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Abstract

The objective of this dissertation is to develop mathematical optimization models that

assist and improve the decision making process in hazardous materials (hazmat) routing and

supply chain network design. First, a mathematical model for hazmat closed-loop supply chain

network design problem is proposed. The model, which can be viewed as a way to com-

bine a number of directions previously considered in the literature, considers two echelons in

forward direction (production and distribution centers), three echelons in backward direction

(collection, recovery and disposal centers) and emergency team positioning with objectives of

minimizing the strategic, tactical and operational costs as well as the risk exposure on the road

network. Since the forward flow of hazmat is directly related to the reverse flow, and since

hazmat accidents can occur in all stages of lifecycle (storage, shipment, loading and unloading,

etc), it is argued that such a unified framework is essential. The resulting model is a compli-

cated multiobjective mixed integer programming problem. It is demonstrated how it can be

solved with a two-phase solution procedure on a case study based on a standard dataset from

Albany, NY. Second, the uncertainties of model parameters such as demand and return are con-

sidered. With a known distribution for the uncertain data, a two-stage stochastic optimization

model is developed, and its performance is studied on the same case study. A robust optimiza-

tion framework is developed for the same problem in a case where the distributions of demand

and return are unknown. The model characteristics and performance are presented based on

the Albany case study. Other than the demand and return, risk exposure on the road network

during the hazmat transportation can have uncertainty. Third, the risk involved in the hazmat

transportation is taken into account, where Risk Parity idea in conjunction with modern risk-

averse stochastic optimization (namely coherent measures of risk) are studied. A generalized

Risk Parity model is studied, and a combined two stage diversification-risk framework is pro-

posed. The results of a numerical case study on hazmat routing problem under heavy-tailed
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distributions of losses are outlined. The model aims to fairly distribute the hazmat shipment

amounts on the road network and promote risk equity on the involved communities.
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Chapter 1

Introduction, Motivation and Contribution

1.1 Decision Making Under Uncertainty

Decision making under uncertainty and risk have been studied in the operations research and

management sciences communities for decades. Making decisions without knowing the full

effects of uncertain parameters in a problem is challenging. Such problems appear in many

application areas such as manufacturing, transportation, energy systems and healthcare. In a

deterministic setting, it is assumed that all parameters of the problem are known in advance. In

contrary, in an uncertain environment, decision makers have incomplete information about the

dynamics of the system and have to deal with probabilistic functions and potential problem-

specific characteristics of the problem. Stochastic optimization under uncertainty is a well-

known approach to mathematically address such decision making problems. In these models,

the uncertainties of the problem are addressed in a way that their effects on the outcome of the

problem can be properly be taken into account. In such settings, decisions often be taken in

the phase of the unknown. The consequences of the actions then can be fully determined upon

the determination of the uncertainty in a later stage. There might be opportunities to revise the

actions later as more becomes known.

Classical stochastic optimization problems consider random variables with a known prob-

ability distribution. Such information might be approximated by statistical analysis on available

historical data or a domain knowledge of an expert. Let x be a decision vector with a feasible

region X and random parameter ω. For simplicity assume that the uncertainty only affects the
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objective function, then the stochastic optimization problem can be presented as follow:

min
x∈X

Eω[f(x, ω)]. (1.1)

Model (1.1) optimizes the expected value of function f with probabilistic occurrence of

random parameter ω . Such formulation is used when the decision maker is risk-neutral and in-

terested in the long-run performance of the solution over a large sample. Ignoring the variability

of the parameters makes the model less interesting for certain cases where a well performance

of the model is expected under the worst-case realization of the random parameter ω. Robust

optimization frameworks are employed to find solutions that have a well performance even if

the worst-case realization of uncertain parameters happens over an uncertainty set representing

all possible values of the random parameters. Let U be the uncertainty set, then the robust

formulation of model (1.1) will be:

min
x∈X

max
ω∈U

f(x, ω). (1.2)

Model (1.2) assumes that the decision maker is a risk-averse and provides a conservative

solution, in which too much optimality is given away to achieve a certain level of robustness.

Various approaches are introduced in the context of the robust optimization to balance the level

of conservatism. Furthermore, risk-averse stochastic optimization frameworks are introduced

to capture a wide range of risk attitudes. In such settings, the risk function ρ can be incorporated

to the objective function of the model:

min
x∈X

ρ(f(x, ω)). (1.3)

The model (1.3) minimized the risk associated with the solution x with realization of

random parameters ω. Risk measures can also be employed along with other objective functions

such as cost. Regardless of the uncertain environment, many of the real world problems consist

of multiple criteria and objectives which are mostly contradictory and incomparable, e.g., the

price and quality of a product. In countless studies, optimization models developed to deal
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with such problems include a single objective function. In such cases, the single objective

function either considers the most important criterion or incorporates (weighted) summation

of various objectives. Since it is difficult to accurately quantify the conflicting goals and their

preferred weights, this approach might result in a solution that is not the best possible option.

Therefore, multiobjective optimization methods have been developed to help decision makers

avoid mixing peerless objectives, and investigate most preferred strategies in managing the

optimization problems.

The focus of this research is developing effective risk-averse stochastic programming and

robust optimization frameworks for hazardous materials (hazmat) routing and closed-loop sup-

ply chain network design. In Section (1.2), the importance of hazmat logistics and the corre-

sponding literature are presented. Then, the motivation of this research based on the gap in the

literature is highlighted. Finally, the contributions of current research are presented in Section

(1.3).

1.2 Background and Motivation

Hazmat is used in numerous industries, such as petroleum, agriculture, pharmaceutical medicine,

industrial water treatment and electronic device manufacturing, etc, and thus, play an important

role in today’s world. Production of hazmat as well as the generated waste has tremendously

increased in recent decades. Accordingly, the volume of hazmat transportation has been ex-

panding due to the increasing demand for different hazmat types at more and more locations.

What distinguishes hazmat transportation from general freight applications is the fact that mov-

ing hazmat raises an inherent risk for public safety and environment, which requires a more

deliberate planning approach.

According to the Pipeline and Hazardous Material Safety Administration (PHMSA) of the

U.S. Department of Transportation (US DOT), a hazmat is defined as any substance or material

that is toxic, explosive, corrosive, combustible, poisonous, or radioactive. Each year million

tons of hazmat with billion dollars of value are being shipped in the U.S. (National Transporta-

tion Statistics 2018). Air, highway, rail, water, and pipeline carriers are five means of hazmat

transportation. Trucks carry the largest shares by value, tons, and ton-miles of shipments. More
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than 17,000 incidents were reported in 2018 for the hazmat highway transportation which ac-

counts for 90% of total hazmat incidents and 88% of the total property damages (PHMSA

2018). This explicitly illustrates the importance of effective supply chain and route planning of

truck-based hazmat transportation, which is the focus of this study.

To structure the literature review the existing papers are categorized in four classes: haz-

mat network design, emergency response team location, waste location-routing, and facility

location problems. In this section, only papers with focus of single modal highway transporta-

tions are reviewed. The literature review codes are given in Table 1.1 and the reviewed papers

are characterized in Table 1.2.4.

Table 1.1: Hazmat supply chain network literature review codes.

Category Detail Code

Scope Network Design ND
Emergency Response Team Location ERTL
Waste Location-Routing WLR
Facility Location FL

Network Type Forward logistic F
Reverse logistic R

Network Layers Supplier/Production/Origin O
Distribution center DC
Collection center CS
Recovery center RC
Disposal center DPC
Emergency response team ERT
Customer/Destination D

Objective Functions Cost/Distance/Time Minimization Cost
Risk Minimization Risk

1.2.1 Network Design

Selection of routes in hazmat route planning is determined by different objectives of carriers

and local governments. The shipment plans of the carriers are typically made without taking

into account other factors and, hence, can cause overloaded links in the network. In order to

overcome this difficulty, governments and authorities enforce regulations to control the risk
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induced by hazmat transportation over the population and the environment, and promote equity

in the risk distribution over the road network. Hazmat network design problem considers both

carriers’ and governments’ perspectives for producing routing decisions. The hazmat network

design routing problem has two main streams of research: network design routing and toll

setting.

Kara and Verter (2004) introduced a bi-level programming model for the hazmat network

design problem. In their model, outer problem features the authorities’ decisions in determining

the road links to be included in the network, whereas the inner problem indicates the carriers

decisions in selecting roads that are available in the network. Considering Kara and Verter

(2004) model as the base framework, other studies solve the hazmat network design problem by

introducing new formulations and heuristic approaches (Erkut and Alp 2007a, Erkut and Gzara

2008, Verter and Kara 2008, Bianco et al. 2009, Amaldi et al. 2011, Gzara 2013, Sattarzadeh

2015, Sun et al. 2015, Xin et al. 2015, Sun et al. 2016, Esfandeh et al. 2017, Fontaine and

Minner 2018, Yin et al. 2019).

Toll setting is an alternative hazmat regulation policy that governments and authorities

use to reduce the traffic congestion and discourage the carriers from overloaded links in the

network (Marcotte et al. 2009, Wang et al. 2012, Bianco et al. 2015, Esfandeh et al. 2016).

All these studies consider predefined origin-destination pair(s) and aim to regulate the route

selection decisions of carriers. More strategic decisions such as locating centers, managing

reverse waste flow, and establishing emergency response teams are not considered in these

studies.

1.2.2 Emergency Response Team Location

Specially trained and equipped hazmat emergency response teams are required in case of haz-

mat incidents. Faster service to the affected areas can result in less amount of fatalities, injuries,

and damages. It also can expedite the evacuation of the vulnerable areas, containment, and

cleanup process. Xu et al. (2013) presented a bi-level framework similar to Kara and Verter
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(2004) in which besides the carriers’ route selection decisions in the lower level, emergency re-

sponse department decides to locate emergency service units with the objective of maximizing

the total weighted arc length covered.

In another study, Taslimi et al. (2017) considered a policy to open additional road segments

along with the decisions about locating the emergency response teams. Saccomanno and Allen

(1987) and Berman et al. (2007) adapted the maximum set and arc covering formulation to find

the locations of emergency response teams in a predefined network. Hamouda et al. (2004)

and Zografos and Androutsopoulos (2008) suggested decision support systems to establish the

emergency response teams with aim of minimizing associated risk and response time. List and

Turnquist (1998) developed a multiobjective model to find the nondominated routes for each

origin-destination pair, flow assignment on routes, and accordingly the location of the emer-

gency response teams. Ma et al. (2015) also presented a multiobjective mathematical model

with objectives of maximizing the coverage, minimizing the response time, and minimizing the

transportation and fixed opening costs.

All the studies in hazmat emergency response teams location literature consider predeter-

mined network of origin-destination pair(s) and intend to locate emergency response teams in a

way that effectively cover the road network in case of incidents. Other features of the networks

such as midway operation and center location decisions are not included in these studies.

1.2.3 Waste Location-Routing

Hazardous wastes produced by various industries such as chemical manufacturers, electro-

plating companies, and petroleum refineries can become an immediate or long-term threat for

people’s safety and the environment. Large amount of hazmat wastes needs to be transported

from the generation sites to the well-equipped treatment, recovery, and disposal centers to be

processed, stored, or disposed. Most of the research in the hazmat waste management literature

concentrates on a simultaneous waste facility location and routing decisions. List and Mir-

chandani (1991) proposed a multiobjective model to find the location of the waste management
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facilities conjointly with the routing decisions of hazmat wastes. For similar studies, see (Zo-

grafos and Samara 1989, ReVelle et al. 1991, Stowers and Palekar 1993, Jacobs and Warmer-

dam 1994, Current and Ratick 1995, Giannikos 1998, Cappanera et al. 2003, Aboutahoun 2012,

Boyer et al. 2013, Berglund and Kwon 2014, Zhao and Zhu 2016). Other studies considered

technology selection strategies in opening a waste facility, known as waste-technology com-

patibility constraint, simultaneously with hazmat waste location-routing decisions (Nema and

Gupta 1999, 2003, Alumur and Kara 2007, Emek and Kara 2007, Samanlioglu 2013, Zhao and

Verter 2015, Zhao et al. 2016, Yu and Solvang 2016, Ardjmand et al. 2016, Yilmaz et al. 2017,

Asgari et al. 2017, Rabbani et al. 2018, Asefi et al. 2019).

Zhao and Ke (2017) incorporated the inventory decisions into designing a hazmat waste

management system, where they proposed a single period framework to maximize the trans-

portation efficiency through an optimal utilization of vehicles capacity. Rabbani et al. (2019)

studied a similar problem and presented a simulation-optimization approach based on a multi-

objective evolutionary algorithm to minimize cost and environmental risk.

The majority of the waste management literature considered problems which deal with the

challenge of finding one or multiple suited destination locations for hazmat waste treatments

and the shipments of hazmat to these destinations. The forward flow of hazmat products is

usually disregarded in these studies, meaning that the stream of hazmat products from an origin

to processing locations such as distribution centers and to the end customers is not considered.

1.2.4 Facility Location

Besides waste location-routing problems which focus on the reverse flow of hazmat waste,

researchers studied the combination of finding the best location of facilities such as distribution

centers, warehouses or depots in the forward hazmat network along with the proper routes

between these establishments to the customers. Helander and Melachrinoudis (1997) studied

hazmat location-routing problem with the objective of minimizing the expected number of

hazardous material shipment accidents. Mahmoudabadi and Seyedhosseini (2014) developed a

bi-level programming model to determine the locations of distribution centers and the hazmat

transportation routes in the network. For similar studies see (Falit-Baiamonte and Osleeb 2000,
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Zhang et al. 2005, Mahmoudabadi 2015, Tavakkoli-Moghaddam et al. 2015, Mahmoudabadi

et al. 2016).

Meiyi et al. (2015) studied a location-scheduling problem on hazardous materials trans-

portation with preselected routes between each depot and customer pair. Wei et al. (2015)

studied the capacitated depot location problem in combination with the vehicle routing plan-

ning. They proposed a chance-constrained programming model that produced an optimized

balance between the transportation risk and cost. Fan et al. (2019) developed an integer linear

programming model for the reliable location-routing of hazmat, in which they considered the

depot disruption when deciding on depot location. Hu et al. (2019a) introduced a multiobjec-

tive optimization method for finding the hazmat warehouse locations and the routes under the

constraint of traffic restrictions in inter-city roads. In the hazmat facility location literature,

the forward stream of produced products is considered simultaneously with the routing deci-

sions. These studies ignore the backward flow planning of hazmat returns and wastes as well

as locating the emergency response teams in the network.

Zhao et al. (2017) proposed three mathematical models for green supply chain manage-

ment with the aim of minimizing the inherent risks involved in the hazardous materials such

as risk of casualties, risk of environmental pollution and risk of property loss. In their model,

the stream of hazmat starts with suppliers and continues to manufacturing sites, distribution

centers, and to the end customers. The waste is being collected from customers and shipped to

recycling, landfill, and incineration centers meaning that there is not any reverse flow of recov-

ered products in the network. Ma and Li (2018) studied the hazmat closed-loop supply chain

network design problem. They developed a mathematical model to make decisions about the

optimal location of production-recovery sites in the forward supply chain and collection centers

in the reverse supply chain. Their model also determines the quantity of hazmat product and

waste shipments through the network. For a through review on hazmat risk assessments and

problems see Hu et al. (2019b) and Holeczek (2019).
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Based on the literature outlined above, hazmat network design and facility location prob-

lems have been studied widely, and the emergency response team location problem has gained

a considerable attention due to the disastrous consequences caused by hazmat incidents. The

risk exposure through the hazmat logistics system is not only limited to the shipment process, it

similarly affects the settings where hazmat is produced, processed, stored, and disposed. Such

sites thereby signify a potential threat to its surroundings since incidents can happen in the fa-

cilities and during loading and unloading process (Erkut and Alp 2007b). Therefore, decisions

such as the location of establishments in both forward and reverse hazmat supply chain, the

amount of forward flow of hazmat products shipments on the road links along with the amount

of the backward stream of hazmat waste, and the routing decisions must be made simultane-

ously. This is because facility locations and customer allocations have a direct impact on both

storage risk and transportation risk as well as the establishment, capacity and operational costs.

Such decision-making without considering the simultaneous establishment of emergency re-

sponse teams could incur significant economic losses due to ineffective response times to reach

the vulnerable areas in case of incidents.

1.3 Contribution of the Dissertation

The aim of this research is to present a combined optimization model, which incorporates

a closed-loop supply chain decision making framework, with simultaneous incorporation of

HERT facility location, which has not been considered in the literature before (see, Table 1.2.4).

First, based on the gap in the literature of hazardous materials supply chain network design, a

multiobjective mixed integer mathematical model is developed for the problem with aim of

minimizing associated costs and risks. The model properties and performance are investigated

with a case study based on Albany county in the State of New York. Second, the uncertainty

of some model parameters with known distributions are studied and a two-stage stochastic

model is proposed to deal with the uncertainty. Then, the uncertainty of parameters investigated

in a case that the distributions are unknown. The robust optimization counterpart model is

developed to deal with such uncertainty for the same case study.
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Since the risk exposure on the road network plays an important role in hazmat logistics,

governments and authorities concerned with the risk equity of the hazmat shipments. Risk

equity in hazmat transportation is mostly studied in the hazmat network design literature, where

the mathematical models are developed to open/close road segments or regulate the shipment

amounts by toll setting and pricing. Third, a new unified framework is proposed to promote

risk equity in hazmat shipments from two class of risk-averse modeling perspectives: a risk-

reward framework, which is usually used in engineering stochastic optimization; and methods

based on directly promoting diversification such as Risk Parity and Equal Risk Contribution

that often employed in financial applications. The aim of the proposed methods are to ensure

that the risks associated with hazmat transportation are distributed evenly among the exposed

communities while making sure that overall system risk is controlled.
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Chapter 2

Multiobjective Mixed Integer Mathematical Model for Hazardous Materials Closed-loop
Supply Chain Network Design with Emergency Response Teams Location

2.1 Introduction

Hazmat route planning is a basic problem in hazmat transportation with the aim of safety man-

agement to reduce the occurrence of dangerous events. Hazmat route planning considers se-

lecting one or several paths among available ones between an origin and a destination. The

selection criteria depend on the different objectives of the decision makers. One of the in-

volved parties in hazmat transportation is the carriers with the objective of minimizing travel

time and cost. The other party is regional and local government authorities, who regulate haz-

mat transportation with the objective of minimizing the total risk and promoting equity in its

spatial distribution. Such regulations impose restrictions on transporting through highly popu-

lated areas and the amount of traffic over network links.

The supply chain network design problems can be divided into two categories: forward

and reverse logistics. In the forward network, the activities and processes such as manufac-

turing of new products and their distribution to the customers are planned while in the reverse

network collection of the returned (used) products, their inspection, recovery and disposal are

carried out. Growing attention is given to the reverse logistics due to the concerns about in-

creasing the resource utilization rate by recovering and recycling, and decreasing environmental

pollution by properly managing waste. The performance of the forward and reverse logistics

are interrelated and managing them separately results in sub-optimal network design. Inte-

gration of forward and backward logistics is known in the literature as the closed-loop supply

chain network design problem. In this chapter, we studied the hazmat closed-loop supply chain

15



network design problem considering perspectives of both parties: carriers and government au-

thorities. The proposed supply chain network design problem aims to effectively locate the

hazmat facilities such as production, distribution, collection, recovery and disposal centers. It

also works toward controlling the quantity of shipments considering the cost and imposed risk,

and providing minimum cost and risk routes for carriers. We further also include emergency

response team placement decisions as part of the problem. Since hazmat incidents can oc-

cur in origin during loading, in transit, in transit storage, and at destination during unloading

(PHMSA 2018), it is important to take accident response into consideration when planning

the supply chain. All these decisions are made simultaneously for both forward and reverse

streams of hazmat.

There are two types of integration in supply chain management: horizontal and vertical

(Pishvaee et al. 2010). Considering strategic (long term), tactical (medium term) and opera-

tional (short term) planning levels separately, while integrating activities in the same planning

level is known as the horizontal integration. Combining the decision-making processes across

different planning levels is referred to as the vertical integration. In the strategic level, the

decisions are associated with the supply chain configuration, such as opening potential facili-

ties. In the tactical level, it is assumed that configuration of the supply chain is established and

the aim is to optimize the production quantity, transportation amounts and customer alloca-

tion with respect to various costs such as manufacturing, distribution, collection and disposal.

Determination of shipment routes among facilities and customers is associated with the opera-

tional planning. Combining forward and reverse logistics decisions is an example of horizontal

integration.

In this study, a mathematical model is introduced for hazmat closed-loop supply chain

network design (HSCND) problem with elements of both vertical and horizontal integration.

The proposed model is capable of handling three levels of strategic, tactical and operational

planning decisions: facilities and emergency response teams location, the quantity of ship-

ments across the network with capacity settings of facilities, and hazmat route selection. It also

combines the forward and reverse flow of hazmat and integrates hazmat shipment decisions

with response team placement. The rest of the chapter is organized as follows. The HSCND

16



problem is defined and a mixed integer mathematical model is proposed in Section 2.2. The

two-phase solution method is presented in Section 2.3, which can find all of the Pareto optimal

solutions for the problem. Computational results for a case study in Albany county in the State

of New York are provided in Section 2.4. Finally, concluding remarks are discussed in Section

2.5.

The main contribution of this chapter is in developing an optimization model, which:

a) introduces a new framework for managing hazmat on road networks by considering both

carriers and governments perspectives b) integrates hazmat forward and backward logistics

to efficiently satisfy customer demands as well as managing hazmat waste, c) integrates the

decisions of locating emergency response team to the flow optimization and facility location

and capacity decisions, d) selects the best set of routes for hazmat shipments within the network.

This study is an effort to bridge the four sides of literature outlined above by introducing a

new bi-objective mathematical model, which is capable of handling three levels of decisions:

location, flow, and routing. The model and solution procedure are presented in the next sections.

2.2 Problem Definition

A single period, single product, multi-echelon forward-reverse hazmat supply chain network

design problem is considered with production and distribution centers in the forward flow and

collection, recovery and disposal centers in the backward flow. Hazmat emergency response

teams location problem is also included, placing them in such a way that they can effectively

respond to the incidents that happen in the facilities, during the loading and unloading as well

as shipment. This problem is more complex than regular hazmat network design considering

only forward or backward network flows at a time, thereby it requires more effort to model and

solve.

The proposed model considers the following assumptions: a) potential locations of pro-

duction, distribution, collection, recovery and disposal centers as well as the emergency re-

sponse teams are known a priori; b) customer locations are predetermined and fixed; c) there

are no flows between similar facilities e.g. one distribution center to another; d) hazmat de-

mands and returns are deterministic and known. Note that the assumption on deterministic
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nature of the demand and return (and hence shipment quantities) is fairly restrictive, and a

stochastic case should be considered in a future study.

One of the involved parties in hazmat transportation is the carriers with objective of min-

imizing travel time and cost. Besides the carriers, there are regional and local government

authorities, who want to regulate the hazmat transportation with objective of minimization of

the total risk and promoting equity in the spatial distribution of risk. Such regulations impose

restrictions in transporting high populated areas and the amount of traffic over the network

links.

Both parties’ perspectives are considered in this model by including two objective func-

tions. First objective function attempts to minimize the total cost of the system and conse-

quently, maximize the profit. The second one seeks to minimize the risk by distributing the

shipments on the road segments with lower risk exposure. The decision maker should deal

with the trade-offs between these two objectives since they are conflicting, and, in general,

incomparable. The purpose of this problem is to determine the optimal number of facilities

(e.g. production, distribution, collection, recovery and disposal) to be opened, their optimal

locations and capacity, and the optimal quantity of the product and waste flows among facili-

ties and customers. It also determines the optimal number and locations of hazmat emergency

response teams. On the operational level, a set of best routes are determined considering the

cost and risk objective functions.

2.2.1 Model formulation

The general structure of the proposed closed-loop supply chain is illustrated in Figure 2.1.

Production facilities are responsible for providing new products and shipping them to the dis-

tribution centers. These products are then shipped to the customers to satisfy their demand

through a pull system in the forward direction. The backward flow consists of the returned

products from customers, which are then transferred to the collection centers for inspection

and testing. The high quality returned products have a capability of entering to the recovery

process, i.e. re-manufacturing. Recoverable products are shipped to the production facilities to

perform recovery process. Then, they are inserted to the forward flow as recovered products.
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The scrap products are transferred from collection centers to the disposal centers in a push sys-

tem. The hazmat waste will be shipped directly from customers to the disposal centers. The

average disposal rate of the returned products is associated with the quality of the returned

products.

Figure 2.1: Hazmat closed-loop supply chain network structure.

Production facilities can apply any required procedures on the recoverable products and

insert them to the forward flow. Therefore, it is assumed that a production and a recovery

center can be opened at the same location. Following convention in the literature (Lee and

Dong 2008, Hatefi and Jolai 2014) having hybrid production and recovery (HPR) centers are

considered. Similarly, distribution and collection centers are considered to be established in the

same locations with the name of hybrid distribution and collection (HDC) centers. This strategy

results in the cost saving and pollution reduction since the facilities are sharing infrastructure,

space, staff, and material handling equipment.

A path-based formulation is used, in which it is assumed that the decision-maker prede-

termines a set of available paths between each potential center and customer locations. In the

case study below, this set is calculated as k shortest paths, but these can be determined in any

way. It is also assume that hazmat transportation risk on each arc is pre-evaluated. One of
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the most popular strategies for risk estimation is based on expected consequence, which com-

bines incident probability (e.g., fixed probability per mile traveled) with an estimate of exposed

population (see more details in Section 2.4).

The following notations are defined to formulate the hazmat integrated forward-reverse

network design. Equations (2.1)–(2.33) provide problem formulation.

Sets

I Index set of fixed locations of HPR centers, i ∈ I

J Index set of potential locations of HDC centers, j ∈ J

K Index set of potential locations of disposal centers, k ∈ K

M Index set of potential locations of emergency response team, m ∈M

L Index set of fixed locations of customers, l ∈ L

N Index set of nodes in the network a, b, c, d ∈ N

Parameters

dl Quantity of demand of customer l

rl Return rate of the used products from customer l

δ Average disposal rate of returned products

MCPCi Maximum production capacity available for HPR center i

MCPRi Maximum recovery capacity available for HPR center i

MCDCj Maximum distribution capacity available for HDC center j

MCDRj Maximum collection capacity available for HDC center j

MCKk Maximum capacity available for disposal center k

fi Fixed cost of opening a HPR center i

gj Fixed cost of opening a HDC center j

hk Fixed cost of opening disposal center k

em Fixed cost of locating hazmat emergency response team m
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αi Manufacturing cost per unit of new products at HPR center i

ρi Recovery cost per unit of recoverable products at HPR center i

βj Distribution cost per unit of products at HDC center j

ηj Collection and sorting cost per unit of returned products at HDC center j

γk Disposal cost per unit of scrap products at disposal center k

CPi Capacity cost per unit of new products at production center i

CPCi Capacity cost per unit of recoverable products at recovery center i

CDj Capacity cost per unit of products at distribution center j

CDCj Capacity cost per unit of returned products at collection center j

CKk Capacity cost per unit of scrap products at disposal center k

TCab Transportation cost per unit of products from node a to node b

Dab Distance from node a to node b

Riskab Transportation risk on the arc from node a to node b

Pab The number of available paths from node a to node b

KSabcdp A binary parameter equals to 1 if the arc (a,b) is used in the p-th path of traveling from c to d

φ Percentage of the nodes that emergency response teams should cover

RT The risk threshold in the network

RET The emergency response team’s response threshold based on quantity of shipments

CT The coverage threshold of emergency response teams based on distance

BM A large number
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Decision Variables

Qi Binary variable equals to 1 if HPR i is opened, 0 otherwise

Tj Binary variable equals to 1 if HDC center j is opened, 0 otherwise

Uk Binary variable equals to 1 if disposal center k is open, 0 otherwise

Gm Binary variable equals to 1 if emergency response team locates at location m, 0 otherwise

Xijp Quantity of new products shipped from production i to distribution j on path p

Eijp Quantity of recovered products shipped from production i to distribution j on path p

Yjlp Quantity of products shipped from distribution j to customer l on path p

Zljp Quantity of products returned from customer l to collection j on path p

Vjip Quantity of recoverable products shipped from collection j to recovery i on path p

Wjkp Quantity of returned products shipped from collection j to disposal center k on path p

pci Production capacity of HPR center i

pcri Recovery capacity of HPR center i

dcj Distribution capacity of HDC center j

dcrj Collection capacity of HDC center j

zck Disposal capacity of disposal center k

Bab Quantity shipped on arc (a,b)

Cmb Binary variable equals to 1 if emergency response team m covers node b

CCmab Binary variable equals to 1 if emergency response team m covers arc (a,b)

NCb Binary variable equals to 1 if node b is covered by at least one emergency response team
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min
∑
i∈I

(fiQi + CPipci + CPCipcri) +
∑
j∈J

(gjTj + CDjdcj + CDCjdcrj)

+
∑
k∈K

(hkUk + CKkzck) +
∑
m∈M

emGm +
∑
i∈I

∑
j∈J

∑
p∈Pij

αiXijp +
∑
i∈I

∑
j∈J

∑
p∈Pij

ρiEijp

+
∑
j∈J

∑
l∈L

∑
p∈Pjl

βjYjlp +
∑
l∈L

∑
j∈J

∑
p∈Plj

ηjZljp +
∑
j∈J

∑
k∈K

∑
p∈Pjk

γkWjkp +
∑
a∈N

∑
b∈N
b 6=a

TCabBab

(2.1)

min
∑
a∈N

∑
b∈N
b 6=a

RiskabBab (2.2)

s. t.
∑
j∈J

∑
p∈Pjl

Yjlp = dl, ∀l ∈ L (2.3)

∑
j∈J

∑
p∈Plj

Zljp = rldl, ∀l ∈ L (2.4)

∑
i∈I

∑
p∈Pij

(Xijp + Eijp) =
∑
l∈L

∑
p∈Pjl

Yjlp, ∀j ∈ J (2.5)

∑
k∈K

∑
p∈Pjk

Wjkp = δ
∑
l∈L

∑
p∈Plj

Zljp, ∀j ∈ J (2.6)

∑
i∈I

∑
p∈Pji

Vjip = (1− δ)
∑
l∈L

∑
p∈Plj

Zljp, ∀j ∈ J (2.7)

∑
j∈J

∑
p∈Pji

Vjip =
∑
j∈J

∑
p∈Pij

Eijp, ∀i ∈ I (2.8)

∑
j∈J

∑
p∈Pij

Xijp ≤ pci, ∀i ∈ I (2.9)

pci ≤MCPCiQi, ∀i ∈ I (2.10)∑
j∈J

∑
p∈Pij

Xijp ≤ QiBM, ∀i ∈ I (2.11)

∑
j∈J

∑
p∈Pji

Vjip ≤ pcri, ∀i ∈ I (2.12)

pcri ≤MCPRiQi, ∀i ∈ I (2.13)∑
j∈J

∑
p∈Pji

Vjip ≤ QiBM, ∀i ∈ I (2.14)
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∑
l∈L

∑
p∈Pjl

Yjlp ≤ dcj, ∀j ∈ J (2.15)

dcj ≤MCDCjTj, ∀j ∈ J (2.16)∑
l∈L

∑
p∈Pjl

Yjlp ≤ TjBM, ∀j ∈ J (2.17)

∑
l∈L

∑
p∈Plj

Zljp ≤ dcrj, ∀j ∈ J (2.18)

dcrj ≤MCDRjTj, ∀j ∈ J (2.19)∑
l∈L

∑
p∈Plj

Zljp ≤ TjBM, ∀j ∈ J (2.20)

∑
j∈J

∑
p∈Pjk

Wjkp ≤ zck, ∀k ∈ K (2.21)

zck ≤MCKkUk, ∀k ∈ K (2.22)∑
j∈J

∑
p∈Pjk

Wjkp ≤ UkBM, ∀k ∈ K (2.23)

∑
j∈J

∑
l∈L

∑
p∈Pjl

KSabjlpYjlp +
∑
l∈L

∑
j∈J

∑
p∈Plj

KSabljpZljp +
∑
j∈J

∑
k∈K

∑
p∈Pjk

KSabjkpWjkp

+
∑
j∈J

∑
i∈I

∑
p∈Pji

KSabjipVjip +
∑
i∈I

∑
j∈J

∑
p∈Pij

KSabijpEijp

+
∑
i∈I

∑
j∈J

∑
p∈Pij

KSabijpXijp = Bab, ∀a, b ∈ N (2.24)

DmbCmb ≤ CT, ∀m ∈M,∀b ∈ N (2.25)

Cmb ≤ Gm, ∀m ∈M, ∀b ∈ N (2.26)∑
m∈M

Cmb ≤ NCbBM, ∀b ∈ N (2.27)

∑
m∈M

Cmb ≥ NCb, ∀b ∈ N (2.28)

∑
b∈N

NCb ≥ Nφ (2.29)

(Bab +Bba)−RET ≤ BM
∑
m∈M

CCmab, ∀a, b ∈ N (2.30)
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Cma + Cmb − 1 ≤ CCmab, ∀m ∈M, ∀a, b ∈ N (2.31)

1

2
(Cma + Cmb) ≥ CCmab, ∀m ∈M, ∀a, b ∈ N (2.32)

Qi, Tj, Uk, Gm, Cmb, CCmab, NCb ∈ {0, 1}, ∀i, ∀j,∀k, ∀l,∀m,∀a, b,

Xijp, Eijp, Yjlp, Zljp,Wjkp, Vjip, Bab ≥ 0, ∀i,∀j,∀k,∀l,∀p, ∀a, b,

pci, pcri, dcj, dcrj, zck ≥ 0, ∀i,∀j,∀k. (2.33)

The first objective function (2.1) seeks to minimize three categories of cost: a) the fixed

cost of establishing hybrid production/recovery (HPR) centers, hybrid distribution/collection

(HDC) centers and disposal centers as well as locating emergency response teams in the net-

work, b) the variable costs including manufacturing cost in the production sites, re-manufacturing

cost for recoverable products in the recovery facilities, operating cost in distribution centers,

collection and sorting costs for the returned products in the collection centers, and c) related

transportation costs of shipments. The other objective function (2.2) aims to minimize the risk

of exposure on the network with respect to the associated quantity of shipments on each arc.

Constraints are classified into four categories: a) Network Flow Balance constraints which

refer to balancing the forward and backward flows in order to fulfill customers’ demand, b)

Capacity constraints which define optimal capacities for each center and guarantee that the net-

work flow does not exceed the maximum available capacity of centers, c) Arc Flow constraint

defines the amount of shipments on each arc in the network since each arc, d) Coverage con-

straints which assure that centers are covered by emergency response teams and the arcs with

shipment amounts larger than a threshold are covered by at least one emergency response team.

Network Flow Balance constraints are presented in equations (2.3) to (2.8). Constraint

(2.3) states that the quantity of the products shipped from the distribution centers to each cus-

tomer using available paths between these centers and customers should be equal to the demand

of that specific customer. This constraint guarantees that the demand of each customer is fully

satisfied. Constraint (2.4) addresses the quantity of the returned products. Constraint (2.5) as-

sures that both new and recovered products are shipped to customers to satisfy their demands.
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Constraints (2.6) and (2.7) refer to the quality of the returned products and state that a pro-

portion of the returned products, i.e., scrap products are shipped to the disposal centers, and

the rest transfered to the HPR centers for recovery using available paths between centers and

customers. Constraint (2.8) guarantees that all the recoverable products that are shipped to

production centers will be inserted into the forward flow after re-manufacturing.

Capacity constraints are enforced with equations (2.9) to (2.23). Constraints (2.9), (2.10)

and (2.11) define the production capacity needed in each HPR center and guarantee that the

capacity needed to produce new products does not exceed the maximum available capacity for

the center. Constraints (2.12), (2.13) and (2.14) define the same conditions for HPR centers.

Constraints (2.15), (2.16) and (2.17) determine the distribution capacity of each HDC center

and imply that the forward flow from an HDC center should not exceed maximum available

capacity. Constraints (2.18), (2.19) and (2.20) determine the collection capacity of each HDC

center and state that the reverse flow to a HDC center should not exceed maximum available

capacity. Constraints (2.21), (2.22) and (2.23) define the disposal capacity of each disposal

center and impose the capacity restriction of each disposal center in receiving the returned

materials i.e., scrap products and hazmat waste from customers.

Arc Flow constraint (2.24) determines the cumulative amount of shipments on each arc in

the road network. Coverage constraints are described with equations (2.25) to (2.32). Coverage

can be defined in a number of different ways. Here, a global parameter , referred to as coverage

threshold (CT), is defined which corresponds to the coverage radius of a response team, i.e,

defines the reach of a response team, within which it can effectively respond to an incident.

Note that it can easily be modified to be dependent on the location of the response team. it is

also assumed that an arc in the network is covered if nodes at both ends of the arc are within

the coverage threshold of a response team. With that, the following requirements for response

team placement are considered: a) at least φ nodes in the network should be within CT of

a response team; b) all arcs with sufficiently large amount of shipped hazmat (exceeding a

value referred to as response threshold, RET) have to be covered by a team. Constraint (2.25)

defines the coverage of nodes in the network by emergency response teams. Specifically, it is

assumed that a node is covered if it is within a given threshold from an established response
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team. Constraint (2.26) states that an emergency response team can cover a node only if it

is established. Constraints (2.27), (2.28) and (2.29) guarantee that φ percent of the network

is covered by the emergency response teams. Constraint (2.30) assures that if a cumulative

shipment amount on an arc exceed a threshold, at least one emergency response team should

cover that arc. Constraints (2.31) and (2.32) indicate that an arc is covered by an emergency

response team if both nodes of the arc are covered by the same team. Constraint (2.33) refers

to the binary and non-negativity restrictions on the corresponding decision variables.

2.3 Solution Approach: Two-Phase Method

Our proposed model contains two objective functions, minimization of cost and risk, as well

as integer variables. For this reason, solution to the problem consists of a set of discrete non-

dominated points located on the Pareto front. Note that due to presence of integer variables,

Pareto front is not necessarily convex. Multiobjective optimization methods can often be clas-

sified into Criteria Space Search (CSS) approaches (see, among others Haimes 1971, Ulungu

and Teghem 1995) and Decision Space Search (DSS) algorithms (see, among others Stidsen

et al. 2014, Stidsen and Andersen 2018).

Criteria Space Search (CSS) algorithms and Decision Space Search (DSS) algorithm are

two categories of main approaches to solve multiobjective mixed integer programming (MOMIP)

models. The CSS algorithms are iterative processes in which extra constraints are added to the

base MOMIP model’s criteria space to create a series of single-objective optimization models

and find the Pareto optimal solutions. The Pareto optimal solutions are nondominated solutions

which cannot be improved in one objective function without deteriorating their performance in

at least one of the other objectives. The set of Pareto optimal solutions shape a Pareto front.

The ε-constraint method and the two-phase method are two effective CSS algorithms widely

used to solve various MOMIP models. The ε-constraint method finds lexicographic points by

optimizing one of the objective functions at a time and restricting the rest of the objectives as

constraints within user-specific values. The drawback of this method is that it might not find
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all the solutions in the Pareto front. The two-phase method starts with the two supported ex-

treme nondominated points and finds all the points of the Pareto front by solving a series of

single-objective models.

DSS algorithms are basically branch-and-bound algorithms, modified to handle more than

one objective. Various types of branching, probing, and fathoming strategies are studied for

MOMIP problems. Most of the general branch and bound algorithms for MOMIP models in

the literature allow only two objective functions and require the integer variables to be binary,

and the continuous variables occur in only one of the two objectives (Parragh and Tricoire

(2018)), which cause a restriction in implementation on cases that do not follow such structure.

Also, such approaches are computationally inefficient for large scale problems.

In order to obtain solutions to the proposed model, the two-phase method introduced by

Ulungu and Teghem (1995) as an effective CSS algorithm is employed. The specific structure

of the solution methodology is adapted from Stidsen et al. (2014). The two-phase method starts

with obtaining two nondominated supported (located on the convex hull of the Pareto front)

extreme solutions named as the upper left (zUL) and the lower right (zLR) points, respectively.

These two points are associated with the minimum cost (z1(x, y)) and minimum risk (z2(x, y))

solutions in our bi-objective model. The rest of the supported extreme nondominated points in

between of these two points are usually found using a parametric optimization problem. To do

so, a search direction λ is defined and then the following parametric optimization problem is

solved:
min zλ(x, y) = λz1(x, y) + z2(x, y)

s. t. (x, y) ∈ X,
(2.34)

where λ ∈ R+ and X is a set of feasible solutions for the bi-objective model. The search stops

when all possible combination of consecutive points are considered. Algorithm 1 demonstrates

the steps in the first phase. Phase two is employed to find all the nondominated supported

nonextreme and nondominated unsupported solutions as in Algorithm 2.

Phase two starts with the list of sorted (based on z1) nondominated solutions attained in

phase one, creating a set of triangles using two sequential points and a local nadir point to be
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searched iteratively. The search for the rest of the nondominated points in this triangle can be

carried out by adding a set of constraints to (2.34):

min zλ(x, y) = λz1(x, y) + z2(x, y)

s. t. z1(x, y) ≤ z−1

z2(x, y) ≤ z+
2

zλ(x, y) ≤ UB

zλ(x, y) ≥ LB

n∑
j=1

{xj|x+
j = 0}+

n∑
j=1

{1− xj|x+
j = 1} ≥ 1

n∑
j=1

{xj|x−j = 0}+
n∑
j=1

{1− xj|x−j = 1} ≥ 1

(2.35)

The last two constraints are know as no-good , which are added as cuts to the search space

to eliminate the previously found solutions. The search continues until all the triangles have

been investigated and all the nondominated solutions have been found. Providing all Pareto

solutions, the decision maker can select the most preferred solution among all.

Algorithm 1: Two Phase Method - Phase I
Data: zUL := (zUL1 , zUL2 ) and zLR := (zLR1 , zLR2 ).

Result: ϕ := nondominated supported extreme points.

begin

ϕ←− {zUL, zLR}

z+ ←− zUL; z− ←− zLR

while z+ 6= zLR do

λ←− λ(z+, z−)

solve (2.34) such that (x∗, y∗) is the optimal solution

if zλ(x∗, y∗) < λz+
1 + z+

2 then
add z∗ = (z1(x∗, y∗), z2(x∗, y∗)) to ϕ between z+ and z−

else
z+ ←− z−; z− ←− Next(ϕ, z+)
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Algorithm 2: Two Phase Method - Phase 2
Data: ϕ and zUL, zLR first and last pints in ϕ.

Result: ϑ := all nondominated points.

begin

ϑ←− ϕ

z+ ←− zUL; z− ←− Next(ϕ, z+)

for i← 1 (to numbe of points in ϕ)-1 do

λ←− λ(z+, z−)

LB ←− λz+
1 + z+

2 ;UB ←− λz−1 + z+
2

while LB 6= UB do

solve (2.35)

if finds optimal solution (x∗, y∗) then
add zn = (z1(x∗, y∗), z2(x∗, y∗)) to ϑ if it is nondominated

else
return

add a no-good constraint corresponding to zn

LB ←− λzn1 + zn2

z+ ←− z−; z− ←− Next(ϕ, z+)

2.4 Computational Results: A Case Study

To study the behavior of the hazmat closed-loop supply chain network design problem and

evaluate the performance of the proposed model, a case study is performed. The study is based

on a case presented in Toumazis et al. (2013), based on the area around Albany, NY. The re-

gion, shown in Figure 2.2, includes seven interstate highways, and is a key junction of major

hazmat transportation activity (Kang et al. 2014). Results are presented from the computa-

tional experiments based on a network with 90 nodes and 148 arcs with potential spots for four

HPR, five HDC, three disposal centers, three emergency response teams, and ten predefined

customers. Certain parameters are randomly generated based on uniform distribution functions
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presented in Table 2.1. The average disposal rate is considered to be 20% and the 20 shortest

paths from each potential centers to other destination nodes are extracted using Yen’s k-shortest

path algorithm (Yen 1971).

a) Actual network with population densities (Toumazis 2015) b) Simplified representation

Figure 2.2: Alternative Representations of the Albany network.

Table 2.1: Source of model parameters generation.

Parameter Random distribution Parameter Random distribution

dm ∼Uniform (150,230) αi ∼Uniform (0.003,0.005)

rm ∼Uniform(0.1,0.3) ρi ∼Uniform (0.002,0.004)

MCPCi ∼Uniform(800,1000) βj ∼Uniform (0.002,0.004)

MCPRi ∼Uniform (250,450) ηj ∼Uniform (0.002,0.003)

MCDCj ∼Uniform (550,850) γk ∼Uniform (0.003,0.004)

MCDRj ∼Uniform (200,400) CPi ∼Uniform (50,70)

MCKk ∼Uniform (450,650) CPCi ∼Uniform (25,45)

fi ∼Uniform (400,450) CDj ∼Uniform(30,65)

gj ∼Uniform (200,250) CDCj ∼Uniform(10,40)

hk ∼Uniform (150,200) CKk ∼Uniform(25,40)

em ∼Uniform (60,200) TCab ∼Uniform(0,0.02)

31



Knowing the accident probabilities and potential consequences is important in order to

calculate the risk parameter on each arc of the network. The human health aspect of a hazmat

accident is quantified by estimating the number of individuals that can suffer the consequences

of a dangerous materials release. The average population density in the neighborhood of a road

segment is the critical factor in calculating the accident consequences. In this case study, the

risk and distance parameters are initiated using real data presented by Toumazis (2015).

The effect of certain parameter changes in designing hazmat supply chain network is in-

vestigated, namely: a) φ, b) CT , and c) RET . These parameters can be initialized by the

decision maker (mostly governments and local authorities) based on their strategy in dealing

with the problem. In this case study, it is considered setting the percentage of the nodes cov-

ered by emergency response teams as φ = {1, 0.8} corresponding to full and partial coverage

of the network by emergency response teams. Other parameters such as the coverage thresh-

old of emergency response teams depends on φ and the distance between pairs of emergency

response teams and different centers and customers (Dma). Note that for a fixed value φ there

exists a value, which is denoted asDmin, such that if CT < Dmin, then the problem becomes

infeasible, since there is a limited number of potential response team locations. This value can

be calculated with the following optimization problem:

min Dmin

s. t. DmaXma ≤ Dmin, ∀m ∈M,∀a ∈ N∑
m∈M

Xma ≤ NCaBM, ∀a ∈ N

∑
m∈M

Xma ≥ NCa, ∀a ∈ N

∑
a∈N

NCa ≥ Nφ

Dmin ≥ 0; Xma ∈ {0, 1}, ∀m ∈M,a ∈ N,

(2.36)

whereXma is defined as a binary variable equal to 1 if emergency response teamm covers node

a knowing that there is a distance threshold Dmin. For all cases first this problem is solved in

order to determine appropriate range of parameter CT.
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All computations were performed on a 3.50GHz Intel(R) Xeon(R) computer system with

64.0GB RAM. AMPL with Gurobi solver and AMPL API in Matlab2018b are used to run

mathematical model instances and implementation of the two phase method. The computation

time for solving a single-objective version of the full HSCND model (Phase I) was 4.48 seconds

in average. Extracting the full Pareto front for each instance of the problem using two phase

method takes 117.32 seconds in average. Two separate cases are considered depending on the

value of parameter φ.

2.4.1 Case 1: φ = 1

For case 1, the full network coverage by emergency response teams with φ = 1 is considered.

Using the model provided in (2.36) the Dmin = 22.2 is achieved, which is the lower bound

for CT parameter. Setting CTLB = 22.2 means that each node of the network is in the reach

of at least one emergency response team. Therefore, the upper bound for CT here is 42.7,

which allows all nodes to be in reach of all potential emergency response teams. In this case,

since all nodes are required to be covered, all arcs are covered as well, and hence parameter

RET does not affect the solution. The Pareto fronts for thee sets of associated parameters are

demonstrated in Figure 2.3.

Figure 2.3: Pareto front for various instances of the HSCND problem with φ = 1.

33



Based on the results presented in Figure 2.3, changing the CT parameter does not change

the Pareto front significantly. The slight difference between two Pareto fronts are based on

different locations of emergency response teams and their associated costs. For this case, three

notable points are investigated on the Pareto front of the instance with the lower bound of

parameter CT , i.e., CT = 22.2. These three critical points of the Pareto front of Figure 2.3

are: a) upper left point associated with the minimum cost solution, b) maximum curvature

associated with the middle point where the slope changes dramatically, c) lower right point

associated with minimum risk solution. Comparing points (a) and (b) indicates that a slight

increase in the cost objective function results in a huge decrease in risk objective, i.e., 0.01%

cost increase, 30% risk decrease. The minimum cost network has a cost objective function

value of 167899.6 units with highest imposed risk of 470.7 units. The Pareto front achieved

by our proposed model suggests a better network design with a very similar cost of 167915.8

units but a considerably lower imposed risk of 330.4 units. Comparing points (a) and (c) shows

11% increase in cost function and 69% decrease in risk objective value. While a decision maker

should select the most preferred network among the suggested ones based on budget restrictions

or risk regulations, it must be noted that in this case the only viable solutions are between

points b) and c). Three resulted network configurations corresponding to points (a), (b), and (c)

with the locations of centers and emergency response teams as well as the routing decisions are

presented in Figure 2.4. Throughout the Albany network presentations, the green nodes indicate

production/recovery facilities location, the blue nodes show distribution/collection centers, the

purple nodes demonstrate disposal centers, the orange nodes are for customer locations, and

the red pentagrams show establishment of the emergency response teams.

Networks presented in the Figure 2.4 demonstrate how the location and routing decisions

change between the solutions on the Pareto front. The minimum risk network avoids populated

areas to open facilities and route the shipments. Comparing solutions (a) and (c) the location of

hybrid production/recovery facilities, hybrid distribution/collection facilities, disposal centers

and emergency response teams change. Using the Yen’s k-shortest path algorithm, 20 routes

are available between each facility-to-facility pair and facility-to-customer pairs. In solution

(a), 43% of the routes are the first shortest paths and 84% of routes are first, second, third and
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Figure 2.4: Minimum cost, maximum curvature, and minimum risk closed-loop supply chain
designs for φ = 1. Green nodes indicate production/recovery facilities, blue nodes indicate
distribution/collection centers, purple nodes indicate disposal centers, orange nodes indicate
customer locations, and red pentagrams indicate the emergency response teams.

forth shortest paths among the centers and customers since the objective is to minimize the cost.

In solution (c), 54% of the routes are the first shortest paths, and 72% of routes are first, second,

third and forth shortest paths. This indicates that the minimum risk solution is still reasonable

for the carriers to be selected in terms of the transportation cost and time. Also, routes with

longer distances (up to 17th best route) are selected to avoid the highly populated areas.

2.4.2 Case 2: φ = 0.8

Setting φ to any value rather than 1 will result in different optimal solutions and affect the

structure of the defined network as well as the cost and imposed risk, which highlights the

importance of making location decisions of the emergency response teams simultaneously with

the forward and reverse logistics. With φ = 0.8, the minimum distance to cover all 80% of

the network nodes is determined to be Dmin = 12.2 using model (2.36). Accordingly, the

quantity of shipments on each road segments becomes important to determine coverage. In

order to achieve a feasible solution the lower bound for RET is determined as RETLB = 98.

The problem converges to the same Pareto front for large values of RET since such values

relax the RET related constraints. Figure 2.5 demonstrate a set of Pareto solutions considering

φ = 0.8, CT = 12.2, and varying the RET parameter.
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Figure 2.5: Pareto front for various instances of the HSCND problem with φ = 0.8, CT = 12.2
and varying RET .

The resulted Pareto fronts presented in Figure 2.5 show how changing the strategies of the

decision maker can cause different networks with wide range of cost and imposed risk. RET

parameter can be regulated by government and local authorities to control the overloaded seg-

ments across the road network. Results also demonstrate that an appropriate set of parameters

can decrease the associated cost and risk and present a better network. Each Pareto front in

Figure 2.5 also has three critical points: a) upper left point associated with the minimum cost

solution, b) maximum curvature associated with the middle point where the slope changes dra-

matically, c) lower right point associated with minimum risk solution. The shape and slope of

the Pareto fronts demonstrate how slightly increasing the cost objective value can result in a

remarkable reduction of the risk objective.

The effect of varying CT in case of φ = 0.8 is also investigated. Figure 2.6 shows the

Pareto fronts for two different instances of the problem considering CT = 12.2 and CT =

24.4 (double the Dmin value). As we discussed before, the RETLB = 98 for the first case.

Doubling the CT results in RETLB = 1, meaning that it relaxes the corresponding constraints.
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Figure 2.6: Pareto front for various instances of the HSCND problem with φ = 0.8 and varying
CT .

Results in Figure 2.6 show that increasing the lower bound of parameter CT relaxes the

effect of RET parameter. Any increase in RET parameter doesn’t influence the Pareto front

significantly. It is possible to compare the supply chain network designs of instances with

φ = 0.8 on Figure 2.7. The first two network designs (I and II) refer to the minimum cost and

minimum risk networks in the case of CT = 12.2 corresponding to the green Pareto front in

Figure 2.5. The second two network designs (III and IV) are associated with the minimum cost

and minimum risk networks in the case of CT = 24.4 corresponding to the blue Pareto front

in Figure 2.6.

Figure 2.7 demonstrates how the location and routing decisions change through the solu-

tions on different Pareto fronts. The first two network designs (i.e., I and II) are very restricted

and do not allow for much avoidance of the populated areas. Although the routing decisions

are different in each network. For network (I) 48% of the routes are the first shortest paths, and

80% of the routes are first, second, third and forth shortest paths among the centers and cus-

tomers while network (II) has 30% of the first shortest paths, meaning that it ships along longer

routes to reduce the imposed risk. The second two network designs (i.e., III and IV) provide

better solutions in comparison to networks (I) and (II) and have similar behavior to the case 1

where φ = 1. The routing planning in network (IV) shows well avoidance of highly populated

areas using 65% of the first shortest paths. This means the model provides reasonable solution
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for carriers in respect to cost of transportation while ensuring minimum risk exposure. Network

(III) used the first shortest paths 88% of the time.

Figure 2.7: Minimum cost and minimum risk closed-loop supply chain designs for various
instances of φ = 0.8. Green nodes indicate production/recovery facilities, blue nodes indicate
distribution/collection centers, purple nodes indicate disposal centers, orange nodes indicate
customer locations, and red pentagrams indicate the emergency response teams.

To sum up, the Pareto front can depend heavily on the choice of parameters. Further,

the cost and risk values are dependent on where on the Pareto front the solution in question is

located. At the same time, t in all tested cases Pareto fronts exhibit similar shape. Specifically,

compared to the overall minimum cost solution, it is always possible to sacrifice a little bit
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of cost for a large improvement in risk up to a point after which the relationship reverses, i.e.,

smaller improvement in risk can only be bought with larger increase in costs. Hence, a decision

maker may be directed to only consider the points between maximum curvature and minimum

risk points.

2.5 Conclusion

Increases of hazmat product and waste shipments, as well as environmental concerns, have

been attracting a growing attention to hazmat return logistics management in addition to tra-

ditionally considered forward logistics. The risk involved in hazmat transportation makes the

hazmat supply chain network design different and more challenging than the regular networks

due to a larger number of components that need to be incorporated into the design. In this chap-

ter, the hazmat closed-loop supply chain network design problem is investigated considering

two echelons in forward direction (production and distribution centers) and three echelons in

backward direction (collection, recovery and disposal centers). Cost is a critical factor in es-

tablishing hazmat supply chain and consists of fixed costs of opening centers, operational cost

in these centers, and transportation costs. Risk is another important factor in hazmats logistics,

which is a measure of accident occurrence probability and the consequence of such accidents.

A bi-objective mixed integer mathematical model is proposed that is able to jointly address the

importance of cost and risk factors in building the hazmat closed-loop supply chain network.

The proposed model helps with making strategic and tactical decisions such as the number and

locations of the facility establishments and their capacity settings. In reality, separating the

routing from facility siting is not efficient, since selection of the centers implies selection of

routes in a sense that there must exist appropriate routes from an origin to a destination for the

flow of products and waste. In addition, to move the solution method closer to the practical

application, multiple paths between every possible origin-destination pair is considered and the

model is allowed to find optimal sets for route planning.

In order to have an effective system, the model makes the decisions regarding the required

number of emergency response teams and their locations simultaneously with other strategic

decisions. The reason is that the facility locations directly influence the routing decisions,
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where both affect the location of emergency response teams. The Albany county network

in the State of New York is employed to illustrate the application of the developed model.

The effect of certain parameters on the hazmat supply chain network design is investigated

and the associated solutions are presented. The effects of uncertainty in demand and return

parameters are investigated in Chapter 3. In an stochastic environment risk-averse approaches

such as Conditional Value-at-Risk (CVaR) can be employed to study the uncertainty of the risk

parameter in designing the hazmat routing and supply chain, which more explained in Chapter

4.
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Chapter 3

Stochastic and Robust Optimization of Hazmat Closed-loop Supply Chain Network Design
with Emergency Response Teams Location

3.1 Introduction

In the previous chapter, a deterministic mixed integer programming model for hazmat closed-

loop supply chain network design is introduced. Under this setting, it is assumed that all the

parameters such as demand and return are known. Therefore, the best decision is to ship exactly

the demand and return quantities to fulfill customers’ needs and minimize associated costs and

risk.

In practice, some decisions should be made before realization of some parameters. Con-

sider a case where the facility placement decisions should be made before the realization of the

demand and return. One possible way to proceed this problem is to view demand and return

as random variables. It is possible to assume that the probability distribution of demand and

return are known, where the distributions can be estimated from historical data. Therefore, the

expected value of the total cost and risk can be calculated which rely on the placement decisions

and shipment quantities by utilizing stochastic optimization framework. Such formulation ap-

proaches the problem by minimizing the total cost and risk on average, meaning that by the

Law of Large Numbers, for a fixed placement decisions, the average of the total cost and risk,

over many repetitions will converge to the expected value and the solution will be optimal on

average.

To apply such framework to hazmat closed-loop supply chain network design problem, a

two-stage stochastic optimization model is presented. In the first stage, the decisions regarding

the placement of centers and their capacities are made before a realization of demand and
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return become known. At the second stage, with realization of demand and return, the decision

maker takes recourse action of shipping the required quantities to fully satisfy the demand and

return on an extra cost. In case of finitely many scenarios, it is possible to model the stochastic

program as a deterministic optimization problem by writing the expected value as the weighted

sum of probabilities multiplied to the associated values. In the two-stage programming, the

second-stage problem is feasible for every possible realization of the random data.

On the other hand, there might be cases in practice, where a new product is introduced or

a new market is exploited. Therefore, there is not enough historical data to estimate the dis-

tribution of demand and return. Robust optimization is used where the probability distribution

of the uncertain data is unknown. It assumes that the uncertain data resides in the an uncer-

tainty set. Classic robust programming does not allow constraint violation for any realization

of the data in the uncertainty set. Robust optimization models are computationally tractable for

many classes of uncertainty sets and problem types, which makes them attractive for various

real-world applications.

The rest of this chapter is organized as follow. In Section (3.2) a two-stage stochastic op-

timization model for HSCND with uncertainty in demand and return is presented. The model

performance on the Albany case study is analyzed. In Section (3.3) first the necessary back-

ground and definitions in robust optimization are presented. Then, a robust optimization model

for HSCND is introduced and sensitivity analysis on involved parameters based on Albany case

study is done to determine the model effectiveness.

3.2 Two-Stage Stochastic Optimization Approach

In this section, a two-stage stochastic optimization model is introduced for hazmat closed-loop

supply chain network design (HSCND) problem, which addresses an integration of strategic,

tactical and operational planning levels. Strategic decisions include finding the best locations

for establishing facilities and defining their capacities The tactical decisions are defining quan-

tity of shipments across the network. The operational decisions refer to the transportation

routing decisions based on the associated transportation costs and risks. The proposed model

contains two objective functions to fulfill both governments’ and carries’ goals in designing the
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hazmat network. The model considers two echelons in forward direction and three echelons

in backward direction, i.e., hybrid production-recovery (HPR), hybrid distribution-collection

(HDC) centers and disposal centers. The hazmat emergency response teams (HERT) location

decisions are made simultaneously with both forward and reverse logistics design.

The uncertainties in demand and return are considered with known probabilities (scenar-

ios) in this section. In the first stage, strategic decisions such as location and capacities of

facilities are determined before realizing any uncertain parameter. In the second stage, tactical

and operational decisions such as network flows and routings are made after the realization

of uncertain parameters. The decision of establishing the emergency response teams is made

simultaneously with the flow and routing decisions in the second stage. Followings show the

notations and the proposed model.

Sets

I Index set of potential locations of HPR centers, i ∈ I

J Index set of potential locations of HDC centers, j ∈ J

K Index set of potential locations of disposal centers, k ∈ K

M Index set of potential locations of emergency response team, m ∈M

L Index set of fixed locations of customers, l ∈ L

N Index set of nodes in the network a, b, c, d ∈ N

S Index set of transportation risk scenarios s ∈ S

Parameters

dls Demand of customer l in scenario s

rls Return rate of customer l in scenario s

δ Average disposal rate of returned products

MCPCi Maximum production capacity available for HPR center i

MCPRi Maximum recovery capacity available for HPR center i

MCDCj Maximum distribution capacity available for HDC center j

MCDRj Maximum collection capacity available for HDC center j

MCKk Maximum capacity available for disposal center k
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fi Fixed cost of opening a HPR center i

gj Fixed cost of opening a HDC center j

hk Fixed cost of opening disposal center k

em Fixed cost of locating hazmat emergency response team m

αi Manufacturing cost per unit of new products at HPR center i

ρi Recovery cost per unit of recoverable products at HPR center i

βj Distribution cost per unit of products at HDC center j

ηj Collection and sorting cost per unit of returned products at HDC center j

γk Disposal cost per unit of scrap products at disposal center k

CPi Capacity cost per unit of new products at production center i

CPCi Capacity cost per unit of recoverable products at recovery center i

CDj Capacity cost per unit of products at distribution center j

CDCj Capacity cost per unit of returned products at collection center j

CKk Capacity cost per unit of scrap products at disposal center k

TCab Transportation cost per unit of products from node a to node b

Dab Distance from node a to node b

Riskab Transportation risk on the arc from node a to node b in scenario s

prs Probability of scenario s

Pab The number of available paths from node a to node b

KSabcdp A binary parameter equals to 1 if the arc (a,b) is used in the p-th path of traveling from c to d

φ Percentage of the nodes that emergency response teams should cover

RET The emergency response team’s response threshold based on quantity of shipments

CT The coverage threshold of emergency response teams based on distance

BM A large number
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Decision Variables

Qi Binary variable equals to 1 if HPR i is opened, 0 otherwise

Tj Binary variable equals to 1 if HDC center j is opened, 0 otherwise

Uk Binary variable equals to 1 if disposal center k is open, 0 otherwise

Gms Binary variable equals to 1 if ERT m is established in scenario s, 0 otherwise

Xijps Quantity of new products shipped from HPR i to HDC j on path p in scenario s

Eijps Quantity of recovered products shipped from HPR i to HDC j on path p in scenario s

Yjlps Quantity of products shipped from HDC j to customer l on path p in scenario s

Zljps Quantity of products returned from customer l to HDC j on path p in scenario s

Vjips Quantity of recoverable products from HDC j to HPR i on path p in scenario s

Wjkps Quantity of returned products from HDC j to disposal center k on path p in scenario s

pci Production capacity of HPR center i

pcri Recovery capacity of HPR center i

dcj Distribution capacity of HDC center j

dcrj Collection capacity of HDC center j

zck Disposal capacity of disposal center k

Babs Quantity shipped on arc (a,b) in scenario s

Cmbs Binary variable equals to 1 if ERT m covers node b in scenario s

CCmabs Binary variable equals to 1 if ERT m covers arc (a,b) in scenario s

NCbs Binary variable equals to 1 if node b is covered by at least one ERT in scenario s
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min
∑
i∈I

(fiQi + CPipci + CPCipcri) +
∑
j∈J

(gjTj + CDjdcj + CDCjdcrj)

+
∑
k∈K

(hkUk + CKkzck) + E[Q(x, ξ)] (3.1)

s. t. pci ≤MCPCiQi, ∀i ∈ I (3.2)

pcri ≤MCPRiQi, ∀i ∈ I (3.3)

dcj ≤MCDCjTj, ∀j ∈ J (3.4)

dcrj ≤MCDRjTj, ∀j ∈ J (3.5)

zck ≤MCKkUk, ∀k ∈ K (3.6)

Qi, Tj, Uk, pci, pcri, dcj, dcrj, zck ≥ 0,∀i,∀j,∀k (3.7)

where E[Q(x, ξ)] denotes the recourse function with decision variables symbolized by x and

uncertainty associated to the model ξ. For the given scenario ξs, the Q(x, ξ) represents the

Pareto optimal values for two objective functions of the second stage problem (3.8)-(3.35):

min
∑
i∈I

∑
j∈J

∑
p∈Pij

∑
s∈S

αiXijps +
∑
i∈I

∑
j∈J

∑
p∈Pij

∑
s∈S

ρiEijps +
∑
j∈J

∑
l∈L

∑
p∈Pjl

∑
s∈S

βjYjlps

+
∑
l∈L

∑
j∈J

∑
p∈Plj

∑
s∈S

ηjZljps +
∑
j∈J

∑
k∈K

∑
p∈Pjk

∑
s∈S

γkWjkps +
∑
a∈N

∑
b∈N
b 6=a

∑
s∈S

TCabBabs

+
∑
m∈M

emGms (3.8)

min
∑
a∈N

∑
b∈N
b 6=a

∑
s∈S

RiskabBabs (3.9)
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s. t.
∑
j∈J

∑
p∈Pjl

Yjlps = dls, ∀l ∈ L,∀s ∈ S (3.10)

∑
j∈J

∑
p∈Plj

Zljps = rlsdls, ∀l ∈ L,∀s ∈ S (3.11)

∑
i∈I

∑
p∈Pij

(Xijps + Eijps) =
∑
l∈L

∑
p∈Pjl

Yjlps, ∀j ∈ J,∀s ∈ S (3.12)

∑
k∈K

∑
p∈Pjk

Wjkps = δ
∑
l∈L

∑
p∈Plj

Zljps, ∀j ∈ J,∀s ∈ S (3.13)

∑
i∈I

∑
p∈Pji

Vjips = (1− δ)
∑
l∈L

∑
p∈Plj

Zljps, ∀j ∈ J,∀s ∈ S (3.14)

∑
j∈J

∑
p∈Pji

Vjips =
∑
j∈J

∑
p∈Pij

Eijps, ∀i ∈ I,∀s ∈ S (3.15)

∑
j∈J

∑
p∈Pij

Xijps ≤ pci, ∀i ∈ I,∀s ∈ S (3.16)

∑
j∈J

∑
p∈Pij

Xijps ≤ QiBM, ∀i ∈ I,∀s ∈ S (3.17)

∑
j∈J

∑
p∈Pji

Vjips ≤ pcri, ∀i ∈ I,∀s ∈ S (3.18)

∑
j∈J

∑
p∈Pji

Vjips ≤ QiBM, ∀i ∈ I,∀s ∈ S (3.19)

∑
l∈L

∑
p∈Pjl

Yjlps ≤ dcj, ∀j ∈ J,∀s ∈ S (3.20)

∑
l∈L

∑
p∈Pjl

Yjlps ≤ TjBM, ∀j ∈ J,∀s ∈ S (3.21)

∑
l∈L

∑
p∈Plj

Zljps ≤ dcrj, ∀j ∈ J,∀s ∈ S (3.22)

∑
l∈L

∑
p∈Plj

Zljps ≤ TjBM, ∀j ∈ J,∀s ∈ S (3.23)

∑
j∈J

∑
p∈Pjk

Wjkps ≤ zck, ∀k ∈ K, ∀s ∈ S (3.24)

∑
j∈J

∑
p∈Pjk

Wjkps ≤ UkBM, ∀k ∈ K, ∀s ∈ S (3.25)
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∑
j∈J

∑
l∈L

∑
p∈Pjl

KSabjlpYjlps +
∑
l∈L

∑
j∈J

∑
p∈Plj

KSabljpZljps +
∑
j∈J

∑
k∈K

∑
p∈Pjk

KSabjkpWjkps

+
∑
j∈J

∑
i∈I

∑
p∈Pji

KSabjipVjips +
∑
i∈I

∑
j∈J

∑
p∈Pij

KSabijpEijps

+
∑
i∈I

∑
j∈J

∑
p∈Pij

KSabijpXijps = Babs, ∀a, b ∈ N,∀s ∈ S (3.26)

DmbCmbs ≤ CT, ∀m ∈M,∀b ∈ N,∀s ∈ S (3.27)

Cmbs ≤ Gms, ∀m ∈M, ∀b ∈ N, ∀s ∈ S (3.28)∑
m∈M

Cmbs ≤ NCbsBM, ∀b ∈ N, ∀s ∈ S (3.29)

∑
m∈M

Cmbs ≥ NCbs, ∀b ∈ N,∀s ∈ S (3.30)

∑
b∈N

NCbs ≥ Nφ ∀s ∈ S (3.31)

(Babs +Bbas)−RET ≤ BM
∑
m∈M

CCmabs,∀a, b ∈ N,∀s ∈ S (3.32)

Cmas + Cmbs − 1 ≤ CCmabs, ∀m ∈M, ∀a, b ∈ N, ∀s ∈ S (3.33)

1

2
(Cmas + Cmbs) ≥ CCmabs, ∀m ∈M,∀a, b ∈ N, ∀s ∈ S (3.34)

Gms, Cmbs, CCmabs, NCbs ∈ {0, 1}, Xijps, Eijps, Yjlps, Zljps,Wjkps, Vjips, Babs ≥ 0,

∀i ∈ I,∀j ∈ J,∀k ∈ K, ∀m ∈M, ∀l ∈ L,∀p ∈ P, ∀s ∈ S,∀a, b ∈ N. (3.35)

The first stage objective function (3.1) aims to minimize the fixed cost of locating hybrid

production/recovery (HPR) centers, hybrid distribution/collection (HDC) centers and disposal

centers in the road network. It also minimizes the capacity costs of establishing different cen-

ters. Constraint sets (3.2) to (3.6) guarantee that if a center is decided to be established, the

capacity assigned to that center will not exceed the maximum available capacity. Constraint

(3.7) indicates non-negativity of the first stage decision variables.

The second stage objective function (3.8) minimizes the operational cost of different cen-

ters, transportation cost on the road network, and the cost of establishing emergency response

teams. The objective function (3.9) minimizes the risk exposure on the network with respect to
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the associated risk measure and quantity of shipments on each arc. Similar to the determinis-

tic model, network flow balance constraints are presented in equations (3.10) to (3.15). These

constraints ensure that the customers’ demand and return are satisfied and the hazmat product

and waste flows are addressed accordingly. Constraints (3.16) and (3.25) guarantee that the

shipments do not exceed the assigned capacities of the corresponding centers in the first stage.

Arc flow constraint (3.26) determines the cumulative amount of shipments on each arc in the

road network, which is important in risk and transportation cost calculations.

Constraint (3.27) defines the coverage of nodes in the network by emergency response

teams in a way that if the distance between an emergency response team and a node is less than a

specific distance, the emergency response team would be cover the center in case of an incident.

Constraint (3.28) states that an emergency response team can cover a node if it is established.

Constraints (3.29), (3.30) and (3.31) guarantee that φ percent of the network is covered by the

emergency response teams considering a node is covered if at least one emergency response

team covered the node.

Constraint (3.32) assures that if a cumulative shipment amount on an arc exceed a thresh-

old, at least one emergency response team should cover that arc. Constraints (3.33) and (3.34)

indicate that an arc is covered by an emergency response team if both nodes of the arc are cov-

ered by the same team. Constraint (3.35) refers to the binary and non-negativity restrictions on

the corresponding decision variables.

The above model shows the sequence of events in the recourse problem where first stage

decisions are made in the presence of demand and return uncertainties. After a realization of

these uncertain parameters, the recourse decisions such as shipment amounts and the routing

decision are made. First-stage decisions are, however, chosen by taking their future effects into

account. These future effects are measured by the value function or recourse objective function,

which computes the expected value of taking first stage decisions.

It is possible to combine all the cost objective functions in both stages and write them

as a single objective function with the assigned probabilities of each scenario, and combine

all the constraint into a single optimization model. Such representation is called deterministic
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equivalent program of the two-stage stochastic model. The deterministic equivalent model is

used to investigate the performance of the model.

3.2.1 Computational Results: A Case Study

The main concern of this chapter is to design an effective hazmat supply chain in the presence

of uncertainty. Two different sources of uncertainty are considered in this chapter: demand

quantities and return quantities. The demand and return amounts could be affected by unex-

pected events such as appearance of new competitors, new products, or change in customers’

use patterns. The proposed two-stage stochastic model determines the locations of the centers

and their capacities at the first stage decisions in realization of the recourse forward and reverse

network flows to meet the demand and return. In this section, the same Albany case study that

was presented in Chapter 2, is used to showcase the proposed model’s performance. Since the

parameter setting effects are investigated in Chapter 2, here we don’t focus on different param-

eter settings and instead we study the stochastic model performance under different scenarios.

The parameters are set to φ = 1, CT = 22.2, RET = 1 for all the computations in this chapter.

Total 7 different scenarios are considered for demand. It should be noted that the return is a

proportion of demand, consequently, it will have uncertainty too. The average scenario equals

to the nominal values in deterministic model. Based on the economical growth, three scenarios

are considered for cases with 10%, 20% and 30% lower values than the nominal demand and

three other scenarios are for cases with 10%, 20% and 30% growth of the nominal demand. It

is assumed that all the scenarios occur with equal probability.

Adding scenario index to the second stage formulation significantly increases the number

of decision variables and constraints, whereby, makes the stochastic model computationally

more difficult. Although, it is impossible to find a solution that is ideal under all scenarios,

decisions in the stochastic model are hedged against various circumstances. In order to evaluate

the two-stage stochastic model solutions, two values are employed from the literature (Birge

and Louveaux 2011): a) the expected value of perfect information (EVPI), and b) the value of

the stochastic solution (VSS).
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The EVPI measures the maximum amount a decision maker would be ready to pay in

return for complete information about the uncertain data. It is computed as the difference be-

tween the objective function of the deterministic problem (know as wait-and-see approach)

with the expected value of the stochastic solution (known as the here-and-now approach). In

cases where no further information about the future is available the VSS becomes more practi-

cally relevant. Table 3.1 shows the EVPI for Albany case study for two solutions on the Pareto

front: a) minimum cost and its associated risk, b) minimum risk and its associated cost. First,

we assume that we know which scenario will happen for sure and therefore, solve the deter-

ministic model using the corresponding demand and return quantities. The solutions of such

assumption is presented in table 3.1 for each scenario. Since in an stochastic environment we

will never know for sure which scenario will happen a simple way to plan the system is to

consider the mean of all the solutions we found for each scenario. If we use this mean solution

for the problem there will be a loss of profit due to presence of uncertainty. The EVPI measures

the amount that is worth to pay for the perfect information.

Table 3.1: Demonstrating EVPI for two solutions on the Pareto front by comparing stochastic

model solutions with the average performance of seven scenarios.
Scenarios

Mean
Stochastic

Solution
EVPI (%)

1 (-30%) 2 (-20%) 3 (-10%) 4 (nominal) 5 (+10%) 6 (+20%) 7 (+30%)

min cost 112616.90 131044.17 149471.56 167912.82 187240.93 207521.12 228950.77 169251.18 228915.42 26.06

risk 309.38 359.35 406.87 667.81 568.18 613.37 616.62 505.94 555.80 8.97

cost 132292.14 150468.49 167958.01 189179.48 210264.72 231471.09 252283.64 190559.65 252279.07 24.46

min risk 94.30 110.94 127.58 146.77 166.78 187.16 210.00 149.08 149.08 0.00

The results in Table 3.1 indicate that if the decision maker uses the mean solution of

scenarios instead of considering the uncertainty in the system, they’ll lose 26.06% of the total

profit in case of the minimum cost network design and 24.46% of the total profit in case of the

minimum risk network design. These values show the importance of considering uncertainty

of the system and solving the stochastic model to avoid huge costs and profit lost.

Due to computational difficulties of solving stochastic optimization models, a simpler ap-

proach can be replacing all random variables by their expected values. The associated problem

is known as the expected value (EV) problem. Thereby, the deterministic model is solved with
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mean values of demand or return scenarios. The solution obtained from the model is called

the expected value solution. Then, the expected result of using the EV solution is defined by

placing the deterministic first stage results into the stochastic model and obtaining the expected

value with respect to the scenarios. The solution is called the EEV measure. Then the VSS

can be measured by calculating the difference between EEV and two-stage stochastic model’s

solution (SS). Therefore, the VSS measures the goodness of the expected solution value when

the expected values are replaced by the random values for the input variables. On other words,

VSS measures the possible again from solving the stochastic model.

For the hazmat supply chain network design case study under 7 different scenarios of

demand and return uncertainties, the VSS values for minimization of cost and risk objective

functions are calculated. In order to do so, the deterministic model solution with the average

of all seven scenarios is solved. In the case where the aim is to find a solution with minimum

cost, the placements are: HPR = {1, 31}, HDC={61, 65, 78} and disposal center= {71}. For

scenarios 1, 2 and 3 where the demand expected to be -30%, -20% and -10% of the nominal

demand, respectively, the same placement of centers work. Demand quantities in scenario 4

are the average (nominal) values. For scenarios 5, 6, and 7 where the demand expected to be

+10%, +20% and +30% of the nominal demand, respectively, the deterministic solution does

not work. In these scenarios there is a need for extra centers to be opened to fulfil the demand.

For these cases, we consider a penalty to the objective function value for adding extra capacity.

For cost minimization case, VSS is as follow:

V SS = EEV − SS = 254811.98− 228915.42 = 25896.56 (3.36)

This value measures possible again from solving the stochastic model. In the case where

the aim is to find a solution with minimum risk, the deterministic model with average of all

scenarios opens extra centers to route shipments in a way that avoids highly populated areas.

This centers are not fully used up to their maximum capacities in this solution. But, for scenar-

ios 5,6, and 7 the same solution works since there are enough established centers to fulfill the
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demand. The placements for this case are : HPR = {1, 31, 81}, HDC={41, 61, 65, 88} and dis-

posal center= {60, 67}. This solution work for all the scenarios, therefore, there is no penalty

for any extra capacity. The EEV for minimum risk case has the same value as the stochastic

model, therefore, VSS is zero. The reason the VSS is zero for this case is that the first stage

solutions are similar for both EV and SS problems. It is argued that even though increasing the

number of centers will add to the computational runtime significantly, it can allow more room

for altering the first stage decisions and, therefore, make VSS a positive value.

For the sake of comparison the Pareto solutions obtain from deterministic model with

nominal demand and two-stage stochastic model in cases of demand and return uncertainties

are demonstrated in Figure 3.1.

Figure 3.1: Comparing Pareto fronts obtained from the deterministic model with nominal de-

mand and two-stage stochastic model with demand and return uncertainties and φ = 1, CT =

22.2, RET = 1.

The Pareto fronts in Figure 3.1 show how two-stage stochastic model finds solutions that

address all involved scenarios. Therefore, the objective function values are higher than the

deterministic model as it is expected.
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3.3 Robust Programming Approach

In deterministic programming it is always assumed that the input parameters are precisely

known for developed optimization models. Even in a case that data can happen to have un-

certainty, the model parameters might be approximated by their nominal values (e.g. if the real

distribution of the data is known or assumed to be known). In practice, input data uncertainty

is inevitable due to the their random nature, measurement errors, or scarcity of information.

Data uncertainty can influence the quality and feasibility of the model. If input data take values

different than the known or nominal ones, the deterministic optimal solution might no longer

be optimal and even it might not be feasible due to violation of some constraints. The robust

optimization approach was introduced to immunize the optimization models from the data un-

certainty. Robust optimization is used in applications such that the infeasibility of the solution

is not tolerable, the parameter uncertainty is not stochastic, or the distributional information

for the data is unavailable. The aim of the robust optimization approach is to accept subop-

timal solutions for the nominal values of the data in order to ensure that the solution remains

feasible and near optimal when data change. In the robust optimization framework, first a de-

terministic data set is defined within the uncertain space, then the best solution is obtained for

the corresponding optimization problem (called robust counterpart optimization problem) with

uncertain data. This solution is feasible for any realization of the data uncertainty in the given

set.

Since the quantities of demand and return are critical factors in making strategic decisions

in hazmat supply chain, depending solely on a stationary or probabilistic distribution can not

guarantee the efficiency of the system. Therefore, robust optimization framework is employed

to formulate the uncertainty related to demand and return. In this section, first set-induced

robust counterpart optimization techniques and related uncertainty sets are presented. Then, a

robust optimization model for hazmat closed-loop supply chain network design is introduced.
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3.3.1 Uncertainty set-induced robust optimization

In this subsection, the set-induced robust counterpart optimization techniques are presented.

The uncertain data are assumed to be varying in a given uncertainty set in the set-induced

robust optimization. The aim is to find the best solution among those that are feasible in case

of data perturbations in a given uncertainty set. Let matrix A be the coefficient matrix of the

constraints with i rows and j columns. Consider the linear optimization problem in (3.37), in

which the left hand side (LHS) constraints coefficients are subject to uncertainty:

min cx

s. t.
∑
j

ãijxj ≤ bi, ∀i,

xj ∈ X, ∀j,

(3.37)

where X indicates a bounded feasible space and ãij represents the true value of the parameters

which are subject to uncertainty. It is assumed that the uncertainty affecting each constraint is

independent of others. Consider a particular row i of the model constraints, and let Ji represent

the subset of variables in row i whose corresponding coefficients are subject to uncertainty. Let

âij expresses maximum deviation from the nominal values for the corresponding parameters.

The uncertainties for LHS parameters are defined as (3.38):

ãij = aij + ξij âij, ∀j ∈ Ji, (3.38)

where ξij are independent random variables called the aggregated scaled deviation of un-

certain parameters which are distributed in the range of [−1, 1]. Under the set-induced robust

optimization framework with a predefined uncertainty set U , it is aimed to find a robust solution

for the model in (3.37) where the feasibility of the constraints is maintained for any realization

of the random variables ξij . With definitions in (3.38), the original model in (3.37) can be
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remodeled as follow:

min cx

s. t.
∑
j

aijxj + max
ξ∈U
{
∑
j∈Ji

ξij âijxj} ≤ bi, ∀i,

xj ∈ X, ∀j.

(3.39)

3.3.2 Uncertainty Sets

The set-induced robust counterpart formulations in (3.39) depend on the selection of the un-

certainty set U. Several uncertainty sets are developed such as box, ellipsoidal, and polyhedral

uncertainty sets. The box uncertainty set is defined using the∞-norm of the uncertain data for

each constraint i:

U∞ = {ξ| ||ξ||∞ ≤ Θ} = {ξij| |ξij| ≤ Θi, ∀j ∈ Ji} (3.40)

where Θ is the adjustable non-negative parameter which controls the size of the uncertainty

set. If each data element ãij is modeled as a bounded and independent random variable taking

value in an interval [aij − âij, aij + âij], then the uncertainty can be represented in form of

ãij = aij + ξij âij,∀j ∈ Ji as it is presented in (3.38). This is known as the interval uncertainty

set which is a special case of box uncertainty set with Θ = 1 (i.e., U∞ = {ξij| |ξij| ≤ 1,∀j ∈

Ji}). To obtain a bounded uncertainty, the adjustable parameter is suggested to acquire a rang

as Θ ≤ 1 for the box uncertainty set.

Considering the box uncertainty set, the corresponding robust counterpart constraint in

model (3.39) is equivalent to (see Li et al. 2011 for proof):

∑
j

aijxj + [Θi{
∑
j∈Ji

âij|xj|}] ≤ bi, ∀i. (3.41)

Notice that the robust counterpart formulation is constructed constraint by constraint and

different parameter values can be applied for different constraints. Constraint (3.41) contains

absolute value term |xj|. If the variable is positive, the absolute value operator can be directly
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removed. Otherwise, it can be further equivalently transformed to the following constraints

because their corresponding feasible sets are identical:



∑
j aijxj + [Θi{

∑
j∈Ji âijuj}] ≤ bi, ∀i

−uj ≤ xj ≤ uj, ∀j,

uj ≥ 0, ∀j.

(3.42)

The robust formulation proposed by Soyster (1973) employed the same concept with Θi =

1 which is known as the most conservative approach and so-called “worst case scenario” robust

model for bounded uncertainty. Formulation (3.43) shows Soyster’s robust counterpart model:

min cx

s. t.
∑
j

aijxj +
∑
j∈Ji

âijuj ≤ bi, ∀i

− uj ≤ xj ≤ uj, ∀j,

xj ∈ X, uj ≥ 0, ∀j.

(3.43)

The solution of (3.43) remains feasible (i.e., ”robust”) for every possible realization of the

uncertain data ãij . To show that, let x∗ be the optimal solution of model (3.43). At optimality,

yj = |x∗j |, which reforms the robust counterpart constraint in (3.43) as:

∑
j

aijx
∗
j +

∑
j∈Ji

âij|x∗j | ≤ bi, ∀i (3.44)

With the above definitions, for every possible realization of the uncertain data ãij:

∑
j

ãijx
∗
j =

∑
j

aijx
∗
j +

∑
j∈Ji

ξij âijx
∗
j ≤

∑
j

aijx
∗
j +

∑
j∈Ji

âij|x∗j | ≤ bi, ∀i (3.45)

For every i-th constraint, the term
∑

j∈Ji âij|xj| gives the necessary protection of the con-

straint by maintaining a gap between
∑

j aijx
∗
j and bi. Therefore, this approach provides the

highest protection of constraint violations. The robust formulation proposed by Soyster (1973)

is too conservative meaning that it assumes all the uncertain data will meet their worst cases
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which is unlikely to happen in practice. By using such formulation too much of optimality is

given up compare to the nominal problem in order to ensure robustness (i.e. the robust solution

has worse objective function than the nominal problem).

Ben-Tal and Nemirovski (2000) proposed a robust optimization model with ellipsoidal un-

certainty set which is less conservative than the Soyster’s approach. The ellipsoidal uncertainty

set is defined using the 2-norm of the uncertain data for each constraint i:

U2 = {ξ| ||ξ||2 ≤ Ω} = {ξij|
√∑

j∈Ji

ξ2
ij ≤ Ωi}, (3.46)

where Ω is the adjustable parameter controlling the bounds of the uncertainty set. In order to

have a bounded uncertainty, the adjustable parameter is suggested to acquire a rang as Ω ≤√
|Ji|, where |Ji| is the cardinality of the set Ji. Considering the ellipsoidal uncertainty set ,

the corresponding robust counterpart constraint in model (3.39) is equivalent to:

∑
j

aijxj +

[
Ωi

√∑
j∈Ji â

2
ijx

2
j

]
≤ bi, ∀i. (3.47)

The robust formulation proposed by Ben-Tal and Nemirovski (2000), employed the ellip-

soidal uncertainty set to deal with the level of conservatism:

min cx

s. t.
∑
j

aijxj +
∑
j∈Ji

âijuij + Ωi

√∑
j∈Ji

â2
ijv

2
ij ≤ bi, ∀i

− uij ≤ xj − vij ≤ uij, ∀i, j,

xj ∈ X, uij ≥ 0, ∀i, j.

(3.48)

They showed that the probability that the i-th constraint is violated is at most exp(Ω2
i /2).

Every feasible solution of this model is a feasible solution for Soyster’s model. The ellipsoidal

uncertainty set creates a nonlinear model which is computationally more complex.
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Polyhedral uncertainty set is defined using 1-norm of the uncertain data vector for each

constraint i:

U1 = {ξ| ||ξ||1 ≤ Γ} = {ξij|
∑
j∈Ji

|ξij| ≤ Γi}, (3.49)

where Γ is the adjustable parameter controlling the size of the uncertain set. The suggested

range for having a bounded uncertainty space is defined as Γ ≤ |Ji|. Considering the polyhedral

uncertainty set, the corresponding robust counterpart constraint in model (3.39) is equivalent

to: 
∑

j aijxj + Γipi ≤ bi,

pi ≥ âij|xj|, ∀j ∈ Ji.
(3.50)

By replacing the absolute value term |xj| with auxiliary variable uj an equivalent robust

formulation for (3.50) can be obtained by:



∑
j aijxj + Γipi ≤ bi,

pi ≥ âijuj, ∀j ∈ Ji,

−uj ≤ xj ≤ uj, ∀j,

uj ≥ 0,∀j

(3.51)

An upper bound is introduced for each of the above mentioned uncertainty sets to achieve

a bounded uncertainty space. When the value of the adjustable parameters is equal to the upper

bound, the bounded uncertain space is entirely covered by the corresponding uncertainty set.

Therefore, further increase of the parameter’s value could lead to a more conservative solution

and will not improve the solution robustness (Li et al. 2011). Figure 3.2 shows the box, ellip-

soidal, and polyhedral uncertainty sets for a single constraint with two uncertain coefficients.

Bertsimas and Sim (2004) introduced a robust optimization framework that employs the

polyhedral uncertainty set to flexibly adjust the level of conservatism of the robust solutions in

terms of probabilistic bounds of constraint violations. They defined a parameter Γi (known as

the budget of uncertainty) as the number of coefficients in constraint i that might acquire values

different than their nominal ones. The proposed approach ensures the feasibility of the solution
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Figure 3.2: Uncertainty sets: a) box uncertainty set, b) ellipsoidal uncertainty set, c) polyhedral
uncertainty set.

if less than Γi uncertain coefficients change. If more than Γi uncertain parameters change the

solution will stay feasible with high probability. In other words, they provided deterministic

and probabilistic guarantees against constraints violation.

For every i-th constraint of (3.37), the parameter Γi is defined to take values in the interval

[0, |Ji|]. The aim is to protect the robust solution against all cases in which up to Γi of the

coefficients are allowed to change. Let Γi be an integer, then the robust counterpart model in

(3.39) can be reformulated as (3.52), where only Γi subset of coefficients in Ji are subject to

change:

min cx

s. t.
∑
j

aijxj + max
{Si|Si⊆Ji,|Si|=Γi}

{
∑
j∈Si

âijuj}

− uj ≤ xj ≤ uj, ∀j,

uj ≥ 0, ∀j.

(3.52)

For constraint i, the βi(x,Γi) = max
{Si|Si⊆Ji,|Si|=Γi}

{
∑

j∈Si âijuj} is called the protection

function that adjust the robustness against the level of conservatism. If Γi = 0,→ βi(x,Γi) =

0, the constraints are equivalent to that of the nominal problem meaning that no changes happen

in the coefficients. In this case, there is no protection against uncertainty. On the contrary, if

Γi = |Ji|, the problem is equivalent to the Soyster’s formulation where all the coefficients

are subject to change. In this case, the constraint i is fully protected against the worst-case

realization of uncertain coefficients. Therefore, varying Γi ∈ [0, |Ji|] provides the flexibility

for the decision maker to adjust the robustness (i.e., the level of protection against the constraint
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violation) against the level of conservatism (i.e., cost of the solution). With Γi ∈ [0, |Ji|] and

polyhedral uncertainty set, for each constraint i, the Ji subset of variables whose corresponding

coefficients are subject to uncertainty is presented as: Ji = {ãij|ãij = aij + ξij âij,∀j,∀ξ ∈ Ξ},

where Ξ = {ξij|
∑

j |ξij| ≤ Γi, ξij ≤ 1}.

In order to linearize the model (3.52), first the inner maximization is transfered to dual and

then the dual problem is incorporated into the original one. For a given vector x∗, the value of

the protection function in (3.52) is equal to the objective function for the following problem:

βi(x
∗,Γi) = max

∑
j∈Ji

ξij âijx
∗
j

s. t.
∑
j∈Ji

ξij ≤ Γi, ∀i

0 ≤ ξij ≤ 1, ∀j ∈ Ji.

(3.53)

Now, the inner maximization problem is transfered to its conic dual by introducing dual

variables λi and µij as in (3.54):

min Γiλi +
∑
j∈Ji

µij,

s. t. λi + µij ≥ âijx
∗
j , ∀i, ∀j ∈ Ji,

λi ≥ 0, µij ≥ 0, ∀i,∀j ∈ Ji.

(3.54)

Then, applying the dual (3.54) to the model (3.52) the following robust counterpart for-

mulation is achieved, which is the proposed robust model by Bertsimas and Sim (2004):

min cx

s. t.
∑
j

aijxj + λiΓi +
∑
j∈Ji

µij ≤ bi, ∀i,

λi + µij ≥ âijuj, ∀i, j ∈ Ji,

− uj ≤ xj ≤ uj, ∀j,

uj ≥ 0, λi ≥ 0, µij ≥ 0, ∀i, j.

(3.55)
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3.3.3 Robust Optimization Model

In this part, a robust optimization framework for the hazmat closed-loop supply chain network

design is introduced with uncertainties in demand and return using polyhedral uncertainty sets.

Since return quantities are proportions of demand quantities the formulations are conducted

accordingly. The robust optimization structures are adapted from Bertsimas and Sim (2004)

and Keyvanshokooh et al. (2016).

In the robust counterpart formulation, the demand uncertainty is allowed to deviate from

a nominal scenario toward a worst-case realization within a polyhedral uncertainty set with

budget of uncertainty constraints. Please note that the nominal scenario is equivalent to de-

terministic optimization framework for the problem. To develop the uncertainty set, first the

positive and negative deviation percentages from nominal scenario for demand are defined.

The positive deviation is in case that the true value of the parameter is greater than the nomi-

nal value. The negative deviation is in case the true value of the parameter is smaller than the

nominal value. The definition for the demand is presented as (3.56).

ξd+
l =

d̃l − dl
d̂+
l

, ξd−ls =
dl − d̃l
d̂−l

, ∀l ∈ L. (3.56)

Using the (3.56) equation, the uncertainty set of demand is presented as follow:

JD = {d̃l|d̃l = dl + ξd+
l × d̂

+
l − ξ

d−
l × d̂

−
l , ∀l ∈ L,∀ξd+

l , ξd−l ∈ Ξd}, (3.57)

where:

Ξd = {ξd+
l , ξd−l |0 ≤ ξd+

l ≤ 1, 0 ≤ ξd−l ≤ 1,
∑
l∈L

(ξd+
l + ξd−l ) ≤ Γd}. (3.58)

Using the budget of uncertainty, it is possible to limit the number of cases in which the

demand or return may deviate from its nominal values. In the proposed mathematical determin-

istic model, allowing for such uncertainty might cause violations of constraints (2.3) and (2.4)

which relate to fully satisfying demand and return. Therefore, these constraints are relaxed and

their violations are considered in the objective function as a penalty. Thereby, the aim is to
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minimize the worst-case costs associated with the violations of constraints (2.3) and (2.4). The

corresponding penalty is a parameter which can be adjusted by the decision maker based on the

importance of satisfying all demands and returns in a competitive or free marketplaces. The

following parameters are added to the deterministic framework parameters set:

New Robust Parameters

PED Penalty cost per unit of non-satisfied demands of customers

PER Penalty cost per unit of exceed amount of flow over returns collected from customers

SUD Surplus cost per unit of exceed amount of flow over demands received by customers

SCR Scrap cost per unit of uncollected returns of customers

In order to incorporate the robust counterpart constraints (3.57) in the optimization model,

the objective functions (2.1) and (2.2) are kept as well as constraints (2.5)-(2.33), but constraints

(2.3) and (2.4) are removed. Instead of two last mentioned constraints, an equation is developed

which calculates the violation of random demand and return satisfaction based on the penalty,

surplus and scrap costs defined:

WCV =
∑
l∈L

[max[(d̃l −
∑
j∈J

∑
p∈Pjl

Yjlp)× PED, (
∑
j∈J

∑
p∈Pjl

Yjlp − d̃l)× SUD]]

+
∑
l∈L

[max[(rld̃l −
∑
j∈J

∑
p∈Pjl

Zljp)× SCR, (
∑
j∈J

∑
p∈Pjl

Zljp − rld̃l)× PER]]

(3.59)

Equation (3.59) can be added to the cost objective function of the deterministic optimization

model to adjust the demand and return decisions. Since the equation is nonlinear, for the sake

of computation the linear equivalent model can be express as follows:
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min WCV =
∑
l∈L

(ZDl + ZRl) (3.60)

s. t. (d̃l −
∑
j∈J

∑
p∈Pjl

Yjlp)× PED ≤ R1l, ∀d̃l ∈ JD,∀l ∈ L, (3.61)

(
∑
j∈J

∑
p∈Pjl

Yjlp − d̃l)× SUD ≤ R1l ∀d̃l ∈ JD,∀l ∈ L, (3.62)

(rld̃l −
∑
j∈J

∑
p∈Pjl

Zljp)× SCR ≤ R2l, ∀d̃l ∈ JD,∀l ∈ L, (3.63)

(
∑
j∈J

∑
p∈Pjl

Zljp − rld̃l)× PER ≤ R2l, ∀d̃l ∈ JD,∀l ∈ L, (3.64)

ZDl, ZRl ≥ 0,∀l ∈ L. (3.65)

The constraints (3.61)-(3.65) should be satisfied for all the realizations of the uncertain

demands and returns within the defined uncertainty sets. Therefore, the robust counterpart of

each constraint is formulated. Starting with the constrain (3.61), using the definitions in (3.57),

the equivalent robust counterpart constraint is as follow:

max[(d̃l −
∑
j∈J

∑
p∈Pjl

Yjlp)× PED] ≤ ZDl, ∀l ∈ L, (3.66)

which can be reformulated as (3.67) giving the deviations:

(dl −
∑
j∈J

∑
p∈Pjl

Yjlp)× PED + max
ξd+l ,ξd−l ∈Ξd

{(ξd+
l × d̂

+
l − ξ

d−
l × d̂

−
l )× PED} ≤ ZDl,∀l ∈ L.

(3.67)

In robust counterpart constraint (3.67) we optimize over the positive and negative deviation

percentages from nominal scenario for uncertain demands. In order to linearize the constraint

(3.67), first the inner maximization (protection function) is formulated for each l ∈ L as the

following model with using the definitions of budget of uncertainty:
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max ξd+
l × d̂

+
l − ξ

d−
l × d̂

−
l

s. t. ξd+
l ≤ 1,

ξd−l ≤ 1,

(ξd+
l + ξd−l ) ≤ Γdl ,

ξd−l , ξd+
l ≥ 0.

(3.68)

Then, the above model is transformed to its dual as follow:

min Γdl λ
d
l + µ1

l + µ2
l

s. t. λdl + µ1
l ≥ d̂+

l ,

λdl + µ2
l ≥ −d̂−l ,

λdl , µ
1
l , µ

2
l ≥ 0.

(3.69)

The second constraint is the above model is redundant. Therefore, the dual variable µ2
l is

removed from the dual formulation. Finlay, the dual is incorporated in the original constraint

(3.67) and the linear robust counterpart constraint set is obtained as follow:

PED × [(dl −
∑
j∈J

∑
p∈Pjl

Yjlp) + Γdl λ
1
l + µ1

l ] ≤ ZDl, ∀l ∈ L,

λ1
l + µ1

l ≥ d̂+
l , ∀l ∈ L,

λ1
l , µ

1
l ≥ 0, ∀l ∈ L.

(3.70)

The same process is applied on constraint (3.62) to find its robust counterpart equivalence.

The corresponding linear robust counterpart constraint for (3.62) is obtained as follows:

SUD × [(
∑
j∈J

∑
p∈Pjl

Yjlp − dl) + Γdl λ
2
l + µ2

l ] ≤ ZDl, ∀l ∈ L,

λ2
l + µ2

l ≥ d̂−l , ∀l ∈ L,

λ2
l , µ

2
l ≥ 0, ∀l ∈ L.

(3.71)
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Since return is a proportion of demand for each costumer, constrain (3.63) can be refor-

mulated as (3.72) giving the deviations:

(rldl −
∑
j∈J

∑
p∈Plj

Zljp)× SCR

+ max
ξd+l ,ξd−l ∈Ξd

{(ξd+
l × rld̂

+
l − ξ

d−
l × rld̂

−
l )× SCR} ≤ ZRl, ∀l ∈ L.

(3.72)

where rl is a constant and can be written out of the max equation. Therefore, we have the

same equation as in (3.68), which has the dual model as in (3.69). Using this model, the robust

counterpart equivalence of constraint (3.63) is as follow:

SCR× [(rldl −
∑
j∈J

∑
p∈Plj

Zljp) + rlΓ
d
l λ

1
l + rlµ

1
l ] ≤ ZRl, ∀l ∈ L,

λ1
l + µ1

l ≥ d̂+
l , ∀l ∈ L,

λ1
l , µ

1
l ≥ 0, ∀l ∈ L.

(3.73)

In (3.73) the last two constraints are redundant since we had them in the demand robust

counterpart before. The same process is applied for constraint (3.64) and the robust counterpart

is presented as follow:

PER× [(
∑
j∈J

∑
p∈Plj

Zljp − rldl) + rlΓ
d
l λ

2
l + rlµ

2
l ] ≤ ZRl, ∀l ∈ L, (3.74)

The equation (3.60) is added to the cost objective function of the deterministic model as

the associated cost of demand and return violations. Furthermore, the total number of 6 × |L|

constraints are added to the deterministic model as the corresponding robust constraints of

(3.61), (3.62), (3.63) and (3.64). In these constraints, considering all the uncertainty sources

at their worst case scenario would lead to an over conservative solution. To avoid this case,

the parameters Γdl is adjustable to conform the robustness against the level of conservatism of

the solution. This parameter restricts the number of times that demand and return quantities

deviate from the nominal scenario in their polyhedral uncertainty sets. Higher values of these

parameters increase the level of robustness as the expense of worse objective function value.
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3.3.4 Computational Results: A Case Study

The Albany case study is used with the same parameter as the nominal values to assess the per-

formance of proposed framework. Then, uncertainty sets for demand and return are developed.

Knowing the nominal demand and return as the deterministic model parameters, maximum

positive and negative deviations from the nominal case are determined. Various sensitivity

analysis are applied on the most important parameters such as the level of deviation and the

budget of uncertainty in order to verify the performance of the proposed model.

The effects of uncertainty on demand and return are studied simultaneously since return

is a proportion of demand. First the level of deviation (LD) of uncertain parameter is defined

with respect to its nominal value and the value is set to LD = {10%, 20%, 30%}. For example,

LD = 10% means that the true value for the uncertain demand can be realized within an

interval where the floor is 10% less than the nominal demand and the ceiling is 10% more

than the nominal demand. Therefore, the LD parameter is used to change the radius of the

polyhedral uncertainty set for demand and return.

Furthermore, the parameters Γdl is varied from 1 to its maximum value |L| by 1 in order

to investigate its effect on the model performance. It should be noted that Γdl = 0 refers to the

nominal case which is equivalent to the deterministic optimization solution. Also, Γdl = |L|

refers to the worst case scenario where all the demand and return quantities are subject to the

uncertainty.

Since the influence of model parameters such as φ,CT andRET is investigated in Chapter

2, the focus is not to analyze such parameter changes in this chapter. The same trend is expected

in the performance of the robust model. Thus, the concentration here is to investigate robust

programming parameters. For the rest of the computational results the parameters are set as

φ = 1, CT = 22.2 and RET = 1. Considering LD = 10%, different Pareto solutions are

compared in a case where the demand and return are subject to uncertainty. Figure 3.3 presents

the Pareto fronts achieved from the deterministic model with
∑

l Γ
d
l = 0 as the nominal front,

the Pareto front obtained by setting
∑

l Γ
d
l = 5 as the average case and the Pareto front for the

worst case with
∑

l Γ
d
l = |L| = 10.
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Figure 3.3: Comparing Pareto solutions for various budget of uncertainty values:
∑

l Γ
d
l =

{0, 5, 10}.

Results in Figure 3.3 demonstrate the fact that the robust model solutions have higher

objective functions since robust formulation protects the solutions against infeasibility caused

by perturbations of the uncertain parameters. The worst case scenario with
∑

l Γ
d
l = |L| has

the highest objective function values since it is a conservative approach which gives up too

much optimality for the solution’s robustness. The effect of level of uncertainty for various

amounts of budget of uncertainty on the cost and risk objective functions are also analyzed.

Two cases are considered where the cost objective function is minimized and the case where

the risk objective function is minimized. In other words only the upper left and lower right

points of the associated Pareto fronts are considered in this comparison. For three levels of

uncertainty LD = {10%, 20%, 30%}, Figure 3.4 shows how objective functions changes with

increase of budget of uncertainty
∑

l Γ
d
l .
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Figure 3.4: Comparing risk and cost objective function changes for various UL values in case

of demand and return uncertainties.

The values in Figure 3.4 are calculated by using the nominal case as the base solution

and compare the results of robust solutions by increasing the budget of uncertainty. Results

indicate that both risk and cost objective function values are increased by enlarging of the

budget of uncertainty for demand. As expected, the risk and cost objective values increase

with the growth in level of uncertainty since the model guarantees robust solutions in cases of

different data perturbations. Also, increases in the number of customers with uncertain demand

and return changes the magnitude of the objective functions. Since these values are highly rely

on the demand and return satisfaction levels they are subject to increase.

As it is mentioned before, robust models result in higher objective values in return of keep-

ing the feasibility of the model in case of data uncertainty. Therefore, knowing the probability

of constraint violation is critical. It is also possible to calculate the bounds on the probability of

violation of each constraint using following equation presented by Bertsimas and Sim (2004):

pr(
∑
j

aijx
∗
j < bi) ≤ 1− F (

(Γi − 1)√
|Ji|

) (3.75)

where F refers to the standard normal cumulative distribution function. Using equation (3.75) a

bound on the probability of constraint violation is computed under the assumption of symmetric
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distributions for independent demand quantities. The constraint violation bounds for each case

are presented in Figure 3.5 as a function of Γd.

Figure 3.5: Robust model constraint violation probabilities considering various budgets of un-
certainty.

The result in Figure 3.5 shows that when the lowest objective function values are obtained

(deterministic case) the solutions are not robust with respect to volatility of uncertain param-

eters. By increasing the budget of uncertainty from 0 to 5 the violation probability decreases

substantially. For the case with higher budgets of uncertainty the probability of robust model

constraint violation is close to zero. This case is known as the most conservative robust opti-

mization framework where the solution is feasible even the worst case realization of the random

parameters happens.

We are also interested in analyzing the corresponding decision variables for demand satis-

faction such as the quantity of shipments and routings. In Figure 3.6 the Albany supply chain

network solutions achieved by deterministic model are compared with robust programming so-

lutions. For the robust network, the demand and return have uncertainties with UL = 10% and

Γd = 10.

70



Figure 3.6: Comparing robust model networks with deterministic networks for two solutions

of maximum curvature and minimum risk. Green nodes indicate production/recovery facilities,

blue nodes indicate distribution/collection centers, purple nodes indicate disposal centers, or-

ange nodes indicate customer locations, and red pentagrams indicate the emergency response

teams.

Demand and return uncertainties result in increases in the capacities of the centers and

shipping larger volumes of hazmat on road segments. Results in Figure 3.6 indicate that for
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maximum curvature solution the location of hybrid distribution/collection centers and the rout-

ings are different. The robust model also adds routes and increases the shipment quantities on

the road segments. In case of the risk minimization, the robust model provides a network de-

sign similar to the deterministic model which avoids highly populated areas while guarantying

feasibility of the design in the worst case realization of demand and return quantities.

3.4 Conclusion

In this chapter, the hazmat supply chain network design is studied under uncertainty of demand

and return parameters. In practice, these parameters are not known for sure and therefore,

their uncertainty should be taken into account in designing the associated network. First, a

case is investigated where the distributions of uncertain parameters are known. A two-stage

stochastic programming model is developed to address such uncertainty. In the first stage the

decisions corresponding to the facilities location and capacity as well as emergency response

teams placing are made. In the second stage, decisions regarding the shipment amounts and

routing are made based on the realization of the uncertain parameters. There might be a case in

practice where the parameter uncertainty is not stochastic, or the distributional information for

the data is unavailable. A robust optimization approach is presented for such problem which

aims to accept a suboptimal solutions for the nominal values of the data in order to ensure

that the solution remains feasible and near optimal when data changes. The computational

results of both models are presented based on the Albany case study, which provide an effective

framework to design hazmat supply chain network under uncertainty.

Besides demand and return, the risk parameter in the hazmat shipment can also be sub-

ject to uncertainty. The associated risk on the road network depends on various factors such

as the material type, nature of the area around the release, weather conditions, and the re-

leased quantity. These factors are subject to uncertainty. on the other hand, hazmat accidents

have catastrophic consequences. With a heavy-tailed distribution of losses it can expected to

observe future costs far exceeding anything seen previously. Therefore, addressing such risk

is important in the hazmat transportation. The next chapter is devoted to study and present

methodologies that can help promoting risk equity on hazmat road network.
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Chapter 4

A Generalized Risk-averse Stochastic Optimization Framework for Risk Parity with Coherent
Risk Functions with Application in Hazardous Material Routing

4.1 Introduction and Background

The standard risk-reward model for decision-making (see, for example, Krokhmal et al. 2011,

for a review) aims to deliver decisions that are explicitly optimal considering combination of

risk and reward. At the same time, especially in financial portfolio management literature, it

has been observed that in some conditions, an indirect approach based on improving diversifi-

cation may yield better results. In this case, the decision maker is concerned with selecting a

decision without direct regard to an objective function, and instead distributes her/his resources

to achieve maximum diversity, consequently, avoiding excessive losses. These approaches are

not mutually exclusive, as risk-reward objective tends to indirectly promote diversification and

vice versa.

Intuitively, decisions made with explicit goal of maximum diversity may be less depen-

dent on the underlying stochastic model. Indeed, even if the stochastic model turns out to be

inappropriate and the future realization is observed to be very different from the considered

scenarios, a diverse decision vector may still be adequate and not overexposed to any specific

source of risk. On the other hand, risk-reward optimization may suffer from over-fitting to a

specific stochastic model. This issue can be particularly important in distributions that exhibit

catastrophic behavior (Cooke and Nieboer 2011). In a heavy-tailed or fat-tailed distribution of

loss, one can expect to observe future costs far exceeding anything seen previously, which can

be difficult to account for in a risk-reward framework.
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The concept of Risk Parity (RP) for a financial portfolio was proposed by Qian (2005).

Here the goal is to create a portfolio of financial assets, such that each equally contributes to

the total portfolio variance. While in finance, Risk Parity condition has a very straightforward

interpretation for engineering or operations research applications it is possible to use a num-

ber of other possible interpretation. Risk Parity can be used for improving robustness of the

solution, i.e., protecting against overfitting to a specific stochastic model. Alternatively, Risk

Parity condition can be interpreted as enforcing fairness of the decision. Indeed, in this case,

a decision vector can be considered where each member is weighted proportionally to its risk

contribution, hence allowing us to distribute some resource while taking into account risk ex-

posure. Finally, Risk Parity portfolio can be imagined as a way to balance between a number

of candidate solutions. For example, if candidate solutions represent paths in a network, it is

possible to enforce Risk Parity over these paths in order to ensure that no single part of the

network is overexposed.

4.1.1 Risk Parity and Equal Risk Contribution

Maillard et al. (2010) provided an introduction to analytics of Risk Parity, referred to as Equal

Risk Contribution (ERC) in financial portfolio optimization, as well as established a number

of important properties. The authors developed and studied theoretical properties of an opti-

mization model for variance-based ERC. The RP and ERC portfolios were studied from an-

alytical and numerical perspectives in various articles and their performance compared to the

existing methods such as Equally Weighted, minimum variance and mean variance portfolios

(Stefanovits 2010, Chaves et al. 2011, Fisher et al. 2012, Choueifaty et al. 2013, Lohre et al.

2014, Roncalli and Weisang 2016), showing promising results in different case studies.

A number of algorithms have been developed to generate variance-based ERC portfolios

and find asset weights in the portfolios such as Newton’s Method (Chaves et al. 2012), cyclical

coordinate descent algorithm (Griveau-Billion et al. 2013) and second-order conic program-

ming (SOCP) model (Mausser and Romanko 2014).

Cesarone and Tardella (2016) introduced a closely related concept of Equal Risk Bounding

(ERB), in which only a subset of assets is included in the final portfolio. They developed
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a non-convex Quadratic Programming framework for ERB and studied its properties. Their

results showed that if short selling is allowed, ERB coincides with RP solution on a subset

of assets with the lowest variance. Feng and Palomar (2016) introduced an iterative solving

procedure based on successive convex approximation for selecting a subset of assets and finding

RP portfolio.

Some attempts were made to develop generalized RP and risk budgeting frameworks for

portfolio construction (Haugh et al. 2015, Feng and Palomar 2015). Reviews of investment the-

ory and problems, RP, and risk budgeting can be found in (Bruder and Roncalli 2012, Roncalli

2013, Kolm et al. 2014).

In addition to variance, other risk measures such as Value-at-Risk (VaR) and Conditional-

Value-at-Risk (CVaR) were employed in RP and ERC portfolio generation. Cherny and Orlov

(2011) proved that linear risk contribution exists and is unique for the Weighted VaR class, as a

coherent risk measure. Boudt et al. (2012) tested for the equality of the Sharpe ratios between

the minimum CVaR (concentration) and minimum standard deviation portfolios. Cesarone

and Colucci (2017) studied the performance of minimum CVaR and RP portfolios considering

different datasets with equities, bonds and mixed assets.

The existing studies mostly considered variance-based RP for financial portfolio manage-

ment, and a number of promising results have been observed in a variety of case studies. A few

studies discussed the idea of generalized RP approaches, especially to CVaR and VaR measures.

However, such approaches have not received a significant attention in the operations research

community. The current study differs from the existing studies in that it attempts to establish

a comprehensive analysis of the ways to define generalized RP model based on the optimiza-

tion framework. This then allows us easily develop the corresponding solution procedures and

embed this concept into larger optimization-based decision making models.

4.1.2 Risk Measures Classification

A thorough review of risk measure theory can be found in Krokhmal et al. (2011). Here some

major definitions are presented for the sake of completeness. Two of the most widely used in

practice risk measures are Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR). VaR,
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defined as the quantile of the loss distribution at the appropriate confidence level, is often used

in applications (see, for example, JP Morgan 1994, Jorion 1997, Duffie and Pan 1997, and

references therein) and can also be studied from the perspective of chance constraints (Charnes

et al. 1958, Prékopa 1995, Birge and Louveaux 1997, Shapiro et al. 2014). At the same time, it

possesses certain undesired properties, such as non-convexity and discontinuity with respect to

confidence level, and is often characterized as not being a proper modeling approach (Artzner

1997, Artzner et al. 1999). CVaR was introduced in Rockafellar and Uryasev (2000, 2002) as a

way to circumvent these issues. It is defined as the average loss exceeding VaR and is a de-facto

standard approach in many application areas.

The concept of coherent measures of risk was introduces by Artzner (1997) (see also,

Artzner et al. 1999). The aim was to define a class of risk functions that can be viewed as

proper measures of risk. For the sake of completeness, the definitions associated with concepts

of coherency, as discussed in Krokhmal et al. (2011), are presented as we will rely on them

later on.

Convex Risk Measures. A lower semicontinuous function ρ : X 7→ R̄ = R ∪ {+∞},

where X refers to the space of random losses is said to be a convex measure of risk if it satisfies

the following axioms:

(A1) Monotonicity: ρ(X) ≤ ρ(Y ) for all X ≤ Y ;

(A2) Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ) ρ(Y ), λ ∈ [0, 1];

(A3) Translation invariance: ρ(X + a) = ρ(X) + a, a ∈ R.

Coherent Risk Measure. Function ρ is called a coherent risk measure of risk if it satisfies

axioms (A1) – (A3), and additionally:

(A4) Positive homogeneity: ρ(λX) = λρ(X), λ > 0.

Pflug (2000) proved that CVaR is a coherent risk measure. On the other hand, VaR is not,

since it violates (A2), which explains methodological advantages of CVaR-based models. Note

that there are other frameworks aimed at designing an axiomatic approach to defining practical

measures of risk (see Krokhmal et al. 2011, for more examples, such as deviation measures,

spectral measures, etc.).
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A generalization of Risk Parity approach can be achieved by selecting a coherent mea-

sure of risk in place of variance and then exploring applicability of this framework to other

application domains. In this chapter, a discussion is presented on the ways to facilitate this

generalization. Mathematical foundations for relevant definitions are established, some prop-

erties are explored, such as conditions for existence of the generalized Risk Parity solutions,

and the types of decision making models that would be well-suited for such a framework are

discussed. Throughout the chapter, we specifically focus on basing the framework as a solution

to an optimization problem, hence allowing for natural expansion into more complex mod-

els. Building on results established in both finance and optimization literature, we attempt to

present a unified framework stemming from both directions of research.

The rest of this chapter is organized as follows. The generalized approach to Risk Parity

and CVaR-based mathematical formulation are presented in Sections 4.2. The diversification-

reward stochastic optimization model and the development of the solution procedure driven

from the model properties is outlined in Section 4.3. Application of our proposed methodology

are presented on three realistic case studies in Section 4.4. Concluding remarks and areas for

future research directions are presented in Section 4.5.

4.2 Stochastic Optimization Models Based on Risk Parity

4.2.1 Generalized Risk Parity

Let x be a decision vector from Rn. Suppose that outcome X that in depends on both this

decision and realization of uncertainty as defined by a random event ω ∈ Ω. In other words, X

can be defined as a random variable representing loss (or cost) and X = X(x, ω). The problem

of risk-averse decision making is then to design a comprehensive approach for establishing

decision preferences, i.e., a systematic way to decide between random losses.

Following risk-reward framework a function ρ : X 7→ R can be considered, which will be

referred to as risk measure. Here, X denotes the space of random losses, for example, L or L2.

Function ρ will be assumed to be a coherent measure of risk. Further, it will be assumed that

the loss function X is positive homogeneous and convex. In many applications, X is linear.
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The RP framework considered in this chapter can be viewed as an idea alternative to ex-

plicit minimization of the measure of risk ρ. Instead, the decision-maker is aiming at achieving

“equal risk contribution” from all of the sources of uncertainty, hence ensuring maximum di-

versity of the decisions. It was initially proposed for financial portfolio management problem,

designing a portfolio such that each asset has the same contribution to the total volatility (vari-

ance). Next, we formally define the approach, following Maillard et al. (2010), at the same

time illustrating how it can be used in non-financial settings.

The goal of the decision-maker in our model is to ensure that each component of the

decision vector x ∈ Rn has the same contribution to the total risk, as measured by function ρ.

It is then natural to make the following assumptions:

Assumption 1. Decisions xi are continuous.

Assumption 2. Decisions xi represent similar quantities, i.e., are of the same scale and are

measured in the same units.

Note that it is, of cause, not necessary to enforce parity for all decisions at the same time.

The discussion below can be trivially amended to allow for excluding some of the decisions.

Assuming sufficient differentiability of functions ρ and X , Marginal Risk Contribution

(MRC) of each asset can be defined as MRCi = ∂ρ(X(x,ω))
∂xi

and Total Risk Contribution as

TRCi = xiMRCi = xi
∂ρ(X(x,ω))

∂xi
. The intuition behind these definitions follows from the

well-known result below.

Theorem 1 (Euler’s Homogeneous Function Theorem). If f : Rn 7→ R is continuously differ-

entiable homogeneous function of degree τ , then

f(x) =
1

τ

n∑
i=1

xi
∂f

∂xi
. (4.1)

Consequently, coherency of ρ and positive homogeneity of X imply that ρ(X(x, ω)) =∑
i TRCi. This then leads to RP solution, which satisfies condition TRCi = TRCj for all
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i 6= j, or

xi
∂ρ(X(x, ω))

∂xi
= xj

∂ρ(X(x, ω))

∂xj
, for all i, j. (4.2)

The existence and uniqueness of RP solution for a financial portfolio case with variance as the

measure of risk is shown, for example, in Maillard et al. (2010).

In addition to the definition above, an equivalent representation for the variance-based

RP solution has been presented in Maillard et al. (2010). The authors propose to consider the

following nonlinear optimization problem.

min ρ(X(y, ω)) (4.3a)

s. t.
n∑
i=1

ln yi ≥ c (4.3b)

y ≥ 0, (4.3c)

where c is an arbitrary constant. The result in Maillard et al. (2010) showing that the normalized

solution for this optimization model, i.e., x∗i =
y∗i∑n
i=1 y

∗
i
, satisfies the Risk Parity condition for

variance-based model, is summarized below.

Theorem 2 (Maillard et al. (2010)). If ρ(X(y, ω)) =
∑

ij σijyiyj , i.e., the measure of risk

represents variance of a financial portfolio, then the unique optimal solution y∗ to problem

(4.3) exists, and normalized solution x∗i =
y∗i∑n
i=1 y

∗
i

satisfies Risk Parity (RP) condition for

financial portfolio selection in (4.2).

While this approach is natural, the definitions above directly rely on differentiability of

the risk measure and loss function. While this may be a reasonable assumption if continu-

ous stochastic model is considered, practical engineering applications usually involve discrete

scenario-based models. In this case, most popular approaches, for example CVaR and VaR

are not continuously differentiable. Further, existence of a generalized RP solution is also not

guaranteed unless additional assumptions are made. Next, an interpretation for problem (4.3)

and sufficient conditions for existence of an optimal solution are established.
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For the sake of clarifying the notation, let us note that here and for the rest of the chapter,

the variable vector used in problem (4.3) is denoted as y, the true decision vector as x and the

loss function as X .

Definition 1. Suppose that ρ is a coherent measure of risk. Then, x will be denoted as a Risk

Parity solution with respect to measure ρ (ρ-RP solution) if xi =
y∗i

y∗1+...+y∗n
, where y∗ is an

optimal solution to problem (4.3).

The next proposition establishes the relationship between ρ-RP solution and an intuitive

interpretation similar to (4.2).

Proposition 1. Suppose that ρ is a coherent measure of risk. Suppose that ρ(X(y)) is positive

homogeneous and convex as a function of y. Then, if y∗ is an optimal solution to problem (4.3),

then

∩ni=1y
∗
i ∂iρ(y∗) 6= ∅, (4.4)

where ∂if denotes the ith component of the subdifferential of function f .

Proof. The statement follows from KKT conditions for convex optimization problem. In-

deed, following a similar arguments in Maillard et al. (2010) consider Lagrange function

L(y, λ, λc) = ρ(y) − λ>y − λc

(∑n
i=1 ln yi − c

)
for problem (4.3). Then a feasible solu-

tion is optimal whenever 0 ∈ ∂L and complementary slackness implies λiyi = 0. Clearly,

yi = 0 cannot be optimal, hence λi = 0. Therefore, at optimality

0 ∈ ∂L(y, λ, λc) = ∂yρ(y)− λi − λc
1

yi
= ∂yρ(y)− λc

1

yi
.

Thus, λc
yi
∈ ∂iρ(y) for all i. In other words, there exists a value λc, such that λc ∈ yi∂iρ(y),

which implies (4.4).

It is easy to see that ifX(y) =
∑

i riyi and the measure of risk considered is variance, then

(4.4) is equivalent to (4.2), which explains the intuition behind the definition of ρ-RP solution.
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Observe that this result holds as long as ρ(X(y)) is convex, which is true for a wide range of

functions ρ and X .

Proposition 2. Suppose that ρ is coherent andX is convex and positive homogeneous. Further,

suppose that

(i) ρ(X(y, ω)) ≥ 0 for all feasible y, and

(ii) ρ(X(y, ω))→ +∞, if yi → +∞ for some i.

Then optimal solution to problem (4.3) exists and is attained.

Proof. Follows directly from the assumptions and convexity of the objective function.

While somewhat restrictive, conditions (i) and (ii) are natural for the measures of risk.

Indeed, condition (ii) states that it is impossible to create a decision of infinite value and finite

risk. In the financial terms it corresponds to impossibility of an infinite investment with a finite

risk. Condition (i) can be made without loss of generality if feasible region is bounded from

below due to translation invariance.

The combination of Propositions 1 and 2 establishes the intuition behind using the op-

timization problem as the basis for generalized RP and sufficient conditions for its solution

existence. In the next section, we explore how this approach can be employed with CVaR, the

most widely used coherent measure of risk.

4.2.2 CVaR-Based Optimization Model

Informally, CVaR at level α of a random variable X is usually defined as the average loss in the

1−α worst cases. Formal mathematical definition can be constructed in a variety of ways, here

we rely on the so-called optimization formula (see Rockafellar and Uryasev 2002, for more

details):

CVaRα(X) = min
η
η +

1

1− α
E[X − η]+, (4.5)
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where α ∈ (0, 1), and [t]+ = max{0, t}. It is well-known that CVaR is coherent, and, in

addition, the definition above implies that its value can be found as a solution to a linear pro-

gramming problem. In other words, if X depends linearly on the decision vector x and the

feasible region is polyhedral, then the problem of optimizing CVaR can be solved efficiently.

In view of the definition of ρ-RP, the CVaR-RP optimization problem can be constructed

as

min η +
1

1− α
E[X(y)− η]+ (4.6a)

s. t.
n∑
i=1

ln yi ≥ c (4.6b)

y ≥ 0. (4.6c)

From the numerical perspective, CVaR-based formulation (4.6) is a convex optimization

problem that is fairly straightforward: if X(y) is linear (such as in the case of portfolio opti-

mization), then it has a single nonlinear constraint (4.6b) of a special kind. A further simplifi-

cation can be obtained if a standard finite scenario model for the realizations of uncertainty is

assumed. Suppose that loss function X is linear, i.e., X(y) = r(ω)>y, where ω is a random

outcome taking values ω1, . . . , ωm with probabilities p1, . . . , pm respectively. Note that since

CVaR has the property of translation invariance, additive constant in the linear function X can

be ignored. Let us further denote as rij the ith component of r(ωj). Then problem (4.6) can be

expressed as

min η +
1

(1− α)

m∑
j=1

pjwj (4.7a)

s. t.
n∑
i=1

ln yi ≥ c (4.7b)

wj ≥
n∑
i=1

rijyi − η ∀j = 1, 2, ...,m (4.7c)

yi ≥ 0, wj ≥ 0. (4.7d)
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Proposition 3. If scenarios are such that P(r>y > 0) > 1 − α for all feasible y, then there

exists a solution to problem (4.7).

Proof. Observe that by properties of CVaR, the condition P(r>y > 0) > 1 − α implies that

CVaR(r>y) > 0. By construction, it then follows that if a feasible sequence yj is such that

yji → +∞, then CVaR(r>yj) → +∞. This, and convexity imply that optimality is attained.

An analysis, similar to the one presented in this subsection, can be performed for other

measures of risk that allow for optimization-based representation. This includes VaR, Higher

Moment Coherent Measures of Risk (HMCR) and some others, see Krokhmal (2007), Vinel

and Krokhmal (2017), Vinel (2015) for some suitable candidates.

Also note that the nonlinear constraint
∑n

i=1 ln yi ≥ c is equivalent to
∏n

i=1 yi ≥ ec, i.e., a

geometric mean of variables yi. This, in turn, can be represented as a system of second-order

cones, following for example, (Ben-Tal and Nemirovski 2001). This implies that CVaR-RP

model can be solved efficiently using any of the well-established methods for second-order

cone programming (SOCP).

4.3 Diversification-Reward Stochastic Optimization Model

As mentioned earlier, risk-reward framework is often the primary modeling approach in risk-

averse stochastic optimization. Here, the decision maker considers a bi-objective optimization

problem, minimizing risk and maximizing reward. Reward is usually measured by the expected

gain, while risk can be evaluated by a number of different approaches, surveyed above. A better

average performance can be achieved by placing more emphasis on the reward, while a more

risk-averse decision can be preferred by selecting a more conservative risk measure. At the

same time, especially in the financial portfolio selection literature, it is often hypothesized that

optimal performance can be observed when decision diversification is enforced directly. The

generalized RP approach described in this work can be naturally employed for this purpose.

The regular risk-reward framework provides a solution (or a family of solutions) that is

aimed at achieving a certain level of average performance, yet avoids excessive risks. Since
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the analysis is usually performed based on historical data, this may not be enough. Indeed, es-

pecially in the case of catastrophic risk, the losses that may be encountered in the future often

exceed anything present in the historical dataset. Direct enforcement of diversification could

be a natural way to circumvent this issue. Hence, the following two stage approach proposed

(here an analogy with two stage stochastic optimization is used): first, a set of “good” decisions

is identified with the risk-reward framework. The true solution is then selected based on diver-

sifying among these solutions only. The approach is aimed at benefiting from both risk-reward

and diversification options: explicit diversification methods, such as Equally Weighted or RP

approaches, cannot directly improve expected performance and instead rely on preselecting

good decisions, while risk-reward framework is prone to overfitting to the stochastic model.

The following conceptual mathematical formulation can be considered for the two stage

diversification-reward model:

min ρ(X(x))

s. t. EX(x) ≥ r0

x ∈ C

xi ≤ zi, i = 1, . . . , n

z ∈ {0, 1}n

x ∈ RPρ(z),

where x, X, ρ are described above, and RPρ(z) defines a set of ρ-RP solutions on a subset of

decision variables, identified by binary vector z. Observe that in this case, z can be interpreted

as a first stage decision, determining which variables will be considered for implementation,

and the actual distribution of resources x is selected based on RP condition in the second stage.

A careful analysis of this framework is beyond the scope of the current work and will

be investigated in a later effort. Here, let us note that the problem above can be challenging

computationally. In the case studies in the next section a straightforward heuristic solution is

considered, which is obtained by splitting the stages. In this case, a risk-reward problem is
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solved separately to identify a heuristic solution for vector z (i.e., which elements should be

included in the final solution), and then solve ρ-RP problem for this subset only. This way we

avoid the computational challenge related to mixed-integer nonlinear structure of the problem,

but still obtain efficient solutions.

4.4 Experimental results: Case studies

In this section,the results of three case studies are presented. Our goal is to evaluate whether

the proposed generalized RP approach and two stage diversification-reward model can lead to

improved diversity in decision making. The first case study is based on a dataset for flood

related insurance claims and is particularly interesting due to the presence of highly heavy-

tailed distributions of the losses. The second numerical study is based on the standard financial

portfolio optimization problem with real-life historical data. The third case study is based on

hazardous materials shipments on the road network of Buffalo, NY. with a real dataset for

exposed risk on the road segments. The Equally Weighted (EW) approach and mean-CVaR

are used as benchmarks. As discussed in the introduction, EW solution is often viewed as a

naive, yet effective method of achieving diversity in decision making and hence is used here as

a natural base line.

In all studies, we evaluate how a solution constructed based on historical observations

only (i.e., scenarios are drawn from previously observed outcomes) can perform in the future.

Note that risk-reward model, e.g., mean-CVaR, explicitly promotes better average performance.

On the other hand neither ρ-RP nor EW models have a built-in capability to promote average

performance other than diversification of risk itself.

4.4.1 Case study 1: Flood insurance claims

Data description The study is based on a dataset from National Flood Insurance Program

(NFIP) managed by a nonprofit research organization Resources for the Future (Cooke and

Nieboer 2011). It contains flood insurance claims for 67 counties of the State of Florida from

1977 to 2006 (total of 355 months), divided by personal income estimates per county per year

from the Bureau of Economic Accounts (BEA). A key feature of this dataset is its extremely
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heavy-tailed behavior, emphasizing the need for risk-averse approach to decision-making. Av-

erage, max and min kurtosis of the associated loss distribution for the dataset are 207.35, 353.00

(Jefferson county) and 70.55 (Lafayette county), respectively.

Problem description The decision-making problem considered in the study was selected to

be deliberately simple. Since our goal is to analyze the performance of the stochastic modeling

framework, a simple decision problem lets us concentrate on the risk model itself. Namely, the

problem of selecting a distribution of a resource over a fixed number of counties (K below) is

considered, so that the overall exposure to flood risk, as measured by flood insurance claims,

is minimized. More specifically, let us denote as `ij the total flood insurance claims in county i

under scenario j. Then, decision vector x = (x1, . . . , x67) is considered as a vector of weights

associated with each county, and construct the problem of selecting these weights in order to

reduce the overall risk exposure. The problem can be viewed as a form of portfolio selection,

where the portfolio is composed of counties and the losses are due to flooding, i.e., we are

interested in distributing a resource among the counties while being wary of flooding risk.

Alternatively, we can view it as a way to determine a “fair” distribution of risk in the sense that

each county is weighted inversely proportional to the exposure to flooding.

Methodology The dataset is split into a training and testing sets, with training comprised of

the first m months (out of 355 total). The training set is used to determine optimal vector x∗

and then actual flooding losses are observed using the testing set. The total loss is calculated as

L =
∑355

j=m+1

∑
i `ijx

∗
i .

A heuristic version of two stage diversification-reward framework is employed to find the

resource distribution. In this case, first, K counties are identified with a minimal common

insurance risk due to flood as estimated by CVaR using the following stochastic optimization

model:
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min η +
1

m(1− α)

m∑
j=1

wj (4.8a)

s. t. wj ≥
n∑
i=1

`ijxi − η, j = 1, 2, ...,m (4.8b)

n∑
i=1

xi ≥ K (4.8c)

xi ∈ {0, 1}, wj ≥ 0. (4.8d)

We start with the solution for this problem and eliminate all counties not selected into the opti-

mal portfolio. Then, in the second stage the actual distribution of the resource is identified by

solving either CVaR-RP problem (DR-CVaR-RP) or Equally Weighted approach (DR-CVaR-

EW) among K selected counties. Note that both approaches, by construction, always select all

counties into the optimal solution, i.e., xEWi 6= 0 and xCV aR−RPi 6= 0 for all i.

Table 4.1 and Figure 4.1 report the performance of the approaches in terms of average

loss, and standard deviation for a number of values of K, α and m. As expected, as the value

of K increases, so do the average loss and its standard deviation, since it forces the first stage

model to consider more flood-prone counties. Across all values of K, α and m and in terms

of both average loss and standard deviation it is observed that the RP version outperforms the

EW approach. While it is due to the fact that RP solution assigns lower weight to more risky

counties, as it is noted above, the RP model does not have a built-in mechanism for selecting

“better” solutions other than the diversification principle itself. Hence, we conclude that this

experiment supports our claim that CVaR-RP solution can lead to improved performance.
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Table 4.1: Comparing the performance of DR-CVaR-RP and DR-CVaR-EW in terms of average

(avg) and standard deviation of loss (std) with different αCVaR and testing datasets. Values are

×104.
m=100, αCVaR = 0.95 m=100, αCVaR = 0.90

DR-CVaR-RP DR-CVaR-EW DR-CVaR-RP DR-CVaR-EW

K avg std avg std avg std avg std

10 0.86 5.78 1.38 10.56 0.98 7.08 1.33 10.49

20 1.03 5.12 2.21 13.95 1.32 7.63 3.40 20.92

30 1.31 6.41 4.71 29.04 1.70 9.58 8.62 60.78

40 1.52 7.37 8.50 56.54 1.68 9.17 8.31 55.72

50 2.00 8.41 18.14 90.54 1.87 9.75 13.37 83.94

60 1.91 8.35 26.17 153.98 2.03 10.02 26.17 153.98

m=200, αCVaR = 0.95 m=200, αCVaR = 0.90

DR-CVaR-RP DR-CVaR-EW DR-CVaR-RP DR-CVaR-EW

K avg std avg std avg std avg std

10 0.53 4.13 0.46 3.08 0.51 3.95 0.46 3.08

20 1.26 8.40 12.53 94.92 1.41 9.56 12.53 94.92

30 1.10 7.27 10.04 69.41 1.58 10.82 9.69 69.37

40 1.46 8.14 19.55 116.26 1.84 11.12 19.38 116.13

50 1.43 8.19 23.49 147.59 1.84 11.00 23.49 147.59

60 1.43 8.10 29.07 185.20 1.76 10.18 29.07 185.20

m=300, αCVaR = 0.95 m=300, αCVaR = 0.90

DR-CVaR-RP DR-CVaR-EW DR-CVaR-RP DR-CVaR-EW

K avg std avg std avg std avg std

10 1.59 7.88 0.73 3.15 1.60 7.98 0.70 3.05

20 1.57 7.79 1.07 5.36 1.52 7.62 0.86 4.46

30 1.88 9.71 4.60 30.08 1.57 7.74 1.35 6.40

40 2.32 12.33 8.16 47.98 2.02 10.57 8.40 54.16

50 2.30 12.03 10.36 58.76 2.10 10.93 10.36 58.76

60 2.42 12.71 34.92 162.62 2.32 11.99 34.92 162.62

88



Figure 4.1: Comparing the performance of DR-CVaR-RP, and DR-CVaR-EW in terms of aver-

age and standard deviation of loss with different αCVaR and testing datasets.
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4.4.2 Case Study 2: Portfolio optimization

Data description For the second study the standard financial portfolio optimization frame-

work is employed with historical asset returns. The data is collected through Yahoo Finance

for assets in S&P500 index. Fifty assets with highest average return were selected for historical

close price from September 2005 through October 2015, therefore, providing 2499 scenarios

(trading days). Asset returns rij are calculated as rij =
pi,j−pi,j−T
pi,j−T

, where pi,j is the historical

close price of asset i on day j, and T represents a “delay” parameter and takes values of T

= 3, 5, and 10 days. The dataset has a heavy-tailed behavior and the average kurtosis of the

associated loss distribution for the datasets with T = 3, 5, and 10 are 15.39, 10.57, and 9.74,

respectively.

Problem description As described in the introduction, financial portfolio selection is widely

used to test risk-averse stochastic optimization models. It should be emphasized that, similarly

to the first case study, since the primary goal in this study is to evaluate the modeling technique,

we are not intending it to serve as a simulation of real-life trading. Our aim is to demonstrate

that in the presence of heavy-tailed distributions of losses proposed models provide robust and

effective diversification tools. Thus, we simplify our model to ignore some practical consider-

ations such as transaction costs or cardinality constraints, and base the scenario model directly

on the historically observed returns. A market with n = 50 assets is considered and assumed

that m = 1000 scenarios for realization of random assets’ returns are available, denoting as rij

the return of asset i under scenario j. Portfolio weights are denoted as x = (x1, . . . , xn)>.

Methodology Five solution approaches are employed and the results are compared: CVaR-

RP, Equally Weighted (EW), mean-CVaR, and two diversification-reward models based on Risk

Parity (DR-CVaR-RP) and Equally Weighted (DR-CVaR-EW). In this case, the loss function is

defined as negative portfolio return, i.e.,
∑

i−rijxi.

Here, the two stage diversification-reward framework is slightly different than the previ-

ous case study. Mean-CVaR is a standard solution approach. In this case, ten solutions are

generated located on the efficient mean-CVaR frontier, which are denoted as P1, ..., P10. P1
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corresponds to the minimum CVaR solution, and P10 is the maximum average return solution,

P2, ..., P9 are selected in between by varying target average return.

Based on P1, ..., P10 we also obtain two sets of ten diversification-reward solutions for

RP and EW. We start from a solution to mean-CVaR model (first stage) and eliminate all assets

not selected into the optimal portfolio. Then, in the second stage the actual distribution of the

budget on each asset is identified by solving either CVaR-RP problem or according to Equally

Weighted approach. The resulting solutions are denoted as DR-CVaR-RP and DR-CVaR-EW

respectively.

Table 4.2 shows the performance of mean-CVaR, DR-CVaR-RP, and DR-CVaR-EW in

terms of average (avg), standard deviation (std) of return and the Sharpe ratio (SR). The SR, in-

terpreted as risk-adjusted return, is calculated as the ratio between the average rate of return and

the standard deviation (volatility). Figure 4.2 demonstrates the performance of above methods

as well as the CVaR-RP and EW on all assets. The Sharpe ratio of these methods are compared

in Figure 4.3 for different portfolios across the efficient frontier for both training and testing

datasets.
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Table 4.2: Comparing the performance of mean-CVaR, DR-CVaR-RP, and DR-CVaR-EW in

terms of average (avg), standard deviation (std) of return, and Sharpe ratio (SR) with different

αCVaR and testing datasets. Values are in percentage.
m=1000, T = 1, αCVaR = 0.95 m=1000, T = 1, αCVaR = 0.90

mean-CVaR DR-CVaR-RP DR-CVaR-EW mean-CVaR DR-CVaR-RP DR-CVaR-EW

avg std SR avg std SR avg std SR avg std SR avg std SR avg std SR

P1 0.04 0.70 6.03 0.04 0.71 5.66 0.04 0.71 5.53 0.04 0.72 6.13 0.05 0.76 6.14 0.05 0.77 6.00

P2 0.05 0.74 7.14 0.06 0.76 7.90 0.07 0.82 8.34 0.05 0.77 7.17 0.06 0.78 7.92 0.07 0.84 8.23

P3 0.06 0.82 7.38 0.06 0.79 7.91 0.07 0.86 8.31 0.06 0.86 7.26 0.05 0.75 7.05 0.06 0.83 7.52

P4 0.07 0.94 7.44 0.07 0.84 8.54 0.08 0.91 8.87 0.07 0.97 7.44 0.06 0.81 7.46 0.07 0.92 8.05

P5 0.08 1.11 7.62 0.06 0.91 6.76 0.07 0.98 7.25 0.08 1.11 7.56 0.06 0.76 7.61 0.07 0.85 8.20

P6 0.10 1.27 7.49 0.08 1.08 7.15 0.09 1.24 6.91 0.10 1.28 7.52 0.08 1.08 7.10 0.09 1.24 6.91

P7 0.11 1.46 7.29 0.07 1.04 6.29 0.08 1.27 6.03 0.11 1.46 7.37 0.08 1.05 7.20 0.10 1.28 7.48

P8 0.12 1.66 7.19 0.07 1.03 7.10 0.10 1.28 7.48 0.12 1.67 7.20 0.09 1.08 7.85 0.10 1.25 8.09

P9 0.13 1.88 7.00 0.08 1.08 7.83 0.10 1.25 8.09 0.13 1.88 6.99 0.08 1.05 7.20 0.10 1.28 7.48

P10 0.14 2.11 6.80 0.14 2.11 6.80 0.14 2.11 6.80 0.14 2.11 6.80 0.14 2.11 6.80 0.14 2.11 6.80

m=1000, T = 3, αCVaR = 0.95 m=1000, T = 3, αCVaR = 0.90

mean-CVaR DR-CVaR-RP DR-CVaR-EW mean-CVaR DR-CVaR-RP DR-CVaR-EW

avg std SR avg std SR avg std SR avg std SR avg std SR avg std SR

P1 0.13 1.18 10.90 0.17 1.35 12.47 0.19 1.50 12.52 0.14 1.18 12.03 0.18 1.38 13.43 0.20 1.48 13.31

P2 0.16 1.23 13.17 0.21 1.42 14.77 0.24 1.57 14.97 0.18 1.28 13.84 0.20 1.34 14.55 0.22 1.47 15.06

P3 0.22 1.45 14.88 0.22 1.42 15.48 0.25 1.56 15.93 0.20 1.44 14.07 0.20 1.40 14.49 0.23 1.53 14.98

P4 0.24 1.64 14.45 0.24 1.52 15.84 0.27 1.70 16.00 0.24 1.67 14.60 0.21 1.38 15.49 0.25 1.55 16.07

P5 0.27 1.89 14.29 0.24 1.65 14.52 0.27 1.81 15.04 0.27 1.91 14.25 0.22 1.57 14.24 0.26 1.75 14.96

P6 0.31 2.19 14.00 0.29 1.89 15.31 0.31 2.03 15.46 0.31 2.20 13.89 0.29 1.87 15.30 0.31 2.03 15.46

P7 0.33 2.52 13.15 0.25 1.84 13.70 0.26 2.06 12.85 0.33 2.53 13.16 0.27 1.81 14.73 0.30 2.03 14.90

P8 0.37 2.90 12.63 0.25 1.84 13.70 0.26 2.06 12.85 0.37 2.91 12.62 0.27 1.81 14.73 0.30 2.03 14.90

P9 0.40 3.31 12.18 0.25 1.84 13.70 0.26 2.06 12.85 0.40 3.32 12.18 0.27 1.81 14.73 0.30 2.03 14.90

P10 0.43 3.71 11.58 0.43 3.71 11.58 0.43 3.71 11.58 0.43 3.71 11.58 0.43 3.71 11.58 0.43 3.71 11.58

m=1000, T = 10, αCVaR = 0.95 m=1000, T = 10, αCVaR = 0.90

mean-CVaR DR-CVaR-RP DR-CVaR-EW mean-CVaR DR-CVaR-RP DR-CVaR-EW

avg std SR avg std SR avg std SR avg std SR avg std SR avg std SR

P1 0.46 2.11 21.58 0.58 2.28 25.51 0.66 2.54 25.83 0.49 2.05 23.88 0.54 2.26 23.87 0.61 2.51 24.50

P2 0.62 2.30 26.91 0.57 2.32 24.54 0.63 2.53 24.91 0.63 2.29 27.34 0.61 2.33 26.37 0.71 2.59 27.34

P3 0.74 2.68 27.69 0.66 2.42 27.47 0.76 2.66 28.59 0.75 2.65 28.13 0.66 2.40 27.70 0.79 2.75 28.55

P4 0.85 3.08 27.71 0.66 2.42 27.47 0.76 2.66 28.59 0.87 3.15 27.50 0.64 2.37 27.03 0.76 2.65 28.68

P5 0.98 3.62 27.16 0.68 2.48 27.24 0.79 2.81 28.26 0.99 3.72 26.54 0.74 2.54 29.24 0.87 2.97 29.26

P6 1.13 4.21 26.72 0.83 2.76 30.10 0.91 3.16 28.85 1.10 4.33 25.49 0.68 2.46 27.76 0.85 3.06 27.81

P7 1.23 4.84 25.36 0.87 2.80 30.90 0.98 3.23 30.46 1.23 4.97 24.65 0.85 3.27 26.03 0.99 3.79 26.20

P8 1.34 5.55 24.21 0.99 3.48 28.49 1.07 3.76 28.52 1.34 5.63 23.89 0.85 3.27 26.03 0.99 3.79 26.20

P9 1.39 6.08 22.93 1.22 4.94 24.72 1.25 5.03 24.92 1.40 6.12 22.83 1.22 4.94 24.69 1.25 5.03 24.92

P10 1.45 6.69 21.64 1.45 6.69 21.64 1.45 6.69 21.64 1.45 6.69 21.64 1.45 6.69 21.64 1.45 6.69 21.64
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Figure 4.2: Comparing the performance of CVaR-RP, EW, mean-CVaR, DR-CVaR-RP, and

DR-CVaR-EW in terms of average and standard deviation of return with different αCVaR and

testing datasets.
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Figure 4.3: Comparing the performance of mean-CVaR, DR-CVaR-RP, and DR-CVaR-EW in

terms of Sharpe ratio with αCVaR = 0.95 and different training and testing datasets.

In this case, the performance improvement due to the diversification methods is moderate.

Specifically, it is observed that while standard risk-reward model leads to better Sharpe ratios

94



on the training set (the left-hand side column on Figure 4.3), either RP or EW portfolios lead

to the best Sharpe ratios on the testing sets. This suggests that the improved diversity of the

decisions hedges some of the risk associated with potentially inadequate selection of the testing

set. It is also observed that both of the risk-diversification methods slightly improve the efficient

frontier (Figure 4.2). At the same time, this improvement is at best moderate.

Note that as described in the introduction, financial portfolios are usually the primary area

of application for direct diversification methods. The fact that in our experiments the proposed

methods show an the best quality of improvement compared to conventional approaches for

non-financial study suggest that it has a high potential to be useful in engineering and other

decision-making domains. We hypothesize that the presence of extremely heavy-tailed distri-

bution of losses is the driving force behind usefulness of the proposed RP-CVaR approach. In

this case, it can be likely that a future outcome (flood-related losses) will be significantly more

impactful than anything that can be learned from the past, which synergizes well with the di-

versification idea, and further, a more informed approach based on RP is better that the naive

EW.

4.4.3 Case Study 3: Hazardous Materials Transportation

Data description The study is based on a portion of an actual road network in Buffalo, New

York, which consists of 15 nodes and 21 arcs. Considering node 1 as the origin and node 14

as the destination, there are 9 possible routes to traverse the network. Thre main attributes are

considered for each arc: a) length, b) accident probabilities, c) accident consequences on the

λ-neighborhood of the impact zone. The risk associated with each road segment is calculated

as the multiplication of accident probabilities and consequences. The nominal data is obtained

from Toumazis and Kwon (2015). Hazmat accidents cause catastrophic consequences, which

can be approximated with a heavy-tailed distribution. The Pareto distribution is used to generate

the corresponding risk scenarios for each road segment due to heavy-tailed characteristic of the

associated risk.
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Problem description In hazardous material (hazmat) transportation some routes should be

selected to transport products/waste on the road network. Moving hazmat raises an inherent risk

for public safety and environment. Hazmat accidents cause catastrophic consequences such as

fatalities, severe injuries, and property and environment damage. Using a single optimal route

over time will result in overloaded hazmat traffic on specific links of the network, and lead

to increase in incident probabilities and risk inequity. Our aim is to show in the presence

of heavy-tailed risk distribution on the road network, the proposed models provide effective

diversification approach to make routing decisions. Total n = 9 routes on the network from the

origin to the destination with m = 1000 scenarios for training and another m = 1000 scenarios

for testing are considered.

Methodology Three solution approaches are used and results are compared: DR-CVaR-RP,

DR-CVaR-EW, and selecting a single path. The solution procedure is demonstrated in Figure

4.4. Yen’s k-shortest algorithm (Yen 1971) is employed to finds all the paths available from

the origin to the destination and sorted them based on distance. In order to select the first stage

variables in the risk-reward framework, the mean-CVaR approach is applied to select best n

paths. Then, the CVaR-RP model (4.9) is applied on the selected paths to find the amount of

shipments on each route. Our proposed method aim to evenly distribute the risks associated

with hazmat transportation among the exposed communities while making sure that overall

system risk is controlled. In the benchmark the same procedure as in Figure 4.4 is used, except

the Equally Weighted approach is employed to find the shipment weights on road segments.
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Figure 4.4: DR-CVaR-RP solution procedure for hazmat route planning

Let n and m be the number of routes and scenarios and set parameters rij as the risk on

route i under scenario j. The corresponding CVaR-RP model can be formulated as follow:

min η +
1

m(1− α)

m∑
j=1

wj

s. t.
n∑
i=1

ln(yi) ≥ c

wj ≥
n∑
i=1

rijyi − η, ∀j = 1, 2, ...,m

yi ≥ 0; wj ≥ 0;

(4.9)

In model (4.9), yi indicates the weight of shipments on each route i. First, the average loss

and standard deviation of selecting a single path to ship the hazmat through the road network

are presented in Table 4.3. The routes are sorted based on the distance, meaning that route

1 is shorter than route 2 and so on. On the contrary, shortest path does not mean lower risk

exposure. According to the results, in case of selecting only a single path, route 3 is the best

choice in terms of average risk. On the other hand, routes 7, 8 and 9 appear to be less attractive

having higher risk exposure.
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Table 4.3: Comparing single path selection for hazmat shipments. Values are ×10−3.
Single path

1 2 3 4 5 6 7 8 9

avg 0.64 1 0.36 0.74 3.1 2.2 3.6 3.5 3.3

std 6.7 7.9 2.2 4.8 15.5 14.1 16.7 17.9 16.9

Table 4.4 presents the route selection and the associated weights of hazmat shipments as-

signed to each route in case of αCVaR = 0.99 and αCVaR = 0.95. According to the results

presented in Table 4.4, the model selects route 3 in case of choosing only one path to transport

all the hazmat from the origin to the destination. The reason is that this route has lower cor-

responding risk. In case of shipping on two paths, routes 1 and 3 are selected and share close

weights of shipments. As discussed earlier, routes 7, 8 and 9 are less attractive and are added

to the route selection after other available routes. They also have low weights of shipment

assigned. The last column in the table presents the hazmat weights on nine available routes,

aiming to evenly distribute the risk through the road network. These weights can also be inter-

preted as a threshold for the allowance of the amount of hazmat products and waste shipments

regulated by the governments and local authorities; meaning that the authorities can restrict the

proportion of shipments on highly populated road segments to guarantee the risk equity on the

network.
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Table 4.4: Shipment weights on each route based on selecting n best routes.
Number of n selected routes,αCVaR = 0.99

Route 1 2 3 4 5 6 7 8 9

1 - 0.4458 0.3792 0.3065 0.2891 0.2693 0.2626 0.2641 0.2601

2 - - - 0.1498 0.1335 0.1287 0.1242 0.1191 0.1147

3 1.0000 0.5542 0.4051 0.3785 0.3552 0.3300 0.3292 0.3181 0.3194

4 - - 0.2157 0.1652 0.1460 0.1411 0.1374 0.1290 0.1249

5 - - - - - 0.0574 0.0458 0.0371 0.0318

6 - - - - 0.0762 0.0736 0.0616 0.0592 0.0578

7 - - - - - - - 0.0381 0.0321

8 - - - - - - 0.0393 0.0353 0.0331

9 - - - - - - - - 0.0259

Number of n selected routes, αCVaR = 0.95

Route 1 2 3 4 5 6 7 8 9

1 - 0.4115 0.3393 0.2740 0.2567 0.2442 0.2380 0.2330 0.2265

2 - - - 0.1492 0.1361 0.1291 0.1250 0.1209 0.1176

3 1.0000 0.5885 0.4341 0.3972 0.3729 0.3539 0.3423 0.3358 0.3307

4 - - 0.2266 0.1796 0.1631 0.1544 0.1488 0.1438 0.1406

5 - - - - - 0.0000 0.0398 0.0368 0.0330

6 - - - - 0.0711 0.0674 0.0652 0.0573 0.0560

7 - - - - - 0.0508 0.0409 0.0379 0.0331

8 - - - - - - - 0.0345 0.0326

9 - - - - - - - - 0.0299

Table 4.5 presents the DR-CVaR-RP and DR-CVaR-EW models results for different se-

lection of routes associated with the assigned weights. In this Table, n refers to the number

of paths that are selected by mean-CVaR model in the first stage. The same results are also

presented in Figure 4.5.
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Table 4.5: Comparing the performance of DR-CVaR-RP and DR-CVaR-EW in terms of average

(avg) and standard deviation of loss (std) with αCVaR = 0.99. Values are ×10−3.

m=1000, Training dataset, αCVaR = 0.99 m=1000, Testing dataset, αCVaR = 0.99

DR-CVaR-RP DR-CVaR-EW DR-CVaR-RP DR-CVaR-EW

n avg std avg std avg std avg std

1 0.38 3.2 0.38 3.2 0.36 2.2 0.36 2.2

2 0.47 2.4 0.48 2.4 0.48 3.3 0.5 3.6

3 0.55 2.6 0.59 2.9 0.55 3 0.58 3

4 0.6 2.8 0.69 3.5 0.6 3.5 0.69 4.1

5 0.72 3 0.99 4.5 0.72 3.9 1 5.3

6 0.88 3.2 1.4 5.5 0.87 4 1.4 5.6

7 0.95 3.3 1.7 7.2 0.93 4.1 1.7 6.6

8 1 3.6 2 8.7 1 4 1.9 6.6

9 1.1 3.8 2.2 10.4 1 4.1 2.1 7.4

m=1000, Training dataset, αCVaR = 0.95 m=1000, Testing dataset, αCVaR = 0.95

DR-CVaR-RP DR-CVaR-EW DR-CVaR-RP DR-CVaR-EW

n avg std avg std avg std avg std

1 0.38 3.2 0.38 3.2 0.36 2.2 0.36 2.2

2 0.46 2.4 0.48 2.4 0.47 3.2 0.5 3.6

3 0.54 2.7 0.59 2.9 0.54 2.9 0.58 3

4 0.6 2.9 0.69 3.5 0.6 3.4 0.69 4.1

5 0.71 3 0.99 4.5 0.71 3.7 1 5.3

6 0.87 3.1 1.5 5.5 0.86 3.6 1.4 5.1

7 0.95 3.3 1.7 7.5 0.93 3.7 1.7 5.9

8 1 3.6 2 8.7 1 3.9 1.9 6.6

9 1.1 3.9 2.2 10.4 1 4 2.1 7.4
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Figure 4.5: Comparing DR-CVaR-RP, DR-CVaR-RP and single path solutions for hazmat case.

The computational results presented in Table 4.5 indicate that proposed risk-reward di-

versification framework outperforms Equally Weighted method in all cases of multiple route

selections for hazmat shipments. The reason is that DR-CVaR-RP adjusts the shipment weights

in a way that all involved routes have the same risk exposure. These results emphasize the effec-

tiveness of proposed models in the presence of heavy-tailed risk distribution. The proposed risk

diversification method ensures that the risks associated with hazmat transportation are evenly

distributed through the involved road segments.
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4.5 Conclusion

In this chapter, we aim at providing a mathematical programming framework for risk-averse

decision making under uncertainty using both the concept of Risk Parity and coherent mea-

sures of risk. In this regard, we studied the mathematical foundation of general Risk Parity

framework and presented a nonlinear convex optimization formulation for obtaining CVaR-

based Risk Parity model. We also, developed a two stage diversification-risk framework aimed

at combining the advantages of both Risk Parity and standard risk-reward optimization. We

evaluated the performance of suggested methods by conducting three case studies. These case

studies are based on historical data in flood insurance claims, financial asset returns, and haz-

ardous materials transportation, respectively. We used the Equally Weighted approach and

mean-CVaR as benchmarks to show effectiveness of our proposed models. Diversity-based

solutions show promising results in all studies and we observe that the experiment based on

non-financial data show particular potential. We conclude then that the considered approach

could lead to improved decision-making in the presence of heavy-tailed distributions.

In addition to diversification of risk, the results can be interpreted through the concept

of fairness. Here, a system can be outlined here which will be subjected to risk through the

decisions. We may then be interested in assigning these decisions to parts of the system in such

a way that none of them are overexposed. The hazardous materials routing and supply chain

network design problems are examples for such system. Employing the proposed models in

this chapter on the hazmat supply chain network design problem will be investigated in more

details in a future study. Such models can be beneficial for making routing decisions in hazmat

network design. Governments can regulate the hazmat transportation with respect to risk equity,

while carriers can wisely select the shipment routes to follow the regulations while reducing

their transportation costs.
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Chapter 5

Summary and Future Research

This chapter summarizes the contributions of this dissertation and elaborates on relevant re-

search questions that can be further addressed in future studies. In this dissertation, the haz-

ardous materials routing and supply chain network design problems are studied. Risk-averse

stochastic programming and robust optimization models are proposed to improve multiobjec-

tive decisions making processes. The goal of this dissertation is to propose policies which are

not only interesting for the network regulators such as governments and local authorities in

terms of hazmat risk mitigation but also are economically feasible to the hazmat carriers.

The transportation of hazmat has significant implications for public health and environ-

mental safety, as accidents in the transportation of these materials affects not only the vehicles

involved but also those communities in the surrounding vicinity. Chapters 2 is devoted to

present a novel multiobjective integer programing model for the hazmat closed-loop supply

chain problem which combines forward and reverse flows of hazmat products and waste to

help making optimal strategical, tactical and operational decisions in the system. Considering

cost factors and risks inherent in hazmat transportation, the developed model assists with opti-

mal route selection, quantity of hazmat to be shipped, and locating the facility and emergency

response teams. The model is applied to a case study with real data based on Albany road

network in NY. Using the two-phase method, all the Pareto optimal solutions are extracted for

various instances of the problem. The results indicate how slight increases in the cost of build-

ing the system can help reduce a significant amount of risk exposure. An interesting extension

to this work would be to refine the risk assessment objective function such that it accounts
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other aspects that affect risk exposure such as traffic, weather condition, and driver’s perfor-

mance. Another interesting future direction is to achieve equity in distributing the risk among

the different road segments by employing Risk Parity and risk-averse models.

In Chapter 3, the hazmat closed-loop supply chain network design problem is also in-

vestigated by taking into account various uncertainty sources, such as customers’ demand and

return. Two approaches are considered to deal with such uncertainty. First, it is assumed that

the distributions of demand and return are known and a two-stage stochastic model is developed

to provide centers’ location and capacity decisions in the first stage and shipment and routing

decision in the second stage after realization of the uncertainty sources. The proposed two-

stage model minimized the total cost and risk on average, meaning that for a fixed placement

decisions, the average of the cost and risk over many scenarios of uncertainty source converges

to the expected value, where the Pareto solutions are optimal on average. Second, we consid-

ered a case where there is not enough data to estimate the distribution of demand and return. A

robust framework is presented to hedge the optimization model in case of data uncertainty. The

performance of both models are evaluated based on the Albany road network dataset and results

demonstrate the decision-making process under uncertainty when there exists a likelihood of

catastrophic or risky circumstances. A beneficial extension would be to allow risk uncertainty

in the model since in many cases there is not enough historical data for hazmat accident and

consequence probabilities. This not only expands the applicability of the model in practice, but

also is likely to improve the routing and placement decisions in terms of the associated risk.

Another suggested extension of this model is to consider reliability of centers in managing sup-

ply chain vulnerability, and generate corresponding models that can guarantee efficiency of the

supply chain under potential disruptions.

In the hazmat transportation problem, a number of routes should be selected to ship prod-

ucts and waste. Hazmat carriers tend to select shorter routes to minimize their operational

costs. Such routes might pass through heavily populated areas, in which accident occurrences

can affect a larger number of people and cause catastrophic consequences. On the other hand,

network regulators are more concerned about the risk mitigation in the road network and try

to set enforcements for carriers to avoid certain areas. To address these challenges in hazmat
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transportation, risk-averse mathematical models are developed in Chapter 4 using Risk Parity

concept in conjunction with coherent risk measures. We assessed the properties of the proposed

frameworks for decision-making under uncertainty with heavy-tailed distribution of losses. The

proposed frameworks enable the development of diversified routes, where it can be ensured that

the risks associated with hazmat transportation are distributed fairly among the exposed com-

munities, while the overall system risk is controlled. A beneficial extension, however, would be

to study the mathematical formulation properties in more details and consider larger datasets

for hazmat case study. Another interesting future work is to employ developed frameworks in

the hazmat closed-loop supply chain network design problem to assist and improve risk equity

in routing decisions.
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