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Abstract

Test Driven Development (TDD) is a software development practice advocated by
practitioners of the Agile development approach. Many developers believe that TDD increases
productivity and product quality, while others have claimed that it delivers cleaner, more
maintainable code. Many studies have attempted to evaluate these claims through various
empirical methods. Most recently, Fucci, et al. have used the Besouro tool produced by Becker
et al. to measure TDD conformance over a series of closely replicated experiments. Our
approach used an originally-written analysis tool run against a cumulative series of homework
assignments, providing measurements for the three dimensions identified by Fucci, et al:
granularity, uniformity, and sequencing [Fucci, Nov 2016], along with other characteristics
associated with TDD.

In addition to Test Driven Development, our study incorporates elements of the
Transformation Priority Premise (TPP) set forth by Robert Martin. It proposes that as developers
write their production code to make their test code pass (the green light phase of TDD), they are
transforming their code (in contrast to refactoring). His premise is that there are a finite number
of transformations that a developer can choose, and that there is a priority whereby some
transformations should be preferred over others. This priority, in an isolated example, has been
demonstrated to produce an algorithm with better performance than a comparable solution that

ignored the priority order and produced a different algorithm.



A post-development analysis tool was written to examine student submissions for both
TDD and TPP conformance. Submissions were committed using a special Eclipse plug-in to
inject specific comments into a local git repository. The analysis tool then used those comments
as indicators of the TDD phase in the student’s process and evaluated how closely students
followed the prescribed recommendations.

Our findings concur with recent studies, in that we did not find quantifiable proof that
following the TDD process delivers a better product than not following the process. We also
find that a concise yet meaningful definition of TDD is elusive and contributes to the difficulty in

drawing definitive conclusions about its value as a software development practice.
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1. INTRODUCTION

Test Driven Development (TDD), also referred to as test-first coding or Test Driven
Design, is a practice whereby a programmer writes production code only after writing a failing
automated test case [Beck 2003]. This approach offers a completely opposite view of the
traditional test-last approach commonly used in software development, where production code is
written according to design specifications. Then, traditionally, only after much of the production
code is written does one write test code to exercise it.

In 1999, Kent Beck coined the moniker Test Driven Development (TDD) in his book
Extreme Programming Explained: Embrace Change. Beck began using the practice in the early
90’s while developing in Smalltalk. But, as Beck himself points out, the idea of writing test code
before production code is not original to him. While test-first coding is easily done with modern,
sophisticated Integrated Development Environments (IDE’s) where one can write test and
production code and get immediate feedback, the practice was in use with earlier modes of
programming. Beck describes being a child and reading a programming book that described
test-first coding using paper tapes, where the programmer would produce the expected paper
output tape first and then write code until the actual paper tape output matched the expected
paper tape output [Beck 2001]. In fact, the earliest references to development teams using a
TDD-style approach are in NASA’s Project Mercury in the early 1960’s, which employed test-

first practices in the development of the spaceship’s software. [Larman & Basili 2003]



Test Driven Development has been described using general guidelines [Beck 2003,
Astels 2003], but does not provide rigorous guidance for its implementation. Some of Beck’s
initial instructions were as ambiguous as “never write a line of functional code without a broken
test case.” [Beck 2001]

William Wake adapted a traffic light metaphor to give developers an idea of how the
practice should work. It has been modified and adapted numerous times, but his original
example followed a green, yellow, red pattern. Starting to write the test was the initial green
light. When the test failed to compile because there was no production code available, the
programmer was experiencing the yellow light. Once a stub was written for the production code,
the test code would fail because the stub did not do anything, resulting in a red light. Once the
production code was written and the test case passed, the developer would return to a green light
status. [Wake 2001]

The most common implementation of the traffic light example is shortened to Red,
Green, Refactor [Beck 2003]. The red light represents the failing, or possibly non-compiling,
test code. Green light is the end-result of writing the minimum amount of code to make that test
code pass. Refactoring is used to eliminate any code duplication or bad programming techniques
that were introduced by getting to green as expeditiously as possible.

After his 2001 book introducing Extreme Programming (XP), Beck wrote a second book
to provide more detail about the practice of TDD, summing it up with a five-step process [Beck
2003]:

Write a new test case.
Run all the test cases and see the new one fail.
Write just enough code to make the test pass.

Re-run the test cases and see them all pass.
Refactor code to remove duplication.

o PE



TDD is a fundamental practice in the Extreme Programming approach to developing
software [Beck 2000], but it can be used separately from the XP methodology. Ina 2010 survey
of self-described Agile practitioners, 53% of the 293 respondents used what the poll referred to
as ‘Developer TDD’ for validating software [Ambler 2010]. Kent Beck polled attendees of the
2010 Leaders of Agile webinar regarding their use of TDD, and 50% of approximately 200
respondents indicated they used TDD [Beck 2010]. In both of these polls, the respondents are
pre-disposed to TDD usage because they develop software in an Agile manner.

In a more mainstream poll, Forrester reported that 3.4% of 1,298 IT professionals polled
used a TDD approach to development [West & Grant 2010]. The problem with this poll is the
question: “Please select the methodology that most closely reflects the development process you
are currently using.” TDD was listed as a methodology along with Scrum, XP, Waterfall and
other development methodologies. TDD is not really a methodology, but is a practice that could
be used in conjunction with Scrum or XP, so this could result in an under-reported number of
TDD practitioners. Alternately, since TDD is not well defined, it is possible that some
respondents may have incorrectly claimed to use TDD, resulting in over-reporting. Regardless,
the numbers indicate enough interest in TDD to treat it as a serious technique.

As TDD has entered into the software development vocabulary, academics have been
assessing how to incorporate it into the university curriculum. In a 2008 paper, Desai and Janzen
surveyed the results of 18 previous studies trying to assess the best time to introduce TDD into
the curriculum [Desai & Janzen 2008]. Five studies were conducted with graduate students, five
studies used undergraduate upper-classmen, seven used freshmen and one used a mix of all
groups. Overall, the results were more promising at the higher levels, but Desai and Janzen

argue the concepts can and should be introduced sooner. After assessing the methods used with



the freshmen group, they concluded that the key to teaching TDD at the lower levels was to
introduce and reinforce instruction early in the course and then continuously model the technique
throughout the remainder of the course. They followed up the survey paper with an experiment
to validate their hypothesis along with a proposal for integrating TDD into the curriculum as
early as the CS1/CS2 classes [Desai & Janzen 2009]. Kollanus & Isométténen conducted an
experiment with upperclassmen and also concluded that reinforced teaching with examples is a
necessary approach, and that instruction should begin early in the curriculum. Their
recommendation was to introduce it after the first programming course [Kollanus & Isométtonen
2008].

Numerous books have been written with extensive examples in an attempt to educate
developers in the practice of TDD [Beck 2003, Astels 2003, Koskela 2008, Freeman & Pryce
2010]. Despite all these elaborations, TDD remains deceptively simple to describe, but deeply
challenging to put into practice. One reason for this may be found in an experiment conducted
by Janzen and Saieden [2007]. They found that while some programmers saw the benefits of the
test-first approach, several of the programmers had the perception that it was too difficult or too
different from what they normally do. Another study found that 56% of the programmers
engaged in a TDD experiment had difficulty adopting a TDD mindset [George & Williams
2004]. For 23% of these developers, the lack of upfront design was identified as a hindrance. A
third study compiled answers from 218 volunteer programmers who participated in an on-line
survey. In the study, programmers self-reported on how often they implemented (or in some
cases deviated from) specific TDD practices. The study found that 25% of the time,
programmers admitted to frequently or always making mistakes in following the traditional steps

in TDD. [Aniche & Gerosa 2010] Aniche and Gerosa observe that, while the technique is



simple and requires only a few steps, the programmer must be disciplined in his approach in
order to garner the benefits. When the programmer is not disciplined, he does not experience the
full benefit of TDD, and as a result he may be less inclined to use the practice.

The TDD practice at a unit test level also leaves many questions unanswered. John
McGregor states, “Design coordinates interacting entities. Choosing test cases that will
adequately fill this role is difficult though not impossible. It is true that a test case is an
unambiguous requirement, but is it the correct requirement? More robust design techniques have
validation methods that ensure the correctness, completeness, and consistency of the design.
How does this happen in TDD?” [Fraser et al. 2003]

After producing a book with in-depth empirical research on the subject of TDD,
Madeyski wrote, “a more precise definition and description of the TF (Test First) and TL (Test
Last) practices, as well as a reliable and automatic detection of possible discrepancies from the
aforementioned techniques, would be a valuable direction of future research.” [Madeyski 2010].

Fucci, et al. ran a series of replicated experiments regarding TDD, and his conclusion is
that there is no substantive difference between writing tests first or tests last, so long as the
development is performed iteratively in small steps and automated test are written [Fucci 2016].

One aspect of TDD that is not frequently mentioned in academic research is the issue of
mocks and other test doubles. According to [Meszaros 2007], ”A Test Double is any object or
component that we install in place of the real component for the express purpose of running a
test.” He defines a Mock Object as “an object that replaces a real component on which the SUT
(software under test) depends so that the test can verify its indirect output.” He further elucidates
the definition by saying it is also an object that can act as an observation point for the indirect

outputs of the SUT.”



Some proponents of TDD have conflated the two practices, basically insisting that to
perform TDD properly, one must use mocks while writing tests. [Fowler 2007] describes
Classical and Mockist TDD practitioners in a blog post. Classical TDD practitioners most often
use the actual objects in their TDD process and will only mock objects when it is difficult to use
the real objects. For example, making calls to a pay service while developing an application is
not practical, so providing a mock object can be a better option. Mockist TDD practitioners will
use a mock to separate all dependencies between all objects in the name of making the code
more testable.

In a blog post, [Hannson 2014] declared that “TDD is dead.” This spurred a series of
Google Hangouts hosted by ThoughtWorks [ThoughtWorks 2014] exploring the question, “Is
TDD Dead?” In the Hangouts, Kent Beck, Martin Fowler, and David Heinemeier Hannson
debated the usefulness of TDD in modern software development. Hannson posited that the
approach taken by Mockist TDD practitioners results in test-induced damage. By seeking to
isolate code from its dependencies, many levels of indirection are introduced that make the code
convoluted and difficult to understand and maintain. Fowler and Beck took a more Classical
TDD approach, stating that they hardly ever use mocks. [ThoughtWorks 16 May 2014]. Beck
indicated that TDD was all about feedback loops for him, and that if a developer found a piece of
code hard to test, then there was a problem with the code design. So, in struggling to write the
next test and finding it difficult to do so, the developer must ponder his design choices to
understand the difficulty. This struggle can lead the developer to find a better, more testable

design. [ThoughtWorks 20 May 2014].



A total of five Hangouts occurred, with little resolution between the camps. This entire
conversation once again points out the confusion over what exactly TDD is and how one uses it
to produce the best outcome.

This research examines TDD benefits from a different perspective: Can TDD be a useful

tool for mitigating risk in the development process?



2. LITERATURE REVIEW

Kollanus performed a systematic literature review of TDD research where empirical
methods were employed [Kollanus 2010]. She found 40 papers that report some kind of
empirical evidence on TDD as a software development method. These empirical exercises
resulted in inconsistent, and often contradictory, results from one study to the next.

The studies focused on different aspects of the practice and the resulting code, including
defect density, programmer productivity, and object cohesion and coupling. In many of the
articles, evidence was reported on TDD concerning 1) external quality, 2) internal code quality,
and/or 3) productivity. Kollanus summarized her findings with regard to these three factors by
stating there is [Kollanus 2010]:

1. weak evidence of better external quality with TDD.
2. very little evidence of better internal quality with TDD.
3. moderate evidence of decreased productivity with TDD.

A confounding complication Kollanus experienced in performing the systematic review
was that frequently the TDD process was very briefly or not described within the source papers,
so it was very difficult to compare the results. As mentioned previously, TDD has not been
rigorously defined, and if the studies do not express how it was practiced, there is no guarantee
the results between studies can be accurately compared. Another possible reason for the wide

variation of findings may be an inconsistent understanding or application of TDD by the people

participating in each individual study [Kou et al. 2010]. These studies have a “process



compliance problem” in that there is no validation that the participants actually used the TDD
practices as set forth in the individual experiments.

Approximately half of these TDD experiments were conducted with college students who
had training in software development and perhaps software design. Frequently, these students
were then provided a brief introduction to TDD and given a “toy” solution to develop under a
specific time constraint. Muller and Hofer found that studies such as these that use novices to
perform TDD are not easily generalized because of inconsistent process conformance [Muller &
Hofer 2007].

Even experienced programmers do not consistently conform to the process. Examples
abound in Aniche’s survey of TDD programmers. For instance, the survey revealed that, on a
regular or frequent basis, 33% of programmers do not begin with the simplest test, a violation of
one of the most fundamental concepts of TDD [Aniche & Gerosa 2010].

Another complication in the results of previous empirical studies lies in the skill and
experience of the subjects. Ward Cunningham’s statement that “test-first coding is not a testing
technique” [Beck 2001] illustrates a major misunderstanding of TDD. To use the technique
properly, the programmer must be developer and designer at the same time. This type of task is
not for every developer at every skill level. Designing and developing code being led by specific
tests requires a certain degree of maturity in understanding how software interacts.

Boehm [Boehm & Turner 2004] provides a classification system for programmers with
regard to their ability to perform within a particular software development environment. Of his
five levels, the top two have appropriate skills to function on an Agile team, the bottom two
require a much more structured environment, and the middle level can perform well on an Agile

team if there are enough people from the top two tiers to provide them guidance. The



implication of Boehm’s classifications is that to be successful using an Agile approach, including
using TDD to write code, requires people who are relatively experienced and very talented and
flexible.

Latorre [2014] explored the impact of developer experience on TDD and found that both
skilled and junior developers can quickly learn to adapt to the unit testing and short
programming tasks associated with TDD. Junior developers struggle with the design aspect of
TDD. Their performance suffers because they must make more frequent adjustments to their

design choices than do more experienced developers.

2.1. Related Work

2.1.1. Agile Specification-Driven Development

Agile Specification-Driven Development is a technique that combines both TDD and
Design-by-Contract (DbC) [Ostroff et al. 2004]. DbC is a concept introduced by Bertrand Meyer
[Meyer 1991] which allows a language to explicitly declare pre- and post-conditions for a
method and invariants for a class. Meyer created the programming language Eiffel to support
DbC [Meyer 1991b], but more mainstream languages are being extended to include DbC as well.
Leavens & Cheon [2006] introduce the Java Modeling Language as a way to support DbC in
Java, and Microsoft introduced their version of DbC called Code Contracts into the .NET
framework beginning with Visual Studio 2008 [Ricciardi 2009].

Meyer also introduced an approach to software development called the Quality First
Model [Meyer 1997]. His approach pre-dates XP by 2-3 years, yet shares many similarities with
it. The Quality First Model values working code above all else, but it also takes advantage of

formal methods for development and tools that allow models to generate code and vice versa.

10



Ostroff, et al., summarize the quality-first approach as [Ostroff et al. 2004]:

1. Write code as soon as possible, because then supporting tools
immediately do syntax, type, and consistency checking.

2. Get the current unit of functionality working before starting the
next. Deal with abnormal cases, e.g., violated preconditions, right
away.

3. Intertwine analysis, design, and implementation.

4. Always have a working system.

5. Get cosmetics and style right.

The Quality First Model has at its core the DbC approach, and it shares some
commonalities with conventional TDD practice. For instance, the emphasis in step two is to
finish one unit of functionality before moving on to the next. This is also a tenet of TDD.
However, a big difference is also immediately obvious in the second step because TDD asks the
developer to focus on the most common case, whereas DbC expects the developer to focus on
abnormal cases first.

In concept, both TDD and DbC are specification tools. Ostroff, et al., point out that the
two approaches actually can be complementary. They state that using TDD early in the
development cycle allows the developer to describe the functionality and formalize the
collaborative specifications, while adding contracts later provides an easier way to document and
enforce pre- and post-conditions [Ostroff et al. 2004].

This approach was being explored further in blogs by Matthias Jauernig [2010] and
David Allen [2010]. The introduction of Code Contracts in .NET stimulated the interest in
combining the use of TDD and DbC for these bloggers. Specifically, they encouraged

developers who currently use TDD to incorporate the use of Code Contracts into their

development practices.
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2.1.2. Behavior-Driven Design (BDD)
BDD was first introduced by Dan North [North 2006]. The initial reason for the name

shift from Test-Driven Development to Behavior-Driven Development was to alleviate the
confusion of TDD as a testing method versus TDD as a design method. Astels notes, “Behavior-
Driven Development is what you were doing already if you’re doing Test-Driven Development
very well” [Astels 2006]. By changing the developer’s focus to the behavior of the code, it was
posited that the developer would shift his mind-set away from validation to the design aspects of
the technique.

To illustrate the need for BDD, the BddWiki provides a life-cycle to the learning and
adoption of TDD [Rimmer 2010]:

1. The developer starts writing unit tests around their code using a
test framework like JUnit or NUnit.

2. As the body of tests increases the developer begins to enjoy a
strongly increased sense of confidence in their work.

3. At some point the developer has the insight (or is shown) that
writing the tests before writing the code, helps them to focus on
writing only the code that they need.

4. The developer also notices that when they return to some code that
they haven't seen for a while, the tests serve to document how the
code works.

5. A point of revelation occurs when the developer realizes that
writing tests in this way helps them to “discover” the API to their
code. TDD has now become a design process.

6. Expertise in TDD begins to dawn at the point where the developer
realizes that TDD is about defining behaviour rather than testing.

7. Behaviour is about the interactions between components of the
system and so the use of mocking is fundamental to advanced
TDD.

Rimmer asserts that most developers, with some assistance, reach step four, but very few
progress beyond it. He does not provide any empirical research to support this learning curve; it

is merely based on observation and experience.
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Proponents of BDD have developed new testing frameworks that change the
nomenclature in order to support the approach and to get developers to think beyond the
viewpoint that TDD is about testing. The rationale is based on the Sapir-Whorf theory that the
language used influences one’s thought [Astels 2006]. Dan North developed a Java-based
framework called JBehave that removed any reference to testing and modified the language to
focus on behavior. For example, instead of using the testing terminology ‘assertion’, the
framework uses ‘ensureThat’; for example ‘ensureThat(actual, equalTo(expected); [jBehave
2011]. For Ruby, the framework is called rSpec, and it replaces the ‘assertion’ terminology with
a sentence-type structure where the actual object is the subject and the assertion statement is the
verb; for example, ‘actual.should.equal expected’ [Astels 2006].

Some key aspects of BDD include [North 2006]:

1. The word ‘test’ should not be included in the test name.

2. Test method names should be sentences and should begin with the word ‘should’,
for instance, ‘shouldTransferBalanceFromAccountWithSufficientFunds’.

3. Tests should not correspond one-to-one with classes, but should focus on
behaviors. This makes it easier to change the structure as classes grow and need

to be broken out into separate classes.

2.1.3. Acceptance Test-Driven Development (ATDD)
Traditional TDD focuses on the smallest test that one could possibly write [Beck 2003].

The programmer begins with the failing test case and writes code until the test case passes. Test
cases are written to assist in the development of various low-level requirements, but there is no
mechanism by which a developer can put the requirements in context. Approaching
development from this low-level viewpoint can produce results like Madeyski experienced,
where programmers’ code was significantly less coupled than comparable Test-Last code, but

the percentage of acceptance tests passed was not significantly impacted. [Madeyski 2010]. One

13



could say the code quality was better, but the code didn’t necessarily meet the high-level
requirements of the project.

In order to ensure that the code is actually providing the functionality that the users
desire, some software engineers have been focusing on a higher level test to set the context for
the overall development. Beck mentions the concept of application test-driven development
[Beck 2003], whereby the users would write the tests themselves. There have since been off-
shoots of TDD that focus on allowing the customer to write acceptance tests that the developers
can use to see if their software is providing the correct functionality. As described above, BDD
is one of those approaches. ATDD is another.

Ward Cunningham introduced the concept of FIT tables in 2002 [Wiki 2011]. The
general idea is that the customers enter test data into a table using a standard word processor or
spreadsheet, and the developers write a test fixture that uses the data to test the software under
development [Shore 2005]. This approach has been extended with multiple variations and tools,
including Fitnesse [Martin, R. et al. 2008], which allows the customer to enter test cases into a
wiki and then translates the data through a FIT client and server process into standard FIT
fixtures, to get a FIT environment up and running very quickly. Custom fixtures written by the
development team complete the configuration [Martin, R. et al. 2008]. Other solutions include
Easy Accept, which is a script interpreter and runner offering another approach to automating the
creation of the acceptance tests [Sauve et al. 2006] and AutAT, which focuses on acceptance
testing of web applications [Schwarz et al. 2005].

Beck objects to ATDD because tests would not be under the control of the developers.

He predicts that users and/or organizations will not be willing or able to take on this

14



responsibility in a timely enough manner for the software development. He objects to the lag in
time between test and feedback, preferring the more immediate feedback of TDD [Beck 2003].

2.1.4. Growing Objects, Using Tests

Freeman & Pryce [2010] advocate a combination of the developer control and immediate
feedback of TDD with the functional focus of ATDD. The developer begins with a functional
test case that is derived from a user story that represents a system requirement. This differs from
the ATDD approaches in that the tests are written by the developers, not by the end users. It puts
the onus on the developer to make sure that he understands the user stories sufficiently to create
the correct test. But it addresses Beck’s concern that ATDD would create delays or cause the
developers to lose needed control.

The fundamental TDD cycle is envisioned to take on the activities depicted in Figure 2.1.

o T
Write a Make the
failing test pass
unit test |

[

\\ Refactor /

Figure 2.1: Fundamental TDD Cycle [Freeman & Pryce 2010]

By adding the functional test, the cycle takes the form of Figure 2.2.
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Write a e
failing Write a Make the
functional test pass
test

unit test

\ Refactor /

Figure 2.2: Functional Test TDD Cycle [Freeman & Pryce 2010]

2.1.5. Transformation Priority Premise

Robert Martin (colloquially known as “Uncle Bob”) is a programmer and author,
particularly in the realm of Agile Planning and Programming. He is a staunch proponent of the
practice of Test-Driven Development, going so far as to say that “it could be considered
unprofessional not to use it.” [Martin, R. 2011 p. 83]. He has developed an approach to TDD
that he calls the Transformation Priority Premise [Martin, R. 2013].

To understand this premise, the words “transformation” and “priority”” must be examined
in the context. Martin draws a parallel between transformations and refactorings. In the
red/green/refactor cycle of TDD, a red condition indicates a failing test case, a green condition
indicates all test cases currently pass, and refactoring is a situation where the structure of the
code is modified or “cleaned up” without changing the behavior of the code. This “clean up” is
designed to make the code more readable and/or maintainable. Martin Fowler referred to this
process as removing “bad smells” in the code [Fowler 1999, p.75].

Transformations are used to bring the production code from a red condition to a green
condition. They change the behavior of the code without significantly changing the structure of

the code. Martin uses the TDD philosophy “As the tests get more specific, the code gets more
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generic” [Martin, R. 2009]. He sees the transformations as a way to generalize behavior of the
production code without changing the structure. His initial list of Transformations was

expressed as follows [Martin, R. 2013]:

e ({}—>nil) no code at all->code that employs nil

e (nil->constant)

« (constant->constant+) a simple constant to a more complex constant

o (constant->scalar) replacing a constant with a variable or an argument
o (statement->statements) adding more unconditional statements.

¢ (unconditional->if) splitting the execution path

e (scalar->array)

e (array->container)

e (statement->recursion)

o (if->while)

o (expression->function) replacing an expression with a function or algorithm
e (variable->assignment) replacing the value of a variable.

In a later video, the list was simplified [Martin, R. 2014]:

Null

Null to Constant
Constant to Variable
Add Computation
Split Flow
Variable to Array
Array to Container
If to While

9. Recurse

10. Iterate

11. Assign

12. Add Case

NG~ WNE

In both lists, the ordering of the Transformations is important. As one traverses the list from

top to bottom, the transformations progress from lesser complexity to greater complexity.

Micah Martin wrote in his blog the following, “As | pondered these transformations, | found
it simpler to think about them in terms of the resulting code, and that led me to the short list

below [Martin, M. 2012]:

17



constant : a value

scalar : a local binding, or variable
invocation : calling a function/method
conditional : if/switch/case/cond

while loop : applies to for loops as well

arwhE

Regardless of which list is used, Martin’s Priority Premise is that programmers should
opt to perform transformations to their code that are higher up on the list. When following this
order, Martin hypothesizes that “better” algorithms will emerge than if transformations are
selected from further down the list. In other words, given the option to use a simpler
transformation or a more complex transformation, the programmer should select the simpler
transformation.

This Priority Premise has implications both with transforming the code to achieve a green
light state, but also with the subsequent tests to be written. As the production code is
transformed to make the tests pass using higher priority transformations, so the next test written
should lead the developer to choose a higher priority transformation. Martin believes that this

should lead to simpler tests which should lead to simpler code.

2.2. Related Tools
2.2.1. ComTest

ComTest is an Eclipse plug-in that allows students (its intended target audience) to
express test conditions in JavaDoc, which are then translated into JUnit tests [Lappalainen et al.
2010]. The rationale is that students should be introduced to the concept of testing early in their
education, but the concepts used in the xUnit tools are too complex for beginners. ComTest uses
a very short and simple syntax which is reminiscent of FIT tables. The benefits of ComTest are
that they are shorter and easier to write than xUnit tests; they keep the test and production code

together; and they serve as documentation for method usage.
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While ComTest promotes itself as a TDD tool, it would be more accurately described as a
primitive Design by Contract tool. Its focus is primarily on the interfaces and validating pre- and
post-conditions. TDD is a practice that encourages the developer to go back and forth between
test code and production code to “grow” the functionality. But ComTest encourages the
developer to write out the tests in JavaDoc, generate the test code, and run it against the
production code. The tests may be written first, but this does not conform to the traditional
approach to TDD.

2.2.2. Zorro

Zorro was developed to monitor the process compliance problem. The monitoring is
intended to allow researchers to determine how closely TDD was followed, and thus to
determine if the results of their research reflects an accurate picture of the validity of TDD [Kou
et al. 2010]. Kou provides a “precise, operational definition of TDD practice” using an “episode
classification algorithm”. He developed the Zorro system to assess how closely a developer is
following the TDD practice based on this algorithm. The results are expressed as a percentage,
for instance, “Developer X used TDD 65% of the time during this phase of development.”

The “operational definition” of TDD that is given by Zorro focuses primarily on the order
in which activities are performed. The Zorro software, using the traditional definition of TDD,
asks questions such as, were test cases written first? Did the test cases fail prior to writing code?
Was the time spent in code editing too long, suggesting that the developer has not broken down
the test into a small enough “chunk’?

Zorro currently includes twenty-two episode types that are subdivided into eight
categories: Test First, Refactoring, Test Last, Test Addition, Regression, Code Production,
Long, and Unknown. When Zorro assesses TDD conformance, all of the Test First episodes
were considered conformant, and all of the Test Last, Long and Unknown were considered non-
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conformant. Within the other categories, the episodes were determined to be conformant based
on the context of the episodes preceding and succeeding them. For instance, refactoring can be
performed as a part of a TDD practice, but it can also be done in a Test-Last context. So, if a
Refactoring episode is preceded by a Test First episode, the Refactoring is deemed TDD
Conformant. If it is preceded by a Test Last episode, the Refactoring is deemed non-TDD
Conformant. See Appendix B for a complete description of the Zorro classification system rules.

2.2.3. TDD-Guide
The TDD-Guide was developed by Oren Mishali as a component of his PhD Thesis

[Mishali 2010]. The primary focus of his research was how to use aspect-oriented programming
(AOP) to support the software engineering process. The TDD-Guide makes use of an AOP
framework that Mishali developed and is implemented as an Eclipse IDE plug-in. His work on
the TDD-Guide was intended to demonstrate his AOP framework in the development of a non-
trivial software component, as opposed to providing a rigorous definition of TDD.

The TDD Guide supports a rule-based approach to implementing various software
processes. TDD events and the necessary responses are defined as rules and placed in the tool’s
repository. A single TDD event is often defined as a series of several, more basic events. The
AOP framework tracks the series of low-level events to enable the TDD-Guide to interpret the
higher-level TDD event. In addition to events, timing information is tracked as well.

As an example, one TDD event was defined as OneTestAtaTime, which supports the
TDD philosophy that a developer should only be working on one test at a time. The low-level
events that would support this would be: TestCaseModified, TestCaseExecuted, and
ProdCodeModified. This sequence would represent conformance to the OneTestAtaTime TDD
event. As a negative example, a sequence of TestCaseModified, TestCaseExecuted (with a
failure of more than one test case), and ProdCodeModified would represent a deviation to
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OneTestAtaTime because there are multiple test case failures. Appropriate positive/negative
responses are displayed in the Eclipse IDE based on process deviation or conformance.
While the focus of the research was not on TDD, it touched on several relevant issues.
The TDD-Guide tool was developed to be very flexible: rules can be added incrementally to the
repository; both positive and negative feedback can be given to the user; and the tool can either
make recommendations or can strictly enforce the TDD behavior desired. Developers interact
with Eclipse in the normal fashion, and only receive alerts and notifications as their behavior
does or does not conform to the TDD behaviors defined by the system.
The TDD-Guide was developed iteratively, and by its last iteration, it considered four
basic behaviors, noted as follows:
1. Basic TDD Cycle
a. Complete TDD Cycle - Conformance
b. Developer continues with coding after a cycle is ended - Deviation
c. Developer continues with testing after a cycle is ended - Conformance
d. Developer moves to code without executing the test - Deviation
e. Developer moves to code after executing the test - Conformance
2. One test at a time
a. Developer starts coding with one failing test - Conformance
b. Developer starts coding with several failing tests - Deviation
c. Developer creates the second consecutive unit test - Deviation
3. Simple initial cycle
a. Developer spends too much time on the first test - Deviation
b. Developer finishes the first cycle on time - Conformance
4. TDD coding standards
a. Developer violates test naming convention - Deviation
b. Developer violates code naming convention - Deviation
In comparing the TDD-Guide to Zorro, Zorro’s primary focus is TDD and provides a
more comprehensive analysis of the TDD behavior, while the TDD-Guide was only written to
demonstrate another lower-level framework and only evaluates a limited set of TDD behaviors.

Also, Zorro is strictly a background process to provide feedback to researchers, while TDD-

Guide seeks to provide feedback to the developer to encourage TDD-compliant behavior.
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2.2.4. Besouro

A subsequent stand-alone tool named Besouro was adapted from the Zorro tool [Becker
2014]. Zorro is a rules-based system that requires an underlying platform of Hackystat and
SDSA (both developed and supported through the University of Hawaii) [Johnson & Paulding
2005]. Hackystat is an open-source framework used for automated collection and analysis of
software engineering data based on programmer actions. SDSA is a statistical application that
uses the data collected by Hackystat to provide further analysis of the collected data. Hackystat
uses sensor plug-ins to the developer’s IDE to collect the data. Besouro is a plug-in that uses the
Zorro code as its base, but it is a stand-alone plug-in available only for the Eclipse IDE. Besouro
replaces the collection functionality that Hackystat provided, eliminating the dependency on that
platform.

The more significant difference between Zorro and Besouro from an analysis viewpoint
is the approach to the TDD Conformance evaluation. As described in section 2.2.2, Zorro
recognizes twenty-two episode types that are subdivided into eight categories. Certain episodes
are definitively categorized as either Test First or Test Last. Within the categories of
Refactoring, Test Addition, Regression, and Code Production, the conformance issue can be
ambiguous. Zorro uses the categorization of the episode immediately preceding the current one
to determine its conformance. This approach appears to lead more frequently to false negatives
than to false positives. If, upon entering the IDE, the developer fixes a problem in production
code that was left over from the previous development session and then runs the test code, this
will be evaluated as Test Last. If he then proceeds to perform several TDD compliant yet
conformance-ambiguous activities, then the entire session may end up being classified as non-

TDD compliant. As of their 2014 article, the creators of Besouro were investigating
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programmatic methods to evaluate Refactoring, Test Addition, and Regression independently of
the neighboring episodes.
Experiments using Besouro

Beginning in the Fall of 2012, Davide Fucci and other co-researchers began a series of
replicated experiments reviewing various aspects of TDD, and after the initial experiment, added
the use of the Besouro tool to measure TDD process conformance. In early iterations, the
experiment typically used upper division undergraduate students and junior graduate level
students as the test subjects but since 2016 has been performed in industrial settings with
professional developers. There were six three-hour sessions, during which the students were
taught unit testing concepts, Eclipse, jUnit, and TDD. Analysis was performed on the results
from the last of the three-hour sessions. Subjects were provided with a template program
containing 30 lines of code that included an API for acceptance tests to run successfully [Fucci
May 2014].

Initially, Fucci and Turhan performed a differentiated and partial replication of an
experiment first performed by [Erdogmus 2005], namely a modified version of the Bowling
Scorekeeper coding kata originally set forward by Robert Martin. Their goal was to evaluate
external quality, “defined as the percentage of acceptance tests passed for the implemented
stories” and productivity, “measured as the percentage of implemented stories.” [Fucci &
Turhan, 2014]. They found a correlation between TDD (when it delivered a higher number of
tests) and higher productivity, but they found no significant correlation between number of tests
and external code quality.

In the next iteration of experiments, Fucci, et al. added the use of the Besouro tool to

measure process conformance while performing the experiment. [Fucci, Sept 2014]. They
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evaluated quality, productivity, number of tests, and test coverage, and found no correlation
between the measured variables and TDD process conformance. In [Fucci, May 2014], the
experiment subjects were divided into TDD or TLD (test-last development) groups. In this
round, TLD had better results in quality and productivity, whereas TDD had a slightly higher
number of overall tests.

In [Fucci et al., April 2014], the researchers investigated the effect that developers’ skills
had on quality and productivity in a TDD context. They found that developers’ skills had a
significant impact on productivity, but not on external quality while performing TDD to
accomplish the task.

A multi-site blind analysis was then performed by replicating the same experiment at two
other universities [Fucci, Sep 2016]. The conclusion drawn was similar to previous results:
TDD did not affect testing effort, software external quality, or developers’ productivity.

The most recent experiment was conducted with industrial partners using a week-long
workshop about unit testing and TDD. It also divided the participants into two groups: one
using TDD and the other using incremental test-last (ITL). The focus of this study was to look at
three different dimensions of an iterative development process (granularity, uniformity, and
sequencing), while still evaluating quality and productivity. The results of their experiment
imply that granularity and uniformity are more important than sequencing, and the authors assert
that it is not the test-first aspect of TDD that is most important, but rather its emphasis on taking
very small steps in the development process and covering those small steps with tests, whether
before or after writing the code [Fucci, Nov 2016].

In summary, the trend of the findings from the Fucci-related experiments was that there is

little support for the proposition that the use of TDD improves quality or productivity.
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While Fucci and his colleagues are to be applauded for their re-use of an experiment in
order to compare results over a number of different implementations, there are some inherent
flaws and assumptions with the original experiment set-up. Colyer points out several issues with
the design in this series of experiments. According to Colyer, “one of the expected benefits of
the TDD process (is) helping you to shape and refine the design/interface.” [Colyer 2017]. By
providing the API for the precise method signatures to the test subjects, they are nullifying one
of the benefits of TDD.

Another issue Colyer points out is the relationship between refactoring and the chosen
definition of external quality and productivity.

Refactoring also shows up in both models as a negative factor — i.e., the
more refactoring you do, the worse the productivity and quality. For
productivity at least, this seems to me to be an artefact [sic] of the chosen
measurements. Since productivity is simply a measure of passing assert
statements over time, and refactoring doesn’t change the measure, time
spent on refactoring must by definition lower productivity. Not accounted
for at all are the longer term impacts on code quality (and hence future
productivity) that we hope to attribute to refactoring. The model is set up
to exclusively favour short-term rewards. [Colyer 2017]

Separate from Colyer’s concerns is an issue related to novices in the development
environment and the way granularity and uniformity are assessed. Granularity is defined as a
“cycle duration typically between 5 and 10 minutes.” For a novice who is just learning a toolset
and a new development process, this appears to be a very small timeframe. Frequently a novice
must stop and consult documentation or notes regarding the assignment at hand. This could
easily exceed a five to ten-minute time window. Beck, in the “Is TDD Dead?” discussion
[ThoughtWorks 2014 20 May], described getting up and going outside to think about his next

steps. The concept of granularity being measured in time allows no time for thought about

design of the code. And while uniformity is to be desired from an experienced TDD practitioner,
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someone less experienced cannot be expected to maintain a relatively constant development time
to each iteration. As with granularity, a developer is effectively penalized in their performance
assessment for stopping to consider design implications or look at documentation or
requirements. As Frederick Brooks said, “think-time [is] the dominant activity in the
programmer’s day.” [Brooks, 1987] Penalizing a programmer for stopping to think is surely not
the best measure of their effectiveness.

Another concern with the experiment is with its definition of quality. It only measures
quality in the context of external quality, using a set of pre-defined acceptance tests as the
measurement. Internal quality is never considered or assessed. One of TDD’s supposed benefits
is that it produces smaller, more focused classes with looser coupling. One can certainly imagine
having poorly designed code that can pass acceptance tests. Indeed, if refactoring is seen as
reducing a developer’s productivity measurement, the implication is that refactoring provides no
value. If there is no measurement of internal code quality, and thus no incentive to refactor
rapidly-written and possibly poorly designed code, the resulting code could be a maintenance

nightmare.
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3. RESEARCH DESCRIPTION

Previous TDD studies have focused on external quality and productivity, with the results
being inconsistent and mixed. TDD appears to improve quality when compared to a waterfall-
style test-last mode of development, but shows no distinct advantage when matched against an
iterative approach in which tests are written at the end of each iteration. Quality, then, appears to
derive more from development cycles that are short, iterative and employ automated tests than
from testing philosophies.

What is missing is the question of how well TDD was used. Previous studies examined
TDD under the assumption that developers competently and consistently selected failing test
cases (i.e., performed the red light portion of the TDD cycle) so as to inform the quality of their
production code (i.e., the green-light element of the TDD cycle). Unless red light tests arise out
of a conscious decision to identify missing functionality that will, at the end of the green-light
phase, result in software that reduces the developer's uncertainty of a defect, they come about in
an ad hoc fashion that fails to take advantage of TDD's engineering discipline. Put simply, TDD,
as observed in studies to date and as currently practiced, amounts to short cycles in which quality
might or might not be driven by tests. Tests serve to push production code to completion, rather
than guide its construction by addressing areas of uncertainty as soon as possible.

This research sought to examine how quality is affected by how TDD is applied, not
whether it is applied. We took the position that previous researchers have not shown a

correlation between use of TDD and improved quality because failing test cases were not
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identified in such a way as to use TDD for what it was intended: to address functionality that has
the greatest likelihood of failure. We surmised that TDD would lead to better quality if
developers were to construct a pre-defined amount of functionality (meaning, a module,
component, or other design unit) through a series of red light/green light cycles that starts with
the most fundamental statement possible and adds detail in minimal increments. The best-
defined approach which supports this concept is the Transformation Priority Premise (TPP). It
postulates that desired functionality can be achieved by successively applying a set of
generalizing transformations to a simple base case. In general, the TPP operationalizes the
canonical control structures expressed by [BOhm & Jacopini, 1966] by suggesting that sequence
addresses functionality of a single data item, alternation generalizes functionality to take into
consideration computation on a single data item that differs based on its value, and iteration
generalizes functionality further by addressing a stream of multiple data items. The ultimate
goal of TPP is to produce a “better” algorithm with simpler code [Martin, R. 2013]. In theory,
this would lead to less complex code, which would be more maintainable and reduce technical

debt.

3.1 Hypotheses

We hypothesized that following the steps of TPP would reduce risk in software
development. We defined risk as the extent to which desired functionality fails to meet
specifications. Because risk cannot be measured directly, we chose two proxies to
provide us an approximation: code coverage and code increment size. Our rationale was
that test cases that drive successive TPP transformations would yield better coverage and
that the amount of production code affected by successive applications of transformations

would be minimal. Our research hypotheses were as follows:
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1. For code coverage:

HO-1: Students conforming to the TPP process will have no better code coverage
than students who do not conform to the TPP process.

H1-1: Students conforming to the TPP process will have better code coverage
than students who do not conform to the TPP process.

2. For TPP compliance:

HO-2: Students conforming to the TPP process will have no difference in the size
of their code changes from one commit to the next than students who do not
conform to the TPP process.

H1-2: Students conforming to the TPP process will have more-consistently sized
and smaller sized code changes from one commit to the next than students who do
not conform to the TPP process.

3.2 Case Study environment/history

This research was carried out as a case study on assignments submitted over 2 semesters
by students at Auburn University enrolled in COMP5700/6700/6706, Software Process.
Software Process is an upper-division course that is taken by Computer Science majors who are
seniors in the undergraduate program and graduate students at all levels. All levels of students
complete the same homework assignments, with graduate students having additional work
beyond those assignments. The primary objective of the course is to expose students to best
practices in software engineering, including how to perform Test Driven Development, with at
least one lecture devoted to the Transformation Priority Premise. At least three homework
assignments required the use of the TDD process, and the final two homework assignments
expected the use of TPP.

Homework submissions from COMP 5700/6700/6706 were analyzed for TDD
compliance and students received feedback informing them of how well they employed the TDD
process. In contrast to previous research using Besouro in which elapsed time was used as a

indicator of the amount of functionality built over a TDD cycle, we used net lines of code added
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per cycle as the measure of the output of each TDD increment. TPP emphasizes simpler code, so
one would anticipate that fewer lines of code would be required to produce the desired result.

Assumptions for the research approach were as follows:

1. Test Driven Development (TDD) is a desirable software development practice

because it encourages building code in testable increments.
2. The Transformation Priority Premise (TPP) shapes the effectiveness of TDD
by suggesting the order in which to implement functionality.

3. Code coverage can be used as a proxy measurement for risk in software
development. For example, high code coverage reduces risk of defects in
software, while low code coverage increases risk of defects.

The case study environment included Python [Python 2.7. https://www.python.org], the
Eclipse IDE [Eclipse Foundation. https://www.eclipse.org], the PyDev [PyDev.
http://www.pydev.org] plugin for tailoring Eclipse for Python use, and a local git repository
linked to a GitHub [GitHub, inc. https://github.com] account.

The environment also included an Eclipse plug-in written specifically for this research to
track code built in each TDD cycle. The plug-in added buttons to the Eclipse menu bar that
allowed students to indicate when they were running red light and green light tests. The buttons
automatically committed changes to the local git repository, flagging each commit with a
message that stated whether the commit was intended as a red light test or a green light test.

Post-processing software analyzed each git commit to determine the degree to which the
student complied with TDD and TPP. Specifically, the analysis application examined the order
and number of the transformations performed per commit; the size of the commit in lines of
code; and what files were changed. The transformations per commit pointed to the amount of
functionality added per TDD cycle and the commit size indicated the complexity of the

functionality. The file changes gave an indication of the integrity of the TDD method based on

the concept that the red light phase should limit changes to test code and the green-light phase
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should limit changes to production code. The analysis software also examined the order in
which red light and green light phases occurred as a way of assessing TDD skill acquisition. Red
light indicators should alternate with green light indicators in the ideal situation, indicating the
creation of a failing test case and the subsequent creation of sufficient production code to make
the test case pass. Multiple, sequential red light or green light indicators signaled possible
confusion about TDD, disregard for employing TDD, or a defect in either the test code or the
production code.

The analysis application generated a report for each student showing TDD-related
statistics, including a TDD Score. A separate code coverage report provided an individual report
for each student with code coverage percentages per submitted file, while a composite report lists
all the students and their overall code coverage scores.

Information from the git logs provided snapshots of development activity at the end of
each TDD cycle. The git commit message named the intent of the TDD cycle, git log entries
with a leading minus sign indicated lines that were deleted from the previous commit, and entries
with a leading plus sign indicated lines added to the previous commit. Individual lines were
examined further to determine the nature of the code change in an attempt to map the change to a
TPP transformation. The table below shows how the various keywords and symbols were

interpreted to determine the specific transformation:
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Table 1: TPP Transformations and the Python conditions that define them

Transformation Statement patterns that suggest a transformation
Null + pass

+ return None

+ return

Null to Constant - pass

- return None

- return

+ return with a number, or a string literal, or empty list
Constant to Variable | - return with a number, or string literal, or empty list

+ return with variable name

Add Computation + string containing either +, -, *, /, %, or math.

Split Flow +if

Variable to Array
Array to Container

If to While - if (record conditional values)
+ while (if it contains the same conditional values as if)
Recurse + Method name is called within the method of that name
Iterate + for
Assign + Parameter is assigned a new value inside the method’s
code.
Add Case + else or elif

In the process of evaluating the transformations, any patterns opposed to the TPP were
also noted. Anti-Transformations imply that the developer jumped past a lower-order
transformation to a higher-order transformation. Skipping steps adds to the riskiness of the code
development. The following Anti-Transformations were recorded:

Table 2: Anti-Transformations and the Python conditions that define them

Anti- Statement patterns that indicate an anti-transformation
Transformation
Constant Only + return with a number, or a string literal, or empty list

with no corresponding deleted return or return None
Straight to Variable | + return with variable name with no corresponding deletes
consistent with Constant or Null

While with no If + while (with no corresponding deleted if statement
containing the same conditional values)
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The analysis software generated a text-based report for each student. Appendix A
contains a brief excerpt of the student report, as well as a UML diagram describing the
components of the system.

The summary report generated for each student listed the transformations that were
detected in each of his or her commits and indicated compliance with general TDD
recommendations. In the first iteration, the report showed number of commits; red light
commits; green light commits; average lines of code and transformations per commit; added and
deleted/modified lines of both production and test code; and the ratio of production to test code.

The summary report led to additional questions about the students’ TDD performance.
Did the students alternate between red and green light commits? If they were not alternating,
why not? Were their tests failing in unexpected ways on the red light commit, resulting in
consecutive red lights? Was their production code not passing on their green light commit,
resulting in a number of consecutive green lights? Were they adding too much code at one time,
violating the TDD principle that one should only write enough code to make a single test pass?
Or in TPP terms, were they making more than one Transformation per red light/green light
cycle?

A TDD scoring criteria was developed to assist in examining the questions raised in the
prior paragraph. A score was assigned per commit by examining each red and green light
commit and whether they appropriately created production or test code in it, by looking at how
many transformations they performed, and by how large the commit was. The scoring range for

each criteria was 0 to 100. The following chart shows the breakdown:
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Table 3: TDD Scoring Criteria for a Commit

Criteria (per commit) | Condition | Score
la. Red Light - does it | O 100
contain Production
Code?
1 and Deduct 25 points for every prod file in RL
above
1b. Green Light - does |0 100
it contain Test Code?
1 and Deduct 10 points for every test file in GL
above
Ic. “Other” Commit Commit received the Large Commit score for
w/large number of this portion of the grading. Data observation
lines of code changed indicated that many students would create a
(student bypassed very large commit with many changes, but not
Red/Green/ Refactor classify it as Red or Green.
button)
1d. “Other” Commit 3 or below | 100
w/multiple refactorings
Above 3 Commit received the Number of
Transformations score for this portion of the
grading. Data observation indicated that many
students would have net lines of code change
below the large commit threshold, but would
have made numerous transformations, but not
classify the commit as either Red or Green.
2. Number of 1 100
Transformations
(calculated for
production code only)
2 and Deduct 10 points for every additional
above transformation
Anti-transformations — deduct 20 points. With
an anti-transformation, the subject skipped a
transformation according to the given order and
is subsequently penalized.
3. Large Commits Less than | 100
10 net
LOC
added
Increments | Deduct 5 points for each increment of 10 LOC
of 10 above 10

34




The appropriate grade from Criteria 1 was averaged along with the grades from Criterias
2 and 3 to produce a TDD score for each commit.

If a student performed TDD per the recommendations, there should have been many
commits. In an ideal TDD cycle, TDD would be manifested by alternating red light and green
light commits. Consecutive red and green light commits indicated either a difficulty with test or
production code or a misunderstanding of the TDD process. We calculated an average length of
consecutive red and green lights documented throughout the entire assignment, then incorporated
that score into an overall assignment score that included an overall average from all the
individual TDD Commit scores. The following table indicates the scoring criteria for an overall
assignment:

Table 4: TDD Grading Criteria for an Assignment

Criteria (per assignment) Condition | Score
Average of all commit grades in Assignment Average of Commit
Scores
Average length of Consecutive Red Lights 1 100
2 and Deduct 5 points for
above every number above
average length of 1
Average length of Consecutive Green Lights | 1 100
(The criterion for Green Lights was more 5and Deduct 5 points for
lenient because students were given above every number above
instructions to hit the Green Light button until average length of 5
the test passed)

The three elements were averaged together to produce a TDD score for each assignment.

A phenomenon that emerged as the students submitted their homework involved the
occurrence of “Other” commits. The students would bypass using the Red/Green/Refactor
buttons provided and run and/or commit using the Eclipse facilities available. This resulted in a
large number of commits that did not fall into the scoring criteria, thus nullifying the scoring for

the average length of consecutive red/green lights. After analyzing the individual result reports,
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the scoring criteria was adjusted to address this behavior. If a student’s average number of red
lights or green lights fell below one standard deviation from the class average, their red or green
light score was reduced to 70. If their average fell more than 2 standard deviations below the
mean, their corresponding score was reduced to a 50.

As a side note: TDD literature advocates following each red light/green light cycle with
a refactoring activity. Refactoring is a key component of the TDD Cycle, but as noted above, it
is used to clean up the code without changing its behavior. In this analysis, the focus was placed
on the transformations that actually implement the behavior between the red light and green light
step. Students also had the opportunity to press a Refactor button. The data for the Refactor

commits do not factor into the overall TDD Score.

3.3 Spring 2018 Case Study Results

The first set of data used in this analysis was from the Spring 2018 semester. We
examined a total of two hundred fifteen assignments across sixty students. Students were given
three TDD-related assignments, and the final semester assignment was used for the purposes of
analyzing the hypotheses, as it represented the culmination of TDD practice throughout the
semester. Results of the analysis were only available for students who were able to successfully
install and use the Eclipse plug-in described earlier. It was not possible to gather the correct data
from students for whom the plug-in did not work. During the Spring 2018 case study, the plug-
in only worked for students who were using a Mac system. This reduced the available sample
size to twenty subjects. As seen in the descriptive statistics given in Table 5, the mean TDD
score was 83.35, with a median of 87, so scores trended high.

Table 5: Descriptive Statistics for the variables under study (Spring 2018)

TDD Score Code Coverage Avg LOC/ Trans / Commit
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Mean 83.35 53.7 8.67

Standard Error 3.343 8.7 1.84
Count 20 19 19
Median 87 67 8.53
Mode 96 89 0
Standard Deviation 14.95 37.94 8.04
Sample Variance 223.607 1439.76 64.7
Skewness -1.586 0.368 1.06
Range 52 94 28
Minimum 44 0 0
Maximum 96 94 28
15t Quartile 77 6.5 2.5
3 Quartile 94.5 89 11

The statistics indicate that the TDD scores are not normally distributed, as graphically
illustrated in Figure 3.1 and 3.2. TDD conformance is right-skewed, which is influenced by the
scoring criteria for “Other” commits. The lower bounds of “Other” commits was set at 50 based
on lower limits placed in the scoring rubric for the course. Another observation related to TDD
score is that students could make dozens of commits that conformed to TDD and then have one
very large commit where they broke from the pattern and wrote many lines of code. Because the
TDD average was divided by the number of commits, a student could still receive a relatively
high average even when a small percentage of commits had a very low score, sometimes even

zero. These two factors contributed to relatively high TDD scores.
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Figure 3.1 Figure 3.2
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From the skewness number in the descriptive statistics, we know that Code Coverage is
skewed slightly to the left, however, the graph of the percentages indicates a multimodal
distribution, illustrated by Figure 3.3. The range is very wide at 94. The lower scores are
attributed partially to failing test cases, which interrupted the code coverage analysis tool. Thus,
there appears not one, but three groups represented by the data. On the lower end are students
whose unit tests would not pass or who truly had poor code coverage, and on the upper end are
students who were successful at writing and passing their own unit tests.

Figure 3.3
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Figure 3.4 provides a scatter plot illustrating the intersection of the students’ TDD
Scores and Code Coverage percentages. While there is a cluster of students who demonstrate
both high TDD Scores and high Code Coverage scores, no discernable trend is present. Because
the code coverage percentages were not normally distributed and the TDD scores were skewed
so significantly to the right, the correlation score associated with the TDD score and code
coverage (r = .16) is basically meaningless. Therefore, with respect to HO-1, we must conclude
that the null hypothesis holds.

Figure 3.4
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As can be seen in Figure 3.5, the average lines of code per transformation per commit are
left-skewed, indicating the students tend toward smaller sizes of commits in the final assignment,

which is the desired effect.
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Figure 3.5

Average Lines of Code per Transformation per Commit
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However, there is no correlation seen between TDD Score and Average Lines of Code
per Transformation Per commit (r =.07). As was seen with TDD in relation to Code Coverage,
there is a cluster of scores to the bottom right on the scatter plot seen in Figure 3.6, but it is not
strong enough to suggest an influence. Thus, we also cannot reject the null hypothesis found in
HO-2.

Figure 3.6
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3.4 Fall 2018 Case Study Results

The second set of data used for analysis was from the Fall 2018 semester. We examined
a total of 460 assignments across 102 students, which provided a much larger sample size than
was available in Spring 2018. In the Fall 2018 case study, students were assigned a total of 4
TDD-related programming assignments. The assignments represented iterations that would
eventually produce a software representation of a Rubik’s cube. The first assignment contained
starter code with the method signature that would be used for acceptance testing in the
subsequent assignments. For this assignment, students were expected to set up their
development environment according to the course requirements and to return the software
representation of a solved Rubik’s cube. Students had been instructed on TDD during class time,
including an in-class demonstration of the TDD technique, and also received a series of 6 screen-
cast examples on starting TDD. Each subsequent TDD assignment added additional
functionality to the Rubik’s cube. After each assignment, students received feedback related to
their performance of TDD and were asked to incorporate that feedback into their TDD practice
in the next assignment.

As with the Spring 2018 data, the final semester assignment was used for the purposes of
analyzing the hypotheses. The Eclipse plug-in worked correctly on all Operating Systems used
by the students, which provided a higher percentage of class participants in the case study.
Fifteen students did not submit the final assignment; this reduced the available sample size to
eight-seven subjects. The descriptive statistics are given in Table 6. As compared to Spring
2018, a larger percentage of students had failing test cases that resulted in a zero-score
assignment from the code coverage tool. This significantly skewed the descriptive statistics of

the code coverage results. Because of this, the descriptive statistics contains two columns for
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Code Coverage: one with numbers reflective of the sample containing 0 scores and a smaller
sample containing only non-0 scores.

Table 6: Descriptive Statistics for the variables under study (Fall 2018)

Code Coverage
TDD Scores (including 0’s) Code Coverage LOC / Trans / Commit

Mean 87.2 33.23 45.6 0.26
Standard Error 1.8 3.63 4.067 0.07
Count 87 87 61 87
Median 97 20 46 0.13
Mode 97 0 1 0.05
Standard Deviation 16.86 33.84 31.76 0.645
Sample Variance 284.4 1145 1008.9 0.42
Skewness -1.47 0.45 -0.046 -1.31
Range 67 99 98 6.69
Minimum 33 0 1 0.00
Maximum 100 99 99 3

Agalin, the statistics indicate that the TDD Score data are not normally distributed, as
graphically illustrated in Figure 3.7 and 3.8. TDD scores for the Fall 2018 case study were even
higher than the Spring cohort, with a mean of 87.2 and a median and mode of 97. TDD

conformance is right-skewed, for the same reasons as discussed in the previous section.
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Having a larger sample size in the Fall 2018 class results in a Code Coverage percentages
graph that indicates a bimodal distribution, illustrated by Figure 3.9. Even excluding the 0
values as shown in Figure 3.10, the range is even wider than in Spring at 98. Once again, there is
a contingency of students on the lower end whose unit tests would not pass or who truly had poor
code coverage, and on the upper end are students who were successful at writing and passing
their own unit tests. Perhaps the scatterplot in Figure 3.11 best sums up the Code Coverage
scores; they are truly scattered with no appearance of a normal distribution.

Figure 3.9

Code Coverage Percentages
Fall 2018 - including O scores

100.00%

w b
o O

50.00%

Frequency
=N
o o

| | || —_— | || . - — 0.00%
10 20 30 40 50 60 70 80 90 100

Code Coverage percentages
Grouped into 10 point ranges

o

N Frequency ==@==Cumulative %

43



Figure 3.10

Code Coverage percentages
Fall 2018 - excluding 0 scores
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Taking the TDD score assigned by the analysis software and correlating it to the students’
code coverage resulted in a .357 correlation coefficient. For the purposes of the correlation
analysis, students with a 0 score were omitted as this skewed the calculation. As can be seen in
Figure 3.12, many students had a high TDD score but still had a very low Code Coverage score.
As before, the code coverage percentages were not normally distributed and the TDD scores
were skewed significantly to the right, but perhaps because of the larger sample size, the

correlation score between the TDD score and code coverage produces a moderate correlation

44



value. But because of the non-normal data, with respect to HO-1, we have insufficient evidence
to disprove the null hypothesis.

Figure 3.12
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After further investigation, the students with low code coverage scores despite a high
TDD score appeared to have written tests that exercised the same code over and over. Their tests
did not branch out to evaluate other parts of the code. So, while they appeared to have a high
TDD score because they were writing code using the alternating red and green light approach,
they were writing repetitive tests. When they did add production code, they would write it in

larger chunks that were not exercised by the tests they had actually written.
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Figure 3.13

Average Lines of Code per Transformation per Commit
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As in the spring, there is basically no correlation between the TDD Score and the
Average lines of code per transformation per commit (r = 0.259). The “More” category in Figure
3.13 counts outliers who either wrote or copied in large chunks of code to complete the final
assignment and had not been writing code incrementally throughout the course or had skipped an
assignment or two and were trying to write the code for the entire cumulative assignment in one

or two continuous sittings at the end of the semester. Even if the outliers were eliminated from
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the correlation calculation, r is still small at 0.317. Thus, the null hypothesis holds for HO-2 in
the Fall results as well.

Further analysis was performed using the available data. In the final assignment, the
students averaged an acceptance test passage rate of 72%. Regression tests of the acceptance
tests from Assignments Four through Six resulted in a class average of 78% passage. When the
correlation analysis was applied between the students” TDD scores and their acceptance test
passage rate, there was a correlation coefficient of .46 for Assignment Seven and a factor of .65
for the scores of the combined acceptance tests from the previous three assignments. This would

appear to imply that following TDD helped students to pass the course’s acceptance tests.

3.5 Fall 2018 Survey Results

Before the semester began, students filled out a pre-course survey. Full results of the pre-
and post-course survey questions related to TDD can be found in Appendix C. The one question
that related to TDD merely asked “On a scale of 0 to 5 (where 0 = no proficiency and 5 =
expert), how would you rate your Test Driven Development (TDD) skills?”” Over three-fourths
of the class rated themselves a two or lower, meaning they had little to no TDD skills. This
implies a relatively clean slate, so most class participants would have no prior misconceptions
about what TDD is or how to perform it.

In the post-course survey, eleven questions were asked. Over eighty percent of students
felt that TDD improved the quality of their code, so the majority of students appear to have a
positive opinion of the practice. However, only sixteen percent said they would like to make
TDD a part of their baseline skillset, and only thirty-five percent would want to use it in a less
strict form. This implies that while they appreciate the value of the practice, the majority aren’t

convinced of its usefulness in software development.
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Over ninety percent said they understood what they should do during the red light and
green light phases of TDD. However, while they intellectually understood what should be done,
their self-admitted adherence was far less than that. More than fifty percent of students admitted
to writing more green light production code than was called for by the red light test. In their
description of their adherence to TDD in the final programming assignment, only sixty percent
indicated either a strict adherence or that they slipped a few times in performing TDD. Forty-
five percent found TDD to be very easy or easy to use by the final assignment.

To test the students’ self-awareness related to their TDD compliance, a comparison was
drawn between the students self-reported adherence and the TDD score. Roughly seventy-eight
percent of students self-reported a level of adherence that corresponded to their TDD score. For
instance, if a student self-reported very strict adherence or slipping only occasionally with their
TDD, and their TDD score was greater than 80, this was counted as a corresponding result. This
seems to imply that most of the students had a good appreciation for whether or not they were
complying with the TDD guidelines that were given to them.

Three questions related to the TPP aspect of the case study. While over three-fourths of
the class understood the purpose of TPP, only sixty-four percent thought they understood how to
apply it. The number who believed they used it appropriately dropped to fifty-two percent.

The survey data provided the opportunity to answer other questions. For instance, would
prior TDD experience have any bearing on students’ anticipated use in the future? There was
basically no correlation between prior experience and anticipated future use (r = -.04). Another

question: would students who found TDD to be easy to use by the last assignment be more
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likely to say that they would use TDD in the future? There was a low correlation between ease
of use and anticipated use of TDD in the future, with a correlation coefficient of .358.

The survey provided a free response question related to TDD: "What is your overall
opinion of TDD? Please provide an insight into how useful you found TDD and TPP.” The
most frequently used word/words in the responses were helped (25) and helpful (13). When
looking at the words in context, helped was normally used with phrases like “write better code”
or “understand requirements” or “catch mistakes sooner.” More than sixty percent of the time it
was used in a positive context. About half of the time, the word helpful seemed to come with a
caveat. For instance, it was helpful, but “time consuming” or “more tedious than helpful” or a
less-positive comment about the strictness of TDD. The word good occurred twenty-two times,

and over two-thirds of the time it was used in a positive way. The other third of the time

2 ¢ 99 ¢

contained caveats like “difficult,” “time-consuming,” “too hindering,” or additional comments
related to strict adherence. The most frequently used but less-positive words occurring in the
responses were the words “tedious” and “difficult” which were used nine times each, and the
word “hard” (eight times).

To summarize, the overall tenor of each comment was assigned a Likert-style scale
ranging from Positive, Positive/Mixed, Mixed, Negative/Mixed, and Negative. When assigning
Positive/Mixed or Negative/Mixed, the comments fell predominantly into the first category, but
contained some kind of caveat. Figure 3.13 illustrates that the overwhelming majority of the

class (81%) had a Positive sentiment about the practice as expressed through the free-form

question.
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4. THREATS TO VALIDITY

We use the categorization recommended by Wohlin et al [Wohlin 2012] to discuss the

threats to validity.
4.1 Threats to Internal Validity.

This threat has to do with the internal design of the study and impacts that would have
had on the outcome. In this series of case studies, subjects self-reported red/green/refactor
events. While the analysis tool was in place to measure process conformance, investigation of
individual students’ submissions unearthed many reasons that they frequently strayed from a
strict adherence to TDD. As noted in Section 3.5, while ninety percent of students said they
understood what they should do in the red and green light phases, they frequently combined
changes to production and test code into one event. Could this imply that there are situations
where it makes more sense to combine changes to both in one “step”? Or is this a manifestation
of the maturation threat where subjects react differently over time and become tired or bored
with the process under study? Another possibility is related to homework deadlines; as students
got closer to the homework deadline, they may have decided to ignore the process in favor of
completing the project. While this phenomenon is a part of the academic landscape, it is
applicable to an industrial setting. As deadlines approach for completing a software
development cycle, there are certainly occasions where professional developers bypass certain

process expectations to make the deadline.
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In addition to modifying both test and production code within a single commit, there
were numerous instances where subjects had consecutive red or green light instances between
commits. It is easy to see how someone who is learning a new practice and/or language might
make mistakes in writing the test cases or even in writing the code intended to make that test
case pass. In the pre-course survey, thirty percent of the students indicated they had little to no
proficiency in Python, the language of choice for this course, so in addition to other course
content, these students were learning Python as well. If the test case or production code did
something unexpected for a novice, the student has to choose whether to press the red or green
light to self-report the phase. In our study, students were instructed to continue to press the
green light button until they were able to get the individual test to pass. The TDD Scoring
criteria took this into account when evaluating consecutive green light episodes. How would a
tool like Besouro evaluate these types of situations? Should these concerns impact the definition

of TDD conformance in future experiments?
4.2 Threats to Construct Validity.

This threat evaluates the relationship between theory and observation. Students may
have had an evaluation apprehension threat with regards to their TDD performance. While
students were evaluated by Teaching Assistants for their TDD conformance, the results from the
analysis tool did not have any direct bearing on their grades. But the fact that they were being
evaluated on how well they attempted to perform TDD did cause some to resent the practice, as
evidenced by some of the comments in the post-course survey.

4.3 Threats to Conclusion Validity

This is used to evaluate the relationship between the dependent and independent

variables. The study is subject to a threat of random heterogeneity of participants because most
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of the graduate students in the class came from different universities with drastically different
backgrounds from the perspectives of cultural, language, and education. Some students may
have failed to fully comprehend the instructions due to language barriers or a deficiency in their
prior education related to the software matters covered in the course.

Another aspect of Conclusion Validity is reliability of measures. The assessment tool for
this experiment was written from scratch in Python. The underlying measurements are objective
in nature (lines of code, numbers of commits, specific types of code constructs, etc.) and have
been verified through manual comparison of the assessment tool output and the code under
evaluation. The number of points deducted in the scoring process was somewhat subjective in
nature. In order to validate the approach of the assessment tool TDD score, comparisons were
drawn with the Product and Process grades given by the Teaching Assistants. TDD scores that
were widely inconsistent with the TA grades were examined individually, and the scoring
algorithm was adjusted as described in Section 3.2 based on observations drawn from those
comparisons.

4.4 Threats to External Validity

These threats are directly related to the ability to generalize the results. The subjects for
the experiment were upper-division undergraduates and graduate students. Trying to generalize
the results to professional developers could represent a threat of interaction of setting and
treatment. One attempt to mitigate this threat was to use an on-going assignment over the course
of the semester rather than one “toy” assignment over a short period of time (a time frame of
weeks as opposed to hours). By the end of the semester, the mean size of the students’ code base
for those who completed all four assignments was 996 lines of production code. Students

submitted their assignments, received the results of the acceptance tests, and were expected to
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make corrections to their code before proceeding to the next assignment. This correlates better
to the expectations of professional developers whose code is subjected to automated testing and
fixes must be applied before the code can proceed into production. However, at the end of the
semester, the code is indeed thrown away with no expectation of being placed in production.
The threats described above are believed to have minimal impact on the overall results of

the study. Thus, we are comfortable with the outcomes as presented in this paper.
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5. CONCLUSIONS AND FUTURE WORK

To state that TDD results in a better product is a naive claim. One of the reasons that
studies continue to have inconclusive results is that TDD is just not that simple to precisely
define and measure. Even the Besouro tool being used for measurement in the series of
experiments carried out by Fucci, et al. must infer whether a developer is performing TDD based
on a series of events, and the tool still contains some ambiguity in its operational definition of
TDD. There is no hard and fast measure that says, “This is TDD.”

Some of the earliest studies conducted about TDD compared it to a more traditional
waterfall approach where the majority of code was written and then tests were applied against
the code later. In this context, TDD produced far superior results. When comparisons are drawn
against the current mode of iterative development, Fucci et al. submit that TDD does not appear
to be superior for development and testing than an Iterative Test-Last Approach.

The results of our study concur with the results of the studies conducted by Fucci and his
associates in that the practice of TDD does not appear to be the contributing factor for a “better”
product in the short term. In our studies, conformance to TDD did not have a measurable
influence on code coverage, which we used as a proxy for risk, or on the size of the commits, our
measure for TDD granularity.

Beyond the definition of TDD, there are no agreements on the definition of how to best
evaluate quality in a software product. Previous TDD experiments have focused on external

quality as measured by automated test passage rates with a total disregard for the internal quality
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of the code product itself. But a number of the purported benefits of TDD speak to cleaner, more
maintainable code, which currently has no universally agreed upon measurement standards.

Based on numerous studies, Test Driven Development does not appear to be superior to
Iterative Test-Last approaches with respect to empirically-measurable values of quality or
productivity, at least in the short term. Some arguments in favor of TDD claim that it provides
more maintainable code, or another way to describe it is to reduce technical debt. A future
source of investigation is to compare open source projects that advertise the use of TDD and
open source projects that have unit tests but do not use the TDD process. Several tools are
currently available to provide analysis of technical debt in a code repository. This type of
analysis would provide one way to measure internal quality of a code base over a longer
timeframe, and perhaps provide a measurable answer to the “better quality” aspect of the value
of Test Driven Development.

And what of the Transformation Priority Premise? Compared to Test Driven
Development, this concept is still in its infancy, and deserves more exploration. Robert Martin,
in his original blog post about TPP, had these specific questions [Martin, R., 2013] (The
parenthetical remarks below are his):

Are there other transformations? (almost certainly)

Are these the right transformations? (probably not)

Are there better names for the transformations? (almost certainly)

Is there really a priority? (I think so, but it might be more complicated than a

simple ordinal sequence)

If so, what is the principle behind that priority? (some notion of “complexity’)

Can it be quantified? (I have no idea)

Is the priority order presented in this blog correct? (not likely)

The transformations as described are informal at best. Can they be formalized?
(That’s the holy grail!)
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In [Martin, R. 2014], he demonstrated the TPP concept using a sort routine. In the first
half of the illustration, while using TDD to write the routine, he chose a lower-level priority
(Assign) over a higher priority transformation (Add Computation). Once the algorithm was
complete, the resulting code was a bubble sort with O(n?) performance. By backing up to a
specific point in the TDD process, and this time choosing the higher priority transformation
instead, the resulting algorithm was a quicksort with markedly better performance. Are there
other, similar algorithms where making a specific decision of choosing one transformation over
another would result in a better or worse algorithm result? Do the priorities hold real value in
constructing better code from a performance perspective? Martin’s guiding principle is that
when you have a choice to make, always choose the highest priority transformation over a lower-
level transformation. Experimentation in this area might be able to address these questions.
Using our analysis tool to track the specific transformations, we could identify choices that led
down different paths in the code. The resulting code could be analyzed for performance and then
compared to the transformation choices of the authors.

Or coming at the premise from another angle, rather than give the entire list of
transformations, one group could be instructed to simply prefer one of the higher-level
transformations over other potential choices, while a control group is simply told to follow TDD.
Using one of the algorithms identified as having a pivot point in the development, we could
investigate whether the experiment group followed the priority and if that led their algorithms to
result in better performance. This might provide some validation for the priority aspect of the
Transformation Priority Premise.

In summary, many professional developers choose to use TDD and believe that it helps

them develop better code. The students in our study had an overwhelmingly positive viewpoint
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of the practice, albeit many with caveats. While the studies do not support TDD as being better
than practices like Iterative Test-Last, they also do not suggest that practicing TDD is
detrimental to producing quality code. More research is needed to more fully understand its

contribution to the Software Engineering field.

58



REFERENCES

[Allen 2010] Allen, D. (2010, February 2). More on the synergy between Test-
Driven Development and Design by Contract. Retrieved July 11, 2011,

from Software Quality: http://codecontracts.info/2010/02/02/more-on-

the-synergy-between-test-driven-design-and-design-by-contract/

[Ambler 2010]  Ambler, S. (2010). How Agile Are You? 2010 Survey Results.

Retrieved June 22, 2011, from http://www.ambysoft.com/surveys/

howAgileAreYou2010.html.

[Aniche & Aniche, M. F., & Gerosa, M. A. (2010). Most Common Mistakes in

Gerosa 2010] Test- Driven Development Practice: Results from an Online Survey
with Developers. Third International Conference on Software Testing,
Verification, and Validation Workshops , 469-478.

[Astels 2003] Astels, D. (2003). Test-Driven Development: A Practical Guide. Upper
Saddle River, NJ: Pearson Education, Inc.

[Astels 2006] Astels, D. (2006, March 17). Google TechTalk: Beyond Test Driven
Develoment: Behavior Driven Development. Retrieved July 12, 2011,
from http://www.youtube.com/watch?v=XOkHh8zF330.

[Beck 2000] Beck, K. (2000). Extreme Programming Explained. Addison-Wesley.

[Beck 2001] Beck, K. (2001, September/October). Aim, Fire. Software , 87-89.

59


http://codecontracts.info/2010/02/02/more-on-the-synergy-between-test-driven-design-and-design-by-contract/
http://codecontracts.info/2010/02/02/more-on-the-synergy-between-test-driven-design-and-design-by-contract/
http://www.ambysoft.com/surveys/%20howAgileAreYou2010.html
http://www.ambysoft.com/surveys/%20howAgileAreYou2010.html

[Beck 2003]

[Beck 2010]

[Becker et al.

2014]

[Boehm &
Turner 2004]
[B6hm &

Jacopini 1966]

[Brooks 1987]

[Colyer 2017]

Beck, K. (2003). Test-Driven Development: By Example. Addison-
Wesley Professional.

Beck, K. (2010, July 8). CD Survey: What practices do developers
use? Retrieved June 29, 2011, from Three Rivers Institute:

http://www.threeriversinstitute.org/blog/?p=541

Becker, K., Pedroso, B., Pimenta, M., & Jacobi, R. (2015) Besouro: A
framework for exploring compliance rules in automatic TDD behavior
assessment. Information and Software Technology, ISSN: 0950-5849,
Vol: 57, Issue: 1, Page: 494-508.

Boehm, B., & Turner, R. (2004). Balancing Agility and Discipline: A
Guide for the Perplexed. Pearson Education, Inc.

Bohm, C. & Jacopini, G. (1966). Flow diagrams, turing machines and
languages with only two formation rules. Communications of the
ACM, Volume 9 Issue 5, May 1966, 366-371.

Brooks, Frederick (1987). No Silver Bullet — Essence and Accident in
Software Engineering. Computer, Volume 20 Issue 4, April 1987, 10-
19.

Colyer, Adrian (2017, June 13). An interesting/influential/important
paper from the world of CS every weekday morning, as selected by
Adrian Colyer. Retrieved July 3, 2018, from the morning paper:

https://blog.acolyer.orq/2017/06/13/a-dissection-of-the-test-driven-

development-process-does-it-really-matter-to-test-first-or-test-last/

60


http://www.threeriversinstitute.org/blog/?p=541
https://blog.acolyer.org/2017/06/13/a-dissection-of-the-test-driven-development-process-does-it-really-matter-to-test-first-or-test-last/
https://blog.acolyer.org/2017/06/13/a-dissection-of-the-test-driven-development-process-does-it-really-matter-to-test-first-or-test-last/

[Desai & Janzen Desai, C., & Janzen, D. S. (2008). A Survey of Evidence for Test-

2008] Driven Development in Academia. inroads - SIGCSE Bulletin , 40 (2),
97-101.

[Desai & Janzen Development into CS1/CS2 Curricula. SIGCSE'09 (pp. 148-152).

2009] Chattanooga, TN: ACM.Desai, C., & Janzen, D. S. (2009).
Implications of Integrating Test-Driven

[Erdogmus et al. Erdogmus, H., Morisio, Maurizio, & Torchiano, Marco (2005). On the

2005] Effectiveness of the Test-First Approach to Programming. IEEE
Transactions on Software Engineering, 31(3), 226-237.

[Fowler 1999] Fowler, Martin (1999). Refactoring: Improving the Design of Existing
Code. Boston: Addison-Wesley.

[Fowler 2007] Fowler, Martin (2007). Mocks Aren’t Stubs. Retrieved November 13,
2018 from https://martinfowler.com/articles/mocksArentStubs.html.

[Fraser et al. Fraser, S., Astels, D., Beck, K., Boehm, B., McGregor, J., Newkirk, J.,

2003] et al. (2003). Discipline and Practices of TDD (Test Driven

Development). OOPSLA '03 (pp. 268-269). Anaheim, CA: ACM.

[Freeman & Freeman, S., & Pryce, N. (2010). Growing Object-Oriented Software,
Pryce 2010] Guided By Tests. Boston, MA: Pearson Education, Inc.
[Fucci & Fucci, D. & Turhan, B. Empir Software Eng (2014) 19: 277.

Turhan 2014] https://doi.org/10.1007/s10664-013-9259-7.

[Fucci et al. Apr Fucci, Davide & Turhan, Burak & QOivo, Markku. (2014). On the

2014] Effects of Programming and Testing Skills on External Quality and

61


https://doi.org/10.1007/s10664-013-9259-7

[Fucci et al.

May 2014]

[Fucci et al.

Sept 2014]

[Fucci et al.

2016]

[Fucci et al.

Nov 2016]

[George &

Williams 2004]

Productivity in a Test-Driven Development Context.
10.1145/2745802.2745826.

Fucci, Davide & Turhan, Burak & Oivo, Markku. (2014).
Conformance factor in test-driven development: Initial results from
an enhanced replication. ACM International Conference Proceeding
Series. 10.1145/2601248.2601272.

Fucci, Davide & Turhan, Burak & Oivo, Markku. (2014). Impact of
process conformance on the effects of test-driven development.
International Symposium on Empirical Software Engineering and
Measurement. 10.1145/2652524.2652526.

Fucci, Davide & Scanniello, Giuseppe & Romano, Simone &
Shepperd, Martin & Sigweni, Boyce & Uyaguari, Fernando & Turhan,
Burak & Juristo, Natalia & Oivo, Markku. (2016). An External
Replication on the Effects of Test-driven Development Using a Multi-
site Blind Analysis Approach. 10.1145/2961111.2962592.

Fucci, Davide & Erdogmus, Hakan & Turhan, Burak & Qivo, Markku
& Juristo, Natalia. (2016). A Dissection of Test-Driven Development:
Does It Really Matter to Test-First or to Test-Last?. IEEE Transactions
on Software Engineering. 43. 1-1. 10.1109/TSE.2016.2616877.
George, B., & Williams, L. (2004). A structured experiment of test-
driven development. Information & Software Technology , 46 (5), pp.

337-342.

62



[Hannson 2014]

[Janzen &

Saiden 2007]

[Jauernig 2010]

[[Behave 2011]

[Johnson &

Paulding 2005]

[Kollanus 2010]

Hannson, D. (2014). TDD is dead. Long live testing. Retrieved
November 13, 2018 from

http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-

testing.html

Janzen, D. S., & Saieden, H. (2007). A Leveled Examination of Test-
Driven Development Acceptance. 29th International Conference on
Software Engineering. IEEE.

Jauernig, M. (2010, January 17). Specification: By Code, Tests, and
Contracts. Retrieved July 11, 2011, from Mind-driven Development:

http://www.minddriven.de/index.php/technology/dot-net/code-

contracts/specification-by-code-tests-and-contracts

jBehave. (n.d.). Candidate Steps. Retrieved July 12, 2011, from

jBehave: http://jbehave.org/reference/stable/candidate-steps.html

Johnson, PM, Paulding, MG (2005). Understanding HPCS
development through automated process and product measurement
with Hackystat. In: Second Workshop on Productivity and
Performance in High-End Computing (P-PHEC), URL

http://csdl.ics.hawaii.edu/techreports/04-22/04-22.pdf

Kollanus, S. (2010). Test-Driven Development - Still a Promising
Approach? 2010 Seventh International Conference on the Quality of

Information and Communications Technology (pp. 403-408). IEEE.

63


http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
http://www.minddriven.de/index.php/technology/dot-net/code-contracts/specification-by-code-tests-and-contracts
http://www.minddriven.de/index.php/technology/dot-net/code-contracts/specification-by-code-tests-and-contracts
http://jbehave.org/reference/stable/candidate-steps.html
http://csdl.ics.hawaii.edu/techreports/04-22/04-22.pdf

[Kollanus &
Isomotténen
2008]

[Koskela 2008]

[Kou et al.

2010]

[Lappalainen et

al 2010].

[Larman &
Basili 2003]

[Latorre 2014]

[Leavens &

Cheon 2006]

[Madeyski
2010]
[Martin, R. et al.

2008]

Kollanus, S., & Isomotténen, V. (2008). Test-Driven Development in
Education: Experiences with Critical Viewpoints. ITiCSE (pp. 124-
127). Madrid, Spain: ACM.

Koskela, L. (2008). Test Driven: Practical TDD and Acceptance TDD
for Java Developers. Greenwich, CT: Manning Publications Co.
Kou, H., Johnson, P. M., & Erdogmus, H. (2010). Operational
definition and automated inference of test-driven development with
Zorro. Automated Software Engineering , 57-85.

Lappalainen, V., ltkonen, J., Kollanus, S., & Isométténen, V. (2010).
ComTest: A Tool to Impart TDD and Unit Testing to Introductory
Level Programming. ITiCSE '10 (pp. 63-67). Ankara, Turkey: ACM.
Larman, C., & Basili, V. R. (2003, June). Iterative and Incremental
Development: A Brief History. Computer , pp. 47-56.

Latorre, R. (2014, April). Effects of Developer Experience on
Learning and Applying Unit Test-Driven Development. IEEE
Transactions on Software Engineering 40(4): 381-395.

Leavens, G. T., & Cheon, Y. (2006, September 28). Design by
Contract with JML. Retrieved July 7, 2011, from The Java Modeling

Language: http://www.eecs.ucf.edu/~leavens/JML//jmldbc.pdf

Madeyski, L. (2010). Test-Driven Development: An Empirical
Evaluation of Agile Practice. Berlin: Springer-Verlag.
Martin, R. C., Martin, M. D., & Wilson-Welsh, P. (2008, October).

OneMinuteDescription. Retrieved June 29, 2011, from

64


http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf

Fitnesse.UserGuide:

http://www.fitnesse.org/FitNesse.UserGuide.OneMinuteDescription

[Martin, R. Martin, R. C. (2009). As the Tests get more Specific, the Code gets
2009] more Generic. Retrieved May 15, 2014 from Clean Coder:

https://sites.google.com/site/unclebobconsultingllc/home/articles/as-

the-tests-get-more-specific-the-code-gets-more-generic

[Martin, R. Martin, R. C. (2011). The Clean Coder. Upper Saddle River, NJ:
2011] Prentice-Hall.

[Martin, M. Martin, Micah (2012). Transformation Priority Premise Applied.
2012] Retrieved May 15, 2014 from http://blog.8thlight.com/micah-

martin/2012/11/17 /transformation-priority-premise-applied.html

[Martin, R. Martin, R. C. (Posted 2013, May, Written 2012, December). The
2013] Transformation Priority Principle. Retrieved May 15, 2014 from

https://blog.cleancoder.com/uncle-

bob/2013/05/27/TheTransformationPriorityPremise.html.

[Martin, R. Martin, R. C. Clean Code, Episode 24: The Transformation Priority

2014] Premise, Parts 1 and 2. Directed by Robert C. Martin, Clean Coders,
January, 2014.

[Meyer 1991] Meyer, B. (1991). Design by Contract. In D. Mandrioli, & B. Meyer
(Eds.), Advances in Object-Oriented Software Engineering (pp. 1-50).
Prentice Hall.

[Meyer 1991b]  Meyer, B. (1991). Eiffel: The Language. Prentice Hall.

65


http://www.fitnesse.org/FitNesse.UserGuide.OneMinuteDescription
https://sites.google.com/site/unclebobconsultingllc/home/articles/as-the-tests-get-more-specific-the-code-gets-more-generic
https://sites.google.com/site/unclebobconsultingllc/home/articles/as-the-tests-get-more-specific-the-code-gets-more-generic
http://blog.8thlight.com/micah-martin/2012/11/17/transformation-priority-premise-applied.html
http://blog.8thlight.com/micah-martin/2012/11/17/transformation-priority-premise-applied.html
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html

[Meyer 1997]

[Mishali 2010]

[Mller & Hofer

2007]

[North 2006]

[Ostroff et al.

2004]

[Ricciardi 2009]

[Rimmer 2010]

Meyer, B. (1997, May). Practice to Perfect: The Quality First Model.
Computer, pp. 102-106.

Mishali, O. (2010, 05). Usings Aspects to Support the Software
Process. Retrieved 3 28, 2011, from http://ssdl-

linux.cs.technion.ac.il/wiki/ images/0/03/Mishalithesis.pdf

Miller, M. M., & Hofer, A. (2007). The effect of experience on the
test- driven development process. Empirical Software Engineering ,
593-615.

North, D. (2006, March). Introducing BDD. Better Software.
Ostroff, J. S., Makalsky, D., & Paige, R. F. (2004). Agile
Specification- Driven Development. In J. Eckstein, & H. Baumeister,
Lecture Notes in Computer Science (pp. 104-112). Berlin, Germany:
Springer-Verlag.

Ricciardi, S. (2009, June 26). Introduction to Microsoft Code
Contracts with Visual Studio 2008. Retrieved July 7, 2011, from
Steffano Ricciardi: On Software Development and Thereabouts:

http://stefanoricciardi.com/ 2009/06/26/introduction-to-microsoft-

code-contracts-with-visual-studio-2008/

Rimmer, C. (2010, September 15). Introduction. Retrieved July 11,

2011, from Behaviour-Driven Development: http://behaviour-

driven.org/Introduction

66


http://ssdl-linux.cs.technion.ac.il/wiki/%20images/0/03/Mishalithesis.pdf
http://ssdl-linux.cs.technion.ac.il/wiki/%20images/0/03/Mishalithesis.pdf
http://stefanoricciardi.com/%202009/06/26/introduction-to-microsoft-code-contracts-with-visual-studio-2008/
http://stefanoricciardi.com/%202009/06/26/introduction-to-microsoft-code-contracts-with-visual-studio-2008/
http://behaviour-driven.org/Introduction
http://behaviour-driven.org/Introduction

[Sauve et al.

2006]

[Schwarz et al.

2005]

[Shore 2005]

[Siniaalto &
Abrahamsson

2007]

[ThoughtWorks
9 May 2014]
[ThoughtWorks
16 May 2014]
[ThoughtWorks
20 May 2014]
[ThoughtWorks
4 June 2014]

[Wake 2001]

Sauve, J. P., Abath Neto, O. L., & Cirne, W. (2006). EasyAccept: A
Tool to Easily Create, Run and Drive Development with Automated
Acceptance Tests. AST , 111-117.

Schwarz, C., Skytteren, S. K., & Ovstetun, T. M. (2005). AutAT - An
Eclipse Plugin for Automatic Acceptance Testing of Web
Applications. OOPSLA '05. San Diego, CA: ACM.

Shore, J. (2005, March 1). Introduction to Fit. Retrieved June 29,
2011, from Fit Documentation:

http://fit.c2.com/wiki.cqi?IntroductionToFit

Siniaalto, M., & Abrahamsson, P. (2007). A Comparative Case Study
on the Impact of Test-Driven Development on Program Design and
Test Coverage. First International Symposium on Empirical Software
Engineering and Measurement , 275-284.

“Is TDD Dead? [Part I]” YouTube, 9 May 2014,

https://www.youtube.com/watch?v=z9quxZsL cfo.

“Is TDD Dead? [Part IT]” YouTube, 16 May 2014,

https://www.youtube.com/watch?v=z9quxZsL cfo.

“Is TDD Dead? [Part III]” YouTube, 20 May 2014,

https://www.youtube.com/watch?v=z9quxZsL cfo.

“Is TDD Dead? [Part IV]” YouTube, 4 June 2014,

https://www.youtube.com/watch?v=z9quxZsL cfo.

Wake, W. (2001, January 2). The Test-First Stoplight. Retrieved June

21, 2011, from http://xp123.com/articles/the-test-first-stoplight/

67


http://fit.c2.com/wiki.cgi?IntroductionToFit
https://www.youtube.com/watch?v=z9quxZsLcfo
https://www.youtube.com/watch?v=z9quxZsLcfo
https://www.youtube.com/watch?v=z9quxZsLcfo
https://www.youtube.com/watch?v=z9quxZsLcfo
http://xp123.com/articles/the-test-first-stoplight/

[West & Grant ~ West, D., & Grant, T. (2010). Agile Development: Mainstream

2010] Adoption Has Changed Agility. Cambridge: Forrester.

[Wiki 2011] Framework for Integrated Test. (2011, February 24). Retrieved July
12,2011, from Wikipedia:

http://en.wikipedia.org/wiki/Framework for Integrated Test

[Wohlin 2012]  Wohlin, C., Runeson, P., Hst, M, Ohlsson, M., Regnell, B. & Wesslin,

A. (2012). Experimentation in Software Engineering, Springer.

68


http://en.wikipedia.org/wiki/Framework_for_Integrated_Test

Appendix A

TDD Analysis System

Main program to
begin the analysis

runGitFileAnalysis

-memberName

SubmissionReport

totalSubmissions
totalCommitsInAnalysis
totalTransformationsinAnalysis
totalAntiTransformationsinAnalysis
totalLinesOfCodelnAnalysis

analyze_git_log()

TDDGrade

rubric_dict

calculate_overall_tdd_grade()
calculate_tdd_commit_grade()
calc_assignment_grade()

commit_nbr

line

commitType
added_lines_in_commit
deleted_lines_in_commit
added_test_loc
deleted_test_loc
number_of_transformations
nbr_test_files
nbr_prod_files
transformations
commit_validity

reason

grade

my_files

calculate_tdd_grade()
set_commit_validity()
get_invalid_reason()
has_too_many_files_in_commit()
analyzeCommit()

addnew_file()
findExistingFileToAddCommitDetails ()
get_commit_type()
get_file_name_list()

-memberName

AnalysisReport

out_file
assignment_list

create_analysis_report()
print_individual_totals_and_count_assig
nment_totals()

count_total_tests()

myFiles

myTATestCase
TATestCaseDict
myAssignmentFileName
myAssignmentList
analyzeGitLogFile()
GeneratelndividualReport()
getAssignments()
setAssignments()
storeGitReportObject()
retrieveGitReportObject()
-memberName

t

assignmentName

myCommits

myCommitTotals
consecutiveCommitsOfSameTypeList
consecutiveRedLights
consecutiveGreenlLights

FormattedGitLog

-memberName

tdd_commit_grades
tdd_grade
TDDCycles
-memberName

analyzeAssignment()
addNewTDDCyle()
addCommitToTddCycle()
addTddCycleToAssignment()
findCurrentAssignment()
CalculateMyCommitStats()
longest_string_and_avg_of_consecutive
_types()
incrementConsecutiveRedLights()
incrementConsecutiveGreenLights()
getReasonsForConsecutiveCommits()
get_nbr_valid_cycles()

fileName
commitNbr
prodFile
commitDetails
methods
transformations

analyze_py_file()

process_deleted_line()
process_added_line()
process_line_with_return()
check_deleted_lines_for_return()
strip_git_action_and_spaces()
remove_comments()

evaluate_transformations_in_a_file()
get_method_name_and_parameters()

formatGitLogOutput()

ConsecutiveCommitsOfSameType

conCommitType
firstCommitNbr
firstCommitFileList
secondCommitNbr
secondCommitFileList
reason

setFirstCommitList()
setSecondCommitList()
reasonForDuplicateTypes()

TDDCycle

startsWithRL
validCommit
CommitTypes
transformations
addCommit()
too_many_trans()
invalid_commits()
is_cycle_valid()

PyFileCommitDetails

commitNbr
addedLines
deletedLines
TATestLines
methodNames

getCommitDetails()

Method

methodName
parameters
deletedReturnValue
addedLines

TATestLines

TATestCase
setMethodName()
setDeletedReturnValue()
addDeletedLine()
getDeletedReturnValue()
getTATestLines()
getAddedLines()
updateTATestLines()
setlsTATestCase()
isATestCase()

Transformatio
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Supporting Utilities

Run every time new TA
Test Cases are added.
Affects Line of Code
counts.

TATestCase

-memberName

Walk()
createTATestCaseDict()
storeTATestCaseObject()
retrieveTATestCaseObject()

Run if CodeCoverage fails
due to dotted import
notation in students' files.

ScrubTestFiles

-memberName
-memberName
Command line batch file
(CodeCovAnalysis.sh for Mac
or CodeCovAnalysis.bat for
Windows) loops through
student submissions to run
code coverage utility.
CodeCoverage
assignment
dataFile
namePathDepth
CCReport

retrieve_code_coverage_for_specific_student_and_assignment()
LoadCoverageReports()

findStudentTestFiles()

analyzeCodeCoverage()
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TA Auto Grader
Classes

Command line batch file
(TAAutoGrade.sh for Mac or
TAAutoGrader.bat for
Windows) loops through
student submissions to Auto
Grade assignments for the TA.

TAAutoGrader

-memberName

run_ta_tests()
collect_report_stats()
storeTAReportObject()
retrieveTAReportObject()
runAutoGrader()

TATestResults

student_id
totals_tests_run
total_tests_with_error
total_tests_failed
total_fails_by_testclass

passing_test_ratio()




Appendix A

Sample Student Report

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Assignment Name: assignment4

*kkkkkkkkkkkkkkkkhkhkkkkhkkkkkkkkkkkhkk

Number of TDD Cycles: 5

Longest Streak of Consecutive Green Lights: 25 Average Length of Consecutive Green
Light Streaks: 6

Longest Streak of Consecutive Red Lights: 1 Average Length of Consecutive Red Light
Streaks: 1

Commit Number:1  Commit type: Red Light Commit TDD Score: 100
Commit Feedback
"Red Light event should only contain test code."

Added lines:2. Deleted lines:0.
Added test lines:0 Deleted test lines:0.
Test files:3. Production files:1. Number of Transformations: 1.

Transformations to file: dispatch.py (Prod)
Split Flow

(Summary portion at the end of the student report)

Total test code lines added:290

Total production code lines added:416

Total test code lines deleted:106

Total production code lines deleted: 98

Ratio of test code to production code:0.70:1

TDD Score: 97

Grade Components: Average Red Light Length - 1; Average Green Light Length - 6; Average of
TDD Commit Scores - 96
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Appendix B

Classification Rules for Zorro

None of the above

Type Definition TDD
Conformant
Test creation -> Test compilation error -> Code editing -> Test failure -> Code
editing -> Test pass
Test-first | Test creation -> Test compilation error -> Code editing -> Test pass Yes
Test creation -> Code editing -> Test failure -> Code editing -> Test pass
Test creation -> Code editing -> Test pass
Test editing -> Test pass
Test refactoring operation -> Test Pass
R . Code editing (number of methods, or statements decrease) -> Test pass Context
efactoring : . o
Code refactoring operation -> Test pass Sensitive
Test Editing && Code editing (number of methods or statements decrease) ->
Test pass
Test Test creation -> Test pass Context
Addition | Test creation -> Test failure -> Test editing -> Test pass Sensitive
Regression Non-ed_iting activities -> Test pass Con_tgxt
Test failure -> Non-editing activities -> Test pass sensitive
Code editing (number of methods unchanged, statements increase) -> Test pass
. . . Context
Code deg editing (n_umber of methods/statements increase slightly (source code sensitive
Production size increase <= 100 bytes) -> Test pass _ _
Code editing (number of methods/statements increase significantly (source No
code size increase -> 100 bytes) -> Test pass
Code editing -> Test editing -> Test pass
Test Last Code editing -> Test editing -> Test failure -> Test pass No
Long Episode with many activities (>200) -> Test pass No
Episode with a long duration (>30 minutes) -> Test Pass
None of the above -> Test pass
Unknown No
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Appendix C

Fall 2018 Survey Results
In a pre-course survey, students were asked a number of questions. One question was

related to TDD, and the question and subsequent answer summary is below:

On ascale of 0 to 5 (where 0 = no proficiency and 5 = expert), how would you rate your Test
Driven Development (TDD) skills?

Answer Text Number of Percent of respondents selecting this
Respondents answer

o 28 28%

1 29 29%

2 25 25%

3 9 9%

4 8 8%

5 1 1%

At the end of the semester, students from the fall 2018 course were surveyed to
understand their perception of TDD and their conformance to the process. The questions and
subsequent summary of the responses are given below.

TDD improved the quality of my code.

Number of  Percent of respondents

AOSIECURNE Respondents selecting this answer
Strongly Agree 31 31%
Agree o1 52%
Undecided 10 10%
Disagree 5 5%
Strongly Disagree 1 1%
Not Applicable 1 1%
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I understood what should be built during the red-light TDD cycle and what should be built
during the green-light TDD cycle.

Strongly Agree 55 56%
Agree i 37%
Undecided 6 6%
Disagree 1 1%
Strongly Disagree 0%
Not Applicable 0%

| wrote more code during the green-light TDD cycle that what my red-light code tested.

Strongly Agree 15 15%
Agree 42 42%
Undecided 10 10%
Disagree 22 22%
Strongly Disagree 8 8%
Not Applicable 2 2%

The amount of production code | wrote in each red-light/green-light TDD cycle generally
decreased over time (i.e., the number of lines of production code committed to git decreased over

the span of an assignment).

Strongly Agree 13 13%
Agree 38 38%
Undecided 15 15%
Disagree 28 28%
Strongly Disagree 4 4%
Not Applicable 1 1%
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| used TDD to perform low-level design on my assignment.

Strongly Agree 15 15%
Agree 52 53%
Undecided 15 15%
Disagree 12 12%
Strongly Disagree 0%
Not Applicable 5 5%

| understood the purpose of TPP.

Strongly Agree 23 23%
Agree 54 55%
Undecided 12 12%
Disagree 5 5%
Strongly Disagree 2 2%
Not Applicable 2 2%
No Answer 1 1%

| understood how to apply TPP.

Strongly Agree 18 18%
Agree 46 46%
Undecided 21 21%
Disagree 8 8%
Strongly Disagree 3 3%
Not Applicable 3 3%

| used TPP to guide my TDD efforts.

Strongly Agree 9 9%
Agree 43 43%
Undecided 28 28%
Disagree 12 12%
Strongly Disagree 2 2%
Not Applicable 5 5%
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Which of the following best describes your adherence to TDD by the last programming
assignment?

Very strict 20 20%
I slipped a few times 40 40%
I slipped occasionally 23 23%
I slipped often 9 9%
; ggp\zgildly wrote code first then the tests 7 79

How difficult was it to use TDD by the last programming assignment?

0 - very easy 21 21%
1 - easy 24 24%
2 - neutral 31 31%
3 - difficult 18 18%
4 - very difficult 4 4%
5 - not used 1 1%

How likely are you to voluntarily use TDD in the future?

0 - No way 5 5%
1 - Maybe in limited circumstances 22 22%
2 - Perhaps, but I'm undecided 20 20%
3 - Yes, but not regularly or faithfully 35 35%
4 - 1 would make it part of my baseline skillset 16 16%
No answer 1 1%
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