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Abstract 

 

The growing awareness of global warming promotes great interest in investigating the 

magnitude, spatial, and temporal patterns of the major greenhouse gas (CO2, CH4, and N2O) 

emissions in the earth systems. The Greenhous Gas (GHG) emissions from inland waters, 

including rivers, lakes, and reservoirs, remain largely uncertain at the global and continental 

scales. Empirical-based approaches are widely used to assess the inland water CO2, CH4, and 

N2O emissions. However, the accuracy of the empirical approaches would substantially decrease 

with the environmental condition changes mainly due to the inherent weakness in explaining the 

mechanisms of carbon and nitrogen dynamics in the terrestrial and aquatic systems. Inspired by 

the improved understanding of the mechanisms controlling carbon and nitrogen dynamics at the 

terrestrial-aquatic interface, a newly developed scale adaptive water transport model was coupled 

with the Dynamic Land Ecosystem Model (DLEM) to construct a submodule called – DLEM 

Terrestrial Aquatic Interface Model (DLEM-TAIM) to better represent the river routing and 

associated physical and biogeochemical processes. To the best of our knowledge, the DLEM-

TAIM is the first process-based model that is capable of concurrently estimating CO2, CH4, and 

N2O emissions from inland waters. First, we used Chesapeake Bay watershed as a testbed for 

testing the performance of the coupled model in simulating hydrological processes, river 

temperature and carbon dynamics at the land-aquatic continuum. Then we nested the inland 

water GHG model into the DLEM-TAIM modeling framework and applied the coupled model to 

the Conterminous United States (CONUS). Driven by a gridded dataset at a spatial resolution of 

5 arc-minutes, we examined how multiple changes in climate, land use/land cover, elevated CO2, 
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nitrogen deposition and nitrogen fertilizer use affected the GHG emissions from inland water and 

the relative role of high-order streams and headwater streams in the continental carbon budget 

for the time period from 1860 to 2018. Our simulation results show that the emissions of CO2, 

CH4, and N2O from inland waters in the recent decade (2009-2018) were 201.73 ± 30.0 Tg 

C/year, 7.8 ± 0.6 Tg CH4-C/year , 60.53  ± 8.7 Gg N2O-N/year, which increased by 29.7%, 

33.26%, and 58.2% since the 1900s, respectively. The Global Warming Potential (GWP) at the 

100-year time horizon (GWP-100 years) for CO2, CH4, N2O from inland waters are 0.73 ± 0.11, 

0.04 ± 0.01, 0.29 ± 0.02 Pg CO2 equiv. yr−1, respectively. The total of GWP of the three GHG 

emissions from inland waters over the CONUS was 1.06 ± 0.13 Pg CO2 equiv. yr−1, which is 

comparable to terrestrial carbon sink over CONUS. Thus, the continental carbon and GHG 

budget need to consider emissions from inland waters. 
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Chapter 1: Introduction 

 

1.1 Background 

The concentration of atmospheric greenhouse gases (GHGs), including CO2, CH4, and N2O, 

increased by 40%, 150%,  and 20%, respectively, during the past century (Ciais et al., 2014, 

2008; Montzka et al., 2011). The growing awareness of the negative impact induced by global 

warming prompted great interests of the scientific communities to understand the inherent 

mechanisms controlling the CO2, CH4, and N2O dynamics in the earth systems. Inland waters, 

among the major component of the earth's surface, play active roles in the global or regional 

carbon cycle and GHG emissions (Raymond et al., 2013). The estimated global inland water CO2 

degassing reached 2.1 Pg C yr−1, which is comparable to the land carbon sink with the estimated 

ranges from 1.2 to 3.8 Pg C yr−1 (Regnier et al., 2014). It has been suggested that inland water 

releases significant CO2 with the fluxes rate much higher than that of the land surface (Butman 

and Raymond, 2011). Not only CO2 emission, significant CH4 and N2O emissions have been 

observed from inland waters worldwide (Bastviken et al., 2004; Kroeze et al., 2005; Stanley et 

al., 2016). The greenhouse gas effect of CH4 and N2O are much higher than that of the CO2, with 

the Global Warming Potential (GWP) of 28-32 and 298 times of CO2, respectively (Ciais et al., 

2014). Therefore, concurrently estimating the contribution of inland water CO2, CH4 and N2O 

emissions became a critical issue to close the global or regional GHG budget. 

Inland water GHG emissions were poorly constrained at the global and continental 

scales. The global estimates of the riverine CO2 emissions range from 540 Tg C/yr to 1.7 Pg C 

/yr (Lauerwald et al., 2015; Raymond et al., 2013). The riverine CH4 emission remains highly 
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uncertain with the magnitude ranges from 1.1 to 20.1 CH4-Tg C/year.  Little is known about the 

N2O emission from rivers, with the magnitude ranges from 0.03 Tg N2O-N / year to 2.1 Tg N2O 

-N/ year globally (Beaulieu et al., 2011; Hu et al., 2016; Kroeze et al., 2005; Maavara et al., 

2018). The budget of lake N2O is still in the debate regarding the role of lakes as N2O sink or 

sources at large scale (Mengis et al., 1996; Webb et al., 2019). More reliable modeling tools are 

needed to reduce uncertainties. 

Most of the previous researches used empirical-based approaches to estimate the CO2, 

CH4, and N2O emissions from lakes, reservoirs, and rivers, respectively. Raymond et al. (2013) 

used water quality data, including the concentration of inorganic carbon, alkalinity, water 

temperature, to quantify the pressure of carbon dioxide (pCO2) and the associated CO2 evasions. 

They directly multiplied the estimated fluxes rates with the surface area of the water body to 

assess the total emissions, which was unable to quantify the temporal pattern of the CO2 

emissions over time. A similar approach named emission factor (EF) has been widely deployed 

to quantify CH4, and N2O emissions from inland waters in Intergovernmental Panel on Climate 

Change  (IPCC) reports and research articles (Metz et al., 2005; Beaulieu et al., 2011; Gardner et 

al., 2016). However, the current empirical-based approaches established on statistical regression 

cannot reveal the mechanisms responsible for CO2, CH4 and N2O fluxes in the aquatic systems. 

The accuracy of the empirical equation or data-based analysis would decrease when the 

environmental condition changes, which undermine its application in long-term assessment and 

future projection under the context of aggravated climate change and intensive human 

disturbances. 

Inland water emissions strongly regulated by climate change and human disturbances. 

The CO2 emission is closely relevant to the hydraulics loading, which is positively correlated 
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with precipitation (Liu and Raymond, 2018). The raised temperature directly influences the 

equilibrium concentration of CO2, CH4 and N2O dissolved in water, which in turn moderates the 

gas exchange rate between the air-water interfaces (Sander, 2015). Human activities, such as 

forest clear-cutting, induced large carbon loading from land to river, which largely increased 

riverine CO2 and CH4 evasions (Noacco et al., 2017). On the other hand, agriculture activities 

increased the alkalinity of the rivers which significantly inhibit the CO2 emissions from waters 

(Raymond and Cole, 2003).  

Motivated by the increased understanding of the production and consumption of CO2, 

CH4 and N2O in waters through field experiments (Beaulieu et al., 2011, 2010; Houghton, 2010; 

Quick et al., 2019; Stanley et al., 2016), process-based models or semi-empirical models have 

been developed to estimate the magnitude and spatio-temporal patterns of GHG emissions. 

Laruelle et al. (2015) developed a process-based model that decoupled with the earth system 

models to simulate the CO2 evasion along the land-aquatic continuum over the north-eastern 

region of the Conterminous United States (CONUS). Similarly, the semi-processed based 

riverine model has been proposed and decoupled with the GlobalNEWs model to estimate N2O 

emissions from rivers at the global level (Maavara et al., 2018). Thus, the hydrological models 

are the key component of the inland water GHG modeling. 

It should be noted that rivers not only bridge up the terrestrial and oceanographic 

ecosystems but also link the inland waters (rivers, lakes, and reservoirs). Thus, large scale river 

routing models with lakes mixing are of great importance to represent the lateral transport of 

carbon and nitrogen constitutes and the associated GHG emissions from inland waters. Wollheim 

et al. (2008) used a semi-empirical large scale hydrological model to estimate lateral nitrogen 

transport from land to ocean, and the nitrogen loading products of this study have been applied to 
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estimate the riverine N2O emissions (Beaulieu et al., 2011). The riverine carbon and nitrogen 

fluxes estimated by Global-News model have been applied extensively to assess the CO2 and 

N2O emissions globally (Kroeze et al., 2005; Kroeze and Seitzinger, 1998; Raymond et al., 2013; 

Seitzinger and Kroeze, 2000).  Therefore, accurately modeling the riverine processes is critical to 

understand the carbon and nitrogen balance of the land-aquatic system. 

Since most previous riverine studies only focus on high-order stream, recent studies 

suggest that headwater streams play important roles in global carbon and nitrogen cycles, and 

GHG budgets: (1) Headwater streams are hotspots of carbon dioxide emissions, which account 

for 70% of total emissions from global rivers (Raymond et al., 2013). (2) Headwater streams also 

strongly regulate the nitrogen removal of the river basin (Grant et al., 2018). (3) Recent studies 

investigated the N2O emission along with different stream orders and found that the 1st order 

streams released a large proportion of the N2O gas in the corn-belt located at the central region of 

the CONUS (Garnier et al., 2009; Turner et al., 2015). (4) Headwater streams are located at the 

interface between the land and aquatic systems, thus they are very sensitive to climate change 

and human disturbances (Isaak et al., 2016a). All these confirm that understanding the physical 

and biogeochemical processes within headwater streams is critical to estimate the inland water 

GHG emissions. However, conventional large-scale river routing models were conducted at 

coarse spatial resolutions due to the limited computational resources, which could not well 

capture the processes within small headwater streams (1st – 3rd order streams). Therefore, 

representing the processes within headwater streams river remain a challenge, which 

substantially hampers the performance of the current large-scale hydrological models in 

estimating GHG emissions. 
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To better understand the dynamics of CO2, CH4, and N2O fluxes in inland waters and the 

consequential GHG emissions at the continental scale, we improved the hydrological model and 

the associated biogeochemical component within the terrestrial ecosystem modeling framework 

– DLEM (Dynamic land ecosystem model) (Tian et al., 2016). We applied the coupled model to 

the Contiguous United States (CONUS) to estimate the GHG emissions and the relative role in 

the continental carbon budget. 

 

1.2 Study area 

 

Figure 1-1. The major plant function types over the Contiguous U.S. 

 
 (BBDF: Boreal Broadleaf Deciduous Forest, BNDF: Boreal Needleleaf Deciduous Forest,  

TBDF: Temperate Broadleaf Deciduous Forest, TBEF: Temperate Broadleaf Evergreen Forest, 

TNEF: Temperate Needleleaf Evergreen Forest, TrBDF: Tropical Broadleaf Deciduous Forest, 

TrBEF: Tropical Broadleaf Evergreen Forest, Eshrub: Evergreen Shrub, Dshrub: Deciduous 
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Shrub, C3G: C3 Grassland, C4G C4 Grassland, Hwet: Herbaceous Wetland, BWwet: Boreal 

Woody Wetland, TWwet: Tropical Woody Wetland ) 

 

This study focusses on the Conterminous United States (CONUS) (Figure 1-1), which is located 

at the center of the North America continent. The region spans 4,509 km from Florida (east) to 

the State of Washington (West) and extends 2,660 km from the Northern border to the South. As 

the major land of the world’s most powerful country, this region covers 8,080,464 km2 and 

sustains 327.2 million people based on the census 2018. The overall climate condition is 

temperate but becomes subtropical in the south. The dominant plant function types in the eastern 

CONUS are temperate evergreen needle leaf and deciduous broadleaf. The evergreen shrubland 

and C3 grassland are the major natural vegetation types over the center of the CONUS. In the 

western region, the temperate needle leaf forest and deciduous shrubland cover most of the 

spaces. 

1.3. Research objectives 

The overarching goal of this study is to predict the GHG emissions from inland waters of the  

CONUS and understand the inherent mechanism underneath the simulated results. The 

attribution analysis would be helpful to evaluate the contribution of each environmental factor to 

the GHG emission from inland water, which would have explicit implications for land 

management. 

We raise three essential research questions: 

Question 1: What is the impact of climate change or anthropogenic disturbances on the spatial 

and temporal patterns of run-off and water temperature?  
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Hypothesis: Significant climate change and extensive human activities have substantially altered 

the land processes during the last century. The in-stream processes would follow the changes in 

land processes. 

Question2: What is the magnitude of CO2, CH4, and N2O emissions from inland waters? How 

did the GHG emissions from inland waters change in the past century?  

Hypothesis: The magnitude of CO2, CH4, and N2O emissions from inland waters can be better 

estimated by the improved riverine biogeochemistry model. The changes in land carbon and 

nitrogen loading to rivers would influence the GHG balance in inland waters. 

Question 3: How much do climate and human activities affect the inland water GHG budget? 

Hypothesis: Climate change and hydraulic loading increased carbon and nitrogen loading from 

land to rivers, which in turn increased GHG emission from inland waters. Human activities 

induced more N loading to contribute to the increase in GHG emissions.  

Our strategies to answer these questions include the following tasks:  

Task 1: Examine the changes in water temperature induced by climate change or land-use 

conversion.   

Task 2: Investigate the CO2, CH4, and N2O emissions from inland waters. 

Task 3: Conduct factorial experiments to quantify the contribution of environmental factors, 

including elevated atmospheric CO2 concentration, climate inputs, land-use conversions, and 

nitrogen fertilizer/manure application, nitrogen deposition, to the inland water GHG emissions. 

1.4 Research methods 

1.4.1. The Dynamic Land Ecosystem Model (DLEM model)  

Dynamic Land Ecosystem Model 2.0 (DLEM 2.0) (Figure 1-2 a) is a fully distributed land 

biosphere model that explicitly simulates the vegetation dynamics, soil biogeochemistry, and the 
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associate land carbon cycle, nitrogen cycle, and fluxes of water and nutrients. The land model of 

DLEM quantifies runoff, carbon, and nitrogen loading as the initial condition of the aquatic 

module. Recently, DLEM has been extensively used in the eastern coast and Mississippi river 

basin to estimate the carbon and nitrogen fluxes at the terrestrial-aquatic interface.  

 

Figure 1-2 The general Framework of Dynamic Land Ecosystem Model - Terrestrial Aquatic 

Interface Model (DLEM –TAIM). (a). The concept model of DLEM. (b). The concept model of 

scale adaptive water transport scheme. 

 

1.4.2. Scale adaptive water transport scheme 

To better represent the riverine processes, a scale adaptive and fully physical-based scheme 

named Model Of Scale Adaptive River Transport (MOSART) (Figure 1-2 b) was incorporated 

into DLEMframework (Li, 2013, 2015). We named this couple modeling system as DLEM –

TAIM. The MOSART model helps to reduce both spatial and temporal scale effects by 

considering the sub-grid routing processes. MOSART model separates the water transport within 

the grid cells into three components: hillslope flow, subnetwork flow, and main channel flow. 
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DLEM land model provides surface runoff and drainage runoff to the riverine model, and 

hillslope flow represents the merging of surface runoff. The water of hillslope flow would 

contribute to the subnetwork flow combined with groundwater discharge. There is a groundwater 

pool nested into the grid unit, which receives water from drainage runoff and flows out with 

parameterized residence time. The main channel flow combines inflow water from upstream grid 

cells and local subnetworks, and routes to the downstream grid cell. All the channel routing 

processes used a hydraulic-based river routing method (kinematic wave methods).  

1.4.3. Coupling water temperature with the DLEM-TAIM   

Inspired by the newly developed hydrological framework, we developed a fully physical-based 

water temperature model. We improved the soil temperature component in the DLEM land 

model to represent the effect of the Leaf Area Index (LAI) and litter equivalent LAI to the soil 

temperature.  We linked the soil water temperature to the groundwater heat input. The 

temperature of both groundwater and surface water function as boundary conditions, forcing the 

water temperature in each river segment along the streamline.  

1.3.4. Riverine biogeochemistry and GHG dynamics 

Align with the new feature of the water transport model; we extended the biogeochemical 

processes from the main channels to the subnetworks within a grid unit. We developed a process-

based riverine CH4 and N2O model and incorporated it into the DLEM C-N coupled modeling 

framework. The production of CH4 is from the decomposition of organic carbon in the water 

column and bottom sediment. The oxidation of CH4 is associated with the denitrification of NO3- 

within waters. Both nitrification and denitrification would contribute to the production of N2O in 

waters. 
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1.5 Simulation protocol  

We set-up an equilibrium run for all the grid units with all the model driving forces keep 

consistent with the year 1860. When the carbon, nitrogen and water pool of one grid unit reaches 

steady-state, the equilibrium run finishes.  To smooth the jumping effect of fluxes from 

equilibrium run to the transient run, we conducted a spin-up run with climate inputs selected 

randomly during 1860-1890. After the spin-up run, we conducted the transient run from the year 

1860 to 2018 with all the climate forcing, land-use change, CO2 concentration, N deposition, and 

N fertilizer application changed year-by-year). We calibrated and validated the model 

performance against observations from the major rivers across the contiguous U.S.  

To attribute the contribution of environmental factors to the riverine fluxes and GHG degassing, 

we designed factorial experiments with each of the driving forces keep consistent with the year 

1860. We considered the simulation with all the driving forces changed over time as all-combine 

run. The contribution of environmental factors to the changes in GHG emissions was derived 

from the comparison between factorial experiments with all-combine run.  

1.6 Organization of dissertation 

The dissertation is organized into six standalone chapters. Chapters two to five are organized in 

the format of journal articles and will be submitted to different professional journals.  

Chapter 2: Coupling DLEM with a scale adaptive water transport model. 

In chapter two, we coupled a scale adaptive water transport scheme with our land biosphere 

model (DLEM) and named it as DLEM –TAIM. We described detailed information of the 

hydrological model structure, input data processing, model parameters, and validate the modeled 

water discharge against observations. 
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Chapter 3: Assessing impacts of global change on the water temperature of headwater and high-

order streams across the Mid-Atlantic region of the U.S. by using a coupled modeling framework 

In chapter three, we developed a fully physical-based water temperature model within the 

DLEM- TAIM framework, which links the thermal energy balance of land and aquatic systems 

together. Therefore, we can better understand how land processes affect water discharge and 

water temperature, which is essential to the riverine biogeochemistry. This study used the Mid-

Atlantic Region of the U.S. as the testbed. 

Chapter 4: Modeling carbon export and CO2 evasion from river network: Application to 

Chesapeake Bay Watershed and Delaware River Basin. 

In chapter four, we mostly focus on riverine carbon dynamics. We developed the riverine CO2 

evasion model under the DLEM- TAIM modeling framework. We used the Chesapeake Bay and 

Delaware Bay region of the U.S. to test our model. We validated the riverine carbon exports and 

compared our estimated CO2 degassing with previous studies.  We highlighted the importance of 

1st order stream (or refers to as small steams) in riverine CO2 emissions, which can be well 

captured by our scale adaptive riverine model.  

Chapter 5: Assessing the spatial and temporal variations in CO2 and CH4 emissions from inland 

waters over the Conterminous U.S. 

In chapter five, we developed a process-based riverine CH4 model based on the riverine carbon 

model described in chapter 4 and incorporated it into the DLEM- TAIM modeling framework. 

We applied the riverine carbon model across the contiguous U.S. and validated the riverine 

carbon fluxes of major rivers in the CONUS, and finally predicted the spatial and temporal 

patterns of riverine CH4 concentration and emissions across the CONUS.  

Chapter 6: Increased Riverine N2O emission across the continental U.S. 
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In chapter six, we develop a process-based riverine N2O model within the DLEM- TAIM 

framework. We validated the exports of nitrogen species of the major rivers in the CONUS. We 

also validated the performance of the newly developed model in predicting the spatial and 

temporal patterns of riverine N2O emissions across the CONUS through observations collected 

from the literature review.  

Chapter 7: Summarizing GHG emissions from the inland water systems across the CONUS. We 

discussed the nexus between the triple GHGs within aquatic systems. We quantified the CO2 

equivalent emissions of the triple GHGs and compared them with the U.S. land carbon sink to 

highlight the importance of the inland water GHG emissions. 
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Chapter 2. Coupling DLEM with a scale adaptive water transport model 

 

2.1. Introduction 

Rivers, as referred to as the land-aquatic continuum, bring carbon, nutrient, sediment, and 

thermal energy into the coastal ocean, and play essential roles in the regional carbon and nutrient 

cycles (Regnier et al., 2013). Changes in patterns of flow regimes led to profound physical and 

ecological impacts on the lower reaches of the rivers and the coastal estuaries (Palmer and Ruhi, 

2019). Climate change and human activities substantially influenced the spatial and temporal 

patterns of surface runoff and streamflow (Raymond and Hamilton, 2018).  

To better understand to what extent the changes in environmental conditions would affect 

the flow regimes, we proposed a coupled hydrological modeling framework in this chapter. We 

incorporated a newly developed water transport scheme known as Scale Adaptive Water 

Transport Model (MOSART) (Li et al., 2013) into the framework of the process-based 

ecosystem model -- Dynamic Land Ecosystem Model (DLEM) (Tian et al., 2012; Liu et al., 

2013), aiming to improve the representation of daily freshwater discharge. This newly developed 

modeling framework was named as the Dynamic Land Ecosystem Model- Terrestrial Aquatic 

Interface Model (DLEM-TAIM). The Chesapeake Bay Watershed and Delaware Bay Watershed 

(Figure 2-1), which located in the northeastern of CONUS, experienced significant land-use and 

climatic changes since the beginning of the 20th century (Walsh et al., 2013). The ubiquitous data 

available, including observations of water discharge, water quality filed measurement, land 

management as well as climate inputs, make this region a suitable place as a testing bed of the 

DLEM-TAIM. 
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Figure 2-1. The major plant function types and land-use in Chesapeake Bay Watershed and 

Delaware Bay Watershed.  

 

2.2. The development of the hydrological model DLEM - TAIM 

2.2.1. The Dynamic Land Ecosystem Model (DLEM model) 

The Dynamic Land Ecosystem Model 2.0 (DLEM 2.0) (Figure 2-2. A) is a fully distributed land 

model, which explicitly predict carbon-nitrogen coupled vegetation dynamics (Tian et al., 2012; 
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Chen et al., 2013) and terrestrial water cycle (Liu et al., 2013). This model simulates plant 

growth, soil biogeochemistry, and the associated water fluxes on land driven by the forces 

include climate variables, CO2 concentration, N deposition, and N applications.  

 

Figure 2-2. The general framework of the Dynamic Land Ecosystem Model (A) and Terrestrial 

Aquatic Interface Model (B) (Tian et al., 2015c). 
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The previous DLEM version used Linear Reservoir routing (LRR) method (Coe, 1998; 

Costa and Foley, 1997), which deploys simple empirical linear equations to represent the 

residence time, and outflow rate of the local stream and lake pool which are nested into a grid 

unit. The model has been applied to estimate the fluxes of water, carbon (Tian et al., 2015c), and 

nitrogen (Yang et al., 2015b) from land to the oceans across the CONUS (Figure 2-2. B).  

2.2.2. Hydraulic methods 

Linear Reservoir Routing (LRR) method calculates flow velocity solely based on channel slope, 

which misses critical physical parameters in water transport processes such as roughness, water 

depth, flow distances, etc. (Chow, 1964a). Thus, the hydraulics methods were introduced in our 

model, which solved Saint-Venant equations (SVE) to calculate outflow rates from the current 

grid cell to the downstream grid cell. Conventionally, there are three ways to solve the SVE. The 

full SVE equation, or named as dynamic wave method, contains all the physical variables and 

solving it requires enormous computational resources. Thus, one of its simplified versions, the 

Kinematic Wave Method was introduced in the model (Chow, 1964). Here, the SVE is given as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐿𝐿
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= 𝑞𝑞                                                                            (1) 

𝑆𝑆𝑓𝑓 − 𝑆𝑆0 = 0                                                                                   (2) 

Where Q is outflow rate; h is the depth of runoff; q is lateral inflow from subnetworks; Sf is 

friction gradient; S0 is longitudinal slope of the channel bottom, L is the length of the river 

channel. 

𝑣𝑣 =
1
𝑛𝑛
ℎ
2
3𝑆𝑆0

1
2                                                                                     (3) 

where v is the flow velocity, and n is the Manning’s roughness coefficient. 

Q = 𝑣𝑣ℎ𝐿𝐿 = 𝐿𝐿
𝑛𝑛
ℎ
5
3𝑆𝑆0

1
2                                                                    (4) 
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The equation can be converted as: 

h = �𝑛𝑛
𝐿𝐿
𝑆𝑆0
−12�

3
5

𝑄𝑄
3
5                                                                         (5) 

here we assume: 

𝑎𝑎 = �
𝑛𝑛
𝐿𝐿
𝑆𝑆0
−12�

3
5

                                                                             (6) 

𝑏𝑏 = 3
5
                                                                                   (7) 

then: 

ℎ = 𝑎𝑎𝑄𝑄𝑏𝑏                                                                                (8) 

and equation 1.1 can be modified to: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐿𝐿 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑎𝑎𝑄𝑄𝑏𝑏) − 𝑞𝑞 = 0                                                                 (9) 

We applied the finite difference method to estimate the outflow as:  

∆𝑡𝑡
∆𝑥𝑥
𝑄𝑄𝑖𝑖+1𝑡𝑡+1 + 𝐿𝐿𝐿𝐿(𝑄𝑄𝑖𝑖+1𝑡𝑡+1)𝑏𝑏 = ∆𝑡𝑡

∆𝑥𝑥
𝑄𝑄𝑖𝑖𝑡𝑡+1 + 𝐿𝐿𝑎𝑎(𝑄𝑄𝑖𝑖+1𝑡𝑡 )𝑏𝑏 + 𝑞𝑞𝑖𝑖+1𝑡𝑡+1∆𝑡𝑡                  (10) 

where, 𝑄𝑄𝑖𝑖𝑡𝑡+1 is the discharge of the unit catchment i at period t+1, while 𝑄𝑄𝑖𝑖+1𝑡𝑡+1 is the discharge of 

the last adjacent unit catchment of catchment i at period t+1. 

The equation was solved by using Newton-Raphson method: 

[𝑄𝑄𝑖𝑖+1𝑡𝑡+1]𝑘𝑘+1 = [𝑄𝑄𝑖𝑖+1𝑡𝑡+1]𝑘𝑘 −
∆𝑡𝑡
∆𝑥𝑥�𝑄𝑄𝑖𝑖+1

𝑡𝑡+1�
𝑘𝑘
+𝐿𝐿𝐿𝐿��𝑄𝑄𝑖𝑖+1

𝑡𝑡+1�
𝑘𝑘
�
𝑏𝑏
−∆𝑡𝑡∆𝑥𝑥−𝐿𝐿𝐿𝐿�𝑄𝑄𝑖𝑖+1

𝑡𝑡 �
𝑏𝑏
−𝑞𝑞𝑖𝑖+1

𝑡𝑡+1∆𝑡𝑡

∆𝑡𝑡
∆𝑥𝑥+𝐿𝐿𝐿𝐿𝑏𝑏��𝑄𝑄𝑖𝑖+1

𝑡𝑡+1�
𝑘𝑘
�
𝑏𝑏−1               (11) 

 

2.2.3. Scale adaptive water transport model 

A scale adaptive and fully physical-based model named Model for Scale Adaptive River 

Transport (MOSART) has been incorporated into DLEM (Li et al., 2013), aiming to reduce the 

scale effect in both spatial and temporal levels. The MOSART model separates the water 
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transport within the computational units into hillslope flow, subnetwork flow, and main channel 

flow. The water from surface runoff (calculated in DLEM land model) merges as hillslope flow 

first. The subnetwork flow, or small headwater streams, receive water from hillslope flow and 

groundwater and flows into the main channel of the local grid unit. All the three river routing 

processes of the MOSART model used kinematic wave methods because it is accurate in 

predicting overland flow and channel flow. The diffusive wave method was not used at this level 

because we do not consider the backwater effect in a coarse spatial resolution in this study. The 

concept model of the MOSART was shown in figure 2-3.  

 

 

Figure 2-3. The general framework of the scale adaptive water transport module. 

 

To attain scale adaptive, the length of the main channel, subnetworks, and hillslope flow changes 

align with the changes in spatial resolution: 

𝐿𝐿ℎ =  𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
2𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

                                                                         (12) 
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𝐿𝐿𝑠𝑠 =  𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

−  𝐿𝐿ℎ                                                                 (13) 

Where 𝐿𝐿ℎ 𝑎𝑎𝑎𝑎𝑑𝑑 𝐿𝐿𝑡𝑡 represent the length of the hillslope flow and subnetwork flow, 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the 

surface area of a grid cell; 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the length of the main channel; 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 denotes the total length 

of the rivers or streams within a grid unit. Here, the Ltotal and Lmain are generated from fine 

resolution (30-m) hydrological corrected topographic data National Hydrography Dataset Plus 

V2 (NHD plus V2, available at: http://www.horizon-systems.com/NHDPlus), and aggregated 

into the coarse resolutions grid cell (4-km) for our model simulation. 

 

Table 2-1 The Manning’s roughness coefficient of different land-cover types. 

 Land cover types Manning roughness coefficient 

1 Bare land 0.01 

2 glacier 0.035 

3 Deciduous forest 0.36 

4 Evergreen forest 0.32 

5 Shrubland 0.4 

6 Cropland 0.32 

7 Grassland 0.37 

8 Impervious surface 0.04 

9 Woody wetland 0.086 

10 Herbaceous wetland 0.1825 

Note: The parameters were primarily brought from Kalyanapu et al. (2010) and adjusted to 
match the data. 
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To obtain the channel slope of the subnetwork and main channel, we first quantified the stream 

order for each of the NHD streamlines. Then we defined the channel slope of the highest stream 

orders of the NHD 30-m data within the 4-km grid as the slope of the main channel of the grid 

unit. Other than the highest stream order within the grid cell, the average slope of the low-order 

streams is defined as the slope of the subnetwork.  

 

Tabel 2- 2 The calibrated Manning’s roughness coefficient of stream orders. 

 Stream order Manning roughness coefficient 

 Subnetworks 0.06 

 1 0.05 

 2 0.055 

 3 0.05 

 4 0.045 

 5 0.04 

 6 or higher 0.03 

 

In the current modeling framework, we do not explicitly simulate the lateral groundwater 

transport from the plant's root zone to the headwater streams.  The groundwater process is a 

lumped groundwater pool with the outflow rates calculated from a predefined residence time 

(Coe, 1998; Costa and Foley, 1997). 

Manning’s roughness coefficient of land surface and river channels are parameterized in 

this study. For overland flow, the surface roughness of that grid cell is calculated from historical 

land-cover types. The roughness for each land-cover type is given in (Kalyanapu et al., 2010) 
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(Table 2-1). Similar to other distributed hydrological models, we divide the stream network into 

different segments based on stream orders and calibrate the parameters (Table 2-2) for each 

stream order (Chen et al., 2017). We define the subnetwork within the grid cell as 0 stream order. 

We calibrated the Manning’s roughness to each stream order. 

 

2.2.4. Watershed delineation and river network input dataset 

In this study, we obtained the 4-km resolution climate variables from the PRISM dataset 

(available at: http://www.prism.oregonstate.edu/ ). To match the spatial resolution of the climate 

data, we developed a 4-km resolution hydrography dataset, including flow direction, flow 

accumulation, and flow distance (Yao et al., 2012; Yao and Shi, 2015). The 4-km resolution 

hydrography data was generated from the Digital Elevation Model (DEM) from the hydrological 

corrected hydrography dataset HYDRO1K in 1-km resolution. Directly resample the original 1-

km resolution DEM data to 4 km would substantially alter the byproduct of the hydrological 

analysis based on the DEM data including the flow direction, streamline and watershed 

boundary. We, therefore, conditioned the topographic data using the following three steps. (1) 

Export the stream-lines and watershed boundaries generated from the fine resolution HYDRO1K 

dataset as vector format. (2). Build walls for each watershed (Vincent and Soille, 1991) on the 4-

km resolution DEM,  which means increasing the elevation around the vectorized watershed 

boundaries. The walls help to control the position of the boundary line during the flow direction 

calculation. (3)Agree-method, an improved version of the stream burning algorithm, which 

decreases the elevation value of the streamline and the associated flood plain area, helps to 

confine the position of streamlines (Lindsay, 2016).  



22 
 

  

Figure 2-4. The mismatch between the hydrography dataset and the remote sensing-based 

surface water body. 

2.2.5. River surface area  

We estimate the water surface area (As) of both headwater streams and high-order streams as:  

𝐴𝐴𝑠𝑠 =  �    𝐴𝐴𝑅𝑅𝑅𝑅,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤                     ℎ𝑖𝑖𝑖𝑖ℎ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑊𝑊 × 𝐿𝐿 ,                       ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                            (14) 

where 𝐴𝐴𝑅𝑅𝑅𝑅,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the remote-sensing data-based water surface area; W and L are the channel 

width and flow distance (m), respectively; the channel width of headwater stream is 

estimated through an empirical equation (Allen et al., 2018): 

𝑊𝑊 = 𝑄𝑄
3

5𝑟𝑟+3  ×  (0.5 𝐴𝐴0.42)𝑖𝑖
𝑟𝑟−1
𝑟𝑟+0.6  × �8.1(9.8 𝑆𝑆)0.5𝑘𝑘−

1
614−

5
3(1 −  1

𝑟𝑟+1
)�

− 3
5𝑟𝑟+3

          (15) 

where A is the upstream area of the local subnetwork (m), Q is flow discharge (m/s); r is the 

shape parameter (Allen et al., 2018), k is a bed roughness length scale: 

𝑘𝑘 =  (8.1 𝑔𝑔0.5𝑛𝑛)6                                                                           (16) 

where g is gravitational acceleration, and n is the Manning’s friction coefficient (was set as 0.04 

in this study). 
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In this study, we manually characterized the water body of streams and lakes based on the 

National Land Cover Database (NLCD 2011) (Homer et al., 2015a). However, the flow direction 

and streamline derived from topographic data were used as the input of the hydrological model 

to determine the flow path of the main channel flow cell-to-cell. The obvious mismatch has been 

detected between the stream-line of the hydrograph data and the remote sensing-based surface 

water body data (Figure 2-4). To correct the mismatch, we conducted a moving window 

algorithm tracing back from the end of the river reach to the most upstream and merging the 

stream surface area into the hydrography-based streamline.  The Pseudocode of the stream 

surface merging algorithm can be found in Algorithm 2-1. 

 

Algorithm 2-1. The Pseudocode (C++ format) of the stream surface merging procedure. 

# Put all the index of the river outlets (obtained in hydrography data) into the list: list_stream 
# streamline is the array of the hydrography data, 1 in the array means streams and 0 denote the land 
# stream_RS is the remote sensing-based waterbody area data aggregated from NLCD 
# stream_merge is the merged stream surface area of a grid cell 
# fdr is the flow direction data 
 
do while (list_stream is not empty) 
{ 
         i  =  list_stream.pop(); 
 
         // mergying stream surface area  
         stream_merge[i] += stream_RS[i]; 
         for (int j = all the neighbour cells around i) 
               stream_merge[i] += stream_RS[j]; 
 
         m = upstream grid cell of i   ;  // obtained from fdr data 
         list_stream.pop(m); 
} 

 
 
2.2.6. Lake model 

Following the advanced feature of the MOSART model, which characterized the streams into 

small streams and large rivers, we characterize lakes into small lakes and large lakes as well. The 
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lake input data was obtained from the HydroLakes dataset (available at: 

https://www.hydrosheds.org). We defined the lakes with the upstream area (attribute in the 

Hydrolakes dataset) smaller than the area of the 4-km grid cell as small lakes. On the other hand, 

the lake with an upstream area larger than the area of the grid cell is registered as large lakes. 

The small and large lakes were coupled with the routing of subnetworks and main channels, 

respectively. In our model, the incoming flow of subnetwork flow and main channel flow would 

flow into the pools of small lakes and large lakes first. Moreover, the outflow rate of the lakes 

pools is quantified through residence time given in the Hydrolakes dataset (Messager et al., 

2016). 

2.2.7. Reservoir operation model 

In this study, a reservoir routing model has been incorporated into DLEM-TAIM (Hanasaki et 

al., 2006; Biemans et al., 2011; Haddeland et al., 2006). This model requires one standalone run 

without dam operation in the model as natural flow and then used natural flow as input to 

conduct another simulation with dam operation. The predicted flow with dam impact is known as 

management flow. During the management flow simulation, the model first calculates the target 

dam release through natural flow and local water demand, followed by the prediction of actual 

dam operation rules based on the storage of the reservoirs. Here, the target release can be given 

as: 

𝑟𝑟𝑚𝑚,𝑦𝑦𝑦𝑦
′ =  𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚                                                                         (17)                                            

�
     𝑟𝑟𝑚𝑚,𝑦𝑦𝑦𝑦

′ =  
𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚

10
+

9
10

 ∙ 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 ∙  
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
            𝑖𝑖𝑖𝑖     𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 > 0.5 ∙ 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚

𝑟𝑟𝑚𝑚,𝑦𝑦𝑦𝑦
′ =  𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 +  𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 −   𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚                   𝑖𝑖𝑖𝑖     𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 < 0.5 ∙ 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚

           (18) 

where 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 represents annual mean natural flow (flow without dam),  𝑟𝑟𝑚𝑚,𝑦𝑦𝑦𝑦
′  represents target 

outflow of dams, m, and yr denote monthly or annually, respectively. 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 denote 
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annual and monthly water demand locally. Here, the ratio krls represents the reservoir storage (S) 

over the dam storage capacity (C). 

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑆𝑆

0.85 𝐶𝐶
                                                                           (19) 

Thus, the actual reservoir water release can be expressed as:  

�
𝑟𝑟𝑚𝑚,𝑦𝑦𝑦𝑦 =  𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟  ∙   𝑟𝑟𝑚𝑚,𝑦𝑦𝑟𝑟

′                                                         (𝑐𝑐 ≥ 0.5) 

𝑟𝑟𝑚𝑚,𝑦𝑦𝑦𝑦 = (
𝑐𝑐

0.5
)2 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟  ∙   𝑟𝑟𝑚𝑚,𝑦𝑦𝑦𝑦

′ + �1 −  �
𝑐𝑐

0.5
�
2
�  ∙ 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚  (0 ≤ 𝑐𝑐 ≤ 0.5)  

              (20) 

𝑐𝑐 = 𝐶𝐶
𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
�                                                                                   (21)                  

Following the same procedure described in the lake model (section 2.2.5), we 

characterized the dams into small dams and large dams and coupled with subnetworks and main 

channels, respectively. We obtained the reservoirs information from Global Reservoir and Dam 

(GRanD) database (Lehner et al., 2011a) and National Inventory of Dams (NID, available at: 

https://nid.sec.usace.army.mil ).  

2.2.8. Parallelization of the hydrological model 

 

Algorithm 2-2. Pseudocode (C++ format) of the parallelization for channel routing processes  

// nlayers is the number of layers sorted based on the accumulation value 
 
for (int i = 0; i < nlayers ; i ++ ){ 
      // nCells is the number of grid cells of a defined layer 
      int nCells = numCells r(i); 
 
      //parallelization of the river routing 
      # pragma omp parallel for 
     for (int j = 0; j < nCells; j ++) 
          // conduct channel routing of the current cell, cell index is the position of the grid cell 
            routing (cell_index) 
} 
 

https://nid.sec.usace.army.mil/
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The hydraulics method is computationally intensive. Thus, parallelization is required to enhance 

the performance of the hydrological model. Here, we used a layered parallelization method 

deploying the OPENMP library to accelerate the computational speed (Liu et al., 2014). This 

algorithm assumes no water exchange among the pixels with the same flow-accumulation value 

(define as the same layer). The Pseudocode of the parallelization algorithm is shown in 

Algorithm 2-2. 

2.2.9. Parameterization at the sub-basin level 

DLEM- TAIM is not only a fully grid-based model but also hybrid with a sub-basin level 

parameterization to mitigate the intrinsic weakness of the grid-based model (Tesfa et al., 2014). 

We developed a software system by C# language in Microsoft Visual Studio IDE.  In this 

software system, we divided the study region into several sub-basins and calibrated the 

parameter for each stream order and river basins (Figure 2-5).  

 

Figure 2-5. The DLEM-TAIM model user interface and parameterization at the basin level. 
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2.3. Model evaluation and simulation 

2.3.1. Model inputs 

We developed a 4-km resolution input dataset to conduct DLEM including climate variables, 

land-use, nitrogen inputs, and atmospheric CO2 concentration. We reconstruct historical land-use 

by assembling the National Land Cover Database (NLCD) (Homer et al., 2015b), county-level 

inventory data of cropland (Waisanen and Bliss, 2002), North American Land Cover 

(http://landcover.usgs.gov/nalcms.php), and HYDE land-use data (Goldewijk, 2001). The spatial 

and temporal pattern of land-use change could be found in figure 2-6. The daily climate variables 

were obtained from the PRISM climate (Daly et al., 2008). Here, precipitation and temperature 

show a large increase from 1960 to 2015 over the CBW and DBW.  

 

 

http://landcover.usgs.gov/nalcms.php
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Figure 2-6. The model input of Chesapeake Bay Watershed and Delaware Bay Watershed. (a). 

The net land-use change from 1900 to 2015, (b). Temporal patterns of climate variables from 

1900 to 2015, (c). Changes in urban impervious surface. (d). Changes in cropland fraction. (e). 

Changes in annual precipitation. (f). Changes in air temperature 

 
 
2.3.2. Model validation in different land-use types and stream orders 

To evaluate the accuracy of DLEM-TAIM in predicting daily water discharge, we compared 

DLEM-TAIM simulated results against United States Geological Survey (USGS) observations 

(Figure 2-1, Figure 2-7). The comparison results indicated that the model simulations agreed 

well with observations. The model behaves well in predicting the magnitude and temporal 

variability of flow discharges. Precisely, the newly developed hydrological model could well 

capture the temporal pattern of streamflow in different land-cover types and stream orders. 

 

 

USGS Site No. 01530332, Susquehanna river stream order 3 

 

USGS Site No. 01515000, Susquehanna river stream order 4 
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USGS Site No. 01578310, Susquehanna river stream order 4 

 

USGS Site No. 01578475, stream order 2, dominant land-use: Cropland 

 

USGS Site No. 01541303, Susquehanna river, stream order 2, dominant land-use: Forest 

 

USGS Site No. 01526500, Susquehanna river, stream order 2, dominant land-use: Forest 
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USGS Site No. 01649500, Susquehanna river, stream order 2, dominant land-use: impervious surface 

 

USGS Site No. 01463500 Delaware river at Trenton NJ, stream order 4 

 

Site No. 01437500, Delaware River, stream order 3 

 

Site No. 01594440, Patuxent River, stream order 2 

Figure 2-7. The comparison of DLEM-TAIM simulated daily water discharge against 

observations from the United States Geological Survey (USGS) in different stream orders or sub-

regions with different land-use types. 
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2.3.3. Factorial experiments 

To quantify the contribution of environmental factors to the long-term changes in discharge, we 

conducted several factorial experiments. The simulation with all the driving forces changed over 

time was considered as all-combine simulation, and the simulations with each of the factors 

remain unchanged since 1900 were considered as factorial experiments (Table 1-1). By 

comparing the estimated discharge of factorial simulations with that of all-combine simulation, 

the magnitude of changes in flow discharge induced by each environmental factor was attributed. 

 

Table 1-1. The design of factorial experiments for attributing the changes in water discharge to 

environmental factors including climate, atmospheric carbon dioxide (CO2), nitrogen deposition 

(NDEP), nitrogen management (NMAN).  

Factors 

 Climate CO2 Land-use NDEP NMAN 

Simulation 1 1900-2015 1900-2015 1900-2015 1900-2015 1900-2015 

Simulation 2 1900-2015 1900-2015 1900-2015 1900-2015 1900 

Simulation 3 1900-2015 1900-2015 1900-2015 1900 1900-2015 

Simulation 4 1900-2015 1900-2015 1900 1900-2015 1900-2015 

Simulation 5 1900-2015 1900 1900-2015 1900-2015 1900-2015 

Simulation 6 1900 1900-2015 1900-2015 1900-2015 1900-2015 

 

2.3.4. Results 

The annual mean water discharge from land to the Chesapeake Bay is 68.92 ±16.21 (km3/yr) 

from 1895 to 2015. The annual mean discharge to Delaware Bay is 19.7±4.5 (km3/yr) during the 

same period (Figure 2-8). Total water discharge increased significantly in Chesapeake Bay 
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Watershed and Delaware Bay Watershed (p-value less than 0.05) from 1962 to 2015 with the 

increasing rates of 0.34 (km3/yr) and 0.12 (km3/yr), respectively. The significant increasing trend 

could be explained by a significant increase in precipitation since the 1960s. 

 

 

Figure 2-8. Total water discharge from land to the Chesapeake Bay and Delaware Bay from 1895 

to 2015. 

 

Flood peak (maximum value of the day in that year) does not show a significant increasing trend 

from 1930 to 2015 in Chesapeake Bay Watershed. However, the peak flow of Delaware Bay 

Watershed increased significantly (p < 0.05) with an increasing trend of 0.0015 (km3/yr) (Figure 

2-8), indicating an increasing flood risk in this region.  

In Chesapeake Bay Watershed, climate change play as the dominant role to explain 63% of the 

increase in discharge, followed by land-use change (21.9%), and N deposition (8.6%) elevated 

CO2 (5.5%) (Figure 2-10. a). Climate impact explained more than 87% of the interannual 

variations in discharge from the 1900s to 2006 - 2105 in the Delaware Bay Watershed, followed 
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by land-use conversion (7.8%), N deposition (3%), and elevated CO2 concentration (1.8%) 

(Figure 2-10. b). 

 

Figure 2-9. Annual peak discharge (maximum daily discharge in the year) of the Chesapeake 

Bay and Delaware Bay Watershed from 1895 to 2015. 

 

Figure 2-10. The factorial analysis of water discharge (unit: km3/yr) of the Chesapeake Bay (a) 

and Delaware Bay (b) Watersheds in response to the changes in environmental conditions. 
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We conducted linear regression on each grid cell to quantify the increasing/decreasing rate of 

runoff from 1900-205. In general, the spatial pattern of the changes in runoff aligns with 

precipitation and land-use change (Figure 2-1, Figure 2-11). The surface runoff increased 

significantly in the megacities, supported by the finding that urbanization could induce more 

precipitation in megacities (Zhang et al., 2018). It should be noted that the surface runoff 

decreased in the cropland area (Figure 2-1, 2-11). The decreased water available for crops may 

indicate the water security problem for agriculture activities in this region. 

 

Figure 2-11. Changes in runoff over the Chesapeake Bay Watershed and Delaware Bay 

Watersheds during 1900-2015. 
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2.4. Conclusion 

In this chapter, we incorporated a scale adaptive water transport scheme into DLEM to simulate 

the spatial and temporal patterns of water fluxes from land to the Chesapeake Bay and Delaware 

Bay during the past 110 years. We found a significant trend of increasing discharge from 1962 -

2015 that is aligned with climate change. The flood peak value increase from 1930 to 2015 in the 

Delaware Bay Watershed mainly owing to land-use change, but the peak flow does not show a 

significant increasing trend in Chesapeake Bay Watershed. Development and improvement of 

the representation of the associated water temperature and biogeochemical processes in small 

streams and large rivers in this proposed coupling framework will be discussed in the following 

chapters. 
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Chapter 3: Assessing impacts of global change on the water temperature of headwater and 

high-order streams across the Mid-Atlantic region of the U.S. by using a coupled modeling 

framework 

 

Abstract: Stream water temperature substantially regulates the structure and functioning of the 

aquatic ecosystems, and thereby accurately estimating its spatial and temporal pattern is an 

essential task for ecological studies. Empirical equations, which are derived from the relationship 

between air temperature and water temperature, have been extensively applied in past studies. 

However, empirical equations cannot explain the mechanism of the drivers that contribute to 

changes in water temperature, which leads to decreased reliability when the environmental 

condition changes. Meanwhile, few studies tried to couple soil temperature with stream water 

temperature to capture the synergy of thermal balances between the terrestrial and riverine 

systems. Here, we incorporated a new water transport scheme into the Dynamic Land ecosystem 

model (DLEM) to predict water temperature in higher-order streams (> 1st order) and headwater 

streams (1st order). Driven by a 4-km geo-referenced dataset, our new water temperature model 

was utilized to predict the spatiotemporal variations of water temperature in the Mid-Atlantic 

Region of the U.S. (MAR, including Chesapeake Bay Watershed and Delaware Bay River Basin) 

for the period 1900-2015. Results revealed that water temperature during 1970-2016 increased 

significantly in the higher-order and headwater streams at a rate of ~0.028 ⁰C/year and 0.031 

⁰C/year, respectively. The buffering effect of groundwater on the water temperature in headwater 

streams diminished under the context of global warming. The factorial analysis showed that 

climate change and variability explain most of (~80%) the variations in stream water temperature 

from 1900 to 2015. However, land-use conversions (from cropland to forest mostly), CO2 
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fertilization, and land nitrogen management contributed more than 70% of the changes in stream 

water temperature during the 1970s.    
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3.1. Introduction 

Stream water temperature is a fundamental physical variable reflecting the balance of thermal 

energy in aquatic systems (Chapra, 2008). It has been well documented that stream water 

temperature could substantially affect the solubility of oxygen and gases (Sander, 2015), govern 

the decomposition or mineralization rate of organic matters (Pastor et al., 2003), and regulate the 

nitrogen (Harrison et al., 2009) and phosphorus dynamics (McQueen and Lean, 1987), which in 

turn moderate the metabolic rate (Claireaux et al., 2000) of microorganism and shape the spatial 

distribution of habitats supporting aquatic species (Isaak et al., 2010).  Given the importance of 

water temperature to the aquatic biogeochemistry and biodiversity, significant efforts have been 

invested in monitoring and estimation of stream water temperature (Van Vliet et al., 2013).  

Although ubiquitous water discharge monitoring sites have been established worldwide, 

the observations of water temperature are still lacking (Wanders et al., 2019). A modeling 

approach is needed to construct the spatial and temporal patterns of stream water temperature 

across large regions. Empirical relationships, which are derived from the regression analysis of 

observed water temperature and air temperature, are commonly deployed in water quality models 

due to their low computational complexity (Leach and Moore, 2019). The empirical equation-

based approach provides reliable estimates of water temperature for regional studies because the 

parameters or the regression equation was calibrated to match the data.  Thus, the empirical 

models implicitly contain the mechanisms, including the hydrological or thermal response of the 

watershed to climate conditions, which control the spatial-temporal pattern of stream water 

temperature. Therefore, the performance of the empirically-based approach strongly relies on the 

data availability of the study region due to the spatial heterogeneity of hydrological conditions 

among different watersheds. However, the statistical correlations might fail if the environmental 
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conditions change (Arismendi et al., 2014), which implies its limitation in long-term water 

temperature prediction. The reason for this is that the empirical relationships cannot represent the 

mechanisms of how environmental factors contribute to the changes in stream water temperature. 

This inherent weakness hampered its applications in decision support relevant studies. 

Stream water temperature is prone to climate change and anthropogenic disturbances. 

Significant stream water temperature rising was found in the Chesapeake Bay Watershed, which 

is aligned with the increase of air temperature in the region (Rice and Jastram, 2015). Land 

management, such as clear-cutting, can also bring a significant impact on water temperature 

(Brown and Krygier, 1970; D. Chen et al., 2016). The impacts of water resource management, 

such as dam construction, reservoir operation on water temperature are still in debatable 

(Buccola et al., 2016), due to the trade-off between the increase in both water surface area and 

the thermal energy leaking from the bottom of the reservoirs (Chen & Fang, 2015b).  

Promoted by a better understanding of the energy balance within river waters from field 

works, physically-based approaches, which incorporate climate and hydraulic variables into the 

energy balance equations, have been developed and widely used worldwide. The computational 

units of stream water temperature models include irregular triangle grids (G. Chen et al., 2016), 

sub-catchments (Ficklin et al., 2012), and regular grid meshes (Yearsley, 2012). And the study 

area extends from basin (Wu et al., 2012a) or regional levels (Buccola et al., 2016; Isaak et al., 

2017) to continental (Li et al., 2015b) or global scales (Van Vliet et al., 2013; Wanders et al., 

2019). Physical-based models could well capture the changes in environmental conditions and 

provide reliable results for historical data reconstruction (Wanders et al., 2019) and future 

projections (Ficklin et al., 2014; Wu et al., 2012a). Therefore, a combined approach was 

proposed (Ficklin et al., 2012) by introducing hydrological inputs into the empirical-based 
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equation of the Soil & Water Assessment Tool (SWAT) model (Arnold et al., 2012). The 

hydrological inputs, including hydraulic loading, snowmelt, groundwater, surface runoff, and 

lateral soil flow, substantially improved the performance in representing the stream temperature 

of the mountainous regions. However, the application of a physical-based model still faces 

challenges, such as the high computational complexity and massive data requirement.  On the 

other hand, both the physical-based model and empirical approaches are established under 

certain assumptions. Thus, current physical-based models still need to incorporate empirical 

equations to represent or simplify the mechanism, which has not been fully understood. For 

instance, most of the models used empirical equations to quantify the water temperature of 

headwater streams as the boundary condition (Haag and Luce, 2008; Van Vliet et al., 2012).  

Except for the semi-empirical approached proposed by Ficklin et al. (2012), none of the 

studies presents the spatial distribution of stream temperature in upstream areas. The headwater 

zone, known as the terrestrial- aquatic interface, was recognized as the hotspots of greenhouse 

gas (GHGs) emissions (Butman and Raymond, 2011), and prompted great interest to both filed 

work and the modeling community. A recent study suggested that headwater streams play as the 

refuge of climate change (Isaak et al., 2016b) that help to preserve the endangered cold-water 

species under the context of global temperature increase. Although this study suggests that the 

headwater zones can buffer the impact of climate (headwater small streams have cooler water 

temperature in summer and warmer water temperature in winter than that of high-order streams), 

they are vulnerable to climate change and human activities as well when the changes of 

environmental conditions are reaching to the tipping point (Nepstad et al., 2008). Without 

surprise, the headwater zones themselves are subject to a heavy impact from human or natural 

disturbances (Isaak et al., 2010; Cover et al., 2010) during the past century. It has been noted that 
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water temperature within the headwater streams increased ~5 ⁰C after a fire disturbance (Isaak et 

al., 2010; Koontz et al., 2018). Hence, detecting the changes in land surface processes is essential 

in predicting the water temperature within the streams.  

In this study, we coupled a new water transport scheme named Model for Scale Adaptive 

River Transport (MOSART) (Li et al., 2013, 2015b) within the Dynamic Land Ecosystem 

Model- Terrestrial Aquatic Interface Model (DLEM-TAIM) framework (Tian et al., 2015c). 

Under this newly developed modeling framework, we developed a physical-based water 

temperature model with the new water transport scheme. We explicitly link the groundwater 

temperature to the stream water as boundary conditions and improve the model representation of 

the groundwater fed, sub-grid routing thermal energy exchanges within the headwater streams. 

The major objectives of this study are (1) to describe the coupling framework of a water 

temperature model with DLEM land model; (2) to construct the spatial and temporal pattern of 

water temperature of head water streams and high order streams from 1900 to 2016; (3) to 

attribute the contribution of environmental factors to the stream water temperature across the 

Mid-Atlantic Region (MAR). 

3.2. Methods and input data 

3.2.1. The Dynamic Land Ecosystem Model (DLEM model) 

The terrestrial processes were simulated by the Dynamic Land Ecosystem Model 2.0 (DLEM 

2.0) (Figure 3-1. a), which couples major terrestrial water cycle (Liu et al., 2013), carbon-

nitrogen coupled vegetation dynamics (Tian et al., 2012; Chen et al., 2013) to explicitly estimate 

plant growth, soil biogeochemistry, and the associated water fluxes, greenhouse gas emissions in 

terrestrial ecosystems driven by the climate forcing and the anthropogenic disturbances. The 

model has been extensively applied at the relatively coarse resolutions such as 0.5 degrees 
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(global level) or five arc-minutes (regional level) (Tian et al., 2015c). Therefore, to reduce the 

scaling effect, sub-grid processes were introduced into the terrestrial simulations by utilizing a 

cohort unit. The land-use cohort divides each grid cell into five normalized vegetation coverages, 

including the fraction of cropland and four primary natural vegetation covers prescribed by 

cropland, and six non-vegetation types including urban impervious surface, glacier, lake, stream, 

ocean water, and bare-ground. DLEM model has been extended to represent the riverine 

transport, known as the terrestrial-aquatic interface, and thus is well suited for quantifying the 

lateral or vertical fluxes of water, carbon (Tian et al., 2015c) and nitrogen (Yang et al., 2015b) 

from land to the oceans (Figure 3-1. b).  

3.2.2. Soil temperature module in DLEM 

In the DLEM model, the soil column was divided into 10 layers, and the thickness of each layer 

was defined as 0.05 m, 0.05 m, 0.1 m, 0.2 m, 0.2 m, 0.3 m, 0.3 m, 0.5 m, 0.8 m, 1.0 m 

respectively. DLEM simulated the thermal energy exchange between the layers, more details 

about the numerical methods could be found in the technical description of the Community Land 

Model (Bonan et al., 2013). In the DLEM model, we did not explicitly quantify the temperature 

of the vegetation canopy and the heat fluxes between the canopy and the soil surface. Thus, we 

quantify the surface soil temperature by using a semi-empirical method as the upper boundary 

condition of the soil layers, which considers the effect of Leaf Area Index (LAI) and litter on soil 

temperature (Kang et al., 2000): 

�
𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑗𝑗−1 = �A − 𝑇𝑇𝑗𝑗−1�exp �−𝑧𝑧 � 𝜋𝜋

𝑘𝑘𝑠𝑠∗ 86400
�
0.5
�  exp[−𝑘𝑘𝑡𝑡 × (𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)], when A > 𝑇𝑇𝑗𝑗−1    

𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑗𝑗−1 = �A − 𝑇𝑇𝑗𝑗−1�exp �−𝑧𝑧 � 𝜋𝜋
𝑘𝑘𝑠𝑠∗ 86400

�
0.5
�  exp[−𝑘𝑘𝑡𝑡 × (𝐿𝐿𝐿𝐿𝐿𝐿)] , when A < 𝑇𝑇𝑗𝑗−1              

  

(1) 
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Figure 3-1. The general framework of the DLEM land-ocean aquatic continuum. 

 

Where A is the 11-day mean daily air temperature, 𝑇𝑇𝑗𝑗  , 𝑇𝑇𝑗𝑗−1  is the surface soil surface 

temperature of the current day and the previous day, κs the thermal diffusivity (which is set as 

0.004 cm2s−1), 𝐿𝐿𝐿𝐿𝐿𝐿 is leaf area index, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is LAI equivalent of ground litter, 𝑘𝑘𝑡𝑡 is a calibration 

parameter. 
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3.2.3. Scale adaptive river routing processes 

 

Figure 3-2 The general framework of the scale adaptive water transport module. 

A scale adaptive water transport scheme, known as Model for Scale Adaptive River Transport 

(MOSART), was incorporated into the DLEM aquatic module. The new scheme separates the 

water transport process within a grid unit into hillslope flow, subnetwork flow, and main channel 

flow (Figure 3-2). Hillslope flow is the water routing process that merges surface runoff and 

flows to subnetworks. A groundwater pool receives water from subsurface runoff (shallow 

groundwater flow) and contributes to subnetworks with outflow rates derived from a fixed 

residence time. The subnetwork flow represents the routing process of headwater streams (or 1st 

order streams defined in this study) that receives the outflow from the hillslope flow and 

groundwater pool and then flows into the main channel. Both hillslope and subnetwork flow are 

sub-grid routing processes within a grid cell. The main channel flow represents the routing 

process of high-order streams (higher than 2nd order streams in a 4-km resolution grid cell for 
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this study) receiving flow from subnetworks and upstream grid cells and flows to a downstream 

grid cell.  

In the water temperature module of DLEM, we simulated the thermal energy dynamics of 

headwater streams (subnetworks in MOSART framework) and high-order streams (main channel 

flow in the MOSART framework) separately. Thus, we need to estimate the water surface area 

of both types of streams. We obtained the surface area data (Allen and Pavelsky, 2018) from 

remote sensing products for the high order streams, and quantified the water surface area (As) of 

headwater streams through a relationship proposed by Allen et al., 2018: 

𝐴𝐴𝑠𝑠 =  �    𝐴𝐴𝑅𝑅𝑅𝑅,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤                     ℎ𝑖𝑖𝑖𝑖ℎ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑊𝑊 × 𝐿𝐿 ,                       ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                            (2) 

𝑊𝑊 = 𝑄𝑄
3

5𝑟𝑟+3  ×  (0.5 𝐴𝐴0.42)𝑖𝑖
𝑟𝑟−1
𝑟𝑟+0.6  × �8.1(9.8 𝑆𝑆)0.5𝑘𝑘−

1
614−

5
3(1 −  1

𝑟𝑟+1
)�

− 3
5𝑟𝑟+3

          (3) 

where 𝐴𝐴𝑅𝑅𝑅𝑅,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 denotes the surface area obtained from remote sensing data; W and L represent 

the channel width and flow distance of the rivers in the given pixel respectively; A is the 

drainage area here we define it as the area of one grid cell, Q is water discharge in the current 

time (m/s); r represents the shape parameter (which was set to 1.5) (Allen et al., 2018). k is a bed 

roughness length scale: 

𝑘𝑘 =  (8.1 𝑔𝑔0.5𝑛𝑛)6                                                                           (4) 

Where n is the Manning friction coefficient which was set as 0.04, and g is gravitational 

acceleration (m/s2). 

 

3.2.4. Water temperature module 

We developed a riverine water temperature model within the scale adaptive water transport 

module and fully coupled it with the soil water temperature model of DLEM (Figure 3-3).  



46 
 

 

 

Figure 3-3. The framework of DLEM couple with the water temperature model 

 

The energy balance within the river channels can be given as: 

∆𝑇𝑇
∆𝑡𝑡

=
𝐻𝐻𝑎𝑎+ � 1 − 𝐶𝐶𝑒𝑒𝑒𝑒� 𝐴𝐴𝑠𝑠  × (𝐻𝐻𝑠𝑠 + 𝐻𝐻𝑙𝑙 + 𝐻𝐻𝑒𝑒 + 𝐻𝐻𝑐𝑐 + 𝐻𝐻ℎ )

𝐶𝐶𝑤𝑤  × 𝑀𝑀
                                            (5) 

Where 𝐶𝐶𝑤𝑤 represents the specific heat of water, (which is set to 4.186 J/g⁰C), M is the total mass 

of water stored in the river channel (kg),  𝐶𝐶𝑒𝑒𝑒𝑒 is the ratio of water surface area shaded by plant 

canopies (we only consider the shading effect on headwater streams); Ha (W) is the sum of 

lateral heat fluxes, including thermal inputs from upstream grid cells, local subnetworks, and 

downstream thermal energy loss. In this model, we simulated the lateral heat transport within 

subnetworks (𝐻𝐻𝑎𝑎,𝑠𝑠𝑠𝑠𝑠𝑠) and main channels (𝐻𝐻𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) separately: 

𝐻𝐻𝑎𝑎,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜌𝜌𝑤𝑤𝐶𝐶𝑤𝑤 × �𝑄𝑄ℎ𝑖𝑖𝑖𝑖�𝑇𝑇𝑤𝑤,ℎ𝑖𝑖𝑖𝑖 −  𝑇𝑇𝑤𝑤,𝑠𝑠𝑠𝑠𝑠𝑠� + 𝑄𝑄𝑔𝑔(𝑇𝑇𝑤𝑤,𝑔𝑔 −  𝑇𝑇𝑤𝑤,𝑠𝑠𝑠𝑠𝑠𝑠)�                        (6) 
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Where 𝜌𝜌𝑤𝑤 represents the water density (kg m-3), 𝑄𝑄ℎ𝑖𝑖𝑖𝑖and 𝑄𝑄𝑔𝑔 represent the flow discharge of 

hillslope flow and subsurface flow (shallow groundwater), respectively. 𝑇𝑇𝑤𝑤,ℎ𝑖𝑖𝑖𝑖, 𝑇𝑇𝑤𝑤,𝑔𝑔 and 𝑇𝑇𝑤𝑤,𝑠𝑠𝑠𝑠𝑠𝑠 

represent the water temperature of hillslope flow, groundwater, and subnetworks, respectively. 

We assume the water temperature of the hillslope flow equals to surface soil temperature. We 

quantify the average soil temperature from surface to a given depth of the soil column as the 

temperature of the groundwater, and the depth is calibrated as 0.5 in this study.  The lateral heat 

flux of the main channel is given as: 

𝐻𝐻𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜌𝜌𝑤𝑤𝐶𝐶𝑤𝑤 × ��𝑄𝑄𝑢𝑢𝑢𝑢,𝑖𝑖�𝑇𝑇𝑤𝑤,𝑢𝑢𝑢𝑢,𝑖𝑖 −  𝑇𝑇𝑤𝑤,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�
𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖

+ 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑤𝑤,𝑠𝑠𝑠𝑠𝑠𝑠 −  𝑇𝑇𝑤𝑤,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)�         (5) 

Where 𝑄𝑄𝑢𝑢𝑢𝑢,𝑖𝑖 is the inflow from up-stream grid cells, 𝑇𝑇𝑤𝑤,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑤𝑤,𝑢𝑢𝑢𝑢,𝑖𝑖 are the water 

temperature of upstream inflow and main channel flow, respectively.  

Hs is the net short-wave radiation and (Wm-2) which is set as 97% of the incoming shortwave 

radiation (𝐻𝐻𝑠𝑠−𝑖𝑖𝑖𝑖)  (Wu et al., 2012a), 𝐻𝐻𝑙𝑙 is the net long-wave radiation which is calculated as the 

difference between incoming longwave radiation (𝐻𝐻𝑙𝑙𝑙𝑙−𝑖𝑖𝑖𝑖) of atmosphere and longwave energy 

emission from a water body (𝐻𝐻𝑙𝑙𝑙𝑙) (Thornton and Running, 1999), here 𝐻𝐻𝑠𝑠−𝑖𝑖𝑖𝑖  and 𝐻𝐻𝑙𝑙𝑙𝑙−𝑖𝑖𝑖𝑖 were 

obtained from climate data, Hlw is given as: 

𝐻𝐻𝑙𝑙𝑙𝑙 = 0.97 × 𝜎𝜎 × (𝑇𝑇𝑤𝑤 + 273.15)4                                                         (6) 

𝜎𝜎 is the Stefan-Boltzmann constant (set as 5.67×10-8W m-2K-4). Hc represents the riverbed-water 

specific conductive heat exchange flux (Wm-2), which is set to 5% of the net solar radiative flux 

(Wu et al., 2012a). He is are the specific latent flux (Wm-2) which is estimated as： 

𝐻𝐻𝑒𝑒 = −𝜌𝜌𝑤𝑤 × 𝐸𝐸 × 𝜆𝜆𝑒𝑒/(86.40 × 106)                                                    (7) 

𝐸𝐸 represents the evaporation rate of water (mm d-1), 𝜆𝜆𝑒𝑒 denotes the latent heat fluxes through 

vaporization (J kg-1), Here, the evaporation rate is estimated as: 
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𝐸𝐸 = 𝐾𝐾𝑙𝑙 × (𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑒𝑒)                                                                       (8)             

𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 denotes the saturation vapor pressure (hPa), and e represents the actual vapor pressure (hPa) 

which are calculated in DLEM land model (Thornton and Running, 1999), we quantify 𝐾𝐾𝑙𝑙 as: 

𝐾𝐾𝑙𝑙 = 0.211 + 0.103 × 𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤                                             (9) 

where 𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  is wind speed of 3-meters above the ground/water surface (m s-1), 𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the 

dimensionless factor, which is set as 0.8 (Haag and Luce, 2008),  𝜆𝜆𝑒𝑒 is given as: 

𝜆𝜆𝑒𝑒 = 2499.64 − 2.51 × 𝑇𝑇𝑤𝑤                                                            (10) 

Hh is the sensible heat fluxes (Wm-2) and can be expressed as: 

𝐻𝐻ℎ = −𝛾𝛾 ×
𝑃𝑃

1013
× 𝐾𝐾𝑙𝑙 × 𝜆𝜆𝑒𝑒 ×

𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
86.40 × 106

× 𝜌𝜌𝑤𝑤                           (11) 

Where 𝛾𝛾 represents the psychrometric constant at the standard air pressure, which is set as 0.655 

(hPa/℃), P denotes the actual air pressure (hPa).  

 
3.2.5. Study area and model driving forces 

The model was applied to the Chesapeake Bay Watershed and Delaware River Basin (Figure 3-

4), both of which are located within the Mid-Atlantic Region (MAR) of northeast US. MAR is 

the most urbanized region of the country and sustains more than 25.5 million people. The region 

covers more than 16,6533 square kilometers of the land surface and experienced large land 

conversions due to reforestation and water conservations during the last century (Hassett et al., 

2005).   

In this study, we developed a 4-km resolution dataset of this region as model input to run 

the DLEM model with climate, land conversion, and land management driving forces from 1900 

to 2015. The potential vegetation map was reconstructed for MAR which combines land-use data 

obtained from National Land Cover Database (NLCD, Jin et al., 2013), North American Land 
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Cover (http://landcover.usgs.gov/nalcms.php), Global C4 vegetation map (Still, 2003). We used 

the county-level inventory data of cropland area and urban area to prescribe the land-use change 

of natural vegetation (Waisanen and Bliss, 2002). The flow chart which describes the generation 

procedure of land-use data was shown in Figure 3-11. As shown in Figure 3-5, the cropland area 

decreased by 57.3% (Figure 3-5. d) during the past 100 years. This is primarily due to the 9.1% 

increase in forest area and the 507.5% increase in urban impervious surface. Most of the urban 

expansion occurred surrounding the megacities, including Washington DC., Baltimore, and 

Philadelphia (Figure 3-5. c). 

 

Figure 3-4. The major plant function types and land-use in the Mid-Atlantic Region.  
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Figure 3-5. The spatial-temporal pattern of land conversion and long-term climate change over 

the Mid-Atlantic Region from 1900-2015. a. Temporal pattern of net land-use change from 1900 

to 2015, b. Temporal pattern of annual mean precipitation and air temperature from 1900 to 

2015, c. Changes in urban impervious surface. d. Changes in cropland. e. Changes in annual total 

precipitation. f. Changes in annual mean air temperature. 

 
We obtained daily climate variables from Parameter-elevation Relationships on Independent 

Slopes Model (PRISM) climate dataset (available at: http://www.prism.oregonstate.edu/). Which 

included 4-km resolution historical daily minimum, mean and maximum temperature, 

precipitation. The mean annual precipitation was 1080.0±131.7 mm year-1, and the annual mean 

temperature was 11.6±0.2°C during 1895-2014, respectively. Both precipitation and air 

temperature show significant increases (p< 0.001) from 1960 to 2014 with the increasing rates of 

3.28 mm/yr and  0.016 ⁰C/yr, respectively.  

http://www.prism.oregonstate.edu/
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3.3. Simulation experiments, statistical analyses, and data for model performance 

evaluation 

3.3.1. Simulation experiments  

Before the year-to-year simulation from 1895 to 2016, we first set-up an equilibrium run for all 

grid units. The simulation is forced by the land-use data of the year 1895, and the 30-year mean 

(1895-1924) climate data to represent the pre-industry environmental condition. The equilibrium 

ran finishes when carbon, nitrogen and water pools reached the steady-state (Thornton and 

Rosenbloom, 2005).  Other driving forces including the atmospheric CO2 concentration, land-use 

change, and nitrogen inputs, are kept at the pre-industry level (1895) as well, to excludes human 

disturbance.  After the equilibrium run, we conduct a 30-year spinning-up run with randomly 

selected climate variables from 1900 and 1929. The spinning up run functions as a buffer to 

smooth the carbon and nitrogen fluxes between the equilibrium run and the year-to-year transient 

run (Tian et al., 2012).  Finally, we conducted the transient run from the year 1895 to 2015 with 

all the driving forces change over time. We calibrated parameters and validated the simulated 

water temperature with field observations; the parameter set with the best performance was 

considered as the best estimator to be used for further experimental analysis.  

To assess the contribution of environmental factors to the changes in water temperature, 

we set-up six simulations with each of the environmental factors keeps consistent with the level 

in 1900 (Table 3-1). The simulation with all the driving forces change year-by-year is recognized 

as the all-combine run, and the contribution of each environmental factor was calculated by 

comparing the simulated water temperature of each run with the all-combine run. It should be 

noted that all the simulations used the same parameter set. 
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Table 3-1. The experimental design for attributing changes in water temperature to natural and 

anthropogenic factors including precipitation, temperature, climate, atmospheric carbon dioxide 

(CO2), land-use and nitrogen inputs (including N deposition, N fertilizer, and N manure)  
 Factors 

 Precipitation Temperature Climate CO2 Land-use N-inputs 

Simulation 1 1900-2015 1900-2015 1900-2015 1900-2015 1900-2015 1900-2015 

Simulation 2 1900-2015 1900-2015 1900-2015 1900-2015 1900-2015 1900 

Simulation 3 1900-2015 1900-2015 1900-2015 1900-2015 1900 1900-2015 

Simulation 4 1900-2015 1900-2015 1900 1900 1900-2015 1900-2015 

Simulation 5 1900-2015 1900 1900-2015 1900-2015 1900-2015 1900-2015 

Simulation 6 1900 1900-2015 1900-2015 1900-2015 1900-2015 1900-2015 

 
 
3.3.2. Statistical methods 

We calculated Root-Mean-Square Deviation (RMSD), Nash-Sutcliffe coefficient (NSE) (Nash 

and Sutcliffe, 1970), and Coefficient of Determination (R2) to validate the model performance in 

predicting the water temperature of headwater streams and high-order streams (Table 3-2, Figure 

3-12). Mann-Kendal trend test and Theil Sen linear regression were used to examine the 

increasing or decreasing trend of annual mean air temperature and annual mean precipitation 

(Figure 3-5). To validate the long-term changes in water temperature spatially, we deployed the 

Mann-Kendal trend test (p-value less than 0.05) (Figure 3-7 c) on the time series data of each 

grid unit from 1900 to 2015. The increasing or decreasing rate (slope) was quantified by Theil 

Sen linear regression conducted on each grid cell (Figure 3-7 a, b).  

 

3.3.3. Model validation 
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Table 3-2. The summary of matrices of model performance. 

                    Physical based model       Empirical model 
USGS site No. start year end year R2 NSE RMSD  R2 NSE RMSD 

large river channel 
01428750 1989 2004 0.82 0.46 5.40  0.92 0.54 5.00 
01460300 1998 1999 0.90 0.62 5.32  0.91 0.85 3.79 
01490120 2006 2009 0.81 0.57 6.32  0.93 0.73 5.01 
01493112 2012 2015 0.90 0.10 5.61  0.95 0.30 5.36 
01673638 2007 2009 0.88 0.48 7.16  0.89 0.48 7.15 
02011490 1984 1995 0.89 0.60 4.50  0.83 0.64 4.29 

headwater streams 
before 1980 

01516500 1959 1959 0.88 0.74 6.07  0.80 0.67 6.86 
01549100 1973 1977 0.86 0.51 5.18  0.79 0.34 6.02 
01549300 1973 1977 0.86 0.63 4.71  0.77 0.54 5.30 
01547700 1956 1966 0.79 0.05 8.66  0.75 0.12 8.33 
01568700 1974 1976 0.77 0.63 4.27  0.70 0.56 4.63 
01568750 1974 1976 0.77 0.43 5.14  0.73 0.23 6.00 
01575730 1978 1979 0.81 0.44 6.93  0.82 0.33 7.62 
01575741 1978 1979 0.82 0.77 4.38  0.83 0.84 3.60 
01575746 1978 1979 0.78 0.61 5.21  0.80 0.70 4.52 

after 1980 
01571490 1993 1995 0.88 0.01 5.05  0.93 0.46 3.58 
01559795 1993 2000 0.87 0.33 6.29  0.91 0.08 7.35 
01555400 1999 2000 0.78 0.32 6.54  0.94 0.90 2.50 
01571820 1996 2007 0.76 0.41 4.71  0.71 0.40 4.71 
01564997 1994 1995 0.85 0.61 5.31  0.93 0.73 4.43 
01537524 2001 2002 0.93 0.10 7.34  0.94 0.01 7.81 
01548303 2012 2015 0.88 0.74 2.85  0.89 0.70 3.06 
01573695 2012 2015 0.91 0.76 4.02  0.96 0.91 2.43 
01610400 2002 2003 0.86 0.52 5.12  0.87 0.47 5.35 
01613900 2007 2008 0.64 0.32 6.14  0.69 0.51 5.17 
01614830 2006 2009 0.91 0.28 5.33  0.92 0.37 4.81 
01621050 2002 2004 0.88 0.20 6.48  0.91 0.43 5.50 
01630700 2006 2009 0.92 0.81 3.22  0.92 0.89 2.40 
01645704 2007 2014 0.95 0.70 4.11  0.95 0.78 3.53 
01645762 2007 2017 0.95 0.64 4.44  0.94 0.70 4.07 
01649190 2007 2014 0.88 0.55 5.29  0.95 0.71 4.24 
01650800 2012 2013 0.88 0.50 5.64  0.96 0.91 2.36 
01651800 2012 2013 0.87 0.76 3.93  0.94 0.87 2.88 
01654500 2013 2015 0.94 0.78 3.63  0.94 0.86 2.91 
01656903 2007 2015 0.82 0.56 4.68  0.91 0.80 3.16 
163626650 2007 2009 0.87 0.09 7.39  0.64 0.36 6.22 
165389205 2011 2014 0.95 0.91 4.38  0.94 0.95 3.28 
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To validate the performance of the modeled water temperature within the headwater stream and 

high-order streams, we compared our model simulation results against the daily water 

temperature measurements from United States Geological Survey (USGS) website (available at: 

https://waterdata.usgs.gov/nwis). The sites are well distributed in the sub-basins across the 

region, and mostly located at the headwater zones. The site's information and the summary of 

NSE, R2, and RSMD for the validation could be found in Table 3-2. Overall, the model 

simulated water temperature agrees well with the observed water temperature with most of the 

R2 values are higher than 0.9.  

 

 

Figure 3-6. Spatial pattern of annual average water temperature within rivers (a) and small 

streams (b) of the year 2015.  

https://waterdata.usgs.gov/nwis
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3.4. Results  

3.4.1. Spatial and temporal patterns of water temperature  

The spatial pattern of the water temperature generally follows the latitudinal distribution, 

with most of the southern rivers have higher annual mean water temperature (16 ⁰C - 20 ⁰C) than 

that in the northern rivers (8 ⁰C - 14 ⁰C) (Figure 3-6). Topography helps to shape the spatial 

pattern of water temperature. The southern-ward of the Appalachian mountain has relatively 

lower water temperatures (4 ⁰C - 12 ⁰C). However, the eastern-ward of the mountain has much 

higher water temperature (12 ⁰C - 20 ⁰C). On the other hand, the coastal regions have much 

higher water temperature (12 ⁰C - 20 ⁰C) than that of the inland regions (4 ⁰C - 16 ⁰C) (Figure 3-

6).  

In this study, we plotted and analyzed the spatial and temporal pattern of water 

temperature within the high-order streams (higher than 1st stream order, Figure 3-6. a) and 

headwater streams (1st order streams, Figure 3-6. b) separately across the MAR of the year 2015.  

In general, the annual mean water temperature in the headwater streams is cooler than that in the 

high-order streams. In most of the regions, the annual mean water temperature of headwater 

streams is lower than 12 ⁰C. However, the annual mean water temperature in high-order streams 

is mostly above 12 ⁰C.  

In the megacities (Figure 3-4, Figure 3-5 c), such as Washington DC., Baltimore and 

Philadelphia, the annual mean water temperature reached to 18 ⁰C - 20 ⁰C in headwater streams 

(Figure 3-6 b), but stream water temperature dropped quickly to 12 ⁰C - 14 ⁰C when the water 

transport to the 2nd stream order (Figure 3-6 a). In the south part of the study region, the annual 
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mean water temperature is mostly about 10 ⁰C – 14 ⁰C, the water temperature of the high-order 

streams reached to 16 ⁰C - 20 ⁰C at the high steam orders. 

 

Figure 3-7. Changes in annual average water temperature within rivers (a) and small streams (b) 

across the Mid-Atlantic Region from 1900 to 2016 (c). Significance of long-term changes in 

water temperature of small streams and rivers (d). Note: The trends in (c) are the increasing rates 

of air temperature (trend 1), and water temperatures in high-order streams (trend 2) and 

headwater streams (trend 3) from 1960 to 2015. 
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3.4.2. The long-term changes in water temperature in headwater streams and high-order 

streams 

 
The overall water temperature in high-order streams increased significantly from 1900 to 2016, 

with an increasing rate of 0.0047 ⁰C / year. Specifically, the increasing rate elevated to 0.028 ⁰C / 

year from 1970 -2016 (Figure 3-7. c). The water temperature in headwater streams increased 

significantly during 1900 to 2016 with an increasing rate of 0.0065 ⁰C / year, and the increasing 

rate reached to 0.031 ⁰C / year from 1970 -2016 (Figure 3-7. c).  

In coastal regions or downstream regions, the water temperature of lower-order streams 

(lower than 5th stream order) shows a significant increasing trend (Figure 3-7. c) from 1900 to 

2015. However, the increasing trend of headwater streams is lower than that in high-order 

streams (Figure 3-7. a, b).  It should be noted that the increasing trend of water temperatures in 

high order streams (higher than 5th stream order, Figure 3-4, 3-7. a) is not statistically significant, 

and the increasing trend is less than 0.002 ⁰C / year from 1900 to 2015.  

In the inland-ward of the MAR, stream water temperatures remaining relatively steady, 

with most of the grid points do not show statistically significant trends during the past 100 years 

(Figure 3-7. c). However, there still are many 1st order headwater streams show a century-long 

increasing trend. Only seldom points show a significant decreasing trend of water temperature in 

both high-order streams and headwater streams.  The stream water temperature of the northern 

regions has a slight increasing or decreasing trend, with the rate ranges from -0.0001 ⁰C / year to 

0.002 ⁰C / year. Surprisingly, nearly half of the southern streams have a slight decreasing rate of 

steam-water temperature with a value of about -0.005 ⁰C / year. 
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3.4.3. Attribution the contribution of environmental factors to changes in stream water 

temperature  

According to our factorial analysis, climate factors explain more than 90% of the changes in 

streams water temperature across the MAR since the 1900s (Figure 3-8). Around the 1970s, 

climate impact to water temperature in high-order streams and headwater streams diminished to 

30.3% and 4.4%, respectively (Figure 3-8). Land-use conversion accounts for 37.4% and 61.4% 

of the changes in water temperature in high-order streams and headwater streams during this 

time period (Figure 3-8).  Nitrogen inputs and CO2 fertilization effect contribute more than 30% 

of the increased in water temperature with high-order streams and headwater streams in the 

1970s. After the 1970s, the contribution of land-use, CO2, and N inputs to the changes in high-

order streams water temperature damped to ~10%, but still, account for ~20% of the changes in 

headwater stream water temperature (Figure 3-8).  

 

 
           a 

 
 b 

Figure 3-8. Contribution of environmental factors to the changes in water temperature in large 

rivers (a) and small streams (b). 
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3.5. Discussions 

3.5.1. The impact of climate on the water temperature of high-order streams and 

headwater streams 

Air temperature is still the dominant driver of the increasing or variations in water 

temperature. The spatial pattern of the increasing trend in water temperature (Figure 7.d) follows 

that of air temperature (Figure 3-5.f), with both water temperature and air temperature increased 

in coastal regions and decreased in the mountain regions. Air temperature primarily influences 

water temperature in two pathways: (1) Thermal energy exchanges between air and water 

interface (Arismendi et al., 2014). (2). Rising air temperature influences land surface 

temperature, and indirectly changes the temperature of shallow groundwater and the adjacent 

headwater streams (Kurylyk et al., 2015; Menberg et al., 2014).  

It has been revealed by the statistical analysis of 129 USGS site measurements (Rice and 

Jastram, 2015) that, the stream water temperature and air temperature across the Chesapeake Bay 

Watershed show significant increasing trend since the 1970s with the increasing rate of 0.028 ⁰C 

/ year and 0.023 ⁰C / year, respectively. The magnitude of the increasing trend in this statistical-

based study (Rice and Jastram, 2015) is consistent with the DLEM predicted increasing rate 

(0.028 ⁰C / year) of water temperature in high-order streams (larger than 1st streams) from 1970 

to 2015 across the whole MAR. However, this DLEM-based modeling study suggested a higher 

increasing rate of water temperature (0.031 ⁰C / year) in 1st order headwater streams, which been 

underestimated by the data analysis-based study.  

Overall, the contribution of air temperature to the changes in water temperature in high-

order streams is consistent with that of headwater streams in our factorial analysis (Figure 3-9. 

a). Thus, the higher increasing rate of water temperature in headwater streams indeed sourced 
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from other environmental factors. Precipitation is another dominant climate variable that 

significantly influences the stream water temperature. A higher precipitation rate would enlarge 

the water surface area in the headwater zone, which accelerates the thermal energy exchange 

between air and water (equation 5). On the other hand, the increase in precipitation resulted in 

more cooling groundwater discharge in summer and warming groundwater flow in winter 

(Briggs et al., 2018), which substantially buffers the seasonal variations of water temperature in 

both headwater streams and high-order streams (Burns et al., 2017; Snyder et al., 2015). 

Additionally, the increased precipitation cools the land surface even though evaporative energy 

release also contribute to the changes in water temperature (Trenberth and Shea, 2005) 

 

Figure 3-9. Changes in water temperature of rivers and small streams across the Mid-Atlantic 

Region in response to the atmosphere temperature (a), precipitation (b), and land-use change (c).  

 

. 
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Our factorial experiments suggested that the contribution of precipitation to headwater 

steams temperature is larger than that of high-order streams (Figure 3-9. b). Here we only 

consider the absolute value of the contribution of air temperature and precipitation because of the 

variations in climate conditions which do not account for the long-term change.  That is because 

the increased precipitation substantially increased groundwater discharge. Headwater streams, 

which experienced heavy groundwater and surface water exchanges, show less seasonal variation 

than that in the main river channel. Thus, headwater streams are conventionally thought as the 

refugia of the climate change due to the cooling effect of groundwater discharge during the 

summer season (Ficklin et al., 2014; Isaak et al., 2016b; Snyder et al., 2015) 

A recent study found that the thermal energy of water seepage from shallow groundwater 

increased significantly with the rising land-surface temperature in the Blue Ridge Mountains of 

the U.S. (Briggs et al., 2018). The refugia of cold water species would disappear soon under the 

context of the global warming (Leach and Moore, 2019). Similarly, we found a faster increasing 

rate of temperature in groundwater-fed headwater streams across the MAR (Figure 3-7.c), which 

is supporting by the findings at the site or catchment level (Leach and Moore, 2019).  

3.5.2. Land conversions on water temperature 

Land-use change shows a tremendous impact on the water temperature in high-order streams and 

streams. As predicted by DLEM, water temperature in urban regions reached to 18 ⁰C -20 ⁰C in 

2015, which is higher than the water temperature of the sub-urban regions (Figure 3-6. b). The 

model simulation results suggest that the water temperature in headwater streams is susceptible 

to urbanization, which is supported by the catchment level study conducted at the north of 

Washington D.C. (Nelson and Palmer, 2007). However, the effect of land-use changes on water 

temperatures quickly damped while water flows into 2nd stream orders or higher (Figure 3-6. a) 
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because solar radiation and sensible heat fluxes exchange dominate the water temperature with 

the water surface area increased to a certain level.  

This study region experienced a large fraction of cropland conversion to forest land 

during the last century (Figure 3-5.a), and the land-use conversions could contribute to the 

changes in water temperature (Yearsley et al., 2019). The changes in plant canopies and 

associated net water surface area receiving solar radiation could directly influence water 

temperature. Thus, the term effective water surface area (Li et al., 2015b) was introduced into 

the model with a fixed value (0.875) to represent the shading effect of the plants. In this study, 

we calibrated the shading effect of different plant function types on headwater streams (equation 

5) to match the observed water temperature of headwater streams. Such as forest land has a 

higher shading effect, but less in grasslands or shrublands. On the other hand, the changes in 

vegetation types resulted in different ground litter depth and surface albedo which directly link to 

the soil evaporative energy release. In DLEM simulations (Figure 3-6), water temperature in 

forests or grassland is much lower than that in regions with high fractions of the urban 

impervious surface due to the higher evapotranspiration rates (Trenberth and Shea, 2005).   

3.5.3. The sensitivity of groundwater effects on water temperature  

Earth system models and hydrological models do not explicitly simulate the lateral transport of 

groundwater from the soil root zone to the tributary streams. Thus, simplification is needed by 

defining the headwater streams temperature or seepage groundwater temperature. Most of the 

previous modeling studies used empirical-based models to represent the water temperature of the 

headwater zone.  This empirical-based headwater temperature was given as the boundary 

condition to force the water temperature models (Brown, 1969; Van Vliet et al., 2013, 2012; Van 

Wijk and De Vries, 1963; Wanders et al., 2019; Wu et al., 2012a, 2012a). Thus, the sensitivity of 
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water temperature in response to the boundary condition has not been thoroughly investigated. 

Especially for the outlet of the rivers, climatic and hydraulics variables including surface area, air 

temperature, radiations were conventionally considered as the dominant drivers (Li et al., 2015b; 

Wu et al., 2012a).  

 

 

Figure 3-10. Simulated water temperature at the outlet of the Delaware River (a) and 

Susquehanna river (b) in response to the setting of groundwater boundary conditions. 

 

Here, we investigated the sensitivities of the water temperature at the high-order streams 

of the Delaware River (Figure 3-10. a) and Susquehanna River (Figure 3-10. b) in response to the 
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setting of groundwater temperature. In this model, we defined the temperature of seepage 

groundwater flows as equals to the mean soil temperature from the surface to a calibrated soil 

depth (0.5m).  We plotted the simulated daily water temperature from 2000 to 2001 at two USGS 

sites, which are located at the 3rd (site number: 01428750) and 5th (site number: 01460300) order 

of the Delaware River with the calibrated depth given as 0.1 m, 0.5 m, 1 m, and 2 m, 

respectively. The sensitivity analysis suggested that water temperature continuously drops with 

the increases of calibrated soil depth increased from 0.1m to 2m. A noticeable time lag was 

detected in both sites when the depth was set as 0.1 m and 2 m, respectively. Therefore, correctly 

defining the seepage groundwater temperature to couple the land model with riverine transport is 

of great importance to improve the model performance. Li et al. (2015) suggested the boundary 

condition of seepage groundwater temperature is from the water table to the bottom of the root 

zone (5 m depth in the Community Land Model (Oleson et al., 2010) ), which is much deeper 

than that in this study. However, the apparent time lag between their simulation and observations 

suggest a modification of their settings.  

3.5.4. Limitation of the empirical-based model 

Air temperature has been widely applied as a sole indicator to predict water temperature in 

empirical models (Brown, 1969; Chen and Fang, 2015b; Mohseni et al., 1998; Segura et al., 

2014; Wehrly et al., 2009). The regression equation was established by statistical methods with 

most of the water temperature observations obtained from the high-order streams. Due to the 

lack of observations available in the headwater streams, the empirical methods may not have 

enough support to estimate the water temperature in the headwater zones accurately. There is a 

growing debate on if air temperature could be used as the sole indicator of water temperature 

(Arismendi et al., 2014); the reliability of regression equations would be hampered with the 
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changes in climate and hydrological condition (Arismendi et al., 2014). Our results suggested 

that using the empirical model may largely underestimate the increasing rate of water 

temperature within the headwater streams (Figure 3-7. c), which is supporting by the site level 

study within the Columbia river basin (Leach and Moore, 2019). 

Our factorial analysis suggests that climate variables cannot explain the changes in water 

temperature during the 1970s (Figure 3-8, Figure 3-9). However, the contribution of climate to 

the stream water temperature reached more than 80% from 1980 to 2015. That suggests a high 

accuracy of empirical equations in predicting water temperature from 1980 to 2015, but a 

relatively lower value during the 1970s. To confirm this assumption, we compare the accuracy of 

the process-based model and empirical-based model. We found that the accuracy of the empirical 

model is equivalent to that of the physical-based model from 1980 to 2015, but the physical-

based model is more accurate before the 1970s (Table 3-2). 

3.5.5. Uncertainties  

Although this model is process-based, we still used several semi-empirical equations to represent 

the physical processes. For instance, we conducted a semi-empirical based method to estimate 

the water surface area (Allen et al., 2018). Additionally, the model parameters may induce large 

uncertainties as well but have not been well investigated in this study.  

Human activities, such as water extraction, were not considered in the model. Water 

extraction from groundwater and stream water are ubiquitous agricultural activities, which would 

significantly affect soil evaporation, groundwater outflow and even soil properties (Keery et al., 

2007). In this study, we investigated the effect of CO2 and nitrogen inputs to the stream water 

temperature (primarily through the effect of plant growth). Although these factors only provide 

minor contributions to the increase of water temperature and the function of the CO2 fertilization 
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effect is still in debate, those human-induced effects would propagate shortly (Terrer et al., 

2016). Furthermore, the hot water release from industry has already been considered as the 

thermal pollutant which strongly affects the health of the aquatic ecosystems (Webb et al., 2008). 

However, it is not realistic to incorporate this part into the model due to a lack of inventory data 

as model inputs. In this model, we only considered the mixture of water with dams and lakes, but 

do not include dam and lake routing and stratifications. Although the cooling effect of dams has 

been well documented in observations and modeling studies (Chen and Fang, 2015a; King et al., 

1998), the effect of dams on water temperature is still in the debate which will be a great 

uncertainty source of the modeling results (Chen and Fang, 2015a).  

3.5. Conclusion and future research 

In this study, we investigated the water temperature by developing a water temperature module 

within the DLEM -TAIM modeling framework. This model linked the thermal energy balance of 

land and aquatic systems together, which can well address how land processes would affect the 

water discharge and water temperature. We deployed and validated this model on MAR of the 

U.S and filled the knowledge gaps of water temperature within headwater streams. Since this 

work mostly focuses on impacts of climate and human disturbances on the temperature in 

headwater streams, our future research would investigate how the improved water temperature 

module would influence aquatic biogeochemistry. Since this study region does not have large 

lakes and reservoirs, the missing component to represent the dam and lake routing and 

stratification would not influence the reliability of the model. With the improved technology and 

data source available, remote sensing-based methods prompted a new direction to estimate water 

temperature (Martí-Cardona et al., 2019). Therefore, better data-model integrations are needed to 
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enhancing model capability in predicting headwater stream and high-order stream water 

temperature and the associated biogeochemical cycles. 

 

 

Figure 3-11. The flowchart to describe the development of historical land-use cohort 
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Figure 3-12. Compare stream water temperature again USGS observations across the CBW and 

DRB. 
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Chapter 4: Modeling carbon export and CO2 evasion from river network: application to 

Chesapeake Bay Watershed and Delaware Bay Watershed  

 

Abstract: Riverine carbon fluxes have been recognized as an essential part of the global/regional 

carbon cycle. However, accurate estimation of the carbon fluxes at a large spatial scale, such as 

in large basins, has not been fully constrained due to the lack of modeling tools and data-model 

integrations. Here, we coupled the Dynamic Land Ecosystem Model (DLEM) with a scale-

adaptive hydrological model to simulate the carbon exports, CO2 degassing, and carbon burial in 

the riverine ecosystems. This coupled model can well address CO2 emissions from the small 

headwater streams through the incorporation of sub-grid routing, and more importantly, this 

model can quantify the impacts of climate change and anthropogenic activities on terrestrial 

ecosystems and consequently GHG emissions of riverine ecosystems. Taking advantage of the 

new model, we investigated riverine carbon fluxes across the Chesapeake Bay Watershed 

(CBW) and Delaware Bay Watershed (DBW) from 1900 to 2015. Driven by a 4-km spatial 

resolution input dataset, the model was calibrated and validated using reported daily discharge 

and water quality data from United States Geological Survey (USGS). Our results suggested that 

riverine CO2 degassing (886.25 ± 177.1 Gg C/yr, ±1 standard deviation) account for most of the 

carbon fluxes across the study region followed by Dissolved Inorganic Carbon (DIC)  fluxes 

(883.26 ±268.58 Gg C/yr), Dissolved Organic Carbon (DOC)  fluxes (293.27 ± 81.55 Gg C/yr), 

carbon deposition (118.19 ± 32.27 Gg C/yr), and Particulate Organic Carbon (POC) fluxes 

(105.4±35.41 Gg C/yr). The headwater zone (1st to 3rd stream order) contributes more than 73% 

of the riverine CO2 emissions. The long-term changes in Riverine CO2 degassing, DOC, and DIC 
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exports show a significant increasing trend after the 1960s with the increasing trend of 2.74 Gg 

CO2-C/yr, 2.01 Gg DOC-C/yr, and 5.83 Gg DIC-C/yr, respectively. Climate variability explains 

57.5% of the increased in carbon fluxes, followed by land-use/land-cover change (24.92%), N 

deposition (7.54%), N applications (5.86%) and CO2 effect (4.18%). Here, re-forestation 

indirectly decreased the riverine export of all carbon species, while increased temperature and 

precipitation, extensive nitrogen fertilizer use, CO2 fertilization effect, and N deposition all 

contribute to the increase of riverine DOC, POC, and DIC fluxes. 

Keywords: Chesapeake Bay Watershed, Delaware River Basin, Carbon export, CO2 degassing, 

Dynamic Land Ecosystem Model (DLEM). 

Key points: 1, Riverine Carbon fluxes from Chesapeake Bay Watershed and Delaware River 

Basin from 1900 to 2015 

                   2, Modeling carbon dioxide degassing from small rivers 
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Introduction 

Rivers and streams, namely as the terrestrial-aquatic ocean continuum (Regnier et al., 2013), 

bridge up the two largest carbon reservoirs: terrestrial and marine ecosystems. Longitudinal 

carbon fluxes through river channels to the ocean or CO2(s) release to the atmosphere from rivers 

are much larger than our previous thoughts (Regnier et al., 2014). Therefore, riverine carbon 

fluxes have been suggested to revise carbon accounting of the conterminous U.S. and Amazon 

river basin (Butman et al., 2016; Hastie et al., 2019). It has been noted that the terrestrial carbon 

loss into rivers, also referred to as terrestrial carbon loading, is the dominant component of the 

carbon fluxes of inland waters (McDonald et al., 2013). However, the terrestrial carbon loading 

is a poorly constrained term (Drake et al., 2018). Thus, developing tools to accurately quantify 

the magnitude and spatial and temporal patterns of the carbon loading, lateral carbon fluxes, and 

riverine CO2 degassing along the land-ocean continuum is of great importance to the regional 

carbon cycles (Regnier et al., 2013). 

Data-based analyses have been conducted at regional and continental levels to quantify 

the carbon exports and CO2 emissions. However, none of these studies quantify the temporal 

variability of carbon fluxes across large spatial scales (Butman et al., 2016; Butman and 

Raymond, 2011; Raymond et al., 2013). Although regression-based tools, for instance, Load 

Estimator LOADEST (Runkel et al., 2004a), SPAtially Referenced Regression On Watershed 

attributes (SPARROW) (Georghiades, 2003),  has been widely deployed to reconstruct the 

continuous temporal patterns of carbon fluxes at the site level, none of these models extend the 

model performance to predict the spatial patterns of carbon fluxes along stream networks. 

Additionally, the regression-based methods cannot attribute the impacts of environmental factors 
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on the terrestrial-aquatic carbon dynamics due to their intrinsic weakness, which limits the 

applications to policy-relevant studies. 

After a long time miss-understanding of riverine carbon budget as a fixed term in the 

science community,  the impacts of climate change and human disturbances on riverine carbon 

dynamics became apparent during the past twenty years (Regnier et al., 2013). Thus, 

understanding the impacts of changes in environmental conditions on the land and aquatic 

carbon cycle through field experiments or data analysis are of great importance to the further 

investigation of the inherent mechanism of the carbon cycle. Enhanced exports of Dissolved 

Organic Carbon (DOC) and Dissolved Inorganic Carbon (DIC) has been found primarily due to 

the long term increase in air temperature (Laudon et al., 2012; Pastor et al., 2003). Precipitation 

and the associated hydrological response of the watershed play critical roles in regulating carbon 

fluxes (Raymond and Oh, 2007). Further human activities have substantially influenced the 

terrestrial carbon cycle, resulting in significant impacts on the aquatic carbon cycle (Raymond 

and Hamilton, 2018). A recent data analysis study revealed that land conversion from organic-

rich soils during World War II substantially increased soil carbon loss into rivers (Noacco et al., 

2017). Unexpected anthropogenic effects, including the CO2 fertilization effect and enhanced 

nitrogen deposition, led to an increase in carbon loading to rivers (Findlay, 2005; Houghton, 

2010). Not only terrestrial carbon inputs to rivers determine the riverine carbon fluxes, fluvial 

conditions, including hydraulic loading and water temperature, also help to regulate the riverine 

carbon dynamics (Chapra, 2008; Harrison et al., 2009; Isaak et al., 2016b).  

The precise understanding of the intrinsic mechanism of the terrestrial or aquatic carbon 

dynamics from fieldwork spurred substantial progress in establishing process-based models 

(Dick et al., 2015; Tian et al., 2015c; Laruelle et al., 2017; Seitzinger et al., 2005). Process-based 
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models help fill the data gaps across spatial and temporal scales. However, Earth system models 

(ESMs) are limited by their lack of integration between land and ocean systems through riverine 

carbon flow along the land-ocean continuum (Bauer et al., 2013). In recent decades, model 

complexity increased significantly with the representation of microorganism activities coupled 

with carbon and nutrient dynamics, which result in considerable uncertainty (Chapra, 2008; 

Hofmann et al., 2008). Additionally, most ESMs are applied at the coarse spatial resolutions, and 

thus the surface and subsurface hydrodynamics are overly simplified. Notably, the headwater 

streams (1st-3rd stream-order) are excluded in the ESMs due to their small area (McClain et al., 

2003) and the structural complexity, such as the complex topography, subsurface hydraulics and 

microbial activities (Battin et al., 2009). 

There is increasing recognition of headwater streams as the hotspots (McClain et al., 

2003) of riverine CO2 degassing (Battin et al., 2009). Recent studies indicate that most of the 

riverine carbon is degassed from headwater streams (Butman et al., 2016; Butman and Raymond, 

2011; Raymond et al., 2013), and the dominant source of running water CO2 and dissolved 

organic carbon in groundwater input (Corson‐Rikert et al., 2016; Findlay et al., 1993; Hotchkiss 

et al., 2015). Additionally, the headwater streams and floodplains are found to store most of the 

riverine carbon, which is far beyond previous thoughts (Beckman and Wohl, 2014; Wohl et al., 

2012). Despite increasing recognition of the role of headwaters in the carbon export and 

degassing to the overall riverine fluxes (Holgerson & Raymond, 2016), physical sampling 

programs in small rivers are limited and have not been incorporated into ESMs. 

To better understand the role of riverine CO2 emissions and lateral carbon fluxes in the 

regional carbon cycle, we coupled a scale adaptive river routing scheme (MOSART, Li et al. 

2013) with a dynamic land ecosystem model (DLEM, Tian et al. 2015). To test the performance 
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of our newly improved terrestrial-aquatic interface module within the DLEM framework 

(DLEM-TAIM), we applied the model to the Chesapeake Bay and Delaware Bay watersheds 

located in the Northeast of the U.S (Figure 4-1), the two largest bays of the Atlantic Seaboard. 

Major rivers draining into the Chesapeake Bay include Susquehanna River, Potomac River, 

James River, Rappahannock River, York River, etc. The Chesapeake Bay Watershed (CBW) 

spans more than 64,299 square miles. The Delaware Bay Watershed (DBW) covers 12,800 

square miles. These two regions, as the most urbanized area of the U.S., have been subject to 

massive land conversion during the last century and sustained more than 25.5 million people.  
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Figure 4-1. The major plant function types and land-use in Chesapeake Bay Watershed (CBW) 

and Delaware Bay Watershed (DBW)  

 
In this study, we quantified the magnitude and spatial patterns of riverine CO2 degassing 

and lateral fluxes of carbon species: Particulate Organic Carbon (POC), DOC, and DIC from 

Chesapeake Bay Watershed (CBW) and Delaware Bay Watershed (DBW) to the ocean water 
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from 1900 to 2015. Furthermore, we attributed the contribution of each environmental control to 

riverine C fluxes in the study region. 

4.2 Methodology: model improvement  

4.2.1. Improvement of DLEM-Terrestrial/Aquatic Interface Module (TAIM) 

 

Figure 4-2. The general framework of the DLEM Terrestrial Aquatic Interface Model. (a). The 

concept model of DLEM. (b). The concept model of Model for Scale Adaptive River Transport 

(MOSART) 

 

Building upon the Dynamic Land Ecosystem Model 2.0 (DLEM 2.0) (Tian et al. 2015) and the 

MOdel for Scale Adaptive River Transport (MOSART) (Li et al., 2013), in this study, we have 

developed and improved the Terrestrial-Aquatic Interface Module (TAIM) (Figure 4-2) for 

simulating dynamics of coupled hydrological and biogeochemical processes along the land-

ocean aquatic continuum (LOAC).  

DLEM2.0:  A process-based terrestrial ecosystem model that couples carbon and 

nitrogen dynamics between plants and soil, and river routing to simulate water, carbon and 
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nitrogen fluxes, and GHGs emissions in terrestrial ecosystems (Figure 4-2. a). To address the 

sub-grid terrestrial processes, DLEM utilized a land-use cohort structure as the basic unit, which 

aggregated four natural plant function types, one cropland type, and urban impervious into one 

grid cell. The model simulated land carbon dynamics, including plant photosynthesis, soil 

biogeochemistry forced by the climate variables, and land-use changes. The outputs of land 

carbon and nutrients loading from the DLEM land module are utilized as the boundary condition 

to force the riverine biogeochemistry module (Tian et al. 2015). 

 

In our previous studies, DLEM has been well validated against observational data and then 

applied to quantify water discharge (Liu et al., 2013; Tao et al., 2014; Yang et al., 2015d), and 

riverine exports of carbon (Ren et al., 2015; Tian et al., 2015c), and nitrogen (Yang et al., 

2015a).  

The previous DLEM version used the Linear Reservoir Routing (LLR) method (Coe, 1998) to 

calculate river routing at the continental scale. However, the inherent weakness of LLR method, 

which used constant variables to calculate flow velocity at each grid ( an empirical equation 

based on channel slope) limiting its ability in predicting the temporal pattern (monthly and daily 

level in this study) of water discharge (Li et al., 2013; Yamazaki et al., 2011).  

MOSART: In this study, A scale adaptive and fully physical-based model named Model 

MOSART (Li et al., 2013) (Figure 4-2. b) was incorporated into DLEM.  The MOSART model 

separates the water transport within the grid cells into three sub-grid processes: hillslope flow, 

subnetwork flow, and main channel flow. The water from surface runoff will contribute to 

hillslope flow first. The subnetwork flow receives the water from hillslope flow, groundwater 

discharge, and flows into the main channel. The main channel flow merges water from upstream 
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grid cells and local subnetworks, and flow to the downstream grid cell. All three river- routing 

processes used kinematic wave methods (Chow, 1964a) to calculate the channel routing, which 

requires several physical parameters (channel length, bank-full depth, channel slope, and channel 

roughness) aggregated from the fine resolution  

hydrography dataset.  Similar to most land surface model, DLEM only consider vertical 

movements of subsurface soil moisture and lumped the lateral groundwater transport with 

parameterized outflow rates from a groundwater pool to the local subnetworks.  

The apparent benefits gained from the scale adaptive water transport module are: while shifting 

the grid size in simulating, the length of the hillslope flow, and subnetwork flow shifting together 

according to the generalized hydrograph dataset (processed from high-resolution river network 

data (Figure 4-10). In other words, the length of small streams (subnetworks) within a grid cell 

would get longer (or shorter) when the grid size grows larger (smaller). Therefore, the 

parameters of the new water transport module only require minor re-calibration during scale 

shifting.  

Here, we used remote sensing-based river surface area data (Allen and Pavelsky, 2018) as input 

for the large river channels. However, the water surface area of small rivers could not be detected 

by remote sensing data, and the small rivers are so dynamic. Hence, the water surface area of the 

small rivers is calculated from a statistical-based method (Allen et al., 2018) as shown in eq (1) 

(2): 

𝐴𝐴𝑠𝑠 =  �    𝐴𝐴𝑅𝑅𝑅𝑅,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑊𝑊 × 𝐿𝐿 ,                       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                                             (1) 

𝑊𝑊 = 𝑄𝑄
3

5𝑟𝑟+3  ×  (0.5 𝐴𝐴0.42)𝑖𝑖
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Where As is the surface area of the water body, 𝐴𝐴𝑅𝑅𝑅𝑅,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the surface area derived from remote 

sensing data, W and L are the width and length of the rivers channel respectively, Q is water 

discharge (m/s), A is upstream area (ha), k is a bed roughness length scale, and r is shape 

parameter and was set at 1.5 in this study.  

4.2.2. Riverine biogeochemical processes  

The primary in-stream processes of carbon species include lateral transportation, decomposition 

of organic matter, particle organic matter deposition, and CO2 degassing. These physical and 

biogeochemical processes have been adopted into the scale adaptive water transport scheme. 

Specifically, this module could address the processes within small-river align with a sub-grid 

routing of the water transport module. The net fluxes of carbon species in the main channel and 

subnetwork are given by: 

∆𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃
∆𝑡𝑡

= 𝐹𝐹𝑎𝑎,𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑣𝑣𝑠𝑠 𝐴𝐴𝑠𝑠 𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃  𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃                                          (3) 

∆𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷
∆𝑡𝑡

= 𝐹𝐹𝑎𝑎,𝐷𝐷𝐷𝐷𝐷𝐷 −  𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷  𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷                                                               (4) 

∆𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷
∆𝑡𝑡

= 𝐹𝐹𝑎𝑎,𝐷𝐷𝐷𝐷𝐷𝐷 +  𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃  𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷  𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷 −  𝐸𝐸𝐶𝐶𝐶𝐶2                           (5) 

where 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃, 𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷, 𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷,  are the total mass of POC, DOC, and DIC respectively, in the main 

channel or subnetworks (gC), ∆𝑡𝑡 is the time step, Fa is net advective transportation fluxes of 

carbon species (gC∙d-1) (including inflow and outflow), R is the respiration rate of the organic 

carbon species, 𝑣𝑣𝑠𝑠 is the settling velocity of particulate organic matters. Here, the hillslope flow 

receives carbon species from the land surface (with surface runoff) and contribute to subnetwork 

flow (Figure 4-2. b). The biogeochemical process within the hillslope flow was not considered in 

this study.  

The advective fluxes of carbon through subnetwork combines carbon inputs from both hillslope 

flow and drainage runoff that are expressed as: 
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𝐹𝐹𝑎𝑎,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹ℎ/𝑐𝑐  +  𝐹𝐹𝑔𝑔/𝑐𝑐 − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠                                     (6) 

where 𝐹𝐹ℎ/𝑐𝑐 is the carbon flux (DIC, DOC or POC) of hillslope flow,  𝐹𝐹𝑔𝑔/𝑐𝑐 is the carbon flux from 

the groundwater pool to the subnetworks. Here, the hillslope flow and groundwater pool received 

carbon loadings from surface runoff and subsurface runoff, respectively, which were estimated 

by DLEM land model. More detail about the calculation of carbon loadings could be found in 

Tian et al. (2015c). DLEM land model explicitly estimated the carbon loadings, more detail 

could be found in Tian et al. (2015c). Qsub is flow rates of and subnetwork flow (m3∙s-1), Csub is 

the concentration (mg/L) of all three carbon species in hillslope flow, groundwater, and 

subnetworks, respectively.  

The advective carbon fluxes through the main-channel was described as: 

𝐹𝐹𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = ∑ 𝑄𝑄𝑢𝑢𝑢𝑢,𝑖𝑖𝐶𝐶𝑢𝑢𝑢𝑢,𝑖𝑖
𝑛𝑛
𝑖𝑖=1  + 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚                                 (7) 

where Qup and Qmain are the flow rates of upstream grid cells and the main channel in the current 

grid cell (m3∙s-1), respectively. Cup and Cmain are the associate concentration (mg/L) of carbon 

species, respectively.  

The settling velocity of the particle is estimated by a simplified Stokes’ law (Thomann and 

Mueller, 1987), and is given by: 

                      𝑣𝑣𝑠𝑠 = 0.033634 ×  α × (𝜌𝜌𝑠𝑠 − 𝜌𝜌𝑤𝑤 ) 𝑑𝑑2                                            (8) 

Where 𝜌𝜌𝑠𝑠 and 𝜌𝜌𝑤𝑤 are the density of particle and water, respectively, d is the diameter of the 

particle. 

 The respiration of organic carbon in rivers is computed according to a first-order kinetics 

equation: 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷,𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷,𝑃𝑃𝑃𝑃𝑃𝑃  ×  𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟  ×  (𝑄𝑄10)
𝑇𝑇𝑤𝑤− 𝑇𝑇𝑠𝑠

10                                  (9) 
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where 𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟 is the reduction rate(m∙d-1), and 𝑀𝑀𝐶𝐶𝐶𝐶2 is the total mass of dissolved CO2 (gC) in the 

river channel. 𝑇𝑇𝑤𝑤 is the water temperature (⁰ C), and Ts is the reference temperature (20⁰ C). 

DLEM explicitly quantify the CO2 emission from saturated water bodies, the major controlling 

factor of CO2 degassing is temperature, water pH, flow velocity, and air CO2 concentration. 

Here, the CO2 degassing 𝐸𝐸𝐶𝐶𝐶𝐶2 is estimated as: 

𝐸𝐸𝐶𝐶𝐶𝐶2 = 𝐾𝐾𝐶𝐶𝐶𝐶2  ×  �𝐶𝐶𝐶𝐶𝐶𝐶2 −  𝐶𝐶𝐶𝐶𝐶𝐶2𝑒𝑒𝑒𝑒� ×  𝐴𝐴𝑠𝑠                                               (10) 

𝐶𝐶𝐶𝐶𝐶𝐶2 is the dissolved CO2 concentration (mg/L), which is estimated as a fraction of DIC 

concentration (𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷). In our model, the (𝐶𝐶𝐶𝐶𝐶𝐶2
𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷

) ratio is controlled by water pH and water 

temperature (Chapra, 2008). The 𝐶𝐶𝐶𝐶𝐶𝐶2𝑒𝑒𝑒𝑒 represent the  equilibrium CO2 concentration (mg/L) 

which calculated based on Henry’s law (Sander, 2015),: 

𝐶𝐶𝐶𝐶𝐶𝐶2𝑒𝑒𝑒𝑒 = −2400 × 𝐸𝐸𝐸𝐸𝐸𝐸( 1
273+𝑇𝑇𝑤𝑤

−  1
298

)                                                (11) 

Where 𝑇𝑇𝑤𝑤 (Celsius Degree) is water temperature. The gas exchange rate 𝐾𝐾𝐶𝐶𝐶𝐶2 (m∙d-1) is 

estimated as: 

𝐾𝐾𝐶𝐶𝐶𝐶2 =  𝐾𝐾600 ×  (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶2
600

)−0.5                                                              (12) 

where 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶2 is the Schmidt Number for CO2 (He et al., 2017), and K600 is the gas exchange 

coefficient (Raymond et al., 2012). The term 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶2 is calculated as: 

𝐾𝐾600 =  𝑆𝑆𝑆𝑆 × 𝑉𝑉 × 2841.6 + 2.03                                                          (13) 

𝑆𝑆𝑐𝑐𝐶𝐶𝐶𝐶2 =  1911.1 − 118.11 × 𝑇𝑇𝑤𝑤 + 3.4527 × 𝑇𝑇𝑤𝑤2 − 0.04132 ×  𝑇𝑇𝑤𝑤3             (14) 

Where SI is the channel slope, V is flow velocity. 

4.2.3. Statistical method 

We conducted the Mann-Kendal trend test and Theil Sen linear regression to examine the 

increasing trend of time series data, including air temperature and precipitation (Figure 4-3, d, e, 
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f) and carbon fluxes (Figure 4-6). The same approach was applied to each grid cell within the 

CBW and DBE regions from 1900 to 2016 (Figure 4-7). The change rate (slope) and trend (p-

value less than 0.05 means the trend is statistically significant. When the trend is significant, we 

use the slope to predict whether the trend is decreasing or increasing) were given in Figure 4-7. 

We calculated the Nash-Sutcliffe coefficient (NSE) (Nash and Sutcliffe, 1970) and coefficient of 

determination (R2) to validate the model performance in predicting the DOC, DIC, and POC 

fluxes of each river respectively (Figure 4-4). 

4.3. Simulation protocol and input data 

4.3.1. Simulation experiments  

The DLEM simulation follows three major steps: (1) We conducted equilibrium run driven by 

the potential natural vegetation map, 30-year average daily climate forcing, and other forcing 

including CO2 concentration, land-use, nitrogen management at the level of 1900. The iteration 

finished until all the carbon, nitrogen, and water pools reach the equilibrium state. (2) To smooth 

the simulation results between the equilibrium run and transient run, we conduct a 30-year 

spinning-up run (Thornton and Rosenbloom, 2005; Tian et al., 2012), which randomly selected 

the driving forces between 1900 and 1929.  (3). After the spinning-up run, the program reset to 

the year 1900 and run sequentially from the year 1900 to 2015, with all the forcing changes year-

by-year. 
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Figure 4-3. The land-use change and climate variability in CBW and DBW. (a). Temporal 

patterns of net land-use change from 1900 to 2015, (b). Temporal patterns of annual mean 

precipitation and air temperature from 1900 to 2015, (c). Changes in urban impervious surface. 

(d). Changes in cropland. (e). The change rate of annual precipitation. (f). The change rate of air 

mean temperature 

 
To attribute the contribution of climate change, land-use change, nitrogen deposition, nitrogen 

management, and atmospheric CO2 concentration (Tian et al., 2015c; Xu et al., 2010) to the 

riverine carbon fluxes, we first ran the all-combined simulation as the reference simulation with 

calibrated parameters. And then, we conducted a series of factorial experiments (Table 4-1) by 

keeping each driving factor at their level in 1900: In Simulation 2, nitrogen fertilizer use and 

manure nitrogen usage were continuously kept at the level in 1900. In simulation 3, NOy and 

NHx depositions were held constant at the level of the year 1900. In simulation 4, the land-use 
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cohort of the year 1900 was set-up to represent the constant land-use condition. In simulation 5, 

the atmospheric CO2 concentration was not elevated since 1900. In simulation 6, the 30-year 

(1900-1929) average daily climate driving forces were used to represent the climate of the year 

1900 and were continuously kept in the simulation. The contribution of each factor to the carbon 

fluxes was quantified from the subtraction with the carbon fluxes of the reference simulation. 

 

Table 4-1. The experimental design for attributing riverine carbon fluxes to natural and 

anthropogenic factors including climate, atmospheric carbon dioxide (CO2), nitrogen deposition 

(NDEP), nitrogen management (NMAN).  

Factors 

 Climate CO2 Land-use NDEP NMAN 

Simulation 1 1900-2015 1900-2015 1900-2015 1900-2015 1900-2015 

Simulation 2 1900-2015 1900-2015 1900-2015 1900-2015 1900 

Simulation 3 1900-2015 1900-2015 1900-2015 1900 1900-2015 

Simulation 4 1900-2015 1900-2015 1900 1900-2015 1900-2015 

Simulation 5 1900-2015 1900 1900-2015 1900-2015 1900-2015 

Simulation 6 1900 1900-2015 1900-2015 1900-2015 1900-2015 

 

 

4.3.2. Input data 

In this study, a 4-km resolution model input has been developing to drive DLEM to include 

climate driving force, historical land-use cohort, nitrogen inputs, and atmospheric CO2 

concentration. 

To reconstruct historical land-use/land-cover data for the study area, we combined data from 

multiple sources (Figure 4-11), including the National Land Cover Database (NLCD) (Homer et 
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al., 2015b) , North American Land Cover (http://landcover.usgs.gov/nalcms.php), Global C4 

vegetation map (Still et al., 2003), county-level land use inventories (Waisanen and Bliss, 2002), 

and the Global Lakes and Wetlands Database (http://www.worldwildlife.org/pages/global-lakes-

and-wetlands-database). Due to the massive urbanization trend during the last century, the 

cropland area decreased by 53%, while the urban area increased by 497%, respectively. 

Constrained by the cropland conversion and urban expansion, the forest coverage, which is the 

dominant natural vegetation in the study area, increased by 10% from1900 to 2015 (Figures 4-3, 

a, c, d) followed by grassland increased by 21%. 

The daily climate dataset was obtained from PRISM (Daly et al., 2008) climate dataset. 

(available at: http://www.prism.oregonstate.edu/). This dataset provides the gridded estimates of 

four essential climate variables, including daily minimum, mean and maximum temperature, and 

precipitation. Over the study area, precipitation and temperature demonstrated significant spatial 

and temporal variability during 1895 – 2015 (Figure 4-3, b, e, f). The average annual 

precipitation was 1080.0 ± 131.7 mm yr-1 with the maximum and minimum precipitation that 

occurred in 2003 (1506 mm) and 1930 (658mm), respectively. Temperature demonstrated 

significant inter-annual variability. The annual mean temperature in this area was 11.6 ± 0.2°C 

during 1895-2015. The annual mean temperature showed a considerable fluctuation, with a 

significant increasing trend from 1960 to 2014.  

The scale adaptive water transport module requires several hydrograph data as model inputs. 

Here the flow direction, bank-full width, and bank-full depth are obtained from the HYDRO1K 

database (Earth Resources Observation And Science Center, 2017),  which was derived from 

hydrological corrected topographic data (Tarboton, 1997). The channel density was used to 

quantify the length of hillslope flow and subnetwork flow, derived from National Hydrography 

http://www.prism.oregonstate.edu/
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Dataset plus v2 data (available at: http://www.horizon-systems.com/NHDPlus/index.php). The 

manning’s roughness of each grid cell was calculated from land cover and water depth. More 

detail about how to calculate bank-full depth, band-full width, and manning roughness can be 

found in Getirana et al. (2012). The major dam information of this study region was derived from 

Global Reservoir and Dam (GRanD) database (Lehner et al., 2011b), and it was nested into the 

4-km grid level and used to quantify the damming effect on POC deposition (Vörösmarty et al., 

2003).  

4.3.3. Model validation 

To assess the performance of carbon exports predicted by DLEM, we compared the carbon 

fluxes of the major rivers in the study region predict by DLEM during 1979-2015 against the 

statistical estimations by Load Estimator (LOADEST) (Runkel et al., 2004b) derived from USGS 

water quality observations (Figure 4-4). For each river, the USGS sites were select based on the 

data availability and the location, which is closest to each river outlet among all the sites. The 

detailed information about the USGS sites for validation can be found in Table 4-2. Most of the 

riverine carbon export predicted by DLEM agreed well with the LOADEST estimations (The R2 

values are higher than 0.7 and NSE values are higher than 0.5 in most of the sites).  
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Figure 4-4. Comparing DLEM simulated carbon fluxes with LOADEST estimations derived 

from USGS observations 

 

4.4. Results 

4.4.1. Temporal patterns of riverine carbon exports across CBW and DBW 

Simulated results show consistent temporal patterns of riverine C fluxes in the two river basins. 

In CBW, land carbon loading decreased by 27% from 1943.5 ± 353.3 Gg C yr-1 in the 1900s to 

1424.3 ± 256.3 Gg C yr-1 in the 1960s. Riverine carbon exports, CO2 degassing, carbon burial, 

and carbon pool decreased substantially by 25%, 30%, 6%, 13%, respectively. After the 1960s, 
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riverine carbon exports, CO2 degassing, carbon burial, and carbon pool increased substantially 

by 56%, 36%, 3%, and 33%, respectively, associated with a 42% increase in total land carbon 

loading (Figure 4-5. a).  In the DBW region, land carbon loading decreased by 29% from 479.3 ± 

100.6 Gg C yr-1 in the 1900s to 338.7 ± 85.9 Gg C yr-1 in the 1960s. The associate riverine CO2 

degassing, carbon burial and carbon pool decreased substantially by 28%, 29%, 16%, 6%, 

respectively. After the 1960s, the total land carbon loading increased by 45%, leading to the 

riverine carbon exports, CO2 degassing, carbon burial and carbon pool increased significantly by 

60%, 32%, 26%, and 26% respectively (Figure 4-5. b) 

In the CBW region, DOC and DIC and POC exports contributed to 24%, 67%, and 9% of the 

riverine carbon exports on average from 1900 to 2016, respectively. No significant decreasing 

trend was found for any riverine carbon species from 1900 to 1960.  The simulated DOC and 

DIC export increased significantly (p<0.05) from 1960 to 2016, with the average increasing 

trend of 1.6 Gg C/yr and 4.8 Gg C/yr, respectively (Figure 4-6. a). In the DBW region, riverine 

carbon export explained 52% of the riverine carbon fluxes (1900 – 2016 average). The total 

carbon exports decreased from 282.8 ± 65.9 Gg C yr-1 in the 1900s to 204.2 ± 55.1 Gg C yr-1 in 

the 1960s and increased to 327.2 ± 94.9 Gg C yr-1 in the 2000s (Figure 4-5. b). The DOC, DIC, 

and POC exports explained 19%, 75%, and 6% of the riverine carbon exports respectively. The 

exports of all three carbon species showed a significant increased increasing trend (DOC: 0.4 Gg 

C/yr, DIC:1.3 Gg C/yr and POC: 0.1 Gg C/yr ) (Figure 4-6. b).  
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Figure 4-5. Carbon balance in CBW and DBW river networks simulated by DLEM. (a). Riverine 

carbon budget of CBW in the 1900s, 1960s, and 2000s. (b). Riverine carbon budget of DBW in 

the 1900s, 1960s, and 2000s. 

 

 

Figure 4-6. DLEM simulated riverine carbon fluxes from 1900 to 2016. (a). Temporal patterns of 

carbon exports from CBW from 1900 to 2016. (b). Temporal patterns of carbon exports from 

DBW from 1900 to 2016. 

 

4.4.2. Spatial and temporal patterns of carbon loading from land 

As shown in Figure 4-7 a, DOC loading increased significantly in most of the regions. In the 

eastern and northern parts of the CBW, DOC loading increased significantly (Figure 4-7 a), with 

an increasing rate of 0.002 – 0.004 gC m2/yr2. Across the southern part of the CBW and most of 
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the regions in DBW, the DOC loading rate increased significantly, with an average increasing 

rate of 0.004 – 0.008 gC m2/yr2. Land POC loading does not exhibit a significantly increasing or 

decreasing trend in the inland region of the study area. The changes of POC loading in coastal 

zones showed considerable inconsistency:  decreased significantly with a rate of -0.003 gC 

m2/yr2 or increased significantly with a rate of 0.003 gC m2/yr2 (Figure 4-7. b).  

The northern part of the DBW shows large increasing trend in DIC loading with an increasing 

rate of 0.02- 0.05 gC m2/yr2. The southern part of the study region represents a significant 

increasing trend of DIC loading with an increasing rate of 0.01 – 0.02 gC m2/yr2. Besides that, 

most of the regions do not have a significant increasing or decreasing trend or and show a 

decreasing trend of -0.05 gC m2/yr2 (Figure 4-7. c).  

The CO2 degassing directly correlates to the riverine DIC concentration and land DIC loading. 

The northern part of the DBW shows large increasing trend with an increasing rate of 0.1-0.2 

106gC /yr2 per 4-km grid cell. However, riverine CO2 degassing in most of the regions show a 

significant decreasing trend with a rate of about -0.1 106gC /yr2 of each grid cell. 
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Figure 4-7. Spatiotemporal patterns of changes in terrestrial carbon loading and riverine CO2 

degassing from 1900 to 2015. (a). Changes in DOC loading, (b). Changes in POC loading. (c). 

Changes in DIC loading. (d). Changes in Riverine CO2 degassing 

 

4.4.3. Factorial contributions to the riverine carbon fluxes over CBW and DBW. 

The factorial experiments revealed the contribution of each factor to riverine carbon exports in 

both CBW and DBW from the 1900s to 2006-2015 (Figure 4-8). For all the three riverine carbon 

species, climate plays the most important role in explaining the inter-annual variations of carbon 

exports. On the other hand, the contiguous long-term changes in carbon fluxes explained by 

elevated CO2 concentration, long-term climate change (rising temperature and increasing 
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precipitation), increased nitrogen deposition and nitrogen applications, and land-use change 

(Figure 4-8).  

 

 

Figure 4- 8. Contribution of climate, CO2, N deposition, N management (N fertilizer + N 

manure), and land-use change to riverine DOC exports in CBW (a) and DBW (d), POC exports 

in CBW (b), and DBW (e), DIC exports in CBW (c) and DBW (f). 

 
Before the 1960s, climate change explains most of the changes in DOC for both CBW and 

DBW. After the 1960s, the impact of other factors on DOC fluxes increased substantially: In 

CBW, climate change increased DOC export by 30.6 Gg C/yr in the most recent 10-years, 

followed by N deposition 24.4 Gg C/yr), N management (10.4 Gg C/yr) and CO2 (5.2 Gg C/yr) 

respectively, while land-use change plays a negative role which decreased DOC export by 19.2 

Gg C/yr (Figure 4-8.a). Furthermore, in DBW, climate change increased DOC export by 9.9 Gg 

C/yr, followed by N deposition (6.6 Gg C/yr N management (2.9 Gg C/yr) and CO2 (1.2 Gg 

C/yr), while land-use decreased DOC exports by 6.5 Gg C/yr (Figure 4-8. d). 

Unlike the long-term changes in DOC exports, which was strongly regulated by multiple factors, 

the determinative factors of the changes in POC export are limited to climate change and land 
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conversion. Here, climate change explained most of the variations in POC export of both CBW 

and DBW from the 1900s to the 1920s (Figure 4-8. e). The contribution of land conversion 

increased to -9.0 Gg C/yr in DBW in the 2000s, the magnitude of land-conversion impact is 

comparable to that of the climate change (9.9 Gg C/yr) during the 2000s. Moreover, the impact 

of land conversion on POC exports reached -21.6 Gg C/yr, which substitutes climate change 

impact (15.2 Gg C/yr) to explain most of the changes in POC exports during the 2000s in CBW 

(Figure 4-8. b). 

DIC exports were strongly affected by climate change as well; however, the impact of land-use 

change and atmospheric CO2 concentration increased significantly since the 1920s. Climate 

change increased DIC exports by 97.4 Gg C/yr (Figure 4-8. c) in CBW followed by CO2 effect 

(66.4 Gg C/yr), and land-use change decreased DIC exports by -83.6 Gg C/yr.  Similar findings 

have been suggested for DBW, climate change increased DIC exports by 70.8 Gg C/yr, followed 

by CO2 effect (17.1), and land-use change decreased DIC exports by -52.7 Gg C/yr.  Nitrogen 

inputs have a slight impact on DIC exports in both regions (Figure 4-8. f). 

4.5. Discussion 

4.5.1. Riverine CO2 degassing of CBW and DBW 

One of the major contributions of this study is that we improved the model representation 

of the riverine CO2 degassing. Specifically, we utilized a new statistical-based method (Allen et 

al., 2018) to estimate the surface area of the headwater streams within the sub-grid river routing 

scheme (Li et al., 2013). The DLEM model, therefore, can well capture the magnitude and 

spatial pattern of CO2 degassing from small streams, which has been ignored in the previous 

modeling studies (Tian et al., 2015a, 2015c). The physical and biogeochemical module of the 

headwater streams and high-order streams in DLEM are fully process-based. Although the model 
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parameters associated with CO2 degassing are consistent for both headwater streams and high-

order streams, our model can well represent the relatively high gas emission rate in low order 

streams (Raymond et al., 2013).  

 

Figure 4-9. The CO2 emissions from high-order streams (a) and headwater streams (c) of the year 

2015. Simulated CO2 emission along with stream orders (c) across the Chesapeake Bay 

Watershed and Delaware Bay Watershed. 

 
The riverine CO2 outgassing of CBW and DBW predicted by DLEM is about 886.25 ± 

207.49 Gg C/yr, which accounts for 39% of the riverine fluxes in the 2000s. Although small 
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streams (1st order – the subnetworks of each 4-km grid cell in this study) only covers a small 

fraction of the water surface area in the study region (Allen and Pavelsky, 2018), they account 

for a large fraction of (50% in this study) of the total riverine CO2 effluxes. The statistics of total 

CO2 degassing along with stream orders (1st order to the 6th order) (Figure 4-9. c) predicted by 

DLEM follows a similar pattern of the inventory based data analysis across the conterminous 

U.S. (Butman and Raymond, 2011). Besides, the 1st-3rd order streams, which are characterized as 

the headwater streams, account for 73% of the total riverine CO2 outgassing. This finding is 

supported by the previous experimental analysis (Argerich et al., 2016) and global inventory-

based analysis (Raymond et al., 2013), suggesting that the headwater streams account for 70% 

CO2 outgassing.  

It has been noted that large area of urban and cropland is distributed in the central regions 

of the study area (Figure 4-2), the release of urban sewage wastewater and extensive liming of 

cropland increased water pH substantially (Asabere et al., 2018; Naylor and Schmidt, 1986). The 

low emission rates mainly due to their relative high-water pH value obtained from USGS 

observation, which has been utilized as the model input of DLEM (Figure 4-12). Water pH value 

plays an essential role in regulating the fraction of dissolved CO2 concentration among the three 

DIC species (H2CO3, HCO3⁻, CO32⁻), as described in the Bjerrum plot (Andersen, 2002). 

Additionally, the forest coverage is relatively low in the central region. Forest land is the largest 

reservoir of vegetation carbon, and soil litter carbon (Dixon et al., 1994),  the high soil 

respiration rate of soil litters result in a high DIC concentration in the adjacent headwater stream 

(Corson & Rikert et al., 2016; Rasilo et al., 2017; Schindler & Krabbenhoft, 1998; Triska et al., 

1993) and hence high CO2 degassing rate.  
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The importance of small rivers on regional biogeochemical cycles and greenhouse gas 

emission has been well documented in previous studies ((Beckman and Wohl, 2014). The high 

rate of CO2 effluxes are mainly due to high DIC or DOC concentrations: Although the 

magnitude of DOC decomposition in headwater zone is much lower than that of the large river 

channels (Varol and Li, 2017), the source of CO2 outgassing are mainly from 

terrestrial/groundwater inputs (Argerich et al., 2016). Moreover, the gas exchange rate between 

the air-water interface of headwater streams is higher than that in large river channels due to the 

higher channel slope of the headwater streams.  

Our simulation results suggested that land carbon loading decreased by about 26% from 

the 1900s to 1960s in both CBW and DBW, riverine CO2 degassing, and total carbon export 

decreased by 30% and 25%, respectively. However, when the land carbon loading increased by 

42% in the 2000s, the magnitude of increase in riverine CO2 (35%) is much lower than that of 

riverine carbon exports (57%). The atmospheric CO2 concentration increased significantly since 

the 1960s (Manabe and Wetherald, 1975),  resulting in a higher equilibrium CO2 concentration 

(Sander, 2015) in the air-water interface. Thus, the elevated atmospheric CO2 concentration 

dampens the difference between equilibrium CO2 concentration and dissolved CO2 concentration 

in river waters, which in turn decreased riverine CO2 emission. This phenomenon has important 

implication for the coupled land-aquatic ecosystems: since riverine carbon fluxes explain most of 

carbon variation in ecosystems (Hastie et al., 2019), the relative role of riverine CO2 degassing 

and carbon exports to carbon fluxes at the land-aquatic interface shifts due to the climate change 

and human activities (Regnier et al., 2013). 
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4.5.2. Underlying controls on the riverine carbon exports 

It has been noted that anthropogenic effects substantially changes the magnitude and spatial 

pattern of carbon fluxes at the global level (Regnier et al., 2013). In this study, the long-term 

changes in climate explain most of the inter-annual variability in riverine carbon fluxes (Figure 

4-6 and 4-8).  Changes in net primary productivity of plants in response to the elevated air 

temperature and precipitation, in turn, affect the plant carbon pools and soil carbon pools (Pan et 

al., 2015, 2014; Tian et al., 2012, 2011). The variations of organic carbon pool in the soil directly 

affect the terrestrial carbon loading rate (Figure 4-7), and associated doc fluxes as well. Similar 

to the climate impact, the increased N inputs, including deposition, N fertilizer, and Manure N, 

which alleviate the vegetation N limitation (Vitousek and Howarth, 1991), all contribute to the 

increased primary production and soil carbon pools (Figure 4-5). However, the land conversion 

from forest to cropland significantly decreased the soil carbon pool and the associated carbon 

fluxes of all species (Figure 4-5). 

The trend of DIC fluxes predicted by DLEM decreased from the 1900s to the 1960s, but the DIC 

exports of the 2000s return to the level of 1900, which is supported by a recent review suggesting 

the DIC fluxes returned to the pre-industry level (Raymond and Hamilton, 2018). However, this 

review could not attribute the contribution of the environmental factors to the variability of DIC 

fluxes. Changes in organic matter or litter carbon pool induced the variations of respiration rate, 

which directly affect the DIC concentration in the soil water. The soil DIC concentration 

functions as the boundary condition of the riverine biogeochemical module, which is used to 

constrain mass balance in solving the riverine DIC concentration of each cell with time variables.  

The lateral POC fluxes did not increase significantly in this study under the context of 

substantial changes in climate and land-use. The POC erosion from land strongly correlated to 
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soil erosion, which was calculated by the Modified Universal Soil Loss Equation (MUSLE) 

model (Williams and Berndt, 1977). In theory, the increased precipitation would result in a 

significant increase in POC erosion. However, several factors offset the precipitation effect. One 

is the large area of land conversion from cropland to forests. Cropland is recognized as the 

hotspot of soil erosion, while the soil erosion of natural forest is much lower than that in 

cropland. Additionally, the increase in organic matter content only slightly increased the POC 

loading rate. Although the percentage of organic matter per eroded soil increased, the high 

organic matter content inhibits the erodibility of soils by decreasing the K value in the MUSLE 

model (Williams and Berndt, 1977). 

4.5.3. Uncertainty and future research 

The substantial uncertainties in previous processed-based modeling studies suggested several 

improvements are needed for accurately quantifying lateral carbon exports and greenhouse gas 

emissions from the headwater zones (Aufdenkampe et al., 2011). First, the ability of the current 

model in simulating water pH dynamically is limited due to the lack of observational data, 

especially in the headwater streams. It is also unclear that the boundary conditions of river water 

pH (pH of Groundwater or surface runoff) and the mechanisms controlling water pH. Second, 

the traditional way to calculate pCO2 largely overestimate CO2 degassing in organic-rich 

freshwaters (Abril et al., 2015). More systematic observations and experimental analysis about 

the gas exchange rate and the processes within hyporheic zones need to be conducted in the 

future (Corson & Rikert et al., 2016; Findlay et al., 1993; Schindler & Krabbenhoft, 1998; Triska 

et al., 1993). Third, we do not consider river CO2 uptake by algae, the food chain in the riverine 

system, POC consumption by aquatic species, and organic matter resuspension from bottom 

sediment. Although these processes are specifically important in the lentic aquatic system 
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(Maavara et al., 2017), it still would bring in large uncertainties in the estimation of carbon 

fluxes. Finally, this modeling study simplifies the river routing algorithm without considering the 

processes within small lakes or reservoirs. Small lakes or ponds do not clearly show the obvious 

linkage to the river networks, and the residence time of the small pond is hard to obtain on a 

large scale. Constraining the fate of lateral carbon exports and GHG emissions at the headwater 

streams has been challenging and is so far incomplete. It is critical to develop parameterizations 

to scale up small rivers into regional and global levels. Carbon dynamics at the riparian and 

hyporheic zone are determined by complex biophysical and biogeochemical processes with 

substantial spatial and temporal variations, such as physical erosion, river stage and flow 

velocity, water temperature, oxygen concentration, and microbial types (Battin et al., 2007; 

Butman et al., 2016). Improved understanding and quantification of the progression from 

subsurface carbon stores into lateral carbon transport and the biogeochemical processes by 

coupling land ecosystem model and hydrodynamic models are essential to improve the model 

performance. Lastly, our future research may consider how to couple lake or reservoir routing 

into the water transport model with improved lake/reservoir input dataset. 

4.6. Conclusion 

In this study, we coupled a scale adaptive water transport module with DLEM to address the 

biogeochemical processes within small streams. We investigated the lateral DOC, POC, and DIC 

fluxes of the river outlets and the CO2 degassing from both small rivers and large rivers. The 

results of this study indicated that DOC exports of both CBW and DBW showed a large 

increasing trend after the 1960s due to climate change and increased nitrogen inputs, whereas the 

land-use conversion from cropland to natural vegetation dampen the increasing trend. The export 

of DIC showed a similar temporal pattern, mainly due to climate change and CO2 concentration 
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increase. The export of POC does not show a significant increasing trend and is largely 

influenced by land conversion. The riverine CO2 degassing account for 40% of the riverine 

carbon fluxes and did not show a significant increasing trend from 1900 - 2016. Although 

enhanced plant productivity increased the soil organic carbon content and the associated DIC 

fluxes in rivers, the elevated atmospheric CO2 concentration dampens the variability of CO2 

effluxes in rivers. It should be noted that, although our model provides well-validated results to 

estimate riverine carbon budget, the magnitude, human footprint, spatial and temporal patterns of 

vertical carbon fluxes and lateral carbon exports remain highly uncertain due to uncertainties in 

model structure and parametrization. More advanced tools and well data-model integrations 

would be our future research goal to help people understanding and predicting the 

global/regional carbon cycle and its feedback to climate change (Ciais et al., 2008).  

 

 

  



103 
 

Table 4-2. USGS sites for the model selected for model validation 

Rivers USGS Gauge Stations 

Delaware River 01463500 

Susquehanna River 01578310 

Potomac River 01646580 

Patuxent River 01594440 

York River 01673000 

Rappahannock River 01668000 

James River 02035000 

 

 

 

Figure 4-10. The concept model of the scale adaptive water transport model and the 

representation of small rivers in within water transport framework 
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Figure 4-11. The flowchart to describe the development of historical land-use cohort 



105 
 

 
 
Figure 4-12. The spatial map of water pH interpolated based on long-term observations obtained 

from USGS. 

 

 

 

  



106 
 

Chapter 5. Assessing the spatial and temporal variations in CO2 and CH4 emissions from 

inland waters over the Conterminous U.S. 

 

Abstract: Emissions of CO2 and CH4 from inland waters have been increasingly recognized as 

an essential portion to close the global or regional Greenhouse Gas (GHG) budget. However, 

accurate estimation of the riverine CH4 emissions at a large spatial scale remains uncertain due to 

the lack of direct measurements and modeling tools. Here we developed a riverine CH4 model 

based on the Dynamic Land Ecosystem Model and coupled it with a scale-adaptive hydrological 

model to simulate carbon exports and riverine CH4 emissions. This model is the first process-

based coupled biogeochemistry-biophysics-hydrology model, which can simultaneously estimate 

the source, production, and removal of dissolved CH4 in the riverine ecosystems. This model can 

well address emissions from the small headwater streams through the incorporation of sub-grid 

routing, which is essential for a comprehensive evaluation of emissions from inland waters. 

Moreover, DLEM- CH4 can quantify the impacts of climate change and anthropogenic activities 

on terrestrial ecosystems and consequently on CH4 emissions of riverine ecosystems. Taking 

advantage of the new model, we investigated CH4 emissions from the inland waters of the 

Conterminous United Stated during the period from 1900 to 2016. The model simulation was 

conducted at a spatial resolution of 5 arc-min and was calibrated and validated against 

observations from the United States Geological Survey (USGS). Our results suggested that the 

modeled CO2 emission from streams is 113.6 Tg C/yr from 2009 – 2018.  The headwater stream 

released 88% of the riverine CO2 emissions. During the period from 1900 to 2018, the diffusive 

CH4 emissions from rivers and lakes increased by 24.5% and 30.8%, respectively. The ebullitive 

CH4 emissions from rivers and lakes increased by 35.8% and 37.9%, respectively. Small streams 
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(1st –3rd order streams within the 5 arc-min resolution grid cell) explain 48.0% of the diffusive 

CH4 emissions, while large lakes account for 32.3% of the diffusive CH4 emissions. Large lakes 

account for 82.7% of ebullitive CH4 emissions, followed by small streams (11.6%). The 

estimation of ebullitive emissions has significant uncertainties due to the lack of observations 

and data model integrations. Therefore, more accurate observation is needed to improve the 

model performance in the future. 

 

5.1. Introduction 

Growing awareness of the aggravated environmental condition aligns with elevated temperature 

since the industrial era promoted new research directions, which aim to understand the responses 

and feedbacks of the terrestrial and aquatic ecosystems to climate change (Montzka et al., 2011). 

The major drivers of the greenhouse effect and the associated climate change are Greenhous 

Gases (GHGs). Carbon dioxide, as the most important GHG, has been received much attention. 

The CO2 emission from inland waters was considered as a neglectable source (Cole et al., 2007).  

However, a large number of recent field studies observed significant CO2 emissions from rivers 

and ponds (Butman et al., 2016; Holgerson and Raymond, 2016). Butman et al. (2016) analyzed 

the inland water carbon fluxes over the Conterminous United States and suggested that 70% of 

the carbon loading from land to river released to the atmosphere as CO2 gas. While comparing 

the magnitude of the aquatic carbon fluxes with the terrestrial Net Primary Production (NPP), 

Butman et al. (2016) suggested that the introduction of carbon loading to the rivers could 

substantially revise the regional carbon budget. Thus, accurately simulating the aquatic CO2 

releasing is of great importance to close the continental carbon budget. 
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Methane gas(CH4), the second important greenhouse gas whose Global Warming Potential 

(GWP) is 28–36 times larger than that of CO2 for a 100-yr time horizon, increased by 150% 

during the last century (Ciais et al., 2014). With much of the attention being paid to the terrestrial 

CH4 emissions (Xu et al., 2010), the contribution from inland waters was highlighted to the 

scientific community in the recent decade (Ciais et al., 2014). The estimated magnitude of CH4 

emissions from rivers, lakes, and reservoirs reached 1.1 - 20.1 Tg CH4-C/year,  53.7 Tg CH4-

C/year, and 13.3 Tg CH4-C/year, respectively (Deemer et al., 2016). However, those estimates 

are poorly constrained due to the lack of observations and reliable modeling approaches 

(Trimmer et al., 2012). 

Riverine CO2 and CH4 emissions are strictly relevant to the riverine carbon export (Battin 

et al., 2008). There is a growing understanding of the sensitivity of riverine carbon fluxes to 

climate change (Regnier et al., 2014). Inland water CO2 and CH4 emissions, which are the 

primary feedback of the aquatic system to the climate system, are sensitive to the climate change 

and human disturbances under the context of changing carbon fluxes during the Anthropocene 

(Battin et al., 2009; Bauer et al., 2013; Maavara et al., 2017; Regnier et al., 2013). The dissolved 

CO2 is one of the three dissolved inorganic carbon (DIC) species in waters. Thus the hydraulic 

loading and the pH of water could significantly regulate the magnitude of CO2 emissions (Liu 

and Raymond, 2018). The production of dissolved and bubble CH4 is primarily from organic 

matter. Recent studies suggested a positive relationship between Dissolved Organic Carbon 

(DOC) and CH4 production in bottom sediment and water bodies (Wu et al., 2007; Baulch et al., 

2011). Since most of the DOC comes from land carbon loading, understanding the controlling 

factors of land carbon loading is critical to estimating the CH4 production and emissions in the 

aquatic system. 
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Empirical approaches and data-based analyses are the most popular methods to estimate 

CO2 and CH4 emissions. Water quality variables including river water temperature, alkalinity, as 

well as the concentration of inorganic carbon, have been used to quantify the pCO2 of rivers and 

lakes (Butman and Raymond, 2011). The estimated CO2 flux rate was quantified from pCO2, 

equilibrium CO2 concentration and piston velocity (Raymond et al., 2012). The total fluxes were 

estimated directly by multiplying with water surface areas (Raymond et al., 2012), which ignores 

the temporal variations of the gas exchange rate, concentrations of carbon substance, and water 

temperature. The water quality data-based study is considered as the reference to the modeling 

studies mainly due to a large number of variables listed for predicting CO2 emission.  However, 

water quality variables could not be directly used as indicators to quantify dissolved CH4 

concentrations. A most recent meta-data based analysis quantified the diffusive and ebullitive 

CH4 fluxes by synthesizing data collected from a literature survey (Stanley et al., 2016). Due to 

the sparse data availability, this approach could not well represent the spatial heterogeneity of 

CH4 emissions along with river orders, which has been observed and suggested in the counterpart 

CO2 and N2O studies (Butman and Raymond, 2011; Garnier et al., 2009; Turner et al., 2015). 

The seasonal or diurnal variations of riverine CH4 fluxes may also raise large uncertainties. Thus, 

a more reliable tool is required to capture the spatial and temporal variations of riverine CH4 

fluxes. 

Based on the understanding of the mechanism of CH4 production and consumption in 

waters, several process-based models have been developed to simulate the CH4 dynamics in the 

lake water body and bottom sediments (Fung et al., 1991; Van Huissteden et al., 2011). 

However, those site-level lake models or wetland models require flow-in discharge as model 

input (Fang and Stefan, 1998, 1995; Sharifi et al., 2016), that means it needs to be coupled with a 
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hydrological modeling framework, such as SWAT model or VIC model (Arnold et al., 2012; 

Guo et al., 2009). Rivers are recognized as the aquatic-ocean continuum linking land, lakes, 

reservoirs, and ocean, as a whole system. River water mixing in lakes and lateral carbon 

transport affects the carbon concentration in lakes. Thus more and more biogeochemical 

modeling research consider to couple with the river routing model (Lu et al., 2016). The process-

based model was conducted to quantify the CO2 emissions at the global or site level (Laruelle et 

al., 2015). However, none of the studies tried to couple the riverine carbon dynamics with the 

land ecosystem models. Since most of the carbon is originated from land carbon loading, a 

reliable tool is needed to give a comprehensive understanding of the nexus between the land and 

aquatic process. 

Inspired by the knowledge gaps that existed in the previous studies, we developed a 

riverine CH4 module under the framework of DLEM-TAIM to quantify the inland water carbon 

dynamics, and the resulting CO2 and CH4 emissions. We conducted the attribution experiments 

to quantify the contribution of each environmental factor to the changes in inland water CO2 and 

CH4 emissions. 

5.2. Methods and model inputs 

5.2.1 Study region 

The Contiguous United States (CONUS) (Figure 5-1) refers to the region expanding southward 

from the north latitude (48⁰) to the Mexico boundary(32⁰). As the major land of the United 

States, the area of CONUS is 8,080,464 km2 and supports 306 million people based on 

population census 2010. Topography helps to shape the climate condition and the vegetation 

distribution across the CONUS. The dominant plant function type is temperate evergreen needle-

leaf forest in the southward of the Appalachian mountain, while the temperate deciduous 
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broadleaf forest is the dominant natural vegetation of the north of the Appalachian Mountains. 

Between the Appalachian Mountains and Rocky Mountains of CONUS, the dominant plant types 

are evergreen shrubland and C3 grassland. In regions west of the Rocky mountain, the climate is 

dry, thus temperate needle-leaf forest and deciduous shrubland are distributed across the whole 

region (Figure 5-1).  

 

Figure 5-1. Major plant function types across the Contiguous United States (CONUS). 

 

5.2.2 Dynamic land Ecosystem Model (DLEM) 

In this study, we used a coupled modeling framework that combines the terrestrial ecosystem 

model with riverine transport to simulate the carbon and nitrogen fluxes. The Dynamic Land 

Ecosystem Model (Tian et al., 2015b, 2016, 2018a) is a process-based terrestrial ecosystem 

model (Figure 5-2.a) that explicitly predicts the land carbon, nitrogen, and water cycles. DLEM 

simulates the plant physiology, soil biogeochemistry and the associated terrestrial hydrological 
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processes, and riverine routing processes driven by climate forcing, land-use change, nitrogen 

deposition, fertilizer applications, and other environmental variables. The plant physiology 

component in DLEM modeled photosynthesis, respiration, and carbon, nitrogen allocations 

among root, stem, and leaf. Seven litter carbon pools are defined in DLEM to represent carbon 

dynamics within soil layers. The carbon and nutrients fluxes among soil pools are controlled by 

soil moisture and temperature with well-calibrated parameters. The land component of DLEM 

quantifies carbon loading from soil carbon pools including dissolved inorganic carbon (DIC), 

dissolved organic nitrogen (DOC) and particulate organic nitrogen (POC). These carbon loading 

functions as the major source of riverine carbon to drive the aquatic model. 

 

Figure 5-2. The general framework of the DLEM land-ocean interface. (a). The concept model of 

DLEM. (b). The concept model of Model for Scale Adaptive River Transport (MOSART) 

 

5.2.3 Scale adaptive channel routing scheme.  

In this study, a new water transport scheme named Model of Scale Adaptive (MOSART) (Figure 

5-2.b) was coupled with DLEM. Aiming to reduce the scale effect, MOSART introduces two 
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local sub-grid processes, including hillslope flow and subnetwork flow, before the cell-to-cell 

channel routing. Here, hillslope flow begins with water merging from surface runoff and ends in 

the subnetworks. The subsurface flow from the root zone to the headwater stream was lump as a 

groundwater pool, with the outflow rate derived from a calibrated residence time. The 

subnetworks receive water from hillslope flow and lumped groundwater seepage. The main 

channel flow receives water from local subnetworks and upstream grid units. The cell-to-cell 

channel routing follows the predefined flow direction obtained from the Dominant River Tracing 

(DRT) hydrograph database (Wu et al., 2012b).In MOSART, the subnetwork flow represents the 

routing process of small streams (1st – 3rd stream order) within the 5 arc-min spatial resolution 

grid unit. The routing processes within the MOSART model are hydraulics based, which solved 

the Saint-Venant equations by using the kinematic wave method (Chow, 1964b). 

2.1 Riverine CH4 sub-model 

 

Figure 5-3. The general framework of the riverine CH4 model. 
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A riverine CH4 model (Figure 5-3) was developed following the advanced feature of the scale 

adaptive water transport scheme. Hillslope flow receives dissolved CH4 from the land surface 

(with surface runoff) and contributes to subnetwork flow. Here, we assume CH4 concentration in 

the surface runoff equals to the air equilibrium CH4 concentration. We did not consider the 

biogeochemical processes in hillslope flow in this study, because we assume the hillslope flow 

belongs to the terrestrial process. The mass balance of CH4 (include physical and biogeochemical 

processes) in the main channel and subnetwork are given by: 

∆𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣−𝐶𝐶𝐶𝐶4

∆𝑡𝑡
=  𝐹𝐹𝑎𝑎 + 𝑌𝑌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐷𝐷 −  𝑅𝑅 −  𝐸𝐸                (1) 

where 𝑀𝑀𝐶𝐶𝐶𝐶4 is the total mass of dissolved CH4 is the main channel or subnetworks (g C), ∆𝑡𝑡 is 

the time step (d), Fa is advective CH4 fluxes (gC∙d-1), Ywater is the CH4 production within the 

water column (gC∙d-1), D is the dissolved CH4 from rainfall to rivers (g C ∙d-1), with an initial 

concentration equals to the air equilibrium concentration, R represents the CH4 reduction (gC∙d-1) 

to nitrogen gas, and E is riverine CH4 effluxes (g C ∙d-1) between the air-water interface. 

The advective CH4 fluxes through subnetwork consider the contribution from both surface runoff 

and drainage that are expressed as: 

𝐹𝐹𝑎𝑎,𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑄𝑄ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑔𝑔/ℎ − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠                                        (2) 

where Qhill, Qground, and Qsub are flow rates of hillslope flow, ground water, and subnetwork flow 

(m3∙s-1), respectively. Chill , Cground  and Csub are concentrations (mg/L) of dissolved CH4 in 

hillslope flow (Chill equals to the air equilibrium concentration), groundwater, and subnetworks, 

respectively. We assumed dissolved CH4 yield in groundwater pool is linearly related to the land 

DOC leaching rate (Gardner et al., 2016) as: 

𝑌𝑌𝑔𝑔/ℎ = ∑𝐾𝐾𝑔𝑔/ℎ  ×  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐷𝐷𝐷𝐷𝐷𝐷  ×  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣                                (3) 
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where 𝑌𝑌𝑔𝑔/ℎ is the dissolved CH4 production (g/d) in groundwater lateral transport and production 

within the hyporheic zone, 𝐾𝐾𝑔𝑔/ℎ is the calibrated parameter (m∙d-1), 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐷𝐷𝐷𝐷𝐷𝐷  is the land DOC 

leaching rate (g C m-2∙d-1, and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 is the vegetation area (m2).⁰ 

The advective CH4 fluxes through the main channel were described as: 

𝐹𝐹𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑄𝑄𝑢𝑢𝑢𝑢,𝑖𝑖𝐶𝐶𝑢𝑢𝑢𝑢,𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 + 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚                             (4) 

where Qup and Qmain are the flow rates of upstream grid cells and the main channel in the current 

grid cell (m3∙s-1), respectively. Cup and Cmain are the associate CH4 concentration (mg-C/L), 

respectively. 

The dissolved CH4 production in the water column is partially from the decomposition of organic 

matters (DOC and POC): 

𝑌𝑌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷  × 𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷  + 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃  × 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃                                                      (5) 

where 𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷and 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃 are the organic carbon decomposition rate (gC∙d-1). 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷  and 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 are the 

associate ratios of CH4 production over the organic decomposition (Goñi and Thomas, 2000; 

McGinnis et al., 2015). The oxidation rate of CH4 is correlated to the NO3- denitrification rate: 

𝐶𝐶𝐶𝐶4 +  4𝑁𝑁𝑁𝑁3− →  𝐶𝐶𝐶𝐶2 +  4𝑁𝑁𝑁𝑁2− +  2𝐻𝐻2𝑂𝑂                                           (5) 

The oxidation rate of CH4 in rivers is computed according to a first-order kinetics equation: 

𝑅𝑅 = 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  ×  𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑟𝑟𝑁𝑁𝑁𝑁3−𝐶𝐶𝐶𝐶4                                                  (6)   

where 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the ratio oxidized (m∙d-1), in this study we set the ratio as 0.1 (Deutzmann et 

al., 2014), and 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the denitrification rate of NO3- in the river channel, 𝑟𝑟𝑁𝑁𝑁𝑁3−𝐶𝐶𝐶𝐶4  is the 

stoichiometric conversions from nitrate to CH4. The CH4 emission or sink was estimated as: 

𝐸𝐸 = 𝐾𝐾𝐶𝐶𝐶𝐶4  ×  �𝐶𝐶𝐶𝐶𝐶𝐶4 −  𝐶𝐶𝐶𝐶𝐶𝐶4𝑒𝑒𝑒𝑒� ×  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑤𝑤𝑤𝑤𝑡𝑡𝑒𝑒𝑒𝑒                                   (7) 
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where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  is the water surface area (m2) of rivers within each grid cell, which was 

calculated based on channel geometry (Getirana et al., 2012; Li et al., 2015a; Raymond et al., 

2013). 𝐶𝐶𝑁𝑁2𝑂𝑂 and 𝐶𝐶𝑁𝑁2𝑂𝑂𝑂𝑂𝑂𝑂 are the dissolved CH4 concentration (mg-C/L) and equilibrium CH4 

concentration (mg-C/L), respectively. Equilibrium CH4 concentration was calculated based on 

Henry’s law(Sander, 2015): 

𝐶𝐶𝐶𝐶𝐶𝐶4𝑒𝑒𝑒𝑒 = 0.0025 × 𝐸𝐸𝐸𝐸𝐸𝐸 �−2600 × �
1

273 + 𝑇𝑇
−  

1
298�

�  ×  𝑝𝑝(𝐶𝐶𝐶𝐶4) × 12                 (8) 

Where T (⁰C) is water temperature. The gas exchange rate 𝐾𝐾𝐶𝐶𝐶𝐶4 (m∙d-1) is estimated as: 

 𝐾𝐾𝐶𝐶𝐶𝐶4 =  𝐾𝐾600 ×  (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶4
600

)−0.5                                                      (9) 

where 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶4 is the Schmidt Number for CH4, and K600 is the gas exchange coefficient; The term 

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶4 is calculated as: 

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶4 =  2301.1 − 151.1 × 𝑇𝑇 + 4.7364 × 𝑇𝑇2 − 0.059431 ×  𝑇𝑇3                    (10) 

The net fluxes of dissolved CH4 (include physical and biogeochemical processes) in the main 

channel and subnetwork are given by: 

∆𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝐶𝐶𝐶𝐶4

∆𝑡𝑡
=  𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠−𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠−𝑃𝑃𝑃𝑃𝑃𝑃                                        (11) 

Where 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠−𝑃𝑃𝑃𝑃𝑃𝑃 is the ratio of CH4 production align with the organic matter decomposition, 

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠−𝑃𝑃𝑃𝑃𝑃𝑃   is the organic matter of the bottom sediment. Here, the decomposition of the sediment 

POC governs the bubble methane production. To simplify the mechanism of CH4 dynamics in 

water, we assume the transporting time of fluvial water in 5 arc-min degree cell is long enough 

for bubble floating from the bottom to the water surface. Thus, we do not consider the vertical 

transportation of ebullitive CH4 in the model. The CH4 production from bottom sediment was 

directly quantified as ebullitive emissions.   
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5.3. Simulation protocol and input data 

5.3.1 Model driving forces 

In this study, a 5 arc-min resolution model input dataset was developed to drive the DLEM 

model, including climate variables, historical land-use cohort, nitrogen fertilizer, nitrogen 

deposition, fertilizer, and manure nitrogen application, atmospheric CO2 concentration. 

We have created the potential vegetation map following the procedure of our previous study as 

base-map of the land-use cohort data (Liu et al., 2013),  which combines vegetation information 

primarily from National Land Cover Database (NLCD) (Homer et al., 2015b) , North American 

Land Cover (Colditz et al., 2012), Global C4 vegetation map (Still et al., 2003). Four major plant 

function types were extracted for each grid cell and normalized to the areal fraction of the grid 

cell. To reconstruct the historical land-use cohort of the CONUS, 1-km resolution cropland data 

from 1850 to 2016, which combined from multiple data sources, was used to prescribed the 

fraction of the natural vegetation during the same period (Yu and Lu, 2018). Due to the growing 

food demand, cropland expanded west-wards (Figure 5-4) during the last century and encroached 

large areas of grassland and forest.  

The 5 arc-min resolution climate datasets, including daily precipitation minimum, mean 

and maximum temperature, shortwave radiation, and wind speed from 1979 to 2018, were 

obtained from Metdata (GRIDMET) (available at: http://www.climatologylab.org/). To extend 

our simulation to pre-industry period, we obtained the historical climate variables from the 

dataset of Climatic Research Unit and National Centers for Environmental Prediction 

(CRUNCEP) during 1901 to 1979 (available at: https://rda.ucar.edu/datasets/ds314.3/) and 

Institute Pierre Simon Laplace  (IPSL) simulation from 1850 to 1900 (available at: 

https://www.isimip.org/). We used GRIDMET data of the year 1979 as base-map and 

http://www.climatologylab.org/
https://www.isimip.org/
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reconstructed historical climate variables by using the trend of CRUNCP from 1901 to 1978 and 

IPSL from 1860 to 1900 at the grid level (Figure 5-5).  

 

 

Figure 5-4. Cropland conversion of the U.S. from 1860 to 2016. 

 
The mean annual precipitation of the CONUS since 1860 was 758.7 ± 54.2 mm yr-1 with the 

maximum, and minimum precipitation that occurred in 2018 (914.8 mm) and 1910 (626.9 mm), 

respectively. The annual precipitation increased significantly since the 1960s, with a rate of 0.99 

mm/year. The annual mean temperature in this area was 10.8 ± 0.6°C since 1860, with the 

maximum and minimum precipitation occurred in 2012 (13.0°C) and 1884 (9.2°C), respectively. 

Temperature showed a significant increasing trend with a rate of 0.72 °C /100- year (Figure 5-5).  

Annually atmospheric CO2 concentrations from 1900 to 2015 were obtained from the NOAA 

GLOBAL VIEW-CO2 dataset (https://www.esrl.noaa.gov). Long-term atmospheric CH4 

https://www.esrl.noaa.gov/
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concentration data were obtained from the Advanced Global Atmospheric Gases Experiment 

(AGAGE) dataset (available at: https://agage.mit.edu/data/agage-data).  N deposition dataset was 

obtained from Chemistry-Climate Model Initiative (CCMI) database (Figure 5-6). N fertilizer 

data was obtained from Cao, Lu, & Yu (2018). The manure N data was obtained from Zhang et 

al. (2017) (Figure 5-6). 

The scale adaptive water transport module requires a hydrograph dataset as model inputs 

including flow direction, bank-full width and bank-full depth, which strictly from the Dominant 

River Tracing (DRT) hydrograph database (Getirana et al., 2012; Wu et al., 2012b). The channel 

density and channel slopes of small streams and rivers, which were used to quantify the length 

and slopes of hillslope flow, subnetwork flow, and main channel flow, were derived from 

National Hydrography Dataset plus v2 data (available at: http://www.horizon-

systems.com/NHDPlus/index.php). The lake and reservoirs information of CONUS were derived 

from Hydrolakes dataset (Messager et al., 2016), and National Dam Inventory (NID) database 

(available at: https://nid.sec.usace.army.mil/), and was aggregated into the 5 arc-min spatial 

resolution grid cell. 

  

Figure 5-5. The temporal patterns of climate condition and land use change from 1860 to 2018. 
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Figure 5-6. The temporal patterns of nitrogen inputs to the terrestrial ecosystem across the 

contiguous U.S from 1860 to 2018. 

 
5.3.2 Simulation experiments  

The DLEM simulation encompassed the CONUS primarily following three steps: (1) To 

eliminate the human disturbances to the terrestrial ecosystems, we conducted the equilibrium run 

for each grid cell driven by climate forcing of the pre-industry period and keeps the land-use, 

CO2 concentration, nitrogen inputs consistent to the year of 1860. The equilibrium run finishes 

when the carbon, nitrogen and water pools within each grid reach remain steady. (2) To smooth 

the carbon, nitrogen, and water fluxes between the equilibrium run and transient run, a 30-year 

spinning-up run was set-up by randomly using climate forces between 1860 to 1870 (Thornton 

and Rosenbloom, 2005; Tian et al., 2012).  (3). After the spinning-up run, we set up a transient 

run, with all the forcing changing over time. 

To attribute the contributions of environmental factors, including climate change, land-use 

change, nitrogen deposition, nitrogen management, and atmosphere CO2 concentration to the 

CH4 emissions (Tian et al., 2015c; Xu et al., 2010), we conducted factorial experiments (as 

shown in Table 5-1) by keeping each driving factor consistent with that of the year 1860. 
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Simulation 1 is an all-combined simulation with all the driving forces changes over time. In 

simulation 2, climate driving forces were continuously kept at the level in 1860. In simulation 3, 

NOy and NHx depositions were continuously kept at the level of the year 1860. In simulation 4, 

the N fertilization and manure N application rates were kept unchanged since 1860. In 

simulation5, land-use conversion remained unchanged since 1860. By comparing the estimated 

CH4 fluxes of simulation 2-6 with that of simulation 1 (all combine run), we obtained the 

contribution of each environmental factor to the inland water CO2 and CH4 emissions. 

 

Table 5-1. The experimental design for inland water CH4 emission driven by natural and 

anthropogenic factors including climate, atmospheric carbon dioxide (CO2), nitrogen deposition 

(NDEP), nitrogen management (N management): N fertilizer and manure.  

 

 

Climate CO2 NDEP N management Land-use 

Simulation 1 1860-2016 1860-2016 1860-2005 1860-2013 1860-2016 

Simulation 2 1860-2016 1860-2016 1860-2005 1860-2013 1860 

Simulation 3 1860-2016 1860-2016 1860-2005 1860 1860-2016 

Simulation 4 1860-2016 1860-2016 1860 1860-2013 1860-2016 

Simulation 5 1860-2016 1860 1860-2005 1860-2013 1860-2016 

Simulation 6 1860 1860-2016 1860-2005 1860-2013 1860-2016 

 

To attribute the contributions of each factors to the inland water CH4 emissions, we designed a 

series of factorial experiments: Simulation 1: all-combined; Simulation 2: without land-use 

change; Simulation 3: without N management; Simulation 4: without N deposition; Simulation 

5: without CO2, and Simulation 6: without climate.  
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5.3.3 Statistical method 

The Mann-Kendal trend test and Theil Sen linear regression method are used to determine the 

trend of the time series data. We quantified the coefficient of determination (R2) to validate the 

performance in predicting methane emissions. 

5.3.4 Model validation 

To validate the performance of DLEM predicting carbon fluxes and the associated CH4 

emissions, the DLEM-simulated carbon concentrations were compared to the long-term carbon 

concentrations obtained from USGS. Our results showed that the simulated riverine carbon 

concentrations agreed well with most of the observations (Figure 5-7). We compared the model-

estimated CH4 fluxes against the observations collected from Stanley et al. (2016) (Figure 5-8). 

The validation results (R2 > 0.6) suggested that DLEM could well capture the spatial pattern of 

riverine CH4 emissions across the CONUS. (more information regarding model validation please 

refer to Figure 5-8). 
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Figure 5-7. Validation of DLEM simulated carbon fluxes against USGS observations.  

 
Figure 5-8. Validations of DLEM simulated CH4 fluxes against observations. 
 
5.4. Results 

5.4.1 Spatio-temporal patterns of inland water CO2 emission across the CONUS 

The overall inland water CO2 emissions increased significantly from 1900 to 2018, with an 

increasing rate of 0.22 Tg C/yr for both rivers and lakes (Figure 5-9 a). The decadal average 
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riverine CO2 emission increased from 90.6 Tg C/yr in the 1900s to 113.6 Tg C/yr in 2009-2018. 

The decadal average lake CO2 emission increased from 64.9 Tg C/yr in the1900s to 88.13 Tg 

C/yr in 2009-2018. Specifically, from 1960 to 2018, the increasing rate of streams and lakes 

reached 0.56 Tg C/yr and 0.62 Tg C/yr, respectively.   

 

 
a 

 
b 

 
c 

 
 

Figure 5-9. The temporal patterns of inland water CO2 emissions (a), riverine CH4 emissions (b), 

and lake CH4 emissions (c) across the Conterminous U.S from 1900 to 2018. 

 

The spatial pattern of CO2 emission follows the distribution of vegetations with the eastern 

regions has much higher CO2 emission rates than that of the western regions (Figure 5-10). The 

CO2 emissions from small streams (1st – 3rd order streams within the 5 arc-min resolution grid 
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cell) account for more than 80% of the total riverine CO2 emissions. The riverine CO2 emissions 

increased significantly in the southeast regions from the 1900s to 2009-2018 (Figure 5-11). 

 

5.4.2 Spatio-temporal patterns of inland water CH4 emission across the CONUS 

 
 

 

Figure 5-10. The spatial patterns of stream CO2 emissions. a,b. emission from small streams and 

rivers during the 1900s. c,d. emission from small streams and rivers during 2009-2018.  
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Figure 5-11. The spatial patterns of diffusive CH4 emissions. a,b. emission from small streams 

and rivers during the 1900s. c,d. emission from small streams and rivers during 2009-2018.  

 

 

Figure 5-12. The spatial patterns of ebullitive CH4 emissions. a,b. emission from small streams 

and rivers during the1900s. c,d. emission from small streams and rivers during 2009-2018.  
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The diffusive CH4 emissions from rivers and streams over the CONUS increased from 1484.5 ± 

233.4 Gg CH4-C/yr in the 1900s to 1848.8 ± 286.3 Gg CH4-C/yr in 2009-2018 (Figure 5-11.b). 

The diffusive CH4 emissions from lakes over the CONUS increased from 853.29 ± 122.8 Gg 

CH4-C/yr in the 1900s to 1115.9 ± 151.3 Gg CH4-C/yr during 2009-2018 (Figure 5-11.c). The 

temporal pattern of diffusive CH4 emission from streams and lakes had significant differences in 

two periods. One is 1900 to 1960, there was no statistically significant trend, in contrast, the 

diffusive CH4 emission of stream and lakes increased significantly from 1960 to 2018 with the 

increasing rate of 11.7 Gg CH4-C/yr and 7.77 Gg CH4-C/yr, respectively (Figure 5-11.b.c). 

The ebullitive CH4 emissions from rivers over the CONUS increased from 543.1 ± 25.7 Tg CH4-

C/yr in the 1900s to 737.2 ± 33.9 Tg CH4-C/yr in 2009-2018. The ebullitive CH4 emissions from 

lakes over the CONUS increased from 2970.7 ± 217.7 Tg CH4-C/yr in the 1900s to 4095.9 ± 

286.8 Tg CH4-C/yr in 2009-2018. (Figure 5-12. b. c). The trend of ebullitive fluxes of streams 

and rivers had significant differences in three periods. From 1900 to 1915, no significant trend 

was found for streams and lakes. The ebullitive emissions of stream and lakes experienced large 

increases from 1945 to 1965 with the increasing rates of 12.71 Gg CH4-C/yr and 66.65 Gg CH4-

C/yr, respectively. After 1965, the ebullitive emission of streams and lakes showed a slightly 

decreasing trend with the rate of 0.7 Gg CH4-C/yr and 2.2 Gg CH4-C/yr, respectively.  

Similar to the riverine CO2 emissions, the riverine CH4 emissions of the eastern regions are much 

higher than that of the western regions (Figure 5-11, 5-12). The diffusive CH4 emissions 

increased significantly in the southeast from the 1900s to 2009-2018 (Figure 5-11). However, the 

southwest did not show a significant increase in ebullitive CH4 emissions.  However, the 

ebullitive CH4 emissions increased significantly in the corn-belt (Figure 5-12). 
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5.4.3 Factorial contribution of environmental factors to inland water CO2 and CH4 

emissions.  

 

Figure 5-13. Contribution of climate, CO2 effect, N deposition, N management and land-use 

change to CO2 emissions from rivers (a) and lakes(b).  

 
The attribution analysis revealed the contribution of environmental factors to the CO2 emissions 

of rivers and lakes of CONUS from 1900 to 2018 (Figure 5-13). For both rivers and lakes, 

climate explained 40% - 60% of the variability in CO2 degassing from 1900 to 2018. The long-

term land-use conversion accounted for 30% - 40% of the increase in CO2 degassing from rivers 

and lakes. Nitrogen inputs including nitrogen deposition, N fertilizer, and manure N applications, 

have a minor contribution to inland water CO2 degassing by only explained ~10% of the changes 

in total (Figure 5-13).  

Climate explained most of the changes in diffusive CH4 emission from streams and lakes during 

1900 - 2018. The elevated temperature and precipitation explained more than 70% of the 

changes in diffusive CH4 emissions in streams and lakes (Figure 5-14. a, b). Land conversions 

only accounted for less than 20% of the changes in diffusive CH4 emissions. The contribution of 

CO2 fertilization to the change in CH4 emissions from streams and lakes gradually reached to 
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17.3% and 12.5% during 2009-2018, respectively. For stream, N deposition and N management 

contributed 11% and 7.7 of the changes in diffusive CH4 emissions. Similar to that of the 

streams, N deposition and N management contributed 9.5% and 6.1% of the increase in diffusive 

CH4 emissions, respectively (Figure 5-14. a, b).  

 

 

Figure 5-14.Contribution of climate, CO2 effect, N deposition, N management and land-use 

change to diffusive CH4 emissions from rivers (a) and lakes(b), and to ebullitive emissions from 

rivers (c) and lakes (d). 

 

The contribution of climate to ebullitive CH4 emissions is much lower than that of the diffusive 

counterparts. Although climate variables still explained most of the interannual variabilities, it 
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only accounted for 30% - 40% of the increase in ebullitive CH4 emissions from streams and 

lakes (Figure 5-14. c, d). Land-use conversion explains 44.6% of the increase of ebullitive CH4 

emissions from streams, followed by Nitrogen deposition (5.6%), CO2 (5.4%), and nitrogen 

management (4%), respectively. Similarly, Land-use conversion explains 38% of the increase of 

ebullitive CH4 emissions from lakes, followed by Nitrogen deposition (7.1%), CO2 (6.8%), and 

nitrogen management (3.3%), respectively (Figure 5-14. c, d). 

5.5. Discussions 

5.5.1 Compare with previous studies. 

Our model provided the first estimates of inland water CO2 and CH4 emission by process-based 

model. Here, we compared the magnitudes of CO2 and CH4 emissions estimated by DLEM with 

the estimates from previous studies. The magnitude of our simulated CO2 emissions from rivers 

and streams is 113.6 ± 16.9 Tg C/yr, which was in line with the result derived from a water 

quality data-based analysis (97 ± 32 Tg C/yr)by Butman & Raymond (2011). The magnitude of 

our estimated CO2 emission from lakes and reservoirs (88.13± 13.5 Tg C/yr ) is higher than that 

of estimates by (Butman et al., 2016)(16 (14.3–18.7) Tg C/yr. One possible reason for the higher 

lake CO2 estimation in our modeling study might originate from different sources of water 

surface area inputs. The estimation by (Butman et al., 2016) is derived from the National Lakes 

Assessment (NLA) of the US Environmental Protection Agency (EPA), which only contains 

1,028 lakes. The Hydrolakes data used in this study contains more than 10,000 lakes (include 

large lakes, small lakes, reservoirs), which has much larger water surface areas. Another 

potential reason for the higher estimation in our study is we do not consider the carbon uptake in 

the lentic system, due to the complexity of the model and difficulties in parameterization for a 

large scale (Kumar et al., 2008). Until now, none of the studies provides the estimate of inland 
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water CH4 emission of CONUS to our best of knowledge. However, the ratio of global lake 

emissions (53.7 Tg C/yr) over riverine emissions (20.1 Tg C/yr) is 2.6 (Deemer et al., 2016), 

which is comparable to our estimated ratio (2.01) of lake CH4 emissions (5.21 Tg C/yr) over 

riverine CH4 emissions (2.58 Tg C/yr) from 2009 to 2018. 

Our model could well address the relative role of small streams and large rivers in the 

riverine CO2 and CH4 emissions.  Previous studies have suggested that the headwater stream 

released most of the CO2 emissions (Butman and Raymond, 2011; Raymond et al., 2013). In our 

analysis, 88% of the riverine CO2 gas released from 1st -3rd order streams (within 5 arc-min 

resolution grid cells), which is consistent with the data analysis-based study. A similar 

phenomenon has been found for N2O gas emission from the headwater stream (Turner et al., 

2015). In theory, significant CO2, N2O and CH4 production in the hyporheic zone, which located 

at the interface between groundwater and surface water of the headwater zones (Clough et al., 

2007; Holgerson and Raymond, 2016; Marzadri et al., 2014; Rasilo et al., 2017; Wohl et al., 

2012). The hyporheic exchange between groundwater and surface water provides a favorable 

condition for the production of CH4 and N2O, due to the low oxygen level (Marzadri et al., 2017; 

Rulík et al., 2000). Until now, none of the previous study represent the high emission rate of CH4 

in the headwater stream, due to the lack of observations.  Our modeled results highlighted 

importance of the small streams by contribute 75.6% and 75.1% of the total diffusive and 

ebullitive CH4 emissions from rivers, which gives implications to the future filed work studies. 

5.5.2 Factors control the emissions of CO2 and CH4 from inland waters. 

Given the importance of anthropogenic effects and climate change on the magnitude and spatial 

pattern of carbon dynamics of the continental and global level, the contribution of environmental 

factors to the changes in CO2 and CH4 emissions from inland waters has been well investigated 
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in this study. It is certain that long-term changes in climate conditions such as elevated air 

temperature and precipitation would substantially promote the growth of plants (Pan et al., 2015, 

2014; Tian et al., 2012, 2011). The increased growth of plants results in the accumulation of soil 

carbon pool through increasing litterfall (Vitousek and Howarth, 1991). Thus, a similar theory 

could be used to explain why increased N inputs would moderate the soil carbon and the 

associate riverine carbon fluxes and inland water CO2, CH4 emissions.  

The contribution of land-use conversion to inland water CO2 and ebullitive CH4 

emissions are much higher than that of the diffusive CH4 emissions. That is because the 

indicators of dissolved CO2, diffusive CH4, and ebullitive CH4 are DIC, DOC, and POC, 

respectively. The CONUS experienced massive land conversion from grassland to cropland 

(Figure 5-4, 5-5). The deforestation significantly increased the soil litter pool, which in turn 

increased soil respiration. Since most of the DIC loss from land is relevant to soil respiration 

(Hastie et al., 2019), DIC loading and the resulted CO2 degassing increased significantly due to 

deforestation. However, the increased soil carbon pool only has limited contributions to the DOC 

loading, because the DOC loading only refers to the absorption and desorption of soil at a given 

depth (Andersson et al., 2000; Liu et al., 2016; Tian et al., 2015c). The POC loading to rivers is 

primarily sourced from soil erosions (Lal, 1995). DLEM calculated soil erosions by Modified 

Universal Soil Loss Equation (MUSLE) model (Williams and Berndt, 1977). Due to the high soil 

erosion rate of cropland, the POC loading increased substantially over the CONUS during the 

last century (Van Oost et al., 2007), which helps to explain the substantial contribution of land 

conversion to ebullitive CH4 emissions (Figure 5-14.c.d).  

It should be noted that nitrogen fluxes also regulate the CH4 dynamics in aquatic systems. 

Overall, the nitrogen inputs contribute to the increase in CH4 emissions (Figure 5-14), although 
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the contribution is small. That is because the increased nitrogen loading also prompted more CH4 

oxidation in waters (Chapra, 2008; Deutzmann et al., 2014), which substantially mitigates the 

positive effect of nitrogen induced carbon loading (Ren et al., 2015; Tian et al., 2015c). 

5.5.3 Uncertainties 

This study provides a first process-based modeling study of CH4 dynamics in the land-aquatic 

continuum under the earth system modeling framework. However, the model structure, 

parameters as well as the input data would certainly induce significant uncertainties.  

Our model still incorporated many empirical equations to simplify the processes in land 

and waters, although we calibrate the parameters to match the data, which implicitly contains the 

simplified biogeochemical processes. It should be noted that the gas exchange rates show 

considerable spatial heterogeneity by streams and lakes (Ulseth et al., 2019). Raymond et al. 

(2012) suggested eight ways to quantify the gas exchange rate of dissolved CO2 from streams, 

which may induce significant uncertainties and require further investigations. We used empirical 

equations to estimate the gas exchange rate of CO2 and CH4 from lakes by using local wind 

speed (Bastviken et al., 2004; Lu et al., 2016). However, the empirical equation is validated in 

one site, but may not fit for all the lakes over the CONUS. Our model simplified the 

biogeochemical processes of CO2 and CH4 production in groundwater because none of the earth 

system models consider the lateral groundwater transport and the associated subsurface 

biogeochemical processes. Again, we do not consider the CO2 uptake, which may undoubtedly 

induce large uncertainties in estimating CO2 effluxes in the lentic water system (Battin et al., 

2009; Maavara et al., 2017). Future research needs to consider the food chain of algae and 

microorganism activities for CO2 and CH4 dynamics (McGinnis et al., 2015). The parameters of 

the model also have large uncertainties. The previous study used to calibrate parameters to 
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represent the CH4 production rate per cubic meter water. However, the volume of water itself is 

not a reliable indicator of CH4 production. Thus, we used a simple ratio to represent the CH4 

production and oxidation obtained from field experiments (Deutzmann et al., 2014; Goñi and 

Thomas, 2000; McGinnis et al., 2015). However, the uncertainty range of the ratio is quite broad; 

more filed experiments need to be conducted in the future to guide the modeling work. 

Model inputs also would induce large uncertainties. Our model does not explicitly model 

the dynamics of water pH. We generated static water pH data by interpolation long term 

observations collected from the USGS database. Water pH directly control the pCO2 and the 

associated CO2 emissions (Andersen, 2002), thus accurately predicting water pH is essential in 

quantifying CO2 emissions. Additionally, it has been improved that the traditional methods to 

calculate pCO2 largely overestimate CO2 degassing in organic-rich freshwaters, thus accurately 

estimate organic matters and water pH may substantially improve the estimating of CO2 evasions 

(Abril et al., 2015). Water pH also regulated the CH4 production due to the microorganism 

activities, which has not been included in our current model. Except for water pH, the surface 

area of the water body also directly influences the total emissions. However, the surface areas are 

dynamic and remain large uncertain especially for the headwater streams (Allen et al., 2018). 

Although statistical-based methods have been developed to estimate the surface area of the small 

streams, the large measurement of headwater streams is still needed in the future to align with 

the improvement of remote sensing technology (Allen and Pavelsky, 2018). 

5.6. Conclusion 

In this study, we used a coupled modeling framework to address the biogeochemical processes 

relevant to CO2 and CH4 dynamics in the inland waters. We validated the lateral DOC, POC, and 

DIC fluxes of the river and CH4 fluxes from streams across the CONUS. We found a significant 
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increase in CO2 and CH4 emissions from rivers and lakes due to climate change and human 

activities. It is worth noting that large uncertainties still exist in our modeling results due to the 

model structure and parameterizations as well as model inputs. To reduce the uncertainties, more 

reliable technology regarding modeling tools and data model integrations should be developed in 

the future. 
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Chapter 6: Increased riverine N2O emission across the continental U.S. 

 

Abstract: Emissions of nitrous oxide (N2O) from the river networks constitute a poorly 

constrained term in the regional N2O budget (Ciais et al., 2014; Tian et al., 2016). This N2O 

component was previously estimated as indirect emissions from agricultural soils (Davidson and 

Kanter, 2014) despite that the magnitude of emissions is highly uncertain (Beaulieu et al., 2011; 

Hu et al., 2016; Kroeze et al., 2005; Kroeze and Seitzinger, 1998; Maavara et al., 2018; Reay et 

al., 2012; Seitzinger and Kroeze, 2000). Here, we present an improved model representation of 

nitrogen and N2O processes at the land-ocean aquatic continuum (Regnier et al., 2013) 

constrained with a new ensemble of data products. The new model-data framework provides a 

quantification for how changes in nitrogen inputs (fertilizer, deposition, and manure), climate 

and atmospheric CO2 concentration, and terrestrial processes have affected the N2O emissions 

from the world’s streams networks during the period of 1900-2016. The results show an increase 

of riverine N2O emissions from 38.3 ± 6.2 Gg N2O-N yr-1 in the 1900s to 60.5 ± 8.7 Gg N2O-N 

yr-1 in 2009-2018 across the CONUS. The small rivers in headwater zones (lower than 4th order 

streams) contributed up to 82.9% of riverine N2O emissions over the CONUS. Nitrogen loads on 

headwater streams and groundwater from human activities, primarily agricultural nitrogen 

applications, play a significant role in the increase of the CONUS riverine N2O emissions.  
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6.1 Introduction  

During the last century, massive reactive nitrogen drained into aquatic ecosystems due to human 

activities, includes land conversion to cropland, extensive nitrogen fertilizer and manure 

applications, nitrogen deposition, and urban sewage release. Nitrous oxide (N2O), a byproduct of 

nitrification and denitrification, has become the third important greenhouse gas because of its 

long lifetime in the atmosphere and high greenhouse effect (Davidson and Kanter, 2014).  

Extensive studies have estimated N2O emissions from inland waters as the product of dissolved 

inorganic nitrogen (DIN) by applying a lab-measured emission factor (Kroeze et al., 2005; 

Seitzinger and Kroeze, 2000). Emission factors (the ratio of N2O emissions to riverine inorganic 

nitrogen at this moment) are determined from site-level field experiments or observations. 

Moreover, the measurements are usually of low-frequency. These spatial and temporal deficits of 

the EF method limit its use at a large spatial scale and a long time-scale, at which land and river 

conditions would show high heterogeneity. The difficulty can hinder this method in obtaining 

emission factors at various spatio-temporal scales. The wide range of emission factors results in 

considerable uncertainty in existing estimates of riverine N2O emissions (Beaulieu et al., 2011; 

Hu et al., 2016; Kroeze et al., 2005; Kroeze and Seitzinger, 1998; Maavara et al., 2018; Reay et 

al., 2012; Seitzinger and Kroeze, 2000) from 0.03 to 2.0 Tg N2O-N yr-1. Using lab-measured 

emission factors also ignores the transport process of N2O in aquatic ecosystems. In reality, the 

N2O emission amount along the streamline could vary significantly, with small rivers releasing 

much more N2O than high order streams due to the hyporheic exchange of water and nutrients 

between stream water and groundwater (Garnier et al., 2009; Turner et al., 2015).  

To close the regional N2O budget and properly attribute atmospheric changes to sources and 

sinks, it is important to better understand and quantify riverine nitrogen exports and associated 
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N2O emissions through the land-ocean aquatic continuum. However, land and earth system 

models lack the representation of lateral fluxes and processes over continents and from 

continents to oceans (Ciais et al., 2008; Tian et al., 2018b). The most recent improvement in 

large-scale hydrology models considers the sub-grid routing processes (Li et al., 2013, 2015a) of 

small streams in large grid cells aiming to reduce the scale effect, which can be extended to 

simulate the physical and biogeochemical processes in small headwater streams.  

Inspired by the recent new progress in hydrological modeling and field observations, we 

developed a process-based riverine N2O model to simulate the N2O concentration and emission 

from streams and rivers. We incorporated the riverine N2O model into a scale adaptive water 

transport scheme, which fully coupled with a Dynamic Land Ecosystem Model (DLEM) (Tian et 

al., 2016; Yang et al., 2015c). Furthermore, we quantified the impacts of climate and human 

interaction on riverine N2O effluxes across the continental U.S.  

6.2. Methods and input data 

Here we developed a riverine N2O model within the framework of the Dynamic Land Ecosystem 

Model (Tian et al., 2015c) (DLEM) (Figure 6-1.a) by coupling a scale-adaptive hydrological 

scheme (Li et al., 2015a) and river biogeochemistry (Yang et al., 2015b) to simulate the riverine 

fluxes of water, carbon and nitrogen and the resulting emissions of greenhouse gases (GHGs). 

The model can effectively address the small stream processes by incorporating the sub-grid 

routing processes without conducting model simulation on fine resolution (Figure 6-1.b). 

6.2.1 The DLEM model 

The Dynamic Land Ecosystem Model (DLEM) is a fully distributed, process-based land surface 

model that couples the major land hydrological processes, plant physiology, soil 

biogeochemistry, and river- routing processes (Tian et al., 2015c) (Figure 6-1.b). The DLEM 
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explicitly simulates the carbon, nitrogen, and water fluxes between plants, soil, and atmosphere 

driven by climate, atmospheric CO2, nitrogen deposition, land use and land cover, N fertilizer 

use, irrigation, and other management practices. Meanwhile, the surface and drainage runoff and 

nitrogen load from DLEM are used as the input of the aquatic model Yang et al. (2015). The 

simulated nitrogen loads include nitrate (NO3-), ammonium (NH4+), and dissolved organic 

nitrogen (DON).  

The DLEM aquatic model calculates river routing and the biogeochemical processes in the 

aquatic ecosystems. The mineralization of DON to NH4+ is mainly controlled by water 

temperature, while NH4+ nitrification and NO3- denitrification are primarily regulated by water 

temperature and flow velocity. Detailed descriptions of DLEM aquatic biogeochemical processes 

could be found in Tian et al. (2015) and Yang et al. (2015). In this study, we improved the 

DLEM aquatic model through adopting a scale adaptive river routing approach, to quantify the 

physical and biogeochemical processes in small streams, which usually cannot be accounted in 

the majority of regional and global modeling research (Ciais et al., 2008; Tian et al., 2018b). 

Besides, a riverine N2O model was developed for simulating N2O emissions from river channels. 

6.2.2 The scale adaptive river routing scheme 

In this study, a scale adaptive water transport scheme, namely the Model for Scale Adaptive 

River Transport (MOSART) (Li et al., 2013, 2015a), has been coupled with DLEM. The water 

transport scheme (Figure 6-1.b) characterized the water transport processes within a grid cell into 

threefold: hillslope flow, subnetwork flow, and main channel flow. The hillslope flow represents 

the flowing course, which merges surface runoff and flows into subnetworks. The subnetwork 

flow, conventionally known as the 1st – 3rd order streams in the 0.5-degree cell, receives water 

from hillslope flow and subsurface runoff and drains into the main river channel of the gird unit. 
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Here, the lateral subsurface flow within a grid unit is lumped as the outflow from a groundwater 

pool to the local subnetworks with parameterized residence time (Costa and Foley, 1997; Liu et 

al., 2013). The main river channel receives water inputs from local subnetworks and upstream 

grid cells, and drainage into the downstream grid cells.  

All three river routing processes were solved by using Kinematic Wave Methods, which require 

hydrograph datasets as input generated from the fine resolution topographic dataset (Li et al., 

2015a). Thus, a hydrograph dataset was developed, including channel slope, width, length, 

roughness and bankfull depth for both small rivers and large rivers. The channel widths, lengths, 

and slopes of small rivers within the 0.5-degree grid cell were aggregated from the 15-arc 

Hydrosheds data (Li et al., 2013, 2015a). The same variables for the large river routing were 

derived from DDM30 0.5-degree grid dataset (Döll and Lehner, 2002). The Manning roughness 

coefficients maps of overland flow and channel flows were derived as a function of land-use type 

and channel depth (Getirana et al., 2012). Detailed information about the hydrological data can 

refer to (Li et al., 2015a) and Getirana et al. (2012).  

6.2.3 Riverine N2O model 

A riverine N2O module was developed based on the scale adaptive water transport scheme. 

Hillslope flow receives dissolved N2O from the land surface (through surface runoff) and 

contributes to subnetwork flow. Here we assume N2O concentration in the surface runoff to be 

equal to the atmospheric equilibrium N2O concentration. The net fluxes of dissolved N2O 

(including physical and biogeochemical processes) in the main channel (high-order streams) and 

subnetwork (small rivers) are estimated as: 
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Figure 6-1. The framework of major biogeochemical and hydrological processes in the Dynamic 

Land Ecosystem Model (a) (Tian et al. 2015), which fully coupled with the conceptual model of 

the scale adaptive water transport module (b) and the riverine N2O model (c). 

 

∆𝑀𝑀𝑁𝑁2𝑂𝑂
∆𝑡𝑡

=  𝐹𝐹𝑎𝑎 + 𝑌𝑌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐷𝐷 −  𝑅𝑅 −  𝐸𝐸                                                (1) 
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where 𝑀𝑀𝑁𝑁2𝑂𝑂 is the total mass of dissolved N2O in the main channel or subnetworks (gN), ∆𝑡𝑡 is 

the time step, Fa is advective N2O fluxes (gN∙d-1), Ywater is the N2O production within the water 

column (gN∙d-1), D is the dissolved N2O from rainfall to rivers (i.e. deposition) (gN∙d-1) with an 

initial concentration equal to the atmospheric equilibrium N2O concentration, R is the flux from 

N2O reduction (gN∙d-1) to nitrogen gas, and E is the riverine N2O efflux (gN∙d-1) through the air-

water interface. 

The advective N2O flux through subnetwork flow considers contributions from both surface 

runoff and drainage and can be expressed as: 

𝐹𝐹𝑎𝑎,𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑄𝑄ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑔𝑔/ℎ − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠                               (2) 

where Qhill, and Qsub are flow rates of hillslope flow, subnetwork flow (m3∙s-1); Chill , Csub are 

concentrations (mg/L) of dissolved N2O in hillslope flow (Chill equals to the atmospheric 

equilibrium N2O concentration), and subnetworks, respectively. DLEM model simulates soil 

biogeochemical processes of one crop type and four natural vegetation types nested in one grid 

cohort, and each plant function type has its soil carbon and nitrogen pools(Tian et al., 2012). The 

inorganic nitrogen leaching (i.e., NH4+ and NO3-) is the primary source for N2O production in the 

groundwater and hyporheic zones(Quick et al., 2019).  Thus, we parameterized the soil 

biogeochemistry associated with the groundwater N2O production as a function of soil N 

availability and the local soil properties: 

𝑌𝑌𝑔𝑔/ℎ = ∑𝐾𝐾𝑔𝑔/ℎ  ×  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑁𝑁𝑁𝑁₃⁻  ×  𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣                         (3) 

where 𝑌𝑌𝑔𝑔/ℎ is the dissolved N2O production (gN d-1) in groundwater and the hyporheic zone, 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑁𝑁𝑁𝑁₃⁻ is the land nitrate leaching rate (g N m-2 d-1) that varies with the plant function type 

(PFT; Gardner et al., 2016), and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 is the vegetation area (m2) for each PFT. The 
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parameter 𝐾𝐾𝑔𝑔/ℎ represents the N2O-N / NO3⁻-N ratio and was calibrated for each PFT against 

observations, which fell in the ranges suggested by Jahangir et al., (2012) (Table 6-1). 

The advective N2O fluxes through the main channel can be described as: 

𝐹𝐹𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = ∑ 𝑄𝑄𝑢𝑢𝑢𝑢,𝑖𝑖𝐶𝐶𝑢𝑢𝑢𝑢,𝑖𝑖
𝑛𝑛
𝑖𝑖=1  + 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚                                (4) 

where Qup and Qmain are the flow rates of upstream grid cells and the main channel in the current 

grid cell (m3∙s-1), respectively. Cup and Cmain are the associated dissolved N2O concentrations 

(mg/L), respectively. Dissolved N2O production in the water column was calculated from both 

nitrification and denitrification: 

𝑌𝑌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑖𝑖𝑖𝑖  ×  𝑘𝑘 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  ×  𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛                              (5) 

where 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑are the nitrogen removal rate (gN∙d-1) through nitrification and 

denitrification. 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 are the associated ratio of N2O production through 

nitrification and denitrification(Beaulieu et al., 2011). The detailed description of riverine 

nitrification and denitrification processes in DLEM could be found in Yang et.al.(Yang et al., 

2015a)  

The nitrification or denitrification rate (k) can be estimated as: 

𝑘𝑘 = exp (−𝑣𝑣 
∆𝑑𝑑

)                                                                                    (6) 

where v is the settling velocity (d−1) of NO3- or NH4+ through nitrification and denitrification 

respectively, and ∆𝑑𝑑 is the hydraulic load (m) for rivers flow into the downstream grid cell. v can 

be simulated by a first-order kinetics equation(Yang et al., 2015a): 

𝑣𝑣 = 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟  ×  (𝑄𝑄10)
𝑇𝑇− 𝑇𝑇𝑠𝑠
10                                                                     (7) 
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where 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 is the settling velocity of NO3- or NH4+ at the reference temperature of 20 ˚C, 𝑄𝑄10 is 

the change fraction of NO3− or NH4+ reaction rates at a temperature change of 10 ˚C  and 

assigned 2.0 here, T is the water temperature (˚C ), and Ts is the reference temperature (20 ˚C ). 

∆𝑑𝑑 can be expressed as: 

∆𝑑𝑑 = 𝑄𝑄
𝐴𝐴𝑠𝑠

                                                                                           (8) 

where Q is water discharge (m/s), and As is the surface area of the waterbody. The reduction of 

N2O in rivers is computed according to a first-order kinetics equation: 

𝑅𝑅 = 𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  ×  𝑀𝑀𝑁𝑁2𝑂𝑂                                                              (9) 

where 𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the reduction rate (m∙d-1) (the ratio of the parameter range could be found in 

Table 6-2), and 𝑀𝑀𝑁𝑁2𝑂𝑂 is the content of dissolved N2O (g N) in the river channel. The Riverine 

N2O emission or sink was estimated as: 

𝐸𝐸 = 𝐾𝐾𝑁𝑁2𝑂𝑂  ×  �𝐶𝐶𝑁𝑁2𝑂𝑂 −  𝐶𝐶𝑁𝑁2𝑂𝑂𝑂𝑂𝑂𝑂� ×  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤                                          (10) 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  is the water surface area (m2) of rivers,  which can be estimated based on 

channel geometry (Getirana et al., 2012; Li et al., 2015a; Raymond et al., 2013). 𝐶𝐶𝑁𝑁2𝑂𝑂 and 

𝐶𝐶𝑁𝑁2𝑂𝑂𝑂𝑂𝑂𝑂 are dissolved N2O concentration (mg/L) and atmospheric equilibrium N2O 

concentration(Sander, 2015) (mg/L), respectively. 𝐾𝐾𝑁𝑁2𝑂𝑂 (m∙d-1) is the gas exchange rate (Fu et 

al., 2018). Here we use a newly developed method to calculate the channel width of small 

streams: 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = 𝑄𝑄
3

5𝑟𝑟+3  ×  (0.5 𝐴𝐴0.42)𝑖𝑖
𝑟𝑟−1
𝑟𝑟+0.6  × �8.1(9.8 𝑆𝑆)0.5𝑘𝑘−

1
614−

5
3(1 −  1

𝑟𝑟+1
)�

− 3
5𝑟𝑟+3

          (11) 

where Q is discharge (m/s), A is upstream area (ha), k is a bed roughness length scale, and r is 

shape parameter. More information could be found by Allen et al. (2018).  
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More information about the newly introduced parameters in the riverine N2O module can be 

found in Table 6-2. 

6.2.4 Study area and model input data  

In this study, we developed a 5 arc-min resolution model input dataset of the Contiguous United 

States (CONUS) to drive the DLEM model. CONUS, known as U.S. 48, is the major component 

of the United States. The region spans 8,080,464.3 km2 and supports 327.2 million people. 

Dominant plant function types in the CONUS include temperate evergreen needle-leaf and 

deciduous broadleaf evergreen shrubland, C3 grassland, temperate needle-leaf forest and 

deciduous shrubland as shown in Figure 6-2. 

 

 

Figure 6-2. The major plant function types across the Contiguous United States (CONUS). 
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The model driving forces consist of land-use/land cover change, climate variables, atmospheric 

CO2 and N2O concentrations, atmospheric N deposition, nitrogen fertilizer, and manure nitrogen 

applications (Figure 6-3).  

 
a 

 
b 

 
c 

 

Figure 6-3. Model forcing for DLEM-N2O simulations. a. annual precipitation (mm) and 

temperature (°C) during 1860 -2018. b. nitrogen inputs (Tg N yr-1) from 1860 to 2018.  c. The 

atmospheric CO2 (ppm) and N2O concentrations (ppb) from 1900 to 2018. 

 

The annual land-use/land cover change data were derived from a potential natural vegetation 

map (Synergetic Land Cover Product(Jung et al., 2006)) and a prescribed cropland area dataset 

from History Database of the Global Environment version 3.2 (HYDE 3.2: ftp://ftp.pbl.nl/hyde/). 

The daily climate variables (i.e., precipitation, mean temperature, maximum temperature, 

minimum temperature, and shortwave radiation) were obtained from the METADATA and 

CRU–NCEP dataset (https://vesg.ipsl.upmc.fr) for the time period 1900-2016. Annual 

atmospheric CO2 concentration from 1900 to 2015 was obtained from the NOAA 
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GLOBALVIEW-CO2 dataset (https://www.esrl.noaa.gov). Long-term atmospheric N2O 

concentration was obtained from the AGAGE dataset (available at:  

https://agage.mit.edu/data/agage-data).  

We obtained three spatially-explicit time-series datasets of agricultural N fertilizer use at a 

resolution of 5 arc-min from Lu and Tian (2017), which developed the datasets through 

spatializing IFA-based country-level N fertilizer consumption amount according to crop-specific 

N fertilizer application rates, distribution of crop types, and historical cropland distribution 

during 1900−2014. The total magnitude of fertilizer application as the major nitrogen input to 

agricultural land reached to 17.35 Tg N/year in 2018. N deposition dataset was obtained from 

Chemistry-Climate Model Initiative (CCMI) database. The N deposition increased continuously 

since 1860 with the value of NOX, and NOY reached 4.21 Tg N/year and 2.71 Tg N/year, 

respectively. The manure N data was obtained from Zhang et al. (2017).  

The historical Gross Domestic Product (GDP) and population data obtained from the Inter-

Sectoral Impact Model Intercomparison Project (ISIMIP: https://esg.pik-

potsdam.de/search/isimip/) are used for estimating sewage N exports, using the method proposed 

by Van Drecht et al. (2009). 

6.3 Simulations and validations: 

To quantify the influences of natural and human activities on riverine N2O emissions, the model 

was driven by multiple factors including climate (shortwave radiation, precipitation, air 

temperature, maximum temperature and minimum temperature), land use and land cover, and 

nitrogen inputs (fertilizer, deposition, manure and sewage) from 1900 to 2016 (Figure 6-3). The 

simulated river discharges and nitrate (NO3-), ammonium (NH4+), and dissolved organic nitrogen 

(DON) concentrations were calibrated using observations from selected large river basins across 

https://www.esrl.noaa.gov/
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the CONUS (Figure 6-7). The simulated groundwater dissolved N2O concentration and riverine 

dissolved N2O concentration agreed well with observations both spatially and temporally (Table 

6-1; Figure 6-4). Moreover, factorial experiments (Figure 6-5.b) were conducted to attribute the 

contribution of each factor (i.e., climate, CO2, fertilizer, manure, and N deposition) to riverine 

N2O emissions (Table 6-3). 

 

Figure 6-4. Validation N2O fluxes across the CONUS. 

 

6.4 Results and discussions: 

We estimate that riverine N2O emissions over the CONUS increased from 38.26 ± 6.23 Gg N2O-

N yr-1 in the 1900s to 60.53 ± 8.74 Gg N2O-N yr-1 in 2016, at an average annual growth rate of 

0.58 GgN2O-N yr-1 (Figure 6-5. a). The increasing trend was not monotonic, and its evolution 

can be partitioned into the three periods of 1900-1960, 1960-2000, and 1997-2016, according to 

the piece-wise linear regression. During 1900-1960, no significant trend was found.  During 

1960-2000, the increasing growth rate accelerated to 1.75 Gg yr-1 due to the extensive use of N 

fertilizer, which contributed 85.8% of the riverine N2O increase during the 1990s. However, 

riverine N2O emissions started to decrease during 2000-2016 at a rate of 0.3 N2O-N yr-1, partially 

due to decreased N fertilizer (Figure 6-3.b) use as well as elevated CO2-induced reduction in 

R² = 0.685

0

50

100

150

200

250

300

350

0 100 200 300 400

DL
EM

 S
im

ul
at

ed

Observation

Riverine N2O fluxes (μg/(m2∙hr))

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0

5

10

15

20

25

30

35

Feb-08 Jun-08 Sep-08 Dec-08 Mar-09 Jul-09 Oct-09 Jan-10

NO
3-

co
nc

en
tra

tio
n 

(m
g/

L)

N 2
O

 e
m

is
si

on
 (μ

g 
N 2

O
-N

 / 
(m

2 ∙h
r))

Ohio River

Observed N₂O efluxes
Simulated N₂O efluxes
Simulated NO₃⁻ concentration
Observed NO₃⁻ concentration

R2 = 0.73

R2 = 0.62



149 
 

N2O emissions. The CO2 fertilization effect promotes increased plant growth at higher CO2 

concentrations and therefore locks higher amounts of nitrogen into plant biomass. 

 

 

a 

 

b 

Figure 6-5. The temporal pattern of riverine N2O emissions (a) and the attribution analysis of 

environmental factors to the changes in riverine N2O emissions over the CONUS(b). 

 

The contribution of small rivers (lower than 3th order streams) dominated riverine N2O emissions 

(Figure 6-6). For example, from 2009-2018, N2O emissions from small rivers were 50.2 ± 8.1 Gg 

N2O-N yr-1 whereas emissions from high-order streams only were 10.33 ± 1.81 Gg N2O-N yr-1 

(Figure 6-6). The groundwater processes combined the lateral groundwater transport from the 

soil root zone to streams and those in the hyporheic zone. The hyporheic zone is located beneath 

the stream bed and groundwater-stream repeat exchanges here. The groundwater processes 

played as the major N2O source and produced, on average, 31.1 ± 6.6 Gg N2O-N yr-1, whereas 

the contemporary water column produced an average of 3.4 ± 1.8 Gg N2O-N yr-1. In contrast, for 

high-order streams water column dominated the N2O production by generating on average 2.7 ± 

0.5 Gg N2O-N yr-1 (Figure 6-6). Nevertheless, it is noted that in part of high-latitude regions and 

arid regions, rivers acted as a sink for N2O, which is consistent with the experimental evidence 
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(Beaulieu et al., 2011; Soued et al., 2016) (Figure 6-6). 

 

Figure 6-6. The riverine N2O emissions of small streams (a, c) and rivers (b,d) during 1900s and 

2008-2019. 

 

Our approach is capable of estimating riverine N2O emissions from both small streams and high-

order rivers at fine spatial and temporal resolutions, thus overcoming the limitations of the 

emission factor approach. The results reveal the disproportionately large contribution of small 

rivers to riverine N2O emissions, as hinted by several regional studies (Garnier et al., 2009; 

Turner et al., 2015). The hyporheic zone with large reactive surface area can facilitate N2O 

production in small rivers. Compared to the high-order streams, small ones directly fed by 

hyporheic exchanges (Marzadri et al., 2017), have higher dissolved N2O concentration, steeper 

channel slopes, and faster flow velocities, which contribute to higher gas exchange rates (Garnier 

et al., 2009). The dominant role of small headwater streams at the continental scale was not 
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recognized for a long time because they are not consistently gauged for discharge, and it is 

difficult to directly measure their surface area (Allen et al., 2018).  

It is worth noting that the majority of dissolved N2O in the water column was from N2O-

supersaturated groundwater, addressing the balance of N2O emissions in excess of that produced 

via direct denitrification (Marzadri et al., 2017). This phenomenon could be explained by the 

long residence time (Marzadri et al., 2017) of subsurface transport, which provides enough time 

for denitrification to convert NO3- into N2O and nitrogen gas. The long residence time induced a 

high rate of leached nitrogen accumulating in the groundwater pool and results in high N2O 

concentration. Additionally, the low oxygen level (Rosamond et al., 2012) below the water table 

provides favorable conditions for the production of N2O via denitrification process, which in turn 

produced more N2O in groundwater. Our simulated results could well capture the reported N2O 

sink in the high latitude and arid rivers (Rosamond et al., 2012) (Figure 6-6) because of the 

introduction of the N2O consumption reaction in our riverine N2O model. Additionally, the 

relatively low terrestrial-N inputs and the resulted low dissolved N2O production in groundwater 

and surface water help explain the riverine N2O sink in the high latitude and arid regions. 

Anthropogenic N inputs and cropland expansions could explain the majority of the increase in 

the groundwater N2O concentration (Jurado et al., 2017) and global riverine N2O emissions. 

Among regions, the significant increase of riverine N2O emissions in agricultural regions of the 

CONUS. since the 1960s (Figure 6-6) is due to the explosive growth in population, which boosts 

the demand for food and industrial supplies, and thus stimulates the heavy use of N-fertilizer and 

manure. For example. In contrast, the CO2 fertilization effect is the primary reason for the 

decrease in riverine N2O emissions since 2000 (Figure 6-5.b). The fertilization effect of CO2 

stimulates vegetation growth, and thus, more fixed N will enter the soil N pool as litterfall, 
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providing the substrate for production of NH4+ and NO3- through mineralization for production 

of NH4+ and NO3- through mineralization(Kanter et al., 2016). On the other hand, increased 

vegetation growth requires more uptake of NO3-. 

Consequently, less NO3--N is exported into rivers, resulting in a decrease of N2O production 

through denitrification (Beaulieu et al., 2011). Although the increase of reactive NH4+ provides 

more substance for nitrification, which benefits the production of N2O, the simultaneously 

increased dissolved organic matter exported to aquatic systems can stimulate microbes to 

consume more available O2, which in turn inhibits the nitrification process (Chapra, 2008). 

Therefore, the net effect of increased CO2 fertilization on the riverine N2O emissions could not 

be ascribed to one or two factors. Sewage-N inputs to rivers are one of the dominant sources for 

riverine N2O production in urban regions (Beaulieu et al., 2010; Borges et al., 2015; Burgos et 

al., 2015), which however contribute only about 2.9% of the terrestrial-N exports to rivers at the 

global level(Lee et al., 2019), However, most of the megacities, where live more than half of the 

world’s population, are distributed at the coastal zones (von Glasow et al., 2013). This 

effectively shortens the residence time of sewage-N in the riverine systems. 

Our model unveils the spatio-temporal patterns of riverine N2O emissions and the underlying 

governing factors of emissions. Our results on the asynchronously temporal changes in N2O 

emissions and NO3- concentrations (Figure 6-4) in high-order streams suggest that it is not 

reasonable to use NO3- as an instantaneous predictor for riverine N2O fluxes. We found that the 

temporal N2O production was regulated by water temperature (Venkiteswaran et al., 2014), as 

well as the riverine NO3- content that might be significantly affected by the riverine transport 

with limited removal rates(Loken et al., 2018). 
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Our study highlights the importance of surface and subsurface processes in N2O emissions from 

the world’s river networks. We show that large N2O emissions from headwater small streams 

have been ignored or underestimated in recent estimates of riverine N2O emissions (Hu et al., 

2016; Maavara et al., 2018).  Also, applying a constant emission factor measured from headwater 

streams may lead to largely overestimated N2O emissions from the rivers. To better estimate 

N2O emissions from the riverine networks, models need to improve the representation of surface 

and subsurface hydrological and biogeochemical processes as well as the accuracy of driving 

data. In particular, model parameters were the largest source of uncertainty, followed by river 

surface area and nitrogen inputs. A rainfall event can increase the surface area of the first-order 

streams significantly, but the high flow velocities make surface area prediction difficult (Allen et 

al., 2018). Gas exchange rates also show large variations by streams which require further 

investigation (Ulseth et al., 2019). We simulated the N2O production from nitrification and 

denitrification using a Q10 based empirical method, in which water temperature is the only 

determinant (the first-order mechanism). Although deficits exist in this method for explicitly 

accounting for other critical factors, such as carbon availability, microbe activity, and the level of 

dissolved oxygen, the parameterization of nitrification and denitrification rates at the reference 

temperature does implicitly consider impacts of other factors. 

Moreover, the method is further validated by this study (Table 6-1) (Quick et al., 2019). 

Currently, the process-based subsurface hydrodynamic model requires variables such as 

thickness or extent of the hyporheic zone, hyporheic denitrification rate (Marzadri et al., 2017). 

However, these variables remain highly uncertain due to the lack of field measurements on a 

large scale. Therefore, the rigorous interaction between process-based modeling and field 
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experimentation will be essential to reduce the estimated uncertainty in the lateral N2O emission 

for closing the continental N2O budget. 

Continental riverine N2O emissions, as one sector of inland water systems (lake, reservoir, river, 

and estuary), account for about 6% of global anthropogenic N2O emissions (Beaulieu et al., 

2011). It should be noted that the increase in global riverine N2O emissions (188.07% from the 

1900s to 2009-2018) is much faster than that of soil N2O emissions (58.73% from the 1860s to 

2007-2016) (Tian et al., 2018b). The improved knowledge of the quantities, distribution, and 

hotspots of riverine N2O emissions from this study can support the implementation of 

management strategies to increase crop nitrogen efficiency, thereby reducing nitrogen losses and 

their associated environmental impacts. Our study suggests that it is critical to reducing nitrogen 

loads into the headwater streams that are closer to human livelihood. All greenhouse gas 

emission pathways consistent with the goals of the Paris Climate Agreement require substantial 

and sustained reductions on N2O emissions, which in turn require improved quantification, 

process attribution, and methodological transparencies.  
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Table 6-1. The collected annual mean riverine N2O fluxes and concentrations for model 

calibration and validation. 

 

Riverine N2O emission 

Continent River Basin 

 

Stream order 

Emissions 

μgN2O-N∙m-2∙hr-1 Literature source 

North America 

 

 

 

 

 

 

 
 

Hudson river, USA 5 8.30 
(Cole and Caraco, 2001)(Cole and 

Caraco, 2001) 

Ohio river, USA 6 16.00 
(Beaulieu et al., 2010a)(Beaulieu et 

al., 2010) 

Grand river, USA 1 ~ 4 90.00 
(Venkiteswaran et al., 

2014)(Venkiteswaran et al., 2014) 

Plate river, USA 7 63.00 
(McMahon and Dennehy, 

1999)(McMahon and Dennehy, 1999) 

Potomac river, USA 5 91.32 
(McElroy et al., 1978)(McElroy et al., 

1978) 

Neuse river, USA 1 ~ 4 64.00 (Stow et al., 2010)(Stow et al., 2005) 

NC (southern 

deciduous forest) , USA 
1 ~ 4 41.67 

(Beaulieu et al., 2010b)(Beaulieu et 

al., 2011) 

MI (northern 

deciduous forest) , USA 
1 ~ 4 24.33 

(Beaulieu et al., 2010b)(Beaulieu et 

al., 2011) 

MA (northern 

deciduous forest) , USA 
1 ~ 4 65.73 

(Beaulieu et al., 2010b)(Beaulieu et 

al., 2011) 

KS (tallgrass prairie) , USA 1 ~ 4 77.26 
(Beaulieu et al., 2010b)(Beaulieu et 

al., 2011) 

WY (shrub steppe) , USA 1 ~ 4 2.36 
(Beaulieu et al., 2010b)(Beaulieu et 

al., 2011) 

SW (desert) , USA 1 ~ 4 0.53 
(Beaulieu et al., 2010b)(Beaulieu et 

al., 2011) 

PR (tropical forest) , USA 1 ~ 4 65.22 
(Beaulieu et al., 2010b)(Beaulieu et 

al., 2011) 

OR (wet coniferous forest) , 

USA 
1 ~ 4 3.78 

(Beaulieu et al., 2010b)(Beaulieu et 

al., 2011) 
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Riverine dissolved N2O concentration 

Continent River Basin 

 

Stream order 

Observation 

μgN2O-N/L Literature source 

North America 
 

San Joaquin river, USA 6 0.905 
(Hinshaw et al.,  2012)(Hinshaw and 

Dahlgren, 2013) 

Ohio river, USA 6 1.1 
(Beaulieu et al., 2010a)(Beaulieu et 

al., 2010) 

 

Ground water dissolved N2O concentration 

Continent River Basin Observation μgN2O-N/L Literature source 

North America 

 
 

Lake Creek, Oregon, USA 6.5−8.9 

(Well et al., 2001, 

Jurado et al., 2017)(Well et al., 2001; 

Jurado et al., 2017) 

Bear Creek Watershed, Iowa, 

USA 
10.2 

(Kim et al., 2009, 

Jurado et al., 2011)(Kim et al., 2009; 

Jurado et al., 2017) 

Choptank watershed, USA 10.9 

(Fox et al., 2014, 

Jurado et al., 2017)(Fox et al., 2014; 

Jurado et al., 2017) 

Narragansett Bay, Rhode Island, 

USA 
2.5 

(Clough et al., 2007, 

Jurado et al., 2017)(Clough et al., 

2007; Jurado et al., 2017) 
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Table 6-2. Newly introduced parameters in the riverine N2O module. 

 

Parameter 

 

Description 

 

Calibrated value 

 

Ranges 

 

Unit 

 

Reference 

 

𝐾𝐾𝑔𝑔/ℎ 

 

The ratio of groundwater N2O 

production from NO3
- leach rate 

 

 

0.8% ~ 1.3% 

 

 

0.33% ~ 1.63% 

 

 

unitless 

 

Introduced from Jahangir et al. 

(2012)(Jahangir et al., 2012) and 

calibrated for each plan function 

types 

      

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 The ratio of riverine N2O 

production from riverine 

denitrification 

 

1% 

 

0.04-5.6%. 

 

unitless 

Introduced from Beaulieu et al. 

(2010)(Beaulieu et al., 2011) 

      

 

𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

 

The ratio of riverine N2O 

production from riverine 

nitrification 

 

   0.1% 

 

0.04-5.6%. 

 

unitless 

 

Similar to denitrification N2O 

production(Seitzinger and Kroeze, 

2000) 

      

 

𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

 

N2O consumption rate 

 

           0.012 

 

0.0057~0.0344 

 

1/d 

∗Introduced from Kolb et al. 

(2012)(Kolb and Horn, 2012) and 

convert from the areal N2O 

consumption rate. 

∗ Unit conversion: The areal N2O consumption (−9.4 to −56.8 nmol m−2 h−1) rate were obtained from Kolb et al. (2012). We assume the depth of 

the water column (bogs) as 6-m, the waterbody consumes N2O to keep the dissolved N2O concentration equals to the atmospheric equilibrium 

N2O concentration (6.6 nmol/L). Thus, the N2O consumption rate is converted as: -9.4(56.8) nmol m−2 h−1 × 24 hr / 6-m / 1000 / 6.6 nmol L−1 = 

0.0057(0.0344) 1/d 
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Table 6-3. The experimental design for riverine N2O emission simulations driven by natural and 

anthropogenic factors including climate, atmospheric carbon dioxide (CO2), nitrogen deposition 

(NDEP), nitrogen fertilizer (NFER), and manure (NMAN).  

 

 

Climate CO2 NDEP NFER NMAN 

Simulation 1 1901-2016 1900-2016 1900-2005 1900-2013 1900-2016 

Simulation 2 1901-2016 1900-2016 1900-2005 1900-2013 1900 

Simulation 3 1901-2016 1900-2016 1900-2005 1900 1900-2016 

Simulation 4 1901-2016 1900-2016 1900 1900-2013 1900-2016 

Simulation 5 1901-2016 1900 1900-2005 1900-2013 1900-2016 

Simulation 6 1901 1900-2016 1900-2005 1900-2013 1900-2016 

 

To attribute the contributions of each factors to riverine N2O emissions, we designed a series of 

factorial experiments: Simulation 1: all-combined; Simulation 2: without manure input; 

Simulation 3: without N fertilizer; Simulation 4: without N deposition; Simulation 5: without 

CO2, and Simulation 6: without climate.  
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Figure 6-7. Validation of DLEM simulated nitrogen fluxes against USGS observations.  
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Chapter 7. Summary: The GHG budget of inland water ecosystems across the 

Conterminous United States 

 

7.1. Summary and major conclusions 

In this dissertation, the long-term CO2, CH4 and N2O emissions from inland waters across the 

CONUS were investigated. A scale adaptive water transport scheme was coupled with the 

Dynamic land ecosystem model, with certain improvements on the aquatic biogeochemistry to 

represent the dynamics of CO2, CH4, and N2O in the aquatic ecosystem. We named the newly 

developed modeling framework as Dynamic Land Ecosystem Model- Terrestrial Aquatic 

Interface Model (DLEM- TAIM). We developed the U.S hydrography data from high resolution 

hydrological corrected topographic data. We updated the model driving forces, including climate 

variables, land use conversions, and nitrogen fertilizer, manure nitrogen, and nitrogen 

depositions. Meanwhile, the contribution of environmental factors to the GHG emissions from 

inland water was quantified and analyzed through factorial analysis by the DLEM-TAIM. The 

major findings including: 

(1). The inland water CO2 emissions increased significantly since the preindustrial era (Figure 7-

1. a). The magnitude of riverine CO2 emission increased from 90.6Tg C/yr during the1900s to 

113.6 Tg C/yr during 2009-2018. The magnitude of lake CO2 emission increased from 64.9 Tg 

C/yr during the1900s to 88.13 Tg C/yr during 2009-2018. Specifically, from 1960 to 2018, the 

increasing rate of streams and lakes reached 0.56 Tg C/yr and 0.62 Tg C/yr, respectively.  Small 

rivers dominate the inland water CO2 emissions, with 88% of the riverine CO2 released from the 

1st-3rd order streams.  
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(2). The diffusive CH4 emissions from rivers over the CONUS increased from 1484.5 ± 233.4 

Gg CH4-C yr-1 in the 1900s to 1848.8 ± 286.3 Gg CH4-C yr-1 in 2009-2018. The ebullitive CH4 

emissions from rivers over the CONUS increased from 543.1 ± 25.7 Tg CH4-C yr-1 in the 1900s 

to 737.2 ± 33.9 Tg CH4-C yr-1 in 2009. The diffusive CH4 emissions from lakes over the CONUS 

increased from 853.29 ± 122.8 Gg CH4-C yr-1 in the 1900s to 1115.9 ± 151.3 Gg CH4-C yr-1 

during 2009-2018. The ebullitive CH4 emissions from rivers over the CONUS increased from 

2970.7 ± 217.7 Tg CH4-C yr-1 in the 1900s to 4095.9 ± 286.8 Tg CH4-C yr-1 in 2009. (Figure 7-

1.c.d).  

 

 

a 

 

b 

 

c 

 

d 

Figure 7-1. The GHG emissions from rivers and lakes over the from 1900 to 2018 
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(3). The riverine N2O emissions over the CONUS increased from 38.3 ± 6.2 Gg N2O-N yr-1 in 

the 1900s to 60.5 ± 8.7 Gg N2O-N yr-1 in 2009(Figure 7-1. b). About 82.9% of riverine N2O 

released from small rivers (1st-3rd stream orders) over the CONUS and most of the riverine N2O 

is sourced from groundwater transport and hyporheic zone production.  

7.2. The CO2 equivalents and comparison to U.S. land carbon sinks 

 

Figure 7-2. The Global Warming Potential (GWP 100-years) of the inland water CO2, CH4 and 

N2O emissions over the CONUS. 

 

From 2009 to 2018, the annual mean inland water GHGs emissions CO2 equivalent reached 1.07 

Pg CO2 equiv. yr−1 (Figure 7-2). Our results suggested that the inland water CH4 emission 

account for 68.1% the GWP, follow by CO2 (28.4%) and N2O (3.4%). (Here, we consider the 

GWP of CH4 and N2O are 28 and 265 times of CO2, respectively).  The terrestrial carbon sink of 

U.S. was estimated to range from 0.1 - 2 Pg-C/yr (which is 0.37 – 7.3 Pg CO2 equiv. yr−1) 
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(Pacala et al., 2007). The inclusion of the inland water carbon loss and CH4, N2O could 

substantially revise the continental carbon and GHG budget. 

7.3. The interaction between triple GHGs.  

 

Figure 7-3. The general framework of GHG dynamics within the aquatic ecosystem. 

 

It should be noted that the triple GHGs interact with each other in both terrestrial and aquatic 

ecosystems through C-N coupled dynamics (Figure 7-3).  In the DLEM land model, carbon 

dynamics such as increased CO2 and temperature promote the growth of the plant, and the 

associated nitrogen uptake could substantially reduce the N2O emissions from terrestrial and 

aquatic systems. In the aquatic processes, the C-N nexus also regulates the interactions among 

the CO2, CH4, and N2O. For instance, the CH4 oxidation is positively correlated to the 

denitrification of NO3-. Our model still simplified the process and did not consider all the C-N 
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coupling in the terrestrial and aquatic systems. More processes could be considered in the future 

such as the carbon availability for microorganisms for N2O production in waters. 

7.4. Uncertainty and future study 

Although our reconstructed model exhibited reliable estimates, there are still considerable 

uncertainties in the simulations of inland water GHG emissions throughout this dissertation. 

These uncertainties may be mainly due to the following three aspects of uncertainty: (1) input 

data (climate, land-use and remote sensing products, etc.) for driving the DLEM-TAIM, (2) 

model parameters, and (3) model structure and process representation. To quantify uncertainties 

in the simulated results, we will identify the most sensitive parameters and examine climate 

extremes and potential responses/feedbacks and consequent changes in the ecosystem, climate, 

and land use. The efficiency of the individual model and specific-module-induced uncertainty 

will be evaluated using graphical and standard statistical measures. We will quantify the 

uncertainty derived from the downscaling and upscaling algorithms and mismatch of required 

input data in each individual module, and the uncertainty induced by model fusion, coupling 

parameterization, interactive responses/feedbacks among the dependent systems in this study.                        

Nevertheless, this dissertation is the first attempt to model the long-term GHG emissions from 

inland water driving by multiple environmental factors at the continental scales. This study 

provides insight knowledge to the global or regional carbon budget and the policy-relevant 

decision support. The processed based hydrological model and biogeochemistry model can be 

fully coupled with earth system models, thus the inter-comparison while coupling TAIM module 

with other earth system model could be one of the directions of future study.  
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