
CMOS Exactly Solvable Chaotic Oscillator

by

Casey Fendley

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 14, 2019

Keywords: CMOS, Chaotic Oscillator

Copyright 2019 by Casey Fendley

Approved by

Robert N. Dean, Chair, McWane Endowed Professor of Electrical and Computer Engineering
Thaddeus Roppel, Associate Professor of Electrical and Computer Engineering

Edmon Perkins, Assistant Professor of Mechanical Engineering
Aubrey Beal, Assistant Professor of Electrical Engineering, University of Alabama-Huntsville



Abstract

The design and simulation of a complementary metal-oxide-semiconductor (CMOS) ex-

actly solvable chaotic oscillator is presented in this work. The goal of this work is to design

and simulate a high-frequency implementation of a piece-wise linear exactly solvable chaotic

oscillator. The oscillator is designed using 45nm CMOS technology, and models the system

accurately to around 50MHz. The CMOS model’s performance is also evaluated at higher fre-

quencies. SPICE simulation is used for circuit verification and the results are compared with

numerical solutions of the model.

In this work, an approach for design and fabrication of an integrated circuit is also dis-

cussed to lay the groundwork for future integrated circuit development of exactly solvable sys-

tems. This integrated circuit was designed and simulated within the Cadence Virtuoso Analog

Design Environment. Fabrication was done through MOSIS.
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Chapter 1

Introduction

High frequency chaotic waveforms have applications in many different areas in electrical

engineering. Two popular applications for this type of nonlinear waveform are radar [5] and

communications [27]. Chaotic signals have a wide bandwidth and in the long-term they are non

repeating waveforms. However, conventionally in the presence of noise, these signals require

high-quality synchronization and complicated nonlinear filter techniques to be useful [24]. One

way to overcome these limitations is to use exactly solvable chaotic waveform generators.

Exactly solvable chaos is different in the sense that an exact analytical solution exists for these

systems. From the solution, a matched filter can be constructed for the system in order to

maximize the signal-to-noise ratio in the presence of noise [2].

The exact solvable model of interest in this work has been fully described in [1], and a low

frequency circuit implementation has been realized in [24]. Additionally, a circuit implemen-

tation up into the MHz frequency range has also been described in [35]. Both of these circuit

designs mentioned previously are implemented using printed circuit board designs accompa-

nied with commercial off the shelf parts. The main goal of this work is to present a higher

frequency circuit model of the exactly solvable system previously mentioned using integrated

circuit process technology. The circuit designs presented in this work are simulated using

a BSIM4 SPICE model based on 45nm complimentary metal-oxide-semiconductor (CMOS)

technology.

A description for general chaos can be found in Chapter 2. This chapter also contains the

description of the Lorenz system to illustrate some of the characteristics of chaos. A circuit

model for the Lorenz system is presented in Chapter 2 to serve as an example of how nonlinear
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differential equations can be solved using analog computation. Additionally, a mathematical

description for the exactly solvable system of interest in this work is presented as well.

Simulation of all the circuit designs presented in chapter 2, 3, and 4 are carried out in

SPICE. The SPICE simulator used for design verification is LTspiceXVII which is maintained

by Analog Devices. This simulator was chosen due to its availability and speed. SPICE models

for all the circuits presented can be found throughout this work and also in the Appendix.

Chapter 3 contains a block level design description of each piece of the CMOS exactly solvable

oscillator along with some simulations describing the operation of individual circuits. Chapter 4

contains the simulation results of the system model as a whole. Chapter 5 provides an overview

of the design process that was used to fabricate a custom integrated circuit using the Cadence

Analog Design Environment.
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Chapter 2

Background

2.1 Chaos

Chaos in the normal context of the word implies ”randomness” and ”disorder”, however in

the mathematical sense it is quite the opposite. Chaos Theory is a branch of mathematics that

studies nonlinear dynamical systems that are sensitive to initial conditions. Chaotic systems

may look like they are random, but actually they a deterministic. In other words, for a given

input into a chaotic system, the output will be the same every time. Another characteristic

of these nonlinear dynamical systems are their long term aperiodicity. Some of the popular

examples of chaos include systems like the Lorenz system[3] or the Rössler system[4]. Chaos

has been found to exist in many different disciplines of science, which include Economics[17],

Electronics[6, 7, 8], Chemistry[16], and Meteorology[3]. In this chapter, an example chaotic

system will be examined, as well as the main focus of this work which is exactly solvable

chaos.

2.1.1 The Lorenz System

Perhaps the most popular example of chaos is demonstrated with the Lorenz System. This

system was discovered by Edward Lorenz in 1963 when he made a simplification to the Navier-

Stokes equations for atmospheric modeling. This simplification became known as the Lorenz

system, and can be described by the following three equations:

ẋ = σ(y − x) (2.1)
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ẏ = −x(ρ− z)− y (2.2)

ż = xy − βz (2.3)

where x, y, and z are the state variables and σ, ρ, and β are control parameters [3]. The system

has two quadratic nonlinearities (xy and xz). Although this system looks relatively simple

on the surface, for the control parameters σ=10, ρ=28, and β=8/3, it is capable of producing

complex dynamics.

In order to show the complex dynamical behavior of the system, an analog circuit was

built and simulated in LTspice. The circuit schematic is shown in Fig. 2.1 and is based on

the design of Paul Horowitz [12]. Inverting operational amplifiers are used with a capacitor in

feedback to perform integration on the state variables. Integrated analog multipliers are used to

create the quadratic nonlinearities. All of the operational amplifiers and analog multipliers are

powered with a differential supply voltage of ±15V.

The operational amplifiers used in the simulation are LT1057s which are high speed pre-

cision JFET amplifiers made by Analog Devices [10]. The AD633 analog multipliers used

in the circuit are also manufactured by Analog Devices [11]. The AD633 is capable of per-

forming multiplication of two differential signals, which works well for performing the non-

linearity required for the circuit. The resistors in the circuit set the values of the control pa-

rameters σ, ρ, β. Resistance values are normalized with respect to a nominal resistance value

(Rnom = 1MΩ). For this simulation, the control parameter σ = Rnom/R1 = Rnom/R2 = 10.

Similarly, ρ = Rnom/R3 = 28 and β = Rnom/R7 = 8/3. The capacitor values set the band-

width of the system. Also, the resistor ratios have been adjusted to compensate for the output

attenuation of the analog multiplier [13].

The circuit was simulated in LTspiceXVII and the trajectories were plotted in MATLAB

in order to better understand the system. Figure 2.2 shows two separate simulations of the state

variable x. The initial conditions for y and z were kept constant, but the initial condition for

x was set to 0.5mV and 0.501mV . Notice how both trajectories are nearly identical for the

first second of the simulation and how they diverge into different trajectories while the only

difference is the slight variation of 1mV in the initial condition of x. This demonstrates one of
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Figure 2.1: Schematic for Lorenz Circuit
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Figure 2.2: Time Series Data of the State Variable x from the Lorenz Circuit Simulation

the fundamental characteristics of chaos, which is a system’s sensitivity to initial conditions.

The aperiodic nature of the oscillations can also be observed from the time series data. This

long term, irregular oscillation is also a characteristic for chaos[9].

The plot shown in Figure 2.3 is the phase space plot of the system. This is perhaps the

most famous plot of the system, known as the ”Lorenz Butterfly”. The phase space plot allows

a good view of the strange attractors. The dense bands around the attractor are also another

common characteristic of chaos.

2.2 Exactly Solvable Chaos

Though some of the nonlinear systems mentioned in the previous section are capable of

being solved with numerical integration or analog computation, none of them have an exact

analytical solution. Numerical solutions can certainly provide some insight into the behavior

of these complex dynamical systems, but a closed form solution provides for a different type of

analysis. Exactly solvable systems have been discovered that exhibit complex chaotic behavior

while also having an analytical solution [18, 22, 1, 23, 24].
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Figure 2.3: Phase Space Plot of State Variables x, y, z from Lorenz Circuit Simulation

2.2.1 Exact Shift-Band Oscillator

This work mainly focuses on a manifold piecewise-linear system described by Saito and

Fujita [20]. The hybrid dynamical system of interest consists of a continuous state u(t) and a

discrete state s(t). The continuous-time dynamics is described by the differential equation

ü− 2βu̇+ (ω2 + β2)(u− s) = 0 (2.4)

where ω and β are fixed parameters satisfying ω = 2π and 0 < β ≤ ln2. Transistions in the

discrete dynamics are defined by the guard condition

u̇(t) = 0⇒ s(t) = sgn(u(t)), (2.5)

meaning the discrete state s(t) is set to the sign of u(t) whenever the derivative of the continu-

ous state diminishes and s(t) maintains this value until the guard condition is next met. In this

system, the signum function is defined as

sgn(u) =

+1, u ≥ 0

−1, u < 0,
(2.6)
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where the choice that sgn(0) = +1 is arbitrary and chosen for completeness [24].

A MATLAB simulink model was constructed to demonstrate the dynamical behavior of

the system. Fixed step ode4 (Runge-Kutta) numerical integration was used to solve the system.

Figure 2.4 shows a typical time series simulation where ω = 2π and β = ln2. The growing

oscillation can be seen around the fixed point in the continuous state until the guard condition in

(2.5) is met and then the growing oscillation is flipped to the new fixed point. The phase space

plot of the of the system is shown in Figure 2.5. The phase space for the system has a Lorenz

like structure with the two strange attractors. The dense bands around the attractors show the

complex dynamical behavior of the system. By Sampling the continuous state u(t) at integer

times and plotting the future values versus the previous values (un+1 vs un), the map in Figure

2.6 is generated. This map is topologically conjugate to the known chaotic one dimensional

map known as the dyadic transformation, Bernoulli map, or bit shift map. The slope of the line

is determined by eβ , where β controls the negative damping and is also the lyapunov exponent

for the system.

The analytical solution for this system can be found for initial conditions at time t = tn

such that u(tn) = un, du
dt

(tn) = 0, and s(tn = sn, where sn = sgn(un). The solution can be

given as the linear convolution

u(t) =
∑∞

m=0 sm · P (t− tn −m)

s(t) =
∑∞

m=0 sm · φ(t− tn −m)
(2.7)

where t ≥ 0 and each symbol sm = ±1. The fixed basis functions are

P (t) =


(1− e−β)eβt(cos ωt− β

ω
sin ωt), t < 0,

1− eβ(t−1)(cos ωt− β
ω
sin ωt), 0 ≤ t < 1,

0, 1 ≤ t,

(2.8)

and

φ(t) =


0, t < 0,

1, 0 ≤ t < 1,

0, 1 ≤ t.

(2.9)
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Figure 2.4: Time Series Simulation of MATLAB Simulink Model

The solution shows that the oscillator’s state only depends on the current and future symbols

output from the oscillator [29]

9



Figure 2.5: Phase Space Projection from Numerical Simulation

Figure 2.6: Chaotic Shift Map for β = ln2
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Chapter 3

CMOS Shift-Band Oscillator

The CMOS implementation of the hybrid dynamical system consists of a continuous time

section and a discrete time section. The design of each section is explained in detail within

this chapter. All circuit designs were done using a BSIM4 SPICE Model, which is listed in

Appendix A. The BSIM4 model used in this work models a 45nm CMOS Technology [21]. A

full schematic for the design can also be found in the Appendix.

3.1 Continuous-time Section

To implement the continuous dynamics of the exact solvable shift band oscillator, a -

RLC circuit is used. In particular, a series -RLC circuit is used to model the second order

continuous dynamics. The inductor value required for the circuit can be quite large, so an

active implementation is used. Additionally, in order to realize a negative resistance, active

components have to be used. Active filter design techniques are applied to implement the series

-RLC network. Active filters utilize integration in order to realize the differential equations

they represent. This work uses a Gm-C integrator, which consists of a transconductor and

a capacitor [30]. These integrators are commonly used in active filter design for integrated

circuits. The transconductor used in this case is an operational transconductance amplifier.

Figure 3.1 shows the Gm-c implementation of the continuous-time section of the oscillator.

The following section describes the operation and design of the operational transconductance

amplifier used in the synthesis of the unstable ladder network.

11



Figure 3.1: Operational Transconductance Amplifier Implementation of Unstable -RLC Ladder
Network

3.1.1 Operational Transconductance Amplifier

The operational transconductance amplifier (OTA) can be defined as an amplifier where

all nodes are low impedance except the input and output nodes. The OTA is typically modeled

as a voltage controlled current source since its main function is to take a differential voltage

input and output a single or differential current. A symmetrical single stage OTA topology can

be seen in Figure 3.1. This OTA topology consists of a differential amplifier with a current

source load. The voltage gain is given by

Av =
Vout

Vinp − Vinm
= gm1,2 · (ro6 ‖ ro8) (3.1)

where gm1,2 is the transconductance of the input transistors that make the differential pair.

ro6 is the output resistance of the pmos current mirror and ro8 is the output resistance of the

nmos current mirror. The transconductance and output resistance of a MOSFET transistor in

12



saturation is given by

gm =

√
2µncox

W

L
ID (3.2)

and

ro ≈
1

λID
(3.3)

where W and L describe the physical geometry of the device and ID is the drain current.

The transconductance parameter, µncox, and the channel-length modulation, λ, are determined

by the process technology used and are not able to be adjusted by the designer [19]. While

the voltage gain of an OTA can be useful to know, a more useful figure of merit is the to-

tal transconductance of the circuit. The total transconductance of the circuit is given by the

following relationship

Gm =
Iout

Vinp − Vinm
(3.4)

where Iout = ID6 − ID8. For the case where the nmos and pmos current mirrors are sized 1:1,

the total transconductance of the OTA is equal to the transconductance of the input transistors

of the differential pair gm1,2.

It is also useful to look at the frequency characteristics of the amplifier. For higher fre-

quencies, the output voltage can be written as

Vout = Iout ·
1

jωCL
= gm1,2Vin ·

1

jωCL
. (3.5)

In this case CL is the load capacitance and ω = 2πf . Dividing both sides of equation 3.5 by the

input voltage, Vin, and computing the absolute value of both sides to get rid of the imaginary

component gives ∣∣∣∣VoutVin

∣∣∣∣ =
gm1,2

2πfCL
. (3.6)

The unity-gain frequency is defined as the point where the open-loop gain is unity [25]. By

setting the voltage gain equal to 1 in equation 3.6 and solving it for f gives equation 3.7. This

equation is useful for estimating the unity gain frequency of the OTA topology shown in Figure

13



Figure 3.2: Single Stage Symmetrical OTA Topology

3.1.

fun =
gm1,2

2πCL
(3.7)

3.1.2 OTA Design

The design process for the OTA in Figure 3.1 uses what are considered short-channel de-

vices. Devices with channel lengths well below 1 µm are considered short-channel devices.

The reason for this distinction between long and short channel devices is that the square-law

current-voltage characteristics of the MOSFET starts to become a less accurate model as chan-

nel lengths get smaller [25]. While there are models that can be used to calculate bias points

for short-channel effects, a simpler design approach is used in this work. The design process

used in this work is based on simulations of the SPICE model to determine the bias points.

This graphical approach is used by Razavi[26]. The bias points can easily be determined for

14



Parameter Value
Vdd 1V
Vss -1V
Vthn 0.45V
Vthp -0.45V

Length 0.18µm
CL 1pF
fun 1.5 GHz

Table 3.1: Symmetrical OTA Design Parameters

the short-channel devices by looking at simulations of the current-voltage characteristics for a

single transistor.

Before beginning the design process, it is important to set some design parameters. The

design parameters are shown in table 3.1. The first step in the design of the symmetrical OTA

shown in Figure 3.1 is to determine the transconductance of the input differential pair. To find

this value, equation 3.7 can be rearranged to solve for the transconductance. For the given

values in the table 3.1, calculating the transconductance from equation 3.7 yields a value of

9.4mA/V or approximately 10mA/V . Once the value of gm required for the input n-type

transistors is known, the other bias points can be determined from simulation.

The next step is to plot the current-voltage characteristic in SPICE for a single n-type

transistor and obtain the bias points. Figure 3.2 shows the current-voltage characteristic (left)

for the n-type transistor and the transconductance (right). These plots are generated by a DC

sweep of the Gate to Source voltage, VGS , while keeping the Drain to Source voltage, VDS ,

constant. VDS is chosen such that the transistor operates in saturation. The left plot in Figure

3.2 shows the drain current. The plot on the right in Figure 3.2 is obtained by taking the

derivative of the drain current with respect to VGS . This simulation was performed at various

transistor widths to demonstrate the effects of transistor sizing on the operating points. By

adjusting the size of the transistor, it is possible to obtain specific values of gm and ID at a

given VGS . For the design in this work, VGS is set to approximately 700mV which is denoted

by the dashed black line in the plots of Figure 3.2. It is important to select a value for VGS that

still provides an adequate overdrive voltage, Vov = VGS − Vthn. The speed of the amplifier is

directly related to the overdrive voltage [25]. Once an approximate VGS is selected, the idea

15



Figure 3.3: (Left) IV Characteristic for n-type MOSFET at various widths. (Right) Transcon-
ductance Characteristic for n-type MOSFET at various widths.

is to adjust the width of the transistor until the desired gm is achieved at the selected gate to

source voltage. With the geometry of the transistor known, the drain current can be found using

the same method on the IV characteristic. Once the drain current is known, the source current,

or the current through ISS shown in Figure 3.1 is found by doubling the drain current. This

same process can be repeated to find the bias points for the p-type transistors located within the

circuit.

Using this method, the width for the NMOS transistor was found to be 20µm. While the

width for the PMOS transistor is 155µm. The drain current at the given geometry is around

1.5mA. Doubling the drain current gives a source current, ISS , of 3mA. Now that the geometry

for the n-type and p-type transistors and the source current are known, the design for the OTA

can be simulated to test the performance.

3.1.3 OTA Simulation

Voltage Transfer Characteristic Simulation

The voltage transfer characteristic shows the total output voltage versus the total input

differential voltage. The transfer characteristic for the amplifier designed in the previous section

can be seen in Figure 3.3. This plot is created by grounding the inverting terminal of the

amplifier and performing a DC sweep at the non-inverting terminal. The output voltage is then

plotted versus the input voltage. The straight line in the center of the plot from Vin ≈ ±350mV
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Figure 3.4: Simulated Voltage Transfer Characteristic of the Operational Transconductance
Amplifier

is known as the linear region, where the slope is approximately equal to the open loop gain

[19]. Input differential voltages greater than this will cause the amplifier to enter its nonlinear

region of operation, also known as the saturation region.

AC Sweep Simulation

The frequency response of an amplifier can be simulated by performing an AC sweep

simulation. To do this, an AC signal must be applied to the non-inverting input of the ampli-

fier while the inverting input is grounded. The AC signal’s frequency is then swept across a

specified range. The open loop gain of the amplifier may be looked at by plotting
∣∣∣VoutVin

∣∣∣ ver-

sus frequency. The open loop gain for the transconductance amplifier designed in the previous

section is shown in Figure 3.4. From Figure 3.4, the unity gain bandwidth of the amplifier can

be seen at the point where the curve intersects 0dB. The unity gain bandwidth for the amplifier

designed in the previous section is around 1.56GHz, which is very close to the frequency that

it was designed for.
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Figure 3.5: Simulated Open-Loop Gain of the Operational Transconductance Amplifier

3.2 Discrete-Time Section

The discrete-time section of the oscillator is responsible for determining the discrete switch-

ing condition to the -RLC network. The image shown in Figure 3.3 shows the schematic of the

discrete-time circuit. There are multiple ways of implementing the discrete-time switching

condition[28]. The circuit in this work consists of a D-type latch, a zero crossing detector, and

differential high speed buffer that can be used to apply the signum function to a signal. A zero

crossing detector determines when the derivative du
dt

goes to zero. The D-type latch is used to

sample the sign of u whenever a zero crossing is detected. A resistor divider then scales the

output of the latch to the appropriate magnitude for the forcing function. The components used

for the discrete switching condition are broken down and explained within the next sections.
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Figure 3.6: Schematic of CMOS Buffer Used as a Signum Function

3.2.1 Signum Function

The main purpose of the Signum or sign function is to convert the continuous state u into

a discrete signal. Mathematically, the signum function can be defined for the real variable x as:

sgn(x) =


−1 , x < 0

0 , x = 0

1 , x > 0.

(3.8)

The circuit used to accomplish this mathematical function can be seen in Figure 3.7. This

circuit consists of an NMOS and PMOS self biased differential amplifier connected in parallel

with three inverters connected to the output in series. The inverters are used to help shape

the output into a smoother discrete signal. The circuit behaves like a buffer with a differential

input, where the output changes state when

V inp > V inm→ out = vdd (3.9)

and

V inp < V inm→ out = vss (3.10)
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Figure 3.7: Schematic of the Discrete-time Section in the Oscillator Circuit

In this case, vdd is considered a logic level ”High” and vss is considered a logic level ”Low.”

Using the NMOS and PMOS differential amplifiers in parallel allows the circuit to operate

better with input signals approaching vss or vdd. By using the buffers in parallel, the com-

plementary nature results in a buffer that is robust and works over a wide range of operating

voltages [25].

3.2.2 D Type Latch

The D latch is used to provide the logic for the discrete switching condition. A NAND

gate architecture is used to implement the D Latch. When the clock signal of the latch is high,

the output will reflect the logic level which is present at the D input. When the input of the

D latch changes on a low clock signal, the output remains the same. The output of the latch

corresponds to the discrete state s(t) for the shift-band oscillator. The clock input to the latch

is connected to the output of the zero-crossing detector while the D input is connected to the

output of the signum function. Therefore, on zero crossings of the derivative, the output of the
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Figure 3.8: SPICE Simulation of D-Type Latch

latch will be set to the SGN(u(t)), thus satisfying the switching condition for the system. The

schematic for the D latch can be seen in Figure 3.6. The netlist and schematic can also be seen

in the Appendix. A simulation of the latch can be seen in Figure 3.8. The propagation delay

through the latch is approximately 20ps.

3.2.3 Zero Crossing Detector

The schematic for the zero-crossing detector (ZCD) can be seen in Figure 3.6. The circuit

consists of two differential input buffers previously discussed in section 3.2.1 and 4 NAND

gates from the previous section. The NAND gates are configured to create an XOR gate. The

XOR gate output only goes high when only one of the two inputs is high and its output is

low when the inputs are both high or low. The buffer’s inverting input is biased with +15mV

and the other input is biased with -15mV. When the input signal goes in between the two bias

voltages as it crosses zero, only one of the buffer’s output will be high, while the other is low.
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Figure 3.9: SPICE Simulation of Zero-Crossing Detector

This causes the output of the XOR gate to go high while the input signal is in between the two

bias voltages. The hysteresis of the circuit can be controlled by tuning the bias voltages on

the inverting terminal of the buffers. Figure 3.9 shows a SPICE simulation for the ZCD with a

100MHz sine wave input. For this particular input, the zero crossing detector has a worst case

delay of approximately 200ps.
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Chapter 4

Simulation

The main focus of this work is to evaluate how a CMOS implementation of the exactly

solvable chaotic system could model the hybrid dynamical system from Chapter 2. In this

chapter, The process for simulating the CMOS oscillator in LTspiceXVII is discussed as well

as the results from simulation. The continuous-time section and discrete-time section from

the previous chapter were combined into a single schematic. This schematic can be seen in

Figure C.1 located within Appendix C. A netlist for the simulation is also contained within the

Appendix.

Transient analysis is used to compute the results for all the circuit simulations within

this section. The transient analysis command .tran 0 4e-6 0 0.1e-9 is used to compute the

simulation. In the command, the 4e-6 corresponds to length of time the simulation runs, and

the 0.1e-9 is the maximum allowable time step. For the simulation to work correctly it is also

important to include the command .ic V(u)=0.029mV V(du)=0V. This command sets the initial

conditions for the continuous states. The discrete-time section requires a differential voltage of

±15mV for the hysteresis of the zero-crossing detector. A±500mV voltage is also required to

power the logic devices. Additionally, the OTAs are powered with a differential voltage supply

of ±1V .

The first simulation is a 2.5µs transient simulation of the oscillator. Figure 4.1 shows

the time series for the continuous state u(t) and s(t), as well as the successive returns. From

looking at the time series simulation, it would seem that the CMOS implementation produces a

similar result to the ideal mathematical simulation previously shown in Chapter 2. The discrete

state has some minor distortion on the high side. To get a better idea of the dynamical behavior
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Figure 4.1: SPICE Time Series Simulation of CMOS Exactly Solvable Chaotic Oscillator

of the system, the phase space can is plotted in Figure 4.2. To generate the phase portrait of the

system, the continuous state, du
dt

, is plotted versus u. From the phase portrait, the two strange

attractors are present, as well as the thick bands around them.

While on the surface it appears that the system models the dynamics of the hybrid system

presented in Chapter 2, the successive returns need to be plotted to see if the exactly solvable

nature is still maintained. Figure 4.3 plots the successive returns from the simulation data. This

plot is created by plotting future values of u versus current values of u at return times T , un+1

vs. un. The return times can be measured from the simulation data by using changes in the

discrete state, s(t), and zero-crossings of the derivative, du
dt

= 0. A MATLAB script was created

to do just that, and can be viewed in the Appendix. The average return time, T , for the system

can be computed by averaging the time difference between returns. The average return time for

this simulation gives T = 19.23ns. Taking the inverse of T gives the operating frequency of

the CMOS oscillator, which is approximately 51.91MHz. The return map in Figure 4.3 shares

a close resemblance to the map from chapter 2.
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Figure 4.2: Phase Space Plot from Simulation Data

Figure 4.3: Successive Return Map from Simulation Data
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Figure 4.4: Phase Portrait from Higher Frequency Simulation

The -RLC network in the continuous time section is responsible for controlling the fre-

quency of the oscillator. By tuning the passive values within the continuous-time circuit, the

frequency can be increased or decreased. The values of CL, R2, and CC in the CMOS oscillator

schematic where changed to evaluate the performance of the circuit at higher frequencies. The

new values are given as, CL = 100pF , R2 = 2Ω, and CC = 50pF . Simulating the circuit

with the new values increases the frequency of oscillation to around 70MHz. The phase space

of the simulation at this frequency can be seen in Figure 4.4. The phase space for this simula-

tion starts to show distortion in the center. This distortion is caused by the propagation delay

in the discrete time circuit. For the system to operate correctly, the propagation delay in the

discrete time circuit needs to be minimized. The delay causes the return map to deviate from

ideal exactly solvable return map.
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Chapter 5

Integrated Circuit Design and Fabrication

This chapter presents an overview for designing a custom analog CMOS integrated cir-

cuit. While the design and fabrication of an exactly solvable system into an integrated circuit

is beyond the scope of this work, the process for design used in this chapter will hopefully lay

the groundwork for future work. Integrated circuit design was carried out using the Cadence

Virtuoso Analog Design Environment. The CMOS technology used for the design is the C5

0.5µm by ON Semiconductor [31]. This process technology allows for a minimum transis-

tor gate length of 0.6µm. A process design kit (PDK) for this process was obtained through

MOSIS.

The Cadence integrated circuit design tools can be complicated to set up correctly. A guide

for setting up the environment is listed within the Appendix. Information regarding additional

learning resources can also be found within the Appendix.

5.1 Design

In order to begin a design, a process design kit (PDK) needs to be obtained. The PDK

contains the device models and information concerning the technology used in the design. Data

sheets, device characteristics, and instructions are contained within the PDK and may need to

be referenced for design purposes. The foundry with which the design is to be fabricated

typically has PDKs for all the different technologies they can manufacture.
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Figure 5.1: CMOS Folded-Cascode Operational Amplifier

5.1.1 Schematic

Once the technology has been selected and the PDK has been configured with Cadence,

the next step is to use the Virtuoso schematic editor to create the circuit. Figure 5.1 shows

the schematic for a folded-cascode operational amplifier. When creating the schematic, it is

important to only use circuit components located within the PDK library. Using components

outside of the PDK library can yield different simulation results. Additionally, components

located within the PDK library usually already come with a pre-defined defined standard cell

layout. It can be beneficial to use a hierarchical design approach for chip design. Create pins for

all inputs and outputs of the circuit. For example, in the circuit shown in Figure 5.1, pins were

created for inputs such as power, ground, bias voltages, etc. When the schematic is complete,

a circuit symbol should be created so the circuit can be used in simulations and other circuits.

5.1.2 Simulation

To simulate a design using Cadence, another schematic needs to be created. This schematic

is where the circuit symbol creation from the last section is used. The symbol can be placed

along with all the different input and output stimuli required for the circuit to operate properly.

Figure 5.2 shows an example of a schematic made for simulation. The circuit symbol has pin
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Figure 5.2: Schematic for simulation

connections for all the required connections. Using ideal circuit elements from other libraries

in this schematic is acceptable since it is just used for simulation and characterization. Once

the schematic for simulation has been created, the circuit can be simulated by launching the

Analog Design Environment (ADE). From the ADE window, a variety of simulations can be

performed from transient analysis, AC analysis, Monte Carlo, etc. Monte Carlo analysis is

recommended to ensure that physical variations in devices do not have disastrous affects on

circuits. From the ADE window it is possible to use third-party simulators, such as HSPICE, if

desired [32].

5.2 Layout

Once a circuit has been designed and verified with simulation, the next step is the physical

layout of the circuit. Physical layout can be a complicated process, but there are many physical

layout techniques that can be utilized to improve the robustness and reliability of integrated

circuits. Common centroid layout and using transistors in parallel to create large devices can

help reduce physical device mismatch [21]. Figure 5.3 shows a fully custom integrated circuit

physical layout. This cell not only includes the circuits that are to be fabricated, but it also
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includes things like bond pads, guard rings, electrostatic discharge (ESD) protection, and ori-

entation marks. All of these item requirements will differ depending on the process used for

fabrication. A physical design rules document should be contained within the PDK received

from the foundry that will contain specific instructions on how to create these structures.

Once a physical layout is completed, a design rule check (DRC) simulation can be done to

ensure the design meets the foundry specifications. Any rule violations can be checked within

the physical design rules document for clarification. It is also a good idea to perform a layout

versus schematic (LVS) simulation. The LVS simulation is capable of extracting a netlist from

the physical layout, along with parasitic elements such as resistor-capacitor (RC) structures

within the silicon. This netlist is then compared with the schematic netlist to ensure everything

matches. The extracted netlist can also be simulated with parasitic elements to ensure it does

not affect the operation of the circuit.

5.3 Test

The next step in the design process is hardware verification. Once the fully custom phys-

ical layout has been fabricated by the foundry, it needs to be tested. In order to test the die, it

needs to be wire bonded and packaged like the photo in Figure 5.4 ,or it can be tested under a

probe station. If the die is wire bonded and packaged, great care needs to be taken in order to

avoid damaging the circuits.

5.4 Summary

It is the hope that this chapter can provide some basic knowledge for the design and fab-

rication of custom integrated circuits. Documentation for the Cadence Analog design environ-

ment can be found within the the Cadence install directory. The documents include user guides

and tutorials, and are quite comprehensive. Additionally, the documentation that comes along

with the process design kit is crucial for designing successful chips. The website accompanying

the textbook in [25] is also an excellent resource for all things CMOS integrated circuit design.
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Figure 5.3: Fully Custom Physical Layout
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Figure 5.4: Photo of Die under microscope after wire bonding
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Chapter 6

Conclusion and Future Work

It has been shown that high frequency chaotic waveform generation can be simulated using

CMOS devices. The CMOS implementation was able to model the exactly solvable system up

to approximately 50 MHz in SPICE simulations. The design was done using a 45nm CMOS

process with a BSIM4 SPICE model. The system utilizes an active -RLC network with a

discrete time switching circuit. The speed of the system is easily tuned by changing values

of the passive components within the active -RLC circuit. These passives were tuned so that

the operating frequency of the system was increased to 70 MHz. However, due to physical

limitations in the design, the performance of the system is greatly diminished at higher speeds.

One physical limitation is the finite bandwidth of the operational transconductance ampli-

fiers used in the active -RLC network. For future designs, one way this may be mitigated is by

using modern Silicon Germanium (SiGe) process technology. For example, high performance

90nm SiGe BiCMOS has heterojunctuion bipolar transistors (HBT) with fT = 300GHz and

fMAX = 360GHz [33]. BiCMOS technology allows the use of FETs to be fabricated on the

same wafer as bipolar transistors. Using these bipolar devices for the input differential pair

of the operational transconductance amplifiers could potentially allow for wideband operation.

Active filters operating in the gigahertz range have been synthesized from amplifiers made with

SiGe HBTs [14].

Another limitation for high frquency implementation of the system is the propagation

delay in the discrete time section of the circuit. The delay through the digital circuitry causes

significant distortion in the dynamics of the system. Shrinking the device size can certainly

minimize the propagation delay within the digital circuitry, but it does not solve the problem.
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A technique for compensation of this imperfect switching has been studied for hybrid systems

in [34]. Although this seems counter intuitive, short term behavior can be reliably predicted for

this hybrid system. Future work on higher frequency implementation could benefit greatly by

designing compensation technique, such as this, in hardware.
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Appendix A

SPICE MODELS

* Customized PTM 45 NMOS

.model NMOS nmos level = 54

+version = 4.0 binunit = 1 paramchk= 1 mobmod = 0

+capmod = 2 igcmod = 1 igbmod = 1 geomod = 1

+diomod = 1 rdsmod = 0 rbodymod= 1 rgatemod= 1

+permod = 1 acnqsmod= 0 trnqsmod= 0

* parameters related to the technology node

+tnom = 27 epsrox = 3.9

+eta0 = 0.0049 nfactor = 2.1 wint = 5e-09

+cgso = 1.1e-10 cgdo = 1.1e-10 xl = -2e-08

* parameters customized by the user

+toxe = 1.75e-09 toxp = 1.1e-09 toxm = 1.75e-09 toxref = 1.75e-09

+dtox = 6.5e-10 lint = 3.75e-09

+vth0 = 0.471 k1 = 0.53 u0 = 0.04359 vsat = 147390

+rdsw = 155 ndep = 3.3e+18 xj = 1.4e-08

* secondary parameters

+ll = 0 wl = 0 lln = 1 wln = 1

+lw = 0 ww = 0 lwn = 1 wwn = 1

+lwl = 0 wwl = 0 xpart = 0

+k2 = 0.01 k3 = 0

+k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2

+dvt2 = -0.032 dvt0w = 0 dvt1w = 0 dvt2w = 0

+dsub = 0.1 minv = 0.05 voffl = 0 dvtp0 = 1.0e-009

+dvtp1 = 0.1 lpe0 = 0 lpeb = 0

+ngate = 2e+020 nsd = 2e+020 phin = 0

+cdsc = 0.000 cdscb = 0 cdscd = 0 cit = 0

+voff = -0.13 etab = 0
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+vfb = -0.55 ua = 6e-010 ub = 1.2e-018

+uc = 0 a0 = 1.0 ags = 1e-020

+a1 = 0 a2 = 1.0 b0 = 0 b1 = 0

+keta = 0.04 dwg = 0 dwb = 0 pclm = 0.04

+pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = -0.005 drout = 0.5

+pvag = 1e-020 delta = 0.01 pscbe1 = 8.14e+008 pscbe2 = 1e-007

+fprout = 0.2 pdits = 0.08 pditsd = 0.23 pditsl = 2.3e+006

+rsh = 5 rsw = 85 rdw = 85

+rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0

+prwb = 6.8e-011 wr = 1 alpha0 = 0.074 alpha1 = 0.005

+beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002

+egidl = 0.8

+aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002

+nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv = 0.004

+eigbinv = 1.1 nigbinv = 3 aigc = 0.012 bigc = 0.0028

+cigc = 0.002 aigsd = 0.012 bigsd = 0.0028 cigsd = 0.002

+nigc = 1 poxedge = 1 pigcd = 1 ntox = 1

+xrcrg1 = 12 xrcrg2 = 5

+cgbo = 2.56e-011 cgdl = 2.653e-10

+cgsl = 2.653e-10 ckappas = 0.03 ckappad = 0.03 acde = 1

+moin = 15 noff = 0.9 voffcv = 0.02

+kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5

+ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011 prt = 0

+at = 33000

+fnoimod = 1 tnoimod = 0

+jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1

+ijthsfwd= 0.01 ijthsrev= 0.001 bvs = 10 xjbvs = 1

+jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1

+ijthdfwd= 0.01 ijthdrev= 0.001 bvd = 10 xjbvd = 1

+pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1

+cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs = 3e-010

+mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5

+pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1

+cjswgd = 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001

+tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001

+xtis = 3 xtid = 3

+dmcg = 0e-006 dmci = 0e-006 dmdg = 0e-006 dmcgt = 0e-007

+dwj = 0.0e-008 xgw = 0e-007 xgl = 0e-008
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+rshg = 0.4 gbmin = 1e-010 rbpb = 5 rbpd = 15

+rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1
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* Customized PTM 45 PMOS

.model PMOS pmos level = 54

+version = 4.0 binunit = 1 paramchk= 1 mobmod = 0

+capmod = 2 igcmod = 1 igbmod = 1 geomod = 1

+diomod = 1 rdsmod = 0 rbodymod= 1 rgatemod= 1

+permod = 1 acnqsmod= 0 trnqsmod= 0

* parameters related to the technology node

+tnom = 27 epsrox = 3.9

+eta0 = 0.0049 nfactor = 2.1 wint = 5e-09

+cgso = 1.1e-10 cgdo = 1.1e-10 xl = -2e-08

* parameters customized by the user

+toxe = 1.85e-09 toxp = 1.1e-09 toxm = 1.85e-09 toxref = 1.85e-09

+dtox = 7.5e-10 lint = 3.75e-09

+vth0 = -0.423 k1 = 0.491 u0 = 0.00432 vsat = 70000

+rdsw = 155 ndep = 2.54e+18 xj = 1.4e-08

*secondary parameters

+ll = 0 wl = 0 lln = 1 wln = 1

+lw = 0 ww = 0 lwn = 1 wwn = 1

+lwl = 0 wwl = 0 xpart = 0

+k2 = -0.01 k3 = 0

+k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2

+dvt2 = -0.032 dvt0w = 0 dvt1w = 0 dvt2w = 0

+dsub = 0.1 minv = 0.05 voffl = 0 dvtp0 = 1e-009

+dvtp1 = 0.05 lpe0 = 0 lpeb = 0

+ngate = 2e+020 nsd = 2e+020 phin = 0

+cdsc = 0.000 cdscb = 0 cdscd = 0 cit = 0

+voff = -0.126 etab = 0

+vfb = 0.55 ua = 2.0e-009 ub = 0.5e-018

+uc = 0 a0 = 1.0 ags = 1e-020

+a1 = 0 a2 = 1 b0 = -1e-020 b1 = 0

+keta = -0.047 dwg = 0 dwb = 0 pclm = 0.12

+pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = 3.4e-008 drout = 0.56

+pvag = 1e-020 delta = 0.01 pscbe1 = 8.14e+008 pscbe2 = 9.58e-007

+fprout = 0.2 pdits = 0.08 pditsd = 0.23 pditsl = 2.3e+006

+rsh = 5 rsw = 85 rdw = 85

+rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 3.22e-008

+prwb = 6.8e-011 wr = 1 alpha0 = 0.074 alpha1 = 0.005

+beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002

+egidl = 0.8
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+aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002

+nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv = 0.004

+eigbinv = 1.1 nigbinv = 3 aigc = 0.69 bigc = 0.0012

+cigc = 0.0008 aigsd = 0.0087 bigsd = 0.0012 cigsd = 0.0008

+nigc = 1 poxedge = 1 pigcd = 1 ntox = 1

+xrcrg1 = 12 xrcrg2 = 5

+cgbo = 2.56e-011 cgdl = 2.653e-10

+cgsl = 2.653e-10 ckappas = 0.03 ckappad = 0.03 acde = 1

+moin = 15 noff = 0.9 voffcv = 0.02

+kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5

+ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011 prt = 0

+at = 33000

+fnoimod = 1 tnoimod = 0

+jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1

+ijthsfwd= 0.01 ijthsrev= 0.001 bvs = 10 xjbvs = 1

+jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1

+ijthdfwd= 0.01 ijthdrev= 0.001 bvd = 10 xjbvd = 1

+pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1

+cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs = 3e-010

+mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5

+pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1

+cjswgd = 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001

+tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001

+xtis = 3 xtid = 3

+dmcg = 0e-006 dmci = 0e-006 dmdg = 0e-006 dmcgt = 0e-007

+dwj = 0.0e-008 xgw = 0e-007 xgl = 0e-008

+rshg = 0.4 gbmin = 1e-010 rbpb = 5 rbpd = 15

+rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1
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Appendix B

MATLAB Code

B.1 Code for Plotting Return Map from LTspice Data

% This script finds the locations of the returns for the shift-band

% oscillator using data from LTspice Simulations. The raw plot data from

% LTspice can be saved as txt file and the txt file can be imported into

% MATLAB for post processing. This file will locate the successive returns

% and plot the return map.

clearvars; clc; close all;

% LTspice raw plot file

x = load(’20MHz_CMOS.txt’);

t = x(:,1);

ud = x(:,2);

u = x(:,3);

s = x(:,4);

% Hysteresis Values if used

hys_high = 0.015;

hys_low = -0.015;

count = 0;

zx = zeros;

% This loop records all indices where the derivative falls in between

% the hysteresis high and low value.
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for j=1:length(ud)

if ud(j) <= hys_high && ud(j) >= hys_low

zx(count+1,1) = j;

count = count + 1;

end

end

maxS = max(s);

minS = min(s);

% This loops gets rid of indices where zero crossings > and <

% the magnitude of S

for ii=1:length(zx)

if u(zx(ii)) > maxS-0.02 || u(zx(ii)) < minS

zx(ii) = 0;

end

end

zx(zx==0) = [];

% This loop averages out the duplicate duplicate return indices

count = 1;

for i=1:length(zx)-1

if zx(i+1) - zx(i) == 1

z(i,count) = zx(i);

else

count = count + 1;

end

end

z(z==0) = NaN;

zx = round(mean(z,1,’omitnan’));

% Normalizes data between 0 and 1

% RTU = mat2gray(u(zx));

RTU = u(zx);
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% Plots the return map data

figure();

hold on;

for i=1:(length(RTU)-1)

plot(RTU(i), RTU(i+1), ’*k’);

end

xlabel(’u(n)’); ylabel(’u(n+1)’);

hold off;

figure();

hold on;

t=t*10ˆ6;

plot(t,u,t,s)

plot(t(zx),u(zx),’*’)

xlim([0 2])

hold off;

figure();

plot(u,ud)

xlabel(’u’);ylabel(’du’);

time=t(zx);

for iii=1:length(zx)-1

period(iii) = time(iii+1) - time(iii);

end

averageT = mean(period)

B.2 Simulink Model for Second Order System
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Figure B.1: MATLAB Simulink Model of Exactly Solvable System
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Appendix C

Spice Schematics and Netlists

C.1 Lorenz Circuit

* C:\Users\cmf0052\Documents\LTspiceXVII\Thesis\Casey_Lorenz.asc

XU1 X 0 0 Z -15V 0 -XZ +15V AD633

XU2 -Y 0 X 0 -15V 0 -XY +15V AD633

XU3 0 N001 +15V -15V X LT1057

R1 N001 -Y 100k

R2 N001 X 100k

C1 X N001 0.1

V1 +15V 0 +15

V2 -15V 0 -15

XU6 0 N002 +15V -15V -Y LT1057

XU4 0 N003 +15V -15V Z LT1057

R3 N002 X 35.7k

R4 N002 -XZ 10k

R5 N002 -Y 1Meg

C2 -Y N002 0.1

C3 Z N003 0.1

R6 N003 -XY 10k

R7 N003 Z 374k

* AD633 Pinout\nPin 1 = X1

*Pin = +Vs\nPin 2 = X2

*Pin = W\nPin 3 = Y1

*Pin = Z\nPin 4 = Y2

*Pin = -Vs
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* X

* -Y

* Z

.tran 0 10 0 0.001 startup

.lib C:\Users\cmf0052\Documents\LTspiceXVII\AD633.cir

.lib LTC.lib

.backanno

.end

C.2 CMOS Exactly Solvable Oscillator Schematic and Netlist

CL du 0 500p

CC 0 u 100p

R2 0 N011 11

XX1 du 0 u ota_045

XX2 du 0 N011 ota_045

XX3 N011 0 du ota_045

XX4 Vs u du ota_045

XX5 N007 N004 N008 vdd vss nand_p045

XX6 N004 N013 N012 vdd vss nand_p045

XX7 N008 N010 N009 vdd vss nand_p045

XX8 N009 N012 N010 vdd vss nand_p045

XX9 N007 N007 N013 vdd vss nand_p045

V1 +15mV 0 15m

V2 -15mV 0 -15m

XX10 +15mV du N001 highspeedbuffer

XX11 -15mV du N005 highspeedbuffer

XX12 N001 N005 N003 vdd vss nand_p045

XX13 N001 N003 N002 vdd vss nand_p045

XX14 N003 N005 N006 vdd vss nand_p045

XX15 N002 N006 N004 vdd vss nand_p045

V3 vdd 0 0.5

V4 0 vss 0.5

XX16 0 u N007 highspeedbuffer

R3 vdd Vs 2k
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R4 Vs vss 2k

R5 N009 Vs 1k

* block symbol definitions

.subckt ota_045 Vin+ Vin- out

M3 N001 N001 Vdd Vdd PMOS l=0.18u w=155u

M4 N002 N002 Vdd Vdd PMOS l=0.18u w=155u

M1 N001 Vin- N003 Vss NMOS l=0.18u w=20u

M2 N002 Vin+ N003 Vss NMOS l=0.18u w=20u

I1 N003 Vss 3.3mA

V1 Vdd 0 1

V2 Vss 0 -1

M6 out N002 Vdd Vdd PMOS l=0.18u w=155u m=3

M5 N004 N001 Vdd Vdd PMOS l=0.18u w=155u

M7 N004 N004 Vss Vss NMOS l=0.18u w=20u

M8 out N004 Vss Vss NMOS l=0.18u w=20u m=3

.inc p045_cmos_models_tt.inc

.ends ota_045

.subckt nand_p045 a b out vdd vss

M3 out a vdd vdd PMOS l=0.045u w=2.25u

M4 out b vdd vdd PMOS l=0.045u w=2.25u

M5 out a N001 vss NMOS l=0.045u w=1.125u

M6 N001 b vss vss NMOS l=0.045u w=1.125u

.inc p045_cmos_models_tt.inc

.ends nand_p045

.subckt highspeedbuffer vinm vinp out

M1 N004 N003 vss vss NMOS l=0.045u w=0.45u

M2 N004 N003 vdd vdd PMOS l=0.045u w=0.9u

M3 N001 vinm N002 vdd PMOS l=0.045u w=0.9u

M4 N003 vinp N002 vdd PMOS l=0.045u w=0.9u

M5 N002 N001 vdd vdd PMOS l=0.045u w=0.9u

M6 N001 N001 vss vss NMOS l=0.045u w=0.45u

M7 N003 N001 vss vss NMOS l=0.045u w=0.45u

51



M8 N006 vinm N007 vss NMOS l=0.045u w=0.45u

M9 N003 vinp N007 vss NMOS l=0.045u w=0.45u

M10 N003 N006 vdd vdd PMOS l=0.045u w=0.9u

M11 N006 N006 vdd vdd PMOS l=0.045u w=0.9u

M12 N007 N006 vss vss NMOS l=0.045u w=0.45u

V1 vdd 0 0.5

V2 0 vss 0.5

M13 N005 N004 vss vss NMOS l=0.045u w=0.45u

M14 N005 N004 vdd vdd PMOS l=0.045u w=0.9u

M15 out N005 vss vss NMOS l=0.045u w=0.45u

M16 out N005 vdd vdd PMOS l=0.045u w=0.9u

.inc p045_cmos_models_tt.inc

.ends highspeedbuffer

.model NMOS NMOS

.model PMOS PMOS

.lib C:\Users\cmf0052\Documents\LTspiceXVII\lib\cmp\standard.mos

.tran 0 4u 0 0.1n

.ic V(u)=.029mV V(du)=0V

* Unstable -RLC Ladder Network

* gm=30m

* D Flip Flop

* Zero Crossing Detector

* Signum Function

* D

* CLK

* Q

* Vs

* u

* du

.backanno

.end
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Figure C.1: CMOS Exactly Solvable Shift-Band Oscillator Schematic
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Appendix D

Cadence Setup Guide

This tutorial will explain how to setup the Cadence Analog Design Environment (ADE) at

Auburn University. Keep in mind that things within this tutorial may change as time goes on.

However, at the time of this writing in order to access Cadence, one has to connect remotely to

the Linux Lab. Currently, SecureCRT is the recommended SSH client software to use in order

to accomplish this. Guides can be found on the university website for proper setup of the SSH

client.

Once a connection has been established using the SSH client, a visual interface between

Windows and Linux needs setup. Several options are available for doing this. Currently Net-

work Services has a guide for using Xming, but any Virtual Network Computing (VNC) soft-

ware can be used. Personally, I prefer using TigerVNC, but there are many other alternatives

available online. Figure D.1 shows the visual interface betweeen windows and linux using

TigerVNC.

With a visual interface setup between Windows and Linux, the next step is creating the

environment for Cadence. It is recommended to create a new directory where you would like

to save all the files you create with Cadence. This can be done using the graphical interface

or through the terminal window. Before accessing Cadence, several files need to be added

to this directory to set environment variables. The first file needed is a ”.bashrc” (or .cshrc)

file. This is a shell file that creates environment variables for simulators, PDKs, and license

files. A ”.cdsenv” and ”.cdsinit” are also needed within the directory. These files configure

the environment further by linking model files and providing error messages if things are not

configured properly. Another required file within the directory is called ”cds.lib.” This file
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Figure D.1: Screenshot of VNC software

contains paths to part libraries used by Virtuoso. Once all files are configured with the correct

paths and environment variables, typing the command ”virtuoso &” in the terminal window

within the newly created directory will activate the software.

Typically, the process design kit will include samples of each of the required files listed

along with instructions for proper configuration. Sample files can also be found within the

Cadence IC install directory. Documentation on all the software tools associated with Cadence

and tutorials can be found within the install directory.
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