
Low Latency Queuing Control in Extendable Mobile Ad-hoc Network Emulator
(EMANE)

by

Shaoyi Li

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 14, 2019

Keywords: Scheduling in packet level, Multi-objective latency minimization, single-hop and
multi-hops network

Copyright 2019 by Shaoyi Li

Approved by

Yin Sun, Chair, Assistant Professor of Electrical and Computer Engineering
Shiwen Mao, Samuel Ginn Endowed Professor of Electrical and Computer Engineering

Xiaowen Gong, Assistant Professor of Electrical and Computer Engineering

Abstract

A variation packets delay which is also called packet jitter causes packet loss and de-

lay. When jitter happens to stream video, users suffer an annoying freezes which results in

user unpleasant. The solution for reducing jitter probability is a low latency low-complexity

scheduling policy in queuing system: the Earliest Due Date first (EDD) policy.

To evaluate the performance of EDD in a real-world wireless network system. We im-

plement EDD algorithms on Extendable Mobile Ad-hoc Network Emulator (EMANE) to take

virtual field tests. In this paper, we present the design and implementation of a low-complexity

queue scheduling module in both single-hop multi-server systems using C/C++. We also show

an efficient debug method in EMANE development. Our emulation results demonstrate the

EDD policy achieves over 1000x reduction in jitter probability compared to the commonly

used FCFS policy.

ii

Acknowledgments

Firstly, I would like to express my great appreciation to my advisor Prof. Yin Sun during

my master degree. Prof. Yin Sun encouraged and helped me a lot to overcome a large number

of difficulties I can’t face myself. Even with a poor knowledge foundation at beginning of my

research, Prof. Yin Sun gave me guidance patiently and trained me carefully which let me

make much progress. I always feel lucky to be his students. In addition, I would like to thank

my committee members, Prof. Shiwen Mao, and Prof Xiaowen Gong. They gave me lots of

suggestions and helpful comment, so that I can modify and improve my thesis research.

Besides my committee members, I am thankful for my lab mate Kamran Chowdhury

Shisher who provides me helps in my oral presentation. I learn a lot from them, I will re-

member the happy time we work in the lab together.

Last but not the least, I want to express my thanks to my parents, who raised me up and

gave me tremendous support for my studying in United States. It is their strong support that

helps me complete my Master study.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

1 Introduction . 1

1.1 Design and Implementation of low latency Queuing system 2

1.2 Layout . 3

2 Introduction of MGEN and EMANE . 4

2.1 Introduction of MGEN Version 5.02 . 4

2.1.1 Format Of the Traffic Flow Datagram 4

2.1.2 MGEN Command Line Usage . 7

2.1.3 MGEN Log File . 8

2.2 Introduction of EMANE Version 1.2.3 . 8

2.2.1 Installation of EMANE . 9

2.2.2 The Structure of EMANE . 10

2.2.3 TDMA Scheduler Model . 11

2.2.4 EMANE Log File and debug . 12

3 Low Latency Queuing Control In Single-Hop Network 13

3.1 Model and Formulation . 13

3.1.1 Queuing System Model . 13

iv

3.1.2 Scheduling Policy . 14

3.1.3 Delay Metrics . 16

3.2 EMANE Queuing System Description . 16

3.2.1 EMANE Priority Queues . 16

3.2.2 Queue Configurations . 17

3.3 Low Complexity MAC-Layer Queue Scheduling Module 18

3.3.1 EDD Algorithm in EMANE queuing system 18

3.3.2 Low Time Complexity List Sorting . 19

3.4 Software Development by Code Migration . 20

3.5 Debug in an Outside Environment . 21

4 Emulation Results . 23

4.1 Test Configuration . 23

4.2 Data Extraction from EMANE Log File by Python Script 24

4.3 Lateness and Queue Length Performance with λ = 64 25

4.4 Lateness and Queue Length Performance with λ = 66 27

5 Conclusions and Future Work . 29

5.1 Conclusions . 29

5.2 Future Work . 29

5.2.1 Multiple Delay Objectives in Different Flows 29

5.2.2 Low Latency Queuing Control in Multi-hop Network 30

A NewBasicQueueManager.cc . 31

B NewBasicQueueManager.h . 33

v

C newqueue.cc . 35

D newqueue.h . 37

Reference . 39

vi

List of Figures

1.1 EMANE Queuing System . 2

2.1 MGEN Output Datagram Format Generated from [13] 5

2.2 IPv4 Header in MGEN Datagram Generated from [16] 5

2.3 UDP Header in MGEN Datagram Generated from [22] 6

2.4 Message Data Payload in MGEN Datagram. Source [13] 7

2.5 Packet Parsing Window in Wireshark . 8

2.6 EMANE Architecture Generated from [5] . 10

2.7 Ethernet Header in EMANE Generated from [30] 11

2.8 TDMA XML File . 12

3.1 A Centralized Single Queue System with 10 Single-hop Servers 14

3.2 FIFO Queue Discipline Generated from [38] 15

3.3 EDD Queue Discipline Generated from . 15

3.4 Queue Module in EMANE Generated from [5] 17

3.5 Mapping Between DCSP and Queue Priority. Source [31] 18

3.6 EDD Queue Module . 19

3.7 Debugging Environment outside of EMANE 21

4.1 Complementary CDF of The Lateness Versus Buffering Time with λ = 64 . . . 25

4.2 Queue Length Versus Time with λ = 64 . 26

4.3 Complementary CDF of the Lateness Versus Buffering Time with λ = 66 . . . 27

4.4 Queue Length Versus Time with λ = 66 . 28

vii

5.1 Multi-hop Queuing System . 30

viii

Chapter 1

Introduction

Network latency is how much time it takes for a network to receive a control message and the

transmission actually occurs. Low network latency is preferred in our daily life.

Previous studies demonstrated that the changes in packet transmission order by different

policies reduced different kinds of latency [1], [2]. Earliest Due Date (EDD) First policy min-

imizes jitter probability, First-Come, First-Served (FCFS) policy minimizes maximum delay,

respectively [1], [2]. Of these scheduling policies, FCFS is the most common policy used in

transmitter MAC layer queuing buffer models; however this policy is not delay-optimal for all

delay metrics in a real network system. Therefore, it is necessary to evaluate the performance

of different polices in queuing delay minimization using simulation and emulation tools.

There are two different approaches of network performance evaluations: hardware em-

ulation [3] and software solutions.[4], [5], [6]. [7]. The software simulation and emulation

environment is easier to control and the expense is significantly less when compared with the

hardware testbed. The most common network software simulators and emulators are NS2/NS3

[8], Common Open Research Emulator (CORE) [9], and Extendable Mobile Ad-hoc Network

Emulator (EMANE) [5]. With these, NS2/NS3 is a discrete-event network simulator for In-

ternet systems, targeted primarily for research and educational use [8]. “However, NS2/NS3

simulators are incapable of providing statistics of real-time performance, these applications

change the time base (for example, 1 ms of simulation is done in a much longer duration) and

are not real time, whereas network “emulation” works in real time [10]. ” Thus, NS2/NS3 is

not suitable for our real-time latency optimal queuing system. In contrast, CORE is a real-

time emulator focusing on the upper three layers in Open System Interconnection Model (OSI)

model. The emulator provides a convenient GUI for users to configure the virtual network,

1

Figure 1.1: EMANE Queuing System

but the network scheduling happens in MAC layer, CORE doesn’t contain this layer. With the

goal of seeking real-time latency optimal queuing system, we choose EMANE to evaluate our

scheduling policies performance since EMANE mainly emulates the MAC and PHY layer in

OSI model and this emulator provides real-time statistic which meets our study perfectly.

1.1 Design and Implementation of low latency Queuing system

In this thesis, we studied a low-complexity latency-optimal queuing control scheduling mod-

ule in Extendable Mobile Ad-hoc Network Emulator (EMANE) with TDMA channel access

module. The queuing system is a centralized multiple servers single-hop system which used

D/M/10/1000 model as the queue model shown in Fig 1.1. The arrival process is a Markovian -

Poisson process with a rate λ = 66 packets per second, the service distribution is deterministic

which has a fixed inter-arrivals with a rate µ = 70 packets per second to control system to be

stable, we used a 1000 size queuing buffer and 10 single servers. We compared two different

scheduling policies EDD and FCFS in jitter probability minimization.

Since EMANE has long compilation time which is usually longer than 15 minutes and it

lacks of debug mode which is highly difficult for packets and queue structure parsing, we firstly

migrated the original EMANE queue structure into a transparent Integrated Development En-

vironment (IDE) Xcode, which exceedingly reduces the workload and difficulties in compiling

and debugging.

We then build the low complexity EDD queue module in Xcode using C++ standard data

structure list whose size is 1000, the algorithm complexity of insertion sort O(n) is much less

2

than the complexity of bubble sort O(n2) using array [11]. We test the EDD queue module in

Xcode with Poisson arrival process and exponential service times.

Later, we move the EDD queue module into EMANE transmitter MAC layer, and we

assign a absolute due time for every packet in its virtual header when the packet comes to the

queue buffer in EMANE, the packet order can be changed in the EDD queue module according

to the due time when they come into the queue, and earliest due time packet move out of the

queue firstly.

We next configure the arrival process by a network traffic flow generator, Multi-Generator

(MGEN) [12] using specific command line, we use EMANE’s original deterministic service

distribution and keep the queue system stable, 10000 packets are generated into the traffic flow.

Finally, we collect packets’ completion time at transmitter when the packets finish schedul-

ing in EMANE’s data log file emane.log, we use a Python keywords crawler getting due time

and completion time, then we simulate the jitter probability of EMANE’s original FCFS queu-

ing policy and our EDD policy based on these data with MATLAB. Our emulation results

demonstrate EDD policy can achieve over 1000x reduction in jitter probability compared to

the common FCFS policy. Please see https://github.com/szl0144/Multi-hop

for queuing control source code in EMANE.

1.2 Layout

We describe the research background in the Chapter 2, which introduces MGEN traffic flows

generator and EMANE framework. We introduce our low latency low-complexity single-hop

Queuing control system in Chapter 3. Performance evaluation is presented in Chapter 4. We

provide a future design for latency optimal multi-hop Queuing control system in Chapter 5.

Finally, Chapter 6 reviews conclusion.

3

Chapter 2

Introduction of MGEN and EMANE

2.1 Introduction of MGEN Version 5.02

The Multi-Generator (MGEN) version 5.02 is a open source software generating UDP or TCP

IP network bytes traffic flow [13], MGEN creates IP datagram for the down layer emulator to

perform network test, such as NS2/NS3 and EMANE. MGEN can be controlled by a script file,

the operator write input into MGEN script file by different command lines to take traffic flow

control operations.

MGEN can generate the traffic flow in a downlink way and receive them in a uplink way,

all the information of traffic flow is record in mgen.log file, this file helps us trouble shooting

the bugs when we configure the traffic flow and know the details in packet. It’s also record

the generation time and arrival time of each datagram, this helps us calculate the latency of the

network system [14].

2.1.1 Format Of the Traffic Flow Datagram

The format of traffic flow datagram is important for the users who focuses on the data in the

packet, the traffic flow generated from MGEN is thousands of binary bits, it is impossible

to locate the part you want in packet if you don’t know the format of the output packet, it

encourages us to study the format of the datagram.

The format of traffic datagram is shown in Fig 2.1. The output from MGEN include the

IP header, TCP/UDP header, MGEN message data payload and Data payload information, that

means MGEN emulates the upper three layers, Application layer, Transport layer and Network

layer in OSI model [15].

4

Figure 2.1: MGEN Output Datagram Format Generated from [13]

Figure 2.2: IPv4 Header in MGEN Datagram Generated from [16]

MGEN creates its own special datagram, the structure details are introduced in the follow-

ing part, because we use IPv4 and UDP protocol in our project, we introduce these two header

information in this thesis.

IPv4 Header format in MGEN

The first part of MGEN datagram is IPv4 Header, the IPv4 Header structure is shown in

Fig 2.2. The data bits of IP header from MGEN output matches the real IPv4 header [17],

it contains 10 fields. Deserve to be mentioned, all bytes transmitted in the traffic flow are in

network bytes order also called big endian, ”the most significant value in the sequence is stored

at the lowest storage address [18].” To transfer network bytes order to host bytes order, we need

to use C++ function ntohs() [19].

The first 8 bits is version and header length (VHL) part, VHL contains the 4 bits internet

protocol version and 4 bits internet header length information, we set the version as 0100 which

represent IPv4 protocol, the internet header length is 1001 which means the header length is 20

bytes. The second 8 bits field in the IPv4 header is type of service (TOS), we just use the first

6 bits in this part, which shows the datagram priority in the network, we set TOS part as all

0s, which means normal service. The third field is datagram length, the length consists of IPv4

5

Figure 2.3: UDP Header in MGEN Datagram Generated from [22]

header, UDP header and datagram payload length, the length is larger than 20 bytes and should

be less than 216 = 65536 bytes.The forth field is packet identification (ID), the ID is uniquely

assigned to each packet, this field is used to identifying packet and IP fragments [20]. The fifth

field is used for IP fragmentation and reassembling, we don’t use this field in our project. The

sixth field Hops means Time To Live (TTL), this filed counts how many hop does the packet

go across, the value increases 1 when the packet go across a node. The seventh field Protocol

shows what kind of protocol does the payload of the IPv4 datagram use, because we use UDP in

the transport layer, the value is 17 according to the list of IP protocol numbers [21]. The eighth

field checksum is used for error check in router. The last two fields are source IPv4 address

we set in the MGEN script, and destination IPv4 address we set in script corresponding to the

address of transmitter in emulator. The two addresses are not changed by network address

translation device after we check this field in MGEN output data stream.

UDP Header format in MGEN

The second part in the MGEN datagram is UDP header shown in Fig 2.3, the first 16 bits

field is source port number and the second 16 bits field is destination port number, each port

number has its own description, the well-known port number is described in the list [23]. We

set both of the source port and destination port to be 5001 in MGEN. The third field is the

length of the UDP segment, and the last field is the checksum field for data error-checking.

MGEN message data payload

The payload of datagram of MGEN called MGEN message data payload [13], the format

of this part is shown in Fig 2.4, this part is used to message recognized at MGEN receiver, the

receiver at application layer read the bits data from the beginning of the datagram payload part

6

Figure 2.4: Message Data Payload in MGEN Datagram. Source [13]

and extract the information from each field in order, the data payload of datagram is contained

in the message payload.

The way to locate the desired field and parse the data from MGEN is using a packet data

parsing tool called Wireshark [24]. We capture the data from the emulator’s transmitter using

Wireshark, and analyse the data stream in the Wireshark’s Graphical User Interface (GUI). We

can choose any packet to see the data in it, Wireshark also processes the binary data in each field

of headers and shows the corresponding values, which can be seen in Fig 2.5. It is convenient

for us to parse the packets.

2.1.2 MGEN Command Line Usage

To configure the traffic flow generated from MGEN, we set the source, destination, protocol,

pattern and other traffic flow options in the MGEN script text file. In this thesis, we configure

the traffic flow transmitted into the down layer emulator by inputting the transmission events

[13].

7

Figure 2.5: Packet Parsing Window in Wireshark

Two significant commands are used in this thesis, they are pattern control and DATA as-

signment command line, pattern [params] and DATA [<hex><hex>]. Pattern com-

mand can change the arrival process distribution, we use this command to generate a Poisson

arrival process. The arrival rate of the traffic flow can be set in the params field. Using DATA

command can assign a sequence of hexadecimal values in the data payload.

2.1.3 MGEN Log File

There are two kinds of MGEN log files, one is mgen.log text file, the other one is mgen.out

text file. The mgen.log file help user debug when MGEN can’t run correctly, this file show

what the errors are and where they happen, which help user locate them.

The other log file is mgen, out, it contains all packets’ information, such as the time when

the transmission and reception event happens, the source and destination of each packet, the

sequence number of each packet, the data payload saved in each packet and other important

packet information, the transmission and reception absolute event time can be used to calculate

the delay and lateness performance[25],

2.2 Introduction of EMANE Version 1.2.3

The Extendable Mobile Ad-Hoc Network Emulator (EMANE) [5] is an open source distributed

network emulator, the emulator is modular and can be used with other tools and real hardware

system. The emulator provides pluggable Media Access Control (MAC) and physical PHY

8

layer, it supports developer to modify the original module and implement their design on it.

EMANE can be integrated with upper layer emulators for real-time network experiments, such

as MGEN [26] and Common Open Research Emulator (CORE) [27]. We use MGEN as the

network upper layer event-generator, for MGEN is set as default traffic generator in EMANE’s

source code.

We run EMANE 1.2.5 on 64bits Ubuntu 14.04 installed on Virtual Box 5.2, we plug in a

TDMA event scheduler radio model by downloading EMANE tutorial 8, all the radios, nodes

and node’s server address are set in the installation for the packets forwarding [28].

2.2.1 Installation of EMANE

EMANE uses a separate network IP stacks to emulate NEMs to get an independent emulation

environment, Linux Containers (LXCs) is a good choice to implement it [29]. Because we are

going to emulate several NEMs on one host computer and LXC method can be used to run

multiple independent containers on one host LXC, we use Linux operating system in Ubuntu

14.04 installed on Oracle VM VirtualBox 5.02 which is a stable version to run EMANE.

Installation of EMANE is a complicated procedure, more than 30 pre-built packages need

to be installed previously to support different modules run perfectly. Besides EMANE module,

we also install 6 other apllications, they are MGEN, gpsd, olsrd, iperf, pynodestatviz, open-

testpoint. Finally, we need to configure 10 nodes’ and 10 radio’s address to match the network

topology. Even one lost step in installation causes system running problems, we have to check

or reinstall from beginning which is a time-consuming procedure.

For convenience, we write a user installation guide which summarizes the procedure step

by step. It help us in installation for the second time, the details in the guide remind us when

we forget some main points in installation which saves us time. When the first time we install

the emulator, we nearly spend 2 weeks in solving various bugs. But next time we transfer the

emulator to another computer referring the guide, we just use 30 minutes. We also write a

FAQ manual which includes some problems we frequently meet in the procedure, we share the

manual with lab mates for future uses.

9

Figure 2.6: EMANE Architecture Generated from [5]

2.2.2 The Structure of EMANE

Fig 2.6 illustrates the architecture of EMANE, EMANE supports bidirectional multicast trans-

mission. The downstream transmission process is shown in the following, MGEN generates

UDP IP traffic flow into Network Emulation Modules (NEMs), the Network Adapter which is

called virtual transport is the boundary of the NEMs, it provides a interface to read the traffic

flow from upper layer application. The packets coming into the interface are encapsulated with

a Ethernet header shown in Fig 2.7, each packet from the generator is assigned a MAC address

by transferring the NEMs ID to MAC address, the method to perform it is writing the NEMs ID

in last 16 bits in MAC address. By this mapping, the address forwarding becomes easy, all the

addresses in EMANE are presented in NEMs ID. MAC implementation and PHY implemen-

tation emulates link layer, medium access and physical layer. The (over-the-air) OTA manager

manages the data in unicast or multicast way, then the data is transmitted in over-the-air chan-

nel to other nodes. The upstream process is symmetric as the downstream process, NEM does

the reverse operation as the downstream process, the traffic flow is received by MGEN in the

end. We denote the transmitter NEM as EMANE node0 and denote the 10 NEMs as node1 to

10

Figure 2.7: Ethernet Header in EMANE Generated from [30]

node10. We focus on the queuing system in EMANE’s MAC layer and the TDMA scheduler

radio model, which will be introduced in the next section.

2.2.3 TDMA Scheduler Model

We download the pluggable TDMA scheduler radio Model on https://github.com/

adjacentlink/emane-tutorial, The TDMA transmission schedule scheme can be

configured by the schedule XML file, each NEMs receiving events must have a schedule XML

file. All the parameters related to TDMA scheduler module can be defined in this file, including

slot size, slot overhead, number of slots and frames, slot data rate, bandwidth and so on [31].

The configuration of EMANE schedule XML file is in Fig 2.8, we set a fixed data rate in bit per

second (bps), which means the service process is a deterministic process with a fixed service

rate. The slot size in microseconds, we set 10 slots in one frame and the number of frame is one,

slot is the minimum transmission unit contained in frame. We also set the 10 slots matching

10 different nodes, the index of slots matches the ID of nodes. The following command [31] is

using TDMA schedule XML file to publish events.

[me@host 8] $ emaneevent−t d m a s c h e d u l e s c h e d u l e . xml − i emanenode0

EMANE TDMA schedule module supports the fragmentation when the packets size is

larger than the transmit slot size, the packet is fragmented into two or more components fitted

to the slot size, and the fragments will be assembled at the receiver. Whether to fragment

packets can be set in EMANE. If the fragmentation is disabled, the large packet is dropped.

We set the slot capacity large enough to transmit the packet, so EMANE doesn’t fragment any

packets, each transmit slot is assigned one packet at the TDMA radio model. The slot capacity

11

Figure 2.8: TDMA XML File

[26] is defined by

SlotCapacity =
(SlotSize− SlotOverhead)

1
8
∗ 1000000 ∗ ChannelDataRate

2.2.4 EMANE Log File and debug

EMANE is a real time emulator without debug mode, the analysis on a real time emulator

is limited [32]. As well, the compiling time is about 15 minutes on a 64GB RAM windows

computer. Because EMANE is a real time emulator. The main debug way on EMANE is

using emane.log file, all the events happening in EMANE can be printed in the log file. The

event information contains the event time, the layer where event happen, the node where event

happens, the function name related to this event, the variable value related to this event and so

on. We can print out all the values related to the area we want to debug and check the EMANE

log file.

12

Chapter 3

Low Latency Queuing Control In Single-Hop Network

3.1 Model and Formulation

3.1.1 Queuing System Model

Our queuing system is a centralized single queue system with 10 single-hop servers, as shown

in Fig. 3.1. The packets traffic flow starts in MGEN at time t = 0. The sequence of packets

assigned due time in the application layer at local time instant a1, ..., an in MGEN, then we set

the packets number n generated in traffic flow to be 10000, where 0 = a1 ≤ a2 ≤ ... ≤ a10000.

Each i-th arrived packet is assigned the destination address in its Ethernet header. To keep the

queue in stable status, we set the maximum queue buffer size long enough as 1000. The reason

why we set in this way is due to a tradeoff between queuing delay and queue overfilling. If we

choose a long buffer size, the packets wait in a queue for a long time, queuing delay increases

and influence our delay performance. If we choose a short buffer size, the buffer overfill soon

with a high arrival rate, and queue come into a unstable status. After several tests, we finally

choose a size 1000 for our buffer.

Because the original EMANE’s service process is deterministic whose service rate µ = 70

packets per second, we configure the arrival process as a Markovian - Poisson process with a

rate λ = 66 packets per second to increase the randomness and keep the system stable, “because

an arrival from a Poisson process observes the system as if it was arriving at a random moment

in time stated by the PASTA property [33]. ”

13

Figure 3.1: A Centralized Single Queue System with 10 Single-hop Servers

3.1.2 Scheduling Policy

EMANE’s original queuing policy is First-Come, First-Served (FCFS), in this thesis, we add

another queuing policy preemptive Earliest Due Date first (EDD) to observe the difference in

latency reduction performance.

The policies we use in this thesis are all causal, which means our scheduling decisions is

determined by the history and current system information. For the reason that service preemp-

tion is costly and possible to cause the problems in complexity and reliability [34], [35], we use

non-preemptive policies in our queuing system, in which the process of a packet by a server

must be finished before the server start to process another packet.

FIFO discipline is commonly used in electronic circuits for buffering and flow control

between hardware and software [36]. FIFO is a method organizing the data in a buffer, the

oldest data is processed firstly, and the newest data is processed in the end. FIFO queuing

policy reduces the average delay of the queuing system [1]. C++ standard queue container

use FIFO queue discipline [37] [38], the arriving element is inserted into the back position by

enqueue operation, the queue removes the element at the front position by dequeue operation.

The process is described in Fig 3.2. EDD Policy organize the data in a container according to

the due time assigned to each packet, ”the due time di ∈ [0,∞), also called due date, which is

the time that i th packet is promised to be completed by the server [39], [1].” The due time is a

soft deadline, we allow the packet finished processing after the time, but there will be a penalty

happening. By this scheduling method, the lateness can be reduced [40].The due time setting is

14

Figure 3.2: FIFO Queue Discipline Generated from [38]

Figure 3.3: EDD Queue Discipline Generated from

related to the system time format, if we set all the time format in the system as a relative time,

the due time is a relative time. If we want to use the due time in some emulator, the time format

usually is absolute time format, because emulator uses the absolute computer local time for the

real-time feature.

The elements container for EDD policy will change the order of data in queue according

to their due time, the process is depicted in Fig 3.3. The earliest due time element is inserted

to the beginning of the container from the time when the first packet arrives. The way EDD

container find a right position to insert is that it compares the arrival element with the element

in it from the beginning of the container until it finds a element whose due time is larger than

the arrival element, then it inserts the arrival element in front of the larger due time one, and

the arrival packets are inserted into the right position. The whole process is a sort process, it

can be implemented by bubble sort and insert sort [11].

15

3.1.3 Delay Metrics

”Each packet i in the queue system is assigned a arrival time ai and a completion time Ci,

queuing delay is calculated by Di = Ci − ai, the lateness after the due time di is Li = Ci − di,

Ti = max [Ci − di, 0] is the tardiness (or positive lateness), and define the vectors including

n elements a= (a1, ..., an), d= (d1, ..., dn), C= (C1, ..., Cn), D= (D1, ..., Dn), L= (L1, ..., Ln)

respectively [1].” In this thesis, we focus on the performance of jitter (lateness) probability,

which presents the maximum lateness between two different policies.

We denote the scheduling policy as π, π ∈ {FCFS,EDD}. For any policy π, the

average delay Davg : Rn → R is defined by [1]

Davg(C(π)) =
1

n

n∑
i=1

[Ci(π)− ai]

The maximum lateness Lmax : Rn → R is defined by [1]

Lmax(C(π)) = max
i=1,2,...,n

Li(π) = max
i=1,2,...,n

[Ci(π)− di]

3.2 EMANE Queuing System Description

3.2.1 EMANE Priority Queues

The MAC layer queuing module is presented as the Fig 3.1, there are four priority queues in

EMANE MAC layer. The module is defines in two C++ class, BasicQueueManager and

Queue. Packets in incoming traffic flow are sent to a queue based on its priority (0 to 4) [41],

[31]. The priority used in EMANE is differentiated services code point (DSCP), as we intro-

duced in Chapter 2, DSCP is a architecture to classify and manage packets flow [42]. DSCP

occupies 6 bits of 8 bits type of service (TOS) [43], EMANE operates a 2 bits left shift on TOS

value to get DSCP value. The mapping between DSCP and priority is illustrated in Fig 3.2, the

meaning of DSCP values is presented in MGEN 4.02 user guide [13]. EMANE uses a default 0

TOS value for all packets which means the queue priority is locked to 0, all packets are assigned

to the first queue according to the Fig 3.2. The slot assignment configuration is set in TDMA

16

Figure 3.4: Queue Module in EMANE Generated from [5]

schedule XML file, each slot can be mapped with a priority queue. Whether the queue matching

slot is strictly used for dequeue traffic is decided by parameter queue.strictxdequeue.

The priority queues’ discipline in EMANE is FCFS, the order packets transmitted into

slots is same as they are assigned to the queue. EAMEN assign each slot a matching NEM

destination, packet will be transmitted when the packet matches the slot destination at the

departure (dequeue) part[31].

3.2.2 Queue Configurations

The queue depth set in EMANE is 255, the queue depth is configured in a configuration file

named queue.depth, this parameter controls all five priority queues. When packets overfill the

queue, packets dropping happens. EMANE drops the packet at the beginning of the queue,

which means the oldest packet in EMANE’s queue module will be discarded. If fragmentation

is allowed in EMANE, EMANE will drop the packet at the beginning of the queue regardless

of it fragmentation status. Even parts of the packet which is divided into several fragments are

transmitted, EMANE will also drop the oldest packet.

17

Figure 3.5: Mapping Between DCSP and Queue Priority. Source [31]

3.3 Low Complexity MAC-Layer Queue Scheduling Module

Because original queue module uses FCFS policy which doesn’t support our EDD algorithm,

we design a Low complexity MAC-layer queue scheduling module which is shown in Fig 3.3,

we implement a single EDD queue in scheduling module, EDD queue read the due time when

packets arrives at the queue through an enqueue operation. The earliest due time packet is

inserted to the beginning position of the queue and leaves queue by a dequeue operation when

an idle TDMA slot call for the transmission. A congestion window receives the packet and

transmit it to PHY layer.

3.3.1 EDD Algorithm in EMANE queuing system

The EDD queue module source code using C++ can be viewed in Appendix A-D. Our EDD

queue module consists of classNewBasicQueueManager and class newqueue performs two

functions, the function of class NewBasicQueueManager is to drop the beginning packet

in a full queue when new packet arrives, the function of class newqueue is to insert the ar-

riving packet at a appropriate position. The object of class newqueue is declare in class

NewBasicQueueManager, functions in class newqueue are called by theNewBasicQueue−

Manager object.

EDD algorithm in EMANE queuing system is described in Algorithm 1: When each of

10000 incoming packet arrives at the queue, queue module check whether its size reach the

maximum limit. Queue module discard the packet at the beginning when the depth reaches

18

Figure 3.6: EDD Queue Module

maximum. Queue module read the due time assigned in application layer in each packet data

payload. Then incoming packet is inserted the packet at the right position using module en-

queue interface by the order of due time from earliest to latest. Queue module compares the

incoming packet with the packet in the buffer from beginning. When the module find a packet

whose due time is large than the incoming packet’s, the queue module inserts the incoming

packet behind that packet. If there is any server whose destination address matches the desti-

nation address of the earliest due date packet, the earliest due date packet is transmitted by the

TDMA module using the dequeue interface to corresponding node.

3.3.2 Low Time Complexity List Sorting

Because the policy of current default queue module in EMANE is FCFS, we design a compared

independent MAC-Layer queue module using EDD policy for jitter probability reduction. Be-

cause EMANE is a large scale emulator with high dependency, thousands of files call each

other, the relation between the different files are hugely complex, just one small change cause

19

Algorithm 1 Earliest Due Date First (EDD)
1: Q := ∅; // Q is the set of packets in the queue
2: while the system is ON and packet i arrives at the queue and packet number n <= 10000

do
3: if |Q| >= 1000 then
4: Delete the packet at the beginning of queue;
5: end if
6: Q := Q

⋃
{i};

7: while there are any idle servers do
8: j := argmin {dj : j ∈ Q}; // dj is the due time of packet j
9: Get the destination N of packet j

10: if The Nth server is idle then
11: Q := Q/{j};
12: end if
13: end while
14: end while

lots of errors. As a result, we build a independent EDD queue module independent of EMANE

original FCFS queue module.

Based on the EDD policy [1], [44], we should sort the elements in queue in an order from

early due time to late due time, this is a sorting process. We compare two common sorting

methods list sorting and bubble sorting [11], the time complexity of bubble sorting in finding is

n(n−1)
2

= O(n2). Compared with bubble sorting, the time complexity of list sorting in finding

is just n = O(n), which is significantly lower than bubble sorting.

As a result, we use C++ standard data container list [45] to implement the EDD queue

module, which allows us to insert the packet at right position when packet is assigned to the

queue.

3.4 Software Development by Code Migration

EMANE is a large scale emulator [46], once compiling time costs more than 15 minutes, which

is inefficient for our software development. Furthermore, Modules in EMANE are highly cou-

pled, one error or bug in syntax causes butterfly effect. The butterfly effect could causes ten

or twenty errors in terminal and let the system run exceptionally, system crashes in the serious

case. The efficiency of software development in EMANE is incredibly low.

To solve this problem, we move the queue module and its related code, such as packet

module, congestion window module to other integrated development environment (IDE) Xcode

20

Figure 3.7: Debugging Environment outside of EMANE

with debug mode. In this IDE, we design and develop our EDD queue module entirely isolated

from the original EMANE’s queue mode to escape potential system exceptions. In the mean-

while, we simplify and delete some redundancy functions in original EMANE queue module,

such as fragmentation for the TDMA slot bytes limit in the TDMA scheduling scheme is far

larger than our packet’s size.

3.5 Debug in an Outside Environment

EMANE is lack of debug mode, which is highly hard for our troubleshooting and packet

tracking in queuing system. After our survey, we didn’t find efficient debug and development

method in current research. The common way to debug in EMANE is to print key variables

into EMANE log file through a logging API [47]. All the variables are printed in log level to

keep the most important information we need which helps us to troubleshoot. However, the

log file includes all events’ information where most of them are useless. The running time to

record the information of more than 10000 packets is also long. The bigger problem is too

many print statement consume so much memory that log file loses a large number of events

information [48], which makes the log file data worthless. When we meet some bugs, EMANE

doesn’t create any information in debug level we need in the log file which prevents us from

debugging. For these reasons, we come up with a new method for software development and

debug in EMANE, that is code migration [49].

21

We build a debugging environment outside of EMANE described in Fig 3.4, we simplify

original queue module and migrate the code into Xcode. In this environment, the higher layer is

abstracted as Poisson arrivals. Low layer is abstracted as exponential services. We test our EDD

queue module and check whether all the functions run correctly by using Xcode’s debug mode

[50]. After tests and debugging, we move EDD queue module back to EMANE. We match

the enqueue and dequeue interface with EMANE’s function downstreampacketprocess() and

downstreampacketsend() respectively which calls these two interfaces. The little compilation

time and convenient debug method in Xcode significantly reduce our debug time and improve

debugging efficiency a lot.

22

Chapter 4

Emulation Results

In this section, we present the experiment results using this single hop low delay queuing system

implemented on EMANE. We present some statistics to illustrate the low delay performance

of two policies, FIFO and EDD policy. 1) We compare the jitter probability and queue length

performance between two policies. 2) We also discuss the different queue performance when

we set two different arrival rate λ = 64 packets per second and λ = 66 packets per second.

4.1 Test Configuration

The desktop PC for the testing is a ThinkStation P330 with a 3.2GHz Intel Core i7 8700 CPU

having 8GB of 2666MHz DDR4 RAM and 1TB hard drive. We run a 64-bit Ubuntu 14.04

Linux with 50 GB disk. The MGEN 5.02 and EMANE 1.2.3 software are installed.

We configure the input system traffic flow by MGEN script, the arrival process is Poisson

distribution, we test the system twice with different arrival rate λ = 64 packets per second and

λ = 66 packets per second and same service process which is a deterministic process with

µ = 70 packets per second by defining a fix bit rate in EMANE TDMA schedule scheme, the

arrival rate is strictly small than the departure rate, which means the system is in a stable status.

The random arrival process Poisson rather than periodic process let queue size accumulate

gradually, the latency gap between different policy is much more distinct [51]. The centralized

queuing system consists of 10 single servers and we collect data at departure part to test the

queuing lateness. We assume the arrival time of packet waiting in the queue is ai in absolute

time, the due time di of each packet is assigned with ai and ai added 8 microseconds with same

23

probability p = 0.5, which is defined by

di =


ai p=0.5

ai + 8 p=0.5

To achieve an obvious performance in jitter probability, we set 10000 incoming packets

with 512 Kilobytes. The queue module in EMANE drops packets when the queue is full, we set

the queue size large enough as 1000 to avoid the packet loss, which causes unexpected queuing

delay. The policy implemented are FCFS and EDD policy, we investigate the optimization in

jitter by changing the order of packets transmitted in the buffer queue.

4.2 Data Extraction from EMANE Log File by Python Script

We collect the data in emane.log using two Python substring crawler scripts to get lateness

and queue length separately. By the lateness crawler script, we collect the lateness at 10 users

of each packet under two different policy, which is used to plot the cumulative distribution

function (CCDF) of jitter probability. All the lateness value are saved in a Python list data

collection, and we write the data into a text file for future simulation on MATLAB.

With the queue length crawler script, we get the queue length before each packet arrives at

the queue, and extract the event time. The time format in emane.log introduced in the Chapter

2 is absolute time, to describe a relation between queue length versus buffering time, we need

to transfer the event time in absolute time to relative time. We record the system start time,

and set it as a reference time, and get the relative buffering time by several steps. We firstly

dividing the event time in time point into 3 parts, hours, minutes and seconds with Python

function split(separator), this function divides one full string into several substrings saved in

a list. We specify the separator as symbol : and we get three parts hours in integer, minutes in

integer and seconds in decimal, because the type of list used to save substring is integer, we

can’t save the second part in decimal directly. In this reason, we secondly divide the second

into two parts with a separator ”.”, and get the integer place intsec and 6 digits decimal place

24

Figure 4.1: Complementary CDF of The Lateness Versus Buffering Time with λ = 64

decisec. Finally, we get the event relative time relatime by

relatime = 3600 ∗ h+ 60 ∗m+ intsec+ 0.000001 ∗ decisec

Because we set our system start time as the reference time, and get the buffering time by

subtracting the start time from the event time.

We find Data lost problem sometimes appear in EMANE system which means it doesn’t

print all the information into the emane.log, although we write the print command in EMANE.

The mismatch between buffering time versus queue length causes wrong performance in fig-

ures. We design the algorithm which let the crawler extract the buffering time and its matching

queue length at the same time, this operation improve the accuracy of the simulation perfor-

mance.

4.3 Lateness and Queue Length Performance with λ = 64

We use MATLAB to simulate the latency performance basing on the data collected from the

emane.log file. We assume EMANE transmits a video stream data, and lateness can be de-

picted as the buffering time before the video plays. Fig 4.1 illustrates the complementary CDF

25

Figure 4.2: Queue Length Versus Time with λ = 64

of 10000 packets’ lateness versus buffer time before playing with arrival rate λ = 66. The

CCDF figure depicts the performance of the maximum lateness minimization between two

policies clearly, as the packets in buffer grows, the lateness increase converges for we keep

the system stable, we just need to compare the maximum latency value on the buffering time

axis getting from the intersection between figure and the buffering time axis. We observed

that our EDD module can achieve over 1000x reduction in jitter probability compared to the

FCFS policy used in current EMANE module. The reason is that some packets that need to be

sent immediately are sent several seconds later, FCFS module does not consider the priority in

deadline.

Fig 4.2. shows the queue length versus time with arrival rate λ = 64. The number of

incoming packets are more than 10000, considering the arrival rate, The simulation time is

longer than 200 seconds, the long enough simulation time help us check the property in queue

length and whether there is any error happening in system. The maximum queue size is less

than 1000, which shows the simulation is under a stable status. The randomness of Poisson

process make the queue length grows gradually, the queue length falls down to 0 after each

rises is because the arrival rate is less than the departure rate. The figure also plots the queue

26

Figure 4.3: Complementary CDF of the Lateness Versus Buffering Time with λ = 66

length of EDD always keep pace with FIFO, that means packet reordering does not affect

average delay when the arrival rate is fixed.

4.4 Lateness and Queue Length Performance with λ = 66

Fig 4.3 depicts the queue length versus time with arrival rate λ = 66. We can see the maximum

buffering time of the two policies is larger than the buffering time in Fig 4.1. That because

more packets arrive at the queue when arrival rate grows, the packet with a long due time needs

to wait longer before it is transmitted.

Fig 4.4 presents the queue length versus time with arrival rate λ = 66. We can see the

queue length of EDD always keep pace with FIFO’s, and the average queue length with λ = 66

is obviously larger than with λ =64. By Little’s formula [52],

E[Q] = λE[D]

Where E[Q] is the mean queue size, E[D] is mean queuing delay and λ is the arrival rate. The

equation shows the average size grows when λ increases, which explain the reason why the

mean queue length with λ = 66 is larger than with λ =64.

27

Figure 4.4: Queue Length Versus Time with λ = 66

28

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this paper, we present a design of low latency single hop queuing control system imple-

mented on EMANE. We configure the incoming traffic flow by MGEN software and design

our low complexity EDD queue module with C++ standard data structure list in EMANE.

We also design an effective debug method for traffic flow bytes stream parsing and software

development on EMANE. We use tool Wireshark to locate the specific data we need in the

incoming bytes stream, and use code immigration along with platform transfer tests to improve

the code and debug efficiency. We implement extensive experimental study with two different

queue policy FCFS and EDD on our stable finite system and heterogeneous arrival and service

process. The experimental results validated that EDD module in low latency queuing system

achieve 1000x reduction in jitter probability compared to the FCFS module without effects on

average delay.

5.2 Future Work

In this section, we propose the work we will do in the future.

5.2.1 Multiple Delay Objectives in Different Flows

We use a single flow queue in our current experiment, then we will expand the single flow

to multiple flows with various queue policies to accomplish multiplexing communication. We

need to consider how to identify packets in various policies and resolve the priority conflicts

among different policies [53].

29

Figure 5.1: Multi-hop Queuing System

5.2.2 Low Latency Queuing Control in Multi-hop Network

In the future, We will change the present single-hop queuing system network topology to multi-

hop system network topology, the network topology is shown is Fig 5.1. The multi-hop system

consists of one transmitter, one relay and one receiver, they are all built by network emulation

modules (NEMs) with the same protocol stack [7]. First node in figure is a transmitter, EDD

queue module in transmitter process the downlink traffic flow and earliest due date packet is

transmitted to the middle node firstly. The middle node performs as a bridge also with an EDD

queue module, received traffic flow is received through PHY and MAC layer in the uplink path,

then transmitted in a downlink path. In MAC layer, the earliest due date packet is forwarded

to the third node firstly by the EDD module. We will change the current single-hop network to

multi-hop network by using a topology constructed event file named emulation event log (EEL)

file in EMANE [41].

30

Appendix A

NewBasicQueueManager.cc

#include "emane/models/tdma/NewBasicQueueManager.h"

#include "emane/models/tdma/newqueue.h"

#include <tuple>

EMANE::Models::TDMA::NewBasicQueueManager::NewBasicQueueManager():

newqueue_{}{}

EMANE::Models::TDMA::NewBasicQueueManager::˜NewBasicQueueManager\\

(){}

size_t EMANE::Models::TDMA::NewBasicQueueManager::newenqueue\\

(DownstreamPacket new_pkt)

{

size_t NewPacketDropped=0;

auto ret = newqueue_.newenqueue(std::move(new_pkt));

if(ret.second)

NewPacketDropped = 1;

return NewPacketDropped;

}

std::tuple<EMANE::Models::TDMA::NewMessageComponents,size_t>\\

EMANE::Models::TDMA::NewBasicQueueManager::newdequeue\\

31

(size_t requestedBytes)

{

NewMessageComponents newcomponents;

size_t newtotalLength = 0;

auto newret = newqueue_.newdequeue(requestedBytes,true);

size_t newLength = std::get<1>(newret);

if(newLength)

{

newtotalLength+=newLength;

auto & newparts = std::get<0>(newret);

newcomponents.splice(newcomponents.end(),newparts);

}

return std::make_tuple(newcomponents,newtotalLength);

}

32

Appendix B

NewBasicQueueManager.h

#ifndef NewBasicQueueManager_hpp

#define NewBasicQueueManager_hpp

#include "emane/models/tdma/newmessagecomponent.h"

#include "emane/downstreampacket.h"

#include <tuple>

#include "emane/models/tdma/newqueue.h"

namespace EMANE

{

namespace Models

{

namespace TDMA

{

class NewBasicQueueManager

{

public:

NewBasicQueueManager();

˜NewBasicQueueManager();

NewQueue newqueue_;

size_t newenqueue(DownstreamPacket new_pkt);

std::tuple<EMANE::Models::TDMA::NewMessageComponents,\\

size_t>newdequeue(size_t requestedBytes);

33

};

}

}

}

#endif

34

Appendix C

newqueue.cc

#include "emane/models/tdma/newqueue.h"

EMANE::Models::TDMA::NewQueue::NewQueue(){}

EMANE::Models::TDMA::NewQueue::˜NewQueue(){}

std::pair<EMANE::DownstreamPacket,bool>\\

EMANE::Models::TDMA::NewQueue::newenqueue(DownstreamPacket new_pkt)

{

DownstreamPacket NewDroppedPacket({{},{},{},{}},{},{});

bool DroppedPacketFlag{0};

if(New_List.size() == 255)

{

auto newentry = New_List.begin();

DroppedPacketFlag = true;

NewDroppedPacket = New_List.front();

New_List.erase(newentry);

}

pkt_iterator = New_List.begin();

while(pkt_iterator->getPacketInfo().DueTime_ <\\

new_pkt.getPacketInfo().DueTime_ && pkt_iterator!= New_List.end())

++pkt_iterator;

New_List.insert(pkt_iterator, new_pkt);

return {std::move(NewDroppedPacket),DroppedPacketFlag};

}

35

std::tuple<EMANE::Models::TDMA::NewMessageComponents,size_t,std::list\\

<EMANE::DownstreamPacket>>EMANE::Models::TDMA::NewQueue::newdequeue\\

(size_t requestedBytes, bool bDrop)

{

NewMessageComponents components{};

size_t newtotalBytes = 0;

std::list<EMANE::DownstreamPacket> dropped{};

while(newtotalBytes < requestedBytes)

{

if(!New_List.empty())

{

auto DeQueuePacket = New_List.begin();

NEMId dst{DeQueuePacket->getPacketInfo().getDestination()};

size_t duti{DeQueuePacket->getPacketInfo().getDueTime()};

Priority prio{DeQueuePacket->getPacketInfo().getPriority()};

Utils::VectorIO vect{DeQueuePacket->getVectorIO()};

size_t PacId{DeQueuePacket->getPacketInfo().getPacketId()};

TimePoint EDDaritime{DeQueuePacket->getPacketInfo().\\

getEDDArrivalTime()};

TimePoint FIFOaritime{DeQueuePacket->getPacketInfo().\\

getFIFOArrivalTime()};

components.push_back({dst,duti,prio,vect,PacId,EDDaritime,\\

FIFOaritime});

newtotalBytes += DeQueuePacket->length();

New_List.erase(DeQueuePacket);

break;

}

else

{

break;

}

}

return std::make_tuple(components,newtotalBytes,std::move(dropped));

}

36

Appendix D

newqueue.h

#ifndef New_Queue_hpp

#define New_Queue_hpp

#include "emane/component.h"

#include "emane/downstreampacket.h"

#include "emane/models/tdma/messagecomponent.h"

#include "emane/models/tdma/newmessagecomponent.h"

namespace EMANE

{

namespace Models

{

namespace TDMA

{

class NewQueue

{

public:

NewQueue();

˜NewQueue();

std::pair<DownstreamPacket,bool>\\

newenqueue(DownstreamPacket new_pkt);

using NewPacketQueue = std::list<DownstreamPacket>;

NewPacketQueue New_List;

std::tuple<NewMessageComponents,size_t,std::list\\

<DownstreamPacket>>newdequeue(size_t requestedBytes, bool bDrop);

private:

37

NewPacketQueue::iterator pkt_iterator;

};

}

}

}

#endif

38

Reference

[1] Yin Sun, C Emre Koksal, and Ness B Shroff. “Near delay-optimal scheduling of batch

jobs in multi-server systems”. In: Ohio State Univ., Tech. Rep (2017).

[2] Yin Sun, C Emre Koksal, and Ness B Shroff. “On delay-optimal scheduling in queueing

systems with replications”. In: arXiv preprint arXiv:1603.07322 (2016).

[3] Glenn Judd et al. “Using physical layer emulation to optimize and evaluate mobile and

wireless systems”. In: Proceedings of the 5th Annual International Conference on Mo-

bile and Ubiquitous Systems: Computing, Networking, and Services. 2008, p. 26.

[4] Alberto Alvarez et al. “Limitations of network emulation with single-machine and dis-

tributed ns-3”. In: Proceedings of the 3rd International ICST Conference on Simulation

Tools and Techniques. ICST (Institute for Computer Sciences, Social-Informatics and . . .

2010, p. 67.

[5] LLC Adjacent Link. Extendable Mobile Ad-hoc Network Emulator (EMANE). https:

//www.nrl.navy.mil/itd/ncs/products/emane.

[6] Matija Pužar and Thomas Plagemann. “NEMAN: A network emulator for mobile ad-hoc

networks”. In: Research report http://urn. nb. no/URN: NBN: no-35645 (2005).

[7] Kaustubh Jain et al. “Studying real-time traffic in multi-hop networks using the EMANE

emulator: capabilities and limitations”. In: Proceedings of the 4th International ICST

Conference on Simulation Tools and Techniques. ICST (Institute for Computer Sciences,

Social-Informatics and . . . 2011, pp. 93–95.

[8] NS-3. Network simulator 3. https://www.nsnam.org/.

39

[9] Common Open Research Emulator (CORE). https://www.nrl.navy.mil/

itd/ncs/products/core.

[10] RoboCom. http://www.robocomtech.com/network-emulation-vs-

simulation/.

[11] Sardar Zafar, Abdul Wahab, et al. “A new friends sort algorithm”. In: 2009 2nd IEEE In-

ternational Conference on Computer Science and Information Technology. IEEE. 2009,

pp. 326–329.

[12] Naval Research Laboratory (NRL) PROTocol Engineering Advanced Networking (PRO-

TEAN) Research Group. MGEN. https://www.nrl.navy.mil/itd/ncs/

products/mgen.

[13] MGEN user guide version 5.02. https://downloads.pf.itd.nrl.navy.

mil/docs/mgen/mgen.html#Command-line_Options.

[14] Clement Kam, Sastry Kompella, and Anthony Ephremides. “Experimental evaluation of

the age of information via emulation”. In: MILCOM 2015-2015 IEEE Military Commu-

nications Conference. IEEE. 2015, pp. 1070–1075.

[15] OSI model. https://en.wikipedia.org/wiki/OSI_model.

[16] IPv4 Header. https://en.wikipedia.org/wiki/IPv4#Header.

[17] William Stallings. “Data and Computer Communications tenth edition”. In: 2014.

[18] Network byte order and host byte order. https://www.ibm.com/support/

knowledgecenter/en/SSB27U_6.4.0/com.ibm.zvm.v640.kiml0/

asonetw.htm.

[19] ntohs(3) - Linux man page. https://linux.die.net/man/3/ntohs.

[20] David Clark. IP datagram reassembly algorithms. Tech. rep. RFC 815, July, 1982.

[21] List of IP protocol numbers. https://en.wikipedia.org/wiki/List_of_

IP_protocol_numbers.

[22] User Datagram Protocol. https://en.wikipedia.org/wiki/User_Datagr

am_Protocol.

40

[23] List of TCP and UDP port numbers. https://en.wikipedia.org/wiki/

List_of_TCP_and_UDP_port_numbers#Well-known_ports.

[24] Kaustubh Jain et al. Study of OLSR for Real-time Media Streaming over 802.11 Wireless

Network in Software Emulation Environment. Tech. rep. 2010.

[25] Bala Chidambaram and Yueli Yang. “Cyber Analysis System Toolkit: A high-fidelity,

virtual cyber test-bed for network modeling and experimentation”. In: MILCOM 2012-

2012 IEEE Military Communications Conference. IEEE. 2012, pp. 1–5.

[26] Distributed wireless network emulation framework on Github. https://github.

com/adjacentlink/emane.

[27] Jeff Ahrenholz, Tom Goff, and Brian Adamson. “Integration of the CORE and EMANE

Network Emulators”. In: 2011-MILCOM 2011 Military Communications Conference.

IEEE. 2011, pp. 1870–1875.

[28] Ryan Spangler. “Packet sniffing on layer 2 switched local area networks”. In: Packet-

watch Research (2003), pp. 1–5.

[29] EMANE Networking Waveform Emulation. https://www.robocomtech.com/

emane-network-emulation/.

[30] Ethernet frame. https://en.wikipedia.org/wiki/Ethernet_frame#

Header.

[31] Github Wiki for TDMA Model. https://github.com/adjacentlink/emane/

wiki/TDMA-Model#tdma-schedule.

[32] Andrea L Brennen et al. “Worth a thousand bits: visual encoding of tactical communi-

cation network data”. In: MILCOM 2013-2013 IEEE Military Communications Confer-

ence. IEEE. 2013, pp. 1334–1340.

[33] Françis Baccelli et al. “The role of PASTA in network measurement”. In: IEEE/ACM

Transactions on Networking (TON) 17.4 (2009), pp. 1340–1353.

41

[34] Kay Ousterhout et al. “Sparrow: distributed, low latency scheduling”. In: Proceedings

of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM. 2013,

pp. 69–84.

[35] Abhishek Verma et al. “Large-scale cluster management at Google with Borg”. In: Pro-

ceedings of the Tenth European Conference on Computer Systems. ACM. 2015, p. 18.

[36] FIFO (computing and electronics). https://en.wikipedia.org/wiki/FIFO_

(computing_and_electronics).

[37] William E Woods, Philip E Stanley, and Thomas S Hirsch. Queue structure for a data

processing system. US Patent 4,320,455. Mar. 1982.

[38] Std::queue in Cplusplus. http://www.cplusplus.com/reference/queue/

queue/).

[39] Michael Pinedo and Khosrow Hadavi. “Scheduling: theory, algorithms and systems de-

velopment”. In: Operations Research Proceedings 1991. Springer, 1992, pp. 35–42.

[40] James R Jackson. “Scheduling a production line to minimize maximum tardiness”. In:

management science research project (1955).

[41] Alexandre Nikodemski et al. “Reproducing measured MANET radio performances using

the EMANE framework”. In: IEEE Communications Magazine 56.10 (2018), pp. 151–

155.

[42] Differentiated Services. https://en.wikipedia.org/wiki/Differentiat

ed_services.

[43] Fred Baker et al. Definition of the Differentiated Services Field (DS field) in the IPv4 and

IPv6 headers. Tech. rep. RFC 2474, Dec, 1998.

[44] D Towsley and SS Panwar. “On the optimality of minimum laxity and earliest deadline

scheduling for real-time multiprocessors”. In: Proceedings. EUROMICRO’90 Workshop

on Real Time. IEEE. 1990, pp. 17–24.

[45] Std::list in Cplusplus. http://www.cplusplus.com/reference/list/

list/?kw=list).

42

[46] Leonid Veytser, Bow-Nan Cheng, and Randy Charland. “Integrating radio-to-router pro-

tocols into EMANE”. In: MILCOM 2012-2012 IEEE Military Communications Confer-

ence. IEEE. 2012, pp. 1–6.

[47] Logging Services Manual. http://logging.apache.org/log4j/1.2/

manual.html.

[48] Data Storage Memory Management: Optimizing Computer Memory. https://www.

enterprisestorageforum.com/storage-hardware/memory-managem

ent.html.

[49] Kostas Kontogiannis et al. “Code migration through transformations: An experience re-

port”. In: Proceedings of the 1998 conference of the Centre for Advanced Studies on

Collaborative research. IBM Press. 1998, p. 13.

[50] Apple. Debugging with Xcode. https://developer.apple.com/library/

archive/documentation/DeveloperTools/Conceptual/debugging_

with_xcode/chapters/debugging_tools.html.

[51] University of Bristol. “Simple queueing models”. In: 2012.

[52] Moshe Zukerman. “Introduction to queueing theory and stochastic teletraffic models”.

In: arXiv preprint arXiv:1307.2968 (2013).

[53] Drew Bertagna. Qualified priority queue scheduler. US Patent 6,934,294. Aug. 2005.

43

