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This thesis examines the process of reverse engineering solid rocket powered 

missiles using legacy codes and a genetic algorithm (GA).  Available data for reverse 

engineering problems might include performance characteristics and internal and external 

geometric parameters.  Reverse engineering from limited inputs, if proven to be practical 

and reliable, can be a critical means of obtaining more detailed information about missile 

programs from available data.  For the present study, a baseline design for a solid rocket-

propelled ballistic missile was reverse-engineered using a genetic algorithm and an 

accompanying set of programs designed specifically for solid rocket-powered missile 

prediction, including a six-degree-of-freedom dynamics simulator and solid propellant 

internal ballistics code.  The goals were to match range, altitude, mass, and burnout time 
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of the baseline missile.  Parameters being studied included propellant type, propellant 

radius ratio, fineness ratio, center body diameter, and nose length ratio.  The objective of 

the GA and subsequent analyses was to find designs that closely matched the baseline 

model’s performance characteristics and internal and external geometry.  The focus of 

this thesis was to determine which combinations of design variables and other data 

should be known and to what precision, for a given confidence level in the reverse 

engineering solution.
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Introduction 

 

Reverse engineering is a difficult and complex process even under optimal 

conditions, but the challenge is even greater when dealing with large numbers of design 

variables which may or may not be coupled to various performance parameters.  Genetic 

algorithms offer some opportunities to learn about key aspects of a given design, using 

reverse-engineering results from very limited input data.  Genetic algorithms may be 

capable of accomplishing this task in less time and with greater accuracy than many other 

methods, although nearly exact matches are not likely to be possible when only limited 

design parameter data is available.1-3

 The GA uses the biological concept of generational adaptation to optimize a 

design problem which may contain numerous local optima.  The IMPROVE 3.1 code 

employed in this investigation is based on the tournament method.4  Rather than define 

the starting point for the optimization, the user inputs a range (maximum, minimum, and 

resolution) for each design parameter, and the GA randomly generates a population of 

candidate solutions from parameters within those ranges.  After each candidate is 

analyzed by performance codes, the GA ranks the candidates (members) in order of 

fitness.  Fitness is a measure of how well the member matches the objective function.  

Fitness is the GA’s measure of quality in determining which members are best and should 

propagate throughout subsequent generations.  The tournament method involves 
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randomly choosing two members from the population and picking the one which has the 

better fitness.  Then this member is added to an intermediate population, from which the 

next real generation is created with mating (also known as crossover, in which two 

members exchange genetic material) and mutation processes.  Over the course of many 

generations, the GA will find solution types that approach the target solution. 

 Limited past experience has shown that the success of this process depends upon 

which design parameters are known and how accurately they are constrained.1  For a 

solid rocket missile, it is expected that the GA will not be able to find the correct internal 

propellant grain geometry without some known internal design parameter(s).  Likewise, 

the GA may not be able to find the correct external missile geometry without one or more 

particular known external geometry parameters or details about performance.  In the case 

of ballistic missiles, which are the subject of this thesis, the external geometry, including 

forward and aft control fins, is primarily responsible for flight stability.  Because 

sufficient stability may be achieved by many different fin configurations, this aspect of 

the missile design is extremely difficult to match in a reverse-engineering process. 

 Multiple classes of answers from the GA may match the baseline performance.  In 

a practical scenario, the baseline geometry may not be well known, so a reliable method 

of choosing the correct class of answers is required for the reverse engineering 

application to be useful.  A tool has been developed to present full performance 

characteristics of multiple answers from the GA, so that results can, by inspection, be 

separated into families of similar answers.  The correct family can then be identified 

based on which one most closely matches the known design configuration of the baseline 

model. (See APPENDIX A.) 
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 A major advantage of the GA is that no initial solutions or guesses are required as 

input.  This initial input would be difficult to provide for this type of problem, since a 

given performance goal could potentially be met by any number of missile designs which 

may differ significantly in size and shape.  The GA is also flexible in how many and 

which design parameters can be constrained, although it is expected that constraining 

more design parameters will lead to more accurate results and that constraining particular 

parameters (for example, the fineness ratio of body length to missile diameter) is required 

to produce good results, whereas other parameters will be easily found by the GA and 

still others may not influence the performance goals enough to be accurately determined 

by the GA.  This approach to reverse-engineering design of missiles has shown great 

promise; however, its success is limited in cases where certain key design variables are 

not well known.1

 The aim of this research is to determine which set or sets of design variables must 

be known in order for the reverse-engineering process to successfully design the 

remainder of the missile.  A comparison of the approach’s success for varying GA goals 

will also be presented.  The approach is illustrated by choosing a baseline design, for 

which all relevant design parameters and performance characteristics are known, and 

choosing various input configurations to determine which cases produce results closest to 

the baseline model. 

 A statistical approach to this problem may be worth pursuing in future research, in 

which statistical screening experiments would take a known set of parameter inputs 

(single-run case) and perturb selected parameters positively and negatively to measure 

the changes in the model’s response (performance output).5  Such an approach is 
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considerably impeded by the extreme nonlinearity of the problem and by the number and 

variety of equations used in the simulation to generate a response.  Screening experiments 

have been performed on stand-alone solid rocket motor pairs, which have fewer design 

parameters than a complete missile.6

 

Literature Review 

 

 The use of genetic algorithms in the field of aerospace engineering has rapidly 

expanded in the past decade.  GA’s have been applied to problems involving helicopters7, 

spacecraft controls8, flight trajectories9, gas turbines10, airfoils11, boosted ramjets12, 

interceptor missiles13, aircraft14, hybrid rockets15, liquid rockets1,16, solid rockets17,18, and 

other applications.  Most of these applications involve forward design and optimization.  

Reverse-engineering in the aerospace field has also been attempted previously. Wollam, 

Kramer, and Campbell determined that a GA can find better reverse-engineering matches 

than a trial-and-error method, in the case of reverse-engineering air-to-air missiles with a 

priori propulsion data.3  The design parameters for their report were non-dimensionalized 

to reduce dependency among parameters and result in fewer infeasible missile designs, an 

approach which has also been applied in this thesis.  Their experiment was designed to 

prove the concept of a GA as a missile reverse-engineering tool, not to develop a detailed 

methodology of how to perform such an analysis. 

 Burkhalter, Jenkins, and Hartfield, in a report that directly inspired this thesis and 

used many of the same tools, found that a GA is capable of reverse-engineering the 

external geometry and some performance characteristics of a solid rocket powered 
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missile with a ballistic trajectory, but the internal propellant design is unlikely to be 

found without some initial knowledge of that design or detailed performance data.1   

Their report includes results for only four cases which are not directly comparable to one 

another because they have varying goals as well as varying input parameters.  This thesis 

seeks to follow the same philosophy to obtain more complete, practical knowledge of the 

reverse-engineering methodology by comparing an exhaustive set of GA analyses (within 

certain assumptions and limitations required to reduce computation time) which differ 

only by selecting which design parameters are known initially. 

 

Statement of Research Objectives 

 

 This research sought to examine the relative importance of certain design 

parameters and combinations thereof when performing a reverse-engineering analysis on 

solid-rocket powered missiles with ballistic flight trajectories.  This information can then 

be used to prescribe a methodology for the reverse-engineering process that will provide 

some consistency of success when applied to other cases in this class of missiles. 

 

Methods and Materials 

 

 The baseline model very closely approximates a real ballistic missile.  All known 

parameters of the baseline have been entered into a forward-run simulation, and unknown 

parameters are extrapolated or estimated to complete the input set.  The forward-run 

simulation uses the same rocket propulsion and missile design codes as the full GA, but it 
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simulates a single, known missile.  The forward-run simulation produces the detailed 

performance characteristics, such as range, apogee, initial mass, and burnout time, as well 

as schematics of the baseline missile and its propellant grain.  These results serve as the 

targets for the GA to match. 

 A series of GA analyses are then executed, each one testing the success of a 

different set of constricted (known) design parameters.  Parameters not assumed to be 

known are allowed to fluctuate within a reasonable range of values.  Due to the 

nonlinearity of the model, the GA should be able to find the correct value within the 

range for some parameters better than others.  This experimental process generates a wide 

array of results which can be analyzed to determine which combinations work best.  At 

the completion of each GA analysis, the best performers are compared to each other, so 

that the missile most closely matching the baseline may be found even though other 

missiles may have performed slightly better in terms of the GA goal.  The GA ranks the 

best performers of each generation according to how well they minimize a weighted sum 

of errors in the following characteristics: flight range, maximum altitude (apogee), 

takeoff mass including propellant, and burnout time.  The errors are the differences 

between the currently analyzed missile’s characteristics and the corresponding 

characteristics of the baseline missile.  Each error is non-dimensionalized by the baseline 

missile’s characteristic value so that the four goals are of the same order of magnitude 

and can be properly weighted. 

 The final generation of each GA analysis is saved for later analysis.  Also, a file is 

maintained to track the maximum, average, and minimum values of the objective 

function (weighted sum of the goals) across every generation of the GA analysis.  The 
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data in this file can easily show whether the GA converged (trendwise) within the 

specified number of generations, and if so, how quickly that convergence occurred.  

There are no strict convergence criteria. 

 The GA ranks missiles within each generation according to how well they 

minimize the characteristic equation.  In a reverse-engineering application, this sorting 

method is sometimes too crude to determine the best match.  A missile may perform 

slightly closer to the target characteristics but not be the best geometric match to the 

baseline missile, while another member slightly lower in the GA’s sorting may be a 

superior geometric match and still perform nearly as well as the GA’s so-called “best 

performer”.  Thus, the true best performer in a reverse-engineering problem should be 

chosen with the assistance of inspection, if possible, although the choice will sometimes 

coincide with the member top-sorted by the GA. 

 The best performer from each GA analysis is chosen to represent the level of 

success that particular GA analysis had in reverse-engineering the baseline missile.  The 

pool of best performers across all GA analyses can thus be compared to determine which 

solutions best match the baseline case and, in the case of a tie or a near-tie, which ones 

converged in the fewest number of generations. 

 The genetic algorithm used is IMPROVE 3.1, (Implicit Multi-objective Parameter 

Optimization Via Evolution).  This algorithm, written by Murray B. Anderson and based 

upon the original genetic algorithm theory developed by John Holland and others, 

optimizes a characteristic equation by generating and testing numerous members within a 

user-defined design space.4  Many types of GA’s have been developed.  This GA uses the 

tournament method to sort population members.  The first generation of population 
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members is randomly selected from within the allowed parameter ranges.  Each member 

is assigned a fitness value based upon the response of the characteristic equation, and the 

GA sorts the members according to the results of this “tournament”.  Then a new 

generation is formed by combining attributes of the best performers of the previous 

generation; some mutation factor(s) may also be applied to force the GA to explore more 

of the design space. 

 For this thesis, fifty-one generations of three hundred members each were 

analyzed for all thirty-two GA cases.  Each GA case is a complete execution of the 

algorithm, simulating 15,300 missiles.  Thus, a total of 489,600 missiles were tested, 

although not all of them were flown in the six degree-of-freedom (6-DOF) simulation due 

to geometric or other conflicts.  The number of generations was chosen to give the GA 

ample opportunity to converge upon a good solution while minimizing the computation 

time required to produce such convergence in a majority of the cases.  The number of 

members per generation is based upon a rule of thumb that this quantity should be 

roughly 1.6 times the number of bits to define the design space.2  The design space varies 

from one case to another in this thesis, so the maximum of 192 bits was used as the basis.  

The corresponding number of 300 population members was then applied to all cases for 

computational uniformity.  The number of cases executed depends on the number of 

parameters being analyzed, which as a power of two (25 = 32 in this thesis) determines 

the number of cases needed to exhaustively analyze the possible cases.  Increasing the 

number of parameters to switch between known/unknown values exponentially increases 

the required computation time as well as the complexity of results analysis.  The thirty-
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two cases executed in this thesis required a total of approximately three weeks of 

processing time on Intel Pentium 4, 2.8 GHz computers. 

 Because the GA forms successive generations from characteristics of the best 

performers of the previous generations, the overall quality of each generation tends to 

increase over the course of the analysis.  In a reverse-engineering application, a match 

within acceptable error tolerances will almost certainly be found with large enough 

population sizes in the limit of infinite generations.  However, the computing time is 

ultimately a major factor in such a simulation, so the number of generations must be 

chosen to strike a balance between ideal convergence of the solution and reasonable 

execution time for the program.  One way to determine convergence is to look at the 

fitness of only the top-sorted member in each generation.  With the “elitism” feature 

activated, the best performer is always preserved to the next generation to compete in the 

tournament with the other, new members.  So if no new members are found which 

perform better than the previous best performer, it will be the best performer of the new 

generation as well.  This feature ensures that the GA will always improve or maintain its 

best solution from one generation to another.  It may take multiple generations to find a 

new best performer, so the maximum fitness value tends to jump upwards periodically 

throughout the GA analysis until near-convergence is achieved.  Convergence may then 

be defined as a series of several generations in which the maximum fitness does not 

change; however, unless this solution is extremely close to the matching target, it should 

be stressed that the GA may eventually find a better solution after an unknown number of 

additional generations.  Thus, convergence is an ambiguous topic as applied to the GA.  
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In this thesis, every GA analysis has been allowed to progress to the same number of 

generations, in order to provide a fair basis of comparison. 

 The fitness of each member is determined by a complex missile simulation 

external to the GA.1,2  Each missile is defined by a set of design parameters, which are 

used to build up the missile’s geometry and are combined with various material 

properties and other information which is assumed for the class of problem being 

optimized.  There are subsequent modules to determine the propellant grain design, 

nozzle design, aerodynamic properties, and mass properties of the member.  Using input 

from those modules, the missile is analyzed with a 6-DOF model, based on the dynamic 

equations of motion in both atmospheric and sub-orbital flight.  The final results of the 

flight simulation in 6-DOF are passed back to the GA and are processed through the goal 

settings to determine the fitness of that member.  This entire process is repeated 

thousands or even tens of thousands of times in a typical GA analysis. 

 

Setup for Test Cases 

 

 To determine parameter combinations required for successful reverse-

engineering, the GA was set to match four key performance characteristics which may be 

determined from remote sensing of the baseline missile.  Fitness in cases executed for 

this thesis is defined by the characteristic equation: 

 

Fitness = 3.0 * (Range Goal) + 2.5 * (Apogee Goal)  

+ 2.0 *(Mass Goal) + 1.0 * (Burnout Goal) 
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 Where: 

Range Goal = | (actual range – target range) | / target range 

Apogee Goal = | (actual apogee – target apogee) | / target apogee 

Mass Goal = | (actual initial mass – target initial mass) | / target initial mass 

Burnout Goal = | (actual burnout time – target burnout time) | / target burnout time 

 

 Because there is no goal to define the accuracy of the missile’s grain cross-section 

as matched to the baseline missile’s grain cross-section, this important result for reverse 

engineering is not factored into the GA sorting and must be determined by inspection.  

The overall matching accuracy of the thrust curve cannot be determined from the burnout 

time alone, so the best thrust curve match must also be determined by inspection.  

Because the objective function is a weighted combination of the four goals listed above, 

the best matches for each individual goal must also be determined by inspection. 

 The baseline missile data was drawn from technical specifications of a real 

missile, although some parameters had to be estimated.  A single-run simulation of the 

baseline missile was completed in order to produce the baseline performance output data.  

An external view of the baseline missile is shown in Figure 11. 
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Table 1: Baseline Single-Run Inputs 

Propellant Type: 4.000 Wing Taper Ratio: 0.0001 

Propellant Radius: 0.5409 Wing LE Sweep Angle (deg): 0.0001 

Inner Radius: 0.2076 Wing LE X-Location / Body 
Length Ratio: 

0.3500 

Number of Points/Spokes: 5.0000 Tail Fin Exposed Semi-Span 
Length: 

0.7495 

Fillet Radius: 0.0566 Tail Fin Root Chord Length: 1.6865 

Epsilon: 0.8194 Tail Fin Taper Ratio: 0.7777 

Point / Spoke Angle (deg): 36.5159 Tail Fin LE Sweep Angle (deg):  0.0100 

Fractional Nozzle Length: 0.7500 Tail Fin LE X-Location / Body 
Length Ratio: 

0.9155 

Throat Diameter 0.2749 Autopilot Delay Time (sec): 9000.0000

Nose Radius Ratio: 0.0100 Autopilot Time Constant (sec): 0.0001 

Nose Length Ratio: 4.3097 Autopilot Damping: 0.0001 

Total Body Length  
(Fineness Ratio): 

13.3038 Crossover Frequency (Hz): 0.0001 

Center Body Diameter (in.): 31.1024 Pronav Gain: 0.0001 

Wing Semi-Span Length: 0.0001 Initial Launch Angle (deg): 75.0000 

Wing Root Chord Length: 0.0001   

 
Note: All lengths except Center Body Diameter are non-dimensionalized by dividing by 

the Center Body Diameter. 
 

 The basic GA input file has the 29 design parameters set to the maximum and 

minimum reasonable values.  This file was then modified for each of the 32 cases being 

analyzed.  However, there are many possible combinations of design parameters which 

are reasonable taken independently but which will not produce a reasonable missile.  For 

this reason, conflicts have been preprogrammed so that non-workable designs will be 
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rejected before analysis and assigned penalty values for the goals.  This process occurs 

more frequently in early generations, before better performing genetic material permeates 

the population. 

 

Table 2: Unlocked GA Parameters 

Parameter Maximum Minimum Resolution
Propellant Type 8.0000 1.0000 1.0000 
Propellant Outer Radius Ratio 0.9500 0.1000 0.0100 
Propellant Inner Radius Ratio 0.9500 0.1000 0.0100 
Number of Points / Spokes 17.0000 3.0000 2.0000 
Fillet Radius Ratio 0.3000 0.0010 0.0010 
Epsilon 0.9900 0.1000 0.0100 
Point / Spoke Angle (deg) 85.000 15.000 1.0000 
Fractional Nozzle Length Ratio 0.9000 0.6000 0.0100 
Throat Diameter 0.5000 0.1500 0.0010 
Nose Radius Ratio 0.2500 0.0100 0.0100 
Nose Length Ratio 5.0000 1.0000 0.0100 
Total Body Length (Fineness Ratio) 25.0000 2.0000 0.1000 
Center Body Diameter (in.) 35.0000 1.0000 0.1000 
Wing Exposed Semi-Span Length 2.0000 0.0100 0.0100 
Wing Root Chord Length 5.0000 0.0100 0.0100 
Wing Taper Ratio 5.0000 0.0100 0.0100 
Wing LE Sweep Angle (deg) 45.0000 1.0000 1.0000 
Wing Axial Position to Body Length Ratio 0.5000 0.1000 0.1000 
Tail Exposed Semi-Span Length 2.0000 0.1000 0.1000 
Tail Root Chord Length 5.0000 0.1000 0.1000 
Tail Taper Ratio 5.0000 0.1000 0.1000 
Tail LE Sweep Angle (deg) 45.0000 1.0000 1.0000 
Tail Axial Position to Body Length Ratio 0.9000 0.6000 0.0100 
Auto Pilot Delay Time (sec) 9000.1000 9000.0000 0.1000 
Auto Pilot Time Constant (sec) 0.0020 0.0010 0.0010 
Auto Pilot Damping 0.0020 0.0010 0.0010 
Crossover Frequency (Hz) 0.0020 0.0010 0.0010 
ProNav Gain 0.0020 0.0010 0.0010 
Initial Launch Angle (deg) 89.0000 30.0000 0.1000 

 
Note: All auto-pilot parameters are locked such that the auto-pilot mode will not be 

engaged, because only ballistic missiles are considered. 
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 Table 3 contains the locked parameter values that were switched on and off in 

different combinations to produce the 32 cases of the experiment.  These parameters were 

chosen based on a priori knowledge of which design parameters most strongly affect the 

flight performance of a solid rocket propelled ballistic missile.1  Each case is assigned a 

binary code indicating which of the five parameters, if any, are locked.  (Examples: 

00000 has no locked parameters; 10101 has locked values for propellant type, fineness 

ratio, and nose length ratio.)  The binary system fits the investigation setup because each 

studied parameter has one of two states: locked or unlocked.  The short binary strings 

show, at a glance, how much input data was known in a given case.  Note that this binary 

sequence is completely unrelated to the binary system that determines a particular 

member’s gene alleles in the GA proper. 

 

Table 3: Studied Parameters and Locked Values 

Binary Pos. Parameter Maximum Minimum Resolution
1 Propellant Type 4.1000 4.0000 0.1000 
2 Prop. Outer Radius Ratio 0.5410 0.5400 0.0010 
3 Fineness Ratio 13.3100 13.3000 0.0100 
4 Body Diameter (in.) 31.1100 31.1000 0.0100 
5 Nose Length Ratio 4.3100 4.3000 0.0100 

 

 The simple “Looper” program shell was designed to sequentially and 

automatically execute the 32 cases; however, upon learning that each case required 

approximately 12 hours to complete, the Looper program was slightly modified into 

multiple versions which would skip ahead to certain cases.  These different versions 

could then be executed on multiple computers, effectively parallelizing the process. 
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 The Looper program uses the five-digit binary sequence to determine which of the 

32 cases to analyze.  This program customizes the GA input file to lock down certain 

parameters to the values in Table 3 depending on the assigned binary sequence, as 

explained above.  The entire GA suite is then executed normally, but afterwards, the final 

population file (population.00050, which is actually the fifty-first generation because the 

first is called generation 0), is saved under a unique filename so that data is not lost 

during the next case.  The GA’s fitness progression file (ga_out1.dat) is also saved under 

a unique filename. 

 

Table 4: Looper Binary Codes 

Case # Binary Code
 

Case # Binary Code 

1 00000 17 10000 
2 00001 18 10001 
3 00010 19 10010 
4 00011 20 10011 
5 00100 21 10100 
6 00101 22 10101 
7 00110 23 10110 
8 00111 24 10111 
9 01000 25 11000 
10 01001 26 11001 
11 01010 27 11010 
12 01011 28 11011 
13 01100 29 11100 
14 01101 30 11101 
15 01110 31 11110 
16 01111 32 11111 

  

 After all the cases were executed, the final generation of each case was analyzed 

using the Advanced Genetic Algorithm Results Analysis Tool (AGARAT) software to 

determine the best reverse-engineering match by inspection.  AGARAT picks out a 
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number of the top-sorted members in the population file and executes each one as a 

single-run simulation, saving the performance output and internal and external geometric 

data under unique filenames.  For this thesis, the top five members (as sorted by the GA) 

were analyzed.  Customized Microsoft Excel ® macros were used to generate plots to 

compare the five members and the baseline.  The best reverse-engineering match can then 

be chosen based on these plots.  The grain cross-section and thrust and mass curves are 

given priority in the inspection process, because the portions of these results were not 

programmed as GA goals. 

 After the true best match is chosen for all 32 cases, these members are compared 

to each other and the baseline case in plots generated by additional Excel ® macros.  

These plots indicate which cases resulted in the best reverse-engineering solution.  By 

looking at the locked-unlocked parameter sequence for the most successful cases, a 

survey of the critical parameters and general reverse-engineering strategy can be 

formulated. 

 

Results 

 

 Although the GA fitness progression plots do not always give a completely 

accurate portrayal of the reverse-engineering results, because they rely only on the GA’s 

sorting and not on inspection, they do provide a general idea of how well the experiment 

worked.  Note that the objective function was minimized, so the best cases are those with 

fitness values closest to zero.  Figure 1 shows all 32 cases, indicating the stratification 

caused by varying the known parameters.  Some cases are clearly far more successful 
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than others, at least based on the minimum/best fitness of each generation.  Figure 2 is a 

more detailed plot of only the ten best cases, or those with the lowest-valued objective 

functions.  Analysis of this plot shows that, of the ten cases displayed, six have at least 

three locked parameters, and nine have at least two locked parameters.  The tenth, Case 5, 

apparently found an excellent member by random chance and, due to the elitism feature, 

carried it through the remaining generations.  Eight of the ten best cases have a locked 

fineness ratio (total missile length over center body diameter), indicating that this 

parameter may be critical to the reverse-engineering process.  Six of the ten best cases 

have a locked propellant radius variable, which factors into the grain design and partially 

determines the thrust profile and propellant grain mass.  The remaining three parameters 

being studied are locked in exactly half of the top ten best cases. 

 



 

Figure 1: Best Fitness Each Generation 

 

Figure 2: Best Fitness Each Generation (Rescaled) 

 18



 19

 

 To illustrate the effect of randomness in the GA, Cases 5 and 32 were analyzed 

again with a different random number seed.  The fitness progression for these cases is 

compared with that of the original cases in Figure 3.  (Note that the vertical axis uses a 

logarithmic scale.)  The unusually good performance of the original Case 5 is contrasted 

with the reseeded Case 5, which performs more normally.  The fact that Case 32 

performs similarly before and after reseeding shows the result, noted by Wollam, 

Kramer, and Campbell, that reseeding typically does not cause significant changes in the 

fitness of solutions found by the GA after an equal number of generations.3  It must be 

stressed that in a real application of the GA, random fitness improvements such as the 

one seen in Case 5 are in fact helpful coincidences; the abnormality is only a detriment to 

this particular investigation because it confuses the case-to-case comparisons designed to 

analyze sensitivity to design parameters. 

 



 

Figure 3: Reseed Fitness Progression 

 

 While analysis of the GA fitness progression plots may give preliminary 

indications of the results sought by this experiment, a more valid and thorough analysis 

must be performed after the inspection of each case for the true best reverse-engineering 

match.  The following series of figures displays those results. 

 In the plot for time of flight (TOF), the series most closely matching the baseline 

performance are shown in Table 5.  The TOF plot also shows altitude, but that 

characteristic is paired with range for the trajectory plot and will be examined later in this 

section. 

 

 20



Table 5: TOF Best Matches 

Case # Binary 
7 00110 
5 00100 
28 11011 
14 01101 
25 11000 
29 11100 
9 01000 
32 11111 
13 01100 
30 11101 

 

 

Figure 4: Altitude vs. Flight Time 

 

 In the trajectory plots shown in Figure 5, the series most closely matching the 

baseline for range and altitude are given in Tables 6 and 7.  All of the cases match the 
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baseline trajectory reasonably well, which is expected because the range and altitude 

goals are most heavily weighted in the objective function. 

 

Table 6: Best Range Matches 

Case # Binary
18 10001 
13 01100 
12 01011 
25 11000 
31 11110 
16 01111 
11 01010 
26 11001 
2 00001 
3 00010 

 

Table 7: Best Altitude Matches 

Case # Binary
12 01011 
6 00101 
30 11101 
21 10100 
20 10011 
16 01111 
17 10000 
13 01100 
31 11110 
26 11001 

 



 

Figure 5: Trajectories 

 

 Figure 6 shows all the thrust curves, and Figure 7 contains the same data but is 

rescaled, and the poorest cases are hidden.  Note that total impulse, which is the area 

under the thrust curve, is relatively constant across all the cases.  Three characteristics of 

the thrust curves are used to determine the best match: initial thrust, time at zero thrust, 

and time at end of primary burning.  The latter is the point at which the thrust curve drops 

sharply.  The best cases for each of these characteristics are found in Tables 8 through 10.  

Also, note that in Table 8, bolded/italicized cases are those which exhibit progressive 

burning slopes similar to that of the baseline thrust curve. 
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Table 8: Initial Thrust Best Cases 

Case # Binary
13 01100 
9 01000 
11 01010 
6 00101 
1 00000 
32 11111 
5 00100 
27 11010 
15 01110 
31 11110 

 

Table 9: Zero Thrust Time Best Cases 

Case # Binary
32 11111 
15 01110 
26 11001 
4 00011 
29 11100 
28 11011 
31 11110 
24 10111 
12 01011 
27 11010 

 

Table 10: Primary Burn Ending Time Best Cases 

Case # Binary
14 01101 
16 01111 
32 11111 
13 01100 
30 11101 
5 00100 
27 11010 
8 00111 
1 00000 
17 10000 

 



 

Figure 6: Thrust Curves 

 

Figure 7: Thrust Curves (Rescaled) 
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 In comparing the mass profiles among all the cases, two characteristics were used: 

initial mass and final mass.  The best cases in each category are listed in Tables 11 and 

12.  The mass ratio, defined as the ratio of propellant mass to total mass, is also shown in 

these tables.  For reference, the baseline missile has a mass ratio of 0.622.  The mass-time 

curves are shown in Figures 8 and 9, the latter re-scaled to show increased detail during 

the first 25 seconds of flight, before the propellant burns out and the mass becomes 

constant.  The poorest cases have been dropped from Figure 9 to make the results more 

readable. 

 

Table 11: Initial Mass Best Cases 

Case # Binary Mass Ratio
20 10011 0.636 
3 00010 0.666 
26 11001 0.636 
5 00100 0.643 
11 01010 0.628 
1 00000 0.655 
30 11101 0.634 
24 10111 0.624 
15 01110 0.649 
13 01100 0.667 

 



Table 12: Final Mass Best Cases 

Case # Binary Mass Ratio
24 10111 0.624 
12 01011 0.643 
8 00111 0.616 
16 01111 0.618 
2 00001 0.623 
18 10001 0.615 
32 11111 0.623 
11 01010 0.628 
6 00101 0.634 
30 11101 0.634 

 

 

Figure 8: Mass Curves 
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Figure 9: Mass Curves (Rescaled) 
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 In Figure 10, the cross-sectional propellant grain profiles of all cases were plotted 

and compared to the baseline grain.  The inner-most line corresponds to the initial 

propellant cross-section.  The remaining contour lines indicate the shape of the grain at 

various intervals during the burn, until burning eventually reaches the missile casing, 

which is the outside circle.  There is no discrete set of characteristics for the grain 

matching comparison, but a good match should have roughly the same port (hollow) area 

and initial perimeter as the baseline, and the correct number of star points is also 

desirable.  Excellent matches for the grain cross-section were not expected in this 

investigation, due to the complex nature of grain geometry and the limited amount of 

information given to the GA.  Only one internal geometry parameter was among the set 

of five studied parameters, and none of the fitness goals directly relate to the grain 
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geometry.  Nevertheless, several good matches were found by the GA and are listed in 

Table 13. In particular, Cases 13 and 32 are very close matches. 

 

Table 13: Grain Cross-Section Best Cases 

Case # Binary
32 11111 
13 01100 
1 00000 
20 10011 
27 11010 
7 00110 
5 00100 
15 01110 



 

 

 

Figure 10: All Propellant Grain Cross-Sections 
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Figure 10: All Propellant Grain Cross-Sections (cont.) 



 

 

 

Figure 10: All Propellant Grain Cross-Sections (cont.) 
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Figure 10: All Propellant Grain Cross-Sections (cont.) 
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Figure 10: All Propellant Grain Cross-Sections (cont.) 
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Figure 10: All Propellant Grain Cross-Sections (cont.) 

 

 There is a significant relationship between the best grain cross-section matches 

and the best thrust curve matches.  Among the characteristics examined in the thrust 

curves, Cases 5, 13, 15, and 31 closely match two of the baseline curve’s three 

characteristics.  Cases 27 and 32 match all three of the characteristics.  Note that all of 

these cases which match the baseline thrust curve so well also exhibit grain geometries 

similar to the baseline grain geometry and are therefore listed in Table 13.  This 
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correlation is significant because the thrust curve can be extrapolated from radar and 

other surveillance data, while the internal grain geometry cannot.  Thus, using the GA to 

match known thrust curve characteristics can offer valuable information about the 

corresponding unknown propellant grain geometry, assuming that the grain is of the same 

family.  The advantage of executing multiple GA cases is also depicted in this example; 

although none of the best thrust curve matching cases are exact matches for the grain 

geometry, the similarities among these cases correspond very well with the baseline 

grain.  A comparison of these cases shows that most of them have large star points 

protruding deep into the center of the grain.  This description also closely matches that of 

the baseline grain geometry.  The number of star points varies, but a plurality (three of 

the six cases) have five points, which is the same number as in the baseline grain.  A 

caveat for these cross-referenced cases which correlate thrust curve accuracy to grain 

accuracy is that all of them except Case 5 have the locked value for propellant radius, 

which is an internal parameter.  While this study has not shown that external data can 

help the GA to match the internal missile characteristics, it does at least indicate that 

knowing some information about the internal configuration can help the GA to find much 

more internal data. 

 Among the various tables of best matches shown above, a few cases appear in 

more than half of the tables, indicating that these cases are the best overall matches.  

Analysis of the parameter binary strings for these cases shows some trends.  Among the 

twelve cases that appear in at least four of the nine tables, all but two have a locked value 

for the non-dimensional propellant radius ratio.  All the best cases except Case 1 (which 

had no locked parameters at all) have locked values for propellant radius ratio, fineness 
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ratio, or both.  The other three parameters under study are locked and unlocked evenly 

among the best cases.  Although Case 1 is not the strongest match, it performed very well 

considering that none of the parameters for this case were locked.  The success of this 

case shows the power of the GA to direct solutions towards the correct configuration if 

the objective function is properly designed and the goal matching characteristics are well 

known.  It should be noted that the matching targets for the four fitness goals are 

considered to be known facts about the baseline to be reverse-engineered; thus, even with 

no locked parameters, Case 1 had four key pieces of performance information to aid in 

finding the correct solution.  The widely varying success of other cases, all of which had 

more known information than Case 1, indicates that while knowing certain pieces of 

information can help the GA find a better match, it is also possible to over specify the 

problem in that detailed information about one or two parameters used at GA inputs can, 

in some cases, lead to reduced success in extracting other parameters.  The overall best 

matching case, Case 13, which appears in seven out of nine tables of best matches in 

various categories, has locked values for the aforementioned parameters: propellant 

radius ratio and fineness ratio.  Other cases which lock additional parameters find slightly 

inferior matches, including Case 32, which has all five parameters locked.  Case 32 is 

certainly one of the best overall matches, however, as are most cases which have four 

locked parameters.  This trend indicates that locking as many parameters as possible is 

generally a valid strategy.  Consciously not locking certain parameters, even if the true 

value is known, can occasionally result in a better match, but the issue of which 

parameters to leave unlocked can be very complex.  The seemingly illogical possibility of 

the GA finding a better solution with less input data is due to the random nature of the 
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algorithm.  If these cases were extended to an arbitrarily large number of generations, 

which is outside the scope of this thesis, the random factors would likely diminish in 

effect and cases with more locked information might more consistently converge to the 

best matches. 

 Deciding which parameters to lock should also be influenced by the chosen 

fitness goals.  Within the table of best matches in each category, some localized trends 

are evident.  Most of the best matches for range and initial thrust have propellant radius 

ratio locked.  Fineness ratio is locked in most of the best matches for phase one end time.  

Propellant radius ratio and fineness ratio are virtually tied for frequency among the best 

matches for time of flight and altitude.  Body diameter and propellant type are both 

common among the best matches for burnout time, while nearly all of the best matches 

for final mass have the nose length ratio locked.  The remaining categories, including 

grain geometry, showed no clear trends among the five studied parameters. 

 Table 14 compiles the cases which appear in at least four of the previous tables; 

these cases are good matches in multiple areas of comparison and thus may be considered 

the overall best matches found by the GA.  Figure 11 shows the external geometry for the 

baseline missile and the overall best cases with 2D views generated in TecPlot ®.  The 

aerodynamic coefficients required to match a ballistic flight trajectory may be achieved 

by many fin configurations.  Therefore, good matches for the fin sizes and locations are 

not expected without providing some data about the fin geometry, which was not done 

for this investigation.  The external views do allow for some examination of the length 

scales of solutions found by the GA.  Two of the studied parameters, fineness ratio and 

nose length ratio, correspond to the missile’s axial length.  Consequently, the best 
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matches for external geometry tend to be those cases which have locked values for these 

two parameters. 

 

Table 14: Best Overall Matching Cases 

Case # Binary # of Criteria 
Matched Well

1 00000 4 
5 00100 5 
11 01010 4 
12 01011 4 
13 01100 7 
15 01110 4 
16 01111 4 
26 11001 4 
27 11010 4 
30 11101 5 
31 11110 4 
32 11111 6 

 

 



    

 

Figure 11: External View of Best Matches 
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Figure 11: External View of Best Matches (cont.) 
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Figure 11: External View of Best Matches (cont.) 
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Figure 11: External View of Best Matches (cont.) 
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Figure 11: External View of Best Matches (cont.) 
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Figure 11: External View of Best Matches (cont.) 
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Figure 11: External View of Best Matches (cont.) 
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 As mentioned elsewhere, the target values for the four matching goals are 

effectively known information about the baseline missile.  It is pertinent to examine 

whether the findings of this investigation are diminished when fewer goals are used, 

although a thorough examination of variable goal sets would significantly increase the 

required computation time and complexity of analysis and is beyond the scope of this 

thesis.  Thus, only the limited case of dropping the initial mass goal will be presented 
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here.  The target value to match for this goal would typically be the most difficult 

information to procure, among the four goals used in the primary investigation, so it is 

important to know whether the reverse-engineering process can still be successful 

without initial mass data for the baseline. 

 Three cases were executed without the mass goal: Case 1, which has no locked 

parameters, Case 3, which has a locked diameter, and Case 32, which has all five studied 

parameters locked.  The interim case with only diameter locked was chosen because it 

was expected that diameter would play a more significant role in the absence of initial 

mass data, and in fact that may be why diameter is not shown to be a vital parameter in 

the primary investigation.  Figures 12-15 show that time of flight, range, and altitude are 

reasonably matched in these cases with or without the mass goal; of course, range and 

altitude are themselves still goals, and time of flight is generally proportional to altitude 

in a ballistic flight.  The thrust curves and mass curves are more stratified and provide 

more insight into the effect of eliminating the mass goal. 

 



 

Figure 12: Altitude vs. Time of Flight with Dropped Mass Cases 
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Figure 13: Trajectories with Dropped Mass Cases 



 

Figure 14: Thrust Curves with Dropped Mass Cases 

 

Figure 15: Mass Curves with Dropped Mass Cases 
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 Regarding the thrust curves and mass curves for the dropped mass cases, the 

significant finding is that the lack of initial mass target data can be overcome with 

enough locked parameters.  Case 32 is an excellent match with or without the mass goal, 

with the full four-goal analysis having just a slight edge in accuracy.  But Cases 1 and 3 

show that lacking the mass goal can be a serious disadvantage in the absence of locked 

parameters.  These limited results do not show the predicted effect of locking the 

diameter value when mass is not a goal.  Analysis of additional cases could possibly 

expose a co-dependence of diameter with fineness ratio or some other parameter which 

would indeed overcome the lack of mass goal data. 



 

 

 
 

Figure 16: Propellant Grain Cross Sections with Dropped Mass Cases 
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 Figure 16 compares the grain cross sections of the original cases and dropped 

mass cases.  Case 1 is a somewhat poorer match without the mass goal, while Case 3 is 

somewhat better than the original case, but none of these are close matches.  Case 32 

again shows that, with enough locked parameters, the GA can find a good match even 

without the initial mass goal.  The number of star points is off by two, but otherwise the 

grain cross-section is a good match for the baseline.  The original case with all four goals 

is clearly superior, though. 

 Figure 17 shows the external geometry of the dropped mass cases.  As in the 

primary investigation, the fin configurations are erratic due to the aerodynamic nature of 

ballistic missile flights. 

 



   

 

Figure 17: External View of Dropped Mass Cases 
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Figure 17: External View of Dropped Mass Cases (cont.) 

 

Concluding Comments 
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 The frequency of propellant radius among the best matching cases indicates that 

some knowledge of the internal grain geometry is a significant help in finding the best 

reverse-engineering matches for a solid rocket propelled missile.  However, fineness ratio 

is nearly as important, and this parameter is far more likely to be available from even 
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limited surveillance data, since it can be extrapolated from a photograph regardless of 

scale.  Even more promising is that the GA is capable of finding a quality reverse-

engineering match even with no locked design parameters, though sufficient performance 

data for the fitness goals are still required.  The value of executing multiple cases through 

the GA has also been shown, particularly when comparing the best thrust curve profiles 

to determine characteristics of the propellant grain.  In the reverse-engineering analysis, 

the importance of inspecting populations by hand to determine the true best performer 

has also been shown.  Finally, the effect of changing the goal set has been shown as 

significant to the reverse-engineering process, although locking enough design 

parameters may be sufficient to overcome a set of fewer matching goals. 

 

Recommendations 

 

 Further investigation of this topic could include additional design parameters in 

the test matrix, as well as more exhaustively studying the importance of performance 

characteristics in the fitness goals.  Considerably more computation time could be 

devoted to analyzing these cases through additional generations and/or increased 

population size, to examine whether the trends endure even as the random elements of the 

GA are diffused through sheer quantity of simulations.  The results of this thesis could be 

validated by applying the same principles to additional baseline missiles which may have 

completely different scales and grain geometries.  With a more advanced model, these 

methods could also be tested on missiles with multiple stages and missiles with 

propellant grains which are not uniform length-wise, such as tapered or composite grains.
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APPENDIX A: AGARAT Manual 

 

 This investigation makes use of a custom-built program called the Advanced 

Genetic Algorithm Results Analysis Tool, or AGARAT.  It consists of two pieces: a 

Fortran-coded shell program that automates single-run simulations in the solid rocket 

modeling suite, and a package of Microsoft Excel ® macros coded in Visual Basic for 

Applications (VBA) which quickly generate useful plots that aid the user in comparing 

performance results among a set of members.  AGARAT conveniently provides a more 

thorough look at several of the best members (not just one top-sorted member) of a 

generation, typically the final generation. 

 For input, AGARAT requires the materials properties file (boxsave.dat) and any 

population file from the IMPROVE genetic algorithm (GA).  The original GA input file, 

Gannl.dat, is not required.  The user is prompted to type in the population data filename 

(Ex. “population.00050” or “looperout32.dat”) and the number of members to be 

analyzed.  AGARAT assumes that minimization sorting is in effect and searches the 

population file to find the chosen number of members, starting with the GA’s top-sorted 

member.  The program then converts the parameter data for these members from 

horizontal to vertical format and saves the parameters for each one in a uniquely named 

file, starting with Snglerun.1.  AGARAT then calls the main suite of missile simulation 

codes for each unique parameter file.  Between each call, the important output files for 
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the analysis just completed are stored under corresponding unique filenames, such as 

grainplot.1, rangedata.1, and geomout_matlab.1.  This process continues until all of the 

members have been analyzed and AGARAT has stored all the output files.  Please note 

that these files will be overwritten when AGARAT is executed the next time, so copy 

important output files to a separate directory. 

 The Excel ® macros are found in the AGARAT_Macros.xls workbook.  There are 

macros set up to analyze five, ten, or fifteen members at a time, but it is a simple matter 

to customize the VBA codes for additional or interim numbers of members.  Included 

macros generate plots for trajectory, thrust curves, etc. with each member represented as 

a separate data series on the same plot.  Solid rocket grain cross-sections are drawn into a 

separate chart for each member.  In a reverse-engineering application, a series for the 

baseline data can also be plotted.  From these plots, comparisons may be observed which 

are completely independent of the objective function used by the GA to sort the 

members.  Thus, these plots can aid in choosing top performers in categories such as 

thrust profiles and grain cross-sections which may be difficult to program into fitness 

goals in the GA.  After the macros have been executed, the plots may be customized 

freely for better use in a paper or presentation.  In order to maintain the function of the 

macros, the user must save the workbook under a different name or close the workbook 

without saving changes.  If this rule is not followed, macro functionality in 

AGARAT_Macros.xls can be restored by deleting all non-default worksheets and all 

plots and other data and then saving the workbook to its original condition, in which it is 

completely blank (except for the macros). 
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