ground-

based surveys in 1985 (VCF = 2.35; Stehn and Platte 2015). These VCF’s do not account 

for uncertainty but are considered a useful metric for correcting counts from aerial 

surveys. 

Results 

We found that conditional probability distributions on detection indicated that mean 

detection probability must be below 0.6 for the recent count to result in a population 

estimate that had met the specified threshold (Figure 2-1, Table 2-1). Under data 

scenarios YKD 4, YKD 5, YKD 6, and YKD 7, the results indicated that the population 

was likely to have met the population threshold (Table 2-1). Mean detection probability 
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and certainty in the distribution of values had important consequences on the probability 

that the population met the designated threshold. As expected, as mean detection 

probability increased the probability that the threshold was met increased (Figure 2-1). 

Further, the certainty in the distribution of detection probabilities had a significant 

influence on the confidence that the population reached the threshold (Table 2-1). For 

instance, under scenario YKD 5, there was a 0.85 probability that the population met the 

threshold given the count and the scenario with low detection probability and high 

uncertainty, whereas YKD 4 with the same count results in a 0.99 probability of having 

met the criteria when error was low (Table 2-1). Additionally, when detection probability 

was increased, certainty that the population did not meet the threshold increased when 

certainty was high and error rates were low (P(𝑁𝑁� ≥  12,000) = 0.0056). Alternatively, 

there was an increase in the probability that the threshold had been met when there was 

more uncertainty in the distribution of detection probability (P(𝑁𝑁� ≥  12,000) = 0.21) 

(Table 2-1). In this case, the increase in the probability of meeting the threshold under the 

high detection - high uncertainty scenario demonstrated that the uncertainty in the 

measurement in detection could have led to false conclusions about population state 

(Table 2-1).  

Discussion 

Our results establish that when there is a population target, and we have an 

observed count, we can use the canonical population estimator and conditional 

probability to determine the detection probabilities necessary to meet the threshold. 

Furthermore, we can reduce uncertainty in meeting the threshold when the distribution on 

detection is more certain. Our approach demonstrates that we can break a population 
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threshold into its component parts to determine the values of detection probability and 

level of certainty necessary to accurately evaluate the probability of meeting the 

threshold.  

The certainty in the distribution of detection probabilities had important 

consequences on the ability to determine if a population had met a designated population 

threshold. When mean detection probability was low, abundance estimates were inflated 

indicating a higher probability that the threshold was met. Additionally, certainty in the 

distribution of detection probabilities influenced the probability that the population had 

met the threshold. Increasing uncertainty in detection increased the probability of meeting 

the threshold when compared to estimates from high certainty (low error) scenarios 

(Table 2-1). The increase in the probability of meeting the threshold under high 

uncertainty scenarios demonstrates that uncertainty in the measurement of detection 

could lead to false inference about the population. The sensitivity of a decision threshold 

to uncertainty in observation processes should be considered in real-world applications. 

The certainty or confidence in the estimates of all variables, including the 

probability of meeting the criteria should be a priority when setting population 

management thresholds. For instance, how certain do we need to be that a population met 

the designated threshold? Consider the results from YKD4 and YKD5, the probability 

that the population threshold was met for YKD4 was 0.9999 and 0.8521 for YKD5 

(Table 2-1). Under scenario YKD4, Spectacled eiders would meet the abundance 

threshold; however, they would not meet the threshold under scenario YKD5. When 

expected value of outcomes is poorly defined, managers may be willing to establish an 

arbitrary level of confidence in meeting an established threshold.  Some may be willing 
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to accept the 85.21% certainty in meeting the threshold; while others might believe that 

even 99.99% certainty in meeting the threshold is inadequate, (i.e. managers may be risk-

averse and choose not to accept this probability). In either case, we argue that the 

certainty or risk preference in estimating the probability of meeting a population 

threshold is just as important as setting the population threshold criteria for designating 

population recovery. Both clarity in the certainty of the estimate of abundance and the 

certainty of a population meeting a threshold is critical to management and conservation 

decisions.   

 Currently, projects are underway to provide robust estimates of detection 

probability for spectacled eiders from aerial surveys on both the Yukon-Kuskokwim 

Delta and Arctic Coastal Plain breeding grounds. Both breeding populations may be near 

the designated recovery criteria. However, without estimates of detection probability it is 

not possible to evaluate the probability that either population has met the recovery 

threshold. Our results indicate that when mean detection is low and certainty is high we 

have greater certainty that the population has met the threshold. Given models YKD 6 

and YKD 7, which use the inverse of visibility correction factors previously used to 

estimate abundance in the area, the results indicate the population has met, or is very 

close to meeting the population threshold (Table 2-1). However, the estimated VCF’s do 

not account for spatial or temporal variation, and spectacled eiders nest in varying 

densities throughout the surveyed area and observations may be affected by observer 

effects and environmental conditions (Ely et al. 1994, Flint et al. 2016). Spatial or 

temporal variation in detection probability can result in detecting spurious trends in 
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abundance (Kéry and Schmidt 2008). Without accounting for such variability in detection 

managers risk misclassification of population state and thus conservation status. 

 Effective conservation of threatened and endangered species and management of 

harvested species is ultimately rooted in decision theory, which depends heavily on 

statistical inference from estimated abundance, trend, and/or viability. Our approach can 

quickly illustrate when current monitoring efforts may be insufficient for a species, and 

when alterations to surveys may be required to gain important information. More formal 

and specialized methods exist to the same end, such as expected value of perfect 

information (EVPI) (Runge et al. 2011, Williams et al. 2011), but the expertise is not 

always easily accessible. Developing studies to estimate detection rates and the 

heterogeneity therein are costly and difficult to implement but using conditional 

probabilities is intuitive and easy to apply. Many threatened and endangered species are 

characteristically difficult to detect making the estimation of abundance difficult 

(Thompson 2004). Proper planning should include acceptable levels of precision in 

surveys and subsequent estimates for conservation needs (Lubow and Ransom 2016). 

Exploring the effects of uncertainties and evaluating decision thresholds should be 

conducted prior to analyzing available data or implementing new monitoring protocols. 

Furthermore, promoting more certain estimates of detection probability through informed 

sampling design will increase precision of abundance and trend estimates, supporting 

decision-making. We believe our approach serves to assess and inform survey design to 

meet measurable targets for certainty in the probability of detection. Finally, we stress the 

importance of accounting for the uncertainty in observation processes for population 

management decisions.  
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Table 2-1. Probability distributions used to initiate models to estimate 
detection probabilities necessary to meet population threshold (12,000 
birds) and estimate the probability that the count (C ~ N (6336, 511), index 
of breeding birds) could indicate that the population threshold has been met, 
designated in the recovery plan for spectacled eiders (Somateria fischeri). 
 
 
Model 

Detection probability  
Probability of meeting 

threshold 
𝜇𝜇 𝜎𝜎 Distribution 

YKD 1 0.5 0.289 Uniform (0-1) 0.5247 
YKD 2 0.70 0.05 Beta (58.1, 24.9) 0.0056 
YKD 3 0.70 0.20 Beta (2.975, 1.275) 0.2100 
YKD 4 0.30 0.05 Beta (24.9, 58.1) 0.9999* 
YKD 5 0.30 0.20 Beta (1.275, 2.975) 0.8521 
YKD 6 0.2793a -- -- 1.0* 
YKD 7 0.4255b -- -- 0.9921* 
a Inverse of the traditional visibility correction factor (1/VCF) developed in 
1968 for all eider species on the YKD (Lensink, 1968). 
b Inverse of the Spectacled eider specific visibility correction factor 
estimated following extensive ground based surveys in addition to aerial 
surveys on the YKD (Stehn  Platte, 2015). 
* Scenario met the population threshold. 
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Figures 

 

Figure 2-1. The relationship between the probability of detection and the probability of 
meeting the 12,000-bird threshold necessary to meet the population recovery criteria for 
spectacled eiders (Somateria fischeri), conditional on the most recent aerial survey count 
from the Yukon Kuskokwim Delta. The probability of meeting the population threshold 
decreases rapidly after a 40% detection rate and the probability of meeting the threshold 
is zero at roughly 70% detection, given the most recent count.  
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Chapter 3: Assessing recovery of spectacled eiders using a Bayesian decision analysis 

Abstract 

Recent surveys indicate threatened spectacled eider populations are increasing in Alaska, 

prompting the USFWS to reconsider federal listing status. There are two breeding 

populations, one in western Alaska on the Yukon-Kuskokwim Delta (YKD) and one in 

northern Alaska on the Arctic Coastal Plain (ACP). Criteria for delisting include the 

minimum estimated breeding population size is ≥ 6,000 breeding pairs (or 12,000 

breeding birds) designated by the 95% lower credible interval, and based on a Bayesian 

decision analysis, the overprotection loss exceeds the underprotection loss based on at 

least 10 years of data. For spectacled eiders, loss is the cost of making classification 

errors measured as the probability of the population declining to the designated quasi-

extinction level of 250 breeding birds (125 breeding pairs) for a range of values of 

population growth and estimated population size. Here, we estimate abundance and 

population growth rate using a Bayesian state-space model for the two Alaskan breeding 

populations of spectacled eiders. Further, we quantify the expected loss and risk of 

committing a classification error using a Bayesian decision analysis. Loss functions for 

the decision analysis are calculated given the posterior estimates of population growth 

𝑟𝑟 and abundance in the final year 𝑁𝑁2016 converting these metrics into a measure of risk 

according to probability of extinction. We generated the loss function by projecting the 
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population over 50 years for a range of population growth rates. Our results indicate that 

the YKD breeding population has met recovery criteria but the ACP population has not. 

We are 1.16 times more likely to be committing an overprotective error for the YKD 

population. Higher underprotection loss than overprotection loss indicates the ACP 

population is at risk of falling below the quasi-extinction value of 125 breeding pairs in 

the next 50 years. Decision-makers are tasked with trying to choose the best action to 

take for conservation or management despite these uncertainties. The methods employed 

here provide an example of accounting for these uncertainties in such a way that the 

decision-makers may understand the probability of committing a classification error. 

Incorporating the abundance threshold and decision analysis in the reclassification 

criteria greatly increases the transparency and defensibility of the classification decision. 

Introduction 

The goal of the Endangered Species Act (ESA 1973, as amended) is to protect 

and recover imperiled species and the ecosystems upon which they depend so federal 

protection is not necessary for survival. Recovery plans for species listed under the ESA 

are developed to provide guidance regarding management actions and must include 

objective, measurable criteria to indicate species reclassification is warranted. For many 

species, the measurable criteria for reclassification is based on abundance, trend, and 

extinction risk deemed appropriate by the species recovery team. Distinguishing when 

these criteria are met is inherent in the concept of setting measurable criteria and has 

significant implications for listed species and agencies tasked with their protection (U.S. 

Fish and Wildlife Services [USFWS] and/or National Marine Fisheries Service [NMFS]).  
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Recent surveys indicate spectacled eiders (Somateria fischeri) listed as threatened 

under the ESA (USFWS 1993) have been increasing on one of their primary breeding 

grounds in Alaska, prompting the USFWS to consider population status relative to 

recovery criteria. Following the drastic decline and subsequent listing of spectacled eiders 

in 1993 (USFWS 1993), programs monitoring abundance (Stehn et al. 1993, Ely et al. 

1994, Fischer et al. 2018, Wilson et al. in prep) and demography (Flint et al. 1999, Flint 

et al. 2006, Flint et al. 2016, Grand and Flint 1999) were employed on Alaskan breeding 

grounds. The global population of spectacled eiders includes three distinct breeding 

populations in Arctic Russia, northern Alaska along the Arctic Coastal Plain (ACP), and 

western Alaska on the Yukon-Kuskokwim Delta (YKD) (Dau and Kistchinski 1977). The 

species will be considered for delisting when each of the three breeding populations 

meets one of the following criteria: 1) the minimum estimated breeding population size is 

≥ 6,000 breeding pairs (or 12,000 breeding birds) designated by the 95% lower credible 

interval, and based on a Bayesian decision analysis, the overprotection loss exceeds the 

underprotection loss based on at least 10 years of data; 2) the minimum population size is 

≥ 10,000 breeding pairs over ≥ 3 surveys; or, 3) the minimum estimate of abundance 

exceeds 25,000 breeding pairs in any survey (see Criteria for delisting from threatened 

status pp. 36-38 in USFWS 1996). The Russia breeding population has likely exceeded 

the third abundance criterion based on limited aerial surveys of the breeding and the 

wintering areas (Hodges and Eldridge 2001, Larned et al. 2012). Recent nest surveys 

indicate that the YKD breeding population has significantly increased since listing and 

may be close to meeting the first set of delisting criteria (USFWS 1996, Fischer et al. 

2018, Lewis et al. 2019). Furthermore, studies to estimate detection were employed on 
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both the YKD and ACP breeding grounds. Prior to these detection studies, researchers 

were unable to estimate breeding population size, which is a critical component to both 

the abundance threshold criterion and the decision analysis. Here, we assess the 

probability of both Alaskan breeding populations (YKD and ACP) meeting the first 

reclassification criterion. 

Species classification decisions are liable to two possible errors: 1) failing to 

classify a species as threatened or endangered that should be classified (underprotection), 

or 2) classifying a species as threatened or endangered when it is not warranted 

(overprotection) (Taylor et al. 1996). Statistical decision theory provides a framework for 

linking statistical inference on population metrics to the risk of making a classification 

error (Taylor et al. 1996, Regan et al. 2013, Williams and Hooten 2016). The link 

between statistical inference and decision making occurs through the specification of a 

loss function that expresses the cost associated with the decision and the true state of 

nature (Berger 1985, Williams and Hooten 2016). For spectacled eiders loss is the cost of 

making classification errors measured in terms of the probability of the population 

declining to the designated quasi-extinction level of 250 breeding birds (125 breeding 

pairs) for a range of values of population growth (𝑟𝑟) and estimated population size (𝑁𝑁�) 

(USFWS 1996). In the scope of this analysis, the spectacled eider classification problem 

consists of three action alternatives; 1) to delist the species, 2) maintain current 

(threatened) status, or 3) reclassify as endangered. However, we only consider 

alternatives one and two because recent surveys indicated the population size was close 

to the population threshold and the population size had increased over time.  
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Here, our specific objectives were to estimate the probability that Alaskan 

breeding populations met recovery classification thresholds by estimating abundance and 

population growth rate and quantify the risk of committing a classification error using a 

Bayesian decision analysis. First, we use Bayesian state-space models to estimate 

abundance and population growth rate for both populations. We estimate the probability 

of meeting the abundance threshold as the proportion of the posterior where 𝑁𝑁2016 ≥

 6,000 breeding pairs (or 12,000 breeding birds). Finally, we integrate abundance and 

growth rate with the loss functions to estimate over/underprotection loss (classification 

error). The results serve to inform classification decisions regarding spectacled eider 

populations with significant implications for the species and the Bureau of Land 

Management (BLM) and USFWS that expend considerable resources on their 

stewardship. 

Methods 

Survey Methods 

Aerial surveys have been flown annually since the early 1990’s to monitor both 

subpopulations of Alaskan spectacled eiders (Wilson et al. in prep, Amundson et al. in 

prep, Fischer et al. 2018). Here, we describe the specific details of the respective surveys 

and subsequent data collection. 

Arctic Coastal Plain 

U.S. Fish and Wildlife Service Division of Migratory Bird Management conduct 

annual aerial surveys sampling nearly 60,000 km2 in the ACP to monitor the distribution, 

abundance, and trend of bird species. Original ACP surveys were flown 1986 – 2006, 

monitoring many avian species in the area. Following the listing of spectacled eiders in 
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1992, the North Slope Eider (NSE) survey was established and flown through 2006. In 

2007, the ACP and NSE surveys were merged to form a redesigned ACP survey which 

has been flown from 2007 to the present (Wilson et al. in prep, Amundson et al. in prep). 

Here, we will focus on aerial survey data collected using the redesigned ACP survey 

(2007 to 2016).  In 2015 and 2016, USFWS implemented double-observer techniques to 

estimate aerial detection probabilities of spectacled eiders breeding on the ACP (for 

details, see Wilson et al. in prep). Applying the estimated detection probabilities, Wilson 

et al. calculated detection-adjusted estimates of population size of indicated breeding 

pairs and variance. These estimates were used as data in our model and represent the best 

available data to date (Table 1).  

Yukon-Kuskokwim Delta 

Aerial surveys of spectacled eiders have been conducted over 12, 832 km of YKD 

tundra wetland habitat annually since 1988 (Fischer et al. 2018). Eider density varies 

widely across the YKD with low densities throughout a majority of the region. Lewis et 

al. (2019) identified three density-specific strata; low-density (0-1.60 nest/km), medium-

density (1.60-3.50 nests/km), and high-density (>3.50 nests/km). Ground based surveys 

have been conducted annually on the YKD since 1985 to estimate the numbers of nests 

for geese and eiders. This survey samples randomly selected plots within the core nesting 

area of spectacled eiders in the central coast zone encompassing 716 km2 (Fischer et al. 

2018). Estimates of nests and aerial observations among low, medium, and high-density 

stratum on the YKD were used to calculate density-specific aerial visibility correction 

factors (VCF) to account for incomplete detection on aerial surveys. Lewis et al. (2019) 

converted the aerial indices of spectacled eider abundance to annual estimates of breeding 
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numbers using the average density-specific visibility correction factors. The estimates 

generated from 2002-2016 were provided as observation data and error in our analysis 

and are the best available estimates to date. 

State-space models 

Our goal was to estimate mean population growth rate, 𝑟̅𝑟, and process error or 

temporal variation in population growth rate 𝜎𝜎𝑟𝑟 from detection adjusted abundance 

estimates from aerial surveys of spectacled eiders on the YKD and ACP. We utilized a 

Bayesian state-space model to partition population dynamics into two components, the 

hidden state process and the observation model, and fit the process model to the time 

series of observations. State-space models simultaneously account for both process error 

and observation error caused by partial observability. Our state-space model describes 

population growth mathematically as 

log(𝑁𝑁𝑡𝑡+1) = log(𝑁𝑁𝑡𝑡) + 𝑟𝑟𝑡𝑡 (1)  

where 𝑁𝑁𝑡𝑡 is the number of breeding birds (YKD) or breeding pairs (ACP) in year 𝑡𝑡, 𝑟𝑟𝑡𝑡 is 

population growth rate and 

𝑟𝑟𝑡𝑡 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑟̅𝑟,𝜎𝜎𝑟𝑟). (2) 

 Prior distributions for initial abundance were the mean detection adjusted 

estimates for 2007 (Table 1) where for the ACP log(𝑁𝑁2007) ~ 𝑁𝑁(log(3,698) , 0.1) and 

for the YKD log(𝑁𝑁2007) ~ 𝑁𝑁(log(12,457) , 0.1) (Lewis et al. 2019, Wilson et al. in 

prep). Based on expert opinion, it is unlikely that spectacled eiders could exhibit more 

than 10% process related variation within a given year. Thus, for both models mean 

population growth was normally distribution around 0 with 10% variation, 𝑟̅𝑟 ~ 𝑁𝑁(0, 0.1), 
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and the variance of mean growth 𝜎𝜎𝑟𝑟~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎, 𝑠𝑠) was kept low, with shape parameter, 

𝑎𝑎 = 3, and the scale parameter 𝑠𝑠 = 0.2.  

The observation model relates the true population size 𝑁𝑁𝑡𝑡 to the observations 

corresponding to the detection adjusted abundance indices for each breeding ground. 

Thus, our observation process was 

𝑦𝑦𝑡𝑡�  ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�𝑁𝑁𝑡𝑡 ,𝜎𝜎�𝑦𝑦𝑡𝑡�� (3) 

where the observations, 𝑦𝑦𝑡𝑡� , were the detection adjusted abundance indices of spectacled 

eiders from the aerial surveys on the respective breeding grounds (i.e., ACP and YKD) 

(Lewis et al. 2019, Wilson et al. in prep) (Figure 1, Table 1). Annual observation error 

from aerial survey sampling (𝜎𝜎�𝑦𝑦𝑡𝑡�) were provided as data (see similar approach in Rotella 

et al. 2009 and Koons et al. 2017) (Table 1). 

 In 2011, aerial surveys were not flown on the YKD and therefore there is no 

observation for that year. We estimated observation error for 2011 using a zero-intercept 

linear regression model where 𝜎𝜎�𝑥𝑥𝑡𝑡 is the predicted observation error as a function of 

estimated population size 𝑁𝑁𝑡𝑡 and 𝛽𝛽~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,30) 

𝜎𝜎�𝑥𝑥𝑡𝑡 =  𝛽𝛽 ∗ 𝑁𝑁𝑡𝑡 (4) 

𝜎𝜎�𝑧𝑧𝑡𝑡~𝑁𝑁(𝜎𝜎�𝑥𝑥𝑡𝑡 ,𝜎𝜎) (5) 

and where 𝜎𝜎�𝑧𝑧𝑡𝑡 is the estimated observation error in year 𝑡𝑡 and is normally distributed 

about 𝜎𝜎�𝑥𝑥𝑡𝑡 with a standard deviation 𝜎𝜎 ~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎, 𝑠𝑠) where the shape parameter, 𝑎𝑎 = 2, 

and the scale parameter 𝑠𝑠 = 100. The recovery team expressed interest in understanding 

the effects of differing model structures (i.e. prior distributions, use of linear regression) 
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on the decision analysis. To address these concerns we formulated three alternative state-

space models and using the outputs from each we calculated the misclassification errors. 

Details are outlined in the Supporting Information. 

We fit the state-space models in a Bayesian framework implementing Markov 

chain Monte Carlo methods (MCMC, Gelfand and Smith 1990) to sample the posterior 

distributions in JAGS 3.3.0 (Plummer 2012), using the jagsUI package in R (Kellner 

2015). We ran three MCMC chains for 100,000 iterations, set thin to 2, discarded 70,000 

as burn-in, and ran 5,000 iterations in the JAGs adaptive phase. We checked convergence 

using the Gelman-Rubin statistic (Gelman and Rubin 1992) and all results were 

satisfactory (all 𝑅𝑅� <1.01). 

Decision Analysis 

Loss functions are calculated given the posterior estimates of population growth 

𝑟𝑟 ~ 𝑁𝑁(𝑟̅𝑟,𝜎𝜎�𝑟𝑟) and abundance in the final year 𝑁𝑁2016 converting these metrics into a 

measure of risk according to probability of extinction (Table 2). The cost of making 

decision errors is measured in terms of the probability of decreasing to under 250 adults 

(125 breeding pairs) in 50 years (USFWS 1996). The recovery team specified that this 

abundance would leave only one management option; to capture the birds and breed them 

in captivity. It was therefore set as the quasi-extinction threshold for measuring risk as a 

function of extinction probability and management options. The recovery team chose a 

symmetrical loss function, which penalizes overprotection and underprotection equally 

(Figure 2) (Taylor et al. 1996, USFWS 1996). The loss functions follow a sigmoid curve. 

There is an increasing penalty for progressively larger differences between the decision 
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and true state of nature until the probability of quasi-extinction reaches 0 or 1 indicating 

equivalent loss for more extreme values (Figure 2).  

The basic elements in statistical decision analyses include, 𝜃𝜃 the state of nature 

which affects the decision process and Θ is all possible states of nature (Berger 1985, 

Williams and Hooten 2016). The decisions or actions are denoted by 𝑎𝑎, and all possible 

actions considered may be denoted 𝒜𝒜. The loss function, 𝐿𝐿(𝜃𝜃,𝑎𝑎) describes the loss 

associated with taking action (𝑎𝑎) and 𝜃𝜃 is the state of nature and the function is defined 

for (𝜃𝜃,𝑎𝑎) ∈ Θ ∗  𝒜𝒜.  Following Berger (1985) and Williams and Hooten (2016), the 

general notation for Bayesian expected loss is: 

𝑃𝑃(𝑎𝑎) = 𝐸𝐸𝜃𝜃|𝑦𝑦𝐿𝐿(𝜃𝜃,𝑎𝑎) = �𝐿𝐿(𝜃𝜃,𝑎𝑎)[𝜃𝜃|𝑦𝑦]
Θ

𝑑𝑑𝑑𝑑 . (6) 

In this analysis, the unknown state of nature, 𝜃𝜃, is the unknown probability of quasi-

extinction within 50 years and is a function of abundance (𝑁𝑁2016), population growth rate 

(𝑟𝑟), and process error (𝜎𝜎𝑟𝑟). The action or decision (𝑎𝑎) refers to species classification 

errors. If the population is stable or increasing (𝑟𝑟 ≥ 0), classifying the species as 

threatened would not be warranted and thus results in overprotection. If the population is 

decreasing(𝑟𝑟 < 0), not classifying the species as threatened when it is warranted results 

in underprotection.  

We generated the loss function by projecting the population over 50 years for a 

range of population growth rates denoted 𝑟𝑟𝑟𝑟. The range of 𝑟𝑟𝑟𝑟  was set from -0.4 to 0.4 

because the posterior distributions on 𝑟𝑟 produced from the state-space model fell within 

these limits. First, initial abundance is chosen from the distribution of 𝑁𝑁2016 (see Table 2 
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for values); (2) process variance 𝑠𝑠𝑟𝑟 is selected from the posterior distribution generated in 

the state-space model; (3) 𝑟𝑟′ is pulled from 𝑁𝑁(𝑟𝑟𝑟𝑟, 𝑠𝑠𝑟𝑟) for each year; (4) project population 

until 𝑁𝑁 < 250 breeding birds (125 breeding pairs); and (5) steps 1-4 are repeated 10,000 

times for each value of 𝑟𝑟, and the year abundance falls below the quasi-extinction 

threshold is saved. The first loss function assesses the probability of falling below the 

quasi-extinction level (underprotection) for values when  −0.4 ≤ 𝑟𝑟𝑟𝑟 < 0. The secondary 

loss function for values of 0 ≤ 𝑟𝑟𝑟𝑟 ≤ 0.4 is simply the mirror image of the first loss 

function because they are symmetrical. The interpretation of the secondary loss function 

is the probability of not falling below the quasi-extinction level and corresponds to 

overprotection. Finally, to calculate loss for each error type, we multiply the posterior 

distribution of mean population growth rate generated from the state-space model by each 

loss function. The expected loss for each error type is a single value generated after 

integrating out all possible values of 𝑟𝑟. 

Results 

 We found differing results in the ACP and YKD populations based on posterior 

estimates of abundance, population growth rates, and over/underprotection losses (Table 

2). Estimated mean abundance for the ACP population in 2016 was 3,557 breeding pairs 

(95% CRI 2,630 to 4,476 (Figure 1). Based on estimated abundance in year 2016, the 

ACP population has nearly zero probability (P = 0.000007) of meeting the abundance 

threshold (95% LCRI = 𝑁𝑁� ≥ 6,000 breeding pairs). The 10-year mean growth rate for 

the ACP population was negative 𝑟̅𝑟 = -0.005 but variable, evident by the wide credible 

intervals (95% CRI -0.125 to 0.115) (Figure 2). Furthermore, underprotection loss for the 

ACP population was greater than overprotection loss (Table 2). Alternatively, estimated 
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mean abundance for the YKD population in 2016 was 14,541 breeding birds (95% CRI 

12,840 to 16,114). The 95% LCRI of abundance in 2016 was above 12,000 breeding 

birds indicating the YKD breeding population had met the abundance threshold criterion. 

Additionally, the overprotection loss exceeded the underprotection loss for the YKD 

breeding population (Table 2). Mean population growth for the YKD population was 𝑟̅𝑟 = 

0.003 but highly variable with wide credible intervals (95% CRI -0.145 to 0.153) (Figure 

2).  

Discussion 

Results differed between the two breeding populations; the YKD breeding 

population met both recovery criteria, however, the ACP breeding population did not 

meet either. Unsurprisingly, the ACP breeding population was not close to meeting either 

of the reclassification criteria. Spectacled eiders nest in relatively low numbers across the 

ACP and the population growth rate combined with low abundance results in a 

population at greater risk of declining than increasing. Higher underprotection loss than 

overprotection loss indicates the ACP population is at risk of falling below the quasi-

extinction value of 125 breeding pairs in the next 50 years and maintaining threatened 

status would be the optimal decision (Table 2). However, for the YKD population, 

overprotection loss exceeds underprotection loss and the 95% LCRI of abundance in 

2016 is above abundance threshold criterion indicating the population has met both 

recovery criteria for delisting (Table 2).  

Mean population growth over the time series is near zero for both breeding 

populations (Table 2). Thus, over and underprotection losses are similar because there is 

near equivalent overlap of the posterior distribution for negative and positive values of 
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population growth (Table 2, Figure 2). These results highlight a unique feature of 

symmetrical loss functions which makes overprotection and underprotection errors 

inversely related. The higher the probability of committing an overprotective error, the 

lower the probability of committing an underprotective error and vice versa (Taylor et al. 

1996). For example, we would expect greater certainty in the classification decision as 

the overprotection loss nears 1 and underprotection loss nears 0. For this decision 

problem, the similar loss values indicate there is considerable uncertainty in the 

probability of reaching quasi-extinction given abundance, process error, and population 

growth rate estimates. Although this introduces additional uncertainty in the decision 

space it also provides the decision makers with a probabilistic result of committing a 

classification error.  

A considerable portion of variation in the YKD mean population growth rate can 

likely be attributed to the low abundance estimate in 2015 (Table 1, Figure 1). The 

perceived decline in abundance is potentially related to the observation processes that 

generated the detection adjusted abundance estimates. Lewis et al. (2019) used density-

specific visibility correction factors (VCF) averaged from surveys conducted from 1993 

to 2014, during which time the same observer conducted the aerial survey each year. 

Beginning in 2015, a new observer was assigned to conduct the aerial surveys and with 

significantly lower detection counted very few spectacled eiders (Lewis et al. 2019). The 

resulting abundance estimate is certainly biased low because estimates from the YKD 

nest plot survey indicated there were greater than 7,000 nests in 2015 (Fischer et al. 2017, 

pg. 26 of report). Furthermore, because the VCF applied was constant and applied to all 

years, the posterior on process variance is likely biased high. In the Bayesian context, a 
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model could be fit with observer and year specific priors on detection estimating these 

parameters. However, this would lead to greater uncertainty in estimates of population 

growth rate, process error, and expected loss.  

This analysis represents a significant improvement in accounting for observation 

processes when estimating abundance and growth rate. Prior to the extensive detection 

studies conducted on the ACP and YKD, population assessment was hindered due to lack 

of robust data on observation processes. Without such data, assessing the probability of 

meeting the abundance threshold would require strong assumptions regarding detection. 

Unadjusted aerial indices for both populations are biased low and would indicate that 

neither population met the abundance criterion (Table S1). Alternatively, a common 

practice amongst large scale aerial surveys conducted in remote regions (see Waterfowl 

Breeding Population and Habitat Survey of North America (BPOP)) is to estimate VCFs 

based on a single study over limited spatial extent. In such cases, the VCF produced does 

not account for factors affecting detectability such as habitat, density, survey timing, or 

inter-annual variability (Lewis et al. 2019). On the YKD, an eider-specific (Somateria 

and Polysticta spp.) VCF was developed in 1968 where VCF = 3.58 (detection rate = 

1/VCF) indicating detection probability of eiders on aerial surveys was low (<30%) 

(Lensink 1968). In 2006 following extensive annual ground surveys of spectacled eider 

nests beginning in 1985 a new VCF was developed where VCF = 2.35 indicating 

detection was higher at nearly 43% (Platte and Stehn 2015). In previous work, Dunham 

and Grand (in review) demonstrated that applying either of these VCFs to adjust aerial 

indices results in overinflated estimates of abundance (see also, Table 5 in Lewis et al. 

2019) thereby inaccurately increasing the probability of having met the abundance 
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criterion. Furthermore, without explicitly accounting for nesting density, spatial 

distribution, or inter-annual variability we risk inappropriately increasing certainty in the 

abundance estimate. If aerial indices were adjusted using either of the deterministic VCFs 

the results would provide decision makers with misleading information with potentially 

significant consequences for the species and the USFWS (Dunham and Grand in review). 

Conservation and management decisions are commonly based on abundance 

thresholds (Nichols et al. 2007, North American Waterfowl Management Plan 2014, 

Boyd et al. 2017, USFWS 2017) and making inference about abundance can be 

challenging due to multiple pervasive sources of uncertainty stemming from observation 

and process errors (Williams et al. 2001, Nichols and Williams 2006). Decision-makers 

are tasked with trying to choose the best action to take for conservation or management 

despite these uncertainties. The methods employed here provide an example of 

accounting for these uncertainties in such a way that the decision-makers may understand 

the probability of committing a classification error. Using Bayesian state-space models 

we explicitly account for both observation and process error while incorporating prior 

knowledge of the system (King et al. 2009, Newman et al. 2014). However, such 

statistical inference alone does not directly provide guidance for decisions. Integrating 

statistical analyses with decision-theory explicitly links statistical inference to the 

decision problem creating a rigorous analysis to support decision-making. The combined 

strengths in these approaches provide a robust framework for formally linking ecological 

inference to conservation and management decisions under considerable uncertainty 

(Taylor et al. 1996, Nichols et al. 2007, Regan et al. 2013, Williams and Hooten 2016). 

Incorporating both the abundance threshold and decision analysis in the reclassification 
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criteria greatly increases the transparency and defensibility of the classification decision 

for threatened spectacled eiders. Finally, we believe this analysis adds to the growing 

support for decision-theoretic approaches in applied ecology and conservation 

(Thompson et al. 2018). 
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Tables  

 

  

Table 3-1. Detection adjusted abundance estimates for both Alaskan breeding 
populations of spectacled eiders (Somateria fischeri) from 2007 to 2016. Estimates 
were provided as observed data (y) in the observation process model. 
 

 YKDa 

Number of breeding birds 
ACPb 

Number of breeding pairs 
Year 𝑦𝑦𝑡𝑡�  𝜎𝜎𝑦𝑦𝑡𝑡� 95% Confidence 

intervals 
𝑦𝑦𝑡𝑡�  𝜎𝜎𝑦𝑦𝑡𝑡� 95% Confidence 

intervals 
2007 12,457 1,408 9,698 – 15,216 3,698 574 2,669 – 4,927 
2008 14,599 1,470 11,718 – 17,480 4,424 564 3,399 – 5,621 
2009 15,586 1,463 12,718 – 18,454 3,837 583 2,777 – 5,071 
2010 13,698 1,273 11,202 – 16,193 4,473 630 3,329 – 5,808 
2011 NA 1,409c NA 5,787 692 4,551 – 7,273 
2012 14,894 1,375 12,198 – 17,590 3,383 414 2,636 – 4,267 
2013 16,171 1,460 13,309 – 19,033 5,565 674 4,349 – 7,000 
2014 13,386 1,360 10,719 – 16,052 4,905 745 3,563 – 6,492 
2015 5,618 627 4,388 – 6,847 3,828 536 2,869 – 4,976 
2016 15,118d 1,472d 12,233 – 18,003 3,411 546 2,412 – 4,550 
a Analysis and data reported for 2007 to 2015 in Lewis et al. 2019 (see Tables 5 and 6 
for data). 
b Analysis and data reported in Wilson et al. in press (refer to Table 4). 
c Mean estimated observation error (𝜎𝜎�𝑧𝑧2011) from linear regression model (see Methods 
eqns. 4 & 5) 
d Data reported for 2016 in Swaim 2017 unpublished report following methods in 
Lewis et al. 2019.  
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Table 3-2.  Posterior estimates of population metrics and 
loss for both Alaskan breeding populations of spectacled 
eiders (Somateria fischeri). Consideration for reclassification 
from threatened to recovered requires that both populations 
must reach or exceed the abundance threshold, and 
overprotection loss must be greater than underprotection 
loss.  
  ACPa YKDb 

Abundance    
Mean  3,557 14,541 

SE  471 808 
95% CRI  2,630-4,476 12,840-16,114 

Population growth ‘r’    
Mean  -0.005 0.003 

SE  0.059 0.075 
95% CRI  -0.125, 0.115 -0.145, 0.153 

Underprotection  0.190 0.253 
Overprotection  0.169 0.283 
P(N2016 ≥ threshold)  0.000007%a 99.80% 
Process error  0.218 0.351 
a ACP metrics refer to the Arctic Coastal Plain breeding 
population. 
b YKD metrics refer to the Yukon-Kuskokwim Delta 
breeding population. 

Result of 1 value in posterior of N2016 being ≥ 6,000 
breeding pairs 
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Figures 

 

  

Figure 3-1. Loss functions generated using the probability of quasi-extinction (N 
<250 adults within 50 years) given population size, growth rate, and process error 
for the Arctic Coastal Plain (ACP) and Yukon-Kuskokwim Delta (YKD) breeding 
populations of spectacled eiders (Somateria fischeri).  The dotted line represents 
the under protection loss function and the solid line is the over protection loss 
function. Histograms show the distribution of population growth rate (r) estimated 
by a Bayesian state-space model for the time series from 2007 to 2016. The 
vertical dashed line represents the mean population growth rate over the time 
series.  

YKD ACP 
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Supporting Information – Chapter 3: Assessing recovery of spectacled eiders using a 

Bayesian decision analysis 

The spectacled eider recovery team identified model structure as a concern for the 

potential influence on the calculation of misclassification error. Therefore, we 

constructed three additional models to explore the sensitivity of the decision to the effects 

of model structure. Model YKD_S1 follows the same structure of the YKD model used 

in this chapter, but was initiated with non-informative or less informative priors. Changes 

in prior distributions for YKD_S1 included initial abundance where the mean was the 

detection adjusted estimate for 2007 but with a much larger variance, 

log(𝑁𝑁2007) ~ 𝑁𝑁(log(12,457) , 1000). Further, we increased the variance around with the 

prior 𝑟̅𝑟 ~ 𝑁𝑁(0, 1), and the variance of mean growth 𝜎𝜎𝑟𝑟~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎, 𝑠𝑠) was increased, 

with shape parameter, 𝑎𝑎 = 3, and the scale parameter 𝑠𝑠 = 2.  

Additionally, we tested two alternative model structures for dealing with the 

missing observation in 2011. First, model YKD_S2 has no linear regression to estimate 

the missing observation error, and the 2011 observation is skipped, thereby removing a 

data point from the time series. For model YKD_S3 we retained the linear regression but 

skipped the 2011 observation in the observation process model. We developed these 

models to test influence of our decision to impose constraints on the observation error. In 

the original model (YKD) we estimate observation error for 2011 using the linear 

relationship between population size and observation error, but treat this estimate as data. 
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Bayesian hierarchical models can easily be extended to include NA’s in the data set and 

will estimate those values. Therefore, we altered the observation model to skip the 

missing observation in 2011. Finally, we were interested in the effect the linear 

regression had on the key population metrics.  

Table Supp. Info.  Posterior estimates of population metrics and misclassification error for 
different model formulations of YKD breeding spectacled eiders (Somateria fischeri).  
  YKD YKD_S1 YKD_S2 YKD_S3 
Abundance      

Mean  14,541 14,768 13,838 14,552 
SE  808 821 1,527 811 

95% CRI  12,840-
16,114 

13,111- 
16,406 

10,825- 
16,804 

12,839- 
16,122 

Population growth ‘r’      
Mean  0.003 0.006 0.005 0.004 

SE  0.075 0.167 0.075 0.076 
95% CRI  -0.15, 0.15 -0.33, 0.34 -0.14, 0.15 -0.15, 0.15 

Underprotection  0.253 0.339 0.199 0.204 
Overprotection  0.283 0.365 0.246 0.243 
P(N2016 ≥ threshold)  99.80% 99.78% 88.45% 99.65% 
Process error  0.351 0.600 0.346 0.352 
   

 The introduction of non-informative prior distributions (YKD_S1) did not have 

any influence on the estimate of abundance, but nearly doubled the standard error of 

mean population growth and process error. Ultimately, using this model structure, the 

population still meets the abundance threshold and overprotection error is greater than 

underprotection error. However, the variation in annual population growth is more than 3 

times what species experts deemed biologically plausible. Model YKD_S2 produced the 

only results that would indicate the population had not met the abundance threshold but 

still met the misclassification error criterion. Without the linear regression, the unknown 

observation error was seemingly absorbed into the estimate of abundance and increases 
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the uncertainty in that estimate. The standard error around mean abundance in 2016 is 

nearly double that produced by the other 3 models. The removal of the linear regression 

had no effect on the estimate of population growth, process error, or misclassification 

error. In model YKD_S3 we reintroduced the linear regression but skipped the missing 

observation for 2011 in the observation process model. The estimates of abundance, 

growth, and misclassification error are consistent with the other two models that include 

the linear regression (YKD, YKD_S1). These results demonstrate there is clearly an 

effect of the constraints imposed by the assumption of a linear relationship between 

abundance and observation error. Further research and discussion with the recovery team 

is warranted to identify the optimal model for decision-making. 
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Chapter 4: Demographic responses to climate change and predation pressure in a 

threatened Arctic species 

Abstract 

The consequences of climate change on Arctic species throughout the annual cycle 

remain largely unknown due to logistical challenges of studying these species. Spectacled 

eiders, a sea ice obligate Arctic sea duck, face numerous threats related to climate change 

and altered biotic communities. Multiple studies monitoring demographic parameters 

(survival, productivity, abundance) on the Yukon-Kuskokwim Delta of Alaska have 

produced long-term data sets. We leverage these data to estimate vital rates including 

those that are unobservable, estimate population size and trend, and quantify ecological 

relationships. Abundance has increased since listing in the 1990’s and population growth 

is stable. We found that adult survival was highest in years with a moderate number of 

days with >95% sea ice cover and declined when ice cover was greater or less than the 

long term average. Additionally, we found evidence of a similar relationship with 

extreme sea ice days and hatch year survival. Nest success exhibited a strong, negative 

correlated with fox abundance, potentially creating a threat to future viability and 

recovery of the species. The global population of spectacled eiders winters together and 

ice conditions are projected to become anomalous in the core wintering area. It is likely 

that extreme sea ice conditions would negatively impact population dynamics through 
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decreased survival. If both reproductive success and adult survival decline 

simultaneously and are not compensated for we should expect populations to decline. 

Introduction 

Climate induced temperature increases in the Arctic have caused profound changes in 

both terrestrial and marine ecosystems. Effects of climate change on Arctic species may 

be most pronounced in resident species that inhabit both terrestrial and marine 

ecosystems. Rapid and unprecedented changes in environmental conditions have had 

strong and complex impacts on Arctic species habitats, food resources, and biotic 

interactions (Kubleck et al. 2018). 

The consequences of climate change, and specifically sea ice loss, on Arctic species 

remains largely unknown because it is often challenging to study these species due to 

logistical difficulties associated with monitoring in remote areas. There remains a critical 

data gap for many Arctic species (Laidre et al. 2015, Macias-Fauria and Post 2018) and 

their response to climate change. Species often lack long-term data sets and are studied 

only during short periods, typically during the breeding season. Yet, they are vulnerable 

to changes occurring throughout the annual cycle. Changes in response to a warming 

climate may most notably affect species that require sea ice and terrestrial habitats for life 

history events. Understanding full annual cycle dynamics in relation to environmental 

conditions is critical for making predictions and conservation planning. 

Quantifying population dynamics is difficult due to complex and often unobservable 

processes acting upon individuals throughout the annual cycle. Recent developments in 

statistical modeling have made it possible to integrate data sets (e.g., counts, mark-
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recapture) in a single modeling framework to estimate processes not directly measured 

(Schaub and Abadi 2011). Further integration with full annual cycle (FAC) models 

include effects of events in breeding and non-breeding seasons on population dynamics 

(Hostetler et al. 2015, Rushing et al. 2017). These combined models can be used to 

identify and quantify vulnerability to specific threats throughout the annual cycle, 

estimate population viability, and reduce uncertainty in the true population state. 

Spectacled eiders (Somateria fischeri), are a sea ice-obligate species listed as 

threatened under the Endangered Species Act (ESA, as amended 1973) following an 

estimated population decline of >90% in western Alaska between the 1970’s and 1990’s 

(USFWS 2002). Spectacled eiders spend the majority of the annual cycle in marine 

habitats coming to land only during the breeding season to nest and raise young. 

Spectacled eiders have a geographically restricted range and the global population 

winters in the Bering Sea south of St. Lawrence Island, an area historically dominated by 

sea ice interspersed with openings in the form of leads or polynyas. 

Given the species exposure to extreme arctic and sub-arctic conditions through the 

annual cycle, spectacled eiders face numerous threats related to both indirect and direct 

effects of climate change. Research indicates that sea ice conditions in the Bering Sea are 

predicted to become highly variable and sea ice extent is expected to decrease in the 

future (Wang and Overland 2015). Concentrated sea ice can dampen the effects of waves 

from major storms and offers roosting habitat for spectacled eiders during the wintering 

period. However, extremely high sea ice concentrations may make it impossible for 

eiders to dive for their prey or openings may only be available in suboptimal foraging 

areas. Furthermore, drastic declines in sea ice due to increased temperatures can have 
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negative impacts on primary productivity and have cascading effects through trophic 

interactions. Intermediate concentrations of sea ice may be optimal for many sea ice 

associated species because it provides access to food and offers a resting area (Christie et 

al. 2018). 

Spectacled eiders inhabit large geographically remote breeding habitats across two 

countries and spend the remainder of the annual cycle in high latitude open ocean or 

coastal marine habitats (Bowman et al 2015, Sexson et al. 2016). Spectacled eiders are 

relatively long lived species the exhibit delayed reproduction, high adult survival rates, 

and variable annual reproductive success (Petersen et al. 2000). Spectacled eiders do not 

breed until their second or third year. Most monitoring for these species occurs on the 

breeding grounds, making it difficult or impossible to gather data on non-breeding age 

birds. While prior demographic analyses have indicated that variation in adult survival 

has the strongest impact on population growth rate, recruitment to the breeding 

population likely has considerable influence over annual growth and long-term 

population dynamics. Recent trends indicate predation pressure on Arctic nesting birds 

has increased substantially over the past few decades (Kubelka et al. 2018).  Using a 

unified analysis of monitoring data we can link population dynamics to environmental 

conditions faced throughout the annual cycle and identify limiting factors for population 

growth.  

Multiple studies that monitor demographic parameters (survival, productivity, 

abundance) of spectacled eiders have produced long-term data sets that have been 

analyzed only in a piece-meal fashion and have been unable to estimate values for a 

number of demographic parameters due to a lack of data and integrated analyses. In this 
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study, we used a Bayesian integrated population model to simultaneously analyze long-

term mark-recapture data, breeding population counts, and productivity data for 

spectacled eiders. The primary strength of our approach is the efficient combination of 

data sources in a unified framework that allows the estimation of first year survival and 

breeding propensity of 2-year-old birds, for which there are no explicit information 

available. We applied integrated population models to gain information on vital rates of 

multiple stage classes and precisely estimate population size and trend on the YKD. 

Further, we aim to demonstrate how survival and breeding propensity were affected by 

winter sea ice conditions as well as how nest success was affected by breeding site 

covariates. This modeling framework enables us to utilize long-term monitoring data 

from the breeding period to infer full annual cycle population dynamics for a threatened 

Arctic species. 

Methods 

Study area and species 

 Spectacled eiders are a large Arctic sea duck listed as threatened under the 

Endangered Species Act (ESA as amended, 1973) in 1993 (USFWS 1993). There are two 

subpopulations of Alaskan breeding spectacled eiders, one population on the Yukon-

Kuskokwim Delta (YKD) and the other on the Arctic Coastal Plain (ACP) and a large 

population breeding in Arctic Russia (USFWS 1993, Flint et al. 2016) (see map; Figure 

1). Both Alaskan subpopulations have been monitored annually since the 1980’s using 

aerial surveys and/or nest monitoring and capture-mark-recapture methods. We focused 

on the Yukon-Kuskokwim Delta breeding population, given the existence of long-term 

data sets and known population growth.  
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 The coastal plain of the YKD is one of the largest and most productive waterfowl 

breeding areas in Alaska. The Delta is predominately flat wetlands and tundra 

interspersed with small ponds, lakes, and rivers. The primary study area was on Kigigak 

Island (60°50’N, 165°50’W) with primarily high graminoid and intermediate sedge 

meadows characteristic of the tidally influenced habitats of the YKD (Flint et al. 2016). 

Spectacled eiders typically arrive on the breeding grounds in late May; males depart 1-2 

weeks after incubation begins, and females and their young leave for the wintering 

grounds in late August. Studies have identified strong breeding and molting site fidelity, 

important geographical locations, and broad spatiotemporal patterns of spectacled eiders 

throughout the annual cycle (Petersen et al. 1999, Lovvorn et al. 2014, Sexson et al. 

2014, 2016). The global population of spectacled eiders winters in one distinct region in 

the Bering Sea south of St. Lawrence Island (Petersen et al. 1999, Sexson et al. 2014). 

Females marked on the YKD used Norton Sound as their primary staging area during 

fall. Following the wintering period, individuals previously marked on the YKD either 

went to the Western Bering Strait, Norton Sound, or the YKD prior to the breeding 

period (Sexson et al. 2014). 

Demographic and count data collection 

Aerial surveys of spectacled eiders have been conducted on 12,832 km of YKD 

tundra wetland habitat annually since 1988 (Platte and Stehn 2015, Fischer et al. 2017, 

Lewis et al. 2019). Eider density varies widely across the YKD with low densities 

throughout a majority of the region. Lewis et al. (2019) identified three density-specific 

strata; low-density (0-1.60 nest/km), medium-density (1.60-3.50 nests/km), and high-

density (>3.50 nests/km). Ground-based surveys have been conducted annually on the 
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YKD since 1985 to estimate the numbers of nests for geese and eiders. This survey 

samples randomly selected plots within the core nesting area of spectacled eiders in the 

central coast zone encompassing 716 km2 (Fischer et al. 2017). Estimates of nests and 

aerial observations among low, medium, and high-density stratum on the YKD were used 

to calculate density-specific aerial visibility correction factors (VCF) to account for 

incomplete detection on the aerial surveys. The average density-specific visibility 

correction factors were used to convert indices of eider abundance to annual estimates of 

breeding spectacled eiders and variance (Lewis et al. 2019). These estimates are utilized 

as observation data as are errors in the estimates. 

On the YKD, survival and productivity studies were carried out on Kigigak Island 

(1993-2015) following protocols established by Grand and Flint (1997). For a detailed 

explanation of field methodologies see Grand and Flint (1997) and Flint et al. (2016). 

Nest searching began in late May through mid-June at Kigigak Island. Adult females 

were captured on nests and given metal leg bands, numbered plastic leg bands, and nasal 

disks. In some years, a subset of females were marked at hatch with radio transmitters 

and monitored to estimate duckling survival. At approximately 30 days post-hatch 

ducklings were captured and marked with stainless steel and plastic bands. Most marked 

birds were adults and thus classified as breeding age. Only the birds marked as ducklings 

were of known age upon recapture. 

Integrated population model 

We constructed the following matrix projection model (At) based on the life cycle 

diagram shown in Figure 2 to model survival, transition probabilities, and recruitment of 

female spectacled eiders 
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𝐀𝐀𝑡𝑡  = �

0 0 𝑓𝑓/2 ∗ 𝜙𝜙0 𝑓𝑓/2 ∗ 𝜙𝜙0
𝜙𝜙1 ∗ 1 − 𝛼𝛼 0 0 0
𝜙𝜙1 ∗  𝛼𝛼 0 0 0

0 𝜙𝜙2 𝜙𝜙2 𝜙𝜙2

�

𝑡𝑡

 

where 𝜙𝜙𝑖𝑖 represents annual survival probabilities for hatch-year birds (𝜙𝜙0), immature 

birds (𝜙𝜙1), and adult birds 𝜙𝜙2 age 2 years and older. Spectacled eiders may begin 

breeding at 2 years of age, but evidence suggests they are less likely to breed than birds 

age 3 and older (Flint et al. 2016). Because spectacled eiders do not breed until at least 

their second year, we set the model to estimate the breeding propensity of 2-year-old 

birds (𝛼𝛼). Thus, this matrix allows 1-year old individuals to transition to either non-

breeding 2-year-old birds with probability (𝜙𝜙1 ∗ 1 − 𝛼𝛼) or breeding 2-year-old birds with 

probability (𝜙𝜙1 ∗  𝛼𝛼) and corresponding fecundity estimates. We assumed adults (3+ 

year-old-birds) and 2-year-old birds have equal survival rates (𝜙𝜙2) regardless of breeding 

status. We used a multistate annual random effects framework to model survival and 

breeding probability allowing the values to vary over time. The states include immature 

birds, non-breeding 2-year olds, breeding 2-year olds, and breeding adults ages 3 and 

older. Individuals may be marked as 30 day-old ducklings or as breeding adults on the 

breeding grounds. Immature and non-breeding 2-year olds do not come to the breeding 

grounds and are thus unobservable. Therefore, two of the states in our model are 

unobservable and lack explicit data.  

Parameter redundancy is often a problem when there are unobservable states and 

results may be biased or imprecise (Bailey et al. 2010). Estimates of first year survival 

and breeding probability of 2-year olds are of high interest, therefore we induced certain 

constraints to make these parameters identifiable. First, we tested the model’s ability to 
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estimate these parameters using simulated data with positive results when initiating these 

parameters with informative priors (see Supporting Information). Using the spectacled 

eider data, we constrained immature survival to be a constant proportion of adult survival 

𝜙𝜙1 =  (𝜙𝜙2 ∗ 0.8) based based on similar relationships between age classes in three 

closely related species, long-tailed ducks (Clangula hyemalis), common eiders 

(Somateria mollissima) and king eiders (Somateria spectabilis) (Koneff et al. 2018). 

Further, because we use a Bayesian framework, we included informative priors on all 

parameters that had previously been estimated using independent data sets and vague 

priors on the rest (Flint et al. 2016, Christie et al. 2018) (Table 1). 

Count model likelihood 

We used the state-space model formulation to model the population count data. 

The state-space formulation includes equations that describe how population size changes 

over time through the state process model. An observation model links the observed 

population count (index of breeding population size, includes males and females) with 

the estimated population size from the state process model.  

The state process model describes the true but unknown dynamics of the 

population over time. We described this change using the matrix 𝑨𝑨𝒕𝒕 (described above) 

and multiplying it by a population vector 𝒏𝒏𝒕𝒕,  

�

𝑛𝑛1
𝑛𝑛2
𝑛𝑛3
𝑛𝑛4

�

𝑡𝑡+1

 = �

0 0 𝑓𝑓/2 ∗ 𝜙𝜙0 𝑓𝑓/2 ∗ 𝜙𝜙0
𝜙𝜙1 ∗ 1 − 𝛼𝛼 0 0 0
𝜙𝜙1 ∗  𝛼𝛼 0 0 0

0 𝜙𝜙2 𝜙𝜙2 𝜙𝜙2
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where 𝑛𝑛1 is the number of immature (1 year old) females, 𝑛𝑛2 is the number of non-

breeding 2 year old females, 𝑛𝑛3 is the number of breeding 2 year old females, and 𝑛𝑛4 is 
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the number of 3+ year old females. Therefore, the total population size including males 

and females is  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 =  (𝑛𝑛1,𝑡𝑡 + 𝑛𝑛2,𝑡𝑡 + 𝑛𝑛3,𝑡𝑡 + 𝑛𝑛4,𝑡𝑡) ∗ 2 and the breeding population size 

is  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = �𝑛𝑛3,𝑡𝑡 + 𝑛𝑛4,𝑡𝑡� ∗ 2. 

The state process model describes the dynamics of the total population but our 

counts only include the breeding males and females and thus the observation model links 

the observed number of breeding birds (denoted by (𝑦𝑦)) to 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 through the following 

equation 

𝑦𝑦𝑡𝑡 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡,𝜎𝜎𝑦𝑦,𝑡𝑡) 

where 𝜎𝜎𝑦𝑦 is the estimated annual observation error and is provided as data. In 2011, aerial 

surveys were not flown on the YKD and therefore there is no observation for that year. 

We estimated observation error for 2011 using a zero-intercept linear regression model 

where 𝜎𝜎�𝑥𝑥𝑡𝑡 is the predicted observation error as a function of estimated population size 𝑁𝑁𝑡𝑡 

and 𝛽𝛽~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,30) 

𝜎𝜎�𝑥𝑥𝑡𝑡 =  𝛽𝛽 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 (4) 

𝜎𝜎�𝑧𝑧𝑡𝑡~𝑁𝑁(𝜎𝜎�𝑥𝑥𝑡𝑡 ,𝜎𝜎) (5) 

and where 𝜎𝜎�𝑧𝑧𝑡𝑡 is the estimated observation error in year 𝑡𝑡 and is normally distributed 

about 𝜎𝜎�𝑥𝑥𝑡𝑡 with a standard deviation 𝜎𝜎 ~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎, 𝑠𝑠) where the shape parameter, 𝑎𝑎 = 2, 

and the scale parameter 𝑠𝑠 = 100. The complete likelihood for the population count data 

is 𝐿𝐿𝑆𝑆𝑆𝑆�𝒚𝒚,𝝈𝝈𝒚𝒚𝟐𝟐�𝜙𝜙0,𝜙𝜙1,𝜙𝜙2,𝛼𝛼,𝑁𝑁, 𝑓𝑓�. 
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Capture-recapture likelihood 

 For the mark-recapture data, we used the multistate formulation of the Cormack-

Jolly-Seber model (Lebreton 1992). To decrease computation time and increase 

efficiency, we converted the captures histories into an m-array utilizing the multinomial 

likelihood. The likelihood of the multi-state model is denoted as 𝐿𝐿𝐶𝐶𝐶𝐶(𝒎𝒎|𝜙𝜙0,𝜙𝜙1,𝜙𝜙2,𝛼𝛼,𝑝𝑝) 

where 𝒎𝒎 represents the capture-recapture data which contains information about state-

specific survival (𝜙𝜙0,𝜙𝜙1,𝜙𝜙2), breeding propensity (𝛼𝛼) and recapture probabilities (𝑝𝑝).  

Productivity likelihood 

 We model fecundity as the product of clutch size at hatch (𝑐𝑐𝑐𝑐) and probability of 

nest success (𝑛𝑛𝑛𝑛). Nests were monitored near the expected hatch date and the number of 

eggs hatched was recorded to account for egg mortality. Probability of nest success was 

modeled as proportion of nests with at least one egg hatched out of the total nests 

recorded. Nest success was modeled using a binomial regression, it could vary over time, 

and was modeled using a random effects structure. The likelihood for productivity is 

𝐿𝐿𝑃𝑃𝑃𝑃(𝒏𝒏𝒏𝒏, 𝒄𝒄𝒄𝒄|𝑓𝑓). 

Joint likelihood for the integrated model 

 The joint likelihood of the integrated population model is the product of the three 

likelihoods described above and is written as 

𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼�𝒎𝒎,𝒏𝒏𝒏𝒏, 𝒄𝒄𝒄𝒄,𝒚𝒚,𝝈𝝈𝒚𝒚𝟐𝟐�𝜙𝜙0,𝜙𝜙1,𝜙𝜙2,𝑝𝑝,𝛼𝛼,𝑁𝑁, 𝑓𝑓� = 

𝐿𝐿𝑆𝑆𝑆𝑆�𝒚𝒚,𝝈𝝈𝒚𝒚𝟐𝟐�𝜙𝜙0,𝜙𝜙1,𝜙𝜙2,𝛼𝛼,𝑁𝑁,𝑓𝑓� ∗ 𝐿𝐿𝑃𝑃𝑃𝑃(𝒏𝒏𝒏𝒏, 𝒄𝒄𝒄𝒄|𝑓𝑓) ∗ 𝐿𝐿𝐶𝐶𝐶𝐶(𝒎𝒎|𝜙𝜙0,𝜙𝜙1,𝜙𝜙2,𝛼𝛼,𝑝𝑝). 

Environmental covariates 
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 We estimated the relationships between winter sea ice conditions and, 

respectively, survival and breeding propensity using linear models on the link scale. We 

calculated the number of days with >95% ice cover (extreme ice days) within the core 

wintering area during the wintering period as an index of sea ice severity. Winter was 

defined as 1 November through 30 April. The core wintering area was identified based on 

utilization distributions of 13 satellite-tagged individuals from 1993-1997 and confirmed 

by aerial surveys of the wintering area (Petersen 1999).  Observed sea ice concentrations 

were extracted from the core area that spans four grid cells (25 km resolution) derived 

from passive microwave satellite imagery using the Bootstrap Algorithm and provided by 

the National Snow and Ice Data Center (NSIDC). The number of days with > 95% ice 

cover were standardized with a mean of 72 days and standard deviation of 23 days. 

Additionally, we calculated the number of days with <15% ice cover as a metric of 

extreme low sea ice conditions. However, extreme ice days and extreme low sea ice 

conditions are strongly negatively correlated (r=  −0.84, Pearson’s correlation 

coefficient). Given this consistent relationship we chose to only include the standardized 

number of days with > 95% ice cover and interpret negative deviations from the mean to 

be representative of low sea ice conditions.  

To determine effects of breeding site conditions on nest success we included 

standardized precipitation and temperature during the breeding period as well as 

proportion of nest plots with evidence of foxes as an index of fox abundance as 

covariates in the nest success model (Fischer et al. 2016). Both arctic (Vulpes lagopus) 

and red foxes (Vulpes vulpes) can be found on the YKD but there is no effort to identify 

signs of fox presence by species (J. Fischer pers. comm.). Precipitation data were 
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recorded at Bethel Airport in Bethel, Alaska at the National Weather Service Cooperative 

Network station (Western Regional Climate Center 2019). Bethel, AK is 108 miles east 

of Kigigak Island, however, it is the closest weather station and we may expect relatively 

similar environmental conditions. Temperature anomalies were calculated with respect to 

the 1981-2010 average and reported by NOAA National Centers for Environmental 

Information (NOAA 2019). Finally, I constructed a simple linear model ad-hoc to test for 

trends in spectacled eider nest success and fox presence. Model formulation, parameters, 

and prior distributions are described in Table 2.  

Model implementation 

The model was fit using Markov Chain Monte Carlo (MCMC) simulations in a 

Bayesian analytical context using JAGS (Plummer 2003) software (package “jagsUI”, 

Kellner 2016) in program R (R Development Core Team). We initialized the model with 

500,000 iterations, discarded 325,000 after burn in, and thinned by 15. Convergence of 

each model was assessed based on the Gelman and Rubin statistic (R-hat between 1 and 

1.05) for all parameters. Additionally, trace plots were used to visually inspect adequate 

convergence of the 3 chains.  

 Goodness of fit 

Robust methods to evaluate overall fit of integrated models have yet to be 

developed. We calculated Freeman-Tukey statistic for the nest success model and 

calculated a Bayesian P-value. Further, we calculated a Bayesian p-value for the count 

data using the chi square statistic.  
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Estimating population growth and correlations with demographic rates 

 We derived annual population growth rate by dividing the breeding population 

size (males and females) in year t+1 by the breeding population size in the previous year: 

𝜆𝜆𝑡𝑡 = (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑡𝑡+1)/(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡). 

We assessed the relative contribution of each demographic rate to population growth by 

calculating the correlation coefficient (r) with its 95% credible interval. We used the full 

posterior sample and calculated the probability that the correlations were positive P(r>0) 

(Schaub et al. 2015, Saunders et al. 2018, Saunders et al. 2019). 

Results 

Environmental covariates and demographic rates 

We tested the effects of the number of extreme sea ice days (>95% coverage) at 

the core wintering area on survival and breeding propensity. We found strong support for 

a nonlinear relationship between extreme sea ice days in the core area and adult survival 

(Figure 3, Figure 4, and Table 2). Additionally, we found evidence for a nonlinear 

relationship between extreme sea ice days and hatch-year survival (Figure 3, Table 2). 

These relationships describe the change in survival rates across the values of extreme ice 

days. In years with a very low number of extreme ice days survival was lower than 

average, survival was highest in years with an average number of extreme ice days and 

subsequently declined in years with above average number of ice days (Figure 4). No 

relationship was detected between breeding probability and extreme ice days (Table 2). 

Our results identified fox presence as a strong predictor of annual nest success 

and provided little evidence for a relationship with precipitation or temperature (Figure 3, 



 
71 

Figure 5, and Table 2). Results of the linear regressions indicates that fox abundance 

appeared to increase over time (𝛽𝛽𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 0.033, 95% 𝐶𝐶𝐶𝐶𝐶𝐶 0.018, 0.048) and nest success 

declined (𝛽𝛽𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = −0.061, 95% 𝐶𝐶𝐶𝐶𝐶𝐶 − 0.12,−0.048). Further, annual nest success and 

fox abundance were negatively correlated (𝑟𝑟 =  −0.54). 

Mean adult survival (individuals age 2+) was high 0.87 (0.794 – 0.931) however, 

there was considerable variation in annual estimates particularly over the last 10 years 

(Figure 4). Adult survival ranged between 0.47 and 0.99, similar to Christie et al. (2018) 

who reported mean values between 0.5 and 1.0. We modeled survival from 1-year old to 

2-years old as a constant proportion of adult survival and thus it was not explicitly 

estimated in the model. Mean hatch-year survival was 0.31 (0.125 – 0.578) and annual 

estimates were variable (Figure 6). Mean breeding propensity was 0.39 (0.028 – 0.583) 

and highly variable among years (Figure 3). However, there was significant overlap 

between the posterior and prior indicating potential parameter identifiability problems 

(overlap >35%, Gimenez et al. 2009). Further simulations are required to understand 

potential identifiability issues (Supporting Information).  Average nest success was high 

(0.88) but also highly variable across years, particularly in 2001 and 2013 (Figure 5). 

Many of these years corresponded with high nest predation rates (Moore and Sowl 2017).  

Population growth and demographic drivers 

 Our integrated population model estimated that the YKD breeding population had 

increased between 1992 and 2014 (𝜆̅𝜆 =  1.04) (Figure 7). Population growth between 

2014 and 2015 would indicate a large decline (𝜆𝜆2015 =  0.35), however, in 2015 a new 

observer started on the aerial surveys and the current data is not adjusted for this observer 
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effect. Thus, for the remainder of this work we focus on the estimate of population 

growth between 1992 and 2014 for a more accurate representation of population change. 

 Adult survival was positively correlated with population growth r= 0.59 (0.45, 

0.74) and the 95% credible interval excluded zero (Figure 8). Breeding probability of 2-

year olds had the second highest correlation with annual population growth r = 0.29 (-

0.05, 0.54). Annual survival of hatch-year birds was not correlated with population 

growth r = 0.04 (-0.31, 0.31). 

Goodness of fit 

The Bayesian P-values for the state-space model of the counts was 0.52 and for 

the nest success model was 0.35, indicating both models were a relatively good fit 

(Figures 9 and 10).  

Discussion 

Efforts to understand the factors that limit population growth of Arctic species 

during the annual cycle is often hindered due to a lack of demographic and spatially 

relevant environmental data.  Here, we demonstrate an important advancement in the 

understanding of climate impacts and predation for a threatened Arctic marine species 

using an integrated modeling framework. Long-term data sets are critical for 

understanding effects of climate variation on long-lived species and modeling these data 

in an integrated framework can help to reduce uncertainty in population trends and 

identify environmental factors that limit population growth. Analysis of the count data 

alone uncovered no strong relationship between breeding population size and wintering 

conditions (Petersen and Douglas 2004). Though prior analysis of a subset of the mark-

recapture data identified a linear relationship between survival and sea ice conditions 
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(Flint et al. 2016), only using the 23-year long data set we are able to determine that there 

is a non-linear relationship between adult survival and extreme winter sea ice conditions 

(Christie et al. 2018). Additionally, we analyzed the nesting data within the integrated 

framework and identified a strong negative relationship between fox abundance and nest 

success, a previously undetected relationship. Finally, we estimate that population growth 

has been positive for YKD breeding spectacled eiders over the past 23 years. However, 

the combined stress of negative effects on survival through variable sea ice during the 

wintering period and increased predation during the breeding period represent a 

significant threat to population growth.  

Our results provide further evidence for a strong nonlinear relationship between 

adult survival and the number of extreme ice days (Christie et al. 2018). Adult survival is 

highest at intermediate conditions (number of days with >95% ice cover are between 65 

and 85), and lower when the number of sea ice days is greater than 85 or less than 65 

during the wintering period. Seasonal aggregation subjects the entire global population to 

similar environmental conditions throughout the wintering period (Figure 1). During 

years of heavy ice cover, individual body condition was poor likely in response to the 

restricted open leads and subsequent low availability of suitable prey (Cooper et al. 2013, 

Lovvorn 2015). Alternatively, sea ice can dampen the impacts of waves and provide 

roosting areas for individuals during the non-foraging period thereby reducing 

thermoregulation costs (Lovvorn et al. 2003). Both high and low sea ice cover can 

negatively affect spectacled eider survival through thermoregulation costs, food 

availability, and overall poor body condition (Figure 4). Sea ice persistence on the Bering 

Sea has declined since 2012 and has become highly variable in recent years with little to 
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no sea ice coverage over vast areas for extended periods (Grebmeier et al. 2018). 

Changes in sea ice conditions on the Bering Sea are expected to affect the benthic faunal 

composition and biomass that supports the marine ecosystem and provides food for 

Arctic marine predators (Grebmeier 2012). Furthermore, projected changes in sea ice will 

increase the duration and extent of open water periods, likely altering the spatial 

distribution of suitable refugia and affecting the spatial structure of benthic communities 

(Zhang et al. 2012).  

Additionally, one of the novel insights from our integrated model is the estimate 

of hatch-year survival and its nonlinear relationship with extreme ice days. Until now, 

only mean estimates across the time series were possible using the mark-recapture data 

alone (Flint et al. 2016, Christie et al. 2018). Prior estimates include 0.22 ±0.02 over the 

23-year time series (Christie et al. 2018) and 0.19 ± 0.37 between 1992 and 2004 (Flint 

et al. 2016). Neither analysis was able to relate hatch-year survival to environmental 

covariates. Here, we modeled hatch-year survival with a nonlinear relationship to sea ice 

conditions. Our estimates indicate there is a relationship, although, the 95% CRI does 

overlap zero (Figure 3, Table 2). Given that this demographic rate includes no explicit 

data it is unsurprising that it would be difficult to detect a strong relationship with a 

covariate because latent demographic rates are typically imprecise (Kéry and Schaub 

2012). However, we believe we have provided evidence of a potential relationship 

between hatch-year survival and extreme ice conditions using the integrated modeling 

approach. Mean hatch year survival from our model was 0.31 (0.125 – 0.578) but did not 

include survival of ducklings from hatch to 30 days. This may have biased our estimates 

of hatch year survival high or introduced additional uncertainty. Future work should 
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explicitly estimate this parameter by including data, or include a prior or biologically 

realistic constant value. Efforts to gather data on hatch-year birds would provide an 

opportunity to estimate survival more precisely and get a clearer picture of the influence 

of sea ice conditions on this life stage. 

Fox presence had a strong negative impact on nesting success of spectacled eiders 

(Figure 3, Figure 5, and Table 3). Foxes are a primary predator of Arctic nesting birds 

and can cause significant damage to annual productivity (Quinlan and Lehnhausen 1982, 

Mallory 2015). Mammalian predation has been demonstrated to negatively influence nest 

success of ground nesting species (Mallory 2015, DeGregorio et al. 2016) and our study 

indicates similar impacts on spectacled eiders. Efforts to eradicate or control fox 

populations have been effective on small islands but are difficult to implement or monitor 

over larger areas such as the Yukon-Kuskokwim Delta. Predation pressure typically 

declines latitudinally where pressure is highest in the tropics and lowest in the high 

Arctic. Studies have indicated a switch in this pattern on a global scale due to changes in 

biotic interactions in response to climate change (Kublecka et al. 2018). If fox presence 

and predation pressure continue to increase there may be negative impacts on spectacled 

eider recruitment, creating a threat to future viability and recovery of the species.  

We found no evidence for an effect of temperature or precipitation on nest 

success of spectacled eiders (Figure 3, Table 2). Unfavorable conditions (either warm/dry 

or cold/wet) have had negative effects on nest success and recruitment of common eiders 

(Iles et al. 2013, Jónsson et al. 2013). The lack of a detectable relationship could be the 

result of a lack of extreme unfavorable conditions or the conditions reported at Bethel are 

not representative of those at Kigigak Island, which is much closer to the coast. 
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Alternatively, regional weather conditions may not affect nest success but could affect 

duckling survival and ultimately recruitment into the breeding population. We did not 

parameterize our model to specifically estimate duckling survival. Duckling survival may 

decline due to exposure to low water temperatures, flooding induced by storms, or cold 

ambient air temperatures particularly when combined with heavy precipitation (Grand 

and Flint 1996, Iles et al. 2013). Further, in years with high temperatures and low rainfall, 

freshwater ponds evaporate increasing salinity particularly along the coast, where eiders 

tend to nest. Without access to freshwater ponds, ducklings fail to grow and die quickly 

because their salt glands have not fully developed (Devink et al. 2005). In the Arctic, 

severe storm frequency and temperatures are expected to continue to increase with 

complex regional impacts on precipitation (Bintanja 2018, Terenzi et al. 2014). 

Furthermore, predation is the primary cause of duckling mortality and these effects 

should be included in any future work (Grand and Flint 1996). Efforts to gather data on 

duckling survival in response to weather conditions and predation during the breeding 

season may help us understand the relative impacts of changes in recruitment at the 

population level.   

Eiders demonstrate typical characteristics of slow pace of life species with high 

adult survival and low levels of recruitment, a pattern consistent with our results (Figure 

4. Figure 5, Table 2). However, variability in adult survival has been documented in both 

spectacled and common eiders (Grand et al. 1998, Flint et al. 2016, Guéry et al. 2017), a 

trait that should have low variability according to life-history theory. Here, mean adult 

survival was high (0.87) but annual survival is variable over the past 10 years, which is 

consistent with estimates produced by others (Christie et al. 2018). Given the relationship 
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between adult survival and sea ice conditions we may expect adult survival to decline as 

sea ice loss continues. Changes in population growth in long-lived species are typically 

buffered against low reproductive success because of high adult survival (Orzack and 

Tuljapurkar 2001, Koons et al. 2014). We have demonstrated an overall declining trend 

in nest success and a negative linear relationship with fox abundance. If both 

reproductive success and adult survival decline simultaneously and are not compensated 

for with drastic increases in juvenile survival and breeding propensity, we should expect 

populations to decline.  

Using the integrated population model, we were able to identify limiting factors 

affecting population growth via different life stages throughout the annual cycle. Further 

we were able to estimate annual values for first year survival which were previously 

inestimable. We believe this study provides further evidence of the importance of long-

term demographic studies to identify demographic responses to climate change and 

identify opportunities for conservation action.  
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Tables  

 

  

Table 4-1. Parameters, their definitions, and prior distributions used in the spectacled eider 
integrated population model. 
Parameter Definition Prior  

𝜙𝜙2 Survival of adults 2+ years Uniform (0,1) 
𝜙𝜙1 Survival of 1 year old birds (1-2 years) 

*Modeled as a constant proportion of adult 
survival 

𝜙𝜙1 =  𝜙𝜙2 ∗ 0.8 

𝜙𝜙0 Survival of first year birds (30 daysto 1 year) Uniform (0,1) 
𝛼𝛼 Breeding probability of 2 year old birds Uniform (0,1) 
𝑛𝑛𝑛𝑛 Nest success (probability of 1 egg hatching) Uniform (0,1) 
𝑐𝑐𝑐𝑐 Average clutch size at hatch Gamma (0.1, 0.1) 
𝑓𝑓𝑓𝑓𝑓𝑓 Fecundity - number of ducklings per female 

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 =  𝑛𝑛𝑛𝑛𝑡𝑡 ∗ 𝑐𝑐𝑐𝑐𝑡𝑡 
-- 

𝑛𝑛1 Number of immature (1 year old) birds 

𝑛𝑛1,𝑡𝑡+1 = �
𝑓𝑓𝑒𝑒𝑒𝑒𝑡𝑡

2
∗  𝜙𝜙0,𝑡𝑡� ∗ (𝑛𝑛3,𝑡𝑡 + 𝑛𝑛4,𝑡𝑡)  

Discrete Uniform (1600, 1900) 

𝑛𝑛2 Number of 2 year old non-breeding birds 
𝑛𝑛2,𝑡𝑡+1 =  𝜙𝜙1,𝑡𝑡 ∗ (1 − 𝛼𝛼𝑡𝑡) ∗ 𝑛𝑛1,𝑡𝑡  

Discrete Uniform (500, 900) 

𝑛𝑛3 Number of 2 year old breeding birds 
𝑛𝑛3,𝑡𝑡+1 =  𝜙𝜙1,𝑡𝑡 ∗ 𝛼𝛼𝑡𝑡 ∗ 𝑛𝑛1,𝑡𝑡  

Discrete Uniform (200, 400) 

𝑛𝑛4 Number of 3+ year old birds 
𝑛𝑛4,𝑡𝑡+1 =  𝜙𝜙2,𝑡𝑡 ∗ (𝑛𝑛2,𝑡𝑡 + 𝑛𝑛3,𝑡𝑡 + 𝑛𝑛4,𝑡𝑡)  

Discrete Uniform (4000, 5000) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 Total population size (males and females) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 =  (𝑛𝑛1,𝑡𝑡 + 𝑛𝑛2,𝑡𝑡 + 𝑛𝑛3,𝑡𝑡 + 𝑛𝑛4,𝑡𝑡) ∗ 2 

-- 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 Breeding population size (males and females) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = �𝑛𝑛3,𝑡𝑡 + 𝑛𝑛4,𝑡𝑡� ∗ 2 

-- 

𝑦𝑦 Annual index of breeding population size -- 
𝜎𝜎𝑦𝑦 Annual estimated observation error of 𝑦𝑦 -- 
𝛽𝛽 Regression coefficients Uniform (-5,5) 

𝜎𝜎𝜙𝜙,𝛼𝛼,𝑛𝑛𝑛𝑛 Standard deviation of temporal variability 
*Used for  𝜙𝜙,𝛼𝛼,𝑛𝑛𝑛𝑛 

Uniform (0,10) 

𝜀𝜀 𝜀𝜀𝑡𝑡~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (0,𝜎𝜎𝜃𝜃) -- 
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Table 4-2.  Posterior estimates of intercepts, regression 
coefficients, and deviance for model id4frt (nonlinear ice 
days over core area for survival and breeding propensity 
and fox presence for nest success). 

Parameter Posterior mean and 95% CRI 
mean.phi2 0.87 (0.794 – 0.931)  

beta1 (id) -0.082 (-0.588 – 0.423) 
beta2 (id2) -0.496 (-0.983 – -0.012) 

mean.phi0 0.31 (0.125 – 0.578) 
beta3 (id) -0.325 (-1.88 – 1.13) 

beta4 (id2) -0.872 (-2.60 – 0.524) 
mean.alpha 0.39 (0.028 – 0.583) 

beta5 (id) -0.953 (-4.58 – 3.381) 
beta6 (id2) 0.695 (-3.643 – 4.637) 

mean.ns 0.88 (0.728 – 0.957) 
beta7 (fox) -2.796 (-4.643 – -0.597) 

beta8 (precipitation) -0.166 (-0.635 – 0.280) 
beta9 (temperature) 0.132 (-0.321 – 0.599) 

* Bolded values indicated those with >90% of the 
posterior that is the same sign (positive or negative) as the 
regression coefficient mean. 
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Figures 

 

  

Figure 4-1. Range map of spectacled eiders Somateria fischeri illustrating 
the three primary breeding areas (Yukon-Kuskokwim Delta, Arctic Coastal 
Plain, and Arctic Russia), molting, and wintering areas. (Figure 1 in Flint et 
al. 2016). 
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ϕ𝑎𝑎 ϕ1 ∗ 1 − α 

  

Figure 4-2. Life cycle diagram of spectacled eiders. Circles represent states,  
𝑛𝑛1 refers to 1-year old individuals, 𝑛𝑛2𝑛𝑛𝑛𝑛 refers to non-breeding 2-year olds, 𝑛𝑛2𝐵𝐵 
refers to breeding 2-year olds, and 𝑛𝑛3+𝐵𝐵 refers to breeding adult birds 3-years and 
older. Shaded circles represent the observable portion of the population. Dashed lines 
represent survival and transition probabilities and dashed lines refer to the 
recruitment process.  
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Figure 4-3. Posterior distributions of regression coefficient estimates for relationships 
between spectacled eider demographic rates and environmental factors. The 
demographic rates include phi2 which is adult survival, phi0 is hatch year survival, 
alpha is breeding probability of 2-year old females, and ns which is nest success. 
Environmental covariates include ice days, which are defined as the number of days 
with extreme ice cover (>95%) over the core wintering area of spectacled eiders in the 
Bering Sea. Precipitation, temperature, and fox abundance are covariates tested on nest 
success with data collected on or near the breeding grounds. The quadratic term for the 
effect of ice days on adult survival (phi2.icedays2) and the linear term for the effect of 
fox abundance (ns.fox abundance) on nest success are the only two parameters that the 
95% credible intervals do not overlap zero, indicating strong support for the effects of 
these two covariates. Points represent the posterior median, thick lines include the 50% 
credible interval, and thin lines represent the 95% credible interval. Open circles occur 
when the 50% credible interval of a parameter overlaps zero. Parameters where 50 % 
credible intervals do not overlap 0 and 95 percent credible intervals do overlap 0 are 
indicated by closed grey circles. Parameters where 95% credible intervals do overlap 0 
are indicated by closed black circles.  

Standardized regression coefficient estimate 
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Figure 4-4. Estimates of annual adult survival of spectacled eiders (on the left) and 
relationship with extreme sea ice days over the core wintering area (on the right). Point 
estimates are the mean and the gray-banded area is the 95% credible interval. Adult 
survival is lowest when sea ice is extreme at either end of the spectrum, and highest at its 
average number of extreme ice days (i.e. 0 on x-axis). 
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Figure 4-5. Estimates of annual nest success of spectacled eiders (on the left) and 
relationship between annual nest success and fox presence (on the right). Point 
estimates are the mean and the gray-banded area is the 95% credible interval of 
annual nest success estimates. Nest success is defined as the probability of a nest 
hatching at least one egg. Nest success declined linearly with an increase of fox 
presence on the breeding grounds. 
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Figure 4-6. Estimates of annual hatch 
year survival of spectacled eiders. Point 
estimates are the mean and the gray-
banded area is the 95% credible 
interval. Hatch year survival is highly 
variable within and across years. 
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Figure 4-7. Population size estimates for YKD 
breeding population of spectacled eiders. Black 
points are the data, the black line is the mean 
estimate from the IPM, and the gray band is the 
95% credible interval around the mean. The 
apparent low estimate for 2015 is the product of 
observer error, other surveys indicate the breeding 
population did not experience this decline.  
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Figure 4-8. Annual posterior means of the YKD breeding population growth rate 
plotted against annual posterior mean estimates of adult survival, second year 
survival, first year survival, breeding propensity of 2-year-old birds, and annual 
nest success. 
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P = 0.52 

Figure 4-10. Posterior predictive check for fit of state-space 
count model using the chi-square statistic. Red lines indicated 
a perfect correlation between model estimates and true values. 
Bayesian goodness of fit P-value = 0.52indicating overall 
good fit of the model to the data. 

P = 0.37 

Figure 4-9. Posterior predictive check for fit of nest success 
using the Freeman-Tukey discrepancy statistic. Bayesian 
goodness of fit P-value = 0.37 indicating overall good fit of 
the model to the data. 
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Supporting Information: Methods and results of multi-state capture recapture model 

with multiple unobservable states and integrated model using simulated data 

 

Data simulation  

Given the relative complexities of this model, we chose to move forward by first 

developing a simulated data set to test each sub-model and the integrated model. We 

generated multistate capture histories and converted these into the multistate m-array 

format. We generated nest success data using an informative beta distribution for the 

probability of success and then estimated the number of successful nests out of total 

nests. We simulated clutch size using a truncated Poisson distribution (𝜆𝜆 = 5, min = 1, 

max = 6) to emulate underdispered count data similar to that of the Spectacled eider 

clutch sizes.  

 To simulate count data, we started by creating the following 4-stage matrix 

model: 

𝐴𝐴𝑡𝑡  = �

0 0 𝑓𝑓/2 ∗ 𝜙𝜙0 𝑓𝑓/2 ∗ 𝜙𝜙0
𝜙𝜙1 ∗ 1−∝ 0 0 0
𝜙𝜙1 ∗ ∝ 0 0 0

0 𝜙𝜙2 𝜙𝜙2 𝜙𝜙2

�

𝑡𝑡

. 

Because spectacled eiders do not breed until at least their second year, we set up the 

simulation model to estimate the breeding propensity of 2-year-old birds (∝). Thus, this 

matrix allows 1 year old individuals to transition to either non-breeding 2-year-old birds 
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(𝜙𝜙1 ∗ 1−∝) or breeding 2-year-old birds (𝜙𝜙1 ∗ ∝) with corresponding fecundity estimates 

the following year. Both adults (3+ year-old-birds) and 2-year-old birds are assumed to 

have equal survival rates (𝜙𝜙2) regardless of breeding status. To estimate population size 

we multiply the matrix At by a population vector n,  

�

𝑛𝑛1
𝑛𝑛2
𝑛𝑛3
𝑛𝑛4

�

𝑡𝑡+1

 = �

0 0 𝑓𝑓 ∗ 𝜙𝜙0 𝑓𝑓 ∗ 𝜙𝜙0
𝜙𝜙1 ∗ 1−∝ 0 0 0
𝜙𝜙1 ∗ ∝ 0 0 0

0 𝜙𝜙2 𝜙𝜙2 𝜙𝜙2

�

𝑡𝑡

�

𝑛𝑛1
𝑛𝑛2
𝑛𝑛3
𝑛𝑛4

�

𝑡𝑡

 

where 𝑛𝑛1 is the number of 1-year-old birds, 𝑛𝑛2 is the number of non-breeding 2-year-old 

birds, 𝑛𝑛3 is the number of breeding 2-year-old birds, and 𝑛𝑛4 is the number of adults (3+ 

year-old-birds). We calculated the stable stage distribution (ssd) of matrix A to determine 

the expected number of individuals in each stage in order to avoid any transient dynamics 

in the data set. Further, the count data available for spectacled eiders only includes 

breeding birds and thus the first two stages are unobservable. To mimic this process, we 

created an initial total population size (𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡) and multiplied it by the ssd to determine the 

number of individuals in each state at the initial time step. We projected this population 

forward for 24 years and kept track of 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡,1:𝑇𝑇 and calculated the breeding population size  

𝑁𝑁𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 =  (𝑛𝑛3,𝑡𝑡 +  𝑛𝑛4,𝑡𝑡) ∗ 2. 

Because the population matrix A represents a female only model, and the counts are of 

the number of breeding individuals (number of breeding males and females) We 

multiplied the breeding population size by two. Counts were generated from the breeding 

population size as 

𝑦𝑦 𝑡𝑡 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡,𝜎𝜎𝑡𝑡) 
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where 𝜎𝜎𝑡𝑡 =  𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡 ∗ 0.25 to include a sufficient amount of uncertainty in the observed 

counts. 

Fitting the models 

 Prior to fitting the full-integrated population model, we first needed to assess the 

fit of each sub-model. We formulated a sub-model for the fecundity data, survival data, 

and count data. We modeled fecundity data using a simple Poisson regression for clutch 

size  

𝐶𝐶𝑡𝑡 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆𝑡𝑡) 

where 𝐶𝐶𝑡𝑡 is annual clutch size and 𝜆𝜆 in mean clutch size. Nest success was modeled using 

a binomial where 𝑛𝑛𝑛𝑛𝑛𝑛. 𝑠𝑠𝑡𝑡 is the number of successful nests, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡 is the total 

number of sampled nests 

𝑛𝑛𝑛𝑛𝑚𝑚. 𝑠𝑠𝑡𝑡 ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡 ,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) 

and annual fecundity is the product of clutch size and nest success at each time step 

𝐹𝐹𝑡𝑡 =  𝐶𝐶𝑡𝑡 ∗  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡. 

 To estimate stage specific survival and breeding propensity of 2-year-old birds we 

analyzed the simulated capture-recapture data using a multistate model with two 

unobservable states. Spectacled eiders may start breeding at 2-years of age and we 

assume they breed every year once they are 3 year old. Individuals may be marked and 

released on the breeding grounds as ducklings or as adult birds (assumed 3+). Those 

individuals marked as ducklings can then be recaptured as 2-year-old breeders or adult 

breeders as known-age birds but are unobservable until they return as either 2 or 3 year 
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old’s. Because both unobservable states occur consecutively, the corresponding 

parameters are likely to suffer from non-identifiability. Therefore, we specifically aimed 

to determine if these parameters are estimable using information and non-informative 

priors for both the multistate CMR model alone and the integrated model. Integrated 

analyses are often used to gain information on unobservable states or parameters for 

which there are no data. Preliminary results indicate the multistate CMR model and the 

integrated model converge when initialized with informative priors, however, further 

evaluation is required to determine the effects of the parameter non-identifiability on 

estimation. Informative priors for first year and second year survival were generated 

using survival rates reported for common eiders and long-tailed ducks, two species with 

similar life history traits and population distributions. 

 All models were fit using Markov Chain Monte Carlo (MCMC) simulations in a 

Bayesian analytical context using JAGS software in program R. Convergence of each 

model was assessed based on the Gelman and Rubin statistic (R-hat between 1 and 1.05). 

Additionally, trace plots were used to visually inspect adequate convergence of the 3 

chains.  

Results 

When initiated with informative priors the model was able to provide estimates 

that included the true value within the 95% credible interval. Due to time constraints, 

each model was only run once and thus we cannot estimate potential biases. Further 

iterations will need to be conducted to determine the bias associated with estimates of 

latent parameters. Investigation of alternative parameterizations for latent parameters 

should be considered to determine the effect of model assumptions on inference. 
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Additionally, for simplicity the data was simulated assuming constant parameter values. 

Results may be affected by this assumption and additional complexities such as temporal 

variation and trends may need to be included to determine if this model is robust.  
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Tables 

Table S4-1. Vital rates used to generate simulated data for testing each demographic 
sub-model and the integrated model. 

   Prior specification 
Model Parameter Truth Informative Non-informative 

Multistate 
CMR only 

𝝓𝝓𝟎𝟎 0.3 0.345 (0.229 – 0.542) 0.460 (0.180 – 
0.948) 

𝝓𝝓𝟏𝟏 0.6 0.619 (0.376 – 0.865) 0.487 (0.183 – 
0.957) 

𝜙𝜙2 0.8 0.794 (0.782 – 0.805) 0.807 (0.795 – 
0.818) 

∝ 0.3 0.292 (0.219 – 0.374) 0.235 (0.152 – 
0.337) 

𝑝𝑝 0.7 0.711 (0.695 – 0.727) 0.698 (0.581 – 
0.717) 

State-Space 
Model 

𝑟𝑟 0.038  0.034 
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑇𝑇 28,970   25,648 (18,616 – 

34,096) 
Fecundity 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 4.5  4.57 (3.75 – 5.45) 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.71  0.647 (0.51 – 0.73) 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 3.24  3.23 ± 1.34 

IPM 𝝓𝝓𝟎𝟎 0.3 0.282 (0.202 – 0.442) 0.432 (0.196 – 
0.937) 

𝝓𝝓𝟏𝟏 0.6 0.615 (0.442 – 0.937) 0.657 (0.209 – 
0.972) 

𝜙𝜙2 0.8 0.792 (0.781 – 0.803) 0.792 (0.781 – 
0.803) 

∝ 0.3 0.299 (0.224 – 0.381) 0.299 (0.225 – 
0.382) 

𝑝𝑝 0.7 0.711 (0.695 – 0.727) 0.711 (0.695 – 
0.727) 

𝑟𝑟 0.038 0.038 0.036 
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑇𝑇 28,970  27,041 (22,047 – 

32,370) 
27,177 (22,061 – 

32,519) 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 4.5 4.56 (3.75 – 5.46) 4.56 (3.75 – 5.36) 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.71 0.647 (0.514 – 0.728) 0.647 (0.514 – 

0.728) 
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Figure S4-1. Posterior distribution for breeding population 
size produced by the informative IPM (Nb, black line is 
mean and grey band is 95% BCI) compared to simulated 
data (red dots). 
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Chapter 5: Advantages of integrated population modeling for endangered species 

classification decisions 

Abstract 

Integrated analyses have become increasingly popular over the last decade due to 

increased precision of parameter estimates, estimation of processes that are not directly 

measured, and explicit accounting of many sources of uncertainty. As our understanding 

of a system increases through data collection and modeling efforts, it logically follows 

that uncertainty would decrease, providing stronger ecological and predictive inference. 

However, inferences gained from integrated models have not been explicitly compared to 

their non-integrated sub-models in a decision context. We employed integrated 

population models (IPM) to identify ecological relationships, estimate demographic 

parameters, and estimate population size and trend for threatened spectacled eiders 

(Somateria fischeri) breeding on the Yukon-Kuskokwim Delta, Alaska. We compared 

estimates of parameters and ecological relationships from integrated models to analyses 

on subsets of data. We also compared abundance and trend estimates from IPM to those 

calculated using a state-space model based on count data.  We then examined the effect 

on a Bayesian decision analysis for listing status. State-space model estimates of 

abundance were less precise than those from the integrated model, population size had 

wider confidence intervals and process error was 34% larger. IPM results indicate we are 

nearly three times more likely to commit an overprotection error than an underprotection 
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error if the decision were to delist. Alternatively, state-space model results indicate we 

are less than twice as likely to commit an overprotection error as an underprotection error 

if the decision were to delist. Finally, using the integrated model we were able to identify 

important ecological relationships that may pose a threat to future viability. Our study 

indicates that the integrated analysis reduced uncertainty in the decision space through 

more precise population estimates and through the identification of potential threats. 

Introduction 

Decisions regarding the classification of a species under the U.S. Endangered 

Species Act (ESA) are based on both scientific assessments (Smith et al. 2018) and 

value-based judgements about the level of extinction risk that warrants protection 

(Doremus 1997, Cummings et al. 2018). Regulatory protection under the ESA is assigned 

based on extinction risk and includes three risk categories “endangered”, “threatened”, 

and “not warranted.” A species may be classified as endangered if it is in imminent 

danger of extinction throughout all or a significant portion of its range, threatened if it is 

likely to become endangered in the foreseeable future, or not warranted (16 U.S.C. 1532 

et seq.). Alternatively, listed species may be considered for reclassification through 

downlisting (moving from endangered to threatened status) or delisting (being removed 

from ESA protections) based on recovery criteria. Optimally, these decisions should be 

supported by a risk assessment based on species ecology, analyses of current and future 

responses to stressors and conservation efforts, and the level of risk that warrants a 

species protection and assignment to each category. 

Species status assessments (SSA) were developed as a framework to use the best 

available information on species ecology, describe current conditions and the likely 
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mechanisms that have influenced abundance, and use this information to predict a species 

response to future conditions related to environmental conditions and conservation 

actions (Smith et al. 2018). Collecting data on small or declining populations to identify 

ecological reasons for species declines can be challenging. Often, species are difficult to 

study due to their rarity or elusiveness, hesitation to use invasive sampling techniques, or 

lack of decent samples sizes due to short study periods over small spatial scales (Zipkin 

and Saunders 2018). In many cases, there may be limited data covering different spatial 

and/or temporal scales often resulting in separate analyses of sparse, disparate data 

(Saunders et al. 2019). Deficiencies and biases may be introduced through collection 

processes due to imperfect detection, non-random sampling in space or among age 

classes (e.g. sampling only breeding populations), and spatial scale mismatches. 

Analyzing independent data sets may fail to account for uncertainties leading to unsound 

inference and misinformed decisions.  

Recent developments in statistical modeling have provided a framework to 

integrate multiple data sources to provide more robust estimates of population size, trend, 

and vital rates, as well as formally describe important ecological relationships. Integrated 

population models (IPMs) are useful for obtaining crucial demographic information from 

limited data (Schaub et al. 2007), improving estimation of population size and trends 

(Lee et al. 2015), and explicitly link changes in abundance to underlying demographic 

processes, environmental covariates, and conservation actions (Altwegg et al. 2014, 

Koons et al. 2016, Mosnier et al. 2015, Zipkin and Saunders 2018). IPM’s can be used to 

identify critical aspects of species ecology, quantify current conditions of a species 

habitat, demography, abundance, and population structure, estimate trends, and identify 
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stressors that led the species to its current condition (Coates et al. 2018, Wilson et al. 

2016, Zipkin and Saunders 2018). Furthermore, IPM’s are easily extended to predict 

species extinction risk in response to conservation actions and future environmental 

conditions (Oppel et al. 2014, Saunders et al. 2018). Thus, IPM’s may offer a particularly 

useful framework for use in species status assessments. 

A species SSA can be used to help inform its listing or reclassification status as 

endangered, threatened, or not warranted under the ESA. However, there are no 

guidelines that explicitly define how to interpret the categorizations of species 

endangerment complicating the listing process by lacking transparency and consistency. 

Quantitative criteria have been proposed by many as an alternative to assign species to 

categories based on extinction probability thresholds over time through population 

viability analysis (PVA; Taylor 1995, McGowan et al. 2014), but such methods have not 

been widely adopted (Cummings et al. 2018). PVA, among other quantitative criteria, 

have not been integrated into law in response to resistance to the widespread use of these 

methods for assessment, reluctance for setting universal policy standards for risk 

tolerance, and differences in the way decision makers frame the decision (Doremus 1997, 

Robbins 2009, Cummings et al. 2018). Inference from analyses of ecological data can be 

combined with statistical decision theory to directly inform decisions while accounting 

for uncertainties and incorporating value-based judgements for classification (Berger 

1985, Williams and Hooten 2016). However, despite the potential of combining 

integrated models and decision theoretic methods to improve decision-making under 

uncertainty, they have yet to be implemented in a conservation decision framework. 
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Statistical decision theory is a natural extension of statistical inference that 

incorporates value judgements set by the decision maker (Berger 1985, Williams and 

Hooten 2016). Demographic and survey data are often collected with the explicit goal to 

inform management decisions. Statistical decision theory uses the results of a statistical 

analysis to reduce uncertainty in a decision problem and help the decision maker choose 

the optimal decision based on the objectives defined (Williams and Hooten 2016). In this 

framework, we can integrate the results of a population model with a loss function. A loss 

function describes the loss or cost incurred with the decision and the true state of nature 

(Berger 1985, Williams and Hooten 2016). In the Bayesian context, loss functions 

include statistical inference from the data, prior information, and related uncertainties. In 

this case, we express loss associated with the decision to delist or maintain threatened 

status for a listed species. Specifically, we seek to estimate the under and overprotection 

errors associated with the species classification decision based on estimates of population 

size, trend, and process variation. There are two types of error associated with species 

classifications, to protect the species when protection is not warranted (overprotection) 

and to not protect the species when protection is warranted (underprotection) (Taylor et 

al. 1996). The shape of the loss function is determined by the decision maker and could 

include symmetric functions that equally penalize the over and under protection loss of a 

decision. The loss function can take many shapes and is defined by the decision maker’s 

objectives and risk attitude. 

We employ a state-space model for count data, an integrated population model for 

demographic data, and a Bayesian decision analysis to demonstrate the relative benefits 

of using the combined approaches of statistical analysis and decision theory in the 
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context of species classification decisions. We employ an integrated population model to 

address species ecology, estimate demographic parameters, and estimate population size 

and trend for threatened spectacled eiders (Somateria fischeri) breeding on the Yukon-

Kuskokwim Delta (YKD), Alaska. We compare estimates of parameters and ecological 

relationships from our integrated model to analyses on independent subsets of data, 

including abundance and trend estimates from the IPM to those produced from a state-

space model based on count data. Results from each model are used in a Bayesian 

decision analysis to calculate the loss associated with making a reclassification decision. 

Specifically, we compare the estimates of population size and trend from the IPM and the 

separate state-space model fit to the count data to: 1) evaluate the probability that the 

population has met the criteria for reclassification based on population metrics including 

stable or increasing population growth and minimizing underprotection loss, and 2) 

determine if there was a measurable benefit to using the outputs of the IPM for informing 

species classification decisions using the loss functions. 

Methods 

Study species and monitoring data 

Spectacled eiders were listed as threatened under the Endangered Species Act 

(ESA, as amended) in 1993 following extreme population declines throughout their 

breeding and nesting range in Alaska (Ely et al. 1994, Flint et al. 2016, Taylor et al. 

1996). There are three geographically distinct breeding populations; one in Arctic Russia, 

one in the Arctic Coastal Plain of Alaska, and the population on the YKD. The global 

population of spectacled eiders winters in one distinct region south of St. Lawrence 
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Island in the Bering Sea and thus are subject to similar environmental conditions during 

the wintering period (Petersen et al. 1999, Sexson et al. 2014, 2016).  

Aerial surveys of spectacled eiders have been conducted over 12,832 km2 of 

YKD tundra wetland habitat annually since 1988 (Platte and Stehn 2015, Fischer et al. 

2017, Lewis et al. 2019). Eider density varies widely across the YKD with low densities 

throughout most of the region. Lewis et al. (2019)) identified three density-specific strata; 

low-density (0-1.60 nest/km), medium-density (1.60-3.50 nests/km), and high-density 

(>3.50 nests/km). Ground-based surveys have been conducted annually on the YKD 

since 1985 to estimate the numbers of nests for geese and eiders. This survey samples 

randomly selected plots within the core nesting area of spectacled eiders in the central 

coast zone encompassing 716 km2 (Fischer et al. 2017). Estimates of nests and aerial 

observations among low, medium, and high-density stratum on the YKD were used to 

calculate density-specific aerial visibility correction factors (VCF) to account for 

incomplete detection on the aerial surveys. The average density-specific visibility correct 

factors were used to convert indices of eider abundance to annual estimates of breeding 

spectacled eiders and variance (Lewis et al. 2019). These estimates are utilized as 

observation data and error in the models. 

On the YKD, survival and productivity studies were carried out on Kigigak Island 

(1992-2015) following protocols established by Grand and Flint (1997). For a detailed 

explanation of field methodologies see Grand and Flint (1997) and Flint et al. (2016). 

Adult females were captured on nests and given metal leg bands, numbered plastic leg 

bands, and nasal disks. At approximately 30 days’ post-hatch ducklings were captured 

and marked with stainless steel and plastic bands. 
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Environmental covariates 

During years of heavy ice cover in the core wintering area, spectacled eider body 

condition suffered, likely in response to the restricted open leads and subsequent low 

availability of suitable prey (Cooper et al. 2013, Lovvorn 2015). Further studies 

demonstrated that spectacled eiders save considerable energy during non-foraging 

periods by resting on ice (Lovvorn et al. 2003, 2009). We estimated the relationships 

between survival, breeding propensity, and winter sea ice conditions using two different 

indices of sea ice severity. Previous work has identified a relationship between the 

number of extreme ice days, defined as the number of days with >95% ice cover, and 

adult survival (Christie et al. 2018, Flint et al. 2016). Observed sea ice concentrations 

were extracted from the core area (as defined by Petersen et al. 1999) that spans four grid 

cells (25 km resolution) derived from passive microwave satellite imagery using the 

Bootstrap Algorithm and provided by the National Snow and Ice Data Center (NSIDC). 

To determine effects of breeding site conditions on nest success we included as 

covariates the total precipitation and temperature anomalies during the breeding period 

and proportion of nest plots with evidence of foxes as an index of fox abundance (Fischer 

et al. 2016). Precipitation data were recorded at Bethel Airport in Bethel, Alaska at the 

National Weather Service Cooperative Network station (Western Regional Climate 

Center 2019). Temperature anomalies were calculated with respect to the 1981-2010 

average and reported by NOAA National Centers for Environmental Information (NOAA 

2019).   
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Integrated population model 

We constructed the following matrix to model survival, transition probabilities, 

and recruitment of female spectacled eiders 

𝐴𝐴𝑡𝑡  = �

0 0 𝑓𝑓/2 ∗ 𝜙𝜙0 𝑓𝑓/2 ∗ 𝜙𝜙0
𝜙𝜙1 ∗ 1−∝ 0 0 0
𝜙𝜙1 ∗ ∝ 0 0 0

0 𝜙𝜙2 𝜙𝜙2 𝜙𝜙2

�

𝑡𝑡

. 

There are three age classes, where 𝜙𝜙𝑖𝑖 represents annual survival probabilities for 

hatch year birds (𝜙𝜙0), immature birds (𝜙𝜙1), and adult birds 𝜙𝜙2 age 2 years and older. 

Spectacled eiders may begin breeding at 2 years of age, but evidence suggests they are 

less likely to breed than birds age 3 and older. Because spectacled eiders do not breed 

until at least their second year, we set the model to estimate the breeding propensity of 2-

year-old birds (∝). Females age 3 and older are assumed to breed every year (Flint et al. 

2016). Thus, this matrix allows 1-year old individuals to transition to either non-breeding 

2-year-old birds (𝜙𝜙1 ∗ 1−∝) or breeding 2-year-old birds (𝜙𝜙1 ∗ ∝) with corresponding 

fecundity estimates. We assumed adults (3+ year-old-birds) and 2-year-old birds have 

equal survival rates (𝜙𝜙2) regardless of breeding status. We used a multistate framework 

to model survival and breeding probability. There are five states including hatch year 

birds, immature birds, non-breeding 2-year olds, breeding 2-year olds, and breeding 

adults ages 3 and older. Individuals may be marked as ducklings or as breeding adults on 

the breeding grounds. Immature and non-breeding 2-year olds do not come to the 

breeding grounds and are thus unobservable. Therefore, two out of the five states in our 

model are unobservable and lack explicit data. Parameter redundancy is often a problem 

when there are unobservable states and results may be biases or highly imprecise (Bailey 
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et al. 2010). Estimates of first year survival and breeding probability of 2-year olds is of 

high interest, therefore we induced certain constraints to make these parameters 

identifiable. First, we tested the model’s ability to estimate these parameters using 

simulated data. When initiated with informative priors the model was able to provide 

estimates that included the true value within the 95% credible interval (see Supporting 

Information). Using the spectacled eider data, we constrained immature survival to be a 

constant proportion of adult survival 𝜙𝜙1 =  (𝜙𝜙2 ∗ 0.8) based on similar relationships 

between age classes in three closely related species, long-tailed ducks (Clangula 

hyemalis), common eiders (Somateria mollissima) and king eiders (Somateria 

spectabilis) (Koneff et al. 2018). Investigation of alternative parameterizations, such as 

including a strong prior on first year survival, should be considered to determine the 

effect of model assumptions on inference in the decision context. We used the state-space 

model formulation to model the population count data. All parameters in the integrated 

population model are defined in Table 1 along with their prior distributions. 

The state process model describes the unknown dynamics of the population over 

time. We described this change using the matrix 𝑨𝑨𝒕𝒕 (described above) and multiplying it 

by a population vector 𝒏𝒏𝒕𝒕,  

�

𝑛𝑛1
𝑛𝑛2
𝑛𝑛3
𝑛𝑛4

�

𝑡𝑡+1

 = �

0 0 𝑓𝑓/2 ∗ 𝜙𝜙0 𝑓𝑓/2 ∗ 𝜙𝜙0
𝜙𝜙1 ∗ 1−∝ 0 0 0
𝜙𝜙1 ∗ ∝ 0 0 0

0 𝜙𝜙2 𝜙𝜙2 𝜙𝜙2

�

𝑡𝑡

�

𝑛𝑛1
𝑛𝑛2
𝑛𝑛3
𝑛𝑛4

�

𝑡𝑡

 

where 𝑛𝑛1 is the number of immature (1 year old) females, 𝑛𝑛2 is the number of non-

breeding 2 year old females, 𝑛𝑛3 is the number of breeding 2 year old females, and 𝑛𝑛4 is 

the number of 3+ year old females. Therefore, the total population size including males 
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and females is  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 =  (𝑛𝑛1,𝑡𝑡 + 𝑛𝑛2,𝑡𝑡 + 𝑛𝑛3,𝑡𝑡 + 𝑛𝑛4,𝑡𝑡) ∗ 2 and the breeding population size 

is  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = �𝑛𝑛3,𝑡𝑡 + 𝑛𝑛4,𝑡𝑡� ∗ 2. 

The state process model describes the dynamics of the total population but our 

counts only include the breeding males and females and thus the observation model links 

the observed number of breeding birds (denoted by (𝑦𝑦)) to 𝑁𝑁𝑁𝑁𝑝𝑝𝑜𝑜𝑜𝑜𝑡𝑡 through the following 

equation 

𝑦𝑦𝑡𝑡 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡,𝜎𝜎𝑦𝑦,𝑡𝑡) 

where 𝜎𝜎𝑦𝑦 is the estimated annual observation error and is provided as data. For the mark-

recapture data, we used the multistate formulation of the Cormack-Jolly-Seber model 

(Lebreton 1992). To decrease computation time and increase efficiency, we converted the 

captures histories into an m-array utilizing the multinomial likelihood. We modeled 

fecundity as the product of clutch size at hatch (𝑐𝑐𝑐𝑐) and probability of nest success (𝑛𝑛𝑛𝑛). 

Nests were monitored near the expected hatch date and the number of eggs hatched was 

recorded to account for egg mortality. Probability of nest success was modeled as 

proportion of nests with at least one egg hatched out of the total nests recorded in a 

binomial regression. 

State-space model 

In addition to our integrated model, we constructed a state-space model to analyze 

only the count data to compare posterior results of population estimates and the 

probability of meeting the species recovery criteria. Our state-space model describes 

population growth mathematically as 
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log(𝑁𝑁𝑡𝑡+1) = log(𝑁𝑁𝑡𝑡) + 𝑟𝑟𝑡𝑡  

where 𝑁𝑁𝑡𝑡 is the number of breeding birds (YKD) or breeding pairs (ACP) in year 𝑡𝑡, 𝑟𝑟𝑡𝑡 is 

population growth rate and 

𝑟𝑟𝑡𝑡 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑟̅𝑟,𝜎𝜎𝑟𝑟).  

 We set the prior distributions for initial abundance equal to the mean detection 

adjusted estimates for 2005 for the YKD:  log(𝑁𝑁2005) ~ 𝑁𝑁(log(𝑦𝑦2005) , 0.1) (Lewis et al. 

2019), population growth, 𝑟̅𝑟 ~ 𝑁𝑁(0, 0.1), and for process error we used a gamma 

distribution 𝜎𝜎𝑟𝑟~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎, 𝑠𝑠)  with shape parameters 𝑎𝑎 = 3 and 𝑠𝑠 = 0.2.  

The observation model relates the true population size 𝑁𝑁𝑡𝑡 to the observations 

corresponding to the detection adjusted abundance indices for each breeding ground. 

Thus, our observation process was 

𝑦𝑦𝑡𝑡�  ~ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� 𝑁𝑁𝑡𝑡,𝜎𝜎�𝑦𝑦𝑡𝑡��  

where the observations, 𝑦𝑦𝑡𝑡� , were the detection adjusted abundance indices of spectacled 

eiders from the aerial surveys on the respective breeding grounds (Lewis et al. 2019). 

Annual observation errors from aerial survey sampling (𝜎𝜎�𝑦𝑦𝑡𝑡�) were provided as data (see 

similar approach in Rotella et al. 2009 and Koons et al. 2017).  

In 2011, aerial surveys were not flown on the YKD and therefore there is no 

observation for that year. We estimated observation error for 2011 using a zero-intercept 

linear regression model where 𝜎𝜎�𝑥𝑥𝑡𝑡 is the predicted observation error as a function of 

estimated population size 𝑁𝑁𝑡𝑡 and 𝛽𝛽~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,30) 

𝜎𝜎�𝑥𝑥𝑡𝑡 =  𝛽𝛽 ∗ 𝑁𝑁𝑡𝑡 (4) 
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𝜎𝜎�𝑧𝑧𝑡𝑡~𝑁𝑁(𝜎𝜎�𝑥𝑥𝑡𝑡 ,𝜎𝜎) (5) 

and where 𝜎𝜎�𝑧𝑧𝑡𝑡 is the estimated observation error in year 𝑡𝑡 and is normally distributed 

about 𝜎𝜎�𝑥𝑥𝑡𝑡 with a standard deviation 𝜎𝜎 ~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎, 𝑠𝑠) where the shape parameter, 𝑎𝑎 = 2, 

and the scale parameter 𝑠𝑠 = 100. 

Model implementation  

We fit the integrated population model in a Bayesian framework using R 3.5.1, 

JAGS 4.3, and the jagsUI package (Plummer 2003, Kellner 2015, R Core Tea, 2016). We 

initialized the IPM with 500,000 iterations, discarded 325,000 after burn in, and thinned 

by 15. The state-space model was also fit using JAGS software in program R. We ran 

three MCMC chains for 100,000 iterations, set thin to 2, discarded 70,000 as burn-in, and 

ran 5,000 iterations in the JAGs adaptive phase. Convergence for each model was 

assessed based on the Gelman and Rubin statistic (R-hat between 1 and 1.05). 

Additionally, trace plots were used to visually inspect adequate convergence of the 3 

chains.  

 

Delisting criteria and Bayesian decision analysis 

Criteria for delisting spectacled eiders from threatened status includes when the 

following quantitative criteria are met, when (1) the minimum estimated breeding 

population size is ≥ 6,000 breeding pairs (or 12,000 breeding birds) designated by the 

95% lower credible interval, and the population is increasing as judged by statistical 

measures, which includes: the over-protection loss exceeding the under-protection loss, 

calculated using trend data based on at least 10 years (but no greater than 15 years) and 
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where loss functions symmetrical around r = 0 with a zero loss for both functions when r 

= 0, and, the minimum estimated population size is > 6,000 breeding pairs; or (2) the 

minimum estimated population size is >10,000 breeding pairs over > 3 survey years, or 

the minimum estimate of abundance exceeds 25,000 breeding pairs in any survey 

(USFWS 2002). Here, we are specifically interested in testing the first criteria.  

The decision or loss functions were calculated given the posterior estimates of 

population growth 𝑟𝑟 ~ 𝑁𝑁(𝑟̅𝑟,𝜎𝜎�𝑟𝑟), including process error, and abundance in the final year 

𝑁𝑁2014 converting these metrics into a measure of risk according to probability of 

extinction. The cost of making decision errors is measured in terms of the probability of 

decreasing to under 250 adults (125 breeding pairs) in 50 years (USFWS 1993). See 

Chapter 2 for further detail on calculating loss functions (in this dissertation). 

Results 

Demographic rates and environmental effects 

Adult (2 to 3+ years old) survival probability was consistently high with an 

average estimate of 0.87 (95% CRI 0.794-0.931). Annual variability in year-specific 

estimates of adult survival has increased in the past 5 years (Figure 1). Survival of 

individuals from 1 to 2 years old was modeled as a constant proportion of adult survival 

and was not explicitly estimated in our model. Hatch year survival was variable over time 

with a mean of 0.31 (95% CRI 0.125-0.578) and may be biased high because the model 

does not account for survival between hatch and 30-days. Mean breeding propensity was 

0.39 (95% CRI 0.028-0.583) and highly variable among years. However, there was 

significant overlap between the posterior and prior indicating potential parameter 

identifiability problems (>35% overlap, Gimenez et al. 2009). Further simulations are 
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required to determine if the bias in hatch year survival and non-identifiability of breeding 

propensity affect population estimates and the conservation decision. 

We tested the effects of the number of extreme sea ice days (>95% coverage) at 

the core wintering area on survival and breeding propensity. We found strong support for 

a nonlinear relationship between extreme sea ice days in the core area and adult survival 

(Figures 4-4, 4-3). Additionally, we found evidence for a nonlinear relationship with 

extreme sea ice days and hatch year survival (Figure 4-3). These relationships describe 

the change in survival rates across the values of extreme ice days. In years with a very 

low number of extreme ice days survival is lower than average, survival is highest in 

years with an average number of extreme ice days and subsequently declines in years 

with above average number of ice days. No relationship was detected between breeding 

probability and extreme ice days (Figure 4-3). 

Average nest success was high but also highly variable across years, particularly 

in 2001, and 2013, years that corresponded with high nest predation events (Moore and 

Sowl 2017). Overall, nest success has declined over our study period and the index of fox 

abundance indicates an increase over the same period on the YKD (Chapter 4 this 

dissertation). The models identified fox presence to be a strong predictor of annual nest 

success and provided little evidence for a relationship with precipitation or temperature 

(Figures 4-5, 4-3). The Bayesian p-value for the posterior predictive check of how well 

the nest success model fit the data was 0.35, indicating relatively good model fit.  

Decision analysis 

Posterior estimates of population size and growth rate from both the integrated 

model and the state-space model indicate that the YKD breeding population has met the 
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species reclassification criteria. Based on estimated abundance in 2014, the IPM results 

indicate the population has 100% probability (P = 1.0) of having met the abundance 

threshold (95% LCRI = N� ≥ 12,000 breeding birds). The 10-year mean growth rate 

between 2005 and 2014 from the integrated population was positive 𝑟̅𝑟 = 0.025 but 

variable, evident by the standard error (SE 0.071) and overlapped zero (Figure 5-1). 

Furthermore, overprotection loss from the integrated population model was greater than 

underprotection loss (Table 5-2). Estimated mean abundance from the state-space model 

in 2014 was 14,205 breeding birds (95% CRI 11,832 to 16,538). The 95% LCRI of 

abundance in 2014 was below 12,000 breeding and output from the SSM does not 

support the YKD population having met the abundance threshold criterion (Table 5-2). 

The mean population growth estimate from the state-space model was equal to the IPM 

estimate (𝑟̅𝑟 = 0.025) but more variable (SE 0.091) and overprotection loss exceeded 

underprotection loss (Table 5-2). 

 

Discussion 

We developed an integrated population model to estimate demographic rates, 

population size, population growth rate, and demographic responses to environmental 

conditions. We provide estimates of latent demographic rates (e.g., hatch year survival) 

that were previously inestimable through analysis of singular data sets. Hatch year 

survival was variable but generally consistent with other eider life-history studies (Flint 

2015, Koneff et al. 2018), however, the estimate does not include survival between hatch 

and 30-days which may bias this estimate high. Adult survival was consistently high but 

exhibited greater annual variation over the past 5 years (Figure 4-4), likely in response to 
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changing sea ice conditions during the wintering period. Nest success was highly variable 

and was strongly negatively influenced by fox abundance. Variation in adult survival had 

the greatest influence on population growth, which is consistent with life-history theory. 

Population growth estimates from both the integrated model and the state-space model 

indicate the population was most likely stable or increasing between 2005 and 2014, but 

estimates do overlap zero on the log scale (Figure 5-1). Our results indicate that extreme 

sea ice conditions (high or low number of days with >95% ice cover) negatively 

influence adult survival probability. Additionally, we identified fox abundance to be a 

strong predictor of annual nest success. Using the integrated population model, we 

identified two potential ecological factors that may limit population growth and threaten 

population viability. 

Species status assessments (SSA’s) use the 3 R’s of conservation biology to 

evaluate the current and future condition of the species (Smith et al. 2018). The first, 

resiliency, is the ability to withstand stochastic disturbance and is positively related to 

population size and growth rate. Redundancy, ability of a species to withstand 

catastrophic events by spreading risk among multiple populations or across a large area. 

Finally, representation, is the ability of a population to withstand changing environmental 

conditions over time as characterized by the breadth of genetic and environmental 

diversity within and among populations. The YKD breeding population has exhibited 

growth and the population size in 2014 was 14,511 (12,496-16,589; IPM estimate) which 

is substantially greater than the population size at listing in 1992 of 3,046 (2,342-3,772; 

IPM estimate) breeding birds. However, we have detected an increasing trend in fox 

abundance and a strong negative relationship with nest success. Further, the relative 
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influence of adult survival on population growth with predicted changes in sea ice 

conditions may threaten population viability. We did not assess future conditions because 

this requires the species recovery team to identify scenarios for which to test population 

viability. Data is limited for both the ACP and Arctic Russia breeding populations and 

thus we do not know if the same threats (extreme sea ice and fox abundance) apply to 

those populations. However, given that the global population winters together we may 

expect similar demographic responses to extreme wintering conditions. Further research 

is warranted to determine if sea ice conditions and predation pressure are limiting factors 

for global population growth, or, if there are additional stressors that may affect the other 

breeding populations and influence global population viability. The decision analysis for 

species classification could easily be extended to link demographic or population level 

responses to future environmental conditions. 

Population estimates from the integrated model indicate that the YKD breeding 

population of spectacled eiders has met the designated reclassification criteria in the 

species recovery plan, however, estimates produced from the state-space model of the 

counts do not meet the abundance threshold. Although mean intrinsic population growth 

is positive and overprotection loss exceeds under protection loss in both models (Table 5-

2), the lower 95% credible interval of breeding population size produced by the state-

space model did not meet the threshold of 12,000 breeding birds (Table 5-2). Estimates 

produced by the state-space model are less precise, population size has wider credible 

intervals and process error is roughly two times larger than the estimate produced by the 

integrated model. Results indicate population growth is positive, although, the posterior 

distribution of population growth overlaps zero in both models. The posterior of 
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population growth produced by the integrated population model is considerably more 

precise than that of the state-space model. Results from the integrated model indicate that 

we are 3.5 times more likely to commit an overprotection error than an underprotection 

error if the decision were to delist. Alternatively, the state-space model results indicate 

we are less than two times as likely to commit an overprotection error as an 

underprotection error if the decision were to delist. The differences in misclassification 

error are caused by the greater uncertainty from the state-space model estimates 

propagating through the population projections.  

To our knowledge, we are the first to provide empirical data that indicates the 

effects of gaining precision using an integrated model for identifying both ecological 

patterns influencing demographic rates and increasing certainty of a conservation 

decision. We demonstrated that using an integrated model we can estimate previously 

inestimable demographic rates and ecological relationships providing a better 

understanding of species ecology and potential threats. Further, we demonstrate that there 

is a benefit to using an integrated approach over a non-integrated approach for 

conservation decisions. Increased precision of population estimates provides decision 

makers with an opportunity to provide clearer and more robust evidence to support their 

decisions. The combined benefits of the integrated framework holds great promise for 

understanding critical components of species ecology while aiding conservation and 

management decisions (Schaub and Abadi 2011, Wilson et al. 2016, Zipkin and Saunders 

2018). 

While we argue that the precision gained by using the IPM framework increased 

the probability of overprotection and thus potentially made the decision easier – we 
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recognize that the decision metrics would likely lead to the same conclusion based on 

minimizing underprotection loss. Our results therefore provide additional support to the 

growing body of literature on the utility of loss functions and calculating 

misclassification error for species classifications and other natural resource decisions 

(Taylor et al. 1996, Regan et al. 2013, Williams and Hooten 2016, Cummings et al. 

2018). We also recognize that data are often limited for many species. Integrated models 

have been extended to include less information-rich data sources such as citizen science 

data (Robinson et al. 2018) and detection - non-detection data (Zipkin et al. 2017). Loss 

functions can be used when there is no explicit information on a species current status 

(i.e. expert opinion) or for data limited species. Eliciting expert opinion to generate a 

prior is a valid way of generating a loss function for informing decisions (Berger 1985, 

Williams and Hooten 2016). Models can be updated when information becomes available 

and can be built for nearly any source of data depending on the objectives (Berger 1985, 

Regan et al. 2013, Williams and Hooten 2016). The shape of the loss function should be 

defined by value judgements about risk tolerance and uncertainty. For spectacled eiders, 

the recovery team chose a symmetrical loss function to represent equal loss associated 

with underprotection and overprotection. Recovery teams may choose an asymmetrical 

loss function to emphasize that underprotecting a species is a greater loss than 

overprotecting a species. Loss functions can take many shapes but as long as the decision 

makers are clear about their choices, using this approach offers a transparent framework 

for making species classification decisions.  

In this research, we have; 1) quantified effects of ecological processes acting on 

demographic rates during both the breeding and wintering seasons, 2) identified potential 
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threats to future viability, 3) provided precise estimates of population size and trend, 4) 

compared two structural forms of population models, and 5) demonstrated the benefits of 

classifying species based on decision theoretic methods. Using the traditional integrated 

population modeling approach, we were able to estimate latent demographic parameters, 

demographic response to environmental conditions and estimate population size and 

trend. Each of these aspects are critical components for assessing current and future 

conditions in an SSA. By further integrating the results of our IPM and SSM we were 

able to estimate the probability of committing overprotection or underprotective errors 

for the decision to maintain listing or to delist. The probability of committing these errors 

is directly related to population resiliency given current conditions and can be easily 

extended to test the probability of committing errors under different future scenarios. We 

believe the combined approaches of integrated population modeling with decision 

theoretic methods offers a useful framework for making species classification decisions 

and on a broader scale, conservation management. 
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Tables 

 

  

Table 5-1. Parameters, their definitions, and prior distributions used in the spectacled eider 
integrated population model. 
Parameter Definition Prior  

𝜙𝜙2 Survival of adults 2+ years Uniform (0,1) 
𝜙𝜙1 Survival of 1 year old birds (1-2 years) 

*Modeled as a constant proportion of adult 
survival 

𝜙𝜙1 =  𝜙𝜙2 ∗ 0.8 

𝜙𝜙0 Survival of first year birds (hatch to 1 year) Uniform (0,1) 
𝛼𝛼 Breeding probability of 2 year old birds Uniform (0,1) 
𝑛𝑛𝑛𝑛 Nest success (probability of 1 egg hatching) Uniform (0,1) 
𝑐𝑐𝑐𝑐 Average clutch size at hatch Gamma (0.1, 0.1) 
𝑓𝑓𝑓𝑓𝑓𝑓 Fecundity - number of ducklings per female 

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 =  𝑛𝑛𝑛𝑛𝑡𝑡 ∗ 𝑐𝑐𝑐𝑐𝑡𝑡 
-- 

𝑛𝑛1 Number of immature (1 year old) birds 

𝑛𝑛1,𝑡𝑡+1 = �
𝑓𝑓𝑒𝑒𝑒𝑒𝑡𝑡

2
∗  𝜙𝜙0,𝑡𝑡� ∗ (𝑛𝑛3,𝑡𝑡 + 𝑛𝑛4,𝑡𝑡)  

Discrete Uniform (1600, 1900) 

𝑛𝑛2 Number of 2 year old non-breeding birds 
𝑛𝑛2,𝑡𝑡+1 =  𝜙𝜙1,𝑡𝑡 ∗ (1 − 𝛼𝛼𝑡𝑡) ∗ 𝑛𝑛1,𝑡𝑡  

Discrete Uniform (500, 900) 

𝑛𝑛3 Number of 2 year old breeding birds 
𝑛𝑛3,𝑡𝑡+1 =  𝜙𝜙1,𝑡𝑡 ∗ 𝛼𝛼𝑡𝑡 ∗ 𝑛𝑛1,𝑡𝑡  

Discrete Uniform (200, 400) 

𝑛𝑛4 Number of 3+ year old birds 
𝑛𝑛4,𝑡𝑡+1 =  𝜙𝜙2,𝑡𝑡 ∗ (𝑛𝑛2,𝑡𝑡 + 𝑛𝑛3,𝑡𝑡 + 𝑛𝑛4,𝑡𝑡)  

Discrete Uniform (4000, 5000) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 Total population size (males and females) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 =  (𝑛𝑛1,𝑡𝑡 + 𝑛𝑛2,𝑡𝑡 + 𝑛𝑛3,𝑡𝑡 + 𝑛𝑛4,𝑡𝑡) ∗ 2 

-- 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 Breeding population size (males and females) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = �𝑛𝑛3,𝑡𝑡 + 𝑛𝑛4,𝑡𝑡� ∗ 2 

-- 

𝑦𝑦 Annual index of breeding population size -- 
𝜎𝜎𝑦𝑦 Annual estimated observation error of 𝑦𝑦 -- 
𝛽𝛽 Regression coefficients Uniform (-5,5) 

𝜎𝜎𝜙𝜙,𝛼𝛼,𝑛𝑛𝑛𝑛 Standard deviation of temporal variability 
*Used for  𝜙𝜙,𝛼𝛼,𝑛𝑛𝑛𝑛 

Uniform (0,10) 

𝜀𝜀 𝜀𝜀𝑡𝑡~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (0,𝜎𝜎𝜃𝜃) -- 
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Table 5-2.  Posterior estimates of population metrics and 
loss for Alaskan breeding populations of Spectacled eiders 
(Somateria fischeri). Consideration for reclassification from 
threatened to recovered requires that the population size 
must reach or exceed the threshold, and overprotection loss 
must be greater than underprotection loss.  
  SSMa IPMb 

Abundance    
Mean 14,205 14,511 

SD 1,200 1,051 
95% CRI 11,832 – 16,538 12,496 – 16,589 

Population growth ‘r’   
Mean 0.025 0.025 

Process error 0.14 0.071 
Underprotection 0.22 0.065 
Overprotection 0.35 0.23 
P(N2014 ≥ threshold)c 0.94 1.0 
a Results generated from a Bayesian state-space model of 
count data only. 
b Results generated from an integrated population model 
using demographic data and counts. 
c Proportion of the posterior above the threshold of 12,000 
birds. 
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Integrated population model 

 under-
protection 

 over-
protection 

State-space model 

Figure 5-1. Loss functions generated using the probability of quasi extinction (N < 250 
adults) given population size, growth rate, and process error estimates for both the state 
space model (SSM) and integrated population model (IPM) of spectacled eiders on the 
Yukon-Kuskokwim Delta. The histogram is the posterior distribution of population growth 
rate from each model. The posterior is wider for estimated growth rate under the state -
space model than the integrated model. The vertical dashed line indicates the mean 
population growth rate and is 𝑟̅𝑟 = 0.025 for both models. The curved lines indicate 
expected loss or probability of quasi extinction given a value for population growth rate 
along the x-axis, and model estimated population size and process error. Under- protection 
(dot-dashed line) refers to the risk of misclassifying the population if the decision were to 
delist the species for each value of r and is calculated as the product of expected loss and 
the proportion of values of estimated population growth. Over-protection (solid black line) 
refers to the risk of misclassifying if the decision were to keep the species listed as 
threatened when protection is not warranted. 

 under-
protection 

 over-
protection 
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Appendix 1 – Chapter 2 Model Code 

Chapter 2: Evaluating the probability of meeting population management thresholds 

Matlab Code 

n = 10000; % number of particles 
thold = 12000; % threshold number of BIRDS 
 
%% Detection Parameters 
% Uniform detection probability 
mind = 0; 
maxd = 1; 
 
dUnif = rand(n,1)*(maxd-mind)+ mind; 
% High detection probability 
detH = 0.7; 
% Low detection probability 
detL = 0.3; 
% High error 
seH = 0.2; 
% Low error 
seL = 0.05; 
 
% Traditional VCF converted to Detection rate 
VCF = 3.58; 
Tdet = 1/VCF; % No error associated with this detection rate (applied to all eider spp) 
% Informed detection distributions 
detHH = betaparm(detH,seH,0,1,n,1,0); 
detLL = betaparm(detL,seL,0,1,n,1,0); 
detHL = betaparm(detH,seL,0,1,n,1,0); 
detLH = betaparm(detL,seH,0,1,n,1,0); 
 
%% Count Parameters 
% YKD Informed count Fischer report 2016 (personal communication) 
YKDcount = 6336; % Indicated breeding birds 
YKDse = 511; 
 
cYKD = YKDcount(1)+randn(n,1)*YKDse(1); 
% Uniform count 
minc = 0; 
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maxc = 10000; 
cUnif = rand(n,1)*(maxc-minc)+ minc; 
%% MODELS %%  
%%%%%%%% YKD 1 Uniform detection count from 2016 %%%%%%% 
YKD1N = cYKD./dUnif; 
x1 = YKD1N >= thold; 
t = sum(x1); 
pN1 = t/n 
 
YKD1Nx = YKD1N(x1); 
YKD1dx = dUnif(x1); 
YKD1cx = cYKD(x1); 
 
%% YKD INFORMED DETECTION MODELS %% 
%%%%%%%%%%%%%%% YKD 2 Beta detection 0.6 small se count from 2016 
YKD2N = cYKD./detHL; 
x2 = YKD2N >= thold; 
t2 = sum(x2); 
pNt2 = t2/n 
 
YKD2Nx = YKD2N(x2); 
YKD2dx = detHL(x2); 
YKD2cx = cYKD(x2); 
 
%%%%%%%%%%%%% YKD 3 Beta detection 0.6 large se count from 2016 
YKD3N = cYKD./detHH; 
x3 = YKD3N >= thold; 
g = sum(x3); 
b = g/n 
 
YKD3Nx = YKD3N(x3); 
YKD3dx = detHH(x3); 
YKD3cx = cYKD(x3); 
 
%%%%%%%%%%%%%% YKD 4 Beta detection 0.3 small se count from 2016 
YKD4N = cYKD./detLL; 
x4 = YKD4N >= thold; 
xx4 = sum(x4); 
Px4 = xx4/n 
 
YKD4Nx = YKD4N(x4); 
YKD4dx = detLL(x4); 
YKD4cx = cYKD(x4); 
 
%%%%%%%%%%%%%%%%% YKD 5 Beta detection 0.3 large se count from 2016 
YKD5N = cYKD./detLH; 
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x5 = YKD5N >= thold; 
xx5 = sum(x5); 
Px5 = xx5/n 
 
YKD5Nx = YKD5N(x5); 
YKD5dx = detLH(x5); 
KD5cx = cYKD(x5); 
 
%%%%%%%%%%%%%%%%% YKD Traditional VCF applied to all eider spp 
%%%%% 
YKDvcf = cYKD./Tdet; 
x6 = YKDvcf >= thold; 
xx6 = sum(x6); 
Px6 = xx6/n 
 
YKD6Nx = YKDvcf(x6); 
% repmat for Tdet to make it the same dimension as x6 
Tdet1 = repmat(Tdet,[5000,1]); 
YKD6dx = Tdet1(x6); 
YKD6cx = cYKD(x6); 
 
%%%%%%%%%%%%%%%%% YKD Transitional VCF from Stehn and Platte 2015  
VCFp = 2.35; 
Pdet = 1/VCFp; 
YKDvcfP = cYKD./Pdet; 
x7 = YKDvcfP >= thold; 
xx7 = sum(x7); 
Px7 = xx7/n 
 
YKD7Nx = YKDvcfP(x7); 
% repmat for Tdet to make it the same dimension as x6 
Pdet1 = repmat(Pdet,[10000,1]); 
YKD7dx = Pdet1(x7); 
YKD7cx = cYKD(x7); 
 
%% Probability of meeting the threshold given ALL detection probabilities 
%%%%%%%% Simulated values for multiple detection rates %%%%%%% 
 
YKDsN = zeros(10000,100); 
d = [0.01:0.01:1]; 
for i = 1:numel(d) 
    YKDsN(:,i) = cYKD./d(i); 
    x1(:,i) = YKDsN(:,i) >= thold; 
    t(1,i) = sum(x1(:,i)); 
    pN1(i) = t(1,i)/n; 
end
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Appendix 2 – Chapter 3 Code 
Chapter 3: Assessing recovery of spectacled eiders using a Bayesian decision analysis 

R and Jags Code 
 

Yukon-Kuskokwim Delta Model 

model { 

    # ----------------------------------------------------------------------------------------     
    # PRIOR DISTRIBUTIONS 
    # ---------------------------------------------------------------------------------------- 
     
    logN.est[1] ~ dnorm(9.43, 100)      # Prior for initial population size 
    mean.r ~ dnorm(0, 1/(0.1)^2)     # Prior for mean growth rate 
 
    sigma.proc ~ dgamma(3, 20)         # Prior for process error 
    sigma2.proc <- pow(sigma.proc, 2) 
    tau.proc <- pow(sigma.proc, -2) 
     
    # ----------------------------------------------------------------------------------------     
    # LIKELIHOODS 
    # ---------------------------------------------------------------------------------------- 
     
    ## STATE PROCESS ## 
    for (t in 1:(T-1)){ 
      r[t] ~ dnorm(mean.r, tau.proc) 
      logN.est[t+1] <- logN.est[t] + r[t] 
    } 
     
    ## LINEAR REGRESSION FOR MISSING OBS ERROR ## 
     beta ~ dnorm(0, 0.001) 
     miss.se ~ dgamma(2,0.01) 
     miss.prec <- pow(miss.se, -2)  
      
     for (j in 1:T){ 
       sigma.pred[j] <- beta*N.est[j] 
       sigma.obs[j] ~ dnorm(sigma.pred[j], miss.prec) 
     } 
 
    ## OBSERVATION PROCESS ## 
    for (i in 1:T) { 
      tau.obs[i] <- pow(sigma.obs[i], -2) 
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      y[i] ~ dnorm(exp(logN.est[i]), tau.obs[i]) 
    } 
 
    # ---------------------------------------------------------------------------------------- 
    # POPULATION SIZE ON REAL SCALE 
    # ---------------------------------------------------------------------------------------- 
     
    for (t in 1:T) { 
    N.est[t] <- exp(logN.est[t]) 
    } 
 
# YKD Abundance data  
ykd1 <- c(12457, 14599, 15586, 13698, NA, 14894, 16171, 13386, 5618, 15118)  
ykd1.se <- c(1408, 1470, 1463, 1273, NA, 1375, 1460, 1360, 627, 1472)  
year <- 2007:2016 
 
# Bundle data 
jags.data <- list(y = ykd1, T = length(year), sigma.obs = ykd1.se) 
 
# Initial values 
inits <- function(){list(sigma.proc = rgamma(1, 3, 20), mean.r = rnorm(1, 0, 1/(0.1)^2),  logN.est 
= c(rnorm(1, 9.43, 10), rep(NA, (length(year)-1))), beta = runif(1, 0.01, 0.1) , miss.se = runif(1, 
100, 101))} 
 
# Parameters monitored 
parameters <- c("r", "mean.r", "N.est", "sigma.proc", "beta", "miss.se", "sigma.obs") 
 

##############################################################################
###### 

# Decision Analysis 

rs = seq(-.4,.4,0.005) # sequence of r values to test 
#sample location in posterior, maintains posterior correlation and samples across chains 
samples = sample(length(ykd_1.ssm$sims.list$sigma.proc),10000)  
storage.notclassify = matrix(NA,nrow=10000,ncol=length(rs))  
for (i in 1:length(rs)){                                 
  for(j in 1:10000){                                   
    N =  ykd_1.ssm$sims.list$N.est[ samples[j],10]   # SAMPLE POP SIZE  
    sr = ykd_1.ssm$sims.list$sigma.proc[ samples[j] ]  # SAMPLE PROCESS SD 
    for(k in 1:50){                                      # time loop - 50 years chosen by RT page 30 in 
Recovery Plan 
      r.new = rnorm(1,rs[i],sr)     
      N=N*exp(r.new) 
      if(N<250) break 
    } 
    storage.notclassify[j,i]=ifelse(N<250,1,0) 
  } 
} 
 
## Over/under protection probabilities generated from MEAN R and SD R (ssm) 
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mn.r = ykd_1.ssm$mean$mean.r 
sd.r = ykd_1.ssm$sd$mean.r 
p=matrix(0,nrow=1:length(rs)) 
p[1] = pnorm(rs[1],mn.r,sd.r) # Assumes normality 
for (i in 2:length(rs)){ 
  p[i] = pnorm(rs[i],mn.r,sd.r)-pnorm(rs[i-1],mn.r,sd.r) 
} 
loss1 = sum(p*apply(storage.notclassify,2,mean)[1:length(rs)]) 
loss2 = sum(p*apply(storage.notclassify,2,mean)[length(rs):1]) 
loss1 # underprotection loss 
loss2 # overprotection loss 
 
## Probability of N >= Nthreshold (12000) in 2016 
thold <- 12000 
ykdN = ykd_1.ssm$sims.list$N.est[,10] 
P.thold <- 100*length(which(ykdN >= thold))/length(ykdN) 
P.thold # Probability of N >= 12000 breeding birds (6000 breeding pairs) threshold for delisting  
##############################################################################
####### 
 
Arctic Coastal Plain Population Model 
 
model { 
    # ----------------------------------------------------------------------------------------     
    # PRIOR DISTRIBUTIONS 
    # ----------------------------------------------------------------------------------------     
 
    logN.est[1] ~ dnorm(8.21, 10)      # Prior for initial population size 
    mean.r ~ dnorm(0, 1/(0.1)^2)      # Prior for mean growth rate 
 
    sigma.proc ~ dgamma(3, 10)         # Gamma dist with mean ~0.3, declining tail towards 1 
    sigma2.proc <- pow(sigma.proc, 2) 
    tau.proc <- pow(sigma.proc, -2)     # Estimated precision in r 
 
    # ----------------------------------------------------------------------------------------     
    # LIKELIHOODS 
    # ---------------------------------------------------------------------------------------- 
 
    ## STATE PROCESS ## 
    for (t in 1:(T-1)){                             
    r[t] ~ dnorm(mean.r, tau.proc)             
    logN.est[t+1] <- logN.est[t] + r[t] 
    } 
 
    ## OBSERVATION PROCESS ## 
    for (i in 1:T) { 
    tau.obs[i] <- pow(sigma.obs[i], -2) 
    y[i] ~ dnorm(exp(logN.est[i]), tau.obs[i]) 
    } 
     
    # ---------------------------------------------------------------------------------------- 
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    # POPULATION SIZE ON REAL SCALE 
    # ---------------------------------------------------------------------------------------- 
     
    for (t in 1:(T)) {                                
    N.est[t] <- exp(logN.est[t]) 
    } 
    } 
 
###### Data ###### 
# NUMBER OF BREEDING PAIRS  
nbp <- c(3698, 4424, 3837, 4473, 5787, 3383, 5565, 4905, 3828, 3411)   
nbp.se <- c(574, 564, 583, 630, 692, 414, 674, 745, 536, 546) 
year <- 2007:(2016 + pyears) 
 
 
# Bundle data 
jags.data <- list(y = nbp, sigma.obs = nbp.se, T = length(year)) 
 
# Initial values 
inits <- function(){list(sigma.proc = rgamma(1, 3, 10), mean.r = rnorm(1, 0, 1/(0.1)^2), logN.est 
= c(rnorm(1, 8.21, 10), rep(NA, (length(year)-1))))} 
 
# Parameters monitored 
parameters <- c("r", "mean.r", "sigma2.proc", "N.est", "sigma.proc") 
 
##############################################################################
####### 
# Decision Model 
rs = seq(-.4,.4,0.005) # sequence of r values to test 
samples = sample(length(acp_1.ssm$sims.list$sigma2.proc),10000) # sample location in 
posterior, maintains posterior correlation and samples across chains 
storage.notclassify = matrix(0,nrow=10000,ncol=length(rs))    
for (i in 1:length(rs)){ 
  for (j in 1:10000){ 
    N = acp_1.ssm$sims.list$N.est[ samples[j],10 ] 
    sr = sqrt(acp_1.ssm$sims.list$sigma2.proc[ samples[j] ]) 
    for (k in 1:50){ 
      r.new = rnorm(1, rs[i], sr) 
      N = N*exp(r.new) 
      if(N<125) break 
    } 
    storage.notclassify[j,i] = ifelse(N<125,1,0) 
  } 
} 
 
## Over/under protection probabilities generated from MEAN R and SD R (ssm) 
p=matrix(0,nrow=1:length(rs)) 
p[1] = pnorm(rs[1],mn.r,sd.r) 
for (i in 2:length(rs)){ 
  p[i] = pnorm(rs[i],mn.r,sd.r)-pnorm(rs[i-1],mn.r,sd.r) 
} 
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loss1 = sum(p*apply(storage.notclassify,2,mean)[1:length(rs)]) 
loss2 = sum(p*apply(storage.notclassify,2,mean)[length(rs):1]) 
loss1 # Probability of underprotection given r 
loss2 # Probability of overprotection given r 
 
## Probability of N >= Nthreshold (6000) in 2016 
thold <- 6000 
acpN = acp_1.ssm$sims.list$N.est[,10] 
P.thold <- 100*length(which(acpN >= thold))/length(acpN) 
P.thold # Probability of N >= 12000 breeding birds (6000 breeding pairs) threshold for delisting 
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Appendix 3 – Code for Chapter 4 

Chapter 4: Demographic responses to climate change and predation pressure in a 

threatened Arctic species 

R and JAGS code 

model { 
 
# --------------------------------------------- # 
# PARAMETERS # 
# phi : age-specific survival probabilities 
# alpha : age-specific breeding probabilities 
# p : age-specific detection probabilities 
# fec : fecundity 
# --------------------------------------------- #  
# POPULATION STATES # 
# N1 : 1-2 yr old birds 
# N2 : 2-3 yr old non-breeders 
# N3 : 2-3 yr old first yr breeding birds 
# N4 : 3 + yr breeding birds 
# --------------------------------------------- # 
# STATES FOR MULTI-STATE CMR MODEL # 
# 1 : first year bird            --> observable as duckling 
# 2 : second year bird           --> unobservable 
# 3 : non-breeding 2.5 year old  --> unobservable 
# 4 : breeding 2.5 year old      --> observable 
# 5 : breeding 3+ year old       --> observable 
# -------------------------------------------- # 
 
# PRIORS # 
# Parameters: 
    # phi: age/state-specific survival probabilities 
    # alpha: probability to start reproduction at age = 2 years 
    # p: recapture probability 
    # ------------------------------------------------- 
 
# Survival rates 
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    for (t in 1:(n.occasions-1)){ 
      logit(phi2[t]) <- mu.phi2 + beta[1]*ice[t] + beta[2]*(ice[t]*ice[t]) + eps.phi2[t]   
      eps.phi2[t] ~ dnorm(0, tau.phi2) 
 
      phi1[t] <- phi2[t]*0.8 
 
      logit(phi0[t]) <- mu.phi0 + beta[3]*ice[t] + beta[4]*(ice[t]*ice[t]) + eps.phi0[t]   
      eps.phi0[t] ~ dnorm(0, tau.phi0) 
 
      logit(alpha[t]) <- mu.alpha + beta[5]*ice[t] + beta[6]*(ice[t]*ice[t]) + eps.alpha[t] 
      eps.alpha[t] ~ dnorm(0, tau.alpha) 
 
      p[t] <- mean.p 
    } 
     
  # Mean survival/breeding/detection rates probability scale 
    mean.phi2 ~ dunif(0,1) 
    mean.phi0 ~ dunif(0,1) 
 
    mean.alpha ~ dunif(0,1) 
    mean.p ~ dunif(0,1) 
 
  # Mean survival/breeding rates logit scale 
    mu.phi2 <- log(mean.phi2/(1-mean.phi2)) 
    mu.phi0 <- log(mean.phi0/(1-mean.phi0)) 
 
    mu.alpha <- log(mean.alpha/(1-mean.alpha)) 
 
  # Precision of std of temporal variability 
    sig.phi2 ~ dunif(0,10)            # standard deviation 
    tau.phi2 <- pow(sig.phi2, -2)     # Precision for stand dev 
    temp.sig.phi2 <- pow(sig.phi2, 2) # residual temporal variation 
 
    sig.phi0 ~ dunif(0,10) 
    tau.phi0 <- pow(sig.phi0, -2) 
    temp.sig.phi0 <- pow(sig.phi0, 2) 
 
    sig.alpha ~ dunif(0,10) 
    tau.alpha <- pow(sig.alpha, -2) 
    temp.sig.alpha <- pow(sig.alpha, 2) 
 
  # Regression coefficients 
     beta1 ~ dunif(-5,5) 
     beta2 ~ dunif(-5,5) 
     beta3 ~ dunif(-5,5) 
     beta4 ~ dunif(-5,5) 
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     beta5 ~ dunif(-5,5) 
     beta6 ~ dunif(-5,5) 
     beta7 ~ dunif(-5,5) 
     beta8 ~ dunif(-5,5) 
     beta9 ~ dunif(-5,5) 
 
# Fecundity 
    for (t in 1:n.occasions){ 
      logit(prob.success[t]) <- mu.ns + beta[7]*rain[t] + beta[8]*fox[t] + beta[9]*temp[t] + 
eps.ns[t] 
      eps.ns[t] ~ dnorm(0, tau.ns) 
    } 
 
  # Mean nest success/clutch size probability to logit scale 
    mean.ns ~ dunif(0,1) 
    mu.ns <- log(mean.ns/(1-mean.ns)) 
 
    avg.cs ~ dgamma(0.1, 0.1) 
 
  # Standard deviation, precision, variance 
    sigma.ns ~ dunif(0, 10) 
    tau.ns <- pow(sigma.ns, -2) 
    temp.sig.ns <- pow(sigma.ns, 2) 
 
 
# INITAL POPULATION SIZE 
# Total FEMALE population size 
  N[1,1] ~ dcat(pN1) 
  N[2,1] ~ dcat(pN2) 
  N[3,1] ~ dcat(pN3) 
  N[4,1] ~ dcat(pN4) 
 
# ------------------------------------------------------------------------------- # 
 
# STATE SPACE MODEL FOR TOTAL POPULATION # 
for (t in 1:(n.occasions-1)){ 
   N[1,t+1] <- (Fec[t]/2 * phi0[t]) * (N[3,t] + N[4,t]) 
   N[2,t+1] <- (phi1[t] * (1-alpha[t])) * N[1,t] 
   N[3,t+1] <- (phi1[t] * alpha[t]) * N[1,t] 
   N[4,t+1] <- phi2[t] * (N[2,t] + N[3,t] + N[4,t]) 
   } 
 
# TOTAL POPULATION SIZE 
for(t in 1:n.occasions){ 
  Ntot[t] <- (N[1,t] + N[2,t] + N[3,t] + N[4,t])*2 
} 
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# BREEDING POPULATION SIZE # 
for(t in 1:n.occasions){ 
  Nb[t] <- ((N[3,t] + N[4,t])*2) 
} 
 
    ## LINEAR REGRESSION FOR MISSING OBS ERROR ## 
     beta.se ~ dnorm(0, 0.001) 
     miss.se ~ dgamma(2, 0.01) 
     miss.prec <- pow(miss.se, -2)  
      
     for (j in 1:n.occasions){ 
       sigma.pred[j] <- beta.se*Nb[j] 
       sigma.obs[j] ~ dnorm(sigma.pred[j], miss.prec) 
     } 
 
# OBSERVATION MODEL FOR BREEDING POPULATION SIZE # 
for(t in 1:n.occasions){ 
  tau.obs[t] <- pow(sigma.obs[t], -2) # Provided as data 
  count[t] ~ dnorm(Nb[t], tau.obs[t]) 
} 
 
### Derived Parameters ### 
for(t in 1:(n.occasions-1)){ 
   lambda.Nb[t] <- Nb[t+1]/Nb[t] 
   r.Nb[t] <- log(lambda.Nb[t]) 
} 
 
# To compare posterior predictions and estimate Pvalue 
for (i in 1:n.occasions){ 
   Nb.pred[i] ~ dnorm(Nb[i], tau.obs[i]) 
} 
 
## --------------------------------------------------------------------------------------------------------
-- 
 
## FECUNDITY MODEL ## 
 
# Likelihood of single data set 
    for (t in 1:n.occasions){ 
       clutch.size[t] ~ dpois(avg.cs) 
       num.success[t] ~ dbin(prob.success[t], tot.nests[t]) 
       Fec[t] <- clutch.size[t] * prob.success[t] 
       # loglikns[t] <- logdensity.bin(num.success[t], prob.success[t], tot.nests[t]) 
      }  
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# Freeman Tukey Fit Statistics 
    for (t in 1:n.occasions){ 
      # Compute fit for observed data 
      exp.ns[t] <- prob.success[t]*tot.nests[t] 
      exp.orig.ns[t] <- pow((pow(num.success[t],0.5)-pow(exp.ns[t],0.5)),2) 
      # Generate data and compute fit 
      ns.new[t] ~ dbin(prob.success[t],tot.nests[t]) 
      exp.new.ns[t] <- pow((pow(ns.new[t],0.5)-pow(exp.ns[t],0.5)),2) 
    } # End fit loop 
 
fit.ns <- sum(exp.orig.ns[]) 
fit.ns.new <- sum(exp.new.ns[]) 
 
## --------------------------------------------------------------------------------------------------------
-- 
 
## SURVIVAL MODEL ## 
 
# Multistate capture-recapture model 
# Define state-transition and reencounter probabilities 
    for (t in 1:(n.occasions-1)){ 
    psi[1,t,1] <- 0 
    psi[1,t,2] <- phi0[t] 
    psi[1,t,3] <- 0 
    psi[1,t,4] <- 0 
    psi[1,t,5] <- 0 
    psi[2,t,1] <- 0 
    psi[2,t,2] <- 0 
    psi[2,t,3] <- phi1[t] * (1-alpha[t]) 
    psi[2,t,4] <- phi1[t] * alpha[t] 
    psi[2,t,5] <- 0 
    psi[3,t,1] <- 0 
    psi[3,t,2] <- 0 
    psi[3,t,3] <- 0 
    psi[3,t,4] <- 0 
    psi[3,t,5] <- phi2[t] 
    psi[4,t,1] <- 0 
    psi[4,t,2] <- 0 
    psi[4,t,3] <- 0 
    psi[4,t,4] <- 0 
    psi[4,t,5] <- phi2[t] 
    psi[5,t,1] <- 0 
    psi[5,t,2] <- 0 
    psi[5,t,3] <- 0 
    psi[5,t,4] <- 0 
    psi[5,t,5] <- phi2[t] 
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    po[1,t] <- 0 
    po[2,t] <- 0 
    po[3,t] <- 0 
    po[4,t] <- p[t] 
    po[5,t] <- p[t] 
     
# Calculate probability of non-encounter (dq) and reshape the array for the encounter 
probabilities       
    for (s in 1:ns){ 
    dp[s,t,s] <- po[s,t] 
    dq[s,t,s] <- 1-po[s,t] 
    }  
 
    for (s in 1:(ns-1)){ 
      for (m in (s+1):ns){ 
        dp[s,t,m] <- 0 
        dq[s,t,m] <- 0 
      }  
    }  
 
    for (s in 2:ns){ 
      for (m in 1:(s-1)){ 
        dp[s,t,m] <- 0 
        dq[s,t,m] <- 0 
        }  
      }  
    } # end time loop 
     
# Define the multinomial likelihood 
    for (t in 1:((n.occasions-1)*ns)){ 
      marr[t,1:(n.occasions*ns-(ns-1))] ~ dmulti(pr[t,], rel[t]) 
    } 
     
# Define the cell probabilities of the m-array 
# Define matrix U: product of probabilities of state-transition and non-encounter 
    for (t in 1:(n.occasions-2)){ 
      U[(t-1)*ns+(1:ns), (t-1)*ns+(1:ns)] <- ones 
      for (j in (t+1):(n.occasions-1)){ 
        U[(t-1)*ns+(1:ns), (j-1)*ns+(1:ns)] <- U[(t-1)*ns+(1:ns), (j-2)*ns+(1:ns)] %*% 
psi[,t,] %*% dq[,t,] 
      } 
    } 
    U[(n.occasions-2)*ns+(1:ns), (n.occasions-2)*ns+(1:ns)] <- ones 
     
# Define the cell probabilities of the multistate m-array    
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    for (t in 1:(n.occasions-2)){ 
      pr[(t-1)*ns+(1:ns),(t-1)*ns+(1:ns)] <- U[(t-1)*ns+(1:ns),(t-1)*ns+(1:ns)] %*% psi[,t,] 
%*% dp[,t,] 
 
# Above main diagonal 
    for (j in (t+1):(n.occasions-1)){ 
      pr[(t-1)*ns+(1:ns), (j-1)*ns+(1:ns)] <- U[(t-1)*ns+(1:ns), (j-1)*ns+(1:ns)] %*% 
psi[,j,] %*% dp[,j,] 
    } 
    } 
    pr[(n.occasions-2)*ns+(1:ns), (n.occasions-2)*ns+(1:ns)] <- psi[,n.occasions-1,] %*% 
dp[,n.occasions-1,] 
     
# Below main diagonal 
   for (t in 2:(n.occasions-1)){ 
      for (j in 1:(t-1)){ 
        pr[(t-1)*ns+(1:ns),(j-1)*ns+(1:ns)] <- zero 
      } 
    } 
     
# Last column: probability of non-recapture 
    for (t in 1:((n.occasions-1)*ns)){ 
      pr[t,(n.occasions*ns-(ns-1))] <- 1-sum(pr[t,1:((n.occasions-1)*ns)]) 
    }  
} 
 
# Bundle data 
ns <- 5   # Number of states 
Ninit <- matrix(NA, nrow = 4, ncol = 1) 
Ninit[1,1] <- 1000 
Ninit[2,1] <- 500 
Ninit[3,1] <- 400 
Ninit[4,1] <- 3000 
 
# Function to create a discrete uniform prior 
disc.unif <- function(A, B){ 
  pprob <- c(rep(0, A-1), rep(1/(B-A+1), (B-A+1))) 
  return(pprob) 
} 
 
# - based on stable stage distribution: 
A <- matrix(c(0,           0,     2.5/2*0.3,  2.5/2*0.3,  
              (1-0.3)*0.6, 0,     0,          0,  
              0.3*0.6,     0,     0,          0,  
              0,           0.8,   0.8,        0.8), ncol = 4, byrow = TRUE) 
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u <- which.max(Re(eigen(A)$values)) 
revec <- Re(eigen(A)$vectors[,u]) 
stable.stage <- revec/sum(revec) 
 
4900*stable.stage[1]/(stable.stage[3]+stable.stage[4]) 
4900*stable.stage[2]/(stable.stage[3]+stable.stage[4]) 
4900*stable.stage[3]/(stable.stage[3]+stable.stage[4]) 
4900*stable.stage[4]/(stable.stage[3]+stable.stage[4]) 
 
# - priors then +/- around the mean 
pN1 <- disc.unif(1600, 1900) 
pN2 <- disc.unif(500, 900) 
pN3 <- disc.unif(200, 400) 
pN4 <- disc.unif(4000, 5000) 
 
bugs.data <- list(pN1 = pN1, pN2 = pN2, pN3 = pN3, pN4 = pN4, ice = 
SIindex$icedays4.stand[2:25], fox = fox$prop_plot_fox, rain = rain$summ_standard, 
temp=temp$Value, marr = msarr, n.occasions = ncol(rCH), rel = rowSums(msarr), ns = 
ns, zero = matrix(0, ncol = ns, nrow = ns), ones = diag(ns), clutch.size = fecdat$mncs, 
num.success = fecdat$num.success, tot.nests = fecdat$total.nests, count = popdata$y, 
sigma.obs = popdata$sd) 
 
inits <- function(){list(mean.alpha = runif(1,0.1,0.6),mean.phi0 = runif(1,0,0.75), 
mean.phi2 = runif(1,0.2,1), mean.p = runif(1,0,1), mean.ns = runif(1,0.1,1), beta.se = 
runif(1, 0.01, 0.1) , miss.se = runif(1, 100, 101), ind = rbinom(6,1,0.5))}   
 
# Parameters monitored 
parameters <- c("mean.phi2", "mean.alpha","mean.phi0", "mean.ns", "beta[1]", "beta[2]", 
"beta[3]", "beta[4]", "beta[5]", "beta[6]", "beta[7]", "beta[8]", "beta[9]", "fit.ns", 
"fit.ns.new", "prob.success", "phi2","r.Nb", "Nb", "Fec", "Nb.pred") 


	a Inverse of the traditional visibility correction factor (1/VCF) developed in 1968 for all eider species on the YKD (Lensink, 1968).
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