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Abstract

In this work, we empirically study an emerging problem in machine learning community,

i.e., the adversarial samples. Specifically, we focus on the discussion within the realm of

neural networks. The existence of adversarial samples reveals yet another inconsistency in

our hypothesis about neural networks. A adversarial sample is usually generated by adding

very small and carefully chosen noise to a clean data sample, e.g., adding noise to an image

to change some pixel values, replacing a few words in a sentence. Despite that they are

almost the same (visually or semantically) as the clean samples from the perspective of

human beings, the adversarial samples will trick a well-trained neural network into wrong

predictions with very high confidence. In addition, we also show that adversarial samples

exist in real world when the objects are in an unusual pose (e.g., a flipped-over school bus).

We study this problem from two sides of the coin, i.e., defending against adversarial samples

and generating adversarial samples. Concretely, to defend against adversarial samples, we

propose a binary classification method to filter out adversarial samples. It achieves almost

perfect accuracy on adversarial samples from seen distributions. However it fails to recognize

adversarial samples from unseen distributions. To generate of adversarial samples, we first

propose a framework to generate text adversarial samples for text classification problem

(e.g., sentimental analysis). The framework generates high quality text adversarial samples.

The limitation is that we do not have an explicit control over the semantics and syntax. In

addition, we propose another framework to generate image adversarial samples by rendering

3D objects in unusual poses. It shows that natural adversarials in real world may exist in

abundance. What’s lacking in this dissertation is a theoretical exploration of this problem.

We may revisit this problem when theories behind neural networks get matured.
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Chapter 1

Introduction

1.1 Problem Overview

Artificial intelligence (AI) helps us in many challenging tasks, including computer vision

(e.g., image segmentation, object identification and recognition, image classification), natural

language processing (e.g., machine translation (MT), question-and-answer (QA) system),

recommendation systems, search, speech recognition, etc. The workhorse behind AI are

the numerous machine learning models, including classical models (e.g., generalized linear

models, SVM) and deep learning models, i.e., neural network-based models. Recently, deep

learning models achieve state-of-the-art results in many fields.

However, [Sze+13] first shows that the state-of-the-art image models may be tricked into

wrong predictions with high confidence when the input images are perturbed with carefully

crafted noise. Furthermore, these perturbed images appear visually almost the same as

the original ones from the perspective of human beings. These images are referred to as

the adversarial images. Many followup work show that the adversarial samples are more

universal than expected. Figure 1.1 demonstrates examples of the adversarial images on

MNIST [LC10] dataset. As we can see, despite of the noise, we, as human beings, have no

problem identifying the correct label for the digit. However, a well-trained neural network

model (a simple convolution neural network (CNN) with test accuracy over 99% on clean

test data) makes wrong predictions about the digit labels with high confidence.
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Figure 1.1: Adversarial images from a clean data sample in MNIST dataset [LC10]. The
leftmost column is the clean image. The rest columns show 1) on the top, the adversarial
images (top) and 2) on the bottom, the pixel difference between the adversarial image and
the clean one. The labels on top of each column are the methods used to generate the
adversarial samples. The labels below are the predictions by a well-trained neural network
model (with test accuracy over 99% on clean test data) with probabilities (interpreted as
confidence) in parenthesis. Note that the pixel values are normalized to (0, 1) before being
fed into the classification model. As a result, the noise value range is (−1, 1).

1.2 Motivation

The investigation into this phenomenon has important applications both in practice

and in theory. In the real word, adversarial examples pose a serious problem since more and

more tasks are automated by neural networks models. Take the hateful comment filtering

as an example. The replacement of a few seemingly non-important words in a sentence may

turn a hateful comment into a "good" one, from the machine’s point of view. This could

potentially cause severe social problems. For some life-critical scenarios (e.g., autonomous

driving, cancer diagnose), the lack of understanding in adversarial samples may put life at

risk [Pre18]. As discussed in Section 5, neural network models may fail to recognize objects

in weird poses. On the other hand, a deeper understanding of this adversarial phenomenon

may advance our knowledge about neural networks. The theory of neural network is like a big

jigsaw puzzle where the adversarial phenomenon is one important piece among many others,

e.g., the generalization hypothesis, learning dynamics, non-convex optimization, properties
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of the loss surface, etc. In this dissertation, we mainly focus on the empirical exploration of

this problem.

1.3 Road Maps

In a series of work, we investigate both sides of the adversarial problem, i.e., defending

against adversarial samples and generating adversarial samples.

1.3.1 Defending against Adversarial Samples

Observations from the image adversarial samples are that

1. The adversarial noise follows a specific direction [GSS14].

2. The neural nets are sensitive to individual pixel values [Sze+13].

Then it is natural to ask "can we utilize these properties to build a binary classifier to filter

out adversarial samples?" The answer is yes and no. We propose a binary classification

method to separate the adversarial samples from the clean ones. The results demonstrate

that it works well for adversarial examples from seen distributions. However, there are also

limitations to this binary classification approach where it fails to recognize the adversarial

examples from unseen distributions. Please refer to Chapter 3 for a detailed discussion. This

is based on our work [GWK17]. Note that another group proposed similar idea [Met+17]

independently from us around the same time. We will have a brief discussion about the

difference in our work.

1.3.2 Generating Adversarial Samples

First, we propose a framework to generate text adversarial samples. The difficulty of

generating adversarial texts are two-folds.

1. The input space is discrete, which makes it difficult to perturb the input by accumu-

lating small noise, as is common in generating adversarial images.
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2. The quality evaluation of the generated texts are intrinsically difficult. Besides human

evaluation, we have not yet found better ways to compare the quality of two text piece.

We propose a framework to workaround the first problem. Please refer to Chapter 4 for a

detailed discussion. This is based on our work [Gon+18].

Second, we propose a framework to generate natural image adversarial samples. Instead

of fiddling with the pixels in the input image, we render 3D objects in unusual poses to

generate adversarial images. The implication of this work is that adversarial examples may

exist in abundance in the natural world. This is based on our work [Alc+18]. Note that

despite that I include the whole work in this thesis for completeness, I contributed to only part

of the experiments and discussion. Concretely, Michael contributed to the non-differentiable

renderer experiments and analysis, Qi prepared the dataset, Chengfei contributed to some

analysis, and I contributed to the differentiable renderer experiments and analysis. Michael

and Qi developed the desktop version of the software release with the paper, while I prepared

the web version. Please refer to Chapter 5 for a detailed discussion.
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Chapter 2

Background

We briefly introduce some background knowledge about neural networks in Section 2.1,

please refer to [Goo+16] for a more thorough discussion. In addition, we will discuss some

adversarial algorithms in image domain in Section 2.2. These algorithms demonstrates dif-

ferent properties of adversarial examples.

2.1 Neural Networks

Neural network is a connectionism model comprising of artificial neurons that are inter-

connected in a certain pattern. The neuron was originally inspired by the biological neurons,

as shown in Figure 2.1. Despite of the widely used analogy between biological and artificial

neurons, they are, in effect, very different from each other in the way they work. In the

following context, we use neurons to refer to artificial neurons.

Figure 2.1: The artificial neuron (right) is inspired by the biological neurons (left). For the
artificial neuron on the right, The x’s are signals from other neurons, weights w’s controls
the signal strength. The cell is essentially a function f that aggregates and transforms the
inputs to produce the signal. (image credit: cs231n)

Simply put, A neuron is just a function. It can be simple math functions, e.g., identity

function f(x) = x, sigmoid function f(x) = 1/(1 + e−x), rectified linear units (ReLU)
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f(x) = max(0, x), etc. Some neurons may be more complex. Recurrent cells have feedback

loops, i.e., output being fed into the input (the dotted line in Figure 2.2). Some neurons

may have internal parameters, e.g., filters in the convolution network (f(X) = sum(M
⊗

X)

where
⊗

denotes element-wise multiplication, M is a weight matrix of the same size as X).

More generally, each neuron may also be a small neural network [LCY13]. Depending on

the level of granularity, neurons may take different forms. The simple ones may be used as

motifs to construct more complex ones [ZL16].

fθ
w1x1
w2x2

w3x3

Figure 2.2: A general illustration of a neuron, which is a function. Some neurons may have
internal parameters, e.g., filters in the convolution network. Others may have feedback loop,
i.e., dotted lines in the figure, e.g., LSTM cells.

Connecting these neurons in a certain pattern, it forms a neural network system. In

a practical neural network, there are usually millions of weights. The training of neural

network is the process of obtaining a suitable value for each of the weight. Despite that

the training procedure is usually formulated as a non-convex optimization process where the

target is to minimize some loss term L, the gradient descent (GD) algorithms work pretty

good in practice, e.g., first-order GD (e.g., stochastic gradient descent (SGD), Adam [KB14]),

second-order GD (e.g., Levenberg–Marquardt (LM) [Mor78]). The training algorithm is

usually referred to as the error back-propagation [RHW86]. It is, in effect, an application of

the chain rule. The error backpropagation for a single neuron is illustrated in Figure 2.3.

2.2 Adversarial Images

In this chapter, we briefly discuss some of the adversarial generating algorithms in

the image domain. Each algorithm represents a different view of the adversarial samples.
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Figure 2.3: The error backpropagation in a single neuron. The green lines are forward pass,
while the red lines are backward pass, i.e., the back-propagation. The error L is passed back
through the system following the chain rule to calculate each weight’s contribution to the
error term, e.g., ∂L

∂x
, ∂L
∂y
. (Image credit cs231n)

Besides, these algorithms demonstrate the basic ideas on how to find adversarial samples (or

noises) for a target model. Adversarial algorithms in other domains (e.g., sentiment analysis,

speech recognition) are generally variants of these algorithms, and will be surveyed in the

following chapters where necessary.

2.2.1 Notations

In this section, we will introduction some general notations used in this dissertation.

Notations specific to one algorithm or certain part of the analysis are introduced in each

section respectively.

We denote a well-trained classifier by f : Rm → {1 . . . k} which maps an m-dimensional

input vector to a discrete label set. We denote the input by x ∈ Rm, output y ∈ [0, 1]k, i.e.,

y = f(x). The ground truth for x is denoted by y. Note that we usually have an probabilistic

interpretation for the output y. if we have k = 2, i.e., binary classification, then the output

layer is usually a sigmoid function, and y represents the probability of x belonging to class 1.

If k > 2, i.e., multi-label classification, the output layer is usually passed through a softmax

function which generates a probability distribution over the labels, i.e.,
∑

i yi = 1. And yi

(the i-th component of y) represents the probability of x belonging to i-th category.
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If we denote the predicted label for x by lx, then

1. In the binary classification case l = 1 if y > 0.5 and 0 otherwise.

2. In the multi-label classification case, lx = arg maxi{yi}. In this case, the label is usually

represented by one-hot encoding. For example if k = 3, and the true label for x is 1,

then y = [0, 1, 0].

Abusing the notation a little bit wherever the meaning is clear, we use f(x) 6= f(x̃) to denote

that the model f predicts different labels for x and x̃.

In addition, we assume that the classifier f is associated with a continuous loss function

J(y, y). Common choices for the loss function J are cross-entropy loss, mean squared error

loss (MSE), etc.

Although, for simplicity, we illustrate the adversarial algorithms with a vector as the

input, the algorithms and their variants can be applied to tensor input as well, e.g., an image

input of size W ×H × C.

We use δx to denote the small perturbation found by the adversarial algorithms. The

adversarial sample for x is denoted by x̃ = x+ δx. Some algorithms are targeted attack, i.e.,

allowing to change the prediction of x̃ to a user-defined label, which is denoted as ỹ.

2.2.2 Problem Formulation

Generally speaking, we want to find a small perturbation δx for an input x such that

a well-trained classifier f , that correctly predicts x, will produce a wrong prediction for x̃,

i.e., f(x) 6= f(x̃) (e.g., see 1.1).

The above is a very broad definition, different algorithms may formulate the problem in

different ways. Besides, regarding the definition of δx being small, there is no hard criterion,

nor a widely accepted measurement. In literature, the L1-, L2-, L∞-norms are usually used

as the measurement when generating and comparing different adversarial algorithms. The
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general guideline is that the perturbed inputs x̃ should not interfere the judgment of human

beings.

2.2.3 Overview of Generating Adversarial Images

Generally speaking, the proposed adversarial generating methods in literature fall into

two strategies based on its intuition, where the core idea of the first category is to move data

points around till its label changes, and the other one is to create a mapping between clean

and adversarial samples (or noises).

Move Data Points

Essentially, this class of methods move the data points a small step along a carefully

chosen direction. It has been shown that it is very unlikely to arrive at adversarial samples

simple by a random walk [Sze+13].

1. The direction may be where the loss of the clean samples increases, e.g., FGSM [GSS14]

and its variants, FGSM (without label leaking) [KGB16a], iterative FGSM [KGB16b],

FGVM [Miy+15]. It may also be the direction where the loss of adversarial samples

decreases, e.g., constrained optimization based [Sze+13].

2. The direction may also be where the probability of the correct label decreases (or the

probabilities of the target label increases), e.g., JSMA [Pap+15b], CW [CW16].

3. It could also be the direction towards the decision boundary e.g., DeepFool [MFF15],

one-pixel attack [SVK17], so that one tiny nudge across the boundary would create an

adversarial sample of a different category.

Map Clean Samples to Adversarial

This class of methods are relatively less explored. Adversarial transformation network

(ATN) [BF17] employs an autoencoder to generate adversarial samples or noises. [Xia+18;
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ZDS17] employs a generative model (i.e., GAN [Goo+14]) to map from clean samples to

adversarial ones. The advantages of this class of methods are (i) that the generation is usually

fast since only one pass of forward computation is needed, and (ii) that the adversarial sames

may be of great diversity if a generative network is used.

2.2.4 Case Studies

Constrained Optimization Approach

[Sze+13] first explored the adversarial images following a constrained optimization for-

mulation. Concretely, the authors aim to

• Minimize ‖δx‖2 subject to

1. f(x̃) = l

2. x̃ ∈ [0, 1]m

Note that the task in this formulation is non-trivial only if lx̃ 6= lx. The second constraint

guarantees that the x̃ is a valid image. There might exist many valid minimizers and the

exact solution may be computationally prohibitive. The authors proposed an approximation.

• Minimize c‖δx‖+ J(f(x̃), ỹ) subject to x̃ ∈ [0, 1]m.

Where the scale c is determined by line search. The author use L-BFGS to solve This

constrained optimization. The downside of this formulation is that

1. there are not many choices for the optimization methods since most only work in

unconstrained case, and

2. the constrained optimization take longer.

The Carlini-Wagner (CW) [CW16] uses a reparameterization trick to turn it into an

unconstrained optimization. See Section 2.2.4.
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Fast Gradient Method (FGM)

Fast gradient method is a class of method that relies on the ∇xJ .

1. Fast Gradient Sign Method (FGSM) [GSS14] proposes the original fast gradient sign

method (FGSM) based on the hypothesis that neural networks are too linear to resist

linear adversarial perturbation. Concretely, we have

x̃ = x+ ε sign{∇xJ(x, y)} (2.1)

The intuition is that FGSM tries to modify the input towards the direction where the

classification loss for this data sample increases. It is referred to as the fast method

in [KGB16a].

However, in Equation 2.1, the adversarial sample is generated with its true label y,

which is assumed not known in practice. This is referred to as the label leaking prob-

lem [KGB16b]. This work [KGB16b] introduces a revised version of FGSM, where

the true label y is replaced by the predicted label (i.e., y) when generating adversarial

examples. The revised FGSM is as follows.

x̃ = x+ ε sign{∇xJ(x, y)} (2.2)

2. Fast Gradient Value Method (FGVM) A simple variant of FGSM is fast gradient

value method (FGVM) [Miy+15], where the gradient values are directly used when

computing the noise, instead of the sign of gradients.

x̃ = x+ ε∇xJ(x, y) (2.3)

In practice, the FGSM works better, i.e., generating more subtle noise, than FGVM.
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3. Iterative Fast Gradient Method An intuitive way to extent FGSM is the iterative

FGSM [KGB16a], where the authors apply it multiple times with small step size, and

clip pixel values of intermediate results after each step to ensure that they are in an

ε-neighborhood of the original image. Concretely, we have

x̃0 = x, x̃n+1 = CLIPx,ε {x̃n + α sign{∇x̃nJ(x̃n, f(x̃n))}} (2.4)

4. Least-likely Class Method The above variants of FGSM so far only increases the cost

of correct class, without specifying a desired target class. For classification task with

finer labels (e.g., different breeds of dogs in ImageNet), the above method may create

uninteresting adversarial samples. In order to create more interesting misclassification,

[KGB16a] proposes to modify the image towards the direction where the probability

for the least-likely class is increased. The least-likely is defined by

yll = arg mini p(yi | x) (2.5)

The intuition is that for a well-trained classifier, the least-likely class should be high

different from the true class. Concretely we have

x̃0 = x, x̃n+1 = CLIPx,ε{x̃n − α sign{∇x̃nJ(x̃n, yll)}} (2.6)

Notice the minus sign in the above equation. We want to increase the probability

instead of decreasing it. An easy extension to the least-likely class method is to use

desired target class instead of the least-likely one. This is a more generalized version

of this method.
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Jacobian-based Saliency Map Approach (JSMA)

Similar to the target class method, JSMA [Pap+15b] allows to specify the desired target

class. However, instead of adding noise to the whole input, JSMA changes only one pixel at

a time. A saliency score is calculated for each pixel where the pixel with the highest score

is chosen to be perturbed.

s(i) =


0 if st < 0 or so > 0

s
(i)
t

∣∣∣s(i)o ∣∣∣ otherwise

s
(i)
t =

∂ỹt
∂xi

s(i)o =
∑
k 6=t

∂ỹk
∂xi

(2.7)

Where t denotes the target class, st is the Jacobian value of the desired target class

yt with regard to each individual pixel, so is the sum of Jacobian values of all non-target

classes. The authors hypothesis is that the saliency score indicates the sensitivity of each

output class with regard to each individual pixel, or how much the probability for each class

will change when we perturb a pixel. With this information, we want to perturb the pixel

towards the direction where p(ỹt | x) increases the most.

The pixel value is either increase to maximum (i.e., 1.0) or decreased to minimum (i.e.,

0.0).

In the paper, the authors calculate scores for pairs of pixels, instead of individual pixel.

The saliency score for a pixel pair is defined as

s(i, j) = (s
(i)
t + s

(j)
t )×

∣∣s(i)o + s(j)o
∣∣ (2.8)

The reason was that pixel pairs give better performance in practice. However, note that

the computation for pixel pairs is O(n2) since we need to compute scores for every pixel pair.

In practice, JSMA may be slow for large images.
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There is also a small implementation detail. In the original paper, the authors used

logits, i.e., the values before the softmax layer to calculate the gradients. However, in the

distillation defense [Pap+15a], the authors used the output of softmax layer to calculate the

gradients. Despite this discrepancy, the two versions perform similarly.

Carlini-Wagner (CW)

Carlini-Wagner [CW16] method is a more friendly version of the constrained optimiza-

tion method discussed in Section 2.2.4. The problem was formulated as such.

minimize D(x, x̃)

subject to f(x̃) = ỹ, x̃ ∈ [0, 1]m
(2.9)

Where D is some distance metric, e.g., L0-, L2-, L∞-norm. As discussed before, the

problem with this formulation are the constraints. The authors propose to optimize a dele-

gate object function such that f(x̃) = t if and only if g(x̃) ≤ 0. With this delegated object

function, the original problem is formulated as such.

minimize D(x, x̃)

subject to g(x̃) ≤ 0, x̃ ∈ [0, 1]m
(2.10)

Which can be alternatively formulated as

minimize D(x, x̃) + cg(x̃)

subject to x̃ ∈ [0, 1]m
(2.11)

Where c > 0 is a suitably chosen constant.
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DeepFool

DeepFool [MFF15] moves the data point along the direction to the nearest decision

boundary. The intuition is that if you move the data point just cross the decision boundary,

you would be in principle create an adversarial with the minimum distortion. Concretely we

have

x̃ = x+ εr (2.12)

Where r is the approximated vector to the nearest decision boundary, ε is chosen to

take a small value, e.g., 1.04. In other words, x+ r lies on the decision boundary, and x+ εr

is the point just across the decision boundary. The r is calculated iteratively.

DeepFool(f, x)

1 x0 = x

2 i = 0

3 while lxi = lx

4 for k 6= lx

5 ak = ∇fk(xi)−∇flx(xi)

6 bk = fk(xi)− flx(xi)

7 t = arg mink 6=lx
|bk|
‖ak‖2

8 ri = |bt|
‖at‖2

at

9 xi+1 = xi + ri

10 i = i+ 1

11 return r =
∑
ri

In 2D dimension, at
‖at‖2

is the unit direction to the nearest decision boundary, and |bt|

is the distance to the nearest decision boundary. This, however, does not apply to higher

dimensions. The authors propose to workaround this problem by repeating this procedure

until reaching the decision hyperplane. It is rather difficult to reason that we will get to the
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decision hyperplane in the optimal direction. In practice, however, we do get very subtle

noise.

Adversarial Transformation Network (ATN)

A complete different idea is proposed in [BF17], i.e., the adversarial transformation

network (ATN). Instead of a routine-based approach where we repeat the procedure for

each coming sample, the authors uses build a model mapping from the normal image to its

corresponding adversarial sample. Suppose we have a model g : x→ x̃, the model is trained

by solving the following optimizations

Lg =
∑
xi∈X

βLX (g(xi), xi) + LY(f(g(xi)), f(xi)) (2.13)

Where the LX is a loss term in the input space, it encourages the adversarial image to

be close to the original one, e.g., L2 loss, perceptual similarity loss [JAF16], etc. And LY is

a loss term in the output space of f that encourages misclassification of the x̃. Concretely,

LY takes the form of

LY = L2(f(x̃), r(f(x), t))

r(y, t) = norm



αmax y if k = t

yk otherwise

 (2.14)

Where α is a hyper-parameter, r is referred to as the re-ranking function, which increases

the probability of the target label t to αmax y while keeping the other unchanged. The norm

function normalizes the target ỹ to make sure that it is a valid probability distribution.

Intuitively speaking, LY increases the target label probability, while keeping the order and

relative scale of all the probabilities for other labels.
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Chapter 3

Defend against Image Adversarial Samples

3.1 Introduction

As Figure 1.1 shows, although adversarial and clean images appear visually indiscernible,

their subtle differences can successfully fool the deep neural networks. The observations are

Observations from the image adversarial samples are that

1. The adversarial noise follows a specific direction [GSS14].

2. The neural nets are sensitive to individual pixel values [Sze+13].

As a result, an intuitive question is: whether it is possible to leverage the network’s sensitivity

to subtle differences to distinguish between adversarial and clean images? In this work,

we explore this intuition and demonstrate that a simple binary classifier can separate the

adversarial from the original clean images with very high accuracy (over 99%). So the answer

to the above question is yes. However, we also notice that the binary classifier approach

suffers from the generalization issue.

1. it is sensitive to hyper-parameters used in crafting adversarial images, e.g., ε in fast

gradient method, and

2. it is sensitive to different adversarial crafting algorithms.

In other words, different algorithms will generate adversarial images that follow different

distributions. It is insufficient to train the classifier only on one type of adversarial samples.

In addition, we also showed that this limitation is shared among other proposed defense
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methods against adversarial images, e.g., adversarial training [Hua+15; KGB16a], defensive

knowledge distillation (KD) [Pap+15a], etc.

Our key contributions are:

1. We show that binary classifier can successfully separate adversarial from clean samples

that follow similar distributions.

2. In addition, the binary classifier are robust to second-round adversarial attack, in

other words, it is difficult to bypass the classifier with adversarial samples that fools

the protected model.

3. However, we also show that currently proposed defense methods, including our binary

classifier approach, does not generalize to adversarial samples that follow different

distributions, e.g., created from different methods.

This chapter is organized as follows. In Section 3.2, we give an overview of the current

literature in defending against adversarial images (the generating algorithms are surveyed

in Section 2.2). The procedure for our investigation is outlined in Section 3.3. Section 3.4

presents our experiment results and detailed discussions. And we conclude this chapter in

Section 3.5.

3.2 Related Work

The adversarial images have been shown to be transferable among deep neural net-

works [Sze+13; KGB16a]. This poses a great threat to current learning systems in that the

attacker needs not the knowledge of the target system. Instead, the attacker can train a dif-

ferent model to create adversarial samples which are still effective for the target deep neural

networks. What’s worse, [PMG16] has shown that adversarial samples are even transfer-

able among different machine learning techniques, e.g., deep neural networks, support vector

machine, decision tree, logistic regression, etc.
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Small steps have been made towards the defense of adversarial images. [KGB16b] shows

that some image transformations, e.g., Gaussian noise, Gaussian filter, JPEG compression,

etc., can effectively recover over 80% of the adversarial images. However, in our experiment,

the image transformation defense does not perform well on images with low resolution,

e.g., MNIST. Knowledge distillation (KD) [HVD15] is also shown to be an effective method

against most adversarial images [Pap+15a]. The restrictions of defensive knowledge distilla-

tion are (i) that it only applies to models that produce categorical probabilities, (ii) that it

needs model re-training. Adversarial training [KGB16b; Hua+15] was also shown to greatly

enhance the model robustness to adversarials. However, as discussed in Section 3.4.2, de-

fensive distillation and adversarial training suffers from, what we call, the generalization

limitations. Our experiment suggests this seems to be an intrinsic property of adversarial

datasets.

3.3 Method

Generally, we follow the steps below to evaluate the effectiveness and limitations of the

binary classifier approach.

1. Train a deep neural network f1 on the original clean training data Xtrain, and craft

adversarial dataset from the original clean data, Xtrain → X
adv(f1)
train , Xtest → X

adv(f1)
test ,

where Xadv(f1) denotes adversarial examples created from X targeting model f1. Here,

f1 is the target model that we want to protect.

2. Train a binary classifier f2 on the combined (and shuffled) training data {Xtrain, X
adv(f1)
train },

where Xtrain is labeled 0 and Xadv(f1)
train labeled 1.

3. Test the accuracy of f2 on Xtest and X
adv(f1)
test , respectively. This will show the effec-

tiveness of the binary classifier approach.
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4. Construct second-round adversarial test data, {Xtest, X
adv(f1)
test } → {Xtest, X

adv(f1)
test }adv(f2)

and test f2 accuracy on this new adversarial dataset. Intuitively, we want to investigate

whether we could find adversarial samples (i) that can successfully bypass the binary

classifier, and (ii) that can still fool the target model if they bypass the binary classi-

fier. Since adversarial datasets are shown to be transferable among different machine

learning techniques [PMG16], the binary classifier approach will be seriously flawed if

f2 failed the above second-round attacking test.

3.4 Experiment

The code to reproduce our experiment are available at https://github.com/gongzhitaao/

adversarial-classifier.

3.4.1 Efficiency and Robustness of the Classifier

f1 f2

Dataset Xtest X
adv(f1)
test Xtest X

adv(f1)
test {Xtest}adv(f2) {Xadv(f1)

test }adv(f2)

MNIST 0.9914 0.0213 1.00 1.00 0.00 1.00
CIFAR10 0.8279 0.1500 0.99 1.00 0.01 1.00
SVHN 0.9378 0.2453 1.00 1.00 0.00 1.00

Table 3.1: Accuracy on adversarial samples generated with FGSM/TGSM.

We evaluate the binary classifier approach on MNIST, CIFAR10, and SVHN datasets.

Of all the datasets, the binary classifier achieved accuracy over 99% and was shown to be

robust to a second-round adversarial attack. The results are summarized in Table 3.1. Each

column denotes the model accuracy on the corresponding dataset. The direct conclusions

from Table 3.1 are summarized as follows.

1. Accuracy onXtest andX
adv(f1)
test suggests that the binary classifier is very effective at sep-

arating adversarial from clean dataset. Actually during our experiment, the accuracy
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on Xtest is always near 1, while the accuracy on Xadv(f1)
test is either near 1 (successful)

or near 0 (unsuccessful). Which means that the classifier either successfully detects

the subtle difference completely or fails completely. We did not observe any values in

between.

2. Accuracy on {Xadv(f1)
test }adv(f2) suggests that we were not successful in disguising adver-

sarial samples to bypass the the classifier. In other words, the binary classifier approach

is robust to a second-round adversarial attack.

3. Accuracy on {Xtest}adv(f2) suggests that in case of the second-round attack, the binary

classifier has very high false negative. In other words, it tends to recognize them all as

adversarials. This, does not pose a problem in our opinion. Since our main focus is to

block adversarial samples.

3.4.2 Generalization Limitation

Before we conclude too optimistic about the binary classifier approach performance,

however, we discover that it suffers from the generalization limitation.

1. When trained to recognize adversarial dataset generated via FGSM/TGSM, the binary

classifier is sensitive to the hyper-parameter ε.

2. The binary classifier is also sensitive to the adversarial crafting algorithm.

In out experiment, the aforementioned limitations also apply to adversarial training [KGB16b;

Hua+15] and defensive distillation [Pap+15a].

Sensitivity to ε

Table 3.2 summarizes our tests on CIFAR10. For brevity, we use f2
∣∣
ε=ε0

to denote

that the classifier f2 is trained on adversarial data generated on f1 with ε = ε0. The binary

classifier is trained on mixed clean data and adversarial dataset which is generated via FGSM
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with ε = 0.03. Then we re-generate adversarial dataset via FGSM/TGSM with different ε

values.

f2
∣∣
ε=0.03

ε Xtest X
adv(f1)
test

0.3 0.9996 1.0000
0.1 0.9996 1.0000
0.03 0.9996 0.9997
0.01 0.9996 0.0030

Table 3.2: ε sensitivity on CIFAR10

As shown in Table 3.2, f2
∣∣
ε=ε0

can correctly filter out adversarial dataset generated with

ε ≥ ε0, but fails when adversarial data are generated with ε < ε1. Results on MNIST and

SVHN are similar. This phenomenon was also observed in defensive training [KGB16b]. To

overcome this issue, they proposed to use mixed ε values to generate the adversarial datasets.

However, Table 3.2 suggests that adversarial datasets generated with smaller ε are superset

of those generated with larger ε. This hypothesis could be well explained by the linearity

hypothesis [KGB16a; WG16]. The same conclusion also applies to adversarial training. In

our experiment, the results of defensive training are similar to the binary classifier approach.

Disparity among Adversarial Samples

In our experiment, we also discovered that the binary classifier is sensitive to the algo-

rithms used to generate the adversarial datasets.

Specifically, the binary classifier, that is trained on FGSM adversarial dataset achieves

good accuracy (over 99%) on FGSM adversarial dataset, but not on adversarial generated

via JSMA, and vise versa. However, when binary classifier is trained on a mixed adversarial

samples dataset from FGSM and JSMA, it performs well (with accuracy over 99%) on

both datasets. This suggests that FGSM and JSMA generate adversarial datasets whose

distributions are far away from each other. It is too vague without defining precisely what
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Figure 3.1: Adversarial training [Hua+15; KGB16b] does not work. This is a church window
plot [WG16]. Each pixel (i, j) (row index and column index pair) represents a data point x̃ in
the input space and x̃ = x+hεj +vεi, where h is the direction computed by FGSM and v is
a random direction orthogonal to h. The ε ranges from [−0.5, 0.5] and ε(·) is the interpolated
value in between. The central black dot represents the original data point x, the orange
dot (on the right of the center dot) represents the last adversarial sample created from x
via FGSM that is used in the adversarial training and the blue dot represents a random
adversarial sample created from x that cannot be recognized with adversarial training. The
three digits below each image, from left to right, are the data samples that correspond
to the black dot, orange dot and blue dot, respectively. ( ) represents the data
samples that are always correctly (incorrectly) recognized by the model. represents the
adversarial samples that can be correctly recognized without adversarial training only. And

represents the data points that were correctly recognized with adversarial training only,
i.e., the side effect of adversarial training. (Image credit: [GWK17])

is being far away. In our opinion, they are far away in the same way that CIFAR10 is far

away from SVHN. A well-trained model on CIFAR10 will perform poorly on SVHN, and vise

versa. However, a well-trained model on the the mixed dataset of CIFAR10 and SVHN will

perform just as well, if not better, on both datasets, as if it is trained solely on one dataset.

The adversarial datasets generated via FGSM and TGSM are, however, compatible with

each other. In other words, the classifier trained on one adversarial datasets performs well

on adversarials from the other algorithm. They are compatible in the same way that training

set and test set are compatible. Usually we expect a model, when properly trained, should

generalize well to the unseen data that follow the same distribution, e.g., the test dataset.

In effect, it is not just FGSM and JSMA are incompatible. We can generate adversarial

data samples by a linear combination of the direction computed by FGSM and another ran-

dom orthogonal direction, as illustrated in a church plot [WG16] (see Figure 3.1). Figure 3.1

visually shows the effect of adversarial training [KGB16b]. The pixels in each image repre-

sents adversarial samples generated from one data sample, which is represented as a black

dot in the center of each image. The last adversarial sample used in adversarial training is
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represented as an orange dot (on the right of black dot, i.e., in the direction computed by

FGSM). The green area represents the adversarial samples that cannot be correctly recog-

nized without adversarial training but can be correctly recognized with adversarial training.

The red area represents data samples that can be correctly recognized without adversarial

training but cannot be correctly recognized with adversarial training. In other words, it rep-

resents the side effect of the adversarial training, i.e., slightly reducing the model accuracy.

The white (gray) area represents the data samples that are always correctly (incorrectly)

recognized with or without adversarial training.

As we can see from Figure 3.1, adversarial training does make the model more robust

against the adversarial samples (and adversarial samples around it to some extent) used

for training (green area). However, it does not rule out all adversarials. There are still

adversarial samples (gray area) that are not affected by the adversarial training. Further

more, we could observe that the green area largely distributes along the horizontal direction,

i.e., the FGSM direction. In [NYC14], they observed similar results for fooling images. In

their experiment, adversarial training with fooling images, deep neural network models are

more robust against a limited set of fooling images. However they can still be fooled by other

fooling images easily.

3.5 Conclusion

We show in this chapter that the binary classifier is a simple yet effective and robust way

to separating adversarial from the original clean images. Its advantage over adversarial train-

ing and knowledge distillation is that it serves as a preprocessing step without assumptions

about the model it protects. Besides, it can be readily deployed without any modification

of the underlying systems. However, as we empirically showed in the experiment, the bi-

nary classifier approach, defensive training and distillation all suffer from the generalization

limitation. For future work, we plan to extend our current work in two directions. First,
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we want to investigate the disparity between different adversarial crafting methods and its

effect on the generated adversarial space. Second, we will also carefully examine the cause

of adversarial samples since intuitively the linear hypothesis does not seem right to us.
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Chapter 4

Generate Text Adversarial Samples

4.1 Introduction

The adversarial images have been extensively studied. Many adversarial generating

methods have been proposed in the literature, e.g, fast gradient method (FGM) [GSS14],

Jacobian-based saliency map approach (JSMA) [Pap+15b], DeepFool [MFF15], CW [CW16],

etc. Many theoretical explanation of adversarial samples also focused on image data and

architectures [Pec+17; GSS14]. Some work have expanded the study to other domains, e.g,

speech-to-text [CW18], neural translation [ZDS17], reinforcement learning [Lin+17], etc.

These extended work will give us a more thorough understanding of the adversarial samples.

To this end, we propose a simple yet effective framework to adapt the adversarial methods

for images to generating adversarial texts. Specifically, we focus on adversarial samples for

text classification models. There are two major difficulties to generate adversarial texts:

1. The input space is discrete. As a result, it is unclear how to (iteratively) accumulate

small noise to perturb the input. Working with Image domain is easier since we usually

normalize the input to a continuous domain [0, 1].

2. The text quality measurement and control is intricate in itself. It is a very subjective

matter. For example, let’s compare the Master Yoda-style way of speaking, Much to

learn, you still have, with the mundane-style, You still have much to learn. Which is

better? Which gets a high score? Star Wars fans will definitely favor the Yoda-style,

although both sentences successfully convey exactly the same meaning.
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To resolve the first problem, we propose a general framework in which we generate adver-

sarial texts via slightly modified methods borrowed from image domain. We first search for

adversarials in the text embedding space (e.g., word-level embedding [Mik+13b], character-

level embedding [Kim+15]), and then reconstruct the adversarial texts with nearest neighbor

search. The second problem is open-ended, we employ two metrics to quantify the results,

i.e., the Word Mover’s Distance (WMD) [Kus+15] and change ratio (the number of words

changed). In our experiments, they serve their purpose well at a rather coarse level. These

two metrics, however, does not perform consistently when two text pieces are about the

same quality (e.g., the aforementioned Yoda-style and mundane-style). The text quality is

controlled empirically by the noise level in our experiments.

The contribution of our work lies in two-folds:

1. We propose a general framework to generate adversarial texts. Any of the existing

adversarial methods may be adapted to generate adversarial texts under our framework.

2. We empirically compare the word-level and character-level adversarial texts, e.g., trans-

ferability, text quality, etc.

This chapter is organized as follows. we survey recent work on generating adversarial

texts in Section 4.2. Our adversarial text framework is detailed in Section 4.3. We thoroughly

evaluate our framework and compare with Hotflip [Ebr+17] on various text benchmarks and

report the results in Section 4.4. We then conclude this chapter and provide directions for

future work in Section 4.5.
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4.2 Related Work

4.2.1 Text-space Methods

This class of methods perturbs the input texts directly. One disadvantage is that the

computation cost is usually very high. To perturb the input texts directly, two decisions

need to be made:

1. What to change. Generally speaking, the words that have more influence on the result

should be altered first. Similar to JSMA, [Lia+17; SM17] compute importance score

for each word based on ∇L or ∇f . In [JL17], the author manually construct fake facts

around the sentence that contains the answer. [Lia+17] alters the input sentence in a

brutal-force way, where each word is altered in sequence until an adversarial sample is

found or a threshold on the maximum number of words to change is reached.

2. Change to what. Typos usually achieve good results, as shown in [SM17; Lia+17].

The disadvantage of typos is that they are relatively easier to be corrected by the

auto spelling correction applications, e.g., Grammerly. Replacing with synonyms and

antonyms (e.g., from Thesaurus) is also a good choice [Lia+17; SM17]. [Lia+17] uses

semantically related words as potential replacements. As text embeddings [Mik+13b]

have been shown to preserve semantic relations among words, the semantically related

words can be approximated by nearest neighbor search in the embedding space.

4.2.2 Transformed-space Methods

This class of methods first map text inputs to a smooth space and search for potential

adversarial samples in the smooth space via methods borrowed from adversarial images

generation. Then the adversarial texts are reconstructed and further verified in the original

text space. Usually some portion of the reconstructed texts are unsuccessful adversarial

samples and are filtered out.
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[ZDS17] employs an autoencoder to map between the input text and a Gaussian noise

space. The decoder is a generator (i.e., GAN [Goo+14]), while the encoder is an MLP

(called inverter in the paper). They search in the noise space with random walk. However,

the disadvantage is that they do not have an explicit control of the quality of the adversarial

samples. As we have see in [ZDS17], the generated adversarial images on complex dataset

usually have large visual changes. Similarly, another generator-based method is proposed

in [Won17] where the whole network is trained with REINFORCE [Wil92] algorithms.

In [Lia+17], the authors attempt FGM directly on character-level convolution net-

works [ZZL15]. Although the labels of the text pieces are successfully altered, the texts

are changed to basically random stream of characters which is beyond understanding.

A highly related work is also report in [Ebr+17] where the authors conduct character-

level and word-level attack based on gradients. The difference is that we use nearest neighbor

search to reconstruct the adversarial sentences, while they search for adversarial candidates

directly in the text space. Furthermore, the word-level adversarial texts were not very

successfully in [Ebr+17]. Moreover, in our experiment, we also find that Hotflip has label

leaking problem [KGB16a] as is the vanilla FGSM where the true labels are used to generate

the adversarial texts. We fix this problem as suggested in [KGB16a] by using the predicted

labels instead of the true ones to generate adversarial texts.

4.3 Adversarial Text Framework

In this section, we propose a general framework that generates adversarial texts with

adapted methods for adversarial images. Our framework focuses on replacing words.

4.3.1 System Overview

Our system consists mainly of three parts, the embedding part, the adversarial gener-

ator, and the reverse embedding part. The embedding part maps raw input texts into a
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continuous space. The reverse embedding part maps the perturbed embedding vectors back

to texts.

4.3.2 Discrete Input Space

The first problem we need to resolve is how we can accumulate small noise to change

the input. The idea comes from the observation that the first layer for most text models is

the embedding layer. Thus, instead of working on the raw input texts, we first search for

adversarials in the embedding space via gradient-based methods, and then reconstruct the

adversarial sentences. Searching for adversarials in the embedding space is similar in principle

to searching for adversarial images. However, the generated noisy embedding vectors usually

do not correspond to any tokens in the text space. To construct the adversarial texts, we

align each embedding to its nearest one via (approximate) nearest neighbor search. This

reconstructing process can be seen as a strong denoising process. With appropriate noise

scale, we would expect most of the words/characters remain unchanged, while only few are

replaced. This framework builds upon the following observations.

1. When generating adversarial samples, the input features (e.g., pixels, words, charac-

ters) that are relatively more important for the final predictions will receive more noise,

while others less noise. This property is intuitively illustrated in Figure 1.1, where usu-

ally only a subset of the pixels are perturbed. Despite that most pixels are perturbed

in FGM, only a few pixels receive very large noise.

2. The embedded word vectors preserve the subtle semantic relationships among words [Mik+13b;

Mik+13a]. For example, vec("clothing") is closer to vec("shirt") as vec("dish")

to vec("bowl"), while vec("clothing") is farther way from vec("dish") or vec("bowl"),

in the sense of p-norm, since they are not semantically close [MYZ13]. This property

assures that it is more likely to replace the victim words with a semantically related

one rather than a random one.
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4.3.3 Word Mover’s Distance (WMD)

For the second problem, we use two metrics to quantify the adversarial texts quality,

the Word Mover’s Distance (WMD) [Kus+15] and the change ratio (i.e., the number of

words changed divided by the maximum sequence length). WMD measures the dissimilarity

between two text documents as the minimum amount of distance that the embedded words

of one document need to travel to reach the embedded words of another document. WMD

can be considered as a special case of Earth Mover’s Distance (EMD) [RTG00]. Intuitively,

it quantifies the semantic similarity between two text bodies. A lower WMD score means

a better adversarial samples. As we will see in our experiments, WMD is only good as a

coarse-level metric.

4.4 Experiment

We evaluate our framework on three text classification problems. Section 4.4.1 de-

tails on the data preprocessing. The adversarial methods we use in our experiment are

(FGM) [GSS14] and DeepFool [MFF15]. We report the model accuracy on clean sample as

well as adversarial texts.

Detailed discussion follow each experiment results. Only a few examples of generated

adversarial texts are shown in this paper due to the space constraint. More samples of

adversarial texts under different parameter settings and the code to reproduce the experiment

are available online1.

Computation-wise, the bottleneck in our framework is the nearest neighbor search. Word

vector spaces, such as GloVe [PSM14], usually have millions or billions of tokens embedded

in very high dimensions. The nearest neighbor search is slow. Instead, we employ the ap-

proximate nearest neighbor (ANN) technique in our experiment. The ANN implementation
1https://github.com/gongzhitaao/adversarial-text
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which we use in our experiment is Approximate Nearest Neighbors Oh Yeah (annoy)2, which

is well integrated into gensim [ŘS10] package.

4.4.1 Dataset

We use three text datasets in our experiments. The datasets are summarized in Ta-

ble 4.1. The last column shows our target model accuracy on the clean test data.

Dataset Labels Training Testing Seq. Len. Word Len. Accuracy

IMDB 2 25000 25000 300 20 0.8787
Reuters-2 2 3300 1438 100 20 0.9854
Reuters-5 5 1735 585 100 20 0.8701

Table 4.1: Dataset Summary

IMDB Movie Reviews

This is a dataset for binary sentiment classification [Maa+11]. It contains a set of 25,000

highly polar (positive or negative) movie reviews for training, and 25,000 for testing. No

special preprocessing is used for this dataset except that we truncate/pad all the sentences

to a fixed maximum length.

Reuters

This is a dataset of 11,228 newswires from Reuters, labeled over 90 topics. We load this

dataset through the NLTK [BKL09] package. The raw Reuters dataset is highly unbalanced.

Some categories contain over a thousand samples, while others may contain only a few.

The problem with such highly unbalanced data is that the texts that belong to under-

populated categories are almost always get classified incorrectly. Even though our model

may still achieve high accuracy with 90 labels, it would be meaningless to include these

under-populated categories in the experiment since we are mainly interested in perturbation
2https://github.com/spotify/annoy
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of those samples that are already being classified correctly. Keras3 uses 46 categories out of

90. However, the 46 categories are still highly unbalanced. In our experiment, we preprocess

Reuters and extract two datasets from it, i.e., Reuters-2 and Reuters-5.

1. Reuters-2 It contains two most populous categories, i.e., acq and earn. The acq

category contains 1650 training samples and 719 test samples. Over 71% sentences in

the acq category have less than 160 tokens. The earn category contains 2877 training

samples and 1087 test samples. Over 83% sentences in earn category have less then

160 tokens. In order to balance the two categories, for earn, we use 1650 samples out

of 2877 for training, and 719 for testing. The maximum sentence length of this binary

classification dataset is set to 100.

2. Reuters-5 It contains five categories, i.e., crude, grain, interest, money-fx and

trade. Similar to Reuters-2, we balance the five categories by using 347 examples

(the size of interest categories) for each category during training, and 117 each for

testing. The maximum sentence length is set to 100.

4.4.2 Embedding

Our framework relies heavily on the size and quality of the embedding space. More

semantic alternatives would be helpful to improve the quality of generated adversarial texts.

As a result, we use the GloVe [PSM14] pre-trained embedding in our experiment. Specifically,

we use the largest GloVe embedding, glove.840B.300d, which embeds 840 billion tokens

(approximately 2.2 million cased vocabularies) into a vector space of 300 dimensions. The

value range of the word vectors are roughly (−5.161, 5.0408).
3https://keras.io/
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4.4.3 Model

In this work, we tested two commonly used architectures for sequence classification prob-

lem. The first one is a word-level convolution network [Kim14] (as shown in Figure 4.1). This

architecture differs from the image models in two aspects: (i) an embedding layer is added

right after the input to map the word indices to their corresponding vector representations,

and (ii) the pooling layers are global max-pooling.

Input
Embedding
Dropout

Conv1D
LeakyReLU

Global MaxPooling

MLP
Dropout

LeakyReLU

MLP
output functions

Figure 4.1: Word-level CNN model for text classification. (Image credit: [Gon+18])

The other one is a character-aware model [Kim+15]. The first layer is an embedding

layer, followed by parallel convolution layers of different filter sizes, which all go through

a global max-pooling layer. The outputs of different pooling layers are then concatenated

before going through a highway layers [SGS15] and LSTMs. Please refer to [Kim+15] for a

detailed discussion about the architecture.

The detailed parameter settings are available in our released code. Note that for models

trained on binary classification tasks, DeepFool assumes the output in the range [−1, 1],

instead of [0, 1]. Thus we have two slightly different models for each of the binary classifi-

cation task (IMDB and Reuters-2), the one with sigmoid output, and the other with tanh.

The models with tahn output are trained with Adam [KB14] by minimizing a root mean

squared error (RMSE), while all the other models are trained with Adam by minimizing a

cross-entropy loss. Despite the small difference in architecture, sigmoid- and tanh-models

on the same task have almost identical accuracy. As a result, in Table 4.1, we report only

one result for IMDB and Reuters-2. In the following sessions, we refer to the word-level

model as WordCNN, the character-level model as CharLSTM. Wherever necessary, the binary
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classification model with sigmoid output is suffixed with -sigm, e.g, WordCNN-sigm, the one

with tanh output is suffixed with -tanh, e.g., WordCNN-tanh.

4.4.4 Effectiveness and Quality Trade-off

ε WMD N Text Piece

20 0.1332 1/100

HBO URGES SHAREHOLDERS DIVIDEND AGAINST ANDOVER HBO and Co said it sent a letter of strongly urging sharehold-
ers not to sign any proxy cards sent by Andover Group . ON March 30 , Andover Group , a two-man general partnership which owns
about seven pct of HBO ’s stock , filed preliminary proxy materials with the Securities and Exchange Commission seeking to nominate
an alternative slate of directors at the company ’s April 30 annual meeting . Andover had expressed an interest to acquire the company
in September 1986 but HBO has never received an offer from them , it said

30 0.1629 2/100

HBO URGES GAINS SHAREHOLDERS DIVIDEND AGAINST ANDOVER HBO and Co said it sent a letter of strongly urging
shareholders not to sign any proxy cards sent by Andover Group . ON March 30 , Andover Group , a two-man general partnership
which owns about seven pct of HBO ’s stock , filed preliminary proxy materials with the Securities and Exchange Commission seeking
to nominate an alternative slate of directors at the company ’s April 30 annual meeting . Andover had expressed an interest to acquire
the company in September 1986 but HBO has never received an offer from them , it said

40 0.2013 5/100

HBO MTV URGES INCREASE SHAREHOLDERS DIVIDEND AGAINST ANDOVER HBO and Co said it sent a letter of
strongly urging shareholders not to sign any proxy cards sent by Andover Group . ON March 30 , Andover Group , a two-man general
partnership which owns about seven pct of HBO ’s stock , filed preliminary proxy materials with the Securities and Exchange Com-
mission seeking to nominate an alternative slate of directors at the company ’s April 30 annual meeting . Andover had expressed an
interest to acquire the company in September December 1986 1987 but HBO has never received an offer from them , it said

50 0.1998 6/100

HBO MTV URGES INCREASE SHAREHOLDERS RESIDUAL AGAINST ANDOVER HBO and Co said it sent a letter of
strongly urging shareholders not to sign any proxy cards sent by Andover Group . ON March 30 , Andover Group , a two-man general
partnership which owns about seven pct of HBO ’s stock , filed preliminary proxy materials with and the Securities and Exchange
Commission seeking to nominate an alternative slate of directors at the company ’s April 30 annual meeting . Andover had expressed
an interest to acquire the company in September December 1986 1987 but HBO has never received an offer from them , it said

Figure 4.2: Adversarial texts generated with Deepfool with different noise scale on word-level
model. (Image credit: [Gon+18])

If the model’s accuracy on the adversarial texts are lower, then we say the adversarial

texts are more effective. The quality of the adversarial texts refers to grammar and syntactic

correctness of the text piece. We employ several intuitive criteria to measure the quality of

the adversarial texts, i.e., the number of words changed (N) and the Word Mover’s Distance

(WMD). The number-of-words measurement makes sense in our settings since our framework

will only replace words, no addition and deletion. The trade-off between the effectiveness

and quality of the adversarial texts is controlled by the noise level. As expected, large noise

level would generate more effective adversarial samples. However, the text quality will also

degrade with larger noise.

Figure 4.3 shows the trade-off for FGSM method. As we can see, the quality of adver-

sarial texts generated by FGSM deteriorates quickly as we increase the noise level. Albeit It
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Figure 4.3: Word-level model’s accuracy with varying FGSM noise level. The WMD and
N (number of words changed) empirically show the quality of the adversarial texts. (Image
credit: [Gon+18])

becomes more effective toward the target model. Especially, the number of words changed

grows rapidly. Figure 4.4 shows the trade-off for DeepFool method. It follows a similar trend

as FGSM in general. However, we can see that DeepFool generates much better adversar-

ial texts then FGSM when they are similar in effectiveness. This is similar in the case of

adversarial images. FGSM tends to add noise to all the dimension of the input, thus with

larger noise, we would expect most words are changed. On the other hand, DeepFool usually

changes only a small subset of the input dimension. Even with a larger noise, most words

remain unperturbed.
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Figure 4.4: Word-level model’s accuracy with varying DeepFool overshoot value. The WMD
and N (number of words changed) empirically show the quality of the adversarial texts.
(Image credit: [Gon+18])
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The examples of adversarial texts generated via DeepFool at different noise level are

shown in Figure 4.2. The WMD and number of words changed are also included to give an

intuition about the correspondence between the measurements and the text quality.

4.4.5 Transferability

We test the transferability of adversarial texts generated on word-level models and

character-level models, respectively. In our experiments, word-level adversarial texts show

very good transferability, even to character-level models. However character-level adversarial

texts do not transfer well to word-level models.
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(a) Transferability of adversarial texts gen-
erated via DeepFool on word-level. The
WordCNN-tanh is the model used to gener-
ated the adversarial texts.
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(b) Transferability of adversarial texts gen-
erated via Hotflip on character-level. The
CharLSTM-sigm is the model used to
generated the adversarial texts. (Image
credit: [Gon+18])

Figure 4.5a shows the transferability of word-level adversarial texts generated in our

framework via DeepFool. The adversarial texts are generated on WordCNN-tanh model.

The adversarial texts transfer better to WordCNN-sigm which shares a similar structure

as WordCNN-tanh except for the output function. Figure 4.5b shows the transferability of

character-level adversarial texts generated via Hotflip [Ebr+17]. The character-level adver-

sarial texts only show transferability to character-level models, but not to word-level models.

The main reason is that the changes to character-level adversarial texts are mainly within
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words. In most cases, the perturbed words will be replaced by unknown word placeholder

(e.g., <unk> in our experiments) they are rarely legit. Thus the character-level adversarial

texts basically degrade to unknown-word adversarials for word-level models. As expected,

replacing only a few words with <unk> is not enough to fool the word-level model.

4.4.6 Defense

The defense for character-level adversarial texts are relatively easy, most of the errors

can be easily corrected by auto-spelling applications, e.g., Grammerly4, Bing Spell Check

API. The incorrect spellings are easy to detect and recover, e.g., sontware is successfully

corrected to software. However, if the character is replaced by punctuation characters, the

word will be not corrected, e.g., qu{kly is not recognized and correct.
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Figure 4.6: Defense against character-level adversarials. (Image credit: [Gon+18])

When generating the character-level adversarial texts, we want to change as few charac-

ters as possible so that the resulting adversarial texts do not degrade into garbage. However,

the fewer characters we change, the easier they are corrected by auto-spelling applications.
4http://www.daviddlewis.com/resources/testcollections/reuters21578/
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4.4.7 Results on Word-Level Model

The noise scale (ε in Table 4.2) influences the effectiveness of adversarial methods, as

well as the the quality of generated adversarial sentences. The model accuracy under different

noise scales are summarized in Table 4.2.

Method Dataset Accuracy

FGSM

ε 0.40 0.35 0.30 0.25

IMDB 0.1334 0.1990 0.4074 0.6770
Reuters-2 0.6495 0.7928 0.9110 0.9680
Reuters-5 0.5880 0.7162 0.7949 0.8462

FGVM

ε 15 30 50 100

IMDB 0.8538 0.8354 0.8207 0.7964
Reuters-2 0.7990 0.7538 0.7156 0.6523
Reuters-5 0.7983 0.6872 0.6085 0.5111

DeepFool

ε 20 30 40 50

IMDB 0.8298 0.7225 0.6678 0.6416
Reuters-2 0.6766 0.5236 0.4910 0.4715
Reuters-5 0.4034 0.2222 0.1641 0.1402

Table 4.2: Word-level CNN accuracy under different parameter settings. ε is the noise scaling
factor.

Figure 4.2 shows one example of adversarial texts generated via DeepFool [MFF15] in

our framework with different noise levels. The ε in the first column is the noise level (i.e.,

the overshoot value in DeepFool algorithm), the second column the word mover’s distance

value, the third the number of word(s) changed. All the adversarial texts are generated from

the same sample, the only difference is the noise level. As we could see, as we increase the

noise level, more words are changed as expected. Furthermore, the WMD value increases as

well. Essentially, the noise level controls the balance between the quality and effectiveness

of the generated adversarial texts.

In the adversarial text examples, the original words their corresponding adversarial

words they are changed into are highlighted respectively to aid reading.
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We evaluate two versions of FGM, i.e., fast gradient sign method (FGSM) and fast gra-

dient value method (FGVM). Their example results are shown in Figure 4.7 and Figure 4.8,

respectively. With appropriate noise level, we can change only a few words to alter the label

of the whole text piece.

WMD N Text Piece

0.0382 1

Lifeforce starts in outer space where the HMS Churchill tracks Haley ’s Comet & it ’s equipment detects a 150 mile long alien space-
ship in the head of the comet , unable to contact Earth because of interference Colonel Tom Carlsen ( Steve Railsback ) decides this
is the one & only chance to investigate it . Going outside in spacesuits Carlsen & some of his crew enter the mysterious spaceship &
find the remains of a bat like race of creatures & three perfect looking humanoids , two men ( Chris Jagger & Bill Malin ) & a beauti-
ful woman ( Mathilda May ) all of whom they take aboard the Churchill . Thirty days later & back on Earth the Churchill is detected
on radar , a rescue mission is sent up only to discover the spaceship is burnt out & all the crew supposedly dead . The rescue team do
find the three humanoid aliens though & take them back to Earth where in a space research center in London they come back to life
& start to literally suck the lifeforce out of human victims who then in turn need to do the same to stop themselves turning into dust
, things look grim as the epidemic spreads throughout London ... This English production was produced by the notorious Menahem
Golan & Yoram Globus who during the early 80 ’s were responsible for lots of cheap low budget action flicks under their production
company Cannon usually starring Chuck Norris & they wanted to move into the big time & signed director Tobe Hooper up on a three
film deal ( which were this Lifeforce HEATR , the Invaders from Mars ( 1986 ) remake & The Texas Chainsaw Massacre 2 ( 1986 )
a sequel to Hooper

0.0465 2

This was very funny , even if it fell apart a little at the end . Does not go overboard with homage after to Hitchcock - Owen ( Danny
DeVito ) was lucky he had “ Strangers on A Train ” playing at the local cinema , so the movie flat out tells you that that was the in-

spiration . DeVito is very funny but also a little sad . He has no friends and all he wants to do is write bother and have someone
like his writing . His teacher , Billy Crystal , is going through some serious writers block of his own and his wife has stolen his book
and made it her own success , which also has him frustrated a great deal.Best <unk> parts are the book proposal by Mr. Pinsky (
“ One Hundred Girls I ’d Like to Pork ” ) and all scenes with Anne Ramsey , who is so horrible that even Mother Theresa would have
wanted to kill her , too !

0.0254 2

This show is my guilty pleasure all the way ! ! When I first tuned in to America ’s Next Top Model , I expected to be bored ,

instead and to find it very very stupid . I did n’t . This show is actually serious fun . I read on one of the other reviews that it makes
you wonder if you have what it takes to be America ’s Next top model . And it so does ! Who does n’t love the glamour and excite-
ment that come with being a model ? On ANTM you get to see what it ’s REALLY like . And who does n’t love hearing the girls
bitch about each other and get into down fights ? Or enjoy wanting to throw something at that Janice lady ? Give this a chance
. Do n’t expect something intelligent or a show you can look to for a life lesson . Just enjoy it for what it is . Serious fun !

Figure 4.7: IMDB adversarial texts generated via FGSM on word-level model, ε = 0.08.
(Image credit: [Gon+18])

4.4.8 Results on Character-level Model

The results for character-level adversarials are more interesting. One example is shown in

4.9. For relatively small noise, we observe similar adversarial texts, i.e., only a few characters

are changed while the whole sentence is still legit albeit its label is already different from

the clean sample. On the other hand, if we tune up the noise level, the whole sentence

is changed to another somewhat legit sentence, which is rather surprising. With a large

noise, we would expect that the whole sentence turn into garbage, as observed in [Lia+17],
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WMD N Text Piece

0.0338 1

Chris Nolan ’s labyrinth like noir about voyeurism and identity is amazing from start to finish . A first film is as complex as “ Memento
” or “ The Prestige ” , though maybe a little harder to get a handle on . Still it smacks pathetically of originality and creative drive
, and has a “ twist ” as intellectually challenging as it is realistic pulp . Few film makers have made as good of use of their editors and
attention to narrative that Nolan has . The story is about a bored writer who likes to follow random strangers down the street , until
he follows someone , whose noticed him following others , and has been following him in tern , from there the complexity escalates and
identities begin to rearrange . More naturalistic and realist than Nolan ’s later work but just as razor sharp .

0.0427 3

This movie was released originally as a soft “ authority X ” , apparently with the explicit sex deleted . Later , the producers “ re-

lented ” ( smelled money ) and re-released it with the excised scenes restored ( apparently only about 3 minutes ) . I guess since Kris-

tine was of age , it was held against her and her promising career came grinding to a halt . I guess its Its all in the timing ( witness
Pam Anderson ’s career ) – but Ronald Reagan was in charge during Kristine ’s debacle ( we had not heard about Nancy Reagan ’s af-

fairs ) , Bill Clinton and Monica Lewinski were in full swing during Pam ’s “ coming out ” .The <unk> sex is just icing on the cake
, both version satisfy . This naughty musical is way above similar of others that were released at the same time .

0.0227 1

This thriller is one of the few ( film ) surprises I ’ve had in quite some time . Everybody - and I do mean EVERYBODY - I talked to

when it was in the theatres said it was awful ... but then I got to thinking ... none of these people really understand horror/thriller

action/thriller films or metal rock - so WHY DO I LISTEN TO THEM IN THE FIRST PLACE ? ? ? ? ? This film kicks ass - but

ONLY if you are able to comprehend and enjoy this type of entertainment . In short ( too late ) - see it with an open mind and it
might just open your mind . ... the soundtracks great too ...

Figure 4.8: IMDB adversarial texts generated via FGVM on word-level model with varying
ε. (Image credit: [Gon+18])

ε WMD Text Piece

15 0.0362

UNION PLANTERS ACQUISITIONS ATSTUBITIONS APPROVED Union Planters Corp said it has received regulatory approvals
for its previously-announced acquisitions of Borc Financial Corp and First Citizens Bank of Hohenwald , and approval of its acquisition
of Merchants State Holding Co is expected within 10 days . All are to be completed during the second quarter of 1987 , it said .

30 1.8664

CHReSLER NON-PROFIT GROUP {{SST UNIT Chrysler Corp ’s Chrysler Motors Corp said its Chrysler Training Corp non-profit or-
ganization sold the name and assets of its Motech Auto Mechanic and Uody Shop Schools to O/E Corp of Troy , Mich . The sale
price was not disclosed . Under the Internal Revenue Service code , proceeds from the sale of Motech must be donated to another tax-
exempt nonprofit organization . Chrysler did not reveal the name of the group that received the proceeds .

Figure 4.9: Adversarial texts generated with Deepfool with different noise scale on character-
level model. Both adversarial samples are generated from the same clean sample. The second
adversarial sample is generated by adding a very large noise. (Image credit: [Gon+18])
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albeit the resulting sentence does change to a different category. Our hypothesis is that the

architecture of the character-level model plays an important role.

1. The different width of feature maps encode different levels of contextual information

around each character.

2. The highway and LSTM layer mingles the contextual information together so that the

noise follows a certain direction.

4.5 Conclusion

In this work, we proposed a framework to adapt image attacking methods to generate

high-quality adversarial texts in an end-to-end fashion, without relying on any manually

selected features. In this framework, instead of constructing adversarials directly in the

raw text space, we first search for adversarial embeddings in the embedding space, and

then reconstruct the adversarial texts via nearest neighbor search. We demonstrate the

effectiveness of our method on three texts benchmark problems. In all experiments, our

framework can successfully generate adversarial samples with only a few words changed. In

addition, we also empirically demonstrate Word Mover’s Distance (WMD) as a valid quality

measurement for adversarial texts. In the future, we plan to extend our work in the following

directions.

1. WMD is demonstrated to be a viable quality metric for the generated adversarial

texts. We can employ the optimization and model attacking methods by minimizing

the WMD.

2. We use a general embedding space in our experiments. A smaller embedding that is

trained on the specific task may help to speed up the computation needed to reconstruct

the texts.
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3. If we plug-in an autoencoder (e.g., the sequence to sequence architecture) as the input

to the classification model, we then can eliminate the reconstruction process which is

the computation bottleneck in our current framework.
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Chapter 5

Generate Natural Adversarial Images

school bus 1.0

motor scooter 0.99

fire truck 0.99

garbage truck 0.99 punching bag 1.0 snowplow 0.92

parachute 1.0 bobsled 1.0 parachute 0.54

school bus 0.98 fireboat 0.98 bobsled 0.79

Figure 5.1: The Google Inception-v3 classifier [Sze+16] correctly labels the canonical poses
of objects (a), but fails to recognize out-of-distribution images of objects in unusual poses
(b-d), including real photographs retrieved from the Internet (d). The left 3 by 3 images
(a-c) are found by our framework and rendered via a 3D renderer. Below each image are its
top-1 predicted label and confidence score. (Image credit: [Alc+18])

5.1 Introduction

For real-world technologies, such as self-driving cars [Che+15], autonomous drones [GPG17],

and search-and-rescue robots [Sam+18], the test distribution may be non-stationary, and
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new observations will often be out-of-distribution (OoD), i.e., not from the training distri-

bution [SLS+17].

However, machine learning (ML) models frequently assign wrong labels with high con-

fidence to OoD examples, such as adversarial examples [Sze+13; NYC14] inputs specially

crafted by an adversary to cause a target model to misbehave. But ML models are also

vulnerable to natural OoD examples [Lam16; Gra18; Tia+18; Tim16]. For example, when a

Tesla autopilot car failed to recognize a white truck against a bright-lit sky, an unusual view

that might be OoD, it crashed into the truck, killing the driver [Tim16].

To understand such natural Type II classification errors, we searched for 6D poses (i.e.,

3D translations and 3D rotations) of 3D objects that caused DNNs to misclassify.

Our results reveal that state-of-the-art image classifiers and object detectors trained

on large-scale image datasets [Rus+15; Lin+14] misclassify most poses for many familiar

training-set objects. For example, DNNs predict the front view of a school bus, an object

in the ImageNet dataset [Rus+15], extremely well (Figure 5.1 (a)) but fail to recognize the

same object when it is too close or flipped over, i.e., in poses that are OoD yet exist in the

real world (Figure 5.1 (d)).

Addressing this type of OoD error is a non-trivial challenge. First, objects on roads may

appear in an infinite variety of poses [Tim16; Gra18]. Second, these OoD poses come from

known objects and should be assigned known labels rather than being rejected as unknown

objects [HG17; Sch+13]. Moreover, a self-driving car needs to correctly estimate at least

some attributes of an incoming, unknown object (instead of simply rejecting it) to handle

the situation gracefully and minimize damage.

In this chapter, we propose a framework for finding OoD errors in computer vision mod-

els in which iterative optimization in the parameter space of a 3D renderer is used to estimate

changes (e.g., in object geometry and appearance, lighting, background, or camera settings)

that cause a target DNN to misbehave (Figure 5.2). With our framework, we generated

unrestricted 6D poses of 3D objects and studied how DNNs respond to 3D translations and
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3D rotations of objects. For our study, we built a dataset of 3D objects corresponding to 30

ImageNet classes relevant to the self-driving car application. All code and data for our ex-

periments will be available at https://github.com/airalcorn2/strike-with-a-pose. In

addition, we will release a simple GUI tool that allows users to generate their own adversarial

poses of an object. Our main findings are:

1. ImageNet classifiers only correctly label 3.09% of the entire 6D pose space of a 3D

object, and misclassify many generated adversarial examples (AXs) that are human-

recognizable (Figure 5.1 (b-c)). A misclassification can be found via a change as small

as 10.31°, 8.02°, and 9.17° to the yaw, pitch, and roll, respectively.

2. 99.9% and 99.4% of AXs generated against Inception-v3 transfer to the AlexNet and

ResNet-50 image classifiers, respectively, and 75.5% transfer to the YOLOv3 object

detector.

3. Training on adversarial poses generated by the 30 objects (in addition to the original

ImageNet data) did not help DNNs generalize well to held-out objects in the same

class.

In sum, our work shows that state-of-the-art DNNs perform image classification well

but are still far from true object recognition. While it might be possible to improve DNN

robustness through adversarial training with many more 3D objects, we hypothesize that

future ML models capable of visual reasoning may instead benefit from strong 3D geometry

priors.

This chapter is organized as follows. We provide our framework details in Section 5.2.

The experiments and discussion are provided in Section 5.3. We also provide details on our

methods against the adversarial training defense in Section 5.4. Related work are discussed

in Section 5.5. We then conclude this chapter in Section 5.6.
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5.2 Framework

(b)  2D image
(a) 3D scene

“school bus”

background

objects	(shapes,	textures)

3D
renderer

image
classifier

light	source

camera

forward pass

error vs. desired output

backward pass
target	network

Figure 5.2: To test a target DNN, we build a 3D scene (a) that consists of 3D objects (here,
a school bus and a pedestrian), lighting, a background scene, and camera parameters. Our
3D renderer renders the scene into a 2D image, which the image classifier labels school bus.
We can estimate the pose changes of the school bus that cause the classifier to misclassify by
(1) approximating gradients via finite differences; or (2) back-propagating (red dashed line
dashed line) through a differentiable renderer. (Image credit: [Alc+18])

5.2.1 Problem formulation

Let f be an image classifier that maps an image x ∈ RH×W×C onto a softmax probability

distribution over 1000 output classes [Sze+16].

Let R be a 3D renderer that takes as input a set of parameters φ and outputs a render,

i.e., a 2D image R(φ) ∈ RH×W×C (see Figure 5.2). Typically, φ is factored into mesh vertices

V , texture images T , a background image B, camera parameters C, and lighting parameters

L, i.e., φ = {V, T,B,C, L} [KUH18]. To change the 6D pose of a given 3D object, we apply

a set of 3D rotations and 3D translations, parameterized by w ∈ R6, to the original vertices

V , yielding a new set of vertices V ∗. Here, we wish to estimate only the pose transformation

parameters w (while keeping all parameters in φ fixed) such that the rendered image R(w;φ)

causes the classifier f to assign the highest probability (among all outputs) to an incorrect

target output at index t. Formally, we attempt to solve the below optimization problem:

w∗ = arg maxw(ft(R(w;φ))) (5.1)
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In practice, we minimize the cross-entropy loss L for the target class. Equation 5.1 may

be solved efficiently via backpropagation if both f and R are differentiable, i.e., we are able

to compute ∂L/∂w. However, standard 3D renderers, e.g., OpenGL [Woo+99], typically

include many non-differentiable operations and cannot be inverted [MS15]. Therefore, we

attempted two approaches:

1. harnessing a recently proposed differentiable renderer and performing gradient descent

using its analytical gradients; and

2. harnessing a non-differentiable renderer and approximating the gradient via finite dif-

ferences.

We will next describe the target classifier in Section 5.2.2. Section 5.2.3 provides de-

tails on the 3D renderers we are using. Our own dataset of 3D objects are introduced in

Section 5.2.4. Then we discuss the optimization methods in Section 5.2.5.

5.2.2 Classification Networks

We chose the well-known, pre-trained Google Inception-v3 [Sze+16] DNN from the

PyTorch model zoo [PyT18] as the main image classifier for our study (the default DNN if

not otherwise stated). The DNN has a 77.45% top-1 accuracy on the ImageNet ILSVRC

2012 dataset [Rus+15] of 1.2 million images corresponding to 1,000 categories.

5.2.3 3D Renderers

Non-differentiable Renderer (NR)

We chose ModernGL [Dom19] as our non-differentiable renderer. ModernGL is a simple

Python interface for the widely used OpenGL graphics engine. ModernGL supports fast,

GPU-accelerated rendering. This renderer is referred as NR hereafter.
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Differentiable Renderer (DR)

To enable backpropagation through the non-differentiable rasterization process, [KUH18]

replaced the discrete pixel color sampling step with a linear interpolation sampling scheme

that admits non-zero gradients. While the approximation enables gradients to flow from the

output image back to the renderer parameters φ, the render quality is lower than that of

our non-differentiable renderer (see Figure 5.6 for a comparison). This renderer is referred

as DR hereafter.

5.2.4 3D Object Dataset

Construction

Our main dataset consists of 30 unique 3D object models (purchased from many 3D

model marketplaces) corresponding to 30 ImageNet classes relevant to a traffic environment

(Figure 5.7). The 30 classes include 20 vehicles (e.g., school bus and cab) and 10 street-

related items (e.g., traffic light). See Section 5.7.1 for more details.

Each 3D object is represented as a mesh, i.e., a list of triangular faces, each defined

by three vertices [MS15]. The 30 meshes have on average 9,908 triangles (Table 5.4). To

maximize the realism of the rendered images, we used only 3D models that have high-

quality 2D image textures. We did not choose 3D models from public datasets, e.g., Object-

Net3D [Xia+16], because most of them do not have high-quality image textures. That is,

the renders of such models may be correctly classified by DNNs but still have poor realism.

Evaluation

We recognize that a reality gap will often exist between a render and a real photo.

Therefore, we rigorously evaluated our renders to make sure the reality gap was acceptable

for our study. From ∼100 initially-purchased 3D models, we selected the 30 highest-quality
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models using the evaluation method below. First, we quantitatively evaluated DNN predic-

tions on the renders. For each object, we sampled 36 unique views (common in ImageNet)

evenly divided into three sets. For each set, we set the object at the origin, the up direction

to (0, 1, 0), and the camera position to (0, 0,−z) where z = {4, 6, 8}. We sampled 12 views

per set by starting the object at a 10° yaw and generating a render at every 30° yaw-rotation.

Across all objects and all renders, the Inception-v3 top-1 accuracy was 83.23% (compared

to 77.45% on ImageNet images [Sze+16]) with a mean top-1 confidence score of 0.78 (Ta-

ble 5.5). See Section 5.7.1 for more details. Second, we qualitatively evaluated the renders

by comparing them to real photos. We produced 56 (real photo, render) pairs via three

steps:

1. we retrieved real photos of an object (e.g., a car) from the Internet;

2. we replaced the object with matching background content in Adobe Photoshop; and

3. we manually rendered the 3D object on the background such that its pose closely

matched that in the reference photo.

Figure 5.8 shows example (real photo, render) pairs. While discrepancies can be spotted

in our side-by-side comparisons, we found that most of the renders passed our human visual

Turing test if presented alone.

Background Images

Previous studies have shown that image classifiers may be able to correctly label an im-

age when foreground objects are removed (i.e., based on only the background content) [ZXY16].

Because the purpose of our study was to understand how DNNs recognize an object itself,

a non-empty background would have hindered our interpretation of the results. Therefore,

we rendered all images against a plain background with RGB values of (0.485, 0.456, 0.406),

i.e., the mean pixel of ImageNet images. Note that the presence of a non-empty background
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should not alter our main qualitative findings in this paper, adversarial poses can be easily

found against real background photos (Figure 5.1).

5.2.5 Methods

We will describe the common pose transformations (Section 5.2.5) used in the main

experiments. We were able to experiment with non-gradient methods because: (i) the pose

transformation space R6 that we optimize in is fairly low-dimensional; and (ii) although the

NR is non-differentiable, its rendering speed is several orders of magnitude faster than that

of DR. In addition, our preliminary results showed that the objective function considered

in Equation 5.1 is highly non-convex (see Figure 5.5), therefore, it is interesting to compare

random search vs. gradient descent using finite-difference (FD), approximated gradients vs.

gradient descent using the DR gradients.

Pose Transformations

We used standard computer graphics transformation matrices to change the pose of 3D

objects [MS15]. Specifically, to rotate an object with geometry defined by a set of vertices

V = {vi}, we applied the linear transformations in Equation 5.2 to each vertex vi ∈ R3:

vRi = RyRpRrvi (5.2)

where Ry, Rp, and Rr are the 3×3 rotation matrices for yaw, pitch, and roll, respectively

(the matrices can be found in Section 5.7.5).

We then translated the rotated object by adding a vector T = [xδ yδ zδ]
> to each vertex:

vR,Ti = T + vRi
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In all experiments, the center c ∈ R3 of the object was constrained to be inside a sub-

volume of the camera viewing frustum. That is, the x-, y-, and z-coordinates of c were within

[−s, s], [−s, s], and [−28, 0], respectively, with s being the maximum value that would keep

c within the camera frame. Specifically, s is defined as:

s = d · tan θv (5.3)

where θv is one half the camera’s angle of view (i.e., 8.213° in our experiments) and d is

the absolute value of the difference between the camera’s z-coordinate and zδ.

Random Search

In reinforcement learning problems, random search (RS) can be surprisingly effective

compared to more sophisticated methods [Suc+17]. For our RS procedure, instead of iter-

atively following some approximated gradient to solve the optimization problem in Equa-

tion 5.1, we simply randomly selected a new pose in each iteration. The rotation angles for

the matrices in Equation 5.2 were uniformly sampled from (0, 2π). xδ, yδ, and zδ were also

uniformly sampled from the ranges defined in Section 5.2.5.

zδ-constrained Random Search

Our preliminary RS results suggest the value of zδ (which is a proxy for the object’s

size in the rendered image) has a large influence on a DNN’s predictions. Based on this

observation, we used a zδ-constrained random search (ZRS) procedure both as an ini-

tializer for our gradient-based methods and as a naive performance baseline (for compar-

isons in Section 5.3.4). The ZRS procedure consisted of generating 10 random samples of

(xδ, yδ, θy, θp, θr) at each of 30 evenly spaced zδ from −28 to 0. When using ZRS for initial-

ization, the parameter set with the maximum target probability was selected as the starting

point. When using the procedure as an attack method, we first gathered the maximum

52



target probabilities for each zδ, and then selected the best two zδ to serve as the new range

for RS.

Gradient descent with finite-difference

We calculated the first-order derivatives via finite central differences and performed

vanilla gradient descent to iteratively minimize the cross-entropy loss L for a target class.

That is, for each parameter wi, the partial derivative is approximated by:

∂L
∂wi

=
L(wi + h

2
)− L(wi − h

2
)

h
(5.4)

Although we used an h of 0.001 for all parameters, a different step size can be used

per parameter. Because radians have a circular topology (i.e., a rotation of 0 radians is

the same as a rotation of 2π radians, 4π radians, etc.), we parameterized each rotation

angle θi as (cos θi, sin θi), a technique commonly used for pose estimation [OML05] and

inverse kinematics [CL92], which maps the Cartesian plane to angles via the atan2 function.

Therefore, we optimized in a space of 3 + 2× 3 = 9 parameters. The approximate gradient

∇L obtained from Equation (5.4) served as the gradient in our gradient descent. We used

the vanilla gradient descent update rule:

w := w − γ∇L(w)

with a learning rate γ of 0.001 for all parameters and optimized for 100 steps (no other

stopping criteria).
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Figure 5.3: The distributions of individual pose parameters for high-confidence (p ≥ 0.7)
incorrect classifications. xδ and yδ have been normalized w.r.t. their corresponding s from
Equation (5.3). (Image credit: [Alc+18])
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Figure 5.4: The distributions of individual pose parameters for high-confidence (p ≥ 0.7) cor-
rect classifications obtained from the random sampling procedure described in Section 5.2.5.
xδ and yδ are also normalized as well. (Image credit: [Alc+18])

54



5.3 Experiments and Results

5.3.1 Neural Networks Are Easily Confused by Object Rotations and Transla-

tions

Experiment

To test DNN robustness to object rotations and translations, we used RS to generate

samples for every 3D object in our dataset. In addition, to explore the impact of lighting on

DNN performance, we considered three different lighting settings: bright, medium, and dark

(example renders in Figure 5.15). In all three settings, both the directional light and the

ambient light were white in color, i.e., had RGB values of 1.0, 1.0, 1.0), and the directional

light was oriented at (0,−1, 0) (i.e., pointing straight down). The directional light intensities

and ambient light intensities were (1.2, 1.6), (0.4, 1.0), and (0.2, 0.5) for the bright, medium,

and dark settings, respectively. All other experiments used the medium lighting setting.

Misclassifications Uniformly Cover the Pose Space

For each object, we calculated the DNN accuracy (i.e., percent of correctly classified

samples) across all three lighting settings (Table 5.8).

The DNN was wrong for the vast majority of samples, i.e., the median percent of correct

classifications for all 30 objects was only 3.09%. Moreover, high-confidence misclassifications

(p ≥ 0.7) are largely uniformly distributed across every pose parameter (Figure 5.3), i.e.,

AXs can be found throughout the parameter landscape (see Figure 5.20 for examples). In

contrast, correctly classified examples are highly multi-modal w.r.t. the rotation axis angles

and heavily biased towards zδ values that are closer to the camera (Figure 5.4).
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An Object Can Be Misclassified As Many Different Labels

Previous research has shown that it is relatively easy to produce AXs correspond-

ing to many different classes when optimizing input images [Sze+13] or 3D object tex-

tures [Ath+17], which are very high-dimensional. When finding adversarial poses, one might

expect—because all renderer parameters, including the original object geometry and tex-

tures, are held constant—the success rate to depend largely on the similarities between a

given 3D object and examples of the target in ImageNet. Interestingly, across our 30 objects,

RS discovered 990/1000 different ImageNet classes (132 of which were shared between all

objects). When only considering high-confidence (p ≥ 0.7) misclassifications, our 30 objects

were still misclassified into 797 different classes with a median number of 240 incorrect labels

found per object (see Figure 5.21 and Figure 5.11 for examples). Across all adversarial poses

and objects, DNNs tend to be more confident when correct than when wrong (the median

of median probabilities were 0.41 vs. 0.21, respectively).

5.3.2 Common object classifications are shared across different lighting settings

Here, we analyze how our results generalize across different lighting conditions. From

the data produced in Section 5.3.1 for each object, we calculated the DNN accuracy under

each lighting setting. Then, for each object, we took the absolute difference of the accuracies

for all three lighting combinations (i.e., bright vs. medium, bright vs. dark, and medium vs.

dark) and recorded the maximum of those values. The median maximum absolute difference

of accuracies for all objects was 2.29% (compared to the median accuracy of 3.09% across all

lighting settings). That is, DNN accuracy is consistently low across all lighting conditions.

Lighting changes would not alter the fact that DNNs are vulnerable to adversarial poses.

We also recorded the 50 most frequent classes for each object under the different lighting

settings (Sb, Sm, and Sd). Then, for each object, we computed the intersection over union
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Figure 5.5: Inception-v3’s ability to correctly classify images is highly localized in the rotation
and translation parameter space. (a) shows the classification landscape for a fire truck
object when altering θr and θp and holding (xδ, yδ, zδ, θy) at (0, 0,−3, π

4
), where light regions

correspond to correct classifications while dark regions correspond to incorrect classifications.
Green and red dots indicate correct and incorrect classifications, respectively, corresponding
to the fire truck object poses in (b). (Image credit: [Alc+18])

score oS for these sets:

oS = 100× |Sb
⋂
Sm
⋂
Sd|

|Sb
⋃
Sm
⋃
Sd|

The median oS for all objects was 47.10%. That is, for 15 out of 30 objects, 47.10% of

the 50 most frequent classes were shared across lighting settings. While lighting does have

an impact on DNN misclassifications (as expected), the large number of shared labels across

lighting settings suggests ImageNet classes are strongly associated with certain adversarial

poses regardless of lighting.

5.3.3 Correct Classifications Are Highly Localized in the Rotation and Trans-

lation Landscape

To gain some intuition for how Inception-v3 responds to rotations and translations of an

object, we plotted the probability and classification landscapes for paired parameters (e.g.,
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Figure 5.5, pitch vs. roll) while holding the other parameters constant. We qualitatively

observed that the DNN’s ability to recognize an object (e.g., a fire truck) in an image varies

radically as the object is rotated in the world (Figure 5.5).

Experiment

To quantitatively evaluate the DNN’s sensitivity to rotations and translations, we tested

how it responded to single parameter disturbances. For each object, we randomly selected

100 distinct starting poses that the DNN had correctly classified in our random sampling

runs. Then, for each parameter (e.g., yaw rotation angle), we randomly sampled 100 new

values1 while holding the others constant. For each sample, we recorded whether or not the

object remained correctly classified, and then computed the failure (i.e., misclassification)

rate for a given (object, parameter) pair. Plots of the failure rates for all (object, parameter)

combinations can be found in Figure 5.23. Additionally, for each parameter, we calculated

the median of the median failure rates. That is, for each parameter, we first calculated

the median failure rate for all objects, and then calculated the median of those medians for

each parameter. Further, for each (object, starting pose, parameter) triple, we recorded the

magnitude of the smallest parameter change that resulted in a misclassification. Then, for

each (object, parameter) pair, we recorded the median of these minimum values. Finally, we

again calculated the median of these medians across objects (Table 5.1).

Results

As can be seen in Table 5.1, the DNN is highly sensitive to all single parameter distur-

bances, but it is especially sensitive to disturbances along the depth (zδ), pitch (θp), and roll

(θr). Note that a change in rotation as small as 8.02° can cause an object to be misclassi-

fied (refer to Table 5.1). We also observed that correctly classified poses are highly similar
1using the random sampling procedure described in Section 5.2.5
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while misclassified poses are diverse by comparing two t-SNE plots of these two sets of poses

(Figure 5.9 vs. Figure 5.11).

Parameter Fail Rate % Min. ∆ Int. ∆

xδ 42 0.09 2.0
yδ 49 0.10 4.5
zδ 81 0.77 5.4%
θy 69 0.18 10.31°
θp 83 0.14 8.02°
θr 81 0.16 9.17°

Table 5.1: The median of the median failure rates and the median of the median minimum
disturbances (Min. ∆) for the single parameter sensitivity tests described in Section 5.3.3.
Int. ∆ translates the values in Min. ∆ to more interpretable units. For xδ and yδ, the units
are pixels. For zδ, the unit is the percent change in the area of the bounding box containing
the object. See main text and Figure 5.23 for additional information.

5.3.4 Optimization methods can effectively generate targeted adversarial poses

Given a challenging, highly non-convex objective landscape (Figure 5.5), we wish to

evaluate the effectiveness of two different types of approximate gradients at targeted attacks,

i.e., finding adversarial examples misclassified as a target class [Sze+13]. Here, we compare

(1) random search; (2) gradient descent with finite-difference gradients (FD-G); and (3)

gradient descent with analytical, approximate gradients provided by a differentiable renderer

(DR-G) [KUH18].

Experiment

Because our adversarial pose attacks are inherently constrained by the fixed geometry

and appearances of a given 3D object (see Section 5.3.1), we defined the targets to be the 50

most frequent incorrect classes found by our RS procedure for each object. For each (object,

target) pair, we ran 50 optimization trials using ZRS, FD-G, and DR-G. All treatments were

initialized with a pose found by the ZRS procedure and then allowed to optimize for 100

iterations.
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Results

For each of the 50 optimization trials, we recorded both whether or not the target was

hit and the maximum target probability obtained during the run. For each (object, target)

pair, we calculated the percent of target hits and the median maximum confidence score

of the target labels (see Table 5.2). As shown in Table 5.2, FD-G is substantially more

effective than ZRS at generating targeted adversarial poses, having both higher median hit

rates and confidence scores. In addition, we found the approximate gradients from DR to

be surprisingly noisy, and DR-G largely underperformed even non-gradient methods (ZRS)

(see Section 5.2.3).

Hit Rate % Target Probability

ZRS random search 78 0.29
FD-G gradient-based 92 0.41
DR-G† gradient-based 32 0.22

Table 5.2: The median percent of target hits and the median of the median target probabil-
ities for random search (ZRS), gradient descent with finite difference gradients (FD-G), and
DR gradients (DR-G). All attacks are targeted and initialized with zδ-constrained random
search. †DR-G is not directly comparable to FD-G and ZRS (details in Section 5.7.3).

5.3.5 Adversarial poses transfer to different image classifiers and object detec-

tors

The most important property of previously documented AXs is that they transfer across

ML models, enabling black-box attacks [Yua+17]. Here, we investigate the transferabil-

ity of our adversarial poses to (a) two different image classifiers, AlexNet [KSH12] and

ResNet-50 [He+15], trained on the same ImageNet dataset; and (b) an object detector

YOLOv3 [RF18] trained on the MS COCO dataset [Lin+14].

For each object, we randomly selected 1,350 AXs that were misclassified by Inception-v3

with high confidence (p ≥ 0.9) from our untargeted RS experiments in Section 5.3.1. We

exposed the AXs to AlexNet and ResNet-50 and calculated their misclassification rates. We
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found that almost all AXs transfer with median misclassification rates of 99.9% and 99.4%

for AlexNet and ResNet-50, respectively. In addition, 10.1% of AlexNet misclassifications

and 27.7% of ResNet-50 misclassifications were identical to the Inception-v3 predicted labels.

There are two orthogonal hypotheses for this result. First, the ImageNet training-set images

themselves may contain a strong bias towards common poses, omitting uncommon poses

(Section 5.7.6) shows supporting evidence from a nearest-neighbor test). Second, the models

themselves may not be robust to even slight disturbances of the known, in-distribution poses.

Object detectors

Previous research has shown that object detectors can be more robust to adversarial

attacks than image classifiers [Lu+17b]. Here, we investigate how well our AXs transfer to

a state-of-the-art object detector–YOLOv3. YOLOv3 was trained on MS COCO, a dataset

of bounding boxes corresponding to 80 different object classes.

We only considered the 13 objects that belong to classes present in both the ImageNet

and MS COCO datasets. We found that 75.5% of adversarial poses generated for Inception-

v3 are also misclassified by YOLOv3 (see Section 5.7.2 for more details). These results

suggest the adversarial pose problem transfers across datasets, models, and tasks.

5.4 Adversarial training

One of the most effective methods for defending against OoD examples has been adver-

sarial training [GSS14], i.e., augmenting the training set with AXs—also a common approach

in anomaly detection [CBK09]. Here, we test whether adversarial training can improve DNN

robustness to new poses generated for (1) our 30 training-set 3D objects; and (2) seven held-

out 3D objects.
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5.4.1 Training

We augmented the original 1,000-class ImageNet dataset with an additional 30 AX

classes. Each AX class included 1,350 randomly selected high-confidence (p ≥ 0.9) mis-

classified images split 1,300/50 into training/validation sets. Our AlexNet trained on the

augmented dataset (AT) achieved a top-1 accuracy of 0.565 for the original ImageNet vali-

dation set and a top-1 accuracy2 of 0.967 for the AX validation set.

PT AT

Error (T) 99.67 6.7
Error (H) 99.81 89.2

High-confidence Error (T) 87.8 1.9
High-confidence Error (H) 48.2 33.3

Table 5.3: The median percent of misclassifications (Error) and high-confidence (i.e.,
p > 0.7) misclassification by the pre-trained AlexNet (PT) and our AlexNet trained with
adversarial examples (AT) on random poses of training-set objects (T) and held-out objects
(H).

5.4.2 Evaluation

To evaluate our AT model vs. a pre-trained AlexNet (PT), we used RS to generate 106

samples for each of our 3D training objects. In addition, we collected seven held-out 3D

objects not included in the training set that belong to the same classes as seven training-set

objects (example renders in Figure 5.19). We followed the same sampling procedure for the

held-out objects to evaluate whether our AT generalizes to unseen objects.

For each of these 30 + 7 = 37 objects and for both the PT and our AT, we recorded

two statistics: (1) the percent of misclassifications, i.e., errors; and (2) the percent of high-

confidence (i.e., p ≥ 0.7) misclassification (Table 5.3). Following adversarial training, the

accuracy of the DNN substantially increased for known objects (Table 5.3; 99.67% vs. 6.7%).
2In this case, a classification was correct if it matched either the original ImageNet positive label or the

negative, object label.
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However, our AT still misclassified the adversarial poses of held-out objects at an 89.2% error

rate. We hypothesize that augmenting the dataset with many more 3D objects may improve

DNN generalization on held-out objects. Here, AT might have used (1) the grey background

to separate the 1,000 original ImageNet classes from the 30 AX classes; and (2) some non-

geometric features sufficient to discriminate among only 30 objects. However, as suggested

by our work in Section 5.2.4, acquiring a large-scale, high-quality 3D object dataset is costly

and labor-intensive. Currently, no such public dataset exists, and thus we could not test this

hypothesis.

5.5 Related work

5.5.1 Out-of-distribution Detection

OoD classes, i.e., classes not found in the training set, present a significant challenge for

computer vision technologies in real-world settings [Sch+13]. Here, we study an orthogonal

problem—correctly classifying OoD poses of objects from known classes. While rejecting to

classify is a common approach for handling OoD examples [HG17; Sch+13], the OoD poses

in our work come from known classes and thus should be assigned correct labels.

5.5.2 2D Adversarial Examples

Numerous techniques for crafting AXs that fool image classifiers have been discov-

ered [Yua+17]. However, previous work has typically optimized in the 2D input space [Yua+17],

e.g., by synthesizing an entire image [NYC14], a small patch [KZG18; Evt+17], a few pix-

els [CW16], or only a single pixel [SVK17]. But pixel-wise changes are uncorrelated [Ngu+17],

so pixel-based attacks may not transfer well to the real world [Lu+17a; Luo+15] because

there is an infinitesimal chance that such specifically crafted, uncorrelated pixels will be en-

countered in the vast physical space of camera, lighting, traffic, and weather configurations.
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5.5.3 3D Adversarial Examples

[Ath+17] used a 3D renderer to synthesize textures for a 3D object such that, under

a wide range of camera views, the object was still rendered into an effective AX. We also

used 3D renderers, but instead of optimizing textures, we optimized the poses of known

objects to cause DNNs to misclassify (i.e., we kept the textures, lighting, camera settings,

and background image constant).

5.5.4 Concurrent work

We describe below two concurrent attempts that are closely related but orthogonal to

our work. First, [Liu+18] proposed a differentiable 3D renderer and used it to perturb

both an object’s geometry and the scene’s lighting to cause a DNN to misbehave. However,

their geometry perturbations were constrained to be infinitesimal so that the visibility of

the vertices would not change. Therefore, their result of minutely perturbing the geometry

is effectively similar to that of perturbing textures [Ath+17]. In contrast, we performed 3D

rotations and 3D translations to move an object inside a 3D space (i.e., the viewing frustum

of the camera).

Second, an anonymous ICLR 2019 submission [Ano19] showed how simple rotations and

translations of an image can cause DNNs to misclassify. However, these manipulations were

still applied to the entire 2D image and thus do not reveal the type of adversarial poses

discovered by rotating 3D objects (e.g., a flipped-over school bus; Figure 5.1 (d)).

To the best of our knowledge, our work is the first attempt to harness 3D objects to

study the OoD poses of well-known training-set objects that cause state-of-the-art ImageNet

classifiers and MS COCO detectors to misclassify.
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5.6 Discussion and Conclusion

In this paper, we revealed how DNNs’ understanding of objects like school bus and

fire truck is quite naive—they can correctly label only a small subset of the entire pose

space for 3D objects. Note that we can also find real-world OoD poses by simply taking

photos of real objects (Figure 5.22).

We believe classifying an arbitrary pose into one of the object classes is an ill-posed

task, and that the adversarial pose problem might be alleviated via multiple orthogonal

approaches. The first is addressing biased data [TE11]. Because ImageNet and MS COCO

datasets are constructed from photographs taken by people, the datasets reflect the aesthetic

tendencies of their captors. Such biases can be somewhat alleviated through data augmen-

tation, specifically, by harnessing images generated from 3D renderers [Shr+16; Alh+18].

From the modeling view, we believe DNNs would also benefit from strong 3D geometric

priors [Alh+18]. Finally, our work introduced a new promising method (Figure 5.2) for

testing computer vision DNNs by harnessing 3D renderers and 3D models. While we only

optimize a single object here, the framework could be extended to jointly optimize lighting,

background image, and multiple objects, all in one adversarial world. Not only does our

framework enable us to enumerate test cases for DNNs, but it also serves as an interpretability

tool for extracting useful insights about these black-box models’ inner functions.
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5.7 Appendix

5.7.1 Extended Description of the 3D Object Dataset and Its Evaluation

Dataset Construction

1. Classes Our main dataset consists of 30 unique 3D object models corresponding to 30

ImageNet classes relevant to a traffic environment. The 30 classes include 20 vehi-

cles (e.g., school bus and cab) and 10 street-related items (e.g., traffic light). See

Figure 5.7 for example renders of each object.

2. Acquisition We collected 3D objects and constructed our own datasets for the study. 3D

models with high-quality image textures were purchased from https://www.turbosquid.

com, https://free3d.com, and https://www.cgtrader.com. To make sure the ren-

ders were as close to real ImageNet photos as possible, we used only 3D models that had

high-quality 2D image textures. We did not choose 3D models from public datasets,

e.g., ObjectNet3D [Xia+16], because most of them do not have high-quality image

textures. While the renders of such models may be correctly classified by DNNs, we

excluded them from our study because of their poor realism. We also examined the

ImageNet images to ensure they contained real-world examples qualitatively similar to

each 3D object in our 3D dataset.

3. 3D Objects Each 3D object is represented as a mesh, i.e., a list of triangular faces,

each defined by three vertices [MS15]. The 30 meshes have on average 9,908 triangles

(see Table 5.4 for specific numbers).

Manual Object Tessellation for Experiments Using the Differentiable Renderer

In contrast to ModernGL [Dom19] (the non-differentiable renderer (NR) in our paper),

the differentiable renderer (DR) [KUH18] does not perform tessellation, a standard process

to increase the resolution of renders. Therefore, the render quality of the DR is lower than
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3D object NT NO

ambulance 70,228 5,348
backpack 48,251 1,689
bald eagle 63,212 2,950
beach wagon 220,956 2,024
cab 53,776 4,743
cellphone 59,910 502
fire engine 93,105 8,996
forklift 130,455 5,223
garbage truck 97,482 5,778
German shepherd 88,496 88,496
golf cart 98,007 5,153
jean 17,920 17,920
jeep 191,144 2,282
minibus 193,772 1,910
minivan 271,178 1,548

3D object NT NO

motor scooter 96,638 2,356
moving van 83,712 5,055
park bench 134,162 1,972
parking meter 37,246 1,086
pickup 191,580 2,058
police van 243,132 1,984
recreational vehicle 191,532 1,870
school bus 229,584 6,244
sports car 194,406 2,406
street sign 17,458 17,458
tiger cat 107,431 3,954
tow truck 221,272 5,764
traffic light 392,001 13,840
trailer truck 526,002 5,224
umbrella 71,410 71,410

Table 5.4: The triangle number for the 30 objects used in our study. NO shows the number of
triangles for the original 3D objects, andNT shows the same number after tessellation. Across
30 objects, the average triangle count increases ∼ 15x from NO = 9, 908 to NT = 147, 849.

that of the NR. To minimize this gap and make results from the NR more comparable with

those from the DR, we manually tessellated each 3D object as a pre-processing step for

rendering with the DR. Using the manually tessellated objects, we then (1) evaluated the

render quality of the DR (Section 5.7.1); and (2) performed research experiments with the

DR (i.e., the DR-G method in Section 5.3.4).

1. Tessellation We used the Quadify Mesh Modifier feature (quad size of 2%) in 3ds~Max

2018 to tessellate objects, increasing the average number of faces ∼15x from 9, 908

to 147, 849 (see Table 5.4). The render quality after tessellation is sharper and of

a higher resolution (see Figure 5.6 (a) vs. (b)). Note that the NR pipeline already

performs tessellation for every input 3D object. Therefore, we did not perform manual

tessellation for 3D objects rendered by the NR.
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Figure 5.6: A comparison of 3D object renders (here, ambulance and school bus) be-
fore and after tessellation. (a) Original 3D models rendered by the differentiable renderer
(DR) [KUH18] without tessellation. (b) DR renderings of the same objects after manual
tessellation. (c) The non-differentiable renderer (NR), i.e., ModernGL [Dom19], renderings
of the original objects. After manual tessellation, the render quality of the DR appears to
be sharper ((a) vs. (b)) and closely matches that of the NR, which also internally tessellates
objects ((b) vs. (c)). (Image credit: [Alc+18])

68



Evaluation

We recognize that a reality gap will often exist between a render and a real photo.

Therefore, we rigorously evaluated our renders to make sure the reality gap was ac-

ceptable for our study. From ∼100 initially-purchased 3D object models, we selected the

30 highest-quality objects that both (1) passed a visual human Turing test; and (2) were

correctly recognized with high confidence by the Inception-v3 classifier [Sze+16].

1. Qualitative Evaluation We did not use the 30 objects chosen for the main dataset (Sec-

tion 5.7.1) to evaluate the general quality of the DR renderings of high-quality objects

on realistic background images. Instead, we randomly chose a separate set of 17 high-

quality image-textured objects for evaluation. Using the 17 objects, we generated 56

renders that matched 56 reference (real) photos. Then, we qualitatively evaluated the

renders both separately and in a side-by-side comparison with real photos. Specifically,

we produced 56 (real photo, render) pairs (see Figure 5.8) via the following steps:

(a) We retrieved ∼3 real photos for each 3D object (e.g., a car) from the Internet

(using descriptive information, e.g., a car’s make, model, and year).

(b) For each real photo, we replaced the object with matching background content

via Adobe Photoshop’s Context-Aware Fill-In feature to obtain a background-only

photo B (i.e., no foreground objects).

(c) We rendered the 3D object with the differentiable renderer on the background B

obtained in Step 2. We then manually aligned the pose of the 3D object such that

it closely matched that in the reference photo.

(d) We evaluated pairs of (photo, render) in a side-by-side comparison.

While discrepancies can be visually spotted in our side-by-side comparisons, we found

that most of the renders passed our human visual Turing test if presented alone. That

is, it is not easy for humans to tell whether a render is a real photo or not (if they
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are not primed with the reference photos). We only show pairs rendered by the DR

because the NR qualitatively has a slightly higher rendering quality (Figure 5.6 (b) vs.

(c)).

2. Quantitative Evaluation In addition to the qualitative evaluation, we also quantita-

tively evaluated the Google Inception-v3 [Sze+16] top-1 accuracy on renders that use

either an empty background or real background images.

3. Evaluation of the Renders of 30 Objects on An Empty Background Because the ex-

periments in the main text used our self-assembled 30-object dataset (Section 5.7.1),

we describe the process and the results of our quantitative evaluation for only those

objects.

We rendered the objects on a white background with RGB values of (1.0, 1.0, 1.0), an

ambient light intensity of 0.9, and a directional light intensity of 0.5. For each object,

we sampled 36 unique views (common in ImageNet) evenly divided into three sets. For

each set, we set the object at the origin, the up direction to (0, 1, 0), and the camera

position to (0, 0,−z) where z = {4, 6, 8}. We sampled 12 views per set by starting

the object at a 10° yaw and generating a render at every 30° yaw-rotation. Across

all objects and all renders, the Inception-v3 top-1 accuracy is 83.23% (comparable to

77.45% on ImageNet images [Sze+16]) with a mean top-1 confidence score of 0.78. The

top-1 and top-5 average accuracy and confidence scores are shown in Table 5.5.

Distance 4 6 8 Average

top-1 mean accuracy 84.2% 84.4% 81.1% 83.2%
top-5 mean accuracy 95.3% 98.6% 96.7% 96.9%
top-1 mean confidence score 0.77 0.80 0.76 0.78

Table 5.5: The top-1 and top-5 average accuracy and confidence scores for Inception-
v3 [Sze+16] on the renders of the 30 objects in our dataset.
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4. Evaluation of the Renders of Test Objects on Real Backgrounds In addition to our

qualitative side-by-side (real photo, render) comparisons (Figure 5.8), we quantitatively

compared Inception-v3’s predictions for our renders to those for real photos.

We found a high similarity between real photos and renders for DNN predictions. That

is, across all 56 pairs (Section 1), the top-1 predictions match 71.43% of the time.

Across all pairs, 76.06% of the top-5 labels for real photos match those for renders.

5.7.2 Transferability from the Inception-v3 Classifier to the YOLO-v3 Detector

Previous research has shown that object detectors can be more robust to adversar-

ial attacks than image classifiers [Lu+17b]. Here, we investigate how well our AXs gen-

erated for an Inception-v3 classifier trained to perform 1,000-way image classification on

ImageNet [Rus+15] transfer to YOLO-v3, a state-of-the-art object detector trained on MS

COCO [Lin+14].

Note that while ImageNet has 1,000 classes, MS COCO has bounding boxes classified

into only 80 classes. Therefore, among 30 objects, we only selected the 13 objects that (1)

belong to classes found in both the ImageNet and MS COCO datasets; and (2) are also well

recognized by the YOLO-v3 detector in common poses.

Class mappings from ImageNet to MS COCO

See Table 5.6 (a) for 13 mappings from ImageNet labels to MS COCO labels.

Selecting 13 Objects for the Transferability Test

For the transferability test (Section 5.7.2), we identified the 13 objects (out of 30) that

are well detected by the YOLO-v3 detector via the two tests described below.
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Figure 5.7: We tested Inception-v3’s predictions on the renders generated by the differen-
tiable renderer (DR). We show here the top-5 predictions for one random pose per object.
However, in total, we generated 36 poses for each object by (1) varying the object distance to
the camera; and (2) rotating the object around the yaw axis. See https://goo.gl/7LG3Cy
for all the renders and DNN top-5 predictions. Across all 30 objects, on average, Inception-
v3 correctly recognizes 83.2% of the renders. See Section 2 for more details. (Image
credit: [Alc+18])
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Figure 5.8: 12 random pairs of renders (left) and real photos (right) among 56 pairs produced
in total for our 3D object rendering evaluation (Section 1). The renders are produced by the
differentiable renderer by [KUH18]. More images are available at https://goo.gl/8z42zL.
While discrepancies can be spotted in our side-by-side comparisons, we found that most of
the renders passed our human visual Turing test if presented alone. (Image credit: [Alc+18])
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Figure 5.9: For each object, we collected 30 high-confidence (p ≥ 0.9) correctly classified
images by Inception-v3. The images were generated via the random search procedure. We
show here a grid t-SNE of AlexNet [KSH12] fc7 features for all 30 objects × 30 images =
900 images. Correctly classified images for each object tend to be similar and clustered
together. The original, high-resolution figure is available at https://goo.gl/TGgPgB. To
better visualize the clusters, we plotted the same t-SNE but used unique colors to denote the
different 3D objects in the renders (Figure 5.10). Compare and contrast this plot with the
t-SNE of only misclassified poses (Figure 5.11 and Figure 5.12). (Image credit: [Alc+18])
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Figure 5.10: The same t-SNE found in Figure 5.9 but using a unique color to denote
the 3D object found in each rendered image. Here, each color also corresponds to a unique
Inception-v3 label. Compare and contrast this plot with the t-SNE of only misclassified poses
(Figure 5.12). The original high-resolution figure is available at https://goo.gl/TGgPgB.
(Image credit: [Alc+18])
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Figure 5.11: Following the same process as described in Figure 5.9, we show here a grid
t-SNE of generated adversarial poses. For each object, we assembled 30 high-confidence
(p ≥ 0.9) adversarial examples generated via a random search against Inception-v3 [Sze+16].
The t-SNE was generated from the AlexNet [KSH12] fc7 features for 30 objects × 30 images
= 900 images. The original, high-resolution figure is available at https://goo.gl/TGgPgB.
Adversarial poses were found to be both common across different objects (e.g., the top-right
corner) and unique to specific objects (e.g., the traffic sign and umbrella objects in the
middle left). To better understand how similar misclassified poses can be found across many
objects, see Figure 5.12. Compare and contrast this plot with the t-SNE of correctly classified
poses (Figure 5.9 and Figure 5.10). (Image credit: [Alc+18])
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Figure 5.12: The same t-SNE as that in Figure 5.11 but using a unique color to denote the
3D object used to render the adversarial image (i.e., Inception-v3’s misclassification labels are
not shown here). The original, high-resolution figure is available at https://goo.gl/TGgPgB.
Compare and contrast this plot with the t-SNE of correctly classified poses (Figure 5.10).
(Image credit: [Alc+18])

77

https://goo.gl/TGgPgB


YOLO-v3 Correctly Classifies 93.80% of Poses Generated via Yaw-rotation

We rendered 36 unique views for each object by generating a render at every 30° yaw-

rotation (see Section 2). Note that, across all objects, these yaw-rotation views have an

average accuracy of 83.2% by the Inception-v3 classifier. We tested them against YOLO-v3

to see whether the detector was able to correctly find one single object per image and label

it correctly. Among 30 objects, we removed those that YOLO-v3 had an accuracy ≤70%,

leaving 13 for the transferability test. Across the remaining 13 objects, YOLO-v3 has an

accuracy of 93.80% on average (with an NMS threshold of 0.4 and a confidence threshold of

0.5). Note that the accuracy was computed as the total number of correct labels over the

total number of bounding boxes detected (i.e., we did not measure bounding-box IoU errors).

See class-specific statistics in Table 5.6. This result shows that YOLO-v3 is substantially

more accurate than Inception-v3 on the standard object poses generated by yaw-rotation

(93.80% vs. 83.2%).

YOLO-v3 Correctly Classifies 81.03% of Poses Correctly Classified by Inception-

v3

Additionally, as a sanity check, we tested whether poses correctly classified by Inception-

v3 transfer well to YOLO-v3. For each object, we randomly selected 30 poses that were

100% correctly classified by Inception-v3 with high confidence (p ≥ 0.9). The images were

generated via the random search procedure in the main text experiment (Section 5.2.5).

Across the final 13 objects, YOLO-v3 was able to correctly detect one single object per

image and label it correctly at a 81.03% accuracy (see Table 5.6 (c)).
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Transferability Test: YOLO-v3 Fails on 75.5% of Adversarial Poses Misclassified

by Inception-v3

For each object, we collected 1,350 random adversarial poses (i.e., incorrectly classified

by Inception-v3) generated via the random search procedure (Section 5.2.5). Across all 13

objects and all adversarial poses, YOLO-v3 obtained an accuracy of only 24.50% (compared

to 81.03% when tested on images correctly classified by Inception-v3). In other words, 75.5%

of adversarial poses generated for Inception-v3 also escaped the detection3 of YOLO-v3 (see

Table 5.6 (d) for class-specific statistics). Our result shows adversarial poses transfer well

across tasks (image classification → object detection), models (Inception-v3 → YOLO-v3),

and datasets (ImageNet → MS COCO).

5.7.3 Experimental Setup for the Differentiable Renderer

For the gradient descent method (DR-G) that uses the approximate gradients provided

by the differentiable renderer (DR) [KUH18], we set up the rendering parameters in the DR

to closely match those in the NR. However, there were still subtle discrepancies between

the DR and the NR that made the results (DR-G vs. FD-G in Section 5.3.4) not directly

comparable. Despite these discrepancies (described below), we still believe the FD gradients

are more stable and informative than the DR gradients (i.e., FD-G outperformed DR-G)4.

DR Setup

For all experiments with the DR, the camera was centered at (0, 0, 16) with an up

direction (0, 1, 0). The object’s spatial location was constrained such that the object center

was always within the frame. The depth values were constrained to be within [−14, 14].

Similar to experiments with the NR, we used the medium lighting setting.
3We were not able to check how many misclassification labels by YOLO-v3 were the same as those by

Inception-v3 because only a small set of 80 the MS COCO classes overlap with the 1,000 ImageNet classes.
4In preliminary experiments with only the DR (not the NR), we also empirically found FD-G to be more

stable and effective than DR-G (data not shown).
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(a) Label mapping (b) Yaw Acc (c) Rand Acc (d) Adv Acc

ImageNet MS COCO #/36 acc #/30 acc #/1350 acc ∆acc

1 park bench bench 31 86.11 22 73.33 211 15.63 57.70
2 bald eagle bird 34 94.11 24 80.00 597 44.22 35.78
3 school bus bus 36 100.00 18 60.00 4 0.30 69.70
4 beach wagon car 34 94.44 30 100.00 232 17.19 82.81
5 tiger cat cat 26 72.22 25 83.33 181 13.41 69.93
6 German shepherd dog 32 88.89 28 93.33 406 30.07 63.26
7 motor scooter motorcycle 36 100.00 18 60.00 384 28.44 31.56
8 jean person 36 100.00 29 96.67 943 69.85 26.81
9 street sign stop sign 31 86.11 26 86.67 338 25.04 61.15
10 moving van truck 36 100.00 24 80.00 15 1.11 78.89
11 umbrella umbrella 35 97.22 25 83.33 907 67.19 16.15
12 police van car 36 100.00 25 83.33 55 4.07 79.26
13 trailer truck truck 36 100.00 22 73.33 26 1.93 71.41

Average 93.80 81.03 24.50 56.53

Table 5.6: Adversarial poses generated for a state-of-the-art ImageNet image classifier (here,
Inception-v3) transfer well to an MS COCO detector (here, YOLO-v3). The table shows the
YOLO-v3 detector’s accuracy on: (b) object poses generated by a standard process of yaw-
rotating the object; (c) random poses that are 100% correctly classified by Inception-v3 with
high confidence (p ≥ 0.9); and (d) adversarial poses, i.e., 100% misclassified by Inception-v3.

1. The mappings of 13 ImageNet classes onto 12 MS COCO classes.

2. The accuracy (“acc (%)”) of the YOLO-v3 detector on 36 yaw-rotation poses per object.

3. The accuracy of YOLO-v3 on 30 random poses per object that were correctly classified
by Inception-v3.

4. The accuracy of YOLO-v3 on 1,350 adversarial poses (“acc (%)”) and the differences
between c and d (“∆acc (%)”).
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The ambient light color was set to white with an intensity 1.0, while the directional light

was set to white with an intensity 0.4. Figure 5.13 shows an example school bus rendered

under this medium lighting at different distances.

(a) School bus at (0, 0,−14) (b) School bus at (0, 0, 0) (c) School bus at (0, 0, 14)

Figure 5.13: School bus rendered by the DR at different distances. (Image credit: [Alc+18])

The known discrepancies between the experimental setups of FD-G (with the NR) vs.

DR-G (with the DR) are:

1. The exact medium lighting parameters for the NR described in the main text (Sec-

tion 5.3.1) did not produce similar lighting effects in the DR. Therefore, the DR light-

ing parameters described above were the result of manually tuning to qualitatively

match the effect produced by the NR medium lighting parameters.

2. While the NR uses a built-in tessellation procedure that automatically tessellates input

objects before rendering, we had to perform an extra pre-processing step of manually

tessellating each object for the DR. While small, a discrepancy still exists between the

two rendering results (Figure 5.6 (b) vs. (c)).
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5.7.4 Gradient Descent with the DR Gradients

In preliminary experiments (data not shown), we found the DR gradients to be relatively

noisy when using gradient descent to find targeted adversarial poses (i.e., DR-G experiments).

To mitigate this problem, we experimented with

1. parameter augmentation, Section 5.7.4;

2. multi-view optimization, Section 5.7.4.

In short, we found parameter augmentation helped and used it in DR-G. However, when

using the DR, we did not find multiple cameras improved optimization performance and

thus only performed regular single-view optimization for DR-G.

Parameter augmentation

We performed gradient descent using the DR gradients (DR-G) in an augmented pa-

rameter space corresponding to 50 rotations and one translation to be applied to the original

object vertices. That is, we backpropagated the DR gradients into the parameters of these

pre-defined transformation matrices. Note that DR-G is given the same budget of 100 steps

per optimization run as FD-G and ZRS for comparison in Section 5.3.4. The final transfor-

mation matrix is constructed by a series of rotations followed by one translation.

M = T ·Rn−1Rn−2 · · ·R0

Where M is the final transformation matrix, Ri the rotation matrices, and T the trans-

lation matrix. We empirically found that increasing the number of rotations per step helped

(a) improve the success rate of hitting the target labels; (b) increase the maximum confidence

score of the found AXs; and (c) reduce the number of steps, i.e., led to faster convergence

(see Figure 5.14). Therefore, we empirically chose n = 50 for all DR-G experiments reported

in the main text.
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Figure 5.14: We found that increasing the number of rotations (displayed in x-axes) per step
helped (Image credit: [Alc+18]):

1. improve the success rate of hitting the target labels;

2. increase the maximum confidence score of the found adversarial examples;

3. reduce the average number of steps required to find an AX, i.e., led to faster conver-
gence.

Multi-view optimization

Additionally, we attempted to harness multiple views (from multiple cameras) to in-

crease the chance of finding a target adversarial pose. Multi-view optimization did not

outperform single-view optimization using the DR in our experiments. Therefore, we only

performed regular single-view optimization for DR-G. We briefly document our negative

results below.

Instead of backpropagating the DR gradient to a single camera looking at the object in

the 3D scene, one may set up multiple cameras, each looking at the object from a different

angle. This strategy intuitively allows gradients to still be backpropagated into the vertices

that may be occluded in one view but visible in some other view. We experimented with six

cameras and backpropagating to all cameras in each step. However, we only updated the

object following the gradient from the view that yielded the lowest loss among all views. One

hypothesis is that having multiple cameras might improve the chance of hitting the target. In

our experiments with the DR using 100 steps per optimization run, multi-view optimization
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performed worse than single-view in terms of both the success rate and the number of steps

to converge. We did not compare all 30 objects due to the expensive computational cost, and

only report the results from optimizing two objects bald eagle and tiger cat in Table 5.7.

Intuitively, multi-view optimization might outperform single-view optimization given a large

enough number of steps.

bald eagle tiger cat

Steps Success rate Steps Success rate

Single-view 71.80 0.44 90.70 0.15
Multi-view 81.28 0.23 96.84 0.04

Table 5.7: Multi-view optimization performed worse than single-view optimization in both
(a) the number of steps to converge and (b) success rates. We show here the results of two
runs of optimizing with the bald eagle and tiger cat objects. The results are averaged
over 50 target labels × 50 trials = 2,500 trials. Each optimization trial for both single- and
multi-view settings is given the budget of 100 steps.

5.7.5 3D Transformation Matrix

A rotation of θ around an arbitrary axis (x, y, z) is given by the following homogeneous

transformation matrix.

R =

∣∣∣∣∣∣∣∣∣∣∣∣∣

xx(1− c) + c xy(1− c)− zs xz(1− c) + ys 0

xy(1− c) + zs yy(1− c) + c yz(1− c)− xs 0

xz(1− c)− ys yz(1− c) + xs yz(1− c) + c 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.5)

Where s = sin θ, c = cos θ, and the axis is normalized, i.e., x2 +y2 +z2 = 1. Translation

by a vector (x, y, z) is given by the following homogeneous transformation matrix.
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T =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.6)

Note that in the optimization experiments with random search (RS) and finite-difference

gradients (FD-G), we dropped the homogeneous component for simplicity, i.e., the rotation

matrices of yaw, pitch, and roll are all 3 by 3. The homogeneous component is only necessary

for translation, which can be achieved via simple vector addition. However, in DR-G, we used

the homogeneous component because we had some experiments interweaving translation and

rotation. The matrix representation was more convenient for the DR-G experiments. As

they are mathematically equivalent, this arbitrary implementation choice should not alter

our results.

Object Acc (%)

ambulance 3.64
backpack 8.63
bald eagle 13.26
beach wagon 0.60
cab 2.64
cell phone 14.97
fire engine 4.31
forklift 5.20
garbage truck 4.88
German shepherd 9.61

Object Acc (%)

golfcart 2.14
jean 2.71
jeep 0.29
minibus 0.83
minivan 0.66
motor scooter 20.49
moving van 0.45
park bench 5.72
parking meter 1.27
pickup 0.86

Object Acc (%)

police van 0.95
R.V. 2.05
school bus 3.48
sports car 2.50
street sign 26.32
tiger cat 7.36
tow truck 0.87
traffic light 14.95
trailer truck 1.27
umbrella 49.88

Table 5.8: The percent of three million random samples that were correctly classi-
fied by Inception-v3 [Sze+16] for each object. That is, for each lighting setting in
{bright,medium, dark}, we generated 106 samples. See Section 5.2.5 for details on the sam-
pling procedure.
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(a) bright (b) medium (c) dark

Figure 5.15: Renders of the school bus object using the NR [Dom19] at three different light-
ing settings. The directional light intensities and ambient light intensities were (1.2, 1.6),
(0.4, 1.0), and (0.2, 0.5) for the bright, medium, and dark settings, respectively. (Image
credit: [Alc+18])

5.7.6 Adversarial Poses Were Not Found in ImageNet Classes via A Nearest-

neighbor Search

We performed a nearest-neighbor search to check whether adversarial poses generated

(in Section 5.3.1) can be found in the ImageNet dataset.

Retrieving Nearest Neighbors from A Single Class Corresponding to the 3D

Object

We retrieved the five nearest training-set images for each adversarial pose (taken from

a random selection of adversarial poses) using the fc7 feature space from a pre-trained

AlexNet [KSH12]. The Euclidean distance was used to measure the distance between two fc7

feature vectors. We did not find qualitatively similar images despite comparing all ∼1,300

class images corresponding to the 3D object used to generate the adversarial poses (e.g.,

cellphone, school bus, and garbage truck in Figure 5.16, Figure 5.17, and Figure 5.18. This

result supports the hypothesis that the generated adversarial poses are out-of-distribution.
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Searching from the Validation Set

We also searched the entire 50,000-image validation set of ImageNet. Interestingly,

we found the top-5 nearest images were sometimes from the same class as the targeted

misclassification label (see Figure 5.24).
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Figure 5.16: For each adversarial example (leftmost), we retrieved the five nearest neighbors
(five rightmost photos) from all ∼1,300 images in the cellular phone class. The Euclidean
distance between a pair of images was computed in the fc7 feature space of a pre-trained
AlexNet [KSH12]. The nearest photos from the class are mostly different from the adversarial
poses. This result supports the hypothesis that the generated adversarial poses are out-of-
distribution. The original, high-resolution figure is available at https://goo.gl/X31VXh.
(Image credit: [Alc+18])
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Figure 5.17: For each adversarial example (leftmost), we retrieved the five nearest neighbors
(five rightmost photos) from all ∼1,300 images in the school bus class. The Euclidean
distance between a pair of images was computed in the fc7 feature space of a pre-trained
AlexNet [KSH12]. The nearest photos from the class are mostly different from the adversarial
poses. This result supports the hypothesis that the generated adversarial poses are out-of-
distribution. The original, high-resolution figure is available at https://goo.gl/X31VXh.
(Image credit: [Alc+18])
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Figure 5.18: For each adversarial example (leftmost), we retrieved the five nearest neighbors
(five rightmost photos) from all ∼1,300 images in the garbage truck class. The Euclidean
distance between a pair of images was computed in the fc7 feature space of a pre-trained
AlexNet [KSH12]. The nearest photos from the class are mostly different from the adversarial
poses. This result supports the hypothesis that the generated adversarial poses are out-of-
distribution. The original high-resolution image is available at https://goo.gl/X31VXh.
(Image credit: [Alc+18])
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In Section 5.4, we trained an AlexNet classifier on the
1000-class ImageNet dataset augmented with 30 additional
classes that contain adversarial poses corresponding to the
30 known objects used in the main experiments. We also
tested this model on 7 held-out objects. Here, we show
the renders of 7 pairs of (training-set object, held-out ob-
ject). The 3D objects are rendered by the NR [Dom19]
at a distance of (0, 0, 4). Below each image is its top-5
predictions by Inception-v3 [Sze+16]. The original high-
resolution figure is available at https://goo.gl/Li1eKU.
(Image credit: [Alc+18])
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(a) ambulance

(b) school bus

(c) street sign

Figure 5.20: 30 random adversarial examples misclassified by Inception-v3 [Sze+16] with
high confidence (p ≥ 0.9) generated from 3 objects: ambulance, school bus, and street
sign. Below each image is the top-1 prediction label and confidence score. The origi-
nal, high-resolution figures for all 30 objects are available at https://goo.gl/rvDzjy. (Image
credit: [Alc+18])
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Figure 5.21: For each target class (e.g., accordion piano), we show five adversarial poses
generated from five unique 3D objects. Adversarial poses are interestingly found to be homo-
geneous for some classes, e.g., safety pin. However, for most classes, the failure modes are
heterogeneous. The original high-resolution figure is available at https://goo.gl/37HYcE.
(Image credit: [Alc+18])
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(a) cellular phone

(b) jeans

(c) street sign

(d) umbrella

Figure 5.22: Real-world, high-confidence adversarial poses can be found by taking photos
from strange angles of a familiar object, here, cellular phone, jeans, street sign, and
umbrella. While Inception-v3 [Sze+16] can correctly predict the object in canonical poses
(the top-left image in each panel), the model misclassified the same objects in unusual poses.
Below each image is its top-1 prediction label and confidence score. We took real-world videos
of these four objects and extracted these misclassified poses from the videos. The original,
high-resolution figures are available at https://goo.gl/zDWcjG. (Image credit: [Alc+18])
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Figure 5.23: Inception-v3 [Sze+16] is sensitive to single parameter disturbances of object
poses that had originally been correctly classified. For each object, we found 100 correctly
classified 6D poses via a random sampling procedure (Section 5.3.3). Given each such pose,
we re-sampled one parameter (shown on top of each panel, e.g., yaw) 100 times, yielding
100 classifications, while holding the other five pose parameters constant. In each panel, for
each object (e.g., ambulance), we show an error plot for all resultant 100 × 100 = 10, 000
classifications. Each circle denotes the mean misclassification rate (Fail Rate) for each object,
while the bars enclose one standard deviation. Across all objects, Inception-v3 is more
sensitive to changes in yaw, pitch, roll, and depth (zdelta) than spatial changes (xdelta and
ydelta). (Image credit: [Alc+18])
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Figure 5.24: For each adversarial example (leftmost), we retrieved the five nearest neigh-
bors (five rightmost photos) from the 50,000-image ImageNet validation set. The Euclidean
distance between a pair of images was computed in the fc7 feature space of a pre-trained
AlexNet [KSH12]. Below each adversarial example (AX) is its Inception-v3 [Sze+16] top-1
prediction label and confidence score. The associated ground-truth ImageNet label is be-
neath each retrieved photo. Here, we show an interesting, cherry-picked collection of cases
where the nearest photos (in the fc7 feature space) are also qualitatively similar to the refer-
ence AX and sometimes come from the exact same class as the AX’s predicted label. More
examples are available at https://goo.gl/8ib2PR. (Image credit: [Alc+18])
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Chapter 6

Conclusion

In this dissertation, we empirically study an emerging problem in machine learning com-

munity, i.e., the adversarial samples. In our first work, we propose to build a binary classifier

to separate the adversarial samples from the clean one. This follows from the observation

that the neural networks are sensitive to individual pixel values (which is exactly why we have

adversarial samples in the first place). We demonstrate that the binary classifier approach

could only successfully recognize the adversarial samples that follow similar distributions.

Different the same adversarial methods with different hyper-parameters and different adver-

sarial algorithms will usually generate adversarial samples that follow different distributions.

In other words, the classifier may not generalize well to adversarial samples generated with

a different method or the same method with different set of hyper-parameters. In our sec-

ond work, we investigate the problem of generating text adversarial samples. We propose

a simple yet effective framework to generate adversarial texts. In our framework, we first

find potential adversarial texts in the embedding space, then use nearest neighbor to map

back to the word space. The limitation of our framework is that we do not have a explicit

way of controlling the quality of generated texts. Besides, the nearest neighbors search is a

major computation bottleneck in our framework. In our third work, we show that adversarial

samples for deep models exist in abundance in the natural world. Instead of pixel-hacking in

2D images, we are fooling the network by rendering 3D objects in non-canonical poses, e.g.,

slightly weird yaw-angle. This reveals a more severe problem since many of the poses really

do exists in real world. We also show that the natural adversarial images transfer among

different models.
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Up to now, we mainly focus on a descriptive-style of exploration, i.e., we empirically

show that the problem exists widely without giving an explicit explanation, nor a solution.

Many work are along the lines of the prescriptive-style, seeking a rigorous explanation. We

have seen some promising progress towards this direction, albeit slow due to the lack of

understanding of deep models.

We think that this adversarial problem is only one piece in the jigsaw puzzle of a bigger

picture, thus it is not solvable by itself, nor is it complete by itself. As a result, progress in

other aspects may also help towards solving this adversarial problem.

In the end, I would like to conclude my dissertation borrowing an image from [Kar16].

The relates deeply with the bigger picture.

Figure 6.1: A joke that is not easily understood by machines [Kar16].

From this image, we can see where we are right now, and what is lacking in the current

machine learning models.

What machine can do:

1. It can create a bounding box for each object it recognizes in the image.

2. It can precisely outline the (sub)component of each objects.
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3. It can detect faces, and possibly smiley or not.

4. It can generate some description of the images.

5. It can generate images of similar styles.

6. etc.

What machine cannot do

1. It does not understand the concept of mirror, and that all the figures in the mirrors

are fake.

2. It does not understand the concept of shadows.

3. it does not understand what the man on the scale is doing.

4. It does not understand the relationships among objects, figures, etc.

5. And the most important of all, it does not understand this joke. Mr. Obama is tipping

his weight on the scale to play a trick on the man on the scale.

6. It does not understand . . .

The observation is that despite the machine may finish many tasks (e.g., games playing,

image recognition) at super-human level, it does not work the same way as we do. Adversarial

examples demonstrate one facet of such disparity, e.g. most of the adversarial examples,

that successfully trick machine learning model, do not interfere with human judgment. To

understand and address this disparity, there may be a couple of interesting directions that I

would like to follow as an extension to the work in this dissertation.

1. Interpretability. This line of research attempts to interpret the machine’s reasoning in

terms of human reasoning.

2. Learning representation. This line of research focus on how to represent the knowledge,

and how to learn an efficient representation of the knowledge.

99



Bibliography

[Alc+18] Michael A. Alcorn et al. “Strike (with) a Pose: Neural Networks Are Easily

Fooled By Strange Poses of Familiar Objects”. In: CoRR abs/1811.11553 (2018).

arXiv: 1811.11553. url: http://arxiv.org/abs/1811.11553.

[Alh+18] Hassan Abu Alhaija et al. “Geometric Image Synthesis”. In: arXiv preprint

arXiv:1809.04696 (2018).

[Ano19] Anonymous. “A Rotation and a Translation Suffice: Fooling CNNs with Simple

Transformations”. In: Submitted to International Conference on Learning Rep-

resentations. under review. 2019. url: https://openreview.net/forum?id=

BJfvknCqFQ.

[Ath+17] Anish Athalye et al. “Synthesizing Robust Adversarial Examples”. In: CoRR

abs/1707.07397 (2017).

[BF17] Shumeet Baluja and Ian Fischer. “Adversarial Transformation Networks: Learn-

ing To Generate Adversarial Examples”. In: CoRR abs/1703.09387 (2017). url:

http://arxiv.org/abs/1703.09387.

[BKL09] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with

Python: analyzing text with the natural language toolkit. " O’Reilly Media, Inc.",

2009.

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection:

a Survey”. In: ACM computing surveys (CSUR) 41.3 (2009), p. 15.

100

https://arxiv.org/abs/1811.11553
http://arxiv.org/abs/1811.11553
https://openreview.net/forum?id=BJfvknCqFQ
https://openreview.net/forum?id=BJfvknCqFQ
http://arxiv.org/abs/1703.09387


[Che+15] Chenyi Chen et al. “Deepdriving: Learning affordance for direct perception in

autonomous driving”. In: Proceedings of the IEEE International Conference on

Computer Vision. 2015, pp. 2722–2730.

[CL92] Benjamin B Choi and Charles Lawrence. “Inverse Kinematics Problem in Robotics

Using Neural Networks”. In: NASA Technical Memorandum 105869 (1992),

pp. 1–23. url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.113.1730&rep=rep1&type=pdf.

[CW16] Nicholas Carlini and David Wagner. “Towards Evaluating the Robustness of

Neural Networks”. In: CoRR abs/1608.04644 (2016). url: http://arxiv.org/

abs/1608.04644.

[CW18] N. Carlini and D. Wagner. “Audio Adversarial Examples: Targeted Attacks on

Speech-To-Text”. In: ArXiv e-prints (Jan. 2018). arXiv: 1801.01944 [cs.LG].

[Dom19] Szabolcs Dombi.ModernGL - ModernGL 5.4.1 documentation. https://moderngl.

readthedocs.io/en/stable/index.html. (Accessed on 11/14/2018). 2019.

[Ebr+17] J. Ebrahimi et al. “HotFlip: White-Box Adversarial Examples for NLP”. In:

ArXiv e-prints (Dec. 2017). arXiv: 1712.06751 [cs.CL].

[Evt+17] I. Evtimov et al. “Robust Physical-World Attacks on Machine Learning Models”.

In: ArXiv e-prints (July 2017). arXiv: 1707.08945 [cs.CR].

[Gon+18] Zhitao Gong et al. “Adversarial Texts With Gradient Methods”. In: arXiv e-

prints, arXiv:1801.07175 (Jan. 2018), arXiv:1801.07175. arXiv: 1801 . 07175

[cs.CL].

[Goo+14] I. J. Goodfellow et al. “Generative Adversarial Networks”. In: ArXiv e-prints

(June 2014). arXiv: 1406.2661 [stat.ML].

[Goo+16] Ian Goodfellow et al. Deep learning. Vol. 1. MIT press Cambridge, 2016.

101

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.1730&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.1730&rep=rep1&type=pdf
http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1608.04644
https://arxiv.org/abs/1801.01944
https://moderngl.readthedocs.io/en/stable/index.html
https://moderngl.readthedocs.io/en/stable/index.html
https://arxiv.org/abs/1712.06751
https://arxiv.org/abs/1707.08945
https://arxiv.org/abs/1801.07175
https://arxiv.org/abs/1801.07175
https://arxiv.org/abs/1406.2661


[GPG17] Dhiraj Gandhi, Lerrel Pinto, and Abhinav Gupta. “Learning to fly by crash-

ing”. In: Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International

Conference on. IEEE. 2017, pp. 3948–3955.

[Gra18] Henry Grabar. The self-driving Uber that killed a pedestrian didn’t brake. Here’s

why. https://slate.com/technology/2018/05/uber- car- in- fatal-

arizona- crash- perceived- pedestrian- 1- 3- seconds- before- impact.

html. (Accessed on 07/13/2018). May 2018.

[GSS14] I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and Harnessing Adver-

sarial Examples”. In: ArXiv e-prints (Dec. 2014). arXiv: 1412.6572 [stat.ML].

[GWK17] Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku. “Adversarial and Clean Data

Are Not Twins”. In: CoRR abs/1704.04960 (2017).

[He+15] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR

abs/1512.03385 (2015). url: http://arxiv.org/abs/1512.03385.

[HG17] Dan Hendrycks and Kevin Gimpel. “A Baseline for Detecting Misclassified and

Out-of-Distribution Examples in Neural Networks”. In: Proceedings of Interna-

tional Conference on Learning Representations. 2017.

[Hua+15] Ruitong Huang et al. “LearningWith a Strong Adversary”. In: CoRR abs/1511.03034

(2015). url: http://arxiv.org/abs/1511.03034.

[HVD15] G. Hinton, O. Vinyals, and J. Dean. “Distilling the Knowledge in a Neural

Network”. In: ArXiv e-prints (Mar. 2015). arXiv: 1503.02531 [stat.ML].

[JAF16] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. “Perceptual losses for real-

time style transfer and super-resolution”. In: European Conference on Computer

Vision. Springer. 2016, pp. 694–711.

[JL17] Robin Jia and Percy Liang. “Adversarial Examples for Evaluating Reading

Comprehension Systems”. In: arXiv preprint arXiv:1707.07328 (2017).

102

https://slate.com/technology/2018/05/uber-car-in-fatal-arizona-crash-perceived-pedestrian-1-3-seconds-before-impact.html
https://slate.com/technology/2018/05/uber-car-in-fatal-arizona-crash-perceived-pedestrian-1-3-seconds-before-impact.html
https://slate.com/technology/2018/05/uber-car-in-fatal-arizona-crash-perceived-pedestrian-1-3-seconds-before-impact.html
https://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1511.03034
https://arxiv.org/abs/1503.02531


[Kar16] Andrew Karparthy. “Connecting Images and Natural Language”. Ph.D. disser-

tation. Stanford University, 2016. url: https://cs.stanford.edu/people/

karpathy/main.pdf.

[KB14] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-

tion”. In: CoRR abs/1412.6980 (2014). url: http://arxiv.org/abs/1412.

6980.

[KGB16a] A. Kurakin, I. Goodfellow, and S. Bengio. “Adversarial Examples in the Physical

world”. In: ArXiv e-prints (July 2016). arXiv: 1607.02533 [cs.CV].

[KGB16b] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial Machine

Learning At Scale”. In: CoRR abs/1611.01236 (2016). url: http://arxiv.

org/abs/1611.01236.

[Kim+15] Yoon Kim et al. “Character-Aware Neural Language Models”. In: arXiv preprint

arXiv:1508.06615 (2015).

[Kim14] Yoon Kim. “Convolutional Neural Networks for Sentence Classification”. In:

CoRR abs/1408.5882 (2014).

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-

tion with deep convolutional neural networks”. In: Advances in neural informa-

tion processing systems. 2012, pp. 1097–1105.

[KUH18] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. “Neural 3D Mesh Ren-

derer”. In: The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2018.

[Kus+15] Matt Kusner et al. “From word embeddings to document distances”. In: Inter-

national Conference on Machine Learning. 2015, pp. 957–966.

[KZG18] Danny Karmon, Daniel Zoran, and Yoav Goldberg. “Lavan: Localized and Vis-

ible Adversarial Noise”. In: arXiv preprint arXiv:1801.02608 (2018).

103

https://cs.stanford.edu/people/karpathy/main.pdf
https://cs.stanford.edu/people/karpathy/main.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1611.01236


[Lam16] F Lambert. “Understanding the Fatal Tesla Accident on Autopilot and the

Nhtsa Probe”. In: Electrek, July (2016).

[LC10] Yann LeCun and Corinna Cortes.MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/.

2010. url: http://yann.lecun.com/exdb/mnist/.

[LCY13] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in Network”. In: CoRR

abs/1312.4400 (2013). url: http://arxiv.org/abs/1312.4400.

[Lia+17] Bin Liang et al. “Deep Text Classification Can Be Fooled”. In: arXiv preprint

arXiv:1704.08006 (2017).

[Lin+14] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European

conference on computer vision. Springer. 2014, pp. 740–755.

[Lin+17] Yen-Chen Lin et al. “Tactics of Adversarial Attack on Deep Reinforcement

Learning Agents”. In: arXiv preprint arXiv:1703.06748 (2017).

[Liu+18] H.-T. D. Liu et al. “Adversarial Geometry and Lighting Using a Differentiable

Renderer”. In: ArXiv e-prints (Aug. 2018). arXiv: 1808.02651.

[Lu+17a] J. Lu et al. “NO Need To Worry About Adversarial Examples in Object De-

tection in Autonomous Vehicles”. In: ArXiv e-prints (July 2017). arXiv: 1707.

03501 [cs.CV].

[Lu+17b] J. Lu et al. “Standard Detectors Aren’t (currently) Fooled By Physical Adver-

sarial Stop signs”. In: ArXiv e-prints (Oct. 2017). arXiv: 1710.03337 [cs.CV].

[Luo+15] Yan Luo et al. “Foveation-Based Mechanisms Alleviate Adversarial Examples”.

In: CoRR abs/1511.06292 (2015). url: http://arxiv.org/abs/1511.06292.

[Maa+11] Andrew L. Maas et al. “Learning Word Vectors for Sentiment Analysis”. In:

Proceedings of the 49th Annual Meeting of the Association for Computational

104

http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1808.02651
https://arxiv.org/abs/1707.03501
https://arxiv.org/abs/1707.03501
https://arxiv.org/abs/1710.03337
http://arxiv.org/abs/1511.06292


Linguistics: Human Language Technologies. Portland, Oregon, USA: Associa-

tion for Computational Linguistics, June 2011, pp. 142–150. url: http://www.

aclweb.org/anthology/P11-1015.

[Met+17] Jan Hendrik Metzen et al. “On Detecting Adversarial Perturbations”. In: arXiv

preprint arXiv:1702.04267 (2017).

[MFF15] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. “Deep-

fool: a Simple and Accurate Method To Fool Deep Neural Networks”. In: CoRR

abs/1511.04599 (2015). arXiv: 1511.04599. url: http://arxiv.org/abs/

1511.04599.

[Mik+13a] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and

Their Compositionality”. In: CoRR abs/1310.4546 (2013). url: http://arxiv.

org/abs/1310.4546.

[Mik+13b] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector

Space”. In: CoRR abs/1301.3781 (2013). url: http://arxiv.org/abs/1301.

3781.

[Miy+15] Takeru Miyato et al. “Distributional Smoothing With Virtual Adversarial Train-

ing”. In: stat 1050 (2015), p. 25.

[Mor78] Jorge J Moré. “The Levenberg-Marquardt algorithm: implementation and the-

ory”. In: Numerical analysis. Springer, 1978, pp. 105–116.

[MS15] Steve Marschner and Peter Shirley. Fundamentals of computer graphics. CRC

Press, 2015.

[MYZ13] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. “Linguistic regularities in

continuous space word representations.” In: hlt-Naacl. Vol. 13. 2013, pp. 746–

751.

105

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://arxiv.org/abs/1511.04599
http://arxiv.org/abs/1511.04599
http://arxiv.org/abs/1511.04599
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781


[Ngu+17] Anh Nguyen et al. “Plug & Play Generative Networks: Conditional Iterative

Generation of Images in Latent Space”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. IEEE. 2017.

[NYC14] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. “Deep Neural Networks Are

Easily Fooled: High Confidence Predictions for Unrecognizable Images”. In:

CoRR abs/1412.1897 (2014). url: http://arxiv.org/abs/1412.1897.

[OML05] Margarita Osadchy, Matthew L Miller, and Yann LeCun. “Synergistic Face De-

tection and Pose Estimation with Energy-Based Models”. In: Advances in Neu-

ral Information Processing Systems. 2005, pp. 1017–1024. isbn: 9783540687948.

doi: 10.1007/11957959. url: https://doi.org/10.1007/11957959.

[Pap+15a] Nicolas Papernot et al. “Distillation As a Defense To Adversarial Perturbations

Against Deep Neural Networks”. In: CoRR abs/1511.04508 (2015). url: http:

//arxiv.org/abs/1511.04508.

[Pap+15b] Nicolas Papernot et al. “The Limitations of Deep Learning in Adversarial Set-

tings”. In: CoRR abs/1511.07528 (2015). url: http://arxiv.org/abs/1511.

07528.

[Pec+17] Jonathan Peck et al. “Lower bounds on the robustness to adversarial pertur-

bations”. In: Advances in Neural Information Processing Systems 30. Ed. by

I. Guyon et al. Curran Associates, Inc., 2017, pp. 804–813. url: http : / /

papers.nips.cc/paper/6682- lower- bounds- on- the- robustness- to-

adversarial-perturbations.pdf.

[PMG16] N. Papernot, P. McDaniel, and I. Goodfellow. “Transferability in Machine Learn-

ing: From Phenomena To Black-Box Attacks Using Adversarial Samples”. In:

ArXiv e-prints (May 2016). arXiv: 1605.07277 [cs.CR].

106

http://arxiv.org/abs/1412.1897
https://doi.org/10.1007/11957959
https://doi.org/10.1007/11957959
http://arxiv.org/abs/1511.04508
http://arxiv.org/abs/1511.04508
http://arxiv.org/abs/1511.07528
http://arxiv.org/abs/1511.07528
http://papers.nips.cc/paper/6682-lower-bounds-on-the-robustness-to-adversarial-perturbations.pdf
http://papers.nips.cc/paper/6682-lower-bounds-on-the-robustness-to-adversarial-perturbations.pdf
http://papers.nips.cc/paper/6682-lower-bounds-on-the-robustness-to-adversarial-perturbations.pdf
https://arxiv.org/abs/1605.07277


[Pre18] Associated Press. Tesla that crashed into truck was on Autopilot. 2018. url:

https://nypost.com/2018/05/14/tesla-that-crashed-into-truck-was-

on-autopilot (visited on 01/11/2018).

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global

vectors for word representation”. In: Proceedings of the 2014 conference on em-

pirical methods in natural language processing (EMNLP). 2014, pp. 1532–1543.

[PyT18] PyTorch. PyTorch Master Documentation. https : / / pytorch . org / docs /

stable/torchvision/models.html. (Accessed on 11/14/2018). 2018.

[RF18] Joseph Redmon and Ali Farhadi. “Yolov3: an Incremental Improvement”. In:

arXiv preprint arXiv:1804.02767 (2018).

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning Rep-

resentations By Back-Propagating Errors”. In: nature 323.6088 (1986), p. 533.

[ŘS10] Radim Řehůřek and Petr Sojka. “Software Framework for Topic Modelling with

Large Corpora”. English. In: Proceedings of the LREC 2010 Workshop on New

Challenges for NLP Frameworks. http://is.muni.cz/publication/884893/

en. Valletta, Malta: ELRA, May 2010, pp. 45–50.

[RTG00] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. “The Earth Mover’s Dis-

tance As a Metric for Image Retrieval”. In: International journal of computer

vision 40.2 (2000), pp. 99–121.

[Rus+15] Olga Russakovsky et al. “Imagenet Large Scale Visual Recognition Challenge”.

In: International Journal of Computer Vision 115.3 (2015), pp. 211–252.

[Sam+18] Carlos Sampedro et al. “A Fully-Autonomous Aerial Robot for Search and Res-

cue Applications in Indoor Environments Using Learning-Based Techniques”.

In: Journal of Intelligent & Robotic Systems (2018), pp. 1–27.

107

https://nypost.com/2018/05/14/tesla-that-crashed-into-truck-was-on-autopilot
https://nypost.com/2018/05/14/tesla-that-crashed-into-truck-was-on-autopilot
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en


[Sch+13] Walter J Scheirer et al. “Toward Open Set Recognition”. In: IEEE transactions

on pattern analysis and machine intelligence 35.7 (2013), pp. 1757–1772.

[SGS15] Rupesh K Srivastava, Klaus Greff, and Juergen Schmidhuber. “Training Very

Deep Networks”. In: Advances in Neural Information Processing Systems 28.

Ed. by C. Cortes et al. Curran Associates, Inc., 2015, pp. 2377–2385. url:

http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf.

[Shr+16] Ashish Shrivastava et al. “Learning From Simulated and Unsupervised Images

Through Adversarial Training”. In: CoRR abs/1612.07828 (2016).

[SLS+17] Masashi Sugiyama, Neil D Lawrence, Anton Schwaighofer, et al. Dataset shift

in machine learning. The MIT Press, 2017.

[SM17] Suranjana Samanta and Sameep Mehta. “Towards Crafting Text Adversarial

Samples”. In: arXiv preprint arXiv:1707.02812 (2017).

[Suc+17] Felipe Petroski Such et al. “Deep Neuroevolution: Genetic Algorithms Are a

Competitive Alternative for Training Deep Neural Networks for Reinforcement

Learning”. In: arXiv preprint arXiv:1712.06567 (2017).

[SVK17] J. Su, D. Vasconcellos Vargas, and S. Kouichi. “One Pixel Attack for Fooling

Deep Neural networks”. In: ArXiv e-prints (Oct. 2017). arXiv: 1710.08864

[cs.LG].

[Sze+13] Christian Szegedy et al. “Intriguing Properties of Neural Networks”. In: CoRR

abs/1312.6199 (2013). url: http://arxiv.org/abs/1312.6199.

[Sze+16] Christian Szegedy et al. “Rethinking the Inception Architecture for Computer

Vision”. In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2016, pp. 2818–2826.

108

http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf
https://arxiv.org/abs/1710.08864
https://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1312.6199


[TE11] Antonio Torralba and Alexei A Efros. “Unbiased look at dataset bias”. In:

Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on.

IEEE. 2011, pp. 1521–1528.

[Tia+18] Yuchi Tian et al. “Deeptest: Automated testing of deep-neural-network-driven

autonomous cars”. In: Proceedings of the 40th International Conference on Soft-

ware Engineering. ACM. 2018, pp. 303–314.

[Tim16] New York Times. Tesla car on autopilot crashes, killing driver, United States

News & Top Stories - The Straits Times. https://www.straitstimes.com/

world / united - states / tesla - car - on - autopilot - crashes - killing -

driver. (Accessed on 06/14/2018). July 2016.

[WG16] D Warde-Farley and I Goodfellow. “Adversarial Perturbations of Deep Neural

Networks”. In: Perturbation, Optimization and Statistics. Ed. by Tamir Hazan,

George Papandreou, and Daniel Tarlow. 2016.

[Wil92] Ronald J Williams. “Simple Statistical Gradient-following Algorithms for Con-

nectionist Reinforcement Learning”. In: Reinforcement Learning. Springer, 1992,

pp. 5–32.

[Won17] C. Wong. “DANCin Seq2seq: Fooling Text Classifiers With Adversarial Text Ex-

ample Generation”. In: ArXiv e-prints (Dec. 2017). arXiv: 1712.05419 [cs.LG].

[Woo+99] Mason Woo et al. OpenGL programming guide: the official guide to learning

OpenGL, version 1.2. Addison-Wesley Longman Publishing Co., Inc., 1999.

[Xia+16] Yu Xiang et al. “Objectnet3d: A large scale database for 3d object recognition”.

In: European Conference on Computer Vision. Springer. 2016, pp. 160–176.

[Xia+18] C. Xiao et al. “Generating Adversarial Examples With Adversarial Networks”.

In: ArXiv e-prints (Jan. 2018). arXiv: 1801.02610 [cs.CR].

109

https://www.straitstimes.com/world/united-states/tesla-car-on-autopilot-crashes-killing-driver
https://www.straitstimes.com/world/united-states/tesla-car-on-autopilot-crashes-killing-driver
https://www.straitstimes.com/world/united-states/tesla-car-on-autopilot-crashes-killing-driver
https://arxiv.org/abs/1712.05419
https://arxiv.org/abs/1801.02610


[Yua+17] Xiaoyong Yuan et al. “Adversarial Examples: Attacks and Defenses for Deep

Learning”. In: arXiv preprint (2017). doi: arXivpreprintarXiv:1712.07107.

url: https://doi.org/arXiv%20preprint%20arXiv:1712.07107.

[ZDS17] Z. Zhao, D. Dua, and S. Singh. “Generating Natural Adversarial Examples”. In:

ArXiv e-prints (Oct. 2017). arXiv: 1710.11342 [cs.LG].

[ZL16] Barret Zoph and Quoc V. Le. “Neural Architecture Search With Reinforcement

Learning”. In: CoRR abs/1611.01578 (2016). url: http://arxiv.org/abs/

1611.01578.

[ZXY16] Zhuotun Zhu, Lingxi Xie, and Alan L Yuille. “Object Recognition With and

Without Objects”. In: arXiv preprint arXiv:1611.06596 (2016).

[ZZL15] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-level Convolutional

Networks for Text Classification”. In: Advances in Neural Information Pro-

cessing Systems 28. Ed. by C. Cortes et al. Curran Associates, Inc., 2015,

pp. 649–657. url: http://papers.nips.cc/paper/5782-character-level-

convolutional-networks-for-text-classification.pdf.

110

https://doi.org/arXiv preprint arXiv:1712.07107
https://doi.org/arXiv%20preprint%20arXiv:1712.07107
https://arxiv.org/abs/1710.11342
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Problem Overview
	Motivation
	Road Maps
	Defending against Adversarial Samples
	Generating Adversarial Samples


	Background
	Neural Networks
	Adversarial Images
	Notations
	Problem Formulation
	Overview of Generating Adversarial Images
	Case Studies


	Defend against Image Adversarial Samples
	Introduction
	Related Work
	Method
	Experiment
	Efficiency and Robustness of the Classifier
	Generalization Limitation

	Conclusion

	Generate Text Adversarial Samples
	Introduction
	Related Work
	Text-space Methods
	Transformed-space Methods

	Adversarial Text Framework
	System Overview
	Discrete Input Space
	Word Mover's Distance (WMD)

	Experiment
	Dataset
	Embedding
	Model
	Effectiveness and Quality Trade-off
	Transferability
	Defense
	Results on Word-Level Model
	Results on Character-level Model

	Conclusion

	Generate Natural Adversarial Images
	Introduction
	Framework
	Problem formulation
	Classification Networks
	3D Renderers
	3D Object Dataset
	Methods

	Experiments and Results
	Neural Networks Are Easily Confused by Object Rotations and Translations
	Common object classifications are shared across different lighting settings
	Correct Classifications Are Highly Localized in the Rotation and Translation Landscape
	Optimization methods can effectively generate targeted adversarial poses
	Adversarial poses transfer to different image classifiers and object detectors

	Adversarial training
	Training
	Evaluation

	Related work
	Out-of-distribution Detection
	2D Adversarial Examples
	3D Adversarial Examples
	Concurrent work

	Discussion and Conclusion
	Appendix
	Extended Description of the 3D Object Dataset and Its Evaluation
	Transferability from the Inception-v3 Classifier to the YOLO-v3 Detector
	Experimental Setup for the Differentiable Renderer
	Gradient Descent with the DR Gradients
	3D Transformation Matrix
	Adversarial Poses Were Not Found in ImageNet Classes via A Nearest-neighbor Search


	Conclusion

