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Abstract 

 

 

 Exact, numerical, and perturbative methods are commonly used to solve dynamical 

systems of equations. Many systems’ solutions cannot be written in terms of elementary 

functions thus numerical and perturbative solutions take over and provide only 

approximate solutions (even though perturbative solutions are, in fact, series 

representations of the exact solutions, but truncating higher order terms only provide 

approximate solutions). Therefore, if possible, solving for unique, exact solutions should 

be of utmost importance when determining the dynamics of a system. In general, to solve 

a dynamical system, there must be a sufficient number of invariant equations about 

symmetries, or conservation quantities, to reduce the degrees of freedom of the system.  

One of the most renown dynamical systems is the n-body problem; this thesis will 

aim to provide a sufficient number of conservation quantities for the special case of the n-

body problem that involves only simultaneous elastic collisions of free particles by 

analytical and experimental methods as well as present general formulations of newly 

theorized conservation quantities associated with any dynamical system. This thesis also 

presents the proof of existence of analytical solutions in the three-body collision stated 

above using Bezout’s theorem.  
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m mass 

𝑚𝑜 rest mass 

n number of bodies or degrees of freedom 

t time 

p momentum or conjugate momentum 

q or x position 

𝑞̇ 𝑜𝑟 𝑣 velocity 

𝑞̈ 𝑜𝑟 𝑎   acceleration 

 𝐹⃗ force vector 

ℋ Hamiltonian 

𝜴 constants of motion 

𝛾 Lorentz factor   

𝛽 percent speed of light   

𝑐 speed of light   

𝓜 Momentergy 

𝐶𝑛 constants of motion 

𝑊 work 

𝐾𝐸 kinetic energy 

𝑈 potential energy   
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ℒ Lagrangian 

𝒮 action 

𝐸 total energy for a specified system   

𝛼 symmetry associated with momentergy 
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Chapter 1 

INTRODUCTION 

The n-body problem has been a long-standing unsolved problem in mathematics 

and physics due to the nonintegrability in which the number of bodies in the system is 

greater than two. Much of the n-body problem (particularly, the three-body problem) has 

been studied by Poincaré, who in 1887, along with Bruns, showed that there is no closed 

form solution to the gravitational three-body problem in current mathematical theory. The 

nonintegrability criterion for a dynamical system can be explained several ways, one of 

which is the Liouville definition - for every function of the phase space, there exists a 

maximal set of Poisson commuting invariants. Several proofs showing the lack of a 

sufficient number of commuting invariants have followed the work of Bruns and Poincaré, 

further proving the nonintegrability characteristic of such a system [1,7]. The two-body 

problem using the general formulation of Newtonian equations of motion has been 

completely solved using the momentum, energy, center of mass, and angular momentum 

constants [5]; however, generally, with the existence of an external field (for instance, the 

gravitational field in the celestial case), the solution of the n-body problem, where n > 2, 

cannot be written in terms of elementary functions.  

In all cases of the proofs, however, a potential field is externally applied to the 

system. With a field applied to the system, a new term arises in the Hamiltonian of the 

system: the potential term. The potential term is the source of the nonintegrability mainly 

because of its meromorphic nature. It is of utmost relevance to maintain a stance that, in
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this thesis, there will not be a closed form solution to the three-body problem presented, 

but rather the tools to possibly solve it in the future, or at least uncover certain dynamics 

that have not been investigated to this point. However, many systems have not been 

explored to which experimental and analytical (to some degree) results are achievable. One 

such system is a simultaneous elastic collision of three free particles which will be the 

system used as an example in this thesis. 

Kinetic (or elastic) collision theory, one in which there is no change in kinetic 

energy [2], is important in understanding ionization or dissociation via different types of 

collisions in the atomic, molecular, nuclear, and electric fields, as well as various aspects 

of kinetic gas theory [4], aside from being an important general physics and math problem. 

As with any dynamical system, one of the steps to solving the problem is reducing the 

degrees of freedom of the system by using constants of motion [3,6,8]. Since the two-body 

elastic collision already has a well-known solution, it is the n-body elastic collision that is 

of most interest. If we look at current collision theory, the only constants of motion for 

elastic collisions useful for solving the problem are the linear momentum and energy 

constants; generalized angular momentum is available but is only useful in providing 

conditions under which collisions occur [4]. Current theory on the n-body collision does 

not provide enough constants of motion to describe a system with positions and velocities 

relative to a nonaccelerating origin, and it uses an approximate constant for calculating 

when collisions occur; specifically, it assumes the squared angular momentum term, 

 

is small [4]. To solve the many-body collision, we must provide more constants that are 

not approximations and can be applied in the inertial frame, namely first integrals, in order 

1.1 
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to sufficiently reduce the degrees of freedom of the system [6]. Although the following 

theory can be applied to any n-body elastic collision, the three-body collision will be the 

primary focus of this thesis. 

Analytically, this paper will introduce the concept behind where additional 

constants of motion come from, if they exist, and what physical revelations come from 

them when applied mathematically. Upon examining the results of the particular system 

this thesis will explore (the three body collision) and comparing them to the known current 

collision theory, the conservation quantities used in determining the solutions will be 

accessed for their mathematical validity.  

The layout of the paper is as follows. First there will be a discussion of the use of 

Hamiltonian mechanics in the theory, as the phase space variables will be used throughout, 

and we will use the Hamiltonian to prove the constants are actually constant. Then 

derivations of the conservation quantities and reasoning behind the derivations in 

Newtonian mechanics will be presented along with a relativistic correction and an 

application to free particles. Following this chapter is an explanation of how the foregoing 

ties to Noether’s theorem with new symmetries along with an attempt to derive general 

potentials using results of Noether’s theorem. Then the three-body simultaneous elastic 

collision analysis is explored. With the goal of providing formulations of new integrals for 

the n-body problem, much discussion of physical systems, albeit gravitational or not, must 

follow. The physical relation of the theorized quantities to each system applicable is 

important to understanding the system’s progression through time, space, rotation, and 

other possible symmetries. 
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Chapter 2 

HAMILTONIAN MECHANICS FORMALISM USAGE 

 Let us begin by defining a classical closed system (for now to be holonomic) in a 

non-accelerating frame of reference with n degrees of freedom and n generalized 

(canonical) position coordinates  𝑞1,  𝑞2, … , 𝑞𝑛   and n conjugate momenta  𝑝1,  𝑝2, … , 𝑝𝑛. 

The phase space of a system is defined as the space of all possible states of the system, and 

an arbitrary set of coordinates (𝑞𝑗, 𝑝𝑗) corresponds to exactly one point in the phase space 

[16]. The system’s Hamiltonian, ℋ, depends on the 2n number of phase space coordinates 

(𝑞𝑗, 𝑝𝑗) and possibly a time coordinate t and can be written as 

              

Generally, the Hamiltonian equates to the total energy of a closed system because 

in closed systems there is a time-invariant Hamiltonian that can be written, namely, 
𝝏ℋ

𝝏𝒕
 = 

0, which, if held true, means that the Hamiltonian equals the total energy and is conserved 

throughout the dynamical process [15]. Let us assume non-relativistic motion in a closed 

system to which the total energy or Hamiltonian, or the sum of all the kinetic energies and 

potential energies (if an external field is applied), has the general form 

  

The Poisson bracket operation, {𝐴, 𝐵}, takes the functions of phase space and time 

𝐴(𝑞𝑗 , 𝑝𝑗, 𝑡) and 𝐵(𝑞𝑗, 𝑝𝑗 , 𝑡) and outputs a new function. The Poisson bracket {𝐴, 𝐵} is 

defined as

2.1 

2.2 
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It is known that a function 𝜴(𝑞𝑗, 𝑝𝑗 , 𝑡) is a constant of motion if and only if 

{𝜴, 𝐻}  =  0 for all points in the phase space [15] (already knowing that from the 

formulation of 𝜴 to be discussed later in this theory, it does not explicitly depend on time 

t, thus 
𝝏𝜴

𝝏𝒕
 = 0). In other words, the expression on the right-hand side of the equation of the 

time-evolution of 𝜴 on a symplectic manifold, 

 

must vanish (equal zero). There are several other ways of determining new constants of 

motion, including by experiment and observation or possibly by finding conjugate 

variables in the Lagrangian. For the sake of consistency, the Hamiltonian proof for 

constancy of the constants of motion will be used in this theory. It should be noted that 

canonical coordinates will be used throughout this thesis, as it will be used in the principle 

of least action formulation and the proof of commuting with the Hamiltonian. At this point, 

a sufficient enough discussion of Hamiltonian mechanics has been presented.

2.3 

2.4 
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Chapter 3 

NEWTONIAN MECHANICS DERIVATION 

The Newtonian mechanics derivation of the integrals of motion is the most 

simplistic derivation of this thesis yet shows that constants of motion can be derived from 

a force-based formulation. An energy based derivation can be carried out, but for this 

chapter, and throughout the thesis, we will deal with just Newtonian mechanics (for the 

derivation itself), which is exactly the inherently force-based methodology we are looking 

for. Newton’s definition of force will be manipulated to carry out the derivation, and we 

will assume a nonrelativistic velocity for a particle of interest, so relativistic effects are 

negligible. However, it is necessary to include such effects at velocities close to 𝑐, so a 

relativistic correction will be written in the succeeding chapter, but the explored case for 

this thesis will assume non-relativistic particles. Assuming knowledge of Newton’s laws 

of motion, the second law of motion states that for a constant mass, non-accelerating frame 

of reference, closed system (where  𝑞̇⃗  is a velocity coordinate) 

 

Work is defined as the change in the kinetic energy of a rigid body under the 

assumption that the body is not subject to an external field (the body is free). From 

Newton’s second law, under this assumption, the formulation for work 

3.1 

3.2 
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 Work can also be formulated a different way. Work of a force 𝐹⃗ is the line integral 

of its scalar tangential component along the path of its application point. Inserting the 

equation for force into the work equation yields 

 

Here it is easy to see that the final term of the above formulation is an alternative 

form for a difference in the kinetic energies. We want to express work as an integral over 

velocity for the reason of staying consistent with the definition of term first integrals. Here, 

we will define first integrals as constants of motion that are independent of time, and 

therefore only explicitly depend on phase space coordinates and their derivatives. A similar 

expression of  Eqn. 3.3 can be written for the change in momentum (impulse) of a rigid 

body, 

 

The proposed theory begins with a discussion of how the above equations are 

similar. More specifically, the change in the kinetic energy (work) and the change in the 

momentum (impulse) expressions are very similar; notice that the kinetic energy integrand 

only differs from the momentum integrand by multiplying by a time derivative of position.  

The postulate at hand introduces the simple concept that these integrals are directly 

related to each other, and successive kinetic (not potential) terms can be found by 

multiplying the integrand by 𝑞̇⃗𝑛−1  terms, for n number of bodies. Because we are assuming 

there is no external field applied to the system (or in the case of a particle accelerated from 

rest, that the particle is very slowly accelerated, thus negligible energy loss due to 

radiation), the potential terms are nonexistent in the Hamiltonian, so the sum of the kinetic 

energies and the sum of the momenta over all bodies are conserved quantities, hence is the 

3.3 

3.4 
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reason we are able to manipulate the Newtonian equations in this manner. Essentially, we 

have neglected all perturbative terms, such as dissipative forces, etc. Also, because the (n 

– 1)th integral (and any of the integrals from 0 to n – 1 for that matter) will not be explicitly 

dependent on time, if the quantity commutes with the Hamiltonian in the Poisson bracket, 

it is a conserved quantity. In general, to find the kinetic terms for an n degree of freedom 

system (where n particles simultaneously collide) and expressing it as a system of equations 

involving initial and final velocities (denoted by primes), Eqn. 3.3 can be summed over all 

bodies, since we are initially postulating that it is a constant of motion (also an integral of 

motion in this case), so the integrals can be expressed as 

  

where 𝑚𝑜 is the rest mass of a particle (in general, the mass of a body, in the nonrelativistic 

case here), and i indicates the power of the velocity term.  

 Eqn. 3.5 can also be expressed in terms of initial and final momenta, 

  

Prior to this point, 𝜴 has been an arbitrary function, but we can now define 𝜴 from 

the equation above, expressed as 

  

 The limits of the integrals are zero and a certain velocity  𝑞̇⃗  because the kinetic 

energy of one time, where the velocity of the particle equals 𝑞̇⃗ , is found from integrating 

the above formula with these limits, so only the kinetic energy of the body when it had the 

velocity of interested will be computed. This is quite intuitive. We can also prove the limits 

deduced from a statement earlier: the particle is slowly accelerated from rest; therefore, we 

can take the velocities at time 𝑡𝑜  and 𝑡𝑓 to be zero and 𝑞̇⃗. It should be noted that the 

3.5 

3.6 

3.7 
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nonrelativistic integrals formulated above can remain indefinite and will produce the same 

set of equations; this is not the case for relativistic particles, as we will later see. It should 

also be noted that although we are denoting the  𝑞̇⃗𝑛−1  terms as vectors for generality (this 

will be expanded on in Chapter 7), we must take the norm of the vectors to obtain the 

correct scalar values of 𝜴’s (we will see later that this will equate to a one-dimensional 

scenario which is what will be analyzed, and we are only allowed to do this for the 1D 

case). The expansion of the 𝜴 terms for arbitrary i’s yields the equations  

 

 

 

Is there any physical meaning to 𝜴 terms where 𝑖 > 1? That definition is a bit 

complex for this section of the theory, but we can start from a dimensional viewpoint, and 

give a simple answer. For example, the first integral after energy, 𝜴3, which we can now 

identify as momentergy (Latin for movēre (movement) and energia (energy) or Greek 

ergon (work)) for brevity, or 𝓜, has units of 𝑘𝑔
𝑚3

𝑠3 . To perhaps better understand the 

physical meaning, the simple discussion of momentum, which has the units of 𝑘𝑔
𝑚

𝑠
, should 

be brought to attention. We can imply that the integral equation above starts from a mass 

unit, 𝜴0 (m), which is a scalar quantity. Using the definition above for momentum as the 

integral of mass with respect to velocity, the integral is giving the scalar quantity of mass 

a direction of movement, thus a way of describing the mass’s motion in space. Similarly, 

energy can have motion in space as well, since mass is inherently a form of equating the 

amount of energy in a system, by a factor of 𝑐2, from Einstein’s relation 𝐸 =  𝑚𝑜𝑐2. Its 

motion can also be described by a similar velocity multiplication (although not true in the 

3.8 
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field case) by the scalar quantity of energy, thus momentergy can generally be thought of 

as a characterization of energy’s motion through space, though this view is quite crudely 

simplistic, and possibly partially incorrect. 

These equations seem very simple, but as n increases, the solutions become more 

difficult to attain. Let us use the example of the three-body system. Obviously, assuming 

the three bodies are rigid and a moving about a nonaccelerating one-dimensional frame of 

reference, where v is the one-dimensional velocity and primed coordinates represent the 

velocity in a second (or final) state, the integrals in Eqn. 3.5 can be expanded out to produce 

the following system of equations:  

 

 

These equations should be familiar, as they are just conservation of momentum, 

kinetic energy, and kinetic momentergy. These equations will be later discussed in Chapter 

8, but we must continue with developing the theory beforehand. As one can see, these do 

not describe relative positions as the field terms are nonexistent due to a zero denominator, 

but positions can be solved since there is no acceleration of the particles and can be written 

as a time variant solution using the relation 𝑥 = 𝑣𝑡. So, the postulate in this thesis at this 

point can only be applied to free, nonrelativistic, rigid bodies that are simultaneously 

interacting with each other (elastically colliding), shown in Fig. 1 below 

 

 

 

 

FIG. 1. One dimensional 3-body simultaneous collision 

3.9 
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A closed form of the solutions to this set of equations might exist, however compact 

formulas for each final velocity term are very difficult to attain due to the amount of algebra 

needed to solve this system of equations simultaneously. However, this system of equations 

can be solved computationally quite easily. The result will yield six possible sets of 

answers, with each corresponding to an initial configuration of the bodies prior to 

interaction (more on this discussion in Chapter 8 - 10). For any n-body system, a similar 

pattern can be shown. The two-body elastic collision is a well-defined process based on 

momentum and kinetic energy, thus momentergy is not needed, and the formulas 

describing the interaction are quite simple. However, for systems where n > 2, higher order 

integrals can be used to solve the system analytically, and the solutions become more 

complex.  

It is here that we want to prove that 𝜴 terms whose 𝑖 = 2 will commute with the 

Hamiltonian of a system, and thus result in an entirely new set of symmetries in the 

evolution of a system. Because we have already assumed the particles are free, the 

formulation of the constants do not explicitly depend on time, and we are in a one-

dimensional coordinate system, the Hamiltonian of the system is only a function of 

conjugate momenta and can be defined as  

 

The system’s momentergy can also be expressed similarly by the expression  

 

Expanding the terms of the Poisson bracket {ℳ, ℋ} yields 

3.10 

3.11 
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and the Poisson bracket becomes 

 

This is of course means {ℳ, ℋ} = 0, which very simply proves its commutation 

with the Hamiltonian in the Poisson bracket, thus proving that it remains constant in the 

evolution of a system. 

There is a deeper physics problem here than just proving if momentergy is a 

constant of motion by its commuting with the Hamiltonian in the Poisson bracket. 

Considering the simultaneous collision of particles, comparing the cases of 2 and 3-body 

collision, there is an interesting phenomenon occurring in the physical world that is 

inconsistent with the mathematics presented above. In examining the 2-body elastic 

collision, if we use the formulas already derived in practice for solving such an interaction, 

we notice that momentergy is not constant. But in the case of the 3-body simultaneous 

elastic collision, we are making the astounding claim that momentergy is constant. Why is 

this so? Well, there are two parts to this answer that is even more astounding than the fact 

that momentergy isn’t constant in a 2-body elastic collision, and it is here where the 

conglomeration of these claims ripe for explanation is presented. 

Part one of the answer involves not including the potential term. This will be further 

investigated in Chapter V, but the basic underlying presumption here is that when there is 

3.12 

3.13 
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a potential term included in momentergy, it will always be a constant because there is 

simultaneous interaction between the potentials between all three bodies, and the balance 

of the kinetic terms with the potential terms will make it constant. But what happens in the 

case of free bodies? 

The second part of the answer has much more profound implications to the physical 

world, and we will assume no potential for example. In nature, it is statistically an 

extremely rare event for three particles to simultaneously collide when compared to the 

amount of linear collisions that occur in nature, as one can find from Smith’s paper. 

Nonetheless, we must assume that tertiary collisions occur naturally in the physical world 

for this part of the theory to have any implication at all, albeit a rare occurrence. When two 

particles or bodies (elastic in this case so semantics don’t matter) interact, we can only 

assume that their “inertial terms” are what is interacting. If we think about it from a 

Newtonian perspective, two particles colliding instantaneously exchange a force equal on 

both sides, thus the same change in momentum on a linear time scale, which is an inertial, 

or kinetic-like term since it involves only mass and velocity. However, since there are only 

two objects, we can only consider the first two integrals from equation (2) because that is 

the extent of the transfer of any inertial force. There is no tertiary inertial force exchange 

to consider so introducing the momentergy constant generates an over-constrained system, 

where there are too many equations relative to the unknowns, or in the case of using 

momentergy as one of two constants of motion to solve the problem, it will be too high of 

order to consider, since only second order inertial exchanges are to be considered. We can 

be sure there is a more rigorous mathematical proof behind this, but an undeniably novice 

explanation of it in the physical sense is sufficient for the point at which this thesis is.
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Chapter 4 

STANDARD RELATIVISTIC CORRECTION 

A reformulation accounting for relativistic effects under standard Lorentz 

transformation formulations can be derived directly from the Newtonian formulation 

above. It should be noted, though, that the following formulation assumes a very slowly 

accelerated particle in an electromagnetic field, thus negligible energy loss due to radiation, 

so we can model these particles as free. We could also assume the absence of a field, in 

which case, for the purposes of the derivation, is arguably the same assumption. Once this 

assumption is taken to be true, we can proceed with this part of the thesis. Upon examining 

the final form of Eqn. 3.3, we must first take the derivative of momentum with respect to 

velocity. It is known from relativistic kinematics that the momentum of a particle is  

  

where 𝛾(𝑞̇⃗) is the particle’s Lorentz factor, or correction factor of any coordinate system, 

defined as [3] 

 

The derivative of relativistic momentum with respect to velocity can be carried out 

to produce the expression  

 

It is here where the difference in the relativistic and nonrelativistic formulations 

arise. The final term of the above formulation is referred to as the longitudinal mass of a 

particle, or the mass parallel to the direction of a force applied (in the Lorentz ether theory),

4.1 

4.2 

4.3 
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which is composed of its rest mass and its cubed Lorentz factor. This is intuitive; thinking 

back to the nonrelativistic definition of the work of a force (the line integral of its scalar 

tangential component along the path of its application point), the only component of the 

mass that is acted upon by the force is the mass parallel to that of the force. Inserting this 

expression into the nonrelativistic form Eqn. 3.3, we can obtain the system of integrals 

 

where 

 

These equations expanded out for arbitrary n’s yield relativistic momentum (𝜴⃗⃗⃗1), 

relativistic kinetic energy (𝜴2), relativistic kinetic momentergy (𝜴3), 𝜴4, etc. As stated 

earlier in the text, definite integrals do, in fact, change the final equations resultant from 

the integration; this is due to including the rest mass as part of the derivation. In the 

indefinite case, the equations simply yield total terms (of course, excluding field terms); 

for example, removing the limits of the integral of 𝜴2 yields the relativistic equation for 

total energy 𝐸 =  𝛾(𝑞̇⃗)𝑚𝑜𝑐2, not kinetic energy. However, this is only case for even 

numbered n’s. As stated earlier in this theory, it is the limits of zero and a velocity of 

interest that yields kinetic terms. For even numbered n’s for all 𝜴’s, however, the total term 

must be used when comparing initial and final configurations. The expansion of the left-

hand side of Eqn. 4.4 for arbitrary n’s yields the equations 

 

 

 

4.4 

4.5 

4.6 
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The expansion of (3) without limits yields the total formulations 

 

 

 

 

As stated above, 𝜴⃗⃗⃗1 and 𝜴2 are already known equations, thus 𝜴’s whose i > 1, or n 

> 2, are of particular interest. It shall be postulated, as before, that 𝜴 terms are conserved 

only up to the expansion of Eqn. 4.4 (or Eqn. 3.5 in the nonrelativistic case) where n = i+1, 

in simultaneous collisions of n rigid particles, where the particles are to be slowly 

accelerated from rest, or ideally free, but we now have a relativistic correction for particle 

collisions. To postulate this, however, one must do two things: prove that all 𝜴’s commute 

with the Hamiltonian of the system regarded, therefore proving its time translation 

invariance property, and show the dynamical meaning and importance of 𝜴 terms where n 

> 2, for in these cases, the quantity is a postulate itself;  this was discussed in detail in 

Chapter 3.

4.7 
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Chapter 5 

GENERAL POTENTIAL INCLUSION AND ASSOCIATED SYMMETRY 

In the sections above, we have not included the potential term for obvious reasons. 

For the purposes of this thesis, the kinetic terms, since completely integrable, have been 

used as example. However, it is important to include the potential as most dynamical 

systems exhibit some deviation of its motion from a potential field. It is important to note 

that, in actuality, on a quantum level, there is no such thing as a free particle with definite 

energy even modeled without a potential; nonetheless, we will neglect this aspect of 

dynamics of particles in this chapter, so we will only consider classical mechanics and ideal 

cases. The goal for this section is to obtain expressions that include potential field terms.  

The representation of constants that include potential effects begins with the 

elementary equation of motion for particles, assuming no dissipative forces  

 

or in terms of the time derivative of momentum, 

 

where U is the potential function. 

The same successive velocity multiplication process from Chapter 3 begins with 

multiplying each side by n velocity terms and then carrying out a normal time integration. 

The constants that arise from this, after rearranging the equation, can be expressed as

5.1 

5.2 
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Moving the partial derivatives outside of the potential integral term yields 

 

which holds for any n, assuming we have a potential that is a function of positions 𝑞(𝑡), so 

each 𝐶𝑛 constant can be expressed as 

 

 

 

  

 𝐶2 is the total energy of the system (which will also be the Hamiltonian if the 

potential is independent of time). Carrying out the second term’s integration will just yield 

the system’s potential function. With 𝐶1, this is the full form of a particle’s total momentum 

(not to be confused with linear momentum, which is the first term). This might not be what 

one expects however, as a particle’s linear momentum can sometimes be generally thought 

of as its total momentum, but there are very clear distinctions. A particle’s linear 

momentum is not conserved unless the second term of this expression becomes zero from 

the nature of the formulation of the potential. For example, if we use the gravity field model 

potential,  

  

it is easy to see that the terms will cancel after taking the spatial partial derivative (which 

subsequently equals the force between the bodies) and then summing over all i’s and j’s. 

5.3 

5.4 

5.5 

5.6 
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Hence, upon integrating the zero, we obtain another constant which can be absorbed by 𝐶1, 

thus making the linear momentum of the gravitational case a constant. 

 As one can see from close investigation of 𝐶3, which is the full general form of 

momentergy, the second term cannot be integrated and expressed in terms of elementary 

functions which limits it usefulness. However, 𝐶4 can be integrated and expressed in 

elementary functions. After integration by parts, 𝐶4 becomes 

 

and after substituting in Eq. 5.1, we can obtain 

 

which yields 

 

Although 𝐶3 cannot be integrated, an interesting and useful revelation arises from 

the manipulation of the odd numbered constants by substituting in the total energy or 

Hamiltonian. It shall be postulated that odd numbered 𝐶𝑛’s equal zero, and only holds true 

when we add a potential function that is time independent in the equations of motion.  

Using the fact that total energy, 

 

is constant through time assuming the potential independent of time, and 

substituting in the conjugate momenta that would be in the Hamiltonian for the respective 

mass and velocity, we can now solve for 𝑈(𝑞) and use Hamilton’s equations of motion to 

carry out the proof that odd numbered 𝐶𝑛’s equal zero: 

5.7 

5.8 

5.9 

5.10 



20 

 

 

 

 

 

 

This of course means that if we integrate momentergy again with respect to time, 

we get another constant, or 

 

A similar derivation can be carried out for any odd numbered 𝐶𝑛. 

𝐶3 has some interesting characteristics that should be noted. The kinetic 

momentergy term (first term) of the equation is exactly what is attained from the integral 

expression Eqn. 3.5 earlier in the theory. The potential momentergy term (the second term 

containing the integral which we will denote as Φ) can possibly restrict the problem from 

becoming integrable due to many potential models having intrinsic meromorphic nature, 

although there are some potential models that can be integrated (keep in mind it if the 

indefinite integral we would want to attain). Therefore, a part of this theory includes two 

new concepts: (I) the kinetic term of the theorized class of first integrals (𝜴’s) of the 

equations of motion can always be obtained in terms of elementary functions, and (II) the 

potential terms will serve as possible restrictions on the problem due to their (usually) 

meromorphic nature, so it is the factor for integrability criterion within the equation. 

A more specific discussion of these constants follows. Momentergy can reveal a 

new symmetry in a dynamical system using Noether’s theorem. Noether’s theorem states 

5.11 

5.12 
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that for every differentiable symmetry of a dynamical system, there is some constant of 

motion associated with the symmetry. It must be distinguished here that the converse is not 

necessarily true [3]. The converse is only true, for the purposes of this paper, because we 

are dealing with a general conserved quantity on the phase space which is conserved for 

all possible initial conditions [17]. An important fact of the symmetries and associated 

constants of motion is that when multiplied together, the units equal an action, which is a 

path or trajectory of a body to which the result is a real number. 

The most useful form of this theorem for this paper’s sake is to first take the 

mathematical definition of an action,  

 

 

 

or the abbreviated action, according to Maupertuis’ principle, 

 

One can easily deduce upon investigating the variables involved in each integral 

that the integrand and the variable the integrand is to be integrated with respect to are 

conjugate variables. It is also important to note that once each integral is carried out, the 

resulting value, the action, has units of 𝐽 ∙ 𝑠. With this information, we can determine what 

the symmetry associated with momentergy would be.  

Since we know that momentergy has units 𝑘𝑔
𝑚3

𝑠3
., and we know that an action must 

have units 𝐽 ∙ 𝑠 , we can conclude that the conjugate variable or momentergy, or the 

symmetry associated with it, must have units of 
𝑠2

𝑚
, which has the units reciprocal to that of 

acceleration, but does not mean the symmetry itself is the reciprocal of acceleration. We 

5.13 

5.14 
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can formulate what the action integral, roughly speaking, would look like, setting the new 

symmetry arbitrarily to the variable 𝛼: 

 

which by definition must be minimized for a particle’s trajectory and would result in an 

invariant Lagrangian under a small perturbation 𝛼 =  𝛼′ =  𝛼 +  𝛿𝛼 if the Lagrangian 

were a function of 𝛼. However, it is a bit more complicated than that.  

To show this complexity, let us use the fact that conjugate variables do not commute 

in the Poisson bracket and produce the value of 1 or -1. This will lead to a partial differential 

equation in which one can, in theory, solve for the missing variable:  

 

 

 

 

 

One can clearly see from the partial differential equation, there is no closed form 

solution to 𝛼. Therefore, it is natural to believe that the forms for momentergy and 𝛼 exist 

outside of the realms of current mathematical theory and notation, but as we can prove the 

commutation of momentergy in the Poisson bracket with the Hamiltonian, there must be 

this symmetry, regardless of whether or not its form can be expressed in terms of 

elementary functions. 

5.15 

5.16 
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Chapter 6 

EXPLORING AN INTEGRABLE MOMENTERGY POTENTIAL TERM 

 In this chapter, we shall briefly discuss an integrable potential momentergy. In the 

last chapter, it was discussed that when formulating momentergy with a potential term, it 

must equal zero and also must be a constant through time. 

 Although already a widely known solution is available, the problem chosen is a 

simple mass falling to the surface of the Earth because of the integrability of the potential 

term; since the solution is widely known, it is not a new method to solving the system that 

is of interest, but rather the behavior of the constants and proof they are indeed constant. 

The system is shown in Fig. 2 below. 

 

 

 

 

 

 

 

FIG. 2. Schematic of a rigid mass falling to a flat surface on the surface of the earth 

+ x 
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Taking the equation of motion 𝑚𝑥̈ = 𝑚𝑔, or 𝑚𝑥̈ = −𝑚𝑔 if we allow the 

gravitational acceleration constant to be a positive value, we can find the first few integrals 

using Eqns. 5.5.  

 

 

 

 

where 𝒜 is the mass’s absement, which is the integral of position with respect to time [13],  

 

 Although the above form is a bit ambiguous, it can easily be found for this system 

by the known solutions. If we plot the system’s momentergy with respect to time assuming 

arbitrarily we have a mass of 50 kg, an initial position of 1000 m and an initial velocity of 

0.1 m/s, we get the following plot: 

 

 

 

 

 

 

 

  

 FIG. 3. Momentergy vs. Time 

6.1 

6.2 
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The plot clearly shows that momentergy is constant through time. The value of 

momentergy is not equal to zero, however, because the absement, position, and velocity 

formulations are time dependent. 
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Chapter 7 

EXPLORING THE N-BODY GRAVITATIONAL PROBLEM 

As stated earlier, to solve any dynamical system analytically, one must provide 

enough constants of motion to sufficiently reduce the degrees of freedom of the system. 

With this goal in mind, let us again use Eqns. 5.5 to derive constants of motion. 

Under assumptions that space-time is nearly flat, and that pressure is small 

compared to density, Einstein’s field equations reduce to the Newtonian equations of 

motions for gravity, i.e. 
𝑑2𝑅⃗⃗

𝑑𝑡2 =  −∇𝜙. With this reduction, let’s apply the theorem to 

Newton’s 3D gravitational equations of motion, and use Newton’s dot notation to represent 

total derivatives of time. We will define new coordinates in a non-accelerating frame of 

reference for consistency with traditionally used celestial coordinates, where R1, R2,…, Rn 

are the Cartesian position coordinates. Assuming the bodies are moving around the center 

of mass C (we know it is an inertial point) the equations of motion can be expressed as [19] 

 

, where 𝑖 ≠ 𝑗. To obtain the integrals of motion, the set of equations. 

are used, where the kth term denotes the number of successive velocity dot products. It is 

important to note here that the vector multiplications must be of the same kind to create a 

form that is conducive for integration. Summing over all the masses and accounting for the 

symmetry condition rij = -rji, where rij = Rj – Ri, then integrating with respect to time 

(though the derivatives in the equations are total derivatives of time, so the integration can 

7.1 

7.2 
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be thought of as a total time integration), where 𝑘 = 0, the equation becomes the momentum 

integral of motion, 𝜴⃗⃗⃗1, expressed as  

 

The energy integral of motion, 𝜴2, where 𝑘 = 1, can be expressed as 

 

One can find angular momentum and the center of mass integrals from equation 7.1 

as well, and there are two other equations that can reduce the degrees of freedom of the n-

body problem (one deals with the semi-major axis and the other a time equation), but since 

the first system unable to be solved with increasing n (which is obviously the 3-body 

problem) has 18 degrees of freedom in the 3D case, there are still 6 degrees of freedom to 

be accounted for, so the need for additional constants of motion arises. 

We want to consider the momentergy integral of motion, 𝜴3, i.e. when 𝑘 = 2. 

Accounting for the relation rij = Rj – Ri, the integral can be formulated as 

 

 It is obvious here where the impasse has occurred. It is not unexpected that the 

potential momentergy term cannot be integrated in terms of elementary functions as this 

was a revelation from Eqns. 5.5. The bigger issue here is the successive dot products. 

Current mathematical notation and theory does not allow for a “vector triple dot product”, 

as this would be a dot product between a vector and a scalar. At this point, it should be 

made aware of a comment made in Chapter 3. Since we are dealing with 3D vectors, we 

cannot simply just take the norm of the vector then cube it as this only works in 1D (since 

the vector itself only has one component). To make any sense of what such an operation 

might be, we can use tensor notation. 

7.3 

7.4 

7.5 
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 The definition of a dot product between two vectors using tensor notation is 

 

[18] where 𝑔𝜇𝜈 is the covariant metric tensor, which for all intents and purposes would be 

treated as a 3x3 array when using vectors with three components. So, if we wanted to 

naively expand the idea into a dot product of three vectors, one could write 

 

where 𝐶𝜇𝜈𝜌 would be treated a s a 3x3x3 array, but it is unclear what the components would 

be. Therefore, the usefulness of momentergy for solving the n-body problem is currently 

nonexistent even though, in theory, it is constant.

7.6 

7.7 
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Chapter 8 

ANALYSIS OF THE SYSTEM OF EQUATIONS 

The derivations of the constants and associated proofs now lead to the analysis of 

the one-dimensional three-body simultaneous elastic collision. Assuming we have a system 

depicted by Fig. 1, we will set the system of equations up like Eqns. 3.9, and simultaneously 

solve this system for the primed velocity coordinates. A postulate is now stated as such: a 

closed form of the solutions to this set of equations exists, however compact formulas for 

each of the final velocity terms are very difficult to attain due to the amount of algebra 

needed to solve this system of equations simultaneously. More on this subject matter will 

be in the succeeding chapters. However, this system of equations can be solved 

computationally quite easily. The results yield six possible sets of answers, with each 

corresponding to an initial configuration of the bodies prior to interaction. For any n-body 

system, a similar pattern can be shown, but attention is focused on the three-body case for 

the remainder of the thesis, as stated earlier. 

In order to fully understand the system of equations in Eqns. 3.9, one must be 

familiar with the theory behind polynomial equations, i.e., knowing how many solutions it 

has, overdetermined, underdetermined, etc., and the theory on this subject is quite 

developed. We know that the equations can be categorized as a system of polynomial 

equations as they must be simultaneously solved, and they can be written in the form 𝑓1 =

0, … , 𝑓𝑖 = 0 (Eqns. 9.2), where  𝑓𝑖 are just polynomials in multiple variables with 

coefficients over some field 𝐾 (inour case the final velocities 𝑣𝑖
′ would be the independent 
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variables and the masses 𝑚𝑖 would be the coefficients) [10]. To classify this system of 

equations, we must know its dimensionality, i.e., whether it is inconsistent, zero-

dimensional, or positive dimensional. To do this, normally one would compute the Grӧbner 

basis [9] to find another set of polynomials that have the same solutions, but this can be 

circumvented by applying simple logic to the problem.  

We know that in collision theory, the 2-body collision will have solutions 

corresponding to each possible initial configuration of the bodies. Thus, in the 3-body case, 

this will hold true, assuming we only know momentum and energy (we know these must 

be constant). We know it must have solutions if this is the case, assuming we don’t know 

if they are unique or not. Let us determine its uniqueness again using logic.  

The system is classified as zero-dimensional as the number of independent 

variables equals the number of equations [10]. Now the question arises: how many 

solutions does this system have? Again, we know the 3-body case must have at least as 

many solutions as possible configurations of the initial state, so the zero-solutions 

(inconsistent) case is eliminated. The question to ask now is if the number of solutions is 

infinite or finite (whether the system of zero or positive dimensional.  

According to Bezout’s theorem [11], any well-behaved system (number of 

equations equals number of variables) can only have as many solutions as the orders of the 

system successively multiplied, or 𝑑1, … , 𝑑𝑛 degrees of the systems can have at most 

𝑑1 … 𝑑𝑛 solutions, meaning that when applied to the system Eqns. 3.9, we find it can have 

at most six solutions. This will automatically classify it as a zero-dimensional well-behaved 

system of polynomial equations.
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Chapter 9 

SYMBOLIC COMPUTATION IN MATLAB 

 Given that we now know that the system of equations in Eqns. 3.9 will yield six 

solutions, each solution can be found using any numerical or symbolic method of choice, 

and the six solutions can be matched to each possibility of the system’s initial configuration 

and will arise from the iterative process quite easily.  

 The method we chose is to use MATLAB’s symbolic computation tool for solutions 

to the problem. Using this tool, it is easy to set the independent variables and coefficients 

and simultaneously solve all three equations. This will generate at most six solutions – one 

being the initial state of the particles which, by definition, must be a solution; physically 

this means no collision occurred. The other five solutions are unique and assume some 

simultaneous collision has occurred. Again, this can be scaled to any n-body collision. The 

code for finding the two and three-body collision solutions in MATLAB is provided in the 

Appendix.
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Chapter 10 

POSSIBILITY OF THE EXISTENCE OF AN ANALYTIC SOLUTION 

 Although the sections above explain how the one-dimensional simultaneous elastic 

collision of rigid bodies (specifically the three-body case) can be solved using symbolic 

computation, it is important to explore the possibility of an analytical solution, one which 

can be written in terms of elementary functions and requires no numerical computation.  

 The method used for determining if an analytical solution exists had to be an 

unconventional one, as both MATLAB’s symbolic computation software and Wolfram 

Mathematica could not handle the amount of algebra needed to produce analytical solutions 

to the system of equations. As for manually solving the system of equations in the 

nonrelativistic three-body case only, it is here I will postulate that it is, in fact, possible to 

obtain solutions to them by regular chains, which is a method of finding analytical solutions 

of zero-dimensional systems of polynomial equations. It must be noted that the form 

required to obtain the solutions of equations cannot easily be represented as polynomials 

𝑓𝑖 = 0, producing the triangular system of equations [14]  

 

 

 

from the system of equations 

 

where 𝐶𝜎 are the constants obtained from the summing the left hand side of the individual

9.1 

9.2 
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 equations in Eqns. 3.5. So, in order to prove the postulate that there is an analytical solution 

to the nonrelativistic one-dimensional three-body simultaneous elastic collision, we will be 

exploring the solutions obtained from the symbolic computation method.  In order to 

accurately access the solutions, one must consider some extreme specific cases of the 

system: all masses are the same, all initial velocities are the same, one initial velocity is 

zero, two of the initial velocities are zero, and a general combination. We can always 

exclude the initial velocity configuration solution because in the process of solving the 

system of equations using regular chains, if done correctly, the initial case (bolded) will be 

eliminated, as this simply means no collision occurred at all, thus is not useful. We will be 

using logic from Bezout’s theorem to show that as long as the number of unique solutions 

does not exceed four, then the system of equations has an analytical solution, since 

anything above four will fall into the realm of the Abel Ruffini theorem, stating that there 

is no solution to polynomials whose degree is greater than four [12]. Below are the tables 

of the extreme cases as well as a general case. 

  

Mass 

1 

Mass 

2 

Mass 

3 

Initial 

Velocity 

1 

Initial 

Velocity 

2 

Initial 

Velocity 

3 

Final 

Velocity 

1 

Final 

Velocity 

2 

Final 

Velocity 

3 

Solution 

1 5 5 5 -1 4 10 10 4 -1 

Solution 

2 5 5 5 -1 4 10 4 10 -1 

Solution 

3 5 5 5 -1 4 10 10 -1 4 

Solution 

4 5 5 5 -1 4 10 -1 10 4 

Solution 

5 5 5 5 -1 4 10 4 -1 10 

Solution 

6 5 5 5 -1 4 10 -1 4 10 

 

 
TABLE 1. Same Masses 
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 As one can see in Table 1, for the case of all bodies having the same mass, 

regardless of magnitude and of the magnitude and direction of the velocities, there appears 

to be six unique solutions; however, taking a closer look, it is clear that there are actually 

only two unique solutions, solution two and three, for when all three particles collide 

simultaneously (which of course means there are only two initial configurations of the 

masses that allow for all three masses to collide), as solutions one, four, and five show that 

only two particles have collided, thus when all bodies have the same mass, for this specific 

case, the system of equations can be reduced to a second order polynomial.  

 It is intuitive to think about the case in which all bodies have the same initial 

velocity: there is no other solution besides the initial velocity solution as the bodies never 

collided in the first place and never will, no matter the configuration of the bodies initially. 

  

  

Table 2 explores the case in which all three masses are different, regardless of 

magnitude, but one mass is at rest prior to any collisions, regardless of the magnitude or 

direction of the other velocities.  Solutions two and three are identical, as well as solutions 

four and five. Thus, there are only three unique solutions in this specific case, so the system 

  

Mass 

1 

Mass 

2 

Mass 

3 

Initial 

Velocity 

1 

Initial 

Velocity 

2 

Initial 

Velocity 

3 

Final 

Velocity 

1 

Final 

Velocity 

2 

Final 

Velocity 

3 

Solution 

1 7 5 3 -2 0 6 -0.36292 -2.30171 6.01633 

Solution 

2 7 5 3 -2 0 6 -1.94876 4.80014 -2.11979 

Solution 

3 7 5 3 -2 0 6 -1.94876 4.80014 -2.11979 

Solution 

4 7 5 3 -2 0 6 3.93022 -2.84928 -3.08837 

Solution 

5 7 5 3 -2 0 6 3.93022 -2.84928 -3.08837 

Solution 

6 7 5 3 -2 0 6 -2 0 6 

TABLE 2. One velocity is zero 
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of equations can be reduced to a third order polynomial. If all the masses are the same, we 

get the same pattern of results as Table 1 shows. 

  

 

 

Table 3 shows the case where two of the velocities in the initial state are zero, 

regardless of the magnitude or direction of the other velocity, and all masses are different, 

regardless of magnitude. Note that MATLAB’s symbolic computation software only gave 

five solutions, with four of the five being unique. Thus, in this specific case, the system of 

equations can be reduced to a fourth order polynomial, which is still within the realms of 

polynomials that can be solved in terms of elementary functions. If all the masses are the 

same, it can be shown that we only get two unique solutions which leads to a second order 

polynomial. 

 

Mass 

1 

Mass 

2 

Mass 

3 

Initial 

Velocity 

1 

Initial 

Velocity 

2 

Initial 

Velocity 

3 

Final 

Velocity 

1 

Final 

Velocity 

2 

Final 

Velocity 

3 

Solution 

1 7 5 3 -2 0 0 -1.14434 0.28869 -2.47768 

Solution 

2 7 5 3 -2 0 0 0.07768 -2.15535 -1.25566 

Solution 

3 7 5 3 -2 0 0 0.0861 -1.5139 -2.3444 

Solution 

4 7 5 3 -2 0 0 -0.61943 -2.21943 0.47773 

Solution 

5 7 5 3 -2 0 0 -2 0 0 

Solution 

6 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

  Mass 1 Mass 2 

Mass 

3 

Initial 

Velocity 

1 

Initial 

Velocity 

2 

Initial 

Velocity 

3 

Final 

Velocity 

1 

Final 

Velocity 

2 

Final 

Velocity 

3 

Solution 

1 56.9757 10.0312 4.9346 2.3112 -3.6577 -4.30234 2.3111 -4.08761 -3.42729 

Solution 

2 56.9757 10.0312 4.9346 2.3112 -3.6577 -4.30234 2.3112 -3.6577 -4.30234 

Solution 

3 56.9757 10.0312 4.9346 2.3112 -3.6577 -4.30234 1.69993 -4.83465 5.14796 

Solution 

4 56.9757 10.0312 4.9346 2.3112 -3.6577 -4.30234 0.99516 5.00306 -6.71302 

TABLE 3. Two velocities are zero 
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Table 4 shows a general case that had the most unique solutions out of all tests of 

general cases. It is clear that there are four unique solutions corresponding to a polynomial 

of order four that can be found from the system of equations.  

 It is important to note that these tables only show samples of the specific cases, but 

there were several other tests done for each case which showed results that only went up 

to a maximum of four unique solutions; thus, from Bezout’s theorem, since there are only 

a maximum of four unique solutions, the corresponding polynomial can only be of order 

four since we are dealing with a zero-dimensional system of polynomials. The solutions of 

the general quartic polynomial is well known and can be written in terms of elementary 

functions. So, the postulate that the nonrelativistic one-dimensional three-body 

simultaneous elastic collision has an analytical solution is backed by strong evidence.

Solution 

5 56.9757 10.0312 4.9346 2.3112 -3.6577 -4.30234 -0.58284 6.86431 7.72321 

Solution 

6 56.9757 10.0312 4.9346 2.3112 -3.6577 -4.30234 -0.58284 6.86431 7.72321 

TABLE 4. A General Case 
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Chapter 11 

CONCLUSION 

In this thesis we have identified the need for additional constants of motion for 

general cases as well as for the one-dimensional simultaneous n-body elastic collision, as 

this was unavailable in current collision theory. We derived them and found they are 

adequate for a sufficient reduction of the order of the system in efforts to solve it. It was 

clear that the higher order constants 𝜴𝟑, 𝜴𝟒, etc. commuted with the Hamiltonian and thus 

must be constant in the evolution of the system, whether a collision occurred or not, and 

that with each constant there is an associated symmetry. The purpose of this study was to 

explore new constants of motion for any dynamical system and was refined to solve the n-

body collision as this system was most applicable given the method for finding a new 

constant because the constants needed to solve the problem can be written in terms of 

elementary functions. With this information, the possibility of using this method for other 

dynamical systems might hold some merit for good potential in future studies involving 

many-body collisions and perhaps even the n-body problem with any field. 
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APPENDIX 

 

 The following is the MATLAB code for generating all possible solutions, using 

MATLAB’s symbolic computation software, of the one-dimensional two and three-body 

nonrelativistic simultaneous elastic collisions. Four or more body collisions can be coded 

in a similar fashion. 

clc 

clear  

close all 

 

% ----- INPUTS ----- 

 

prompt = {'Enter Mass 1 (in g)','Enter Mass 1 Velocity (in m/s)','Enter Mass 2 (in g)','Enter Mass 2 

Velocity (in m/s)','Enter Mass 3 (in g)','Enter Mass 3 Velocity (in m/s)'}; 

promptTitle = ('INITIAL CONDITIONS'); 

num_lines = 1; 

defaultAns = {'5','-1','2','4','1','-10'}; % Default Answers 

inputAns = inputdlg(prompt,promptTitle,num_lines,defaultAns); 

m1 = str2double(inputAns{1});  

v1 = str2double(inputAns{2}); 

m2 = str2double(inputAns{3}); 

v2 = str2double(inputAns{4}); 

m3 = str2double(inputAns{5}); 

v3 = str2double(inputAns{6}); 

name = inputAns{6
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% ----- Solve the Systems of Equations ----- 

 

tic 

syms v1prime v2prime v3prime 

S = vpasolve([((m1*v1 + m2*v2 + m3*v3) == ((m1*v1prime) + (m2*v2prime) + (m3*v3prime))), 

((((1/2)*m1*(v1^2)) + ((1/2)*m2*(v2^2)) + ((1/2)*m3*(v3^2))) == (((1/2)*m1*(v1prime^2)) + 

((1/2)*m2*(v2prime^2)) + ((1/2)*m3*(v3prime^2)))) , ((((1/3)*m1*(v1^3)) + ((1/3)*m2*(v2^3)) + 

((1/3)*m3*(v3^3))) == (((1/3)*m1*(v1prime^3)) + ((1/3)*m2*(v2prime^3)) + ((1/3)*m3*(v3prime^3))))], 

[v1prime, v2prime, v3prime]); 

V1prime = S.v1prime; 

V2prime = S.v2prime; 

V3prime = S.v3prime; 

syms v11prime v22primeT = vpasolve([m1*v1 + m2*v2 == m1*v11prime + m2*v22prime, 

((((1/2)*m1*(v1^2)) + ((1/2)*m2*(v2^2))) == (((1/2)*m1*(v11prime^2)) + ((1/2)*m2*(v22prime^2))))], 

[v11prime, v22prime]); 

V11prime = T.v11prime; 

V22prime = T.v22prime; 

toc 

 

% ----- Print Solutions ----- 

 

fprintf('First Pair Solution (Two Balls)....................[%9.15f %9.15f] (m/s)\n', V11prime(1),V22prime(1)) 

fprintf('Second Pair Solution (Two Balls)...................[%9.15f %9.15f] (m/s)\n', V11prime(2),V22prime(2)) 

fprintf('First Pair Solution (Three Balls)..................[%9.15f %9.15f %9.15f] (m/s)\n', 

V1prime(1),V2prime(1),V3prime(1)) 

fprintf('Second Pair Solution (Three Balls).................[%9.15f %9.15f %9.15f] (m/s)\n', 

V1prime(2),V2prime(2),V3prime(2)) 
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fprintf('Third Pair Solution (Three Balls)..................[%9.15f %9.15f %9.15f] (m/s)\n', 

V1prime(3),V2prime(3),V3prime(3)) 

fprintf('Fourth Pair Solution (Three Balls).................[%9.15f %9.15f %9.15f] (m/s)\n', 

V1prime(4),V2prime(4),V3prime(4)) 

fprintf('Fifth Pair Solution (Three Balls)..................[%9.15f %9.15f %9.15f] (m/s)\n', 

V1prime(5),V2prime(5),V3prime(5)) 

fprintf('Sixth Pair Solution (Three Balls)..................[%9.15f %9.15f %9.15f] (m/s)\n', 

V1prime(6),V2prime(6),V3prime(6)

 


