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Abstract 

Estimating user position in indoor environments relative to the indoor space is a challenging 

problem. Especially when it must be obtained without infrastructure or any added costs to install 

the system. User displacement estimation in Indoor environments with smartphone using Runge-

Kutta method presents efficient method using self-contained inertial sensors with no additional 

infrastructure to solve this problem. The accelerometer, the rotation sensor and the magnetometer 

sensor are three main sensors used in this method. The algorithm derives the user position with 

Runge-Kutta method using inertial data collected from the user smartphone while the user is in 

motion. The magnetometer data is used to self-correct the any existing noise in the user 

displacement. This method was experimented for various user motions like walking, wheelchair 

and driving. The results demonstrate that accumulated error rate and heading error rate were 

significantly reduced. 
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Chapter 1: Introduction 

Societies are changing towards urbanization and almost half of the world populations is living in 

and around urban areas. Be it University, Shopping Mall, Office Space and other relevant areas, 

people are spending time in indoor spaces more than ever. The number of tracking applications 

created are increasing day by day which uses the localization techniques in backend to answer the 

user queries.  Navigation in indoor spaces is used to reach from one point to another. Currently, 

we only depend on signs, directions and human help to reach the destination point in Indoor 

environments. For Example, reaching a food station from a shopping store in a multi-storied 

shopping building can be challenging and demands a lot of our time. Outdoor navigation is 

supported by GPS, but its services are not extended to indoor spaces for various reasons like 

frequency, collisions, bandwidth and other associated reasons. When it comes to indoor 

localization which means identifying user location relative to the indoor space the user is in, the 

existing solutions like GPS, Cellular positioning are not applicable.  

 

Various technologies like RFID [1]–[3][4][5], Wi-Fi [6] and ultrasound [7] were proposed for 

better indoor localization. Each technology has its own challenges while implementing the 

solution. Wi-Fi and RFID used Solutions are based on installed infrastructure. Solutions using 

Ultrasound need model training before they can be put into use. It is still an open question when it 

comes to reducing the complexity in helping the user to navigate indoor spaces. 

 

Smartphones have become part of our lives. The number of smartphone users is growing 

tremendously year over year. As the technology is becoming increasingly intelligent, smartphones 

come with various sensors that aid many current researches in indoor localization. Utilizing this 
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feature of the smartphones, sensor based pedestrian tracking models have been developed. PDR 

(Pedestrian Dead Reckoning) [8] is one such model that is based on smartphone sensors. In this 

PDR model, detecting number of steps and displacement is calculated. It uses estimated step length 

and heading to identify the user position. This type of model accumulates error in the step length 

estimation. As the model based out of steps, the approach will not be applicable to different moving 

patterns where step estimation cannot be derived like Wheelchair Navigation and Vehicle 

Navigation. In case of user motion with wheelchair the algorithm is not efficient to produce 

navigation results as step estimation is not applicable. Similarly, in case of driving or vehicle 

navigation also step estimation cannot be implemented it may not be the efficient. Solution for 

vehicles searching for a parking space in shopping mall and other public places would need an 

approach that is independent of step calculation. Other research focusses on integrating PDR with 

Wi-Fi localization [9][10] with  Kalman and Particle filters. As this model also depends on PDR 

it carries over the same drawback of step detection for non-walking user motions along with 

Infrastructure installation.  

 

Runge Kutta (RK) method is an iterative model and is widely used in temporal discretization for 

approximation-based solutions. The main aim was to minimize the displacement error and heading 

error in calculating the user position and improve the location accuracy. We will utilize the 

smartphone inertial sensors and collect data to calculate the displacement of the user with Runge-

Kutta method. Runge-Kutta method estimates the user displacement and updates the system 

iteratively over time. Accelerometer records change in velocity of the user along the three axes in 

the device frame which can be transformed to navigation frame to calculate the displacement. To 
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reduce the accumulation error in user position estimation and heading direction, magnetometer 

data is used to self-correct the error.  

 

The remainder of the thesis is organized as follows. Chapter 2 reviews the related work in the field 

of Indoor localization to estimate user position. Chapter 3 shows the details of the system model. 

The estimation approach is mentioned in Chapter 4 and the experiment details are discussed in 

Chapter 5.  Finally, conclusions and future directions are presented in Chapter 6.
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Chapter 2: Related Work 

Gradual increase in use of intelligent sensors in smartphones has made many of our jobs easy. In 

most of the cases it requires basic commands to proceed with the user wanted feature to popup and 

perform its functionality. When it comes to Navigation, Identifying the user location is very 

important to recommend user with various service options. When it is confined to indoor spaces it 

has become challenging. The outdoor navigation is efficiently done with GPS but do not satisfy 

the Indoor navigation environment for various reasons. 

 

Existing Indoor localization approaches can be categorized as Wi-Fi based localization, RFID 

based, Ultrasound based and Pedestrian Dear Reckoning models. Other models primarily are 

combinations of any of these above-mentioned approaches.  In case of Wi-Fi localization as 

mentioned in [11] is based on infrastructure and huge location datasets to identify the user position. 

After the installation of the required setup the experiment is based on the wireless signals and 

geometry between the installed access points (APs) in the given range. Methods such as pattern 

matching, nearest neighbor and trilateration can be used to find the user location.  

 

The nearest neighbor method depends on the Access point range to identify the location. Usually, 

this method gives the range of user localization and often used to correct the localization obtained 

through other available methods. In other method named trilateration at least three access points 

needs to be installed in the indoor space. Each access point stands as a center for the range created 

by it and intersections of these ranges will be used to locate the user location.  Pattern matching 

which uses huge datasets depends heavily on database collection. This database stores the object 
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movement data relative to the indoor space. Maintaining the databases for various indoor spaces 

and their relative datasets is a burden in such kinds of methods. Prior collection of moving data, 

maintaining the data associated with each indoor space are some of the challenges in this method. 

[3] RFID technology-based systems mainly contains three major components RFID tag, Antenna 

and a Reader. The RFID tag when activated by RFID reader the encoded information is collected 

and stored in the database. The tag encoding associated to the location is used to derive the latest 

results for user location queries. As mentioned in [12] the model that feeds on RFID data uses 

particle filter method to infer the user location. Many models like indoor walking graph and anchor 

point model are developed to track the object throughout the indoor space.  

 

In case of Pedestrian Dead Reckoning(PDR) method mentioned in  [13][8] detects user steps by 

integrating the sensor data with WLAN location data to estimate the user position. These sensors 

provide multiple measurements based on movement, distance and direction. Also, by estimation 

of step length, the distance measure and user location can be calculated. [14][15] Integrating 

various methods can help us to take advantage of various features each method can offer. 

Integrated PDR and Wi-Fi is a popular approach among them. The location error created while 

running in PDR models can be corrected using Wi-Fi locations by utilizing the particle [16] or 

Kalman filters [17]–[21]. 

 

The proposed method is not dependent on any infrastructure or any prior training of the system. 

Fundamentally, it utilizes the inertial sensor data recorded in the user’s smartphone. It is different 

from PDR model which uses the inertial sensors data in the sense that no calculations of steps and 
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fixed estimation of user step length are used. As the model is independent of such user step details 

it can be used in other various navigation patterns such as wheelchair or vehicle mode. 

 

The proposed method calculates the displacement [21]of the user position without the detection of 

steps. The inertial data is collected and calculates the displacement using mathematical techniques. 

The method does not implement estimating the user step length which is a big difference between 

PDR algorithms and the proposed algorithm. To avoid the noise, measurements recorded in 

acceleration data is transformed using the attitude of the phone. Runge-Kutta method is used to 

reduce the error in the process of calibration. To support heading movement of the user, 

magnetometer data is used.
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Chapter 3: System Design 

This chapter has all details regarding the system design of the proposed solution and how Runge 

Kutta method is used to estimate the position. The proposed model exists independently without 

depending on any infrastructure in the Indoor environment around user. All the components and 

their role towards the process are explained below. 

 

3.1 System Description 

 

 

Figure 1:  An overview of the system model 

 

The proposed system is based on inertial sensors on smartphones. The main inertial sensors used 

in this work are accelerometer, device motion sensor and magnetometer. The Accelerometer 

sensor collects the user acceleration along three perpendicular axes x, y and z. The Device motion 

sensor records the rotation angles the pitch, roll and yaw. The Magnetometer sensor collects the 

data relative to the earth’s magnetic north. These inertial sensors are embedded in almost all the 

smartphones that are available to users in recent times. The measurements are recorded usually in 
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phone frame of reference and are transformed to the navigation frame of reference before they are 

further processed to derive the velocity. Runge-Kutta method is applied to this transformed data 

to measure the velocity of the user. Applying basic laws of motion, displacement is derived. The 

data set collected from the smartphones also consists of the data which provides phone heading 

which is fed into the system to self-correct the errors that might have occurred in the above 

calculation of user displacement. After performing one step of self-correction on the displacement, 

these observations are integrated to identify the location of the user from his initial position. The 

system is iteratively updated with the user location. 

 

To perform this experiment, all the readings related to three inertial sensors were collected using 

a Smartphone (iPhone 7).  Table 1 refers to all the notations that are used in this work. 

Table 1: Symbols and Description 

Symbols Description 

𝑙(𝑡) The location at time t in the navigation frame 

𝑣𝑛
𝑡  The Velocity at time t in the navigation frame 

𝑎𝑛
𝑡  The Acceleration at time t in the navigation 

frame 

𝑎𝑝
𝑡  The Acceleration at time t in the phone frame 

t Time  

𝐶𝑝,𝑛
𝑡  The Transformation matrix at time t  

𝜑, 𝜃,Ψ The attitude of the phone 

ΔT Iteration period 
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α Heading difference 

𝑑𝑖𝑠(𝑘. ΔT, ΔT) Measured displacement between a time 

interval 

 

3.2 Moving Patterns 

 

Sensor enabled smartphones made possible to collect large sets of user motion data and identify 

various moving patterns. In the proposed method, the work focuses on walking pattern, wheelchair 

pattern and driving pattern. The below sections explain in detail how the data is collected and 

considered in the three types of moving patterns. 

Walking Pattern: 

The user carries phone while walking in indoor space. The location of the user and phone are 

considered same. The data from the inertial sensors is collected while the user is walking with the 

phone. The walking pattern of the user is also video captured to maintain the ground truth and 

validate. This type of moving patterns is generally applicable to larger section of people who 

navigates in indoor spaces. 

Wheelchair Pattern: 

The user carries phone and will navigate the indoor space using the wheelchair. The location of 

the wheelchair, user and phone are considered as same in this work. Like walking pattern, the 

wheelchair navigation is also video captured to maintain the ground truth. This section of moving 

pattern is applicable to group of users who uses walking aids like wheelchair to move from one 

place to another. The data is collected when the user is in motion in Indoor spaces using wheelchair. 

Driving Pattern: 
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The user carries phone and will navigate the indoor space through a vehicle. The location of the 

vehicle, user and phone are considered as same in this work. Wheelchair and vehicle operate at 

two different types of motion which is why these are considered as separate groups. The data is 

collected when the vehicle is in motion and not while it is stationery. Like above patterns the 

vehicle motion is also captured visually to maintain the ground truth. 

 

3.3 Reference Frames 

 

There are two reference frames in the proposed model: the phone reference frame and Navigation 

frame. In this section relationship between two reference frames will be established 

Phone Frame/ Body Frame:  

Sensor enabled smartphone is the key component of the model where we observe the user motion 

through various sensors. These sensors collect the data according to phone reference frame or 

Body Frame (p-frame). The phone reference frame has x, y and z axis with origin defined at the 

center of the phone. These axes should be considered fixed to the device and can be also be referred 

as body frame coordinate axes. The x-axis is along the short length of the device pointing positive 

axis toward right and negative axis toward left. The y-axis is along the long length of the device 

pointing positive axis towards the “on” button and negative axis towards the “home” button. The 

Z-axis is pointing away from the face of the iPhone pointing positive away from the front screen 

and negative away from the back cover. The orientation of the axes follows the Right-Hand Rule. 

The acceleration measured in the body frame is denoted with 𝑎𝑝
𝑡 ,  

where 𝑎𝑝
𝑡  = [𝑎𝑝,𝑥

𝑡 , 𝑎𝑝,𝑦
𝑡 ,𝑎𝑝,𝑧

𝑡 ]T acceleration along x, y, z axes at time t respectively. Figure 2 

show the illustration of phone frame of reference. 
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Navigation Frame/Earth Frame:  

 

The second frame of reference which is called Navigation frame or Earth frame (n-frame) whose 

origin is defined at the fixed point in the indoor space map as shown in Figure 4. The x-axis is 

from east (positive) to west (negative) and y-axis is from north (positive) to south (negative). The 

z-axis is defined always as perpendicular to the horizontal plane. The orientation is earths frame 

of reference also follows the Right-Hand Rule. The position of the user is determined in earths 

frame of reference. The acceleration in Navigation frame is denoted as  𝑎𝑛
𝑡  at time t. Acceleration 

in navigation frame is defined as  

 𝑎𝑛
𝑡  =  [𝑎𝑛,𝑥

𝑡 , 𝑎𝑛,𝑦
𝑡 ,  𝑎𝑛,𝑧

𝑡 − 𝑔]T (1) 

Figure 2: The Phone frame of reference 
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‘g’ is defined as gravitation force which depends on the coordinates of the location. ‘g’ is 

considered constant due to low variance in indoor space coordinates. Indoor space horizontal plane 

is, user moving space which is parallel to earths horizontal frame. Acceleration due to gravity is 

acted up on the perpendicular axes to horizontal plane which is z-axis. In the proposed model 𝑎𝑛,𝑥
𝑡 , 

𝑎𝑛,𝑦
𝑡 , 𝑎𝑛,𝑧

𝑡 − 𝑔 are used to represent the acceleration measured with mobile device on x, y,  z 

axes on the navigation frame. Also, in assumption that there is no difference in the location of the 

mobile device and user in the navigation frame. 

 

In the following section user position is estimated, where the position estimation is defined as x, 

y, z coordinates in the navigation frame derived from the user motion observations at time t. The 

Equation 2 represents the estimated position represented with location coordinates. 

 

 𝑙(𝑡)  =  [𝑋𝑛,𝑡, 𝑌𝑛,𝑡,  𝑍𝑛,𝑡]𝑇 (2) 

 

Where l(t) represents the estimated position in the navigation frame and 𝑋𝑛,𝑡, 𝑌𝑛,𝑡, 𝑍𝑛,𝑡  are the 

position coordinates in navigation frame respectively. Figure 3 shows the illustration for the 

navigation frame of reference 
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Figure 3: The Navigation Frame of Reference 

 

Reference frame Transformation 

As mentioned in above sections the data points were collected using mobile device that are 

embedded with inertial sensors. These data points are by default collected in phone reference frame 

(p-frame). In order to estimate the position in the navigation frame (n-frame) the measurements 

that are observed in body frame needs to be transformed into navigation from to estimate the 

position. Transformation is a process where coordinates in one frame of reference are transformed 

to target frame of reference using the angle of rotation respective to the target frame of reference. 

Angle of rotation or phone attitude is nothing, but the orientation of phone measured in Euler 

angles. In this method rotation angles along x, y, z is used as 𝜑, 𝜃,Ψ. If the body frame and 

navigation frame align with each other these angles are equal to zero as there is no rotation 
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observed. While the device changes its orientation the corresponding angles also change 

accordingly. The phone frame observation can be transformed into navigation frame using 

Equation 3. 

 

 

[

𝑣̇𝑛,𝑥
𝑡

𝑣̇𝑛,𝑦
𝑡

𝑣̇𝑛,𝑧
𝑡

]  =  𝐶𝑝,𝑛
𝑡  [

𝑣̇𝑝,𝑥
𝑡

𝑣̇𝑝,𝑦
𝑡

𝑣̇𝑝,𝑧
𝑡

] 

(3) 

 

 

Where 𝑣̇𝑛,𝑥
𝑡 , 𝑣̇𝑛,𝑦

𝑡 , 𝑣̇𝑛,𝑧
𝑡   are acceleration along x, y, z axes in navigation frame transformed from    

𝑣̇𝑝,𝑥
𝑡 , 𝑣̇𝑝,𝑦

𝑡 , 𝑣̇𝑝,𝑧
𝑡  acceleration in phone frame. 𝐶𝑝,𝑛

𝑡  is the Euler angle rotation matrix  to perform the 

rotation of coordinates to navigation frame. 𝐶𝑝,𝑛
𝑡  is defined in Equation (4) 

 

 𝐶𝑝,𝑛
𝑡  

=  (
cos 𝜃 cos 𝜑 sin ∅ sin 𝜃 sin 𝜑 − cos ∅ sin 𝜑 sin ∅ sin 𝜑 + cos ∅ sin 𝜃 cos ∅
cos 𝜃 sin 𝜑 cos ∅ cos 𝜑 + sin ∅ sin 𝜃 sin 𝜑 cos ∅ sin 𝜃 sin 𝜑 − sin ∅ cos 𝜑

−sin 𝜃 sin ∅ cos 𝜃 cos ∅ cos 𝜃

) 

(4) 

 

 

Rotation matrix 𝐶𝑝,𝑛
𝑡  is updated periodically to align with the motion of the user. We update the 

position of user periodically at ΔT and rotation matrix at 
ΔT

2
.
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Chapter 4: Approach 

In this chapter the position estimation using inertial sensors data with Runge-Kutta method will be 

explained. The estimated position is corrected for any further noise using magnetometer data. 

 

4.1. Estimation of displacement using Runge-Kutta method 

In the previous section the acceleration is transformed from the phone frame to the navigation 

frame using transformation equation. For estimating the position, the acceleration data points 

which are collected through smartphone sensors are transformed into navigation frame. These 

transformed acceleration points will now be used to calculate the displacement and estimate the 

position using Runge -Kutta Integration method. 

 

Displacement is defined as change in position of an object from its initial position. In the proposed 

method the initial position of the user is considered to be  𝑥0 and the final position of the user is 

𝑥𝑓 which is taken as the approximate solution. The final position will be obtained by integrating 

the data points using the Runge-Kutta method. The observations recorded from inertial sensors are 

processed using temporal discretization to estimate the final position of the user. The position of 

the user varies as a function of time which is integrated at a regular time step ΔT to update the 

displacement of position over a given time. Each position is calculated by using its previous 

estimated position and its current displacement over time ΔT.  Considering that estimated previous 

position be 𝑙(𝑘. ∆𝑇) at time 𝑡 = (𝑘. ∆𝑇). The new position at 𝑙(𝑘 + 1. ∆𝑇) can be obtained from 

its previous position added to the displacement from 𝑙(𝑘 + 1. ∆𝑇)  to (𝑘. ∆𝑇) . This can be 

expressed in equation as  
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Final position = initial position + displacement over time interval 

 𝑙((𝑘 + 1). ∆𝑇) =  𝑙(𝑘. ∆𝑇) + 𝑑𝑖𝑠(𝑘. ∆𝑇, ∆𝑇)      (5) 

 𝑑𝑖𝑠(𝑘. ∆𝑇, ∆𝑇) =  𝑣𝑛
𝑘.ΔT. ∆𝑇 (6) 

 
𝑣𝑛

𝑘.ΔT. ΔT = ∫ 𝑎𝑛𝑓
𝑡

𝑘+1.ΔT

𝑘.ΔT

𝑑(𝑡) 
(7) 

 

Displacement is found by using the mathematical Equation (6) where 𝑣𝑛
𝑘.ΔT is velocity at time (k. 

ΔT) times the time interval when the ΔT is small enough. The velocity at 𝑘. ∆𝑇 is derived from 

integrating the acceleration at the initial position. As we can see in Figure 5 the acceleration is 

very sensitive to time which can lead to more errors if we try to use Euler’s method to integrate 

over time. The proposed model implements Runge-Kutta method of integration to avoid the error 

created during integration. Runge-Kutta comes in various form and Runge-Kutta 4th order is 

revised and proposed to better fit the model of integration using inertial data. Runge Kutta 4th order 

uses four variables to find the integrated value. In this method as the time interval (∆𝑇) is smaller, 

according to integration principles the velocity remains linear.  

Where, 

 (
𝑙

𝑣𝑛̇
) =  (

𝑣𝑛

𝑎𝑛
) (8) 

 𝑣𝑛
𝑘+1.∆𝑇 =  𝑣𝑛

(𝑘).∆𝑇 +
∆𝑇

6
 . (𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4) (9) 

 𝐾1 =  𝑎𝑛
(𝑘).∆𝑇  (10) 

 

𝐾2 =  
2(𝑣𝑛

(𝑘+
1
2

).∆𝑇
− 𝑣𝑛

(𝑘).∆𝑇)

∆𝑇
 

(11) 
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𝐾3 =  𝑎𝑛

(𝑘+
1
2

).∆𝑇
 

(12) 

 𝐾4 =  𝑎𝑛
𝑘+1.∆𝑇 . ∆𝑇  (13) 

 

 

Figure 4: The Slope in Runge-Kutta Method 

 

In the above equation previous velocity (𝑣𝑛
(𝑘).∆𝑇

) and weighted average of the four variables are 

calculated to derive the velocity at time t (𝑣𝑛
𝑘+1.∆𝑇).  Initial acceleration is taken as K1 at time t, 

Slope of the points between k ∆𝑇 and (k+1/2) ∆𝑇 is taken as K2, Acceleration of the body at k+1/2 

is taken as K3 and final acceleration is taken as K4. The acceleration at (k+1/2) is obtained as the 

cycle to transform the phone metrics to navigation metrics which is iteratively performed at ∆𝑇/2T 

Initial Velocity is taken as v0 and velocity at midpoint is also taken as 0. As the velocity at the 

midpoint of the time interval is also used to calculate the variable K2 in Runge-Kutta integration 

method, the velocity is iteratively updated at time interval t/2. Weighted average is obtained by 

assigning weights to all four variables giving more importance to variables at the midpoint of the 
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time interval. The derived velocity in Equation 9 is calculated and updated iteratively over the time 

interval. As defined in Equation 6 the displacement of the body is calculated by using the updated 

velocity in Equation 9 on a given time interval.  After obtaining the user velocity at time t, the user 

displacement for the current time interval is calculated. This user displacement is added to its 

previous position to derive the final position of the user from the initial point. This will be the user 

position at time t calculated with runge-kutta method. Self-correction method is introduced in next 

section to reduce any noise error created during estimation of displacement. The Magnetometer 

sensor is used to implement the self-correction method. 

 

The following figures shows some of the user acceleration graphs along the navigation frame x-

axis and y-axis 

 
Figure 5: The Acceleration measurements for various user motions 

 

4.2. Self-correction 

This section will illustrate how magnetometer data is used to self-correct the displacement 

calculated in the previous section.  In previous sections user acceleration over a time period is used 



25 

 

to calculate the displacement and updated iteratively to track the user motion. To better maintain 

the accuracy of the user motion direction, magnetometer data is introduced to correct the direction 

estimated through acceleration and reduce any noise created in the above step. Magnetometer is 

also inertial sensor which records the device orientation ranging from 0 degrees to 360 degrees. 

The 0 degrees indicate the heading of the device is parallel to earth’s magnetic north. 

Magnetometer data is collected at the beginning and ending of the cycle to update the user motion 

direction. The orientation of the device is represented as α. Let α(k) be the orientation at the 

beginning of the cycle  ∆𝑇  and α(k+1) be the orientation at the ending of the cycle. It is assumed 

that change in user motion is a linear change. Figure 6 shows an example where the α is measured 

during the phone orientation.  

 

 
Figure 6: The Phone Orientation 

Once the orientation is measured for a cycle, the displacement (𝑑𝑖𝑠(𝑘. ∆𝑇, ∆𝑇)) measured is 

projected into the horizontal plane. The heading difference is defined in Equation 14.  

 𝛼 =   𝛼𝑘+1 −  𝛼𝑘  (14) 
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The estimated displacement (𝑑𝑥, 𝑑𝑦, 𝑑𝑧)
𝑇

is projected into the horizontal plane and their 

corresponding projected vector will be (𝑑𝑥, 𝑑𝑦).  Figure 7 shows the self-correction illustration. 

 

 

Figure 7:  Self-correction 

 

 The average heading difference is calculated for a given time interval ∆𝑇  as  
𝛼𝑘+1−𝛼𝑘

2
. The 

estimated displacement is rotated to with angle of average heading difference on the projected 

plane to correct any displacement errors caused in previous step. Equation 15 and Equation 16 

represents the corrected displacement using the magnetometer sensor data.  

 
𝑑𝑥

′ =  √𝑑𝑥
2 + 𝑑𝑦

2  . cos (𝑎𝑟𝑐𝑡𝑎𝑛
𝑑𝑦

𝑑𝑥
−

𝛼

2
) 

(15) 

 
𝑑𝑦

′ =  √𝑑𝑥
2 + 𝑑𝑦

2  . sin (𝑎𝑟𝑐𝑡𝑎𝑛
𝑑𝑦

𝑑𝑥
−

𝛼

2
) 

(16) 
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Equation 17 represents the final displacement after incorporating the self-correction method to the 

estimation. The self-correction steps are repeated while the user is in motion and updated 

periodically along with user position.  

 𝑙(𝑘 + 1. ∆𝑇) = 𝑙(𝑘. ∆𝑇) + (𝑑𝑥
′ , 𝑑𝑦

′ , 𝑑𝑧)
𝑇
 (17) 
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Chapter 5: Experiment 

This chapter shows the details of the experiment conducted on various user movements like 

walking, driving and wheelchair. The results were compared against the existing methods to 

measure the performance. 

 

5.1. Experimental Setting 

The experimental is performed primarily on three basic moving patterns namely walking, 

wheelchair and driving. The Experiment is conducted in a real indoor space at Auburn 

administrative complex which includes four spaces connected by doors with size measured as 30.2 

m * 23.5 m as shown in Figure 8.   A 100 meters parking space was used to experiment the driving 

pattern as shown in Figure 9.  All the experiments were conducted with apple iPhone 7 collecting 

the inertial sensors data for each of the moving patterns while conducting the experiment. The 

device was held in the hand position for collecting data while the user is in walking motion and 

mounted to chair or car while the user is in wheelchair or driving activity respectively. The inertial 

data is collected at 10 Hz frequency with time interval (∆𝑇) as 0.2 to perform the calculations. All 

the experiments were conducted on windows server equipped with intel processor and 16 GB 

memory. The moving patterns are recorded with camera which are further processed to establish 

the ground truth. The proposed algorithms are implemented in python. 
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Figure 8: The Indoor Space Layout 
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Figure 9: The Navigation Track for Driving 

 

The experiment is evaluated considering the user movement in horizontal plane and the location 

estimation is done for XY plane and subtracting the gravitational force along Z-axis. The 

gravitational force g is defined with value 9.80665 m/s2. The Experiment is repeated four times 

for each moving pattern. 

 

5.2 Performance Metrics 

 

After estimating the displacement using the Runge-Kutta method, the model is evaluated against 

the two main metrics and compared with the existing strapdown INS system. The error of 
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accumulated displacement and the heading error are the two main metrics that were considered to 

evaluate the proposed model. The following sections explains more details about the metrics 

 

5.2.1 The error of accumulated displacement 

 

The error of accumulated displacement is defined as difference between the estimated position that 

is calculated by the proposed model and ground truth which is established through processing 

experiment video that is captured while the experiment is performed. The estimated model 

periodically updates the position at regular intervals of time t in the navigation frame. Consider at 

time t, the model returns the displacement of the user position by calculating the difference 

between original position and position estimated at time t as |l(t) -l(0)| where l(0) is taken as 

original position and l(t) as estimated position at time t. If the actual position represented as l(t), 

then accumulated error for a given query is absolute difference between |l(t)-l (0) | and |𝑙(𝑡)̂  −

 𝑙(0)|. This error of accumulated displacement is calculated iteratively for each time interval. The 

process is repeated for different types of moving pattern. The calculated error for various moving 

patterns is reported. 

 

5.2.2 The Heading Error 

 

The accumulated heading error is defined as difference between the estimated heading that is 

calculated by the proposed model and ground truth which is established through processing video 

recording that is capture while the experiment performed. The estimated model periodically 

updates the heading estimation at regular intervals of time t in the navigation frame. The user 

heading ℎ𝑛
𝑡   at time t is determined by velocity vector which is defined as in Equation 18 

 ℎ𝑛
𝑡 =   𝑎𝑡𝑎𝑛2(𝑣𝑛,𝑥

𝑡 , 𝑣𝑛,𝑦
𝑡 ) (18) 
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Where 𝑣𝑛,𝑥
𝑡  and 𝑣𝑛,𝑦

𝑡  are velocities measured along horizontal XY plane respectively. If the actual 

heading is represented as h(t), then accumulated heading error for a given query is absolute 

difference between |ℎ̂𝑛
𝑡  −  ℎ𝑛

𝑡 | . The heading error is calculated iteratively for each time interval 

of 1 second and reported average heading error for each user moving pattern walking, wheelchair 

and driving. 

 

5.2.3 Strapdown INS 

 

The proposed model is compared against strapdown INS [21] which is also based on inertial sensor 

data. Strapdown INS uses gyroscope and accelerometer sensor to implement the navigation 

system. The model uses gyroscope data for orientation and acceleration data is used to calculate 

the displacement using Kalman filter technique. This model was implemented to compare against 

the proposed model. The data collected for the experimental settings also contains gyroscope data 

which enables to implement and compare this model against the proposed inertial navigation 

system using Runge -Kutta method. Comparison of these two models is performed for all the three 

moving patterns. 

 

5.3 Performance Analysis 

 

The error of accumulated displacement measured in Inertial navigation system (INS-R) is 

compared with strapdown INS which is plotted down in Figure 10 
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Figure 10: The Comparison of the accumulated displacement error across various moving 

patterns 

As it can be seen the proposed model performs better than the strapdown INS in estimating the 

user position in various moving patterns. In case of walking, the proposed method can reduce the 

accumulated error of displacement by 9.4% (0.14m) compared to strapdown INS. In case of user 

movement with wheelchair, the proposed method can reduce the accumulated error of 

displacement by 54.8% (2.8m) compared to strapdown INS. Similarly, when compared with user 

movement in driving pattern, the proposed method can reduce the accumulated error of 

displacement by 45.8% (9.24m) compared to strapdown INS. The proposed approach was 

performing better because the model was not using gyroscope data to transform the acceleration 

unlike the other approach. The gyroscope data contains noise which needs to be taken care before 

it is further processed to estimate the position. This has significant effect while the user in driving 

or wheelchair moving pattern. 
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As seen in Figure 10, the driving pattern records the higher error in accumulated displacement due 

to the significant noise recorded in the measurements of gyroscope used in transformation from 

navigation frame to phone frame. As the measurements are integrated to derive the final position, 

the error also propagates to the result. Since, the average velocity for driving pattern is 

comparatively higher than other two moving patterns, which also played a role in increase in error 

caused in this moving pattern. 

 

The Heading error measured in Inertial navigation system (INS-R) is compared with strapdown 

INS which is plotted down in Figure 11 

 

Figure 11: The heading error comparison across moving patterns 

 

Like the error of accumulated displacement, the proposed model performs better than the 

strapdown INS in various moving patterns. In case of walking, the proposed method can reduce 

the heading error by 42.05% (0.508 radians) compared to strapdown INS. In case of user 

movement with wheelchair, the proposed method can reduce the heading error by 57.9% (0.5564) 
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compared to strapdown INS. Similarly, when compared with user movement in driving pattern, 

the proposed method can reduce the heading error by 63.1% (0.94radians) compared to strapdown 

INS.  

 

 

We have seen how INS-R and strapdown INS performed when compared on error of accumulated 

displacement and heading error. Extending the comparison over time, the below two graphs 

illustrate the error pattern over time. Figure 12 depicts the error of accumulated displacement and 

Figure 13 depicts the heading error. The INS-R method has lower trends over time for both the 

metrics. 

 

Figure 12: The error of accumulated displacement trends over time 
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Figure 13: The heading error trends over time 

 

As demonstrated above, the proposed approach INS-R can estimate the position with reduced error 

of accumulated displacement.
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Chapter 6: Conclusion 

This work discussed the indoor navigation method based on inertial data to better estimate the user 

position relative to the indoor location. The model is built using Runge-kutta method. Inertial data 

from accelerometer, device rotation sensor and magnetometer were collected in phone frame and 

transformed to navigation frame throughout the method to better assist the user in real frame of 

reference. The user displacement is derived by using the accelerometer data and runge-kutta 

method. Magnetometer data is introduced to correct the displacement iteratively. The INS-R 

method performed efficiently for three kinds of user moving patterns namely walking, wheelchair 

and driving motion when compared against strapdown INS. The method efficiently reduced the 

error of accumulated displacement, heading error giving rise to more accuracy level to estimate 

the position. 

 

In future, the work can be extended by introducing deep learning methods and with installing more 

relevant infrastructure.  Integrating multiple various methods can further reduce the error and 

improve the position accuracy. Wi-Fi can be introduced to improve the location accuracy by 

integrating the with the location data from other sensor devices. Also, this work can be extended 

for other kinds of moving patterns as well. 
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