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Abstract 

 

 

Accurate estimations of the state of charge (SOC), capacity fade (SOHQ) and power fade 

(SOHP) are critical for ensuring safe and reliable operations of Lithium-ion batteries. Traditional 

estimation methods using complex models and look-up tables do not satisfy either the required 

accuracy or computational time necessary for real time applications. In this paper, we propose a 

method that simultaneously estimates both SOC and SOH over different temperature ranges under 

aging conditions. The battery is modeled with a second order equivalent circuit (ECM) and then 

its states and parameters are estimated by implementing a combination of a Variable model 

framework (VM) based Adaptive Extended Kalman Filter along with a forgetting factor based 

Recursive Least Square (RLS) filter algorithm in a closed-loop framework.  

The VM-AEKF is employed to efficiently estimate the fast varying SOC and model 

parameters where the VM framework is designed specifically to improve the stability and accuracy 

of the estimator under conditions when the system is not sufficiently excited by the input signal. 

Simultaneously, the RLS estimates the slowly varying maximum capacity and updates the value 

based on a delayed approach. The parameters estimated by the proposed estimator are then used 

to calculate the SOHP and SOHQ.  

The proposed algorithms are validated with a large format NMC/Carbon pouch type power 

cell with a nominal capacity of 58.4 Ah at multiple charge-discharge cycles considering aging and 

temperature effects. The experimental results have shown less than 5% SOC estimation error and 

less than 3% capacity estimation error for the typical SOC range of 10% to 90%.  
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 Introduction 

1.1 Background 

The recent shift towards battery technology in the sectors of transport, buildings and power 

grid, has pushed for development of more sophisticated and accurate battery management systems 

(BMSs). A major cause for this recent shift can be attributed to the improvements in the 

performance of Lithium-ion batteries. These improved Lithium-ion batteries, with high energy and 

power densities, are viable for electric vehicles (EVs) and as energy storage systems (ESSs) for 

smart grids.  

BMSs are a vital component of battery packs, with two major roles: (1) To ensure the safe 

operating area of the battery, defined by manufacturing and architecture related specifications, 

such as the overcharge and under discharge, maximum depth of discharge, upper and lower cut off 

voltage of the individual cells, and (2) To continuously measure battery parameters, to determine 

or predict its status, health, and performance figures generally referred to as battery monitoring. 

This is accomplished by continuously monitoring the current, voltage and temperature of the 

battery while accurately estimating essential battery states like the State of Charge (SOC), State of 

Health (SOH). 

1.1.1 NMC Lithium-ion cell 

Lithium-ion cells using a combination of nickel-manganese-cobalt (NMC) as the cathode 

chemistry and carbon graphite as the anode chemistry are currently one of the most successful Li-

ion batteries [1]. These cells are designed to work as either energy or power cells. In addition, , 

adding nickel to the cathode provides a higher energy density, lower cost, and longer cycle life 

than only the cobalt-based cells, which leads to  NMC base Li-ion systems as the preferred choice 
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for energy storage systems (ESSs) and automotive systems like electric vehicles (EVs), hybrid 

electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). 

A typical Li-ion cell consists of three primary components; a positive electrode made of a 

lithium metal oxide, LiMO2, where M is a metal alloy of Ni, Mn, and Co in case of NMC; a 

negative electrode made of carbon and graphite is preferred for most commercial purposes; an 

electrolyte made of a lithium salt in an organic solvent. The metal oxide determines the cell 

performances [1], [2], where Cobalt is the main active material but has a relatively short life span, 

low thermal stability and limited load capabilities like specific power. Nickel provides high 

specific energy but has poor stability, while Manganese has the benefit of forming a spinel 

structure to achieve low internal resistance but offers low specific energy. The metals are combined 

such that to enhance each other’s strengths. 

 The negative and the positive electrodes are the reactants in the electrochemical reactions 

while the electrolyte provides a conductive medium for lithium ions to move freely between the 

electrodes. Lithium ions are free to move in and out of both the electrodes through the process of 

insertion (intercalation) or extraction (deintercalation) respectively. The schematic of a common 

Li-ion cell along with the direction of the flow of electrons and the positively charged lithium ions 

(Li+) during discharging and charging is depicted in Figure 1. 

During discharging, the Li-ions de-intercalate from the negative electrode and are 

transported, and intercalate into the positive electrode [3]. The process is reversed when charged. 

The half-reaction at the negative electrode: 

6 6xLi C C xLi xe+ −+ +    (1) 

The half-reaction at the positive electrode is: 

( ) 2 21 x
Li MO xLi xe LiMO+ −

−
+ +    (2) 
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Combining Eq. (1) and (2), the full cell reaction is described as: 

( )6 2 261x x
Li C Li MO LC iMO

−
++    (3) 

 

 Figure 1 Schematic of a Li-ion cell 

1.1.2 Definition of states 

Various metrics have been defined to continuously monitor and evaluate the performance 

of a cell [4]–[7]. These metrics are identified as the states of the cell. The most common cell states 

are: 

1. State of charge (SOC): SOC is defined as the percentage ratio between the amounts of 

releasable charge relative to the maximum charge stored at most recent fully charged state. 

It is given as: 
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( ) releasable

max

% 100 
Q

SOC
Q

=   (4) 

, where Qmax is the maximum capacity in a fully charged state at any given 

operating condition and Qreleasable is the maximum capacity that can be extracted from the 

cell at any given instant.  

SOC is a key indicator of the instant status, equivalent of a fuel gauge, for battery 

systems. A simple method to find the SOC in real-time is using the Coulomb (Ah) counting 

method: 

( )
0

max

% 100 
t

t

Id
SOC

Q


=    (5) 

2. State of health (SOH): Description of the instantaneous state by SOC is not sufficient alone 

to represent the degradation of the cell due to the irreversible processes referred to as aging. 

A new metric, SOH, is defined as a measure of this long-term wear and tear. A common 

measure of SOH, based on the impedance increase, have been described in [8], [9] and 

defined in [5] as: 

( ) EOL bat

EOL BOL

% 100
R R

SOH
R R

−
= 

−
  (6) 

, where REOL, Rbat, and RBOL is the resistance at the End-of-Life (EOL), at the instance 

of observation and, at the Beginning-of-Life (BOL), respectively. This definition has been 

interchangeably used to describe both the power fade (SOHP) and the general SOH of the 

cell. SOH can be divided into Capacity Fade (SOHQ) and Power Fade (SOHP), 

respectively.   

i. SOHQ indicates the percentage decrease in capacity over the cycle life: 
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( ) max

nominal

% 100Q

Q
SOH

Q
=    (7) 

ii. SOHP indicates the percentage decrease in power capability over the cycle life: 

( ) available

nominal

% 100P

P
SOH

P
=    (8) 

1.1.3 Literature Review 

SOC is an important indicator of the instantaneous state of the battery and a wide variety 

of methods is proposed in the literature for its estimation [3]–[5], [7], [10]–[18]. The Coulomb 

counting method, is the most commonly implemented method due to its simplicity and low 

computational time. However, its accuracy is affected by errors accumulated during current 

integration, initial values and operating conditions [7]. Open Circuit Voltage (OCV) methods, 

based on the relationship between the OCV and SOC, have also been extensively used [19]. These 

methods are not suitable for real time applications as batteries require a long resting period before 

the OCV can be measured accurately. Data-driven methods based on Neural Network (NN), 

Support vector machine (SVM) and Fuzzy-Logic [14], [15], [20] have high estimation accuracy 

but require extended training times and large amounts of reliable data. Model-based methods using 

Bayesian filters are prominently used for real time applications due to their high robustness and 

estimation accuracy. Least Squares (LS) methods, like moving window LS filter [21], estimate 

SOC using an equivalent circuit model. Other variations of LS methods include UD (U represent 

the upper triangle matrix and D is the Diagonal matrix) factorization-based Recursive LS (RLS) 

[22], combined RLS and Kalman Filter (KF) [23] and Instrumental Variable RLS (IV-RLS) [24]. 

Extended KF (EKF) can estimate the battery SOC based on ECM with less than 5% error for 

different driving cycles [17]. Advanced KFs like Adaptive EKF (AEKF) [10], Sigma point KF 

(SPKF) [25],  Ln normalized Unscented KF (Ln-UKF) [26] and Dual EKF (D-EKF) [16] have 
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also been proposed. These methods are suitable for real-time applications and provide low 

estimation errors but have certain drawbacks. Their accuracy decreases due to accumulation of 

numerical errors over extended operational periods while they also fail to meet ‘Identifiability’, 

due to a large number of states being estimated, which is explained in detail in chapter 3.  

Several methods for estimation of the SOH¸ summarized in Figure 2, have been discussed 

in the literature [11], [27], [28] and can be categorized into two ways: (1) Experimental methods, 

or (2) Model-based methods.  

 

Figure 2. Summary of SOH estimation methods  

Experimental methods use testing data and previous knowledge of cell performance to 

predict their states. These methods are specific to a cell and cannot be used for other cells. 

Impedance measurement is one of the most popular experimental methods, where impedances over 

a wide range of AC frequencies at different charge and discharge currents are measured using 

Electrochemical Impedance Spectroscopy (EIS) [12], [29]. Another method [6] measures the 

Ohmic resistance of a cell using Hybrid Pulse Power Characterization (HPPC) test according to 

guidelines provided by Department of Energy (DOE), which is used   to measure available power 
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and  has been extensively used to measure  SOH [8], [9], [30]. However, these methods, though 

usually used for offline identification, can be implemented for online estimation using data 

obtained to build empirical functions, probabilistic relation or look-up tables (LUTs) [13], [31].  

Recent developments have shifted the focus of research towards implementing machine 

learning based methods [14], [20], [32]–[34] that include SVM  [34], Fuzzy logic algorithms [14] 

and NN [32]. These methods are easy to implement and can provide accurate results but are not 

suitable for online estimation due to high computational effort and large sets of training data 

required before being implemented. Furthermore, they are non-adaptive and highly sensitive to 

changes of cell parameters. 

On the other hand, model-based methods estimate parameters based on models that are 

sensitive to the states of the cell, which can be applied for batteries with different chemistries with 

minimum tuning efforts. The estimated parameters are either directly related to SOH or include 

the dependent variables [6], [9]. These parameters have been estimated by employing various state 

observers [10], [21], [22], [25], [35]–[40], with KF being the most implemented. Linear KF (LKF) 

has been used for parameter and state estimation [23] but since most models are nonlinear, the 

EKF [35], [36], [38] and UKF [25] are preferred. Non-linear Dual KF (D-KF) has also been 

proposed [15], [16], [41], where one filter estimates the parameters and the other estimates SOH. 

Despite showing favorable results, these methods are highly complex, requiring matrix 

differentiation of the large error covariance matrix shared between the two estimators. The order 

of EKF can be different, like a second order EKF used for fast varying SOC and voltage, while a 

fourth order for slowing varying SOH if the voltage error exceeds a threshold [37]. A Lyapunov 

based adaptive observer can also be used to estimate SOH based on a simple first-order ECM  [5], 

however it’s long-term performance needs to be verified as it is dependent on offline identified 
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parameters. Model-based approaches are widely preferred over experimental methods due to 

accuracy and relatively reduced experimental time. 

1.2 Experimental Setup 

The testing is performed in an in-house designed testing station consisting of a thermal 

chamber, a power supply for charging and an electronic load for discharging that is controlled by 

a host computer to control and store data. The test station facilitates charging and discharging a 

battery with any desired current profile and ambient temperature, including the EIS measurement 

of the Li-ion battery. All the experiments are conducted on large format NMC/C power cells, 

which specifications are as summarized in Table 1. 

Table 1. Specifications of the NMC cell 

Item Specification 

Chemistry Active Material: 𝐿𝑖[𝑁𝑖0.6𝑀𝑛0.2𝐶𝑜0.2]𝑂2 

Cell dimensions Size: 99.7 mm × 301.5 mm × 13.17 mm, Weight: 835 gm 

Nominal Capacity 58.9 Ah @discharge C/3 

Nominal Voltage 3.633 V 

Cutoff Voltage 2.5 V, 4.2 V 

Energy Density 528 Wh/L 

Block diagram for the test station is depicted in Figure 3. The capability and specifications 

of the test station are shown in Table 2. National Instruments LabVIEW software is used to control 

the test station. Testing profiles can be constant current (C.C.), constant voltage (C.V.), or the 

combined charging and discharging. 
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Figure 3. Test station block diagram 

Table 2. Performance of the test station 

Term Values 

Max. charge current 50A 

Max. discharge current 125A 

A range of the ambient temperature -20~60 oC 

Data acquisition 

channels 

Channel 

16 Analog input channels 

24 Digital input/output channels 

Analog output channels 

Frequency 625 kS/s 

Resolution 
1 mA (current) 

0.01mV (voltage) 

Frequency range of EIS  1mHz~1kHz 

1.3 Motivations and objectives 

 Battery states and parameters cannot be measured directly while the system is in operation 

and thus need to be estimated. To continuously estimate these states for accurate BMS operation, 

advanced algorithms have been researched extensively. Majority of this research focuses on 

estimating individual states like SOC or SOH instead of providing a comprehensive approach to 

estimate them simultaneously, which is necessary. Implementing separate algorithms for each state 
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require high computational effort which is undesirable for a BMS. Furthermore, battery states are 

inter-dependent and should be estimated simultaneously to improve the accuracy of BMS. 

 Further review of current literature has shown that a majority of the methods that estimate 

the states simultaneously, focus on estimating SOHQ along with SOC [4], [27], [37], [42], while 

SOHp is overlooked. BMSs used in HEVs require a precise real-time estimate of the power 

available. The peak power estimate provides the necessary information required to optimally 

balance the relationship between power performance of the battery pack and the HEV, to meet the 

acceleration and gradient climbing power requirements and to maximize regenerative braking [30]. 

In addition, to avoid over-charging or over-discharging and extend its lifespan [43]. Degradation 

of this power availability or peak power is described by the SOHP which is why it is necessary to 

estimate it along with the other states.  

Monitoring of batteries is a challenging task, because their states are dependent on internal 

parameters that have a nonlinear relation to a variety of external operating conditions like 

temperature and load profiles. In addition, these parameters change significantly as the cell ages, 

which makes it rather difficult to predict its behavior. Thus, advanced battery algorithms are 

needed for BMS that are capable of estimating these parameters throughout the cell life along with 

considering external operating conditions. 

There are certain limitations that must be considered while developing algorithms for BMS. 

Firstly, these algorithms are commonly implemented using microcontrollers, which has limited 

computational power and thus a simple model, such as equivalent circuit model (ECM) is 

preferred. Secondly, there is limited memory space in a microcontroller and as such, recursive 

methods are preferred because they do not need to store a large amount of information as it gets 

updated with each sample time. Lastly, the estimation results should have high accuracy and 
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reliability. Thus, advanced estimation techniques should be applied to achieve the required 

performance. 

Based on the above analysis, an approach that enables simultaneous estimation of SOC and 

SOH, including SOHP and SOHQ, of lithium-ion cells is proposed. This thesis focuses on three 

major topics as listed below: 

• Analysis of cell behavior with respect to aging and temperature 

• Long-term SOC and parameter estimation under different temperature and aging 

conditions 

• SOHP and SOHQ calculation  

1.4 Thesis outline 

The basic structure of the thesis is shown as follows:  

1. Introduction 

This chapter discusses the research background, experimental setup and the motivations 

and objectives of this thesis. The research background briefly introduces the basics of NMC/C 

lithium ion cell along with a definition of cell states and a thorough literature review of SOC and 

SOH estimation methods. 

2. Modeling 

First, the different types of cell models are introduced in this chapter. After reviewing the 

various modeling methods, ECM is selected for this research. The different types of ECM are then 

described and their performances are compared. Based on this, the second order ECM is chosen 

and then its parameters are identified using an offline identification method. An analysis of these 

parameters, with respect to temperature and aging, is provided along with the testing schedules 

employed. 
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3. SOC and SOH estimation 

This chapter is the main focus of the thesis and describes methods for online SOC and SOH 

estimation. First, an overview of the various online parameter estimation approaches along with 

the proposed approach is provided. Then the performance of a traditional EKF for SOC and ECM 

parameter estimation is analyzed and an improved estimator algorithm is proposed. Thereafter, an 

approach for Qmax estimation is described along with a simple, low computation framework to 

implement the two algorithms together. The combined estimator is then validated at different 

temperature and aging conditions using various test profiles. Finally, the cell parameters are used 

to estimate SOH and the results are validated using offline data.  

4. Conclusion and future work 

Concluding remarks and future works are provided in this chapter. 
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 Modeling 

2.1 Overview 

Battery modeling is an important task within BMS development. Various modeling 

techniques have been suggested in the literature [7], [44]–[46] and can be categorized into three 

groups: 

1. Electrochemical model,  

2. Empirical models, and 

3. Semi-empirical model. 

Electrochemical models are physics-based models that describe the electrochemical 

processes occurring inside the cell governed by physical laws that include electrochemical kinetics, 

mass, charge, and energy balance along with potential theory, which forms a set of coupled 

nonlinear partial differential equations (PDEs). The models can provide an explanation of key 

behaviors of battery at the microscopic scale. In addition, all the internal states are fully observable 

and unique, allowing ‘virtual measurements’ of quantities that could not otherwise be measured, 

which allows for analysis and research purposes [3], [17], [47], [48]. However, a large number of 

parameters, sometimes as high as 50, is needed along with a high configuration effort to establish 

these models, which increases complexity and requirements for needed memory size and 

computation time and are unsuitable for practical real-time applications.  

Empirical models are data-driven models that are based on empirical parameters that do 

not include any physical significance. The approaches are easy to configure, and able to deliver 

quick responses and predictions. However, their accuracy is dependent on the complexity of the 

model. Recently, more advanced models based on fuzzy logic and/or neural networks have been 

developed and can estimate states with high accuracy but require extensive testing data for training 

them [12], [15], [20], [29], [31], [33], [49]. 
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Conversely, semi-empirical models provide a relatively effective way to characterize 

battery dynamics with low complexity and high accuracy. These models use simple equations by 

utilizing an understanding of the cell behavior, where the parameters are loosely based on the 

physical processes of the cell that can be easily obtained using adaptive data-driven techniques. 

The low complexity and high adaptability of such models make them the perfect choice for most 

practical applications. Equivalent circuit models (ECMs) are the most popular one that allows for 

a simple electrical circuit to replace the complex electrochemical process. ECMs are constructed 

by putting resistors, capacitors and voltage sources in a circuit [5], [10], [13], [15], [16], [21], [36]–

[38] and a comparative study of different ECMs is shown in [44]. The correlation with battery 

dynamics is preserved by adding capacitors into the circuit. A summary of the different models is 

provided in Table 3.   

Table 3. Summary of battery models 

Method Description Summary References 

Electrochemical 

model 

Use complex equations to 

describe cell internal ion 

transport and reactions 

 High accuracy. 
 Quick convergence. 
 Extensive testing data required for 

training. 
 High storage requirement. 
 High computational cost. 

[3], [17], [47], 

[48] 

Empirical 

models 

Use data-based empirical 

relation to describe cell 

behavior  

 High accuracy. 
 Update based on the dependent variable. 
 Slow convergence. 
 Extensive testing data required for 

training. 
 Low stability. 

[12], [15], [20], 

[29], [31], [33], 

[49] 

Equivalent 

circuit models 

(ECM) 

Use simplified circuit 

diagrams to represent cell 

dynamics 

 No stored data required. 
 No extensive test data required for 

training. 
 Slow convergence. 
 Low stability. 
 Difficult to distinguish the effects of the 

different estimated states. 
 Extensive reference work not available. 

[5], [10], [13], 

[15], [16], [21], 

[36]–[38] 
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2.2 Equivalent circuit model 

  The cell terminal voltage, 𝑉𝑡 under load is described by the open circuit voltage OCV , the 

voltage drop caused by internal Ohmic resistance, 𝑅int, and the overpotentials caused by various 

electrochemical phenomenon like diffusion 𝜂𝑑𝑖𝑓𝑓, charge transfer polarization 𝜂𝑐ℎ,𝑡𝑟 , 

concentration polarization 𝜂𝑐𝑜𝑛𝑐 , etc. [13], [19], [50]: 

int diff ch,tr conc ...tV OCV IR   = − − − − −  (9) 

, where I is the cell current and is defined as positive for discharging and negative for 

charging. The internal Ohmic resistance encompasses the resistivity of the components in a battery 

that include current collectors, the active material of the anode and cathode, and the electrolyte 

[50]. 

Typically, ECMs consist of an ideal voltage source, a series resistors and one or several 

resistor-capacitor groups connected in series with the resistance where the ideal voltage source 

represents the OCV of the battery. The ECM can be categorized into four groups dependent on the 

order of the circuit. 

1. Zero Order ECM: Also called the Rint model, shown in Figure 4, consists of an ideal voltage 

source (OCV) and an internal resistor 𝑅0, which are a function of SOC, SOH and 

temperature. The model is described by Eq. (10), and the terminal voltage is: 

0tV OCV IR= −   (10) 

As the model does not represent transient behavior, it is not suitable for accurate 

estimation of battery states during any dynamic operation (non-constant load). 
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Figure 4. Zero Order ECM 

2. First Order ECM: Also called the Thevenin Model, consists of a parallel RC circuit added 

in series to the Rint model. As shown in Figure 5, the model is composed of a voltage source, 

internal resistors and capacitors. The internal resistors include the ohmic resistor 𝑅0 and 

polarization resistor 𝑅1. The capacitor, 𝐶1 ,is used to describe the transient response during 

charging and discharging. 𝑉𝐶1
is the voltage drop across the RC pair. The electrical behavior 

of the model can be expressed as follows;  

1 1

1 1 1

C CdV V I

dt R C C
= − +   (11) 

1 0t CV OCV V IR= − −   (12) 

Eq. (11)-(12) can be expressed in discrete form with a small sampling time 𝑇𝑠(< 1 𝑠𝑒𝑐) 

as: 

1 1 1 1

1 1, 1 , 1V e I R 1 e

s sT T

R C R C
C k C k kV

− −

+

 
 = + −
 
 

  (13) 

1, 1 1 , 1 1 0t k k C k kV OCV V I R+ + + += − −   (14) 
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The terms 𝑅1 and 𝐶1 are arbitrary coefficients that can have any combination of 

values as long as the term 1
𝑅1𝐶1

⁄  is satisfied with the system. To ensure a system with 

unique parameters, the term 𝑅1𝐶1 is replaced by the time constant τ1, which is related to 

the eigenvalue of the system. The equations can then be updated to: 

1 1

1 1, 1 , 1 1

s sT T

C k C k kV V e I R e
 

− −

+

 
 = + −
 
 

  (15) 

1, 1 1 , 1 1 0t k k C k kV OCV V I R+ + + += − −   (16) 

, where Ts denotes the sampling time.  

 
Figure 5. First Order ECM 

3. Second Order ECM: The First-Order model can simulate voltage behavior to a certain 

extent. However, the various slow and fast acting processes lead to an inaccurate 

representation for extended charge or discharge periods. To improve the performance of 

the model an extra RC network is added in series, which becomes a second order model, 

also called the Dual Polarization Model.  
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It is composed of three parts, as shown in Figure 6; (1) OCV, (2) internal resistors 

such as the ohmic resistor 𝑅0 and the polarization resistors that include 𝑅1 and 𝑅2, and (3) 

the capacitors with 𝐶1 and 𝐶2, which are used to mimic the dynamic response during 

charging and discharging. 𝑉𝐶1
 and 𝑉𝐶2

 are the overpotentials across 𝑅1𝐶1 and 𝑅2𝐶2 

respectively. The electrical behavior of the circuit can be expressed as: 

1 1

1 1 1

C CdV V I

dt R C C
= − +   (17) 

2 2

2 2 2

C CdV V I

dt R C C
= − +   (18) 

1 2 0t C CV OCV V V IR= − − −  (19) 

 

Figure 6. Second Order ECM 

Substituting again with time constants, the description in discrete time domain is given by: 
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1 1

1 1, 1 , 1 1

s sT T

C k C k kV V e I R e
 

− −

+

 
 = + −
 
 

  (20) 

2 2

2 2, 1 , 2 1

s sT T

C k C k kV V e I R e
 

− −

+

 
 = + −
 
 

  (21) 

1 2, 1 1 , 1 , 1 1 0t k k C k C k kV OCV V V I R+ + + + += − − −  (22) 

4. Higher Order Models: Models consisting of three or more R-C circuits can be used to 

increase accurate dynamic responses but increase complexity and computational time.  

Similar to first and second order ECMs, the output equation is described as: 

1 2, 1 1 1 0 , 1 , 1 , 1... V
nt k k k C k C k C kV OCV I R V V+ + + + + += − − − −  (23) 

, where, the overpotential 𝑉𝐶𝑛
 is defined as: 

, 1 , 1

s s

n n

n n

T T

C k C k k nV V e I R e
 

− −

+

 
 = + −
 
 

 (24) 

Higher order models are rarely used for online application due to the high number 

of parameters and states. In addition, OCV is a function of SOC, ( )OCV f SOC= , where 

SOC in discrete form is defined as: 

1
max

1

3600
k k k sSOC SOC I T

Q
+ = −    (25) 

 , where   is the coulombic efficiency (CE). CE is defined as the ration of discharge capacity 

and charge capacity of the cell in a cycle and reaches almost 1 or 100% for most commercial 

lithium-ion batteries [51] 
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The first and second order model provide the best balance between accuracy and complexity 

for most practical applications [24], [44]. Thus, the performance of both models is compared in 

order to select one for application of SOHP prediction. 

2.3 Measurement and analysis of cell parameters 

Parameters of a cell are known to be strongly affected by operating conditions like 

temperature [18], [52] and aging [53]. Generally, the cell parameters are identified offline and 

provide a reference value to analyze effects of aging and temperature on these parameters. This 

also helps in studying the relationship between these parameters and states of the cell.  

Special offline testing routines, shown in Figure 7, are designed to extract the parameters 

and study the effects of aging and temperature using several cells. The offline testing schedule in 

Figure 7 (a) consists of a static capacity test, Hybrid pulse power characterization (HPPC) test, and 

Dynamic stress test (DST) as defined by DOE [6], followed by thirty cycles that consists of 

constant current (CC) discharging and constant current - constant voltage (CC-CV) charging 

profile to age the cell. This profile is repeated until EOL and all these tests were performed at 25o 

C. 

Temperature effects are studied by applying the temperature based testing schedule in 

Figure 7 (b) at 10o C, 15o C, 25o C, and 45o C. Temperature testing was done using a thermal 

chamber where the cell was allowed to rest for 24 hours to ensure the cell is at thermal equilibrium. 

Static capacity test and HPPC test were selected for this schedule as all the cell parameters can be 

evaluated from these two tests. Four cells are used for the offline testing schedule at 25o C and for 

the test at 10o C, 15o C and 45o C, respectively. The current profile and description for all the test 

implemented is provided in Appendix 1: Testing profiles. 
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Figure 7. Testing schedules. 

2.3.1 Qmax 

Qmax is measured using the static capacity test at every 30 cycles and at a temperature range 

from 10o C to 45o C while the nominal capacity, nominalQ , for a fresh cell is provided by the 

manufacturer. The Static capacity test measures the capacity in ampere-hours at a C/3 CC 

discharge rate corresponding to the rated capacity [6]. Firstly, the cell is fully charged by a CC-

CV charging profile, followed by a rest period that takes 2 hours to ensure the cell is at thermal 

equilibrium. Finally, the cell is discharged until it reaches the lower cut-off voltage. 

The measurements from Figure 8 show that Qmax decays as the number of cycle’s increases 

but is randomly affected by temperature, with decreased capacity at 10o C and 45o C and increased 

capacity at 15o C and 25o C. 
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Figure 8. Variation of Qmax with (a) aging, (b) temperature. 

2.3.2 OCV 

As OCV is a function of SOC, the SOC-OCV relationship is measured using a special pulse 

discharge test, shown in Figure 9. The pulse current profile consists of a 0.5 C discharge pulse 

with a duration that discharges the cell capacity by 10%, followed by a one-hour rest period which 

is repeated till 0% SOC. When no load is connected, the cell reaches an equilibrium state after an 

extended period of relaxation and there is no change in terminal voltage. Then, the terminal voltage 

is the same as the OCV and overpotentials can be considered zero.  
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Figure 9. Pulse discharge profile 

SOC-OCV curve, measured at 25o C, is shown in Figure 10. The curve, fitted by a ninth 

order polynomial, is as follows: 

( ) 9 8 7 6 5 4 3 2
1 2 3 4 5 6 7 8 9 10OCV x p x p x p x p x p x p x p x p x p x p= + + + + + + + + +  (26) 

, where x is the SOC that is normalized about a mean of zero and a standard deviation of 

0.3317. A ninth order polynomial was chosen because of the accuracy, where the root mean square 

error (RMSE) is 0.0049 as compared to those of other lower order polynomials ranging from 0.009 

to 0.15. The fitted coefficients results in: 

𝑝1 = 0.0568, 𝑝2 = −0.0725, 𝑝3 = −0.2238, 𝑝4 = 0.2792, 𝑝5 = 0.3037 

𝑝6 = −0.3957, 𝑝7 = −0.1219, 𝑝8 = 0.2649, 𝑝9 = 0.2256, 𝑝10 = 3.675 
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Figure 10. SOC-OCV curve. 

The measured SOC-OCV curves for different temperatures and number of cycles are shown 

in Figure 11. In Figure 11 (a) and (c), the value of nominalQ  is fixed, equal to maxQ  at 25o C, while 

in Figure 11 (b) and (d), the value of nominalQ  is varying, equal to the value of maxQ  at respective 

temperatures and number of cycles. The SOC-OCV curve varies with temperature and aging, as 

shown in Figure 11 (a) and (c), when the value of nominalQ  is fixed. These variations are noticeable 

at the end temperatures, 10o C and 45o C, while they vary slowly as the cell is aged. Thus, the 

SOC-OCV function can be assumed as constant for all aging conditions. These variations are 

adjusted by updating the value of nominalQ  as shown in Figure 11 (b) and (d). Hence, the SOC-

OCV curve can be fixed as depicted in Eq. (26) over the entire operation range if the value of 

nominalQ  is updated. 
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Figure 11. SOC-OCV curve under different aging (a, b) and temperature (c, d) conditions. 

2.3.3 Impedance parameters 

Parameters 0 1 1 2 2, , ,R  and R R    were estimated using Non-Linear Least Square (NLLS) 

from the voltage response at pulse discharge currents. A single pulse current and voltage response, 

depicted in Figure 12, was analyzed to identify the individual parameters as: 

• Subinterval 𝑆0 (𝑡 < 𝑡0): the battery output current is zero and the SOC is constant. In 

addition, the terminal voltage is constant and has reached the 𝑂𝐶𝑉(𝑆𝑂𝐶1).  
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• Subinterval 𝑆1 (𝑡0 ≤ 𝑡 < 𝑡1):  the battery is discharged with a constant current 𝐼𝑑𝑖𝑠𝑐ℎarg𝑒 >

0. Initially, a steep decrease of the output voltage can be seen due to the internal 

resistance𝑅0, and then continues to exponentially decrease given by the OCV (as the SOC 

is decreasing) and the RC circuits. 

• Subinterval 𝑆2 (𝑡1 ≤ 𝑡 < 𝑡2): the battery current is zero so the output voltage, at first, will 

have a steep increase due to 𝑅0, and then there is an exponential increase until it reaches 

𝑂𝐶𝑉(𝑆𝑂𝐶2).  

 

Figure 12. Single pulse profile 

From the above analysis, interval S1 or S2 can be used to determine the RC parameters. Interval 

S2 is preferred because (1) OCV is constant throughout the interval, (2) current I is zero and thus 

voltage drop due to internal resistance is zero and (3) SOC is constant, thus value of the parameters 

can be estimated at a fixed SOC. 
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0
0

discharge

V
R

I
=  (27) 

1. Internal Resistance ( 0R ): 0R  was calculated from the instantaneous voltage drop that takes 

places when a battery is charged or discharged from a resting state [6], [54]: 

0
0

discharge

V
R

I
=  (28) 

2. First Order Model: To find the first order parameters, two cases are analyzed: (1) 

Discharging/Charging and (2) Resting. For the first case, subinterval 𝑆1, the value of input 

current I is constant, and Eq. (15) can be modified as: 

1 1 1

1 1 1 0, , 1 11 1

current current currentt t t

C t C tV V e IR e IR e
  

− − −   
   = + − = −
   
   

 (29) 

, where 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 denotes the duration (𝑡1 − 𝑡0) for when the battery is charged or 

discharged and 𝑉𝐶1,𝑡0
= 0. For resting case, subinterval 𝑆2, input current I is zero, and Eq. (15) is 

modified as: 

1

1 1 1 1, ,

restt

C t C tV V e


−

=   (30) 

, where 𝑡𝑟𝑒𝑠𝑡 denotes the duration (𝑡2 − 𝑡1) for when the battery is at rest. The value of 

𝑉𝐶1
(𝑡1) is required to more accurately define the dynamics at the beginning of the resting phase. 

From Eq. (29) and (30), the overpotential 𝑉𝐶1
 can be defined as: 

current rest

1 1

1 1 1

t t

CV IR e e
 

− −  
  = −
  
   

  (31) 

, The output voltage, from equation (16), is: 
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1
( )t CV OCV SOC V= −    (32) 

Using Eq. (31) and (32), the parameters can be evaluated by methods of non-linear 

regression. The regression equation is: 

current

1 1
1( ) 1

restt t

ty OCV SOC V IR e e
 

− −  
  = − = −
  
   

 (33) 

3. Second Order Model: Parameter estimation results for a second order ECM can be obtained 

using a similar approach as above. Using Eq. (20)-(22), that is simplified for the resting phase, 

the equation for a second-order ECM is given as: 

current rest

1 1

1 1 1

t t

CV IR e e
 

− −  
  = −
  
   

 (34), 

current rest

2 2

2 2 1

t t

CV IR e e
 

− −  
  = −
  
   

 (35) 

1 2
( )t C CV OCV SOC V V= − −  (36) 

The equation in regression form is 

current current current rest

1 1 2 2
1 2( ) 1 + 1

t t t t

ty OCV SOC V IR e e IR e e
   

− − − −      
      = − = − −
      
         

 (37) 

To validate the above method, voltage-current data is simulated using known parameter 

values. The output voltage response is generated using SIMULINK models. The first and second 

order SIMULINK based ECMs are shown in Figure 13. The pulse discharge profile is used, and 

white noise is added to the system to simulate the effects of sensor noises. The standard deviation 

is assumed as 0.05 A and 0.002 V for the current and voltage sensor respectively. The estimated 

voltage and parameter identification results for the first order ECM is shown in Figure 14 and 
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Figure 15 respectively. Similarly, Figure 16 and Figure 17 show the estimated voltage and 

parameter identification results for the second order ECM. 

 

Figure 13. SIMULINK base ECM 

 

 

Figure 14. Voltage estimation using offline identified parameters – First Order ECM 
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Figure 15. Parameter identification results – First Order ECM 

 
Figure 16. Voltage estimation using offline identified parameters – Second Order ECM 
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Figure 17. Parameter identification results – Second Order ECM 

The offline identification method provides consistently accurate results with an average 

voltage estimation error that is less than ±2 𝑚𝑉 and a maximum value of −34 𝑚𝑉 at very low 

SOC (<5%) for both first and second order ECM. The relatively higher errors at low SOC is 

observed due to the rapid change in OCV. Furthermore, the identified parameters are very close to 

the actual values.  

After validating the offline identification method, it was implemented for experimental 

data and the fitting results are shown in Figure 18. The second order ECM is better able to track 

the output response of the system for both discharging and resting phase. This is due to the multiple 
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time constants, which are able to simulate the dynamic response better than first order ECM. 

Voltage estimation error for the first and second order ECM is shown in Figure 19. The results 

show high error at very low SOC, similar to the results from simulation data, and is due to the 

rapid change in OCV. For the higher SOC (100% - 5%) range, voltage errors are less than 26 mV 

for both the ECMs, where the second order ECM has much lower errors compared to the first 

order. The second order ECM does show slightly higher errors at certain instances, but these errors 

reduce significantly at the very next step where it is much lower than those for the first order. For 

these reasons, the second order ECM is preferred over first order. The parameter identification 

results for the second order ECM at BOL is shown in Figure 20. 

 

Figure 18. Offline fitting results 
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Figure 19. Voltage estimation error for first and second Order ECM 

 

Figure 20. Parameter identification results for second Order ECM 
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The effects of temperature on the ECM parameters are shown in Figure 21 and Figure 22, 

where the parameters were obtained using an offline identification method.  Resistances generally 

increase with a decrease in temperature, as observed in Figure 22. Particularly, the internal 

resistance increases by almost 50% from 45o C to 10o C, but similar to maxQ , the ECM parameters 

also show a nonlinear characteristic with respect to temperature changes. The increase in resistance 

by cycling is dominantly caused by growth of the SEI layer and low conductivity of the electrolyte 

[31], which can be identified in Figure 23 and Figure 24, where cell resistances increases linearly 

as the number of cycles increase.  

 

Figure 21. Parameters of the ECM of a fresh cell at different temperatures. 
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Figure 22. Parameters of the ECM of a fresh cell at 50 % SOC at different temperatures. 

 

Figure 23. Variation of parameters with aging at 25o C. 
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Figure 24. Variation of parameters with aging at 25o C and 50% SOC. 
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 SOC and SOH estimation 

3.1 Overview 

Parameters identified in the previous section are essential for any BMS to monitor the 

various states of the cell. The parameter values, identified offline, can be used for estimation of 

states in real time by incorporating look-up tables or empirical functions [18], [53] but require high 

on-board storage and lack adaptability to characterize the varying dynamics of the cell. 

Furthermore, extensive experimentation and data collection are required to build the LUTs which 

need to be repeated if the cell design recipe is changed. For BMSs, online estimation methods that 

are based on a model-based recursive approach, are preferred due to their adaptability and low 

memory requirements. 

Analysis of cell parameters verifies their dependency on temperature and aging and as such 

must be estimated simultaneously with the states, SOC and SOH, to ensure accuracy of the 

estimator. The approach for online estimation is shown in Figure 25. Applied current and terminal 

voltage are measured and used for the model-based estimator. Then, the estimated parameters are 

used to calculate the states of the cell. Of all the cell parameters analyzed, Qmax is slow varying, 

with slight change in value over long periods, while the others are fast varying. Since maxQ  is slow 

varying, and does not need to be updated frequently, it is estimated separately using a multiscale 

approach [16] that reduces computational effort and improves stability of the estimator.  

Firstly, the traditional method for online estimation of the fast-varying ECM parameters 

that include the OCV and Impedance parameters, is analyzed. Once an optimal estimation method 

is determined, an additional estimator is employed for the slow-varying maxQ . The two estimators 

work in a closed loop framework where the states of the first estimator are used as measurements 

for the second, while the second estimator provides input states for the first one. 
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Figure 25. Overview of cell state estimation 

3.2 SOC and ECM parameter estimation 

Simple Online estimation methods, based on either linear Bayesian estimators like Kalman 

Filters (KF) [39] and Least Squares (LS)  [21], [37] or a Lyapunov based observer [5], are easy to 

implement and have low computational requirements, but suffer from stability issues [24] and 

require extensive tuning depending on model and input characteristics which make them more 

suitable for offline applications. In addition, due to the non-linear relationship of the second-order 

ECM between the parameters and the states defined by Eq. (20)-(22), advanced nonlinear 

estimators like Non-linear LS, EKF, UKF, PF, etc. [10], [17], [25], [36], [41], [55], [56], are 

frequently preferred. 

3.2.1  Extended Kalman Filter (EKF) 

According to the comprehensive review of methods for online estimation, EKF is the most 

frequently used estimator and is further investigated for ECM parameter estimation. The EKF is 

based on the first order Taylor linearization of the nonlinear function. The second order ECM 

combined with an EKF is proposed in [15]. The internal resistance of battery (R0) is the only one 

estimated online because it is the major cause for voltage drop. AEKF based on an improved 

Thevenin’ model, as shown in Figure 6, is proposed in [40] where the parameters of the model are 

estimated based on state variables. Discrete Extended Kalman Filter (DEKF) is also used to 
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estimate the parameters and states [23] using separate filters. The nonlinear relation is defined 

through a parameter dependent error covariance.  

Application of EKF for parameter and state estimation has been proposed [39], where an 

extensive review of the methods verify its ability to estimate the cell states along with the states 

and parameters of the ECM. 

In general, EKF assumes the process has a state vector nx R . The process is governed by 

the non-linear equation, 

( )1 ,k k k kx f x u Ww+ = +   (38) 

, with a measurement 
my R  that is, 

( )1 1 1k k ky h x Vv+ + += +   (39) 

, where the random variables, kw  and kv  represent the process and measurement noise 

vectors and 𝑊 and 𝑉 are the associated noise matrices. The process noise w is drawn from a 

distribution 𝑁(0, 𝑄), with covariance matrix Q and measurement noise v is drawn from 𝑁(0, 𝑅), 

with covariance matrix R, while w, v, and x are uncorrelated for all possible values of k. 

The nonlinear equations 𝑓(. ) and ℎ(. ) can be linearized about a nominal reference 

trajectory 𝑥𝑘
𝑅 and control 𝑢𝑘

𝑅, and nominal noise values 𝑤𝑘
𝑅 and 𝑣𝑘

𝑅 using Taylor series as:  

( ) ( ) ( )

( ) ( ) ( )

1 ,

,

R R
k k

R R R R
k k k k k k k k

x x u u

R R R R
k k k k k k k k k

f f
x f x u x x u u Ww

x u

f x u A x x B u u Ww

+

= =

 
 + − + − +

 

= + − + − +      

  (40) 

( ) ( )

( ) ( )

R
k

R R
k k k k k

x x

R R
k k k k k

h
y h x x x Vv

x

h x H x x Vv

=


 + − +



= + − +    

 (41) 

, where 𝐴𝑘 is an 𝑛 × 𝑛 matrix and 𝐻𝑘 is an 𝑚 × 𝑛 matrix defined as: 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 1

1 1

1 1

,
R R
k k

R R
k k

n n

k k

x x x x
n n n n

n nx x x x

f f h h
x x x x

x x x x
f h

A H
x x

f f h h
x x x x

x x x x

= =

= =

      
      
    
   = = = =

    
      
         

         

Let us assume that the control input function, 𝑢𝑘 is perfectly known, which means 𝑢𝑘
𝑅 = 𝑢𝑘 

and 𝑢𝑘 − 𝑢𝑘
𝑅 = 0. In general, this is a reasonable assumption as  𝑢𝑘 is determined by our control 

system, so there should not be any uncertainty. The error between 𝑥𝑘+1 and 𝑥𝑘+1
𝑅  can be defined 

as: 

1 1 1
R

k k kx x + + += −   (42) 

( 1) ( , ) ( ) ( , )R R R
k k k k k k k k kf x u A x x Ww f x u + = + − + −  

1k k k kA Ww + = +     (43) 

Similarly, the error between 𝑦𝑘 and ℎ(𝑥𝑘
𝑅) is: 

k k k kH Vv = +    (44) 

Eq. (43) and (44) result in linear equations and can be used to compute the priori error and error 

covariance, 𝛿𝑘+1|𝑘, and 𝑃𝑘+1|𝑘 and the posteriori error and error covariance, 𝛿𝑘+1|𝑘+1, and 

𝑃𝑘+1|𝑘+1. Using Eq. (42), reasonable estimates of 𝑥𝑘+1 are: 

1| 1 1|
ˆˆ R

k k k k kx x + + += +   (45) 

1| 1 1 1| 1
ˆˆ R

k k k k kx x + + + + += +   (46) 

The choice for the reference trajectory is important here. A reasonable value of 𝑥0
𝑅 would be 𝑥̅0, 

the mean of the initial state. Based on this: 

00 0 0|00|0 0     and    Pˆ
xE x x P = − = =    
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Thus, 𝜹̂𝟏|𝟎 = 𝐴0𝜹̂𝟎|𝟎 = 0, and the error covariance, based on KF equations, can be defined as: 

1|0 0 0|0 0
T TP A P A WQW= +  

Now, the priori state estimate 𝒙𝟏|𝟎 using Eq. (45) is: 

1|0 1 1|0 0 0
ˆˆ ( , )Rx x f x u= + =  

Using the equation of Kalman gain at step k=1: 

1
1 1|0 1 1 1|0 1 1|1 1|0 1 1 1 (1|0) 1 1

ˆ ˆ ˆ    and  ( )   ( )T T TK P H H P H VRV K H K  −= + +  − = =  

The posteriori state estimate 𝑥̂1|1 using Eq. (46) is: 

1|1 1 1|1 1 1 1
ˆˆ R Rx x x K= + = +  

, where ∆1= 𝐻𝑘𝛿1 + 𝑉𝑣𝑘 = 𝑦1 − ℎ(𝑥̂1|0) from Eq. (44). Now, to propagate the state to k=2, the 

reference trajectory can be updated to the posteriori estimate obtained at step k=1. This new 

posteriori estimate is, theoretically, a better approximation compared to the priori value. For 

simplicity, let the priori state and error covariance be denoted as 𝑥̂𝑘
− and 𝑃𝑘

− respectively. Similarly, 

the posteriori state and error covariance can be denoted as 𝑥̂𝑘
+ and 𝑃𝑘

+. Based on this, the EKF 

algorithm is summarized in Table 4 and a detailed description is shown in Figure 26. 
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Figure 26. Description of the EKF 

Table 4. Algorithm 1 – EKF  

 

3.2.1.1 Design of estimator 

State vector x, needed for estimation, is 
1 2 0 1 1 2 2

T

C COCV V V R R R  
  , from 

Eq. (20)-(22). Since OCV is a function of SOC, OCV can be replaced with SOC. Furthermore, 

SOC is an observable state that can be easily defined using the Coulomb’s counting equation given 

by Eq. (25). The updated state vector is now defined as 
1 2 0 1 1 2 2

T

C CSOC V V R R R  
 

. The state and measurement equation are given as: 

Step 1: Initialization –  

Initialize 𝒙̂𝟎
+, 𝑃0

+, 𝑄 𝑎𝑛𝑑 𝑅 

𝒇𝒐𝒓 𝒌 = 𝟎, 𝟏, 𝟐, . . . . . . . , 𝒎  

Step 2: Time update (Prediction) – 

𝒙̂𝒌+𝟏
− = 𝑓(𝒙̂𝒌

+, 𝒖𝒌) 

𝑃𝑘+1
− = 𝐴𝑘𝑃𝑘

+𝐴𝑘
𝑇 + 𝑊𝑄𝑊𝑇 

𝐴𝑘 =
𝜕𝑓

𝜕𝒙
|

𝒙=𝒙̂𝒌+𝟏
−

, 𝐻𝑘 =
𝜕ℎ

𝜕𝒙
|

𝒙=𝒙̂𝒌+𝟏
−

 

Step 3: Measurement update (Correction) – 

𝐾𝑘+1 = 𝑃𝑘+1
− 𝐻𝑘+1

𝑇 (𝐻𝑘+1𝑃𝑘+1
− 𝐻𝑘+1

𝑇 + 𝑉𝑅𝑉𝑇)−1 

𝒙̂𝒌+𝟏
+ = 𝒙̂𝒌+𝟏

− + 𝐾𝑘+1[𝒚𝒌+𝟏 − ℎ(𝒙̂𝒌+𝟏
− )] 

𝑃𝑘+1
+ = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃𝑘+1

−  

end  
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 (47) 

( )
1 2, 1 1 1 0 , 1 , 1t k k k C k C kV OCV SOC I R V V+ + + + += − − −  (48) 

In the above equations Qmax is assumed to be a known value and Eq. (47)-(48) needs to be 

linearized, using a first order Taylor linearization, before the EKF could be implemented. The state 

space form is:  

1k k k k kx A x B u+ = +  (49) 

1 1 1k k ky H x+ + +=  (50) 

Where u is the input current I, y is the measured terminal voltage Vt and the state and measurement 

matrices are: 

1 1

11 1

2 2

22 2

1

2
1

2

2
2

1 0 0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

s s

s s

s s

s s

T T

T T

C s s

T T

T T

C s s

k

V T e IR T e
e e I

V T e IR T e
e e IA

 

 

 

 





− −

− −

− −

− −

 
 
   −  −  
  
 
 

  − 
 − =
   

 
 
 
 
 
 
 
  

 (51) 
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( )
1 1 0 0 0 0

k
k

k

OCV SOC
H I

SOC

 
= − − − 

  
  (52) 

max

0 0 0 0 0 0 0

T

s
k

T
B

Q

 
= − 
 

 (53) 

The matrix Ak, Bk, and Hk are called the Jacobian matrix and needs to be computed at every 

sample time. To compute H, the differential of the OCV-SOC function is required. Using Eq. (26), 

the 
𝜕𝑂𝐶𝑉(𝑆𝑂𝐶)

𝜕𝑆𝑂𝐶
 can be calculated as shown in Figure 27. After setting up the Jacobian matrices and 

the differential function, the EKF can be implemented for estimation. 

One of the main reasons for implementing an online estimation method is to correct any 

initialization errors, due to unknown states of the ECM, based on the voltage error between the 

cell and the ECM. To test the performance of the ECM based EKF, the initial states of the model 

is set as  ˆ 0.5 0.0001 0.0001 0.002 0.003 30 0.001 500
T

=+
0x . The true SOC, measured 

using Eq. (25), is then compared with the estimated SOC along with a comparison of true and 

estimated voltage and parameters. The values of 𝑃̂0
+, 𝑄 and 𝑅 needs to be initialized before EKF 

algorithmm can be implemented. Using the theoretical definition of the error covariance P̂ , initial 

posteriori covariance 𝑃̂0
+ is ( )( )0

ˆ ˆ ˆ
T

P E+  
= − −  

+ +
0 0 0 0x x x x  where, true state 

0 1 1 2 20 0
T

SOC R R R =   0x   with offline identified values at BOL.  
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Figure 27. 
𝝏𝑶𝑪𝑽(𝑺𝑶𝑪)

𝝏𝑺𝑶𝑪
− 𝑺𝑶𝑪 curve 

For practical applications, the true initial value of SOC is unknown, so it is assumed as 0.5 

to test the self-correcting capability of the estimator. The algorithm for a discrete time EKF, 

provided in Table 4, includes two tuning parameters, measurement noise covariance ‘R’ and model 

noise covariance ‘Q’, which directly affect the performance of the EKF [57]. R can be set as a 

constant value that can be approximated beforehand by measuring sensor noises as shown in 

Figure 28, whereas, Q is used to improve model errors generally caused by order reduction, 

approximation, noisy inputs and other factors. Particularly for this case, these model errors are 

present due to the inability of a second order ECM to accurately represent the complex dynamics 

of the cell. These errors vary with operating conditions which makes it difficult to approximate Q.  

Thus, the value of Q is approximated by trial and error method using multiple testing profiles.  
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Figure 28. Analysis of voltage sensor noise (measurement noise)  

3.2.1.2 Validation and analysis 

The performance of EKF is analyzed using a series of testing profiles, including single and 

multiple cycles where both cases are further subdivided into high excitation and low excitation 

inputs. Single cycle profiles include HPPC that consists of repeated pulse discharges followed by 

extended periods of resting that represents a low excitation input, and DST, which is a series of 

constant power discharge and charge steps that represents high excitation input. Multiple cycles 

are implemented to analyze long term stability and viability of the algorithm. The cycles consists 

of a CC-CV profile of ten 0.5 C CC discharge and CC-CV charge cycles, and a driving profile, 

specially developed to simulate the actual driving characteristics of the cell and test the real-time 

performance, are implemented. The testing profiles are provided in Appendix 1: Testing profiles. 

Estimation results for the HPPC and DST profiles are shown in Figure 29 and Figure 30 

respectively, where the SOC value is measured using Coulomb counting and the identified values 

are obtained from offline experiments. The EKF performs better for the DST profile, due to the 

high excitation input, compared to the HPPC, with low SOC and voltage estimation errors and 

good parameter tracking. There is an overall increase in error at the lower SOC range (< 1%) due 
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to (a) rapid variation of cell parameters, especially OCV, and (b) the offline parameter 

identification results are poor for low SOC range and cannot be trusted completely.  

The EKF is able to track the impedance parameters with better accuracy and quicker 

convergence rate, as in the case of R1, for the DST profile due to higher input excitations compared 

to the HPPC. The parameters identified offline are for the resting case, while the estimation is for 

a varying current profile. These parameters are known to vary with current profile which leads to 

the slight error in estimating R1. 

 

Figure 29. Estimation results using EKF for HPPC test 
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Figure 30. Estimation results using EKF for DST 

SOC and voltage estimation results for the first three cycles of CC-CV profile is shown in 

Figure 31 and for driving profile is shown in Figure 32. The EKF is unable to continuously estimate 

the SOC and terminal voltage for the CC-CV profile, with high errors at the beginning of the 

second charging cycle, while the results for the driving profile are highly accurate. This is due to 

the absence of a sufficiently exciting signal, which causes the state estimator to deviate. In addition, 

the estimator tends to accumulate state estimation error until it is unable to correct the output value, 

which leads to the estimator becoming unstable. This behavior is more prominent in parameter 
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estimation where the results becomes incorrect during the low excitation phase, even for the 

driving profile, and the estimator is unable to recover back to the correct value. This behavior is 

known as “bursting phenomenon” [58] and is described in detail in the next chapter.  

 
Figure 31. SOC and voltage estimation – CC-CV profile 

The EKF is suitable for single cycle estimation, with SOC and voltage estimation error less 

than 5% and 0.5 mV for the entire operable range (SOC > 0.1%). The accuracy of estimation is 

known to depend upon several factors, primarily the values of noise covariance’s Q and the input 

signal. This problem associated with tuning the Q value has been discussed before. The second 
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factor is the excitation due to the input signal, which can affect the ability of the estimator to 

accurately monitor the large number of states. 

 
Figure 32. SOC and voltage estimation – Driving profile 

3.2.2 Improved estimator algorithm 

In the previous section, EKF was implemented for SOC and ECM parameter estimation. 

The performance of the estimator was evaluated and analyzed using different current profiles. In 

this section, the drawbacks are discussed in detail, and improvements are proposed to the existing 

method. 
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3.2.2.1 Adaptive Extended Kalman Filter (AEKF) 

A drawback of the Kalman filter is the dependence of its performance on proper selection 

of the covariance, Q and R. A Kalman filter assumes that the covariance of both the process and 

the measurement noise is known. Thus, inappropriate initial noise information can lead to poor 

performance. Therefore, the covariance values can be estimated and changed adaptively using an 

adaptive EKF (AEKF). AEKF methods are classified into four general categories [10], [40], 1) 

Bayesian, 2) maximum likelihood, 3) correlation, and 4) covariance matching. The AEKF 

employing the covariance matching approach is proposed here.  

 The AEKF, using the filter’s innovation sequence, allows the covariance, Qk, and Rk to be 

estimated and updated iteratively using the error in estimation. In EKF, the error between the actual 

measurement, 𝑦𝑘 and the predicted measurement 𝑦̂𝑘
− at any time step k can be written as: 

( ),
ˆ ˆ ˆ ˆ

k y k k k k k k k k ke y y y H x H x vx− − −= − = − += −   (54) 

The error covariance is then, 

, ,
T T

v k y k y k k k kC E e e H P H R− = = +
    (55) 

This covariance can be calculated accurately only if all the possible values of 𝑒 are known. 

For simplification, an approximation 𝐶̂𝑣 is defined as the statistical sample variance estimate of 

the actual 𝐶𝑣. This approximate 𝐶̂𝑣 can be computed by averaging the sum of errors for a small 

window rather than utilizing the whole dataset, which reduces the computational load and makes 

the method practically applicable. In addition, continuously updating the estimation window to 

include the new observations further improves the reliability and robustness of calculation. This 

method is called the moving window approximation. For an estimation window of size m, 𝐶̂𝑣 can 

be calculated as: 
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( )( )
0

, ,

1ˆ Tk

v k i y k i yi i
C e e

m
− −=

=     (56) 

, where 𝑖0 = 𝑘 − 𝑚 + 1. Using Eq. (55) and (56), the measurement noise covariance 𝑅𝑘 

can be approximated as: 

ˆˆ T
k v k k kR C H P H−= −    (57) 

The process noise 𝑤𝑘 is defined as: 

1 ( 1)
ˆ ˆ

k k k k kw x x x x−
+ += − − +   (58) 

Converting Eq. (58) in covariance form, 

1
ˆ ˆ1 k kk k k x xQ P P R

++ −= − +   (59) 

Again, using moving window approximation, 

0
1

1ˆ ˆ ˆ ˆ ˆ( )( )
k T

k k k j j j jj j
Q P P x x x x

m

− −
+ =

= − + − −   (60) 

, where 𝑗0 = 𝑘 − 𝑚 + 1. Substituting 𝑥̂𝑗 − 𝑥̂𝑗
− = 𝐾𝑘𝑒𝑘,𝑦, 𝑄̂𝑘 can be approximated as:  

ˆ T
k k v kQ K C K=   (61) 

The only unknown now is the size of the moving window ‘m’. The size “weighs” the errors 

and must be selected such that it provides sufficient time steps for the filter to stabilize. The 

moving- window based covariance matching method to update Q is shown in Table 5. 

Table 5. Algorithm 2 – Moving window-based covariance matching 

 

𝐶̂𝑣 =
1

𝑚
∑(𝒆𝒌−𝒊,𝒚)(𝒆𝒌−𝒊,𝒚)

𝑇
𝑚

𝑖=1

 

𝑄̂𝑘 = 𝐾𝑘𝐶̂𝑣𝐾𝑘
𝑇 
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3.2.2.2 Variable model framework 

The performance of an adaptive EKF for long term parameter estimation is dependent on 

the Identifiability of the system, which is affected by persistency of excitation of the input signal 

[59]–[62]. Identifiability refers to uniqueness of the model parameters, determined using the input–

output data, whereas, persistency of excitation describes the frequency variations in a signal. The 

adaptive identification of a system requires persistently exciting inputs in order to ensure 

(exponential) convergence of the adaptive procedures [63], where a signal is called persistently 

exciting signal if it is frequency rich. The absence of this persistently exciting input can lead to 

errors caused by covariance windup, causing the estimator to become unstable. These errors are 

difficult to identify and correct as the accuracy of estimated output is not affected, while the 

estimated states and parameters deviate from the true value in the absence of adequate excitation. 

In addition, the parameters of the ECM being estimated are already prone to Observability and 

Identifiability issues [65]. 

All these issues can be resolved by implementing a variable model (VM) framework 

approach, where, the number of observer states are decided dependent on the input signal, i.e., 

certain estimator states are “shut down” (not estimated) if the system is not persistently excited. 

Thus, the persistency of excitation decides the order of the model being estimated, i.e., lower the 

order of persistency, more the number of estimator states that shut down. By reducing the number 

of states, the accuracy of the estimator can be maintained even with low excitation inputs, as 

summarized in Table 6. 

Table 6. Algorithm 3 – Variable model framework 
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The proposed framework works in one of three different modes; 1) High excitation mode, 

2) Resting or Low excitation mode and 3) CV mode. The input signal is constantly monitored and 

the number of steps for which there is no change is calculated as  . If   exceeds a predefined 

period  , the system is said to be in “Resting and Low excitation mode”, otherwise, if the input 

signal is varying, the system is in “High excitation mode”. Lastly, if the cut-off voltage is reached 

while the input current is not zero, the system is in “CV mode”. 

In “High excitation mode”, all eight states in the state vector 𝑥 are estimated and the 

estimator operates normally as described in the earlier section. In “Resting and Low excitation 

mode”, the state vector is now reduced to four states, given as 
1 2 0C CSOC V V R 

  . Since the 

mentioned states and parameters are observable and uniquely identifiable, they do not cause any 

stability issue even during low excitation conditions, while the parameters of the two RC circuits 

suffer from Observability or Identifiability issues [24].  Finally, for the “CV mode”, the number 

of states is reduced to one, i.e.,  SOC . During the CV charging, the ECM parameters and the 

SOC-OCV curve changes rapidly which reduces the estimation accuracy, thus reducing the 

number of states is preferred.  

Step 1: Observe input signal 

if (𝒖𝒌 − 𝒖𝒌−𝟏) = 𝟎 

𝛿 = 𝛿 + 1  

else 

 𝛿 = 0 

Step 2: Update number of states 

if  𝛿 > 𝜗 

 𝑛 = 4 

else  

 𝑛 = 8 

if  𝒚𝒌 >=Cut-off Voltage 

 𝑛 = 1 

end  
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The proposed VM framework ensures a stable estimation for extended periods without the 

need for more computationally expensive methods like UD factorization [66] or describing a 

forgetting factor to prevent covariance windup. The choice of time period   is based on the time 

constant  , which describes the frequency of signal required to identify these parameters. Since 

the larger time constant, as identified using the offline method, is 𝜏2 = 20 minutes,   is chosen 

as 40 minutes, which is twice the time constant and gives the estimator enough time to estimate 

all parameters and “shut down” subsequently, reducing a chance of covariance windup. The block 

diagram for the proposed VM-AEKF is depicted in Figure 33.  

 

Figure 33. VM-AEKF framework 

3.2.2.3 Validation and analysis 

For the proposed VM-AEKF, all the initial values are the same as those for the traditional 

EKF except for noise covariance matrix Q, which is initialized as a zero matrix. The performance 

of the proposed estimator is evaluated using similar profiles as for the traditional EKF. 

Comparison of single cycle results for the VM-AEKF and EKF is shown in Figure 34-

Figure 35. The voltage estimation results are slightly higher for the VM-AEKF while it performs 

better for SOC estimation, with lower errors and faster convergence, compared to the EKF. 
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Improvement in parameter estimation results highlights the advantages of the VM-AEKF with 

quicker convergence of the estimated states and better tracking compared to the EKF.  

 

Figure 34. Comparison of estimation results using EKF and VM-AEKF for HPPC 
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Figure 35. Comparison of estimation results using EKF and VM-AEKF for DST 

On comparison of the proposed VM-AEKF and the traditional EKF, the advantage of the 

former is seen particularly at extended periods of low excitation input condition, as shown in 

Figure 36 for the CC-CV profile. Both the SOC and voltage estimation are improved along with 

better stability. Results for the driving cycle, shown in Figure 37, are similar for both estimators, 

which is expected due to the high excitation signal. Parameter estimation results benefit the most 

from the VM framework with more stable and consistent results and improved accuracy of 

estimation. The higher value of estimated R1 and R0 is due to the aging of the cell. The driving 

cycles were implemented after 10 CC-CC and CC-CV cycles, and as such the cell is aged by this 

time which causes an increase in resistance. 
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Thus, by implementing the VM framework, the errors due to low excitation signals are 

reduced and the estimation results overall are improved. The adaptive noise update also improves 

the stability of the estimator and removes the need of multiple trials for approximating a suitable 

Q value. Even though the voltage estimation error is higher than EKF, they are within acceptable 

limits with a max error of 24 mV excluding at very low SOC ranges, and the improvements to 

state estimation results are noticeable for the VM-AEKF. However, even though the VM-AEKF 

is able to reduce the error in ECM parameter estimation significantly, a persistently excited signal 

is required to accurately estimate and track these parameters. 

 

Figure 36. Comparison of estimation results using EKF and VM-AEKF for CC-CV cycle 



72 

 

 
Figure 37. Comparison of estimation results using EKF and VM-AEKF for Driving cycle 

 

3.3 Qmax estimation 

maxQ  is the maximum amount of charge that can be extracted from the anode of the battery 

in its actual aged state starting from a fully charged state [7]. Updating Eq. (25) as: 

max
13600

k s

k k

I T
Q

SOC SOC +

=
−  

  (62) 

Thus, by monitoring the net change of charge in the system for a given SOC change, maxQ

can be estimated in real-time. The accuracy depends on the integration of current and SOC 

estimation and can be improved by choosing a suitable sampling window. If the window is too 
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large, errors build up in the integrator, which leads to biased results. Conversely, if the window is 

too small, the magnitude of change in SOC is very small, which can cause resolution errors. In 

addition, if the input current is zero, there is no change in both parameters which further 

deteriorates the estimation due to accumulation of noises. Thus, the sampling window is set based 

on every 2% change in SOC ( )1.2 Ah  rather than time. 

Further improvement to the accuracy of maxQ  estimation is performed using an RLS filter 

with a forgetting factor that reduces the effects of noises by considering multiple samples while 

the forgetting factor   controls the contribution of each sample to the covariance matrix. 

 In fact, maxQ  in a cell varies very slowly and its estimation can be updated every 30 minutes 

which allows RLS sufficient time to reduce the noise errors. The estimation model for RLS is 

shown below: 

1
max

1

3600
k kSOC SOC I t

Q
+− =   (63) 

The algorithm for the proposed RLS is summarized in Table 7, where SOCk – SOCk-1 is the 

measurement vector RLSy , estimated parameter ̂  is
max

1
Q̂

and 3600
I t  is the matrix RLS . 

Table 7. Algorithm 4 – Qmax RLS estimator 
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3.4 Combined estimator framework 

In the previous chapters, methods for ECM parameter and Qmax estimation are provided. The 

VM-AEKF method for SOC and ECM parameter estimation was validated using various current 

profiles while Qmax was considered as an input. A combined approach for estimating all cell 

parameters is proposed and then tested under different aging and temperature conditions using 

various testing schedules. 

3.4.1 Design of estimator 

The procedure for implementation of the VM-AEKF along with the RLS estimator is 

summarized in Table 8. A block diagram for the algorithms is depicted in Figure 38, where the 

VM-AEKF is first used to estimate SOC along with ECM parameters, which provides the 

measurement vector, given as the change in SOC, for the RLS. The RLS then updates maxQ  that is 

one of the inputs for VM-AEKF. 

Step 1: Initialization –  

Initialize 𝜃0
+, 𝑃0,𝑅𝐿𝑆

+  𝑎𝑛𝑑 𝜆 

𝑓𝑜𝑟 𝑘 = 1,2,3, . . . . . ..  
Step 1: Integrate charge accumulated – 

𝐼𝑛𝑡_𝐼 = 𝐼𝑛𝑡_𝐼 +
(𝐼𝑑𝑡)

3600⁄  

Step 2: Estimate 𝑸𝒎𝒂𝒙 (RLS) – 

if 𝐼𝑛𝑡_𝐼 > 1.2 

𝐾𝑘,𝑅𝐿𝑆 =
𝑃𝑘−1,𝑅𝐿𝑆𝜑𝑘

(𝜆 + 𝜑𝑘
𝑇𝑃𝑘−1,𝑅𝐿𝑆𝜑𝑘)

⁄   

 𝜃𝑘 = 𝜃𝑘−1 + 𝐾𝑘,𝑅𝐿𝑆(𝑦𝑘,𝑅𝐿𝑆 − 𝜑𝑘𝜃𝑘−1) 

𝑃𝑘,𝑅𝐿𝑆 =
(𝐼 − 𝐾𝑘,𝑅𝐿𝑆𝜑𝑘

𝑇)𝑃𝑘−1,𝑅𝐿𝑆
𝜆

⁄  

𝑄̂𝑚𝑎𝑥 =
1

𝜃̂𝑘
, 𝐼𝑛𝑡_𝐼 = 0 

𝑖𝑓 𝑎𝑏𝑠(𝑄̂𝑚𝑎𝑥 − 𝑄̃𝑚𝑎𝑥) > 1 & 𝑡𝑖𝑚𝑒 > 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

𝑄̃𝑚𝑎𝑥 = 𝑄̂𝑚𝑎𝑥 

𝑒𝑛𝑑 

𝑒𝑛𝑑 

end  
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Table 8. Summary of the procedure for Combined VM-AEKF RLS estimator 

 

 

Figure 38. VM-AEKF with RLS filter. 

The state and measurement equations for estimation of SOC and parameters is discussed 

in detail in the previous sections. The setup for the maxQ  estimator, as explained in section 3.3, 

receives the current integration as an input using the Coulomb counter to define RLS  and the 

estimated SOC from the VM-AEKF for the measurement RLSy . 

 The design for the VM-AEKF has been described in the previous chapter and the same 

initial values are implemented here for validation of the combined estimator algorithm. In addition 

the error covariance for the RLS is ( )( )0,
ˆ ˆˆ

T

RLSP E+  
= − − 

 

+ +
0 0 0 0θ θ θ θ , where 0

max

1
Q

 =  and 

Step 1: Initialization –  

Initialize 𝒙̂𝟎
+, 𝑃0

+, 𝑅, 𝜃0
+, 𝑃0,𝑅𝐿𝑆

+  𝑎𝑛𝑑 𝑅𝑅𝐿𝑆 

𝒇𝒐𝒓 𝒌 = 𝟏, 𝟐, 𝟑, . . . . . . . , 𝒏  

Step 2: Variable model framework (Algorithm 3) 

Step 3: Time update (Prediction – Algorithm 1)  

Step 4: Measurement update (Correction – Algorithm 1)  

Step 5: Adaptive noise update (Covariance matching – Algorithm 2)  

Step 6: 𝑸𝒎𝒂𝒙 RLS estimator (Algorithm 4)  

end  
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the forgetting factor is selected as 0.5 = after multiple trials. To test the self-correcting 

capability of the combined VM-AEKF and RLS estimator, initial capacity is assumed as 

max,0
ˆ 40 AhQ = , which gives 0

ˆ 1
40

 + = . 

3.4.2 Validation and discussion 

Performance of the proposed estimation method is validated using multiple offline and 

online testing profiles at different temperatures and aging conditions. The online testing schedule 

is devised to evaluate the performance of the estimator in real time, which includes both high 

excitation and low excitation inputs. The schedule starts with a static capacity test followed by ten 

0.5 C CC discharge/charge cycles between 90% ~ 5% SOC, which represents the actual operating 

range, ten 0.5 C CC discharge and CC-CV charge cycles at the same SOC range, to test the 

algorithm for repeated CV profiles, and ten in-house driving discharging and CC-CV charging 

cycles, to replicate the actual driving characteristic. All these tests are performed at a constant 

temperature of 25o C until the cell reaches end-of-life (EOL). 

3.4.2.1 Evaluation for BOL at different temperatures 

Estimation results for the CC-CV profile and the driving profile are plotted in Figure 39 

and Figure 40, respectively. The results of the SOC estimation and associated errors for the cycles 

are plotted in Figure 39 (a), Figure 40 (a), Figure 39 (c) and Figure 40 (c) respectively. SOC 

estimation errors are relatively high and increase with time, particularly, the maximum errors are 

25% for the CC-CV profile, and 6.5% for the driving profile. The high errors for the CC-CV profile 

is caused by the measured SOC value that decreases with every cycle. Ideally, the value of actual 

SOC should vary from 0 to 1, while the value of measured SOC reduces further below 1 with every 

cycle, which can be observed in Figure 39 (e). A few causes are errors accumulated by current 

integration, reduction in Qmax due to continuous cycling and difference in Qmax for charging and 
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discharging. Thus, the VM-AEKF is able to estimate SOC better than the measured SOC and is 

not affected by sensor noise or capacity variations.  

In addition, the voltage estimation results and associated errors are shown in Figure 39 (b) 

and (d) and Figure 40 (b) and (d) for the respective current profiles. The maximum error for the 

CC-CV cycles is 55.33 mV at very low SOC (<0.01%) where the parameters varied rapidly, and 

the root mean square error (RMSE) is 1.08 mV. Low errors are observed for driving cycles with 

0.85 mV RMSE and 14.97 mV maximum error, which can be attributed to high excitations 

produced by the driving cycles and the range of observation, i.e., the cell varies between 80% and 

20% SOC and thus errors occurring at low SOC ranges are not present.  

The results of Qmax estimation are shown in Figure 39 (e) and Figure 40 (e), which includes 

the true value along with measured value from the static capacity test, noisy measurements that 

describe the measurement vector RLSy  that was calculated using Eq. (63), and the estimated values 

from the VM-AEKF and RLS estimation. The estimator converges to the true value in less than 5 

hours for both cases. The RLS estimation closely follows the noisy measurements due to the low 

value of ( )0.5 = . The lower value of   reduces the contribution of values at previous sample 

points that makes the filter more sensitive to the fresh samples, which is necessary to keep maxQ

updated, but also causes high fluctuations. The effects of these fluctuations were reduced by 

allowing a suitable window before the value is actually updated, represented by the update points 

in the figure. Thus, the estimator deviates at the beginning of the driving cycle but the delayed 

update approach allows the estimator to stabilize and converge to the accurate.  

The benefits of high excitation inputs for estimation can be further observed in 𝑅0 

estimation from Figure 39 (f) and Figure 40 (f), where the driving cycle based results show much 
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better convergence and stability as compared to those from the CC-CV cycles. As mentioned 

before, persistently excited signal is required to accurately estimate and track these parameters. 

The proposed RLS based estimator adequately tracks the Qmax while the VM-AEKF 

estimates the other states and parameters, even if incorrect initial values are provided, with results 

comparable to the traditionally used combination filter [39] or dual filter [16] approach. In 

addition, the proposed method does not add further states for estimation like in the case of a 

combination filter approach, which increases the computational effort and sensitivity towards the 

input excitation, and is simple to implement compared to the dual filter approach which requires 

complex matrix differentiation for parameter estimation. 

The data from offline tests is used to evaluate the performance of the estimator under 

different temperature conditions. Like the previous case, incorrect initial value of 

( )max max
ˆ 40 AhQ Q =  was applied and the HPPC profile was used. Estimations of Qmax and 0R  at 

different temperatures is shown in Figure 41. The SOC and voltage error statistics are provided in 

Table 9. Performance of the estimator is consistent with the previous cases where, the Qmax 

estimator corrects the initial errors and converges to the accurate value within 5 hours, while the 

0R  estimation is consistent and is able to approximate the true value adequately. However, there 

is still high deviation in 0R  estimation caused by low excitation during the resting phase. In Table 

9, the voltage estimation errors were higher at 10o C and 45o C, while the SOC estimation errors 

were higher at 15o C and 25o C. The high voltage errors are attributed to the large deviation of the 

SOC-OCV curve at these temperatures compared to the SOC-OCV curve at 25o C, as shown in 

Figure 11, while the high SOC errors are caused by the larger deviation between the initial and the 

actual Qmax value, which is larger for 15o C and 25o C compared to those at 10o C and 45o C. 
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Consequently, the proposed estimator was able to accurately estimate the states and parameters of 

the cell under varying temperature conditions even though incorrect initial values were provided.  

 
Figure 39. Estimation results using VM-AEKF and RLS estimator with incorrect Qmax 

value for CC-CV cycle. 
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Figure 40. Estimation results using VM-AEKF and RLS estimator with incorrect Qmax 

value for Driving cycle 
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Table 9. Voltage and SOC estimation error at different temperatures 

Temperature 

(0C) 

Voltage Error (mV) SOC Error (%) 

Max Error RMSE Max Error RMSE 

     

10 28.12 0.52 3.54 1.74 

15 9.64 0.36 6.56 2.99 

25 9.84 0.36 5.35 2.44 

45 28.36 0.52 3.49 1.39 

 

 

Figure 41. Estimation results at different temperatures. 
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3.4.2.2 Evaluation for aging conditions 

 The performance of the proposed estimator is evaluated for the cycle life of the cell, where 

HPPC data and multiple cycling data are used. The initial conditions were the same as that for the 

second case. The voltage and SOC estimation error data for the offline test and online tests are 

provided in Table 10 and Table 11, respectively. The voltage estimation errors are lower for the 

online tests as the lower SOC ranges (< 5%) is ignored while the SOC estimation errors for both 

cells are comparable. Estimation results for the online test at the middle of life (40-45 cycle) are 

shown in Figure 42 and the results are consistent with the previous analysis, with low voltage 

estimation errors, fast Qmax convergence, accurate 0R  estimation and relatively higher SOC errors 

due to incorrect offline measurement. The estimated value of 0R is more than the measured value, 

which is expected as 0R  increases with aging. 

Table 10. Voltage and SOC estimation error for Cell 01 under aging using HPPC data 

Cycle No. 
Voltage Error (mV) SOC Error (%) 

Max Error RMSE Max Error RMSE 

0 55.33 1.08 5.36 2.27 

30 43.67 0.80 5.38 2.28 

60 39.03 0.61 5.46 2.35 

90 29.07 0.57 6.98 2.76 

120 46.43 0.84 6.84 2.89 

150 44.32 0.70 6.87 2.96 

180 44.51 0.87 13.41 2.97 

210 44.98 0.86 7.13 3.09 

240 44.14 0.82 7.20 3.08 

270 42.36 0.95 7.20 3.06 

300 44.70 0.74 7.39 3.06 

Table 11. Voltage and SOC estimation error for Cell 02 under aging 

Cycle No. 
Voltage Error (mV) SOC Error (%) 

Max Error RMSE Max Error RMSE 

0-10 (CC and CC-CV) 14.97 0.85 6.72 2.39 
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10-20 (Driving and CC) 10.16 1.19 8.92 5.45 

20-30 (CC-CC) 12.79 1.04 5.62 1.86 

30-40 (CC and CC-CV) 22.53 1.14 8.73 2.19 

40-50 (Driving and CC) 28.03 1.29 13.77 7.73 

50-60 (CC-CC) 22.36 1.18 9.03 3.42 

60-70 (CC and CC-CV) 18.88 0.99 8.21 2.11 

70-80 (Driving and CC) 9.73 1.23 14.64 6.60 

 

Figure 42. Estimation results using VM-AEKF and RLS estimator with incorrect Qmax 

value for cell 02 after aging (40-45 cycle). 
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3.5 SOH estimation 

SOH is an important criterion to evaluate the long-term degradation of the cell and is 

defined as a ratio of the present condition of a cell compared with the conditions of a fresh battery. 

It represents the abilities of a battery to store energy, source and sink high currents, and retain 

charge over extended periods [7]. These abilities decrease over the battery lifetime due to aging. 

SOH is defined as 100% for a fresh cell at BOL and 0% at EOL when one of these two capacities 

decreases to a minimum value. The cell may still be used when the SOH is 0%, because it is merely 

an indicator that reflects the battery has already reached to its predefined criteria for replacement. 

The definitions for the different SOH, SOHP and SOHQ, are provided in chapter 1.  

The Maximum Capacity of a cell gradually fades during its lifetime and is defined as 

capacity fade or SOHQ. When the capacity is not enough for its normal use, the cell should be 

replaced. Estimation of Qmax is a very challenging task because it is not related to anything directly. 

A method for estimating Qmax has been described in this thesis. SOHQ is defined as: 

max,

max,

100
k

Q
BOL

Q
SOH

Q
=    (64) 

The peak power capability describes the available power at any time instant and is defined 

as the maximum power a cell can provide. The peak power gradually fades during the cell lifetime 

and the power available describes the SOHP of a cell as provided in Eq. (8), where availableP  and 

nominalP  are the instantaneous power available at time step k and the power available at BOL 

respectively. As output power is related to the internal resistance as 
2

int

VP
R

= , SOHP can be 

represented with resistance instead of power terms as: 
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( ) available nominal

nominal available

% 100 100P

P R
SOH

P R
=  =    (65) 

The values of these cell parameters have been estimated in the previous section and the 

results are shown in Figure 43 (a) and (b) where the proposed estimator was able to adequately 

estimate these cell parameters. Based on Eq. (64) and (65), the results for SOHP and SOHQ are 

shown in Figure 43 (c) and (d) while the respective estimation errors are shown in Figure 43 (e) 

and (f). The RMSE are 3.95% and 0.42% for SOHP and SOHQ, while the peak errors are 6.74% 

and 0.88% respectively. The high errors in SOHP are caused by the HPPC input used for parameter 

estimation that has low excitation input signals, which affects the accuracy of ECM parameter and 

in turn accuracy of SOHP. In addition, the value of parameter 0R  is very small (<0.002) and minor 

errors in estimation are exaggerated due to the division of two small numbers in Eq. (65). These 

errors can be prevented by using 0R  as a direct indicator of SOHp instead of using the description 

in Eq. (65). 
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Figure 43. Estimation results for different aging conditions. 
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 Conclusion and future work 

In this thesis, a new approach that facilitates simultaneous estimation of SOC and SOH in 

real time is proposed and validated. The estimation of SOC and ECM parameters is performed by 

employing a VM-AEKF based on a second-order ECM, which assure a better accuracy and 

robustness even with incorrect initial values and noises at measurements. An RLS filter with a 

forgetting factor is used to estimate maxQ  in a closed loop framework that facilitates self-correcting 

and tracking the maxQ  of the cell over extended periods while compensating for effects by 

temperature and aging.  

The performance of the proposed estimator is evaluated using multiple profiles, 

particularly low excitation profiles to examine the ability of the VM framework to reduce the errors 

in state estimation and ensure estimator stability. The RMSE of the estimated voltage is less than 

1.3 mV for all aging and temperature conditions, while the peak error is less than 56 mV for low 

excitation profiles and less than 30 mV for high excitation profiles. In addition, the SOC estimation 

is capable of accommodating the effects of change in maxQ , while cycling and filtering out the 

errors caused by noises present in current measurements. Finally, the estimated cell parameters are 

successfully used to estimate SOHP and SOHQ, which accuracy is 3.95% and 0.42% RMSE, 

respectively. The summary of contributions is as follows: 

1. Literature review of the current methods for SOC and SOH estimation. 

2. Analysis of the effects of aging and temperature on cell parameters. Method for offline 

estimation of the various cell parameters is briefly described and a brief analysis of the results 

is provided. 

3. Analysis of first and second order ECMs using simulated and experimental data is performed. 

The second order ECM is preferred due to its better dynamic response. 
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4. Implementation and analysis of EKF for parameter and state estimation. The EKF is able to 

estimate the states for single cycle profiles but is not suitable for estimation over long term as 

shown in results for the multiple cycle, with particularly poor performance for low excitation 

profiles. 

5. Improvements to traditional EKF by using “adaptive noise update” and a “variable model 

framework”. The proposed VM-AEKF method is tested using single and multiple cycles at 

BOL and the results are compared with that of a traditional EKF. The improvements in state 

estimation results verify the benefits of the VM-AEKF, especially for inputs with low 

persistency of excitation. 

6. Qmax is estimated and incorporated into the VM-AEKF in a closed loop framework. The 

combined estimator is validated for multiple cycles and for different aging and temperatures 

(100 C to 450 C) conditions. 

In addition, a method to evaluate the SOH of the NMC/C cell is proposed considering both 

Power fade, SOHP and Capacity fade, SOHQ. Power fade requires the internal resistance 0R  while 

the capacity fade requires the maximum capacity Qmax as input. SOH of the cell is evaluated using 

offline data at 25o C and the results are compared with offline identified values. 

4.1 Future work 

This research provides a comprehensive solution for long-term state estimation under 

dynamic operating conditions which is readily applicable for real-time applications. Future work 

includes: 

1. Evaluation of proposed approach at low temperatures, i.e. subzero temperatures. 

2. Improvements to the underlying estimator algorithms by implementing higher order 

estimators, like second order EKF and particle filter. 
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Appendix 1: Testing profiles 

1. Static capacity test: this test is used to measure the device capacity in ampere-hours at a 

C/3 constant current discharge rate corresponding to the rated capacity. Discharge begins 

following a default rest from a fully-charged state to max voltage (Vmax) and is terminated 

on a manufacturer-specified discharge voltage limit (Vmin), followed by a default rest at 

open-circuit voltage. The input current profile and output measured voltage are shown in 

Figure 44. 

 

Figure 44. Static capacity test profile 

2. HPPC test: The objective of this test is to determine the 30-second discharge-pulse and the 

10-second regen-pulse power capabilities at each 10% decrement relative to the BOL 

operating capacity for the EV Targets (e.g., for a 2 Ah cell, power capabilities are assessed 
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at 0.2 Ah increments between Vmax and Vmin). The current profile with a magnified view 

of the pulse and the output voltage response is shown in Figure 45.  

 

Figure 45. HPPC test 

3. DST: The objective of this test profile is to demonstrate lifespan in a charge depleting mode 

when subjected to energy use levels and patterns appropriate to the targets. Each profile is 

a series of constant power discharge/charge steps with a total duration of 360 seconds. The 

DST profile is shown in Figure 46 where the cell was first charged to Vmax using the same 

method as that for the static capacity test.  
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Figure 46. DST profile 

4. Driving cycle: The driving cycle is specially designed to replicate the real-time conditions 

for the cell where it is operated in a charge sustaining mode and cycled between 0.8 and 

0.2 SOC. The cell is charged to Vmax before the test using the same method as for the static 

capacity test. It is then discharged using the driving profile multiple times and then charged 

using a CC profile between required SOC range. The voltage and current profiles for two 

driving cycles along with a single driving profile is shown in Figure 47. 
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Figure 47. Driving Cycle 

5. CC-CV cycle: The CC-CV cycles are implemented to age the cell. The cell is charged to 

Vmax before the test using the same method as for the static capacity test. The cell is 

discharged to Vmin using CC discharge followed by a CC charge profile till Vmax. The 

voltage is then maintained constant (CV mode) by reducing the current until it reaches zero 

with a ten second rest between the charging and discharging phases. The voltage and 

current profiles for two CC-CV cycles along with a single driving profile is shown in Figure 

48. 
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Figure 48. CC-CV cycle 

 

 


