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Researchers have developed many models to simulate the elasto-plastic contact of

spheres. However, there does not appear to exist a closed-form analytical model for elasto-

plastic three dimensional sinusoidal contact. This work uses a finite element model (FEM)

to characterize elasto-plastic sinusoidal contact. Although at initial contact the spherical

and sinusoidal cases are very similar and can both be described by the classic elastic Hertz

contact case, once the contact is pressed past a certain range of inelastic deformation the

two cases are very different. The FEM model is used to produce equations which can be em-

ployed to approximately relate the area of contact to the contact pressure for elasto-plastic

sinusoidal contact. The equations are obtained by fitting to the FEM results and existing

elastic solutions to sinusoidal contact. An empirical expression for the average pressure

which causes complete contact between elasto-plastic sinusoidal contacts was also devel-

oped. The results showed that the required pressure for complete contact is significantly

less in the elasto-plastic regime than the elastic regime. In addition, this pressure is shown

to be greater than the traditional hardness, of 3 · Sy.
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One of the major motivations for this work was to generate a model that could be

used in sinusoidal and frequency based rough surface contact models. A multiscale model

is a non-statistical model and non-fractal that is used to describe normal contact between

rough surfaces featuring multiple scales. The empirical equations developed in the sinusoidal

contact model are used to characterize asperity contact in the multiscale contact model.

Based on this, predictions are made for contact area as a function of applied load. It

was interesting to note that the real area of contact versus the applied load exhibits a

linear relationship for both elastic and elasto-plastic cases up until the surface is completely

flattened out. As expected, the real area of contact undergoing elasto-plastic deformation

predicted by the multiscale model was higher than when the surface is undergoing elastic

deformation. For a given applied load it was also found that the lower frequency ranges, as

opposed to higher frequency ranges, dictated the predicted level of real contact area.
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Chapter 1

Introduction

Computational modeling of contact between surfaces, or contact mechanics, has been

realized as an important field for many years, probably starting sometime around the classic

solution of elastic spherical contact developed by Hertz in 1888 (originally developed to

model optical contacts) [3]. Since then the field has evolved to consider rough surface

contact between mechanical devices and more recently in MEMS. Many earlier models [4]–

[10] employed mostly spherical contact models to simulate individual asperity peaks on a

surface. Several used alternative approaches to model periodic surface roughness as sine

waves [1, 11]. These first models considered only elastic contact. However, due to the high

loads often seen in contact situations, the stresses can cause plastic deformation as well.

The FFT based contact methodology outlined by Stanley and Kato [12] made use of these

elastic contact models to model rough surface contact by first transforming the surface data

into the frequency domain.

In keeping with the need for a new deformation model which could be easily incorpo-

rated into the frequency based rough surface contact models, the current work develops an

elasto-plastic sinusoidal contact model. Empirical equations were developed that fully char-

acterize a sinusoidal surface undergoing elasto-plastic deformation. The developed equations

were used inside the multiscale model foundation to predict the real area of contact as a

function of applied load. Since the multiscale model uses Fourier series, and it consists series

of sine waves, it would be logical to model the asperities as an array of stacked sine waves.
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Therefore sinusoidal contact model should be used instead of spherical contact models in

the multiscale model.

1.1 Organization of thesis

Chapter 2 of this thesis presents a thorough background on different types of contact

models ranging from spherical type contact to sinusoidal type contact.

Chapter 3 (also published in [13]) presents the modeling methodology employed in

formulating the Finite Element Model (FEM). This chapter is divided into three sections.

The first section of this chapter describes how the solid model is built for for the finite

element analysis. The second section deals with the mesh convergence that was achieved.

The third section titled Simulation methodology deals with how the finite element method

employed the displacement method for the analysis.

Chapter 4 (also published in [13]) is divided into four sections. The first describes

in detail the elasto-plastic FEM results obtained from the model. The remaining sections

present the various mathematical fits that were generated in estimation of real contact area

and average contact pressure.

In Chapter 5 the multi-scale model for elasto-plastic contact of rough surfaces is pre-

sented. Here the mathematical fit is incorporated into the multi-scale model.

Chapter 6 concludes the thesis with a summary of the finite element analysis results.
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Chapter 2

Literature review

2.1 Introduction

Elasto-plastic sinusoidal contact has recently become more important with the devel-

opment of several multiscale rough surface contact models [14]–[20]. This is because some of

these multiscale rough surface contact models use a Fourier series to consider the different

scales. Since a Fourier series consists of a series of sine waves with differnt amplitudes and

periods, it is logical to use sinusoidal contact models to consider individual asperity contact.

Sinusoidal contact in some cases may be a more realistic depiction of surface contact than

spherical contact. Intutively, surface asperities should over all be shaped more like sine

waves than hemispheres. A model of elasto-plastic sinusoidal contact would be very useful

to these multiscale contact models. Gao et al. [21] modeled two-dimensional sinusoidal

contact using the finite element method, and made note of some interesting results which

will also be considered in the current analysis. Gao et al. [21] reported a H/Sy = 5.8 for the

elasto-plastic case. The current work finds trends similar to [21] resulting from the three

dimensional elastic case. It was interesting to note that the H/Sy for the 3D elasto-plastic

case was not restricted to 5.8 as reported by Gao et al. [21].

This chapter elucidates various rough surface contact models such as the statistical

contact model, the fractal contact model and the multiscale contact model. A justification

for inclusion of sinusoidal deformation model into the multiscale model foundation is also

provided.

3



Figure 2.1: Topographical contour plot of the sinusoidal surface geometry.
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2.2 Spherical contact models

Although the following section may at first seem off subject, in reality spherical contact

is very useful for modeling sinusoidal contact, especially when the deformation is restricted

to the tips of the peaks (see Fig. 2.2). For this reason, Johnson et al. [1] provides two limiting

solutions to three dimensional sinusoidal contact, and the first being based upon the Hertz

elastic spherical contact solution. The Hertz solution provides closed-form expressions to

the deformations and stresses of two spheres in a purely elastic contact. The two spheres

may have different radii and different elastic properties. However, the closed-form solutions

render an equivalent case where a single elastic sphere, having an equivalent elastic modulus,

E′ , and an equivalent radius, R, is in contact with a rigid flat (see Eqs. 2.1– 2.4 that follow).

5



Figure 2.2: Cross-section of sinusoidal type contact.
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The interference, ω, can be described as the distance the sphere is displaced normally

into the rigid flat. The Hertz solution assumes that the interference is small enough such

that the geometry does not change significantly. The solution also approximates the sphere

surface as a parabolic curve with an equivalent radius of curvature at its tip. The resulting

equations for contact radius and load from the Hertz solution are:

AE = πRω (2.1)

FE =
4

3
E′√R(w)

3
2 (2.2)

where

1

E′ =
1− υ21
E1

+
1− υ22
E2

(2.3)

1

R′ =
1

R1
+

1

R2
(2.4)

and E1, υ1, R1, E2, υ2, R2, are the elastic properties and radii of sphere 1 and 2, respectively.

Again, since the sinusoidal surface and the tip of a sphere are very similar at initial

contact, the initiation of plastic deformation (defined as the critical interference) can be

derived from Hertz contact theory, but can also be used for sinusoidal contact for cases of

relatively small loads and interferences. The critical values of interference, area, and load

7



are derived for the case of initial sinusoidal contact (when the contact geometry is still

similar to a parabola or sphere) in Appendix A.

Kogut and Etsion [2] performed a finite element analysis of the case of an elastic-

perfectly plastic sphere in contact with a rigid flat. Their work gives a very detailed analysis

of the stress distribution in the contact region, and piecewise empirical expressions are

provided for the contact area, the contact force, and the average contact pressure. At

values ω/ωc < 1 the Hertz contact solution is assumed. Two sets of equations are provided

for the ranges 1 < ω/ωc < 6, and 6 < ω/ωc < 110. They describe the deformation only

up to ω/ωc = 110, at which point full plasticity is assumed. In their analysis, the value

of hardness, H, is set to be fixed at 2.8 · Sy. Jackson and Green [22] also provide a more

complicated model which may describe large deformations better than the Kogut and Etsion

(KE) model. The most notable difference being that H is often much less than 2.8 · Sy for

high loads. However, Quicksall et al. [23] found that the Jackson and Green and KE

model agree fairly well for small deformations and the KE model is also much easier to

algebraically manipulate. For these reasons, the KE model is used in the current work to

model the initial elasto-plastic deformation of the sinusoidal surfaces.

The KE model is used in the current work to obtain an empirical relationship between

contact pressure and area. Since the current work is mostly concerned with spherical contact

for small load and interferences, the pressure-interference and the area-interference relation’s

for 1 < ω/ωc < 6 from Kogut and Etsion [2] are used:





p

Sy



 = 1.19




ω

ωc





0.289
(2.5)
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AKE

Ac



 = 0.93




ω

ωc





1.136
(2.6)

With some manipulation Eq. 2.5 becomes

ω

ωc
=

[ 1

1.19





p

Sy





] 1
0.289

(2.7)

The average contact pressure, p, is related to the average pressure, p̄, over the sinusoidal

surface by:

p =




p̄

2 ·AKE
λ2



 (2.8)

The p̄ denotes average pressure over the entire surface, including areas that are not in

contact while p denotes average contact pressure, just in the contact area. When complete

contact occurs, p̄ = p . Substituting Eq. 2.7 and 2.8 into Eq. 2.6 the following is obtained:

AKE

Ac
=





p̄

2 ·AKE · Sy · 1.19
λ2





3.93
(2.9)

Further solving for AKE results in the equation below:

AKE = (Ac)
1

4.93





p̄

2.38 · Sy
λ2





3.93
4.93

(2.10)
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An equation similar to Eq. 2.10 is used in the current work to model initial elasto-plastic

contact of the sinusoidal surfaces. This is explained in more detail later.

2.3 Elastic sinusoidal contact

The analysis for the case of 3-D waviness developed by authors Johnson, Greenwood

and Higginson [1] (hereafter referred to as "JGH") provides a relation between pressure and

contact area. First p̄ is defined as the average pressure on the surface (considering both

contacting and non-contacting regions) and p∗ is the amplitude of a sinusoidal pressure

superimposed on the mean pressure that yields complete contact. Complete contact is

defined as when the entire sinusoidal surface is flattened and in contact with the opposing

surface (i.e. there is no gap between the surfaces). The amplitude of the pressure profile,

p∗ is given as:

p∗ =
√
2πE′∆f (2.11)

where E′ is the reduced elastic modulus, ∆ is the amplitude of the sinusoidal surface, and

f is the frequency or reciprocal of wavelength, λ. Thus when p̄ ≥ p∗, the pressure loads the

surfaces so that there is no gap between them. Alternatively, when p̄ < p∗ the contact is not

complete, and a closed form solution for the three-dimensional waviness contact problem is

not available. However, Johnson et al. [1] provides two asymptotic solutions to the problem.

For p̄ ¼ p∗ the following equation derived from Hertz contact theory applies:

(AJGH)1 =
2π

f2

[ 3

8π

p̄

p∗

] 2
3

(2.12)

10



and when p̄ approaches p∗ (i.e., contact is nearly complete) the following equation applies:

(AJGH)2 =
1

f2





1− 3

2π

[

1− p̄

p∗

]




 (2.13)

Since no general analytical solution is available, an equation linking Eqs. 2.12 and 2.13 is fit

by Jackson and Streator [14] to the experimental and numerical data provided by Johnson

et al. [1]:

For p̄
p∗ < 0.8:

A = (AJGH)1





1−
[ p̄

p∗

]1.51




+ (AJGH)2







p̄

p∗







1.04

(2.14)

For p̄
p∗ ≥ 0.8:

A = (AJGH)2 (2.15)

2.4 Elasto-plastic sinusoidal contact

The previous cases of elasto-plastic spherical contact and elastic sinusoidal contact

are now sufficiently expanded using finite element results so that a model of elasto-plastic

sinusoidal contact can be formulated. Since it has been established that at low deformations

the sinusoidal contact will behave similarly to the spherical contact, this work will focus

mostly on the case of heavy deformations in sinusoidal contact.

Intuitively, the hardness of a sinusoidal shaped contact will follow a much different

trend than the spherical case. As shown in the Fig. 2.4, the slope of the surface at the

edge of contact for the sinusoidal case will be much different than the spherical case as the

11



amount of deformation is increased. While the spherical case approaches a rod or cone type

problem [22, 24], the sinusoidal case appears to reduce to a flat against a flat problem as

interference increases and the sinusoidal surface is flattened out. Thus, it would appear that

the hardness of the sinusoidal surface will initially stay constant or slightly decrease with

interference (depending on the value of ∆/λ) and then eventually start increasing again as

flattening occurs.

For sinusoidal surfaces with large values of ∆/λ, the hardness to yield strength ratio

H/Sy will probably decrease initially because the geometry is very similar to that of a post

or rod. However, for smaller values of ∆/λ, H/Sy will probably never decrease because

the surface is more flat and the post or rod shape is never approached. Then, when the

contact is more flat, the effective H/Sy becomes larger (as shown in the following sections).

It should be noted that the surfaces simulated in this work are for fairly low values of ∆/λ,

and so examples of the first case are never seen.

When the sinusoidal surface is almost completely flattened, one may initially conclude

that the contact condition is similar to the spherical case at low a/R values and thus H/Sy

returns to approximately 2.84 or higher values (as was concluded by Gao et al.[21]). How-

ever, if this case is examined closely, it becomes unclear what the actual limiting pressure

is during the complete contact case. For example, once complete contact has occurred, the

case becomes very similar to that of a compressed cavity of material (see Fig. 2.4). In this

case the material cannot deform in the lateral direction parallel to the surface because there

are neighboring identical sinusoidal contacts. During elastic contact and using Hooke’s Law

12



Figure 2.3: Diagram of the hypothetical progression of change in hardness with geometry
for spherical and sinusoidal contact.
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Figure 2.4: Compressed cavity of material.
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the normal pressure is related to the lateral stresses by

σlateral =
1− 3υ

1− ν
P (2.16)

However, the current case is not elastic, but it is unclear what the material does when large

plastic deformations occur, or if it can reach the plastic regime once complete contact has

occurred. One way to model a plastically deforming material is to assume that it conserves

volume (υ = 0.5) then σlateral = −P . For the cavity case, plastic deformation then cannot

occur since the shape of the material is restricted, and so the only way for the material

to deform is for it to compress volumetrically (hydrostatic stress). Thus the volume of

material can only deform elastically and H/Sy approaches infinite values (see Fig. 2.4). In

the work by Gao and Bower [18] and Gao et al. [21] it also appears that H/Sy increases

dramatically when a loaded 2-D surface approaches the case of complete contact. However,

in the current 3-D model the authors’ find that p∗ during fully plastic deformation is not

limited by a value of 5.8 · Sy that appears to limit the 2-D case [21].

Greenwood and Rowe [25] cover the topic of plastic crushing of serrated surfaces and

also note that the force to cause complete contact becomes drastically larger as the surfaces

come closer together. The case of a conical indenter correlates to this case as well, since

as the angle of the cone tip approaches 180o the stress beneath the indenter will then

become hydrostatic (see Marsh [26] and Johnson [27]). This is also a similar concept to that

employed by the fractal contact models of Majumdar and Bhushan [28], in that they predict

as the contact area increases, the contacting asperities will effectively become more elastic.

However, it should be noted that in reality the material in the current case did initially

undergo severe plastic deformation, so that even though the contact appears to behave
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elastically near complete contact, it has undergone a large amount of plastic deformation

to arrive at that condition.

2.5 Statistical contact model

Greenwood and Williamson [29] first introduced the statistical approaches for surface

topography characterization in contact mechanics. This method has long been viewed as a

simple and easy to use rough surface contact model. However the simplicity of this model

has a few short comings such as the dependence of spectral moments on the resolution of

the surface measuring apparatus and the sample length as shown by [30] and [31]. This

dependence can skew the results for the contact parameters, such as the contact area and

contact load, which depend on the surface parameters.

Greenwood and Williamson in their work [29] showed that rough surfaces can be mod-

eled as a set of mutually exclusive asperities with constant radii and a variable height based

on a particular height distribution function. The parameters that characterize the surfaces

are the standard deviation of asperity heights σs, the areal asperity density η, and the asper-

ity radius R. These parameters are a function of the spectral moments which are extracted

from the surface using [32]. The value of σs is related to σ, η, R given by (Eq. 2.17).

σ2
s = σ2 − 3.717e−4

η2 ·R2
(2.17)
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AGaussian distribution φ(z) is usually assumed for the height distribution. The contact

parameters of rough surfaces are obtained as given by

A(d) = ηAn

∫ ∞

d
Ā(z − d)φ(z) dz (2.18)

P (d) = ηAn

∫ ∞

d
P̄ (z − d)φ(z) dz (2.19)

where An is the nominal or apparent area of contact, which is defined by the overlap of

surfaces in contact. The individual asperity contact area, Ā, and the corresponding contact

load P̄ , are functions of ω, which is the individual asperity interference. This original GW

model assumes elastically deforming hemispherical asperites defined by Hertz solution [3].

Later models also expand the statistical methodology using elasto-plastic asperity contact

models [22] and [33].

2.6 Fractal contact model

In order to overcome the drawback of spectral moments dependence on surface param-

eters in the statistical model, the fractal contact model proves beneficial in characterization

of surface topography. The fractal geometry proposed by [30] has been utilized to char-

acterize the surface topography in contact mechanics. Although the fractal contact model

captures the surface topography in a multi-scale nature, it is important to note that not all

engineering surfaces have profiles which exhibit fractal behavior.
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The feature of finer and finer detail becoming apparent as the measurement length scale

is reduced is a characteristic of the fractal model. Many authors [34], [35], have proposed

to replace the asperity model concept by a description of a surface as a fractal. The trouble

with the fractal model, apart from what as mentioned earlier is that there is no obvious way

to solve the contact problem for two fractal surfaces, or for one fractal surface contacting

a plane. The most widely accepted fractal theory is that due to Majumdar and Bhushan

[36] in which the distribution of contact areas is tied to the distribution of ‘islands’ cut off

from the surface by a given horizontal plane as shown in Fig. 2.5. Therefore, the contact

area is simply a truncation of the fractal surface geometry and the plane. This is a classical

quantity in fractal theory. Majumdar and Bhushan [36] replace the material in each island

by a smooth parabolic asperity, this effectively defines a fractal distribution of asperities

that can then be treated as in a conventional asperity model.

Figure 2.5: Islands defined by a horizontal section.

A typical fractal surface profile can be generated using the Weierstrass-Mandelbrot

function [34]. A truncated two-variable fractal profile can be described as [34]
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z(x, y) = L(
G

L
)d−2(

lnγ

M
)1/2

M
∑

m=1

nmax
∑

n=0

·(cosφm,n−cos[
2πγn(x2 + y2)1/2

L
cos(arctan(y/x)−πm

M
)+φm,n])

(2.20)

where L is the sample length, D is the fractal dimension, G is the fractal roughness, γ

(=1.5) is a scaling factor, M is the number of superimposed ridges, n is a frequency index,

with nmax =
∫

[log(L/Ls/logγ)] represents the upper limit of n, where Ls is the cut-off

length and φm,n is a random phase. Majumdar and Bhushan [36] have extensively used

fractal methods to characterize surface topography and also in scale independent rough

surface contact models. Kogut and Jackson [31] in the paper showed a series of results

comparing short falls of the statistical and fractal models for rough surface contacts. To

address these issues, several new multiscale models have been developed and are outlined

in Chapter 5.
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Chapter 3

Finite element model

3.1 Introduction

This chapter describes in detail the methodology employed in building the solid finite

element model. The solid model is divided into two parts. The first being the rigid flat plate

that acts as the contact surface and the second being the sinusoidal surface on which target

elements are created. Initially, the elastic case will be compared to the known solution to

confirm the model accuracy. once verified the model will be given elastic perfectly plastic

material properties.

3.2 Building the solid model

The current analysis will examine the case of three-dimensional elastic perfectly plastic

sinusoidal contact by building on these previous works, using fundamental solid mechanics

theory, and conducting a parametric study using the finite elements method. The sinusoidal

surface considered by the current work is described by

h = 4 ·
(

1− cos

(

2 · π · x
λ

)

cos

(

2 · π · y
λ

))

(3.1)

and is shown (Fig. 2.1), where h is the height of the sinusoidal surface from its base. This

is very similar to the surface used by Johnson et al. [1] and results in the same analytical

equations for elastic contact.
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A three-dimensional model was developed and the commercial ANSY STM 8.1 package

was used to further analyze the elasto-plastic sinusoidal contact problem. Owing to the

symmetry of the sinusoidal surface (shown in Fig. 2.1 and 3.2), only a quarter section

of the whole problem is modeled. The sinusoidal profile was generated based on equation

(Eq. 3.1). Keypoints were created for various values of x, y, and h. These keypoints

were then connected through lines. A conformal area was fit to generate the sinusoidal

surface. In all, over 42,000 elements where used in the analysis. Solid45, which is an 8-node

brick element, was used within the entire volume of the model. Contact174 and Target170

elements collectively formed the contact pair to model interaction between the surfaces.

3.3 Mesh convergence test

The number of elements was increased iteratively by a factor of 2 until mesh conver-

gence was obtained. The final value corresponded to concordant values over two successive

iterations. Upon final convergence the rigid flat surface, comprising of Contact174 elements,

was a uniform mesh formed by a 21x21 array (Fig. 3.1) of elements. In all, there were ap-

proximately 1200 contact elements in the model. The contact stiffness value was also altered

until the model agreed with the elastic solution (see section 3.5).

The uniform mesh on the rigid surface is used to predict the real contact area with the

sinusoidal surface. By determining the contact status of each node during post-processing

the total number of nodes in contact and the corresponding contact pressures are obtained

from the nodal solution for incremented values of displacement. The ratio of the number of

nodes in contact to the total number of nodes over the surface gives the real area of contact

normalized by the apparent or nominal area of contact.
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Figure 3.1: Uniform mesh on the rigid flat formed by 21x21 array of elements.
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3.4 Simulation methodology

The displacement method was employed to simulate the contact problem. This method

applies a finite displacement to the rigid flat surface in the z-direction toward the sinusoidal

surface, and then solves the contact problem. This non-linear analysis accounts for large

displacements, hence additional measures were taken to enable the non-linear geometry

option during the course of the simulation. Displacement boundary conditions were enforced

on the surface areas of the solid model, and not in the contact area (see Fig. 3.2). The base

surface along the xy plane was fixed in all directions. The flat rigid surface was constrained

to move only along the z axis. Constraints were applied to surfaces located on the xy, xz

and yz planes in the direction perpendicular to the plane (thus enforcing a cyclic boundary

condition). For example, a surface area along the yz planes was constrained in the x-

direction, as shown in Fig. 3.2.

The simulation methodology can be understood better from Fig. 3.3. A contour of

the displacement in the z-direction is plotted on the deformed sinusoidal structure for the

elastic sinusoidal case. The material properties that were used to model this case is given in

Table 3.1. The surface on which the zero displacement boundary conditions were imposed

can be clearly seen during the course of simulation.
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Figure 3.2: Schematic of degree of freedom restraints used for the one quarter sinusoidal
FEM model (actual modeled geometry is much longer in the z direction).
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Figure 3.3: Various stages of contact.
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The deformation history of the sinusoidal contact for the elasto-plastic benchmark

case is shown in Fig. 3.4. The material properties used for the benchmark case are E =

200GPa, Sy = 1GPa, and υ = 0.3. The dimensionless geometric ratio ∆/λ was set as

0.02. The contour plot (Fig. 3.4) represents the nodal displacements in the z-direction.

Interpenetrations that were observed during the course of simulation runtime were well

within accepted values of interference. Hence, these interpenetrations did not affect the

finite element analysis results.

Figure 3.4: Deformation history.
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3.5 Verification of model accuracy

Model accuracy was achieved by comparing the elastic results of the finite element

model (FEM) to that of Johnson et al.’s data [1] (see Fig. 3.5). From Fig. 3.5, FEM data

from the elastic sinusoidal case lie well within the two asymptotic solutions provided by

Johnson et al. [1]. It is also clear that the curves for both the data sets followed almost

identical paths. Table. 3.1 shows the parameters describing the JGH [1] data and the FEM

results from the elastic sinusoidal model [13]. An average error of 6% was found to exist

between the FEM and JGH data over the entire range of pressure.

Table 3.1: Material properties
Treatment JGH data FEM data

Young’s Modulus E 200 GPa 200 GPa

∆/λ 0.02 0.02

Average pressure for complete contact (p∗) 19.5 GPa 19.5 GPa
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Figure 3.5: Comparison of elastic FEM results with JGH model.
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Chapter 4

elasto-plastic fem results

4.1 Introduction

The material properties of the solid 3D model used to run the elastic case, were modified

for the elasto-plastic case. To enhance convergence, as outlined by Brizmer et al. [37], the

material of the sinusoidal surface was assumed elasto-plastic bi-linear isotropic hardening

with a yield stress, Sy, of 1 GPa and a tangent modulus, ET , 2% of the Young’s modulus E.

This isotropic hardening significantly improves the convergence without causing a significant

change in the results.

4.2 Parametric study

In order to formulate a fit for the FEM contact pressure a parametric analysis of the

elasto-plastic sinusoidal surface contact problem was conducted. A benchmark case was set

to analyze the contact problem. The material properties used for the benchmark case are

E = 200GPa, Sy = 1GPa, and υ = 0.3. The material properties along with the ∆/λ ratio

were then individually varied to perform a parametric study. First, a range of yield stresses

were considered in the model (see Figs. 4.1 and 4.2). The yield strength was varied from

Sy = 0.75GPa to Sy = 2.25GPa.

First the results are presented as a plot of the average pressure divided by the yield

strength, p̄/Sy, as a function of the normalized area, A · f2 (see Fig. 4.1). As the area in-

creases the contact is becoming more complete and the amount of deformation is increasing.
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Table 4.1: Parametric study based on the Yield Strength Sy

Sy Sy ∆/λ E
′

Sy/E
′

p∗ p∗ep
7.50·108 7.5·108 0.02 2.2·1011 3.41·10−3 1.95·1010 4.35·109
1.00·109 1.0·109 0.02 2.2·1011 4.55·10−3 1.95·1010 5.00·109
1.25·109 7.5·108 0.02 2.2·1011 5.69·10−3 1.95·1010 5.66·109
1.50·109 7.5·108 0.02 2.2·1011 6.82·10−3 1.95·1010 6.31·109
1.75·109 7.5·108 0.02 2.2·1011 7.96·10−3 1.95·1010 6.97·109
2.00·109 7.5·108 0.02 2.2·1011 9.10·10−3 1.95·1010 7.63·109
2.25·109 7.5·108 0.02 2.2·1011 1.02·10−2 1.95·1010 8.28·109

Traditionally this would be considered to be the fully plastic regime and the average pres-

sure, p̄, would be the hardness, H. As shown, the ratio of p̄/Sy increases past the typical

H/Sy value of 3 and even past the value of 5.8 found in [21] for 2-D sinusoidal surfaces in

contact. This agrees with the earlier theory that the contact becomes more elastic as the

contact area becomes more complete (A · f2 → 1).

Next, the average contact pressure, p̄, resulting from the elasto-plastic model was nor-

malized using p∗. Then the normalized contact area A · f2 was plotted versus p̄/p∗. It can

be seen that the normalized contact area increases steadily as the yield strength decreases.

It can be seen from Fig. 4.2 that for a p̄/p∗ = 0.42, the normalized contact area ratio is 1

for all the cases (the contact is complete). Thus for the elasto-plastic cases, complete con-

tact occurs much earlier than when it occurs in elastic contact, as is intuitively expected.

Although the trend captured partially resembles the perfectly elastic behavior, in order to

find empirical expressions for the elasto-plastic case, the findings suggest that a new average

pressure to cause complete contact during elasto-plastic contact, p∗ep, can be found.
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Table 4.2: Parametric study based on the Young’s Modulus E′

E′ Sy ∆/λ E
′

Sy/E
′

p∗ p∗ep
1.50·1011 1.00·109 0.02 1.65·1011 6.07·10−3 1.46·1010 4.41·109
2.00·1011 1.00·109 0.02 2.20·1011 4.55·10−3 1.95·1010 5.00·109
2.50·1011 1.00·109 0.02 2.75·1011 3.64·10−3 2.44·1010 5.60·109
3.00·1011 1.00·109 0.02 3.30·1011 3.03·10−3 2.93·1010 6.20·109
3.50·1011 1.00·109 0.02 3.85·1011 2.60·10−3 3.42·1010 6.79·109

Table 4.3: Parametric study based on the Geometric ratio ∆/λ

∆/λ Sy ∆/λ E
′

Sy/E
′

p∗ p∗ep
0.010 1.00·109 0.010 2.20·1011 4.55·10−3 9.76·109 3.54·109
0.015 1.00·109 0.010 2.20·1011 4.55·10−3 1.35·1010 4.30·109
0.020 1.00·109 0.020 2.20·1011 4.55·10−3 1.95·1010 5.00·109
0.032 1.00·109 0.032 2.20·1011 4.55·10−3 3.12·1010 6.33·109
0.040 1.00·109 0.040 2.20·1011 4.55·10−3 3.91·1010 7.08·109
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4.3 Critical elasto-plastic pressure estimation

The average pressure, p∗ep, that causes complete contact is extracted from the finite

element model data for each modeled case. This value corresponds to the average pressure

when the area ratio, A/f2 = 1. At this stage complete contact occurs between the rigid

flat and the sinusoidal surface. An equation is fit to the values of p∗ep from the finite

element data. The goal of the empirical fit is to obtain a single expression that takes

into consideration both the material and geometric properties of the modeled elasto-plastic

sinusoidal contact problem. Since the material properties and geometric properties are each

varied independently from the benchmark case, an equation can easily be fit to each trend.

It was also found that the effects Sy and E′ appear to be almost exactly inverse and can be

combined into one normalized variable Sy/E
′. The resulting equation fit to the FEM data

is given as

p∗ep
p∗

=





4.172 · Sy

E′ + 0.0173





 ·
√

λ

∆
(4.1)

The effect of Sy/E
′ on p∗ep/p

∗ is shown by the plot in Fig. 4.3. The relationship of

p∗ep/p
∗ to Sy/E

′ appears to be linear in nature. As shown in Fig. 4.3, Eq. 4.1 differs from

the FEM data by an average error of 3.82% with the maximum and minimum errors being

7.89% and 0.17% respectively. The empirical fit generated thus seems to be effective.
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Figure 4.3: The effect of Sy/E
′ on pressure to cause complete contact.
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Table 4.4: Variation of
p∗ep
p∗ (FEM) and

p∗ep
p∗ (Fit Eq. 4.1) with respect to Sy/E

′

Sy/E
′

∆/λ
p∗ep
p∗ (FEM)

p∗ep
p∗ (Fit Eq. 4.1) Error

3.41·10−3 0.02 0.2344 0.2226 4.9936

4.55·10−3 0.02 0.2429 0.2562 5.5666

5.69·10−3 0.02 0.2832 0.2897 2.3355

6.82·10−3 0.02 0.3305 0.3233 2.1570

7.96·10−3 0.02 0.3712 0.3568 3.8621

9.10·10−3 0.02 0.3784 0.3904 3.1821

1.02·10−2 0.02 0.4189 0.4240 1.2284

6.07·10−3 0.02 0.3268 0.3009 7.8912

4.55·10−3 0.02 0.2429 0.2562 5.4853

3.64·10−3 0.02 0.2382 0.2293 3.7062

3.03·10−3 0.02 0.2009 0.2114 5.2895

2.60·10−3 0.02 0.1983 0.1987 0.1769

Average Error 3.8228
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Figure 4.4: The effect of ∆/λ on pressure to cause complete contact.
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Table 4.5: Variation of
p∗ep
p∗ (FEM) and

p∗ep
p∗ (Fit Eq. 4.1) with respect to ∆/λ

Sy/E
′

∆/λ
p∗ep
p∗ (FEM)

p∗ep
p∗ (Fit Eq. 4.1) Error

4.55·10−3 0.010 0.3615 0.3623 0.2340

4.55·10−3 0.015 0.2995 0.2958 1.2202

4.55·10−3 0.020 0.2427 0.2562 5.5666

4.55·10−3 0.032 0.2027 0.2025 2.3742

4.55·10−3 0.040 0.1892 0.1811 4.2418

Average Error 2.7274

The effect ∆/λ has on p∗ep/p
∗ appears to be non-linear, as shown in Fig. 4.4. The p∗ep/p

∗

value also decreases with an increase in the ∆/λ ratio. As apparent in Eq. 4.1, a square

root function appears to produce a reasonable fit. The average error resulting from the fit

is 2.72%, with maximum and minimum error values of 5.56% and 0.23% respectively.

Next the p∗ep values obtained from Eq. 4.1 are used as a normalization factor for the

contact pressure, p̄, predicted by the elasto-plastic FEM model (see Figs. 4.5- 4.7). This

normalization is useful because it is successful at collapsing the curves onto almost the same

curve (see Fig. 4.5 in comparison to Fig. 4.2). Since similar plots are not shown for the

results when E and ∆/λ are varied, the values are varied by as much as 100.5% between

the E cases and 91.1% between the ∆/λ cases, which is large in comparison to the error

values given above. The results for the cases of various yield strengths, Sy, are shown in the

plot of A · f2 versus in Fig. 11. In this case the equivalent elastic modulus, E′ = 220GPa

and the geometric property ∆/λ = 0.02 are held constant for all the cases modeled. From

a lower Sy value of 0.75 GPa to a higher value of 2.25 GPa the values of curves seem to

increase slightly. As the yield strength, Sy, increases the curves appear to converge to a

single curve. Towards complete contact it can be seen that although the curves are for

different yield strengths, they converge to the same point due to the normalization by p∗ep.
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Since the trend of the normalized contact area A · f2 as a function of p̄/p∗ep should always

begin at A · f2 = 0, p̄/p∗ep = 0 (just before initial contact) and end at A · f2 = 1, p̄/p∗ep = 1

(when complete contact occurs), the normalization is successful just at collapsing these end

points together. However, the curvature of the normalized trend can still depend on the

material and geometric properties. Therefore, additional measures are taken to fit equations

to the FEM data.
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Figure 4.5: Contact area ratio (A · f2) versus p̄/p∗ep for different yield strength values.

From Fig. 4.6 it is seen that the elastic modulus E′ and the yield strength Sy both

display similar trends. This case is modeled by varying only the equivalent elastic modulus,

E′, while the yield strength, Sy =1 GPa and ∆/λ =0.02 are held constant for all the different
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cases. As the elastic modulus increases, the curve also increases. At lower values of p̄/p∗ep

the curves seem to fall onto a single curve. When the p̄/p∗ep value reaches 0.1 the curves

seem to diverge. Near complete contact the curves converge again.

The geometric property ∆/λ is now varied from 0.01 to 0.04, as shown in Fig. 4.7.

The equivalent modulus E′=220 GPa and the yield strength, Sy=1 GPa, are held constant

in these various cases that are modeled. The contact pressure, p̄ , from the FEM data

is again normalized by the average pressure for complete elasto-plastic contact, p∗ep. This

ratio is then plotted versus the contact area ratio. It can be seen that normalized area

(Af2) steadily increases when the ∆/λ ratio increases. Another point should be noted,

that the lower values of the ratio ∆/λ allow for the solution to converge faster, while some

higher values of ∆/λ do not converge at all. The reason for this dependence on ∆/λ for

convergence could be from the fact that with higher ∆/λ ratios larger deformations are

required to flatten out the sinusoidal surface.

4.4 Real contact area estimation

The area described by the KE model is next modified to better suit the current elasto-

plastic sinusoidal contact problem. The premise for the argument is based on the fact that

when A/Ac=1, the pressure to critical pressure ratio p/pc should equal 1. Notice that p is

now used to denote the average contact pressure over the contact area, while p̄ denotes the

average pressure over the entire surface area. Based on the KE model, a logical function to

model initial elasto-plastic contact is described below

A

Ac
=





p

pc





d
(4.2)
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where pc from Eq. (A5) in Appendix 1 is

pc =




2 · C · Sy

3





substituting this into Eq. 4.2 we get,

A

Ac
=





p

2 · C · Sy
· 3




d
(4.3)

where average pressure over the contact area, p, in Eq. 4.3 is converted to the average

pressure over the entire surface, p̄ , by

p =




p̄ · λ2

2 ·A



 (4.4)

By substituting in Eq. 4.4 into Eq. 4.3 the following expression results

A

Ac
=







p̄ · λ2 · 3
4 · Sy · C ·A







d

(4.5)

Solving for A in Eq. 4.5, one obtains the modified expression for contact area, which

is now termed as Aep. Also noting that the two sphere-like peaks occur in the λ2 area of

sinusoidal contact than a factor of two must be included. The result is given by

Aep = 2(Ac)
1

1+d







3 · p̄
4 · C · Sy

λ2






d
1+d

(4.6)

Although this expression (Eq. 4.6) for area is derived differently, it is interesting to note

that it is a similar result to the area to pressure relation from the KE model (Eq. 2.10).
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The value of d is obtained empirically by fitting a curve to the FEM results. To allow a

good fit with the FEM results, the value of d found in Eq. 4.6 for Aep is allowed to vary

with E′/Sy and ∆/λ. The expression for d is given by

d = C1 ·






E′

Sy
· ∆
λ







C2

(4.7)

where, C1 = 3.8 and C2 = 0.11 and are constants which are obtained empirically. E′ and

Sy are the effective Young’s modulus and yield strength respectively. For the benchmark

case of E′=220 GPa, Sy=1 GPa, and ∆/λ=0.02, then d=4.47. As expected, this is close to

the value of 4.93 that is predicted by the KE model.

To model the contact area as a function of load, the results of Jackson and Streator

[14] are now modified with the elasto plastic results now given by Eqs. ( 4.1and 4.6). The

modified version of the model to consider elasto-plastic deformation is

A = (Aep)





1−
[ p̄

p∗ep

]1.51




+ (AJGH)2







p̄

p∗ep







1.04

(4.8)

where Aep is the spherical elasto-plastic contact area as predicted by the model given by

Eqs. ( 4.6 and 4.7) and based on the KE model. Then as the load increases, the contact

will diverge from the spherical case and asymptotically approach the sinusoidal case. Since

the H/Sy will theoretically increase as the contact becomes more complete (see previous

discussion concerning Fig. 2.4), the contact area may theoretically approach the elastic

limit (AJGH)2 as p̄/p∗ep approaches 1. However, when the solution approaches (AJGH)2 the

average pressure is p∗ep instead of p∗ as in the elastic case. Also, if A, as predicted by Eq. 4.8,

increases past λ2 then A=λ2.
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4.5 The empirical model

The FEM results are presented alongside the model given by Eq. 4.8 in Figs. 4.8, 4.9,

and 4.10. In Fig. 4.8 we see the fit between the two extreme cases that were modeled based

on the yield strength of the material. The lowest Sy value considered being 0.75 GPa and

the higher value being 2.25 GPa. We can see clearly that the modified KE model for contact

area agrees reasonably well with the numerical results. The average error between the new

model given by Eq. 4.8 and the FEM results when the yield strength is varied independently

is less than 5%.
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Figure 4.8: Comparison of the FEM results and the elasto-plastic sinusoidal contact model
(marked by lines) given by Eq. 4.8 for different yield strength values.
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Likewise, the plots in Fig. 4.9 and 4.10 show that the model also compares well for the

cases where the elastic modulus, E, and the geometry, ∆/λ, are varied (the error in these

cases is also less than 5%). Fig. 4.9 a comparison of the FEM results and the elasto-plastic

sinusoidal contact model (marked by lines) given by Eq. 4.8 for different Young’s modulus

values is shown. Similarliy in Fig. 4.10 a comparison of the FEM results and the elasto-

plastic sinusoidal contact model (marked by lines) given by Eq. 4.8 for different sinusoidal

geometries is shown.
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Figure 4.9: Comparison of the FEM results and the elasto-plastic sinusoidal contact model
(marked by lines) given by Eq. 4.8 for different Young’s modulus values.
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Figure 4.10: Comparison of the FEM results and the elasto-plastic sinusoidal contact model
(marked by lines) given by Eq. 4.8 for different sinusoidal geometries.
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Chapter 5

Multiscale Rough Surface Contact Model

5.1 Introduction

In this chapter a non-statistical multiscale model using the elastic and elasto-plastic

sinusoidal contact, based on the work by Jackson and Streator [14], is presented. The equa-

tions generated emperically using FEM in earlier chapter’s are included in the formulation

of the multiscale model. This model incorporates the effect of asperity deformations at

multiple scales into a simple foundation for modeling rough surfaces. This model considers

the effect of having smaller asperities located on top of larger asperities in repeated fashion,

very similar to the "protuberance upon protuberance" theory proposed by Archard [40].

5.2 Multiscale model foundation

The current multiscale model uses the same direction as Archard [40], but differs in

the ease of use when applied to real rough surfaces. The model assumptions derived from

Jackson and Streator [14], which are different from the statistical and fractal models, are

as follows:

1. Asperities are stacked so that smaller asperities (higher frequency) are on top of larger

asperities (lower frequency).

2. Each iteration or frequency level of asperities carries the same total load.

3. The load is shared equally among all the asperities at a given frequency level.
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4. At a given frequency level, each asperity deforms according to Hertz theory or to

a chosen elasto-plastic asperity contact model, irrespective of the presence of higher

frequency asperities upon it. In the current work the sinusoidal contact models will

be used.

5. At a given frequency level the contact area cannot increase beyond what is experienced

by the frequency level below it.

These assumptions set up the following foundation of equations for the contact model:

Ar =

( imax
∏

i=1

Āiηi

)

An (5.1)

F = F̄iηiAi−1 (5.2)

where Ar is the real area of contact, F the contact load, An the nominal contact area,

and the subscript i denotes a frequency level, with imax denoting the highest frequency

level considered. A flow chart of the method is given by Fig. 5.1. This illustrates how

the contact model foundation is used to model the contact between rough surfaces. First

FFT of the acquired surface data is performed. If a spherical contact model is used to

consider individual asperity, the areal density and radius of curvature are computed for

each frequency level from the resulting Fourier series. Although in the current work these

quantities are not used, they can be computed as follows:

ηi = 2f2
i (5.3)
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Ri =
1

4π2βif2i
(5.4)

where βi is the amplitude at the given frequency level and fi is the frequency. The source of

factor two is from [1]. This factor only means that there are two density of asperity peaks per

reference area. However, the abpve methodology differs when a sinusoidal contact model

is used. because the amplitude and wavelength can be directly used from the FFT. By

using the sinusoidal contact model assumption 5 will also never be violated. The nominal

contact area An is defined at the zeroth frequency level or at i = 0. For a chosen level of

frequencies, the number of asperities is calculated for every frequency level. At a given level

the total load is then equally divided among all the asperities of that level. From the given

asperity load, dimension, the material property and the chosen deformation model, the

single asperity area is determined. A temporary total contact area for the given frequency

level is computed by multiplying the number of asperities at that level. Assumption 5

mentioned above is then verified at every frequency level. If the contact area predicted at

that level is greater than the contact area at frequency level below it, the smaller contact

area serves as the nominal contact area for the given frequency level. This procedure is

repeated iteratively until all the frequency levels are considered, resulting in a prediction of

the real contact area as a function of applied load.
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Figure 5.1: Flow chart of iterative asperity contact model.
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5.3 Elasto-plastic multiscale model

The sinusoidal asperity model developed earlier is used within the multiscale model

foundation described above to relate the contact area to the applied load. The modified

KE contact area is used to define the asperity deformation model. Aep is given by

Aep = 2(Ac)
1

1+d







3 · p̄
4 · C · Sy

λ2






d
1+d

(5.5)

To model the contact area as a function of load inside the multi-scale model founda-

tion, the JGH contact area is modified with the elasto plastic results now given by Eqs.

( 4.1and 5.5). The modified version of the model to consider elasto-plastic deformation is

A = (Aep)





1−
[ p̄

p∗ep

]1.51




+ (AJGH)2







p̄

p∗ep







1.04

(5.6)

where Aep is the spherical elasto-plastic contact area as predicted by the model given by

Eqs. ( 5.5 and 4.7) and based on the KE model. Then as the load increases, the contact

will diverge from the spherical case and asymptotically approach the sinusoidal case. A

limiting condition for elastic sinusoidal case was provided by Johnson et al. [1].

5.4 Frequency spectrum for different surfaces

Three surfaces surface 1, surface 2 and surface 3 were selected for the multiscale model.

A stylus profilometer was used to measure the profiles of arbitrarily machined metal samples

is shown in Figs. ( 5.2, 5.3, and 5.4). The displayed profile each comprised of 496 to 3900

data points. A frequency spectrum of the surface profile is also shown in Figs.( 5.2, 5.3,

and 5.4). The frequency spectrum (Fig. 5.2) of the surface 1 shows asperities of little
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variation of amplitude with scale. The frequency spectrum plots for surface 2 and surface

3 show decreasing amplitudes with higher frequencies, as would normally be expected.

Since the motivation behind this work was to develop a multiscale model incorporating

the sinusoidal deformation model, the same material (Aluminum) with different levels of

roughness was considered. The typical material properties that were defined were Young’s

modulus E = 200GPa, yield strength Sy = 0.1GPa, and Poisson’s ratio ν = 0.33. The

sample length was 400µ.
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Figure 5.2: Frequency spectrum of surface 1.
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Figure 5.3: Frequency spectrum of surface 2.
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Figure 5.4: Frequency spectrum of surface 3.
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5.5 Frequency level iteration versus contact area

To further emphasize how the multi-scale model works, the contact area as predicted by

the model as a function of frequency level iteration, i, for two load cases F
AnE′ = 9.774x10−5

and F
AnE′ = 9.774x10−9 is shown in Figs. ( 5.5, 5.6, and 5.7). To see the trends from

the elastic and the elasto-plastic multi-scale sinusoidal contact model, results from both the

models are plotted alongside in the same figure. From Fig. ( 5.5) for the random surface

sample, we can see that at higher loads the contact area for elasto-plastic case is close to 1

for the frequency range 10-100. The elastic case varies from .1 to 1 for the same load and

frequency range. The drops in area occur due to the assumption 5 stated in the multiscale

model foundation. For any given load level the contact area predicted by the immediate

higher level cannot be more than the contact area predicted by the previous level. Based

off of a visual inspection it is clear that both lower and higher frequency level ranges dictate

the contact area prediction. This is a stark difference from the Jackson and Streator [14]

model which considered surface 1 for the multiscale model. The contact area predicted by

the Jackson and Streator model [14] is dictated by the lower frequency level ranges and

the higher frequency level ranges have little to no effect on the contact area predicted. A

possible reason for this difference could be the use of spherical asperity deformation model

in their multiscale frame work. The surface profiles surfaces 2 and 3 that were considered

in the multiscale model exhibit similar trends to the Jackson and Streator [14] multiscale

model. This similarity is shown in Figs. ( ?? and ??) for these surface profiles.
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5.6 Elasto-plastic and elastic comparison

A comparison of elasto-plastic and elastic rough surface contact areas shows an expected

trend. In Figs. ( 5.8, 5.9, and 5.9) we can see that model predicts a larger non-dimensional

contact area as a function of non-dimensional surface load for the elasto-plastic case. This is

in agreement with the fact that large contact areas are produced when a surface is deforming

elasto-plastically. We can also see that the predicted real area of contact for both elastic and

elasto- plastic as function of applied is linear in nature. The Greenwood et al. [29] statistical

model and the Archard’s [40] protuberence theory also show similar trends. Furthermore

Amonton’s law of friction of can also be explained from the linear relationship between

contact area and applied load. The real contact area predicted by the multiscale model

is a function of the applied load. This relationship can be mathematically equated by

introducing a non-dimensional contact factor.

Ar = Cs · Fy (5.7)

The friction force Fµ can be represented as a product of real area of contact and the Shear

strength τy.

Fµ = Ar · τy (5.8)

Now, susbstituing for Ar from Eq. 5.7 into Eq. 5.8 yields the following:

Fµ = Cs · τy (5.9)
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Eq. 5.9 can be viewed as the Amonton’s law of friction for a body experiencing normal

reaction on a rough surface. In other words, the friction force, Fµ, appears to be related

to the normal force, Fy, by a constant friction coefficient. This is therefore in accordance

with one of the empirical ’law of friction’. This model can also be used to predict electrical

contact resistance and thermal contact resistance, adhesion and wear.
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Figure 5.9: Elastic and Elasto-Plastic contact area versus applied load for surface 2.
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Figure 5.10: Elastic and Elasto-Plastic contact area versus applied load for surface 3.
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Chapter 6

Conclusions

The contact problem comprised of an elasto-plastic deformable sinusoidal surface and a

rigid flat was analyzed and modeled using the finite element method. The numerical analysis

of the current finite element model provided an approximate solution for the elasto-plastic

regime of sinusoidal contact. An empirical equation based on previous sinusoidal elastic

contact models and elasto-plastic spherical contact models was formulated to fit the FEM

data. Dimensionless expressions were empirically derived for the mean contact pressure

which causes complete contact during large elasto-plastic deformations. By normalizing

the contact area and the mean contact pressure, the current model provides analytical

expressions of contact area as a function of pressure for the elasto-plastic regime. The

expression for the contact area for the sinusoidal contact problem was obtained by modifying

the Kogut and Etsion model [2] and the elastic sinusoidal models [1]. The errors in the

numerical fits are fairly low (less than 5%) and suggest that the fits are reasonable. These

equations should prove useful for modeling contact between rough periodically structured

surfaces and in multiscale rough surface contact models.

The multiscale contact model utilizing the sinusoidal contact deformation model was

developed for the elastic and the elasto-plastic cases. The contact area as a function of

applied load was predicted using the model. The model predicted a linear trend as expected

both for the elastic and the elasto-plastic sinusoidal asperity deformation models. The

predicted area of contact was compared between the elastic and the elasto-plastic cases. As

expected the elasto-plastic case predicted more area of contact. The frequency distribution
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of surface profiles in a multiscale model is a Fourier series which is a series of sine and

cosine wave forms. In keeping with inherent property of the model, the sinusoidal contact

model seems to be a good choice for a asperity deformation model. The multi-scale model

by Jackson and Streator [14] uses a spherical asperity deformation model for both elastic

and elasto-plastic cases, which is different from the current multi-scale contact model. The

most significant weakness of the multiscale model is the assumption that all asperites at a

given frequency level exhibit deformation characteristics under indentical load conditions.

This means that a asperities of given wavelength may not reside at different heights.
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Appendix A

Derivation of critical values for sinusoidal contact

The critical or initial interference to cause yielding can be derived independently of

hardness as

ωc =




π · C · Sy

2 · E′

2

R


 (A.1)

where C is given by

C = 1.295 exp(0.736 · ν) (A.2)

and the Poisson’s ratio of the material that has the lowest value of C · Sy, and thus yields

first should be used. The critical force, Fc is then calculated at the critical interference, ωc,

to be

Fc =
4

3





R

E′





2


C

2
· π · Sy





3
(A.3)

Similarly, the critical contact area is

Ac = π3




CSyR

2E′





2
(A.4)
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By dividing the critical force (Eq. (A3)) by the critical area (Eq. (A4)) the critical contact

pressure is defined as

pc =




2CSy

3



 (A.5)

These critical values can be modified for use in the sinusoidal case considered in this work

by substituting in the relation

R =




1

4π2∆f2



 (A.6)

which is the radius of curvature for the tip of a sinusoidal surface. In addition, there are

actually two sphere-like peaks of contact which occur during a λ2 area of sinusoidal contact

(see Fig. 1). This results in a modified critical force given by

Fc =
1

6π





1

∆f2E′





2


C · Sy

2





3
(A.7)

Similarly, the modified critical contact area is

Ac =
2

π





C · Sy

8∆f2E′





3
(A.8)

Since R does not appear in Eq. (A5), the critical pressure is not influenced by δ. It

should be noted that Eqs. (A5, A7 and A8) are only valid for the initial stages of con-

tact between sinusoidal surfaces (when the contacting surfaces are geometrically similar to
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spheres). However, these critical values are useful in determining when a sinusoidal contact

begins deforming in the elasto-plastic range.
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Appendix B

matlab code for contact area versus frequency iteration

hx = xlsread(′sdata′, 1,′ c2 : c3901′);
hx = hx ∗ 10−10;
v = length(hx);

/********Length of sample********/

L = 400e− 6;

/********Fourier transform of surface profile********/

v = v/2;
Y = fft(hx, v)/v;
v = v/2;
Y Y = abs(Y );
Y Y = sqrt(Y. ∗ conj(Y ));

/********Material properties********/

E = 1/(1− .332) ∗ 200 ∗ 109;
Sy = 1e8;
v1 = 0.33;

/********Johnson area coeffients********/

w2 = 3/2/pi;
w3 = sqrt(2) ∗ pi ∗ E;
w4 = 3/8/pi;
k = 1;

/********Initial area and Intial load********/

Ari = 3.3 ∗ 1.5 ∗ 10( − 6);
Fa = 0.0001 ∗ E ∗Ari;

/********Highest level of applied load********/
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for(j = 100)
Lo = Fa ∗ (10((j − 1)/100− 5));
Lo1(j) = Lo/E/Ari;
Atotal(1) = Ari;
Atotal(2) = Atotal(1);
Atotalep(1) = Ari;
Atotalep(2) = Atotalep(1);

/********Frequency level iteration********/

for(i = 2 : v)

I(i− 1) = i;

/********Amplitude and Frequency calculation********/

beta = Y Y (i);
f = (i− 1)/L;
l = 1/f ;
h = 2 ∗ f2;
C3 = Lo/((Atotal(i− 1)));
pbar = (w3 ∗ beta ∗ f);
prat = C3/pbar;

/********Elastic multiscale model********/

if(C3 > pbar)
Af(i) = Atotal(i− 1)/h/Atotal(i− 1);
else

AJ1 = (2 ∗ pi/f2) ∗ (w4 ∗ prat)(2/3);
AJ2 = (1/f2) ∗ (1− (w2) ∗ (1− prat));

/********Area comparison for every frequency level********/

if(prat < 0.8)

Af(i) = AJ1 ∗ (1− (prat)(1.51)) +AJ2 ∗ (prat)(1.04);

else

Af(i) = AJ2;
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end

end

Atotal(i) = Atotal(i− 1) ∗ h ∗Af(i);

if(Atotal(i− 1) > Atotal(i))

a(j) = Atotal(i);
be(i− 1) = a(j)/Ari;

else

Atotal(i) = Atotal(i− 1);
a(j) = Atotal(i);
be(i− 1) = a(j)/Ari;

end

/********Elasto-plastic multiscale model********/

C4 = Lo/Atotalep(i− 1);
Fasp = C4/f2;
pbar = (w3 ∗ beta ∗ f);
pbarep = pbar ∗ (4.172 ∗ Sy/E + 0.0173) ∗ sqrt(beta ∗ f);

if(pbarep > pbar)
pbarep = pbar;
end

/********Calculation of constants********/

C = 1.295 ∗ exp(0.736 ∗ v1);
d = 3.8 ∗ (E ∗ beta/Sy/l)0.11;

/********Critical area and Critical force********/

Fcrit = 1/6/pi ∗ (1/beta/f2/E)2 ∗ (C/2 ∗ Sy)3;
Acrit = (2/pi) ∗ (C ∗ Sy/8/beta/f2/E)2;

/********Elasto-plastic area comparison********/
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if(Fasp > Fcrit)

if(C4 > pbarep)
Afep(i) = Atotalep(i− 1)/h/Atotalep(i− 1);
else

Aep = 2 ∗Acrit(d/(1 + d)) ∗ (3 ∗ C4/f2/4/C/Sy)(d/(1 + d));
AJ2ep = (1/f2) ∗ (1− 3/2/pi ∗ (1− C4/pbarep));
Afep(i) = Aep ∗ (1− (C4/pbarep)1.51) +AJ2ep ∗ (C4/pbarep)1.04;

end

else

if(C4 > pbar)
Afep(i) = Atotalep(i− 1)/h/Atotalep(i− 1);
else

A1ep = (2 ∗ pi/f2) ∗ (3/8/pi ∗ (C4/pbar))(2/3);
A2ep = (1/f2) ∗ (1− 3/2/pi ∗ (1− (C4/pbar)));
if((C4/pbar) < .8)
Afep(i) = A1ep ∗ (1− (C4/pbar)1.51) +A2ep ∗ (C4/pbar)1.04;
else

Afep(i) = A2ep;

end

end

end

Atotalep(i) = Atotalep(i− 1) ∗ h ∗Afep(i);

if(Atotalep(i− 1) > Atotalep(i))
bep(i− 1) = Atotalep(i);
b1ep(i− 1) = bep(i− 1)/Ari;
else

Atotalep(i) = Atotalep(i− 1);
bep(i− 1) = Atotalep(i);
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b1ep(i− 1) = bep(i− 1)/Ari;
end

end

end

/********Lowest level of applied load********/

for(j = 10)
Lo = Fa ∗ (10((j − 1)/100− 5));
Lo1(j) = Lo/E/Ari;
Atotal(1) = Ari;
Atotal(2) = Atotal(1);
Atotalep(1) = Ari;
Atotalep(2) = Atotalep(1);

/********Frequency level iteration********/

for(i = 2 : v)

I(i− 1) = i;

/********Amplitude and Frequency calculation********/

beta = Y Y (i);
f = (i− 1)/L;
l = 1/f ;
h = 2 ∗ f2;
C3 = Lo/((Atotal(i− 1)));
pbar = (w3 ∗ beta ∗ f);
prat = C3/pbar;

/********Elastic multiscale model********/

if(C3 > pbar)
Af(i) = Atotal(i− 1)/h/Atotal(i− 1);
else

AJ1 = (2 ∗ pi/f2) ∗ (w4 ∗ prat)(2/3);
AJ2 = (1/f2) ∗ (1− (w2) ∗ (1− prat));
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/********Area comparison for every frequency level********/

if(prat < 0.8)

Af(i) = AJ1 ∗ (1− (prat)(1.51)) +AJ2 ∗ (prat)(1.04);

else

Af(i) = AJ2;

end

end

Atotal(i) = Atotal(i− 1) ∗ h ∗Af(i);

if(Atotal(i− 1) > Atotal(i))

a(j) = Atotal(i);
be(i− 1) = a(j)/Ari;

else

Atotal(i) = Atotal(i− 1);
a(j) = Atotal(i);
be(i− 1) = a(j)/Ari;

end

/********Elasto-plastic multiscale model********/

C4 = Lo/Atotalep(i− 1);
Fasp = C4/f2;
pbar = (w3 ∗ beta ∗ f);
pbarep = pbar ∗ (4.172 ∗ Sy/E + 0.0173) ∗ sqrt(beta ∗ f);

if(pbarep > pbar)
pbarep = pbar;
end

/********Calculation of constants********/
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C = 1.295 ∗ exp(0.736 ∗ v1);
d = 3.8 ∗ (E ∗ beta/Sy/l)0.11;

/********Critical area and Critical force********/

Fcrit = 1/6/pi ∗ (1/beta/f2/E)2 ∗ (C/2 ∗ Sy)3;
Acrit = (2/pi) ∗ (C ∗ Sy/8/beta/f2/E)2;

/********Elasto-plastic area comparison********/

if(Fasp > Fcrit)

if(C4 > pbarep)
Afep(i) = Atotalep(i− 1)/h/Atotalep(i− 1);
else

Aep = 2 ∗Acrit(d/(1 + d)) ∗ (3 ∗ C4/f2/4/C/Sy)(d/(1 + d));
AJ2ep = (1/f2) ∗ (1− 3/2/pi ∗ (1− C4/pbarep));
Afep(i) = Aep ∗ (1− (C4/pbarep)1.51) +AJ2ep ∗ (C4/pbarep)1.04;

end

else

if(C4 > pbar)
Afep(i) = Atotalep(i− 1)/h/Atotalep(i− 1);
else

A1ep = (2 ∗ pi/f2) ∗ (3/8/pi ∗ (C4/pbar))(2/3);
A2ep = (1/f2) ∗ (1− 3/2/pi ∗ (1− (C4/pbar)));
if((C4/pbar) < .8)
Afep(i) = A1ep ∗ (1− (C4/pbar)1.51) +A2ep ∗ (C4/pbar)1.04;
else

Afep(i) = A2ep;

end

end

end

82



Atotalep(i) = Atotalep(i− 1) ∗ h ∗Afep(i);

if(Atotalep(i− 1) > Atotalep(i))
bep(i− 1) = Atotalep(i);
b1ep(i− 1) = bep(i− 1)/Ari;
else

Atotalep(i) = Atotalep(i− 1);
bep(i− 1) = Atotalep(i);
b1ep(i− 1) = bep(i− 1)/Ari;
end

end

end

figure(1);
loglog(I, be,′ bo′, I, b1ep,′ rs′, I, b2e,′ bx′, I, b21ep,′ rd′)
xlabel(′Frequencyiteration, i′)
ylabel(′Ar/A

′
n)

set(z,′ Interpreter′,′ tex′)
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Appendix C

matlab code for frequency spectrum and load versus

contact area

hx = xlsread(′sdata′, 1,′ b2 : b3901′);
hx = hx ∗ 10−10;

/********Length of the sample********/

v = length(hx);
L = 400e− 6;

/********Fourier transform of surface profile********/

v = v/2;
Y = fft(hx, v)/v;
v = v/2;
Y Y = sqrt(Y. ∗ conj(Y ));

/********Material properties********/

E = 1/(1− .332) ∗ 200e9;
Sy = 1e9;
v1 = 0.33;

/********Johnson area coefficients********/

w2 = 3/2/pi;
w3 = sqrt(2) ∗ pi ∗ E;
w4 = 3/8/pi;
k = 1;

/********Nominal area and Initial Load********/

Ari = 3.3 ∗ 1.5 ∗ 10( − 6);
Fa = 0.0001 ∗ E ∗Ari;

I = 1 : 1 : v + 1;
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II = log(I);

/********Load iteration procedure from the intial load********/

for(j = 1 : 1 : 1000)
Lo = Fa ∗ (10(5− (j − 1)/100));
Lo1(j) = Lo/E/Ari;
Atotal(1) = Ari;
Atotal(2) = Atotal(1);
Atotalep(1) = Ari;
Atotalep(2) = Atotalep(1);

/********Frequency iteration for every level of applied load********/

for(i = 2 : v)

/********Amplitude and Frequency calculation********/

beta = Y Y (i);
f = (i− 1)/L;
l = 1/f ;
h = 2 ∗ f2;
C3 = Lo/((Atotal(i− 1)));

/********Elastic multiscale model********/

/********Critical pressure and pressure ratio for elastic case********/

pbar = (w3 ∗ beta ∗ f);
prat = C3/pbar;

/********Area comparison for every frequency level********/

if(C3 > pbar)
Af(i) = Atotal(i− 1)/h/Atotal(i− 1);
else
AJ1 = (2 ∗ pi/f2) ∗ (w4 ∗ prat)(2/3);
AJ2 = (1/f2) ∗ (1− (w2) ∗ (1− prat));

if(prat < 0.8)
if(i) = AJ1 ∗ (1− (prat)(1.51)) +AJ2 ∗ (prat)(1.04);
else
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Af(i) = AJ2;
end
end
Atotal(i) = Atotal(i− 1) ∗ h ∗Af(i);

if(Atotal(i− 1) > Atotal(i))
a(j) = Atotal(i);
else
Atotal(i) = Atotal(i− 1); v
a(j) = Atotal(i);

end

/********Elasto-plastic multiscale model********/

/********Initial load, asperity force and critical pressure calculation********/

C4 = Lo/Atotalep(i− 1);
Fasp = C4/f2;
pbar = (w3 ∗ beta ∗ f);
pbarep = pbar ∗ (4.172 ∗ Sy/E + 0.0173) ∗ sqrt(l/beta);

/********Comparing elastic and elasto-plastic critical pressures********/

if(pbarep > pbar)
pbarep = pbar;
end

/********Calculation of constants for elasto-plastic case********/

C = 1.295 ∗ exp(0.736 ∗ v1);
d = 3.8 ∗ (E ∗ beta/Sy/l)0.11;
Fcrit = 1/6/pi ∗ (1/beta/f2/E)2 ∗ (C/2 ∗ Sy)3;
Acrit = (2/pi) ∗ (C ∗ Sy/8/beta/f2/E)2;

/********Comparing asperity and critical force********/

if(Fasp > Fcrit)
if(C4 > pbarep)
Afep(i) = Atotalep(i− 1)/h/Atotalep(i− 1);
else

86



/********Elasto-plastic area comparison********/

Aep = 2 ∗Acrit(1/(1 + d)) ∗ (3 ∗ C4/f2/4/C/Sy)(d/(1 + d));
AJ2ep = (1/f2) ∗ (1− 3/2/pi ∗ (1− C4/pbarep));
Afep(i) = Aep ∗ (1− (C4/pbarep)(1.51)) +AJ2ep ∗ (C4/pbarep)(1.04);
end
else
if(C4 > pbar)

Afep(i) = Atotalep(i− 1)/h/Atotalep(i− 1);
else

A1ep = (2 ∗ pi/f2) ∗ (3/8/pi ∗ (C4/pbar))(2/3);
A2ep = (1/f2) ∗ (1− 3/2/pi ∗ (1− (C4/pbar)));
if((C4/pbar) < .8)
Afep(i) = A1ep ∗ (1− (C4/pbar)(1.51)) +A2ep ∗ (C4/pbar)(1.04);
else
Afep(i) = A2ep;
end
end
end

Atotalep(i) = Atotalep(i− 1) ∗ h ∗Afep(i);
if(Atotalep(i− 1) > Atotalep(i))
b(j) = Atotalep(i);
else
Atotalep(i) = Atotalep(i− 1);
b(j) = Atotalep(i);

end

end
aar(j) = a(j)/Ari;
aarep(j) = b(j)/Ari;
end

xlswrite(′ssdata′, aar′, 1,′ d1′)
xlswrite(′ssdata′, aarep′, 1,′ e1′)
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/********Plots********/

figure(2);
loglog(Lo1, aar,′ k :′, Lo1, aarep,′ k − x′)
axis([010e− 4010e− 1])
xlabel(′F/EA′

n)
ylabel(′Ar/A

′
n)

z = legend(′Elastic′,′Elasto− plastic′, 2);
set(z,′ Interpreter′,′ tex′)

figure(3);
x = logspace(−1, 3);
loglog(I, Y Y (1 : v + 1),′ k∗′)
xlabel(′i′)
ylabel(′LogAmplitude(m)′)
gridon
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