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Abstract

Various approaches were investigated and developed to improve dispersion energy

calculations. The highest levels of ab initio electronic structure theory available were

applied to study nine characteristic points on the CO–CO, N2–N2, and CO–N2 potential

energy surfaces. To obtain the desired spectroscopic accuracy, corrections beyond the

state-of-the-art CCSD(T)/CBS level of theory were calculated, including higher-orders of

coupled-cluster theory (up to full single, double, triple, and quadruple excitations,

CCSDTQ), relativistic effects, and core-core and core-valence correlation. The signifi-

cance of post-CCSD(T) effects was emphasized. These effects are particularly important

for the CO–CO complex: their magnitude can exceed 3% of the CCSD(T) interaction en-

ergy. In order to enhance the dispersion calculations for the D3 atom-pairwise dispersion

correction by Grimme, new forms of damping were designed: a linear combination of

error functions and a piecewise-linear function. Furthermore, the possibility of creating a

damped dispersion function without higher than C6 dispersion coefficients was explored.

Last but not least, second-order dispersion and exchange-dispersion corrections in SAPT

were improved by applying the F12 methods, resulting in E(20)
disp-F12 and E(20)

exch−disp-F12.

In order to improve scaling of these methods, we proposed three approximate Ansätze:

EBC, optimized diagonal, and fixed-amplitude. Moreover, the density-fitting algorithm

was introduced to speed up the calculations and to overcome the memory bottleneck.
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Chapter 1

Introduction

Computational chemistry is a field that models chemical phenomena in order to predict,

understand, and validate experimental measurements. The models used vary significantly

in terms of their theoretical and computational complexity, from approximate empirical

and semi-empirical ones through DFT methods to very accurate frameworks based on,

among others: wavefunction theory, perturbation theory versions, or Quantum Monte

Carlo (QMC) [8]. A particular challenge for computational chemistry, and for our research

group, surrounds the examination of noncovalent interactions. Although these interactions

are known as “weak” with a typical strength of the order of 1 kcal/mol, it has been shown

that they can reach 100 kcal/mol and even more for large supramolecular complexes [9].

The omnipresent character of noncovalent interactions makes them a significant subject

of study, hence their accurate investigation and understanding is crucial for explaining a

vast variety of phenomena in chemistry, physics, biology, as well as materials science. All

noncovalent interactions are composed of the same four basic components: electrostatics,
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exchange-repulsion, induction, and dispersion. Although each of them is of high impor-

tance, this research is narrowed down to the most ubiquitous forces in nature and at the

same time the most demanding ones to compute, dispersion forces.

The London dispersion forces are a special type of van der Waals interaction, which

arise from the interaction between the instantaneous multipole moments of fluctuating

charge distributions. They were described for the first time by Eisenschitz and London in

1930 [10], and this work turned out to be a breakout in the study of intermolecular interac-

tions. The dispersion force explained the mysterious origin of the attraction between noble

gas atoms. London’s mathematical description of the dispersion interaction between two

atoms (A and B) is based on a straightforward application of second-order perturbation

theory, where the Coulomb interaction is treated with a multipole expansion [11]:

Edisp =
(
− 3

2

IAIB
IA + IB

αAαB

)
1

R6
= −C6

R6
, (1.1)

where IA and IB are the first ionization potentials of atoms A and B, respectively, αA, αB

are the dipole polarizabilities, and C6 is a van der Waals coefficient. It has been believed

for a long time that dispersion is only a long range effect, which according to Eq. 1.1

decays like R−6, however, recent studies proved that dispersion needs to be taken with

special care also at short and intermediate distances [12], including the repulsive part of

the potential.

It is fascinating what an important role dispersion interactions play in our world.

The fundamental example is a gecko which, thanks to purely dispersion-driven nonco-

valent interactions, has an ability to climb up smooth vertical surfaces, even flat glass

[13]. In ultracold physics and chemistry, long-range dispersion interactions are essential

2



for low-energy and low-temperature collisions between atoms and molecules [14]. In bio-

chemistry, they are responsible for the formation of the helical structure of some proteins

and stabilization of the DNA double helix [15]. In chemistry, dispersion explains, among

others, the different boiling points of alkanes, the greater stability of branched over linear

alkanes [16], and the stability of singly bonded diamondoid dimers [17]. It also constitutes

a significant control component for reactivity and catalysis, especially in the case of larger

molecules [18]. Such a broad spectrum of applications justifies the need for accurate dis-

persion models. However, from a computational point of view, this is a formidable task.

The difficulty lies in the fact that dispersion interactions are purely quantum mechanical

phenomena, originating from the correlated motion of electrons. Therefore, they are par-

ticularly demanding for electronic structure theory, and very often we need to reach for

sophisticated wavefunction-based quantum chemistry methods, such as coupled-cluster

singles and doubles with perturbative inclusion of triples (CCSD(T)) [19] or symmetry

adapted perturbation theory (SAPT) [20, 21] . While these methodologies are reliable at

capturing dispersion, their unfavorable scaling with respect to the system size prevents

their application for large molecular systems. It seems that there are a few ways to avoid

this obstacle. A very popular approach of reducing the complexity of current algorithms is

simply introducing approximations. Another way of cutting the computational expense is

achieved by applying parallel computing techniques, which allow for utilization of modern

computational resources, such as computers with distributed memory equipped with many

CPUs and GPUs. Thanks to these advances, the calculations of interaction energies with a

spectroscopic accuracy, that is, accuracy of 1 cm−1, has become feasible for systems with a

few atoms. In order to attain such an accuracy, one needs to go beyond the “gold standard”
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of noncovalent interactions (CCSD(T) converged to the complete basis set (CBS) limit),

and include higher-order coupled-cluster excitations, core correlation, relativistic effects,

and the effects beyond the Born-Oppenheimer approximation. Such an approach is in fact

very expensive, but turns out to be essential for studies of dispersion bound systems in

terms of theoretical as well as experimental aspects, and more details will be discussed in

Chapter 2.

In recent years, we have observed a considerable growth in demand for the accurate

benchmark interaction energies of noncovalent complexes including the construction and

applications of sets (databases). They are of great importance for creating and testing

more approximate methods, such as density functional theory (DFT) [22], semiempirical

methods [23], or machine learning (ML) [24]. The requirement for a well constructed

database of noncovalent interactions is to be unbiased, and it can be achieved by taking

into the account following factors: radial diversity, angular diversity, and interaction type

diversity [25]. The classification of types of interactions usually goes beyond the chemical

intuition, so that SAPT comes in handy and allows one to decompose energy into funda-

mental forces. Moreover, ternary diagrams are a valuable help for representing the degree

of diversity in a benchmark database [4].

Having these tools in mind, let us turn our attention towards density functional theory

(DFT). This method is broadly used across different computational fields due to its at-

tractive low scaling. Thus, it is utilized for calculations when conventional wavefunction

methods prove too expensive. Nevertheless, the local or semilocal character of conven-

tional DFT leads to a neglect of the long-range correlation, which captures attractive van

der Waals forces. The quest to incorporate dispersion interactions into DFT has become

4



one of the hottest topics in computational chemistry and several approaches have been pro-

posed to date, with the most successful being “DFT plus atom-atom dispersion” (DFT-D3

and its successor DFT-D4) [2, 22]. While DFT-D3/DFT-D4 works effectively at medium

and large intermolecular distances, there is still some room for improvement at short dis-

tances. This aspect will be presented in detail in Chapter 3.

This work is structured as follows: In Chapter 2 we review the standard ab initio

methods and describe the strategy for calculating noncovalent interactions. Chapter 3 elu-

cidates the importance of the highest levels of ab initio electronic structure theory for some

dispersion dominated complexes, such as: CO–CO, N2–N2, and CO–N2. In Chapter 4, we

present new forms of damping functions for the D3 atom-pairwise dispersion correction

by Grimme [2]: a linear combination of error functions and a piecewise-linear function.

Moreover, we show the possibility of designing a damped dispersion function without

higher thanC6 dispersion coefficients. Last but not least, in Chapter 5 a novel development

in SAPT is presented - explicitly correlated dispersion E
(20)
disp-F12 and exchange dispersion

energies E
(20)
exch−disp-F12. We implement and investigate three Ansätze: fixed, optimized

diagonal and fully optimized, for the dispersion amplitudes. Their comparison leads to the

deduction of the most accurate and the most computationally efficient approach. We also

present the comparison ofE(20)
disp-F12 andE(20)

exch−disp-F12 with the SAPT-F12(MP2) method

[26]. In order to speed up the calculations, the density fitting approximation [27, 28, 29]

was introduced, which gave rise to DF-E(20)
disp-F12 and DF-E(20)

exch−disp-F12.
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Chapter 2

Electronic Structure Theory

2.1 The Electronic Schrödinger Equation

The heart of electronic structure methods is solving the famous non-relativistic time-

independent Schrödinger Equation, which takes the form [30, 31]:

ĤΨ = EΨ, (2.1)

where Ĥ is the Hamiltonian operator for a molecular system consisting of M nuclei and

N electrons and Ψ is the wavefunction. The wavefunction is a function which depends on

3N spatial coordinates ri and N spin coordinates of the electrons σi, being collectively

termed xi, and the 3M spatial coordinates of the nuclei RI :

Ψ ≡ Ψ(x1, x2, ..., xN , R1, R2, ..., RM), (2.2)
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Ĥ is a differential operator which represents the total energy (expressed using atomic

units):

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

(2.3)

Here, MA is the ratio of the mass of nucleus A to the mass of the electron, and ZA is

the atomic number of nucleus A. The first two terms describe the kinetic energy of the

electrons and nuclei, respectively, where the Laplacian operator ∇2
p is defined as a sum of

differential operators (in Cartesian coordinates):

∇2
p =

∂2

∂x2p
+

∂2

∂y2p
+

∂2

∂z2p
. (2.4)

The remaining terms correspond to the attractive electrostatic interaction between the nu-

clei and the electrons and the repulsive potential due to the electron-electron and nucleus-

nucleus interactions, respectively. rij , riA, and rAB are the distances between electron i

and electron j, electron i and nucleus A, and nucleus A and nucleus B, respectively.

The importance of the Schrödinger equation lies in the fact that it describes the motion

and interaction of all electrons and nuclei in a molecule. However, solving it analytically

for systems containing more than one electron becomes mathematically unfeasible. In

order to make the problem easier, the Born-Oppenheimer approximation [32] is applied,

where only the motion of electrons is taken into account since nuclei are much heavier

than electrons, and consequently move at a much slower rate. This approximation leads to

a separation of the wavefunction and Hamiltonian in terms of the electronic and nuclear
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parts. The electronic part explicitly depends on the electronic coordinates r and paramet-

rically dependents on the nuclear coordinates R. Therefore, the complexity of solving the

Schrödinger equation is reduced, yielding a simplified Hamiltonian, known as the elec-

tronic Hamiltonian, given by:

Ĥelec = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
(2.5)

for which the kinetic energy of the nuclei is omitted, and the nuclear-nuclear repulsion

contribution is constant. Nevertheless, even within this framework, solving the time-

independent Schrödinger equation is still intractable, so that many schemes, called quantum-

chemical methods or ab initio methods, have been developed to find approximate numeri-

cal solutions, and the most popular of them will be presented in the following sections.

2.2 Hartree-Fock Method

The first, simplest ab initio method that the quantum chemist would think about to solve

the time-independent Schrödinger equation is the Hartree-Fock (HF) method. It is the cor-

nerstone for more advanced electronic structure methods which describe a many-electron

system more accurately. The Hartree-Fock method simplifies the many-body problem of

the Schrödinger equation by transforming it into a one-body problem where each electron

only interacts with a mean field created by the other electrons. The total wave function

for an N -electron system is made up of the spin orbitals (functions of the coordinates of a

single electron) as a Slater determinant [33]:
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Ψ0(x1, x2, ..xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) . . . χN(x1)

χ1(x2) χ2(x2) . . . χN(x2)

...
...

...

χ1(xN) χ2(xN) . . . χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.6)

The desired feature of the above expression for the wavefunction is that it satisfies the

Pauli exclusion principle for fermions, as well as it enforces the antisymmetry when any

two fermions are exchanged, that is Ψ0(x1, x2) = −Ψ0(x2, x1). The combination of a

Slater determinant with the electronic Hamiltonian leads to the energy expression for the

system which can be written in terms of sums over occupied spinorbitals i and j as:

EHF = 〈Ψ0|Ĥ|Ψ0〉 =
∑
i

〈i|h|i〉+
1

2

∑
ij

〈ij||ij〉. (2.7)

The first term on the r.h.s of Eq. 2.7 is the core part integral and the second term is a

compact notation for the Coulomb and exchange integrals, defined respectively:

〈i|h|j〉 =
∫
χ∗i (x1)h(r1)χj(x1)dx1 (2.8)

〈ij||ij〉 = 〈ij|ij〉 − 〈ij|ji〉

=
∫
χ∗i (x1)χ

∗
j(x2)r

−1
12 χi(x1)χj(x2)dx1dx2

−
∫
χ∗i (x1)χ

∗
j(x2)r

−1
12 χj(x1)χi(x2)dx1dx2. (2.9)
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Now, it can be shown that minimizing Eq. 2.7 with respect to the HF wave function Ψ0,

under the constraint that the spin orbitals are orthonormal, we obtain the set of spin orbitals

which are the solution of the following integral-differential equations, the Hartree-Fock

equations:

Fχi = εiχi. (2.10)

Here, F is the Fock operator, χi is the i-th canonical spin orbital and εi is the corresponding

orbital energy. The Fock operator is defined as:

F (1) = h(1) + J(1)−K(1). (2.11)

The h(1) is the core-Hamiltonian being a sum of the one-electron kinetic energy operator

and the electron-nuclear attraction operator:

h(1) = −1

2
∇2

1 −
∑
A

ZA
r1A

. (2.12)

The Coulomb J(1) and exchange operators K(1), when acting on spin orbital i containing

electron 1 are given by:

J(1)χi(1) =
∑
j

∫
χ∗j(2)χj(2)r−112 χi(1)dx2 (2.13)

K(1)χi(1) =
∑
j

∫
χ∗j(2)χi(2)r−112 χj(1)dx2. (2.14)

The Coulomb operator can be viewed as the classical Coulomb repulsion that the electron

number 2 occupying orbital χj is impacting on the electron number 1 in the orbital χi while
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the exchange operator does not have a classical interpretation and is the consequence of

the antisymmetry of the N -electron wave function (Slater determinant). In order to make

the Hartree-Fock equations applicable to calculations for molecules, and at the same time

tractable for computational implementation, they need to be converted to a problem of

linear algebra. To do that, a basis set is introduced. Specifically, orbitals are expanded

as linear combinations of a set of K known functions Φµ, the basis functions, with some

coefficients Cµi:

χi(~r) =
K∑
µ=1

CµiΦµ(~r), (2.15)

and subsequently introduced into Eq. 2.10. This leads to a generalized eigenvalue prob-

lem, so called the Hartree-Fock-Roothaan equation [34], which can be expressed in the

matrix form as:

FC = SCε, (2.16)

where F is denoted as the Fock matrix, S = 〈i|j〉 is the overlap matrix, C is the M ×M

matrix of molecular orbital (MO) coefficients, and ε are the energy eigenvalues.

The number of basis functions employed in calculations is usually significantly greater

than the number of occupied orbitals, hence the Hartree-Fock-Roothaan equations also

produce a set of unoccupied (or virtual) orbitals. These are useful for correlated wave-

function methods, discussed in the following section.
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2.3 Correlated Methods

The Hartree Fock method is called a mean-field theory, which implies that the electron-

electron interactions are not considered between all individual electron pairs, but rather

the ith electron is interacting with an averaged electrostatic potential created by the rest of

the electrons. The missing electron correlation energy is defined as the difference between

the exact (nonrelativistic) energy and the complete basis set Hartree-Fock energy [35]:

Ecorr = Eexact − E∞HF (2.17)

Even though the correlation energy accounts for only around 1% of the total electronic

energy, its inclusion is crucial for predicting many chemical properties.

2.3.1 Configuration Interaction Method

Configuration interaction (CI) [35] is conceptually the most straightforward and most in-

tuitive method to improve upon Hartree–Fock theory by adding a description of the corre-

lated motions of electrons. The idea behind this approach is to express the exact wave func-

tion as a linear combination of all possible Slater determinants constructed from molecular

spin orbitals as follows:

|ΨFCI〉 = c0|Φ0〉+
∑
ia

cai |Φa
i 〉+

∑
i<j
a<b

cabij |Φab
ij 〉+

∑
i<j<k
a<b<c

cabcijk |Φabc
ijk〉+ ..., (2.18)

where |Φ0〉 is the reference wave function (usually the Hartree-Fock Slater determinant);

|Φa
i 〉 refers to a singly excited determinant where one electron from occupied spin orbital
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i from the reference wavefunction is excited to a virtual spin orbital a, etc. up to N -

tuply excited determinants; c0, cai ,.. are expansion coefficients that are optimized with the

variational method (i.e. the minimization of the expectation value of the Hamiltonian with

the CI wavefunction). The accuracy of CI calculations depends on two factors: the level

of excitation and basis sets utilized for construction of excited determinants. In the case

when all possible excitations are taken into account and the complete basis set is applied,

the resulting FCI wave function is the exact solution of the Schrödinger equation within

the Born-Oppenheimer approximation. However, this situation is not achievable. Even the

application of FCI in a finite basis is restricted to rather small systems due to the number of

determinants needed for calculations, which grows like the following binomial function:

Ndet =

(
K

nα

)(
K

nβ

)
, (2.19)

where K is the number of orbitals, nα, and nβ are the number of alpha and beta electrons,

respectively. Therefore, truncated CI wave functions with finite basis sets are commonly

utilized in practice, leading to a hierarchy of CI methods such as: CI with single exci-

tations (CIS), CI with single and double excitations (CISD), CI with single, double, and

triple excitations (CISDT) and so forth. Nevertheless, it needs to be stressed that the

main limitations of truncated CI are the lack of size-consistency and size-extensivity. The

former means that the energy of a system composed of two non-interacting fragments is

not equal to the sum of the energies of two fragments from a truncated CI wave function

approach:

EA + EB 6= EAB(rAB =∞) (2.20)
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while the latter says that the correlation energy does not asymptotically grow linearly as

the number of particles grows.

2.3.2 Coupled-Cluster Method

Coupled-cluster (CC) [36, 37] is a broadly used algorithm for high level calculations which

was devised to be size-consistent and size-extensive even in a truncated form. Due to its

accuracy, very often, it becomes the method of choice for the investigation of molecular

electronic structure as well as for generating accurate benchmark interaction energies.

Thus, it plays a very important role not only in the realm of noncovalent interactions, where

the electron correlation needs to be treated with special care, but also in the development

of modern quantum chemistry methods. Before we embark on more details about CC

calculations which will be discussed in the next chapter, let us first turn our attention

to a theoretical aspect of the method. This framework attempts to reproduce the exact

wavefunction by an exponential expansion of a reference wavefunction (usually the HF

wavefunction):

|ΨCC〉 = eT̂ |Φ0〉, (2.21)

where T̂ is the cluster operator which controls the types of excitations that are taken into

account [38]:

T̂ = T̂1 + T̂2 + T̂3 + ... (2.22)

The practical calculations employ a truncated T̂ since the complexity of CC scales like

O(N2n+2), where N is the number of basis functions and n is the largest excitation level.

It leads to the class of CC methods such as CC with singles and doubles (CCSD), CC with
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singles, doubles, and triples (CCSDT) and so on. In this fashion, CCSD means that the

cluster operator is limited to single and double excitations:

T̂CCSD = T̂1 + T̂2 =
∑
i,a

tai |Φa
i 〉+

∑
i>j
a>b

tabij |Φab
ij 〉. (2.23)

Here, tai and tabij stand for the singles and doubles amplitudes, respectively, which are

the coefficients of the CCSD wavefunction. Unfortunately, the CCSD method is still not

precise enough for many applications, so that the inclusion of triple excitations is used

for achieving better accuracy. It motivates us to move to CCSDT, for which we pay a

high price since it scales likeO(N8). Alternatively, triple excitations can be approximated

perturbatively as in the CCSD(T) method [19], leading to a more attractive accuracy-to-

cost ratio with overall computational scaling ofO(N7). The CCSD(T) method is called the

“gold standard” of electronic structure methods, and, when combined with the complete

basis set (CBS), it provides highly accurate bond energies as well as molecular properties.

In the context of interaction energies, CCSD(T) usually performs as well as CCSDT due to

favorable error cancellation [39]. Nevertheless, we will see in Chapter 3 that going beyond

CCSD(T)/CBS and including higher order coupled-cluster excitations up to CCSDTQ is

necessary to precisely compute interaction energies between triply bound systems.

2.3.3 Many-Body Perturbation Theory

Perturbation theory is one of the mathematical tools which has been applied since early

quantum chemistry to find solutions to the time-independent Schrödinger equation which
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include a description of electron correlation. This approach provides a set of compre-

hensive expressions for generating a series of approximations to the exact energy E and

exact wave function Ψ. The commonly used technique of obtaining these formulas is the

Rayleigh-Schrödinger (RS) perturbation theory.

In the RS perturbation theory, the Hamiltonian is partitioned into two parts:

H(λ) = H0 + λV, (2.24)

where the eigenfunctions and eigenvalues for the zeroth-order Hamiltonian H0 are known,

and λ is a perturbation strength parameter from the range: 0 < λ ≤ 1. Moreover, the exact

wave function Ψ and energy E can each be expanded as the following infinite series:

Ψ = Ψ(0) + λΨ(1) + λ(2)Ψ2 + ... (2.25)

E = E0 + λE(1) + λ(2)E(2) + ... (2.26)

Once Eq. 2.25 and Eq. 2.26 are substituted into the Schrödinger equation, we can collect

terms that have the same power of λ which provides the n-th order Schrödinger equation:

H0Ψ
(n) + VΨ(n−1) =

n∑
k=0

E(k)Ψ(n−k). (2.27)

Finally, projecting the left side of the above formula onto Ψ(0), we get the desired expres-

sions for energies of different orders:

E(0) = 〈Ψ(0)|H0|Ψ(0)〉 (2.28)
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E(1) = 〈Ψ(0)|V |Ψ(0)〉 (2.29)

E(2) = 〈Ψ(0)|V |Ψ(1)〉 (2.30)

...

E(n) = 〈Ψ(0)|V |Ψ(n−1)〉. (2.31)

The perturbed first-order wave function is usually obtained by taking a linear combination

of the zeroth-order excited states that forms a complete set as:

Ψ(1) =
∑
n

c(1)n Ψ(0)
n , (2.32)

where c(1)n are to be determined coefficients.

The Møller-Plesset (MP) perturbation theory is a particular case of the RS perturba-

tion theory, where the zeroth-order Hamiltonian is the sum of the Fock operators:

H0 =
∑
i

F (i) (2.33)

and the perturbation is defined as follows:

V =
N∑
i<j

r−112 −
N∑
i

(J(i)−K(i)). (2.34)

As a result, the zeroth-order wave function is the Hartree-Fock wave function, and the

sum of the zeroth- and first-order energy is the Hartree-Fock energy, while higher order

corrections accounts for the electron correlation energy. In the case of the second-order
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Møller-Plesset perturbation theory, the first-order wave function is given by:

Ψ(1) =
1

4

∑
ijab

tijab|Ψab
ij 〉 (2.35)

and the second-order energy reads:

E(2) =
1

4

∑
ijab

|〈ij||ab〉|2

εi + εj − εa − εb
, (2.36)

where i and j are the occupied spin orbitals, a and b are the virtual (unoccupied) spin

orbitals. The quantities εi, εj , εa, and εb denote the corresponding HF orbital energies.

2.3.4 Symmetry-Adapted Perturbation Theory

Symmetry-adapted perturbation theory (SAPT) [20, 21] is a very powerful framework for

calculations of noncovalent interactions between molecules. The primary advantage of uti-

lizing SAPT is that it provides the interaction energy decomposed in terms of meaningful

quantities, such as: electrostatics, exchange-repulsion, induction, and London dispersion.

This proves to be an invaluable tool for investigating the physical origins for interactions

throughout chemistry.

In SAPT, we begin with unperturbed complexes (isolated monomers) and treat the

interaction energy as a small quantity resulting from the mutual perturbation of monomers

by the Coulombic intermonomer interactions. Therefore, the first step requires finding

exact solutions of the Schrödinger equation for isolated monomers A and B, respectively:

HXΨX = EXΨX , X = A,B, (2.37)
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whereHX , ΨX andEX stand for the Hamiltonian, wave function, and energy from monomer

X, respectively. Subsequently, we define the intermolecular perturbation V , that is a sum

of all Coulomb repulsions between the electrons of monomer A and B, the repulsions be-

tween the nuclei of A and B, all attractive interactions between the electrons of monomer

A and the nuclei of monomer B, and vice versa. Therefore, the Hamiltonian of the dimer

is split into contributions from each fragment and the interaction:

H(λ) = HA +HB + λV = H0 + λV. (2.38)

The unperturbed HamiltonianH0 has a solution in the form of the product of the individual

monomer wave functions: Ψ(0) = ΨAΨB, and the eigenenergy is E(0) = EA + EB. Once

the machinery of ordinary RS perturbation theory described in the previous subsection and

the partitioning of Hamiltonian from Eq. 2.38 are utilized (which is known as polarization

approximation) [40], we obtain the interaction energy expressed as follows:

Eint = E(λ = 1)− E(0) = E
(1)
pol + E

(2)
pol + ..., (2.39)

The first- and second-order corrections are of high importance since they include best

physically recognizable terms (electrostatics, induction as well as dispersion) and are given

by:

E
(1)
pol = 〈ΨAΨB|V|ΨAΨB〉 (2.40)

E
(2)
pol =

∑
m 6=0

|〈ΨAΨB|V |ΨA,mΨB〉|2

EA − EA,m

+
∑
n6=0

|〈ΨAΨB|V |ΨAΨB,n〉|2

EB − EB,n
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+
∑
m 6=0

∑
n6=0

|〈ΨAΨB|V |ΨA,mΨB,n〉|2

EA + EB − EA,m − EB,n

, (2.41)

where the three consecutive sums represent E(2)
ind,B→A, E(2)

ind,A→B, and E(2)
disp, respectively.

Unfortunately, the conceptually simple polarization approximation is not fully practi-

cal and reliable because: 1) we rarely know the exact solutions of Eq. 2.37 for monomer A

and B, 2) the unperturbed wave function Ψ(0) does not satisfy the Pauli exclusion principle

when we swap two electrons between monomers. A natural way of circumventing the first

problem is by setting the zeroth-order Hamiltonian as:

H0 = FA + FB, (2.42)

where FX is the Fock operator of monomer X. The second limitation is fixed by the an-

tisymmetrizer operator A which, acting on the zeroth-order wave function Ψ(0) forces it

to be antisymmetric. Such a procedure gives rise to the so-called exchange corrections

in the perturbation series, which is required for a proper description of electron exchange

between the monomers. Currently, many-electron SAPT is a well-established theory pro-

viding some levels of approximations, starting from the simplest SAPT0 going up to the

highest, most accurate approach, SAPT2+3 [41]. In SAPT0, the interaction energy is

expressed as:

ESAPT0
int = E

(10)
elst +E

(10)
exch +E

(20)
ind,resp +E

(20)
exch−ind,resp +E

(20)
disp +E

(20)
exch−disp + ∆E

(2)
HF. (2.43)

The first two corrections on the right-hand side of the above formula represent the elec-

trostatic interaction energy of molecular charge distributions and the correction for the
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exchange energy. The E(20)
ind,resp and E(20)

exch−ind,resp terms are the induction energy, and its

exchange counterpart, which describe the mutual polarization of the monomers in the field

of their corresponding partners. These contributions are calculated including the relaxation

of monomer HF orbitals in response to the electrostatic potential of the other monomer.

It needs to be pointed out, that the response, denoted by subscript “resp”, is performed

by solving the coupled perturbed Hartree-Fock (CPHF) equations [42] for each monomer.

E
(20)
disp and E

(20)
exch−disp are the dispersion and exchange-dispersion energies, respectively,

which describe the correlated motion of electrons between the fragments. Finally, the

∆E
(2)
HF term approximately accounts for the third- and higher-order induction and exchange

induction effects via a supermolecular HF calculation:

∆E
(2)
HF = EHF

int − E
(10)
elst − E

(10)
exch − E

(20)
ind,resp − E

(20)
exch−ind,resp. (2.44)

Higher-order levels of SAPT are out of the scope of this dissertation, but the reader is

referred to [43].

2.3.5 Slow Convergence of Electron Correlation

Electronic structure methods described in the previous subsections suffer from the same

serious drawback, namely they show a slow convergence to the complete basis set limit

(CBS). The source of this issue originates from the inability of the wave function, which

is expressed by an expansion in orbital products, to describe the region where two elec-

trons approach each other (r12 → 0). Although some strategies to enhance the basis set

convergence have been proposed, such as the CBS extrapolation [44, 45] and/or midbond
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Figure 2.1: Helium ground state wave functions with both electrons confined at the circle
of radius 0.5 a0 calculated with the CI approach using increasing basis size with maximum
principal quantum number nmax. The figure comes from Ref. [1]

functions [46, 47, 48], the capture of the interelectronic cusp still remains a severe limita-

tion. In order to illustrate the problem, Fig. 2.1 shows the behavior of the CI wave function

calculated with different sizes of basis sets for helium with both electrons orbiting on a cir-

cle of the same radius. Once the basis set size is increased with the maximum principal

quantum number nmax, we approach the basis set limit, but this approach is incredibly

slow and does not reproduce the cusp created by the exact wavefunction. However, the

non-smoothness of the many-body wave function can be locally resolved by the cusp con-

dition proposed by Kato [49]:

∂Ψ

∂r12
|r12=0 =

1

2
Ψ(r12 = 0). (2.45)

22



The above formula implies that the exact wave function must be linear in the electronic

distance for small values of r12:

Ψexact(r1, r2) = Ψ(r1, r2)(1 +
1

2
r12 + ...) (2.46)

As we can see, the interelectronic distance r12 contribution needs to be included explicitly

in the wavefunction to speed up the basis set convergence of correlation energies. This

has been achieved in the explicitly correlated R12/F12 methods [50, 1, 51] which are the

subject of the next section.

2.3.6 Explicitly Correlated F12 methods

In recent years, the F12 explicitly correlated methods became mainstream of electronic

structure tools to calculate accurate ground-state energies [50], and they still flourish when

extended to multireference methods for systems with significant static correlation [52, 53].

In order to overcome the slow basis set convergence, explicitly correlated methods incor-

porate the r12 factor into the wavefunction, depending on the distances between electrons

i and j. This idea was originally proposed by Hylleraas [54] for helium and goes back

to 1927. Initially, such a concept leads to numerous complicated three- and four-electron

integrals, which became a major impediment in developing explicitly correlated methods

for many-electron systems. A conceptual breakthrough was achieved by Kutzelnigg who

devised a practical way of including r12-dependent terms into conventional quantum chem-

istry methods [55]. The success of his methodology hung on the resolution of identity (RI),

a technique which allows one to approximate many-electron integrals in terms of sums of

products of simpler two-electron integrals. This achievement gave rise to the R12 [56, 57]
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and later F12 [50, 1, 51] methods, being effectively adapted to the framework of second-

order perturbation theory [58, 59] as well as coupled-cluster theory [60, 61, 62, 63, 64].

Explicitly Correlated Second-Order Møller-Plesset Methods

The second order Møller-Plesset perturbation theory stands out among correlated wave

function methods as the least computationally involved one. This is the reason why nu-

merous significant developments of the F12 approaches have been applied to the MP2

method, leading to different variants of MP2-F12. The general concept of the MP2-F12

approach is based on the augmentation of the conventional wave function with the explic-

itly correlated term for each pair of electrons:

|Ψ〉 = tijab|Ψab
ij 〉+ tijklF

kl
αβ|Ψ

αβ
ij 〉 (2.47)

with

F kl
αβ = 〈kl|F̂12Q̂12|αβ〉. (2.48)

The i, j, k, l indicies are occupied orbitals; a, b are virtual orbitals; α, β are functions

from the complete orthonormal or RI basis. |Ψab
ij 〉 is a doubly excited determinant, tijab

and tijkl are conventional and explicitly correlated amplitudes, respectively, F̂12 ≡ f(r12)

is a suitable short-range correlation factor. F kl
αβ can be viewed as an internal contraction

which projects the full space of doubly excited configurations |Ψαβ
ij 〉 to the small set of

amplitudes tijkl. The Q̂12 operator ensures strong orthogonality of the explicitly correlated
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term to the reference function, and can be expressed as:

Q̂12 = (1− Q̂1)(1− Q̂2)(1− V̂1V̂2), (2.49)

where Q̂ = |i〉〈i| and V̂ = |a〉〈a| are one-electron projection operators onto the occupied

and unoccupied (virtual) spaces, respectively.

While in the early times of the R12 methods the correlation factor F̂12 was chosen

to be linear, it has been shown that the Slater-type exponential correlation factor [65]

drastically improves the accuracy of results. Several other forms of non-linear correlation

factors, such as: r12exp(−γr12), erfc(γr12), r12erfc(γr12) have been tested by Tew and

Klopper [66], showing superior results to the linear r12 one. Currently, the Slater-type

geminal is usually approximated with a linear combination of Gaussian-type geminals:

e−γr12 ≈
N∑
i

cie
−αir212 . (2.50)

The exponent γ is a length-scale parameter that accounts for the size of the correlation

hole, while ci and αi are coefficients determined in a least-squares manner.

The final MP2-F12 energy is the sum of the standard MP2 energy and the explicitly

correlated correction:

EMP2−F12 = EMP2 + EF12. (2.51)

The reader is referred to Refs. [1, 59] for the derivation of the working equations for

the F12 correction. However, it needs to be emphasized that during the evaluation of the

MP2-F12 energy, the set of intermediates (V , X , B, C) that occurs, gives rise to notorious
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three- and four-electron integrals, as mentioned at the beginning of this section. In order

to shed some light on this issue, let us consider the V intermediate as an example, whose

matrix elements are given by [1, 50]:

V kl
ij = 〈ij|r−112 Q̂12f(r12)|kl〉

= 〈ij|r−112 (1− Q̂1)(1− Q̂2)(1− V̂1V̂2)f(r12)|kl〉

= 〈ij|r−112 f(r12)|kl〉+
∑
mn

〈ij|r−112 |mn〉〈mn|f(r12)|kl〉

−
∑
ab

〈ij|r−112 |ab〉〈ab|f12|kl〉 − 〈ij|r−112 Q̂1f(r12)|kl〉

− 〈ij|r−112 Q̂2f(r12)|kl〉 (2.52)

In the expression above, the first three terms in the final r.h.s only require evaluation of

two-electron integrals, and although the correlation factor f(r12) appears, the complexity

of the new integrals is the same as for the standard Coulomb integrals. The last two terms

are problematic, yielding three-electron integrals:

〈ij|r−112 Q̂1f12|kl〉 =
∑
m

〈ijm|r−112 f(r23)|mlk〉 (2.53)

〈ij|r−112 Q̂2f12|kl〉 =
∑
m

〈ijm|r−112 f(r13)|kml〉. (2.54)

The main strategy to deal with these expensive integrals is to insert the resolution of iden-

tity (RI) [56, 58]:

1 ≈
∑
α

|α〉〈α|, (2.55)
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where α is the RI basis that approximates the complete basis set. Once Eq. 2.55 is plugged

into Eqs. 2.53, and 2.54, we get a desired product of two-electron integrals:

∑
m

〈ijm|r−112 f(r23)|mlk〉 =
∑
mα

〈ij|r−112 |mα〉〈mα|f(r12)|kl〉. (2.56)

The MP2-F12 methods have been used to compute energies of closed-shell and open-

shell systems [31,46,47] including weak intermolecular interaction energies [67, 68] as

well as molecular properties [69, 70]. Many benchmark calculations have proven that the

MP2-F12 calculations with triple-zeta basis sets produce better results than conventional

MP2 in pentuple-zeta basis sets.

Explicitly Correlated Coupled-Cluster Methods

The application of the F12 theory to the coupled cluster method turned out to be a much

more complicated problem. While the complete CCSD-F12 amplitude equations have

been derived and demonstrated [71, 72], they turned out to be too computationally de-

manding to be practical. As a result, many approximations to CCSD-F12 were devel-

oped. Generally, they are based on three ways of calculating F12 corrections for the basis

set incompleteness error: before, during, or after evaluating the energies and amplitudes.

The most common approach is to incorporate the F12 terms during the non-F12 calcula-

tions like in MP2-F12 [59]. Such an approach was subsequently employed to approximate

frozen geminal coupled-cluster singles and doubles variants such as: CCSD(F12) [60, 61],

CCSD-F12a [62, 63], CCSD-F12b [62, 63] , and CCSD(F12*)≡ CCSD-F12c [64]. A pos-

teriori F12 correction is achieved based on the second-order perturbation theory referred to

as CCSD-[2]R12 /[2]F12 [73, 74, 75]. Also, it became feasible to calculate an a priori F12
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correction where the Hamiltonian matrix elements of the parent method are dressed with

explicit correlation beforehand. This technique is known as the canonical transcorrelated

theory, and gave rise to F12-CCSD [76].

Moving on to the perturbative triples, the situation is very similar. The inclusion

of explicitly correlated terms for the (T) correction has been developed [77], however,

it is much more computationally demanding than conventional (T). The workaround is

to compute the (T) correction using the conventional CCSD(T) formula equipped with

converged CCSD-F12 singles and doubles amplitudes. Such an approach does not ensure

an improvement of (T) by the F12 treatment, so that a scaling of the triples contribution is

a common technique. The scaling factor may be taken as the ratio between the MP2-F12

and MP2 correlation energies like [63]:

∆E(T∗∗) = ∆E(T )E
MP2−F12
corr

EMP2
corr

, (2.57)

where ∆E(T ) = ECCSD(T )−F12−ECCSD−F12. Alternatively, the triples scaling factor can

be chosen as the ratio of the correlation energies from CCSD-F12b (or CCSD-F12c) and

conventional CCSD [78]:

∆E(Tbb) = ∆E(T )E
CCSD−F12b
corr

ECCSD
corr

. (2.58)

Different CCSD(T)-F12 flavors have been extensively tested on molecular energies

and properties [61, 64]. These studies confirm that explicitly correlated CCSD(T) at the

triple-zeta set level can provide more accurate energies than conventional CCSD(T) at the

quadruple-zeta level. Also, the performance of CCSD(T)-F12 has been benchmarked on
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weak intermolecular interaction energies [79, 80, 81, 82, 83, 84] and excellent results are

obtained for the valence-valence correlation.

2.3.7 Density Functional Theory

The quantum mechanical methods described in the previous sections are based on the elec-

tronic wavefunction that is a function of the coordinates of all electrons. This is the reason

why these methods are inherently computationally expensive. An alternative approach is

the density functional theory (DFT) [85], which attempts to solve the Schrödinger equa-

tion by replacing the complicated electron wave function of 3N variables by the electron

density distribution, that is a function of 3 spatial coordinates, defined as:

ρ(r) = N
∑

σ1=− 1
2
, 1
2

∫
dτ2dτ3...dτN |Ψ(r, σ1, r2, σ2, ....rN , σN)|2. (2.59)

In this way, we get ρ by carrying out the integration of |Ψ|2 over the coordinates (space

and spin) of all electrons except the one with coordinates r, σ1; in addition, we perform

the summation over its spin coordinate (σ1). It is worth noting that the definition of ρ is

independent of the label of the electron we do not integrate over. Therefore, ρ represents

the density of the electron cloud carrying N electrons, and the integration over the whole

space leads to the number of electrons:

∫
ρ(r)d3r = N. (2.60)
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Another important ingredient of DFT is the Hohenberg-Kohn theorem [86] which proved

that the exact ground-state energy of a molecule is a functional of the above defined elec-

tronic density:

E0 = EDFT [ρ]. (2.61)

The reader may draw a conclusion that DFT is an exact method. This is theoretically true,

but the issue lies in the fact that no one knows the expression for the exact functional.

However, the crucial point is that we can find the unique functional relationship between

the electron density and the Hamiltonian for a given system, so that all the properties of

the system can be parameterized through the electron density. Therefore, the energy can

be expanded as:

E0 = E[ρ] = T [ρ] + Vne[ρ] + J [ρ] + Exc[ρ], (2.62)

where T [ρ] is the kinetic energy of the non-interacting electrons, Vne[ρ] is the nuclear-

electron interaction, J [ρ] is the total Coulomb interaction energy. The last term Exc[ρ]

stands for the exchange-correlation energy and its role is to encompass the correction

to the kinetic energy deriving from the interacting nature of the electrons, and all non-

classical corrections to the electron-electron repulsion energy. The exact form of theExc[ρ]

functional is unknown, thus it became a subject of various approximations. The set of

existing functionals can be assigned to rungs of “Jacob’s ladder” proposed by Perdew

[87, 88], where each additional step is leading to higher accuracy. In this work, we will

use several standard functionals, such as: local density approximation (LDA), generalized

gradient approximation (GGA) functionals, and the hybrid XC functionals.
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The popularity of the DFT methods skyrocketed in chemistry over the last two decades

as a result of its favorable cost/accuracy ratio. Despite its wide range of applicability and

attractive scalability (O(N4)), this method cannot be termed as the “Holy Grail” of com-

putational chemistry since it fails in describing the long-range electronic effects that result

in the London dispersion forces. In order to overcome this limitation, numerous new ap-

proaches have been devised, allowing to combine the relatively low cost of DFT with, in

most cases, costless additive terms that include dispersion in an empirical way. Following

the schemes introduced in Refs. [3, 89], the dispersion treatment in DFT can be divided

into four levels of approximation:

• Ground level - The set of methods that are devised to improve DFT accuracy in

medium range, but do not take into account the correct long-range asymptotics of

dispersion energy. The most popular examples are the Minnesota density functionals

[90], and the dispersion-corrected atom-centered potentials (DCACPs) [91].

• Level I - Semi-empirical, pair-wise methods not taking into account the local chem-

ical environment. These methods employ the generalized London dispersion expan-

sion scaled by a damping function:

Edisp = −
∑
A>B

fdamp(RAB)
CAB

6

R6
AB

, (2.63)

where RAB is the interatomic distance, CAB
6 is a dispersion coefficient for atoms A

and B which is independent of the molecular environment (the same for all pairs

of atoms of the same types). The role of the damping function fdamp(RAB) is to
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recover the correct behavior of the potential at short and medium interatomic dis-

tances, i.e. it avoids singularity problems and the double-counting of correlation at

these distances. Examples of these methods are DFT-D and DFT-D2 proposed by

Grimme [92, 93], which simply add the dispersion contribution a posteriori to the

total DFT energy:

EDFT−D2 = EDFT + Edisp. (2.64)

• Level II - Approaches that add a dependence of the atom-atom asymptotic constants

on the environment. A few strategies have been utilized to capture the environmen-

tal dependence of the van der Waals coefficients, all of which exploit the concept

that the polarizability of an atom is proportional to its volume. Methods belong-

ing to this group are: DFT-D3 [2], DFT-D4 [22], the exchange-hole dipole moment

(XDM) method of Becke and Johnson [94, 95, 96], and the Tkatchenko-Scheffler

(TS) method [97].

• Level III - Long-range, non-local density functionals. This approach incorporates

the dispersion interactions into a typical local or semi-local exchange-correlation

functional:

Exc = EGGA
x + ELDA

c + Enl
c (2.65)

with the non-local correlation energy Enl
c computed as:

Enl
c =

∫ ∫
dr1dr2ρ(r1)φ(r1, r2)ρ(r2). (2.66)
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The best known examples at this step are the van der Waals density functionals

(vdW-DF, vdW-DF2) of Langreth, Lundqvist, and coworkers [98, 99], and the non-

local functionals of Vydrov and Van Voorhis (VV09, VV10) [100, 101].

• Level IV - Methods which go beyond the pairwise additive approximation and add

many-body dispersion terms. The classical examples at this step are the many-body

dispersion (MBD) [102] and the random-phase approximation (RPA) [103].

2.4 Calculations of Noncovalent Interactions

We can distinguish two fundamental approaches to calculating the interaction energy of

two given atoms or molecules: supermolecular and perturbative. In the former one, the

interaction energy for a two-body system (A and B) is defined as the difference between

the dimer’s energy and the sum of isolated monomers’ energies:

Eint = EAB − EA − EB. (2.67)

Among the most essential advantages of supermolecular calculations are their universal-

ity, conceptual simplicity and applicability at any distance between interacting molecules.

Although the utilization of the above formula seems to be simple, we have to keep in mind

that the interaction energy is typically 4-7 orders of magnitude smaller over the total en-

ergy of the dimer and monomers, and strong cancellation of errors is required to occur

due to the subtraction in the above equation. Thus, the methodology of the calculation of

interaction energy needs particular attention: for example, very small energy thresholds

(order of 10−10 hartree) are needed to recover the interaction energy with high accuracy
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at very long intermonomer separations. Another serious drawback of the supermolecular

method constitues the basis set superposition error (BSSE), which is the nonphysical and

artificial stabilization of the monomer energy in dimer calculations due to employing extra

basis functions from the interacting partner. On top of this, the result of the supermolecular

technique is just a single number representing the entire intermolecular interaction energy

that gives no physical insight into the nature of the interaction. Therefore, an alternative

method of calculating interaction energy has been proposed - the perturbation theory ap-

proach, e.g. SAPT, which provides a unique chance to better understand the details of the

interactions.

2.5 Counterpoise Correction (CP)

The BSSE mentioned above may be present in all calculations that are carried out in finite

basis sets and on more than one atom. The common procedure of removing this shortcom-

ing is by computing all energies in the same dimer basis set. This technique is known as

the counterpoise correction (CP) of Boys and Bernardi [104]:

Eint = EAB
AB − EAB

A − EAB
B (2.68)

The magnitude of the BSSE diminishes with the increase of the basis set and vanishes

completely in the infinite basis.
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2.6 Orbital and Auxiliary Basis Sets

A basis set is one of the key ingredients of quantum chemistry calculations, where the

molecular orbitals are constructed from atomic orbitals. In section 2.2 we said that the one-

electron molecular wavefunctions are expressed as linear combinations within a finite set

of basis functions. The form of these functions is dictated by the necessity of the evaluation

of non-trivial two-electron integrals. Therefore, in ab initio methods the Gaussian-type

orbitals (GTOs) are utilized:

Ψζnlm(r, θ, φ) = Nxlymzne−ζ(~r−
~RA)

2

, (2.69)

where the sum of l,m, and n determines the type of orbital (s, p, d,...),N is a normalization

contsant, and ζ is an exponent. Since these functions poorly describe the wave function

near the nucleus, the combination of multiple GTOs with different exponents is created to

form contracted orbitals:

Φµ =
L∑
i=1

diµΨi,ζiµ . (2.70)

Here, diµ denotes the expansion coefficient of the primitive Gaussian function Ψi with an

exponent ζiµ.

In this work, we will make extensive use of the Dunning correlation-consistent bases

aug-cc-pVXZ≡aXZ (X = D, T, Q, 5, 6) [105, 106]. These correlation-consistent bases
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were optimized for the systematic convergence of valence correlation energies with a con-

stant X−3 rate. Following this convergence pattern, we can compute the CBS-limit corre-

lation energy Ecorr
∞ by extrapolating the results in two consecutive-X basis sets Ecorr

X−1 and

Ecorr
X :

Ecorr
∞ = Ecorr

X +
(1− 1/X)3

1− (1− 1/X)3
(Ecorr

X − Ecorr
X−1). (2.71)

In addition to the orbital basis sets, the resolution of identity (RI) as well as density

fitting (DF) techniques require auxiliary basis sets, denoted by a prefix -RI (also called

-MP2FIT), and -JKFIT. They are specially optimized to represent quantities other than

orbitals, for example products of occupied orbitals in the case of DF sets designed for the

exchange integrals. Basis sets used in this dissertation are listed in Table 2.1.
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Table 2.1: List of basis sets utilized in the dissertation.

aug-cc-pVXZ
(X = D,T,Q,5,6)

Dunning’s family correlation consistent polarized valence
X-tuple zeta basis sets [105, 106]. These are basis op-
timized for systematic convergence of correlation ener-
gies. aug- stands for the augmentation by additional dif-
fuse functions such that anions, noncovalent interactions,
and excited states can be described more accurately.

aug-cc-pCVXZ
(X = D,T,Q,5,6)

Used for all-electron calculations describing valence, core-
core, and core-valence correlation [105].

aug-cc-pCVXZ-DK
(X = D,T,Q,5,6)

Used for relativistic effects [107].

aug-cc-pVXZ-JKFIT
(X = D,T,Q,5,6)

Weigend’s family auxiliary basis sets [108]. These are ba-
sis appropriate for fitting (oo|-type products.

aug-cc-pVXZ-MP2FIT
≡ aug-cc-pVXZ-RI
(X = D,T,Q,5,6)

Weigend’s family auxiliary basis sets [109]. These are ba-
sis appropriate for fitting (ov|-type products.

37



Chapter 3

Triple bonds and coupled-cluster convergence: CCSDTQ interaction energies for
complexes involving CO and N2

Noncovalent interaction energies are strongly dependent on the level of electron corre-

lation included in the calculations. Therefore, the “gold standard” of quantum chem-

istry, the coupled-cluster approach with single, double, and noniterative triple interactions

(CCSD(T)) [19], has been the method of choice for obtaining accurate interaction ener-

gies between small systems. If both monomers are well described by a single reference

formalism, the CCSD(T) interaction energies are typically accurate to within 1–2% as

long as the calculations have converged to the complete basis set (CBS) limit. However,

when spectroscopic (∼1 cm−1) or better accuracy is needed, in addition to converging the

CCSD(T) interaction energy to the CBS limit, one needs to consider the effects of electron

excitations beyond the CCSD(T) level.

The multi-system studies of Refs. [110, 7, 39, 111, 112, 113] have revealed two

classes of systems for which the post-CCSD(T) effects are particularly important. The

first class contains systems with four valence electrons: He–He [114], H2–H2 [115], and

He–H2 [116]. The post-CCSD(T) contribution for these systems often exceeds 3% of in-

teraction energy, however, it mainly comes from δT = CCSDT − CCSD(T), that is, the
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remaining quadruple excitations are modest. The second class comprises complexes in-

volving triply bound systems, for which even δQ = CCSDTQ−CCSDT(Q) constitutes a

significant contribution. The importance of the δQ interaction energy term was for the first

time emphasized by Boese [113] while studing CN−–H2O as well as HF–HCN, and sub-

sequently confirmed by Smith et al. for N2–N2 [111]. This importance can be explained

by the fact that triply bound systems require a full description of the π → π∗ excitations,

which can be achieved only by a method with quadruple excitations such as CCSDT(Q)

or, preferably, CCSDTQ. The work of Ref. [117] on the P2–P2 and PCCP–PCCP com-

plexes, performed at the CCSDT(Q) level, proves that the post-CCSD(T) corrections are

significant also for heavier atoms. Interesingly, the problems of the many-body perturba-

tion theory and coupled-cluster expansions for interactions between triply bonded systems

have been discovered much earlier. The landmark theoretical study on CO–CO by Rode

et. al [118], showed large differences between the fourth-order Møller-Plesset perturba-

tion theory (MP4) and CCSD(T) interaction energies for this system. These discrepancies

were adressed using some MP5 contributions which are not included in CCSD(T).

With the growth of computer power and advances in algorithms, we can revisit the

conclusions of Ref. [118] by examining the convergence of the post-CCSD(T) interac-

tion energy contributions for the carbon monoxide complex. An extension of the N2–N2

calculations of Ref. [111] to even higher basis sets is also warranted to provide the most

reliable post-CCSD(T) effects for this challenging system. In this chapter, we are going to

investigate nine characteristic points on the CO–CO, N2–N2, and CO–N2 potential energy

surfaces with the highest accuracy possible, within 1 cm−1. Some findings are presented

in Appendices A and B [119].
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3.1 Previous studies on CO–CO, N2–N2, and CO–N2

The CO–CO, N2–N2, and CO–N2 complexes are of high importance for spectroscopists,

thus they were a subject of a few potential energy surface studies. As stated above, the

CO–CO complex turned out to be especially difficult for theoretical investigations using

low-level electronic structure methods. The most accurate potential energy surface was

reported by Dawes et al. [120] and allowed the precise reproduction of experimental

rovibrational levels [120] and rotationally inelastic cross sections [121]. However, this

accomplishment can be attributed to error cancellation between the post-CCSD(T) effects

and the basis set incompleteness errors, and we will elaborate on this problem in Section

3.2.4.

Several ab initio N2 – N2 potential energy surfaces have been constructed in the lit-

erature [122, 123, 124, 125, 126, 127, 128, 129, 130] with the one by Hellmann [129]

attaining the highest accuracy so far. Hellmann’s calculations were based on the CCSD(T)

method using basis sets up to quintuple-zeta with bond functions. Subsequently, inter-

action energies were extrapolated to the CBS limit and supplemented with corrections

for core-core and core-valence correlations, relativistic effects, and higher coupled-cluster

levels up to CCSDT(Q) in the aug-cc-pVDZ basis set. Using such a level of theory, Hel-

mann reproduced the best experimental data for virial coefficients, viscosity, and thermal

conductivity of a dilute nitrogen gas. Nevertheless, he scaled δT+(Q) by a factor of 0.5 in

order to match experimental results. He suggested that this scaling accounted for the basis

set incompleteness effects of the δT+(Q)/aDZ results and the missing contribution from full

quadruple excitations.
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Interestingly, for a long time there were only a couple of ab initio studies on the

CO-N2 complex [131, 132] performed at low levels of accuracy. Nevertheless, in 2018,

three surfaces for this system were published, employing the following levels of theory:

CCSD(T)-F12b/aQZ [133], CCSD(T)/aQZ+(3s2p1d) [134], and CCSD(T)/aQZ

+(3s3p2d1f1g) [135], respectively. The potential proposed in Ref. [135] is in the best

agreement with the experimental rovibrational level data.

3.2 Results and Discussion

The key step of our study is the geometry optimization which allows one to find the most

stable structures on the potential energy surface, such as minima and transition states. Such

structures are called stationary points, where all first derivatives of the energy with respect

to geometrical coordinates are zero. Therefore, second derivatives need to be calculated in

order to determine the character of a stationary point. The matrix of second derivatives is

called Hessian and takes the form:

Hij =
∂2U

∂qi∂qj
. (3.1)

When all eigenvalues of the Hessian matrix are positive, we are at a minimum. One

negative eigenvalue indicates that we obtained a first-order saddle point. Maxima and

other saddle points have two or more negative eigenvalues and we do not investigate them.

We performed the geometry optimization by minimizing the CCSD(T)-F12b/aug-cc-

pV5Z interaction energy computed with the counterpoise (CP) correction for basis set

superposition error [104]. The C–O and N–N bond lengths were optimized separately at
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the CCSD(T)/aug-cc-pV5Z level. The resulting values of rCO = 2.137 bohr, and rNN =

2.078 bohr were kept in all calculations. For rigid monomers, the geometry of the CO–

CO, N2–N2, and CO–N2 complexes is defined by four variables: R, the distance between

the centres of mass of monomers, and the angles θA, θB, and φ. The angles θA and θB

are located between the vector R joining the centres of mass of the monomers (from A

to B, from CO to N2 in the CO–N2 case) and the vectors rA and rB pointing along the

molecular axes of monomers A and B, respectively (from the C atom to the O atom in

case of CO). The dihedral angle φ between two planes specified by the vectors (R, rA)

and (R, rB) ranges from −180◦ to +180◦.

We have located three nonequivalent stationary points on the CO–CO and CO–N2

potential energy surfaces and two on the N2–N2 one. An additional, highly symmetric

(D2h) N2–N2 structure is just a radial minimum (a maximum in the angular directions),

but we investigated it anyway. Importantly, each of the structures considered has at least

Cs symmetry which is crucial for the feasibility of the post-CCSD(T) calculations. The

resulting structures are presented in Fig. 3.1. The character of investigated points strongly

depends on the level of theory utilized for the geometry optimization, e.g. the T-shaped

and nearly T-shaped CO–N2 structures are saddle points when the no-CP CCSD(T)/aQZ

approach is utilized, whereas they are minima at the CP CCSD(T)/aQZ level. However,

the optimizations performed at the CP and noCP CCSD(T)-F12b/a5Z levels revealed that

in addition to the global minima for each system, there are two minima for the CO–CO

system with C2h and Cs symmetry, respectively. The remaining structures are the saddle

points.
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Figure 3.1: The stationary points on the CO–CO, N2–N2, and CO–N2 potential energy
surfaces considered in this work.

In order to attain the spectroscopic accuracy for the investigated systems, we use the

following composite scheme to compute the total interaction energy:

Eint = E
CCSD(T)/CBS
int + δT + δ(Q) + δQ + δcore + δrel, (3.2)

where the consecutive corrections to the frozen-core CCSD(T)/CBS interaction energy ac-

count for higher-order coupled-cluster excitations, core-core and core-valence correlation,

and relativistic effects.

3.2.1 CCSD(T) interaction energies

It is of high importance to examine how well the frozen-core (FC) CCSD(T) interaction

energy is converged to the CBS limit. Frozen-core means that only the valence elec-

trons are correlated in the post-HF calculations. In this work, all interaction energies

were calculated with the CP correction [104], and basis sets were selected from Dunning’s
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correlation-consistent sets cc-pVXZ≡XZ and aug-cc-pVXZ≡aXZ with X=D, T, Q, 5, 6

[105, 106]. We tested various basis sets (with and without midbond) and different ex-

plicitely correlated CCSD(T)-F12 variants in addition to conventional CCSD(T). Tables

3.1, 3.2, and 3.3 present interaction energies at the minima for the CO–CO, N2–N2, and

N2–CO complexes, respectively. The complete set of CCSD(T) and CCSD(T)-F12 in-

teraction energies for the remaining six structures can be found in Appendix A (Tables

SI–SVI).

In all cases, the interaction energy converges smoothly with respect to the increasing

cardinal number of the basis set. The inclusion of midbond functions significantly speeds

up the convergence, and we already get better results in aQZ+midbond than in a6Z with-

out midbond functions. In the next step, we examined the performance of the F12 meth-

ods. These methods are designed to eliminate the issue with slow basis set convergence

[50, 1, 51]. Due to technical aspects which were described in Chapter 2 (section on explic-

itly correlated methods), CCSD(T)-F12 lacks true F12 triple contributions. In this work,

in order to approximate the explicitly correlated perturbative triples, the scaling technique

was utilized based on Eq. 2.57. The double star notation in Eq. 2.57 denotes that we scale

the dimer and monomer (T) terms by the same (dimer) factor. If the scaling factor is spec-

ified separately for each CP calculation, the resulting interaction energy is not guaranteed

to be size consistent [79, 78]. The CCSD(T)-F12 explicitly correlated method in its vari-

ous approximate variants has a remarkably beneficial influence on the accuracy of the aDZ

and aTZ interaction energies compared to conventional CCSD(T) [79, 80, 81, 82, 83, 84].

This efect is less visible in larger basis sets. Without scaling, the F12a approach is superior

to the less approximate F12b one, which is a consequence of error cancellation between
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Table 3.1: CCSD(T) and CCSD(T)-F12 interaction energies (in cm−1) for the global min-
imum (C2h) geometry of the CO dimer, Fig. 3.1. The extrapolated value (rows “ext.”) in
the X column is computed using interaction energies in bases a(X-1)Z and aXZ. The letter
M in the basis set stands for the hydrogenic set of midbond functions from the same aXZ
basis.

X
method D T Q 5 6
CCSD(T)/aXZ -104.79 -119.64 -127.27 -130.38 -131.63
ext. -127.67 -132.27 -133.13 -133.35
CCSD(T)/aXZM -116.31 -129.72 -132.03 -132.62 -132.83
ext. -135.64 -133.45 -133.17 -133.11
CCSD(T)-F12a/aXZ -125.20 -130.75 -132.33 -132.88 -133.10
ext. -133.20 -133.50 -133.43 -133.38
CCSD(T**)-F12a/aXZ -134.04 -134.27 -134.00 -133.78 -133.65
ext. -134.50 -133.81 -133.53 -133.45
CCSD(T)-F12b/aXZ -119.05 -128.10 -131.01 -132.10 -132.58
ext. -132.04 -133.16 -133.21 -133.22
CCSD(T**)-F12b/aXZ -127.88 -131.63 -132.68 -133.00 -133.13
ext. -133.33 -133.46 -133.32 -133.29
CCSD(T)-F12a/aXZM -127.68 -133.17 -133.40 -133.30
ext. -135.41 -133.61 -133.21
CCSD(T**)-F12a/aXZM -137.24 -136.83 -135.08 -134.20
ext. -136.59 -133.85 -133.29
CCSD(T)-F12b/aXZM -122.12 -131.04 -132.49 -132.82
ext. -134.73 -133.60 -133.19
CCSD(T**)-F12b/aXZM -131.68 -134.70 -134.17 -133.73
ext. -135.91 -133.84 -133.27

the CCSD part and the triples part [83]. When the (T**) scaling of triples is applied, the

CCSD(T)-F12b results are improved, but the CCSD(T)-F12a ones are overestimated. The

addition of midbond functions only slightly improves the CCSD(T)-F12 convergence for

all variants. Since we utilized Dunning’s correlation consistent basis sets, the X−3 extrap-

olation technique was applied based on Eq. 2.71. The extrapolation clearly improves the
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Table 3.2: CCSD(T) and CCSD(T)-F12 interaction energies (in cm−1) for the global min-
imum (C2h) geometry of the N2 dimer, Fig. 3.1. The extrapolated value (rows “ext.”) in
the X column is computed using interaction energies in bases a(X-1)Z and aXZ. The letter
M in the basis set stands for the hydrogenic set of midbond functions from the same aXZ
basis.

X
method D T Q 5 6
CCSD(T)/aXZ -80.50 -97.56 -102.68 -105.05 -106.59
ext. -104.54 -106.50 -107.30 -108.64
CCSD(T)/aXZM -94.35 -105.47 -107.36 -107.70 -107.88
ext. -109.97 -108.71 -108.09 -108.13
CCSD(T)-F12a/aXZ -109.45 -108.39 -107.68 -107.83 -108.01
ext. -108.02 -107.25 -107.98 -108.26
CCSD(T**)-F12a/aXZ -116.64 -111.11 -108.95 -108.51 -108.43
ext. -108.86 -107.47 -108.04 -108.32
CCSD(T)-F12b/aXZ -101.79 -105.50 -106.33 -107.06 -107.53
ext. -107.15 -107.03 -107.81 -108.18
CCSD(T**)-F12b/aXZ -108.97 -108.22 -107.60 -107.75 -107.95
ext. -107.99 -107.25 -107.88 -108.24
CCSD(T)-F12a/aXZM -105.80 -107.91 -108.43 -108.31
ext. -108.97 -108.80 -108.18
CCSD(T**)-F12a/aXZM -113.59 -110.71 -109.71 -108.99
ext. -109.67 -108.97 -108.23
CCSD(T)-F12b/aXZM -99.18 -105.72 -107.51 -107.83
ext. -108.65 -108.81 -108.16
CCSD(T**)-F12b/aXZM -106.96 -108.52 -108.79 -108.51
ext. -109.35 -108.98 -108.21

convergence of both CCSD(T) and CCSD(T)-F12 interaction energies for all structures. It

is worth noting that the CBS extrapolation brings the four different CCSD(T)-F12 variants

much closer together. The CCSD(T**)-F12b/(a5Z, a6Z) result has the lowest uncertainty,

so it was selected as the leading FC term E
CCSD(T )/CBS
int for the total interaction energy,

Eq. 3.2.
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Table 3.3: CCSD(T) and CCSD(T)-F12 interaction energies (in cm−1) for the global min-
imum geometry of the CO–N2 complex, Fig. 3.1. The extrapolated value (rows “ext.”) in
the X column is computed using interaction energies in bases a(X-1)Z and aXZ. The letter
M in the basis set stands for the hydrogenic set of midbond functions from the same aXZ
basis.

X
method D T Q 5 6
CCSD(T)/aXZ -90.82 -107.59 -113.85 -116.32 -117.60
ext. -114.64 -118.18 -118.40 -119.32
CCSD(T)/aXZM -101.50 -115.90 -118.02 -118.51 -118.71
ext. -120.59 -119.41 -118.96 -118.98
CCSD(T)-F12a/aXZ -116.04 -118.79 -118.58 -118.78 -118.93
ext. -120.02 -118.50 -118.96 -119.13
CCSD(T**)-F12a/aXZ -123.27 -121.58 -119.88 -119.48 -119.36
ext. -120.94 -118.73 -119.03 -119.19
CCSD(T)-F12b/aXZ -110.36 -116.43 -117.44 -118.12 -118.51
ext. -119.07 -118.26 -118.81 -119.03
CCSD(T**)-F12b/aXZ -117.59 -119.22 -118.75 -118.82 -118.94
ext. -119.99 -118.49 -118.88 -119.09
CCSD(T)-F12a/aXZM -115.44 -119.21 -119.30 -119.17
ext. -120.56 -119.38 -119.04
CCSD(T**)-F12a/aXZM -123.27 -122.10 -120.62 -119.87
ext. -121.36 -119.56 -119.10
CCSD(T)-F12b/aXZM -110.08 -117.31 -118.48 -118.74
ext. -120.10 -119.35 -119.02
CCSD(T**)-F12b/aXZM -117.91 -120.19 -119.79 -119.44
ext. -120.90 -119.52 -119.08

3.2.2 Higher-order Coupled-Cluster Corrections

The post-CCSD(T) corrections are the most expensive step since they require running

the CCSDT, CCSDT(Q) and CCSDTQ methods, which scale like O(N8), O(N9), and

O(N10), respectively. Thus, point group symmetry plays an important role in these cal-

culations. For the C2h and C2v structures, including the CO–CO global minimum and the
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N2–N2 stationary points, we were able to run CCSDT, CCSDT(Q), and CCSDTQ in bases

as large as aQZ, aTZ, and aDZ, respectively. Due to the lower symmetry of CO–N2 (Cs),

the CCSDTQ calculations were performed in smaller basis sets DZ and 6-31G*(0.25)

[136]. The particularly high D2h symmetry of the N2–N2 rectangular configuration al-

lows for calculations in somewhat larger bases than for all other structures, specifically,

CCSDT/5Z and CCSDT(Q)/QZ. Tables 3.4, 3.5, and 3.6 present the post-CCSD(T) in-

teraction energy contributions for CO–CO, N2–N2, and N2–CO, respectively. Table 3.4

shows that higher-order coupled-cluster corrections are especially significant for the car-

bon monoxide dimer.
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Table 3.4: Post-CCSD(T) interaction energy contributions for the CO–CO dimer (in
cm−1). The core and relativistic corrections used the aug-cc-pCVXZ and aug-cc-pCVXZ-
DK bases, respectively.

basis E
CCSD(T)
int δT δ(Q) δQ δcore δrel

Global minimum (C2h)
6-31G*(0.25) -105.79 -5.54 0.36 -1.25
aDZ -104.79 -2.91 -1.93 -0.67 -0.26 0.18
aTZ -119.64 -1.99 -2.56 -0.46 0.18
aQZ -127.27 -1.54 -0.53 0.19
a5Z -130.38 -0.53 0.20
DZ -61.99 -3.11 0.25 -1.01
TZ -86.33 -1.80 -1.17
QZ -107.24 -1.52

Local minimum 1 (C2h)
6-31G*(0.25) -85.61 8.28 -1.14 1.08
aDZ -83.24 5.38 -1.37 0.64 -0.22 0.20
aTZ -110.22 6.06 -2.58 -0.11 0.20
aQZ -117.37 6.14 0.14 0.20
a5Z -120.83 0.20 0.20
DZ -8.53 5.70 -0.88 0.98
TZ -52.80 5.71 -1.71
QZ -85.73 5.97

Local minimum 2 (Cs)
6-31G*(0.25) -101.66 5.19 -1.85 0.81
aDZ -90.32 3.79 -2.34 -0.22 0.18
aTZ -110.53 4.05 -3.08 -0.14 0.18
aQZ -117.10 4.18 0.02 0.19
a5Z -120.26 0.07 0.19
DZ -37.50 3.89 -1.57 0.78
TZ -67.28 3.96 -2.29
QZ -91.47 4.13
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Table 3.5: Post-CCSD(T) interaction energy contributions for the N2–N2 dimer (in cm−1).
The core and relativistic corrections used the aug-cc-pCVXZ and aug-cc-pCVXZ-DK
bases, respectively.

basis E
CCSD(T)
int δT δ(Q) δQ δcore δrel

Global minimum (C2h)
6-31G*(0.25) -86.16 2.39 -4.32 1.43
aDZ -80.50 2.74 -4.72 1.31 -0.20 0.09
aTZ -97.56 3.49 -5.30 -0.24 0.12
aQZ -102.68 3.73 -0.21 0.13
a5Z -105.05 -0.19 0.13
DZ -41.22 1.90 -2.80 0.86
TZ -62.86 3.09 -3.91
QZ -80.55 3.53

Saddle point (C2v)
6-31G*(0.25) -74.56 2.11 -4.20 1.11
aDZ -76.12 2.35 -4.21 1.13 -0.21 0.14
aTZ -93.48 2.99 -4.77 -0.30 0.16
aQZ -98.26 3.20 -0.27 0.17
a5Z -100.05 -0.26 0.17
DZ -39.88 1.74 -2.65 0.73
TZ -61.30 2.73 -3.59
QZ -77.67 3.06

Rectangular configuration (D2h)
6-31G*(0.25) -48.47 2.01 -3.34 1.46
aDZ -45.83 2.45 -3.82 1.19 -0.17 -0.14
aTZ -67.63 3.50 -4.73 -0.05 -0.13
aQZ -71.99 3.80 0.03 -0.12
a5Z -74.92 0.06 -0.12
DZ 18.42 1.74 -2.15 0.91
TZ -19.88 2.94 -3.21
QZ -44.82 3.49 -4.06
5Z -58.11 3.76
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Table 3.6: Post-CCSD(T) interaction energy contributions for the CO–N2 dimer (in cm−1).
The core and relativistic corrections used the aug-cc-pCVXZ and aug-cc-pCVXZ-DK
bases, respectively.

basis E
CCSD(T)
int δT δ(Q) δQ δcore δrel

Global minimum (Cs)
6-31G*(0.25) -95.33 1.02 -2.46 0.78
aDZ -90.82 1.39 -3.33 -0.22 0.18
aTZ -107.59 1.95 -3.94 -0.28 0.19
aQZ -113.85 2.18 -0.25 0.20
a5Z -116.32 -0.23 0.20
DZ -57.07 1.20 -1.81 0.57
TZ -77.59 1.88 -2.80
QZ -94.92 2.11

Near T-shaped Saddle point 1, C points towards N2 (Cs)
6-31G*(0.25) -78.43 2.76 -3.84 1.15
aDZ -84.79 2.66 -4.53 -0.23 0.16
aTZ -97.73 3.02 -4.94 -0.38 0.17
aQZ -102.87 3.20 -0.43 0.18
a5Z -105.05 -0.43 0.18
DZ -39.80 2.39 -3.01 0.91
TZ -61.69 2.95 -3.74
QZ -81.75 3.12

T-shaped Saddle point 2, O points towards N2 (C2v)
6-31G*(0.25) -79.96 -0.58 -0.83 -0.28
aDZ -76.14 0.32 -1.46 -0.20 -0.23 0.15
aTZ -97.76 1.46 -2.19 -0.25 0.16
aQZ -102.50 1.76 -0.12 0.17
a5Z -105.00 -0.08 0.17
DZ -24.91 -0.27 0.00 -0.38
TZ -53.91 1.02 -1.13
QZ -76.52 1.58
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For the global minimum, δT and δ(Q) are of the same sign and add up to 3.0% of the

CCSD(T)/CBS value while for the remaining two stationary points δT and δ(Q) partially

cancel each other. One needs to point out the importance of the full-quadruples correc-

tion δQ which, in the largest basis set feasible, amounts to 0.5% of the CCSD(T)/CBS

interaction energy, can be of either sign, and should not be neglected in calculations of

spectroscopic accuracy.

Considering the N2–N2 system, δ(Q) provides the biggest post-CCSD(T) contribution

to total interaction energy for all three structures presented in Table 3.5. Hovewer, about

two thirds of δ(Q) are cancelled by δT. Again, we need to emphasize the importance of

the full quadruples contribution which turns out to be even more significant than for the

CO–CO complex, amounting to slightly over 1% of the CCSD(T)/CBS interaction energy

[111]. In the case of the CO–N2 complex, δ(Q) is the biggest post-CCSD(T) interaction

energy contribution although we again observe some cancellation between δT and δ(Q).

The δQ value is still significant for this system, but varies in sign.

3.2.3 Core-core and Core-valence Correlation, Relativistic, and DBOC Effects

In order to obtain the highest-accuracy interaction energies possible, we also investigated

the core-core and core-valence correlation correction δcore, as well as relativistic effects,

δrel. The δcore correction was computed as the difference between the all-electron (AE) and

FC conventional (non-F12) CCSD(T) interaction energies. In this case, we utilized aug-cc-

pCVXZ (aCXZ) [105] basis sets, which are Dunning-type sets specially designed for the

correct treatment of core electrons. The relativistic effects were estimated employing the

second-order Douglas-Kroll-Hess (DKH) Hamiltonian [137, 138] within the all-electron
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conventional CCSD(T) method. For these calculations, we employed the aug-cc-pCVXZ

[105] and aug-cc-pCVXZ-DK [107] basis sets. The results for these corrections are shown

in Tables 3.4, 3.5, and 3.6. The core-core and core-valence corrections can be either

sign, while δrel is always positive. Interesingly, δrel is highly consistent between different

stationary points for the same complex. Nevertheless, both of these contributions are

small and quickly convergent with the basis set. It means that the accuracy of our total

interaction energies is limited almost exclusively by the accuracy of the post-CCSD(T)

coupled-cluster contributions.

We have also assessed the importance of the diagonal Born-Oppenheimer (DBOC)

interaction energy correction. The DBOC term is expected to be small as no ultralight

atoms are present. Indeed, the estimate of the DBOC interaction energy correction com-

puted at the CCSD/aQZ level [139] amounts to only -0.08 cm−1 at the CO–CO global

minimum. Therefore, the DBOC term is not considered in this work any further.

3.2.4 Total Interaction Energies

The best-estimate interaction energy Eint was computed based on Eq. 3.2. Here are some

remarks on the most accurate estimate:

• the δT and δ(Q) corrections were extrapolated to the CBS limit using the X−3 scheme

and the (aTZ,aQZ) bases for δT and (aDZ,aTZ) for δ(Q),

• the additional δT/5Z and δ(Q)/QZ results available for the D2h structure of N2–N2 do

not lead to any more accurate extrapolated values so we did not use them in the final

estimates,
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• the δQ, δcore, and δrel results were not extrapolated - the δQ/aDZ value was used when

available, otherwise we took δQ/DZ.

The resulting total interaction energies are presented in tables 3.7, 3.8, and 3.9 along

with the optimized geometries. Both interaction energies and geometries are compared to

the literature values. The CO–CO results show that the effects beyond the FC CCSD(T)

level constitute -3.3 – 3.8% of the CCSD(T)/CBS interaction energy for the three minima,

making the global minimum deeper and the two local ones shallower. Interestingly, all

three geometries of the N2 – N2 complex, Table 3.8, exhibit a nearly complete cancellation

of the post-CCSD(T) terms. As a result, the effects beyond the FC CCSD(T) level amount

to only -0.4–0.6% of the CCSD(T)/CBS interaction energy. In the case of N2–CO, the

post-CCSD(T) interaction energy terms are somewhere between the CO–CO and N2–N2

ones. The partial cancellation between δT and δ(Q) results in the effects beyond the FC

CCSD(T) level amounting to 0.6 – 1.1% of the CCSD(T)/CBS interaction energy.
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Table 3.7: Geometrical parameters and interaction energies for the CO–CO complex, com-
puted by us as explained in the text (upper part) and taken from literature (lower part).
All distances, angles, and interaction energies are given in bohr, degrees, and cm−1, re-
spectively. Eint represents our best interaction energy estimate computed according to
Eq. (3.2).

Global Minimum (C2h) Local Minimum (C2h) Local Minimum (Cs)
R 8.20 6.86 7.43
rCO 2.137 2.137 2.137
θA 134.73 64.78 26.23
θB 45.27 115.22 69.03
φ 180 180 0

E
CCSD(T)−F12b/a5Z
int -132.10 -123.88 -122.39
E

CCSD(T)/CBS
int -133.29 -124.78 -123.37

Eint -138.32 -120.64 -121.46
Reference [121]a [140]b [121]a [140]b [121]a

R 8.18 8.20 6.86 6.95 -
rCO 2.132 2.132 2.132 2.132 2.132
θA 134.58 134.23 65.21 59.63 ∼40
θB 45.42 45.77 114.79 120.37 ∼110
Eint -135.14 -135.53 -119.55 -124.21 -121.06

a Interaction energy computed at the all-electron CCSD(T)-F12b level in the cc-pCVQZ-F12 basis.
b Interaction energy obtained using the CCSD(T)/aTZ+midbond level.

It needs to be stressed that the post-CCSD(T) effects may have a strong influence on

some features of the potential energy surfaces, for example on the intermolecular rovi-

brational spectra. In particular, the relative energy differences between the three CO–CO

minima indicate that the high-order terms may have strong impact on the resulting rovi-

brational levels as the low-energy rovibrational wave functions are strongly delocalized

along a pathway passing through all three minima. To examine this effect in more detail,

we calculated differences between the depths of stationary points of CO–CO at different

levels of theory (Table 3.10).
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Table 3.8: Geometrical parameters and interaction energies for the N2–N2 complex, com-
puted by us as explained in the text (upper part) and taken from literature (lower part).
All distances, angles, and interaction energies are given in bohr, degrees, and cm−1, re-
spectively. Eint represents our best interaction energy estimate computed according to
Eq. (3.2).

Global Minimum (C2h) Saddle point (C2v) Rectangle (D2h)
R 7.58 7.81 7.01
rNN 2.078 2.078 2.078
θA 49.60 90 90
θB 130.40 0 90
φ 180 0 0

E
CCSD(T)−F12b/a5Z
int -107.06 -101.88 -77.70
E

CCSD(T)/CBS
int -108.24 -102.63 -79.03

Eint -108.64 -103.25 -78.68a

Reference [129]b [126]c

R 7.55 7.65
rNN 2.081 2.074
θA 50.08 45.00
θB 129.92 135.00
Eint -110.19 -119.34

a Including an estimate of the perturbative pentuples contribution, δ(P)=0.31 cm−1 calculated in
the DZ basis set.
b Interaction energy calculated up to the CCSD(T)/a5Z+midbond level and supplemented with cor-
rections for core-core and core–valence correlation, relativistic effects, and higher coupled-cluster
levels up to CCSDT(Q)/aDZ.
c Interaction energy obtained from symmetry-adapted perturbation theory with a [5s3p2d1f] basis
set.

A very important observation is that the “gold standard” FC CCSD(T) approach at its

CBS limit underestimates the difference between the minimum depths by a factor of 1.7 for

the Cs local-minimum structure and more than 2 for the C2h one. The “platinum standard”

[119] FC CCSDT(Q)/CBS approach recovers only about 88% of the two differences, and

the majority of the missing contribution is assigned to δQ. For comparison, Table 3.10

also lists minimum depth differences obtained at lower levels of theory, MP2 and CCSD
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Table 3.9: Geometrical parameters and interaction energies for the CO–N2 complex, com-
puted by us as explained in the text (upper part) and taken from literature (lower part).
The dihedral angle φ=00 and all distances, angles, and interaction energies are given in
bohr, degrees, and cm−1, respectively. Eint represents our best interaction energy estimate
computed according to Eq. (3.2).

Global Minimum (Cs) Saddle point (Cs) Saddle point (C2v)
R 7.85 8.33 7.38
rCO 2.137 2.137 2.137
rNN 2.078 2.078 2.078
θCO 109.13 177.65 0
θN2 163.42 92.29 90

E
CCSD(T)−F12b/a5Z
int -118.12 -106.75 -107.13
E

CCSD(T)/CBS
int -119.09 -107.69 -108.16

Eint -120.40 -108.82 -108.78
Reference [133]a [134]b [135]c [133]a [133]a

R 7.85 7.86 7.86 7.37 7.39
rCO 2.081 2.137 2.132 2.081 2.081
rNN 2.079 2.079 2.074 2.079 2.079
θCO 107.0 109.4 111.34 180 0
θN2 166.0 162.8 159.70 90 90
Eint -117.42 -117.35 -118.2 -105.56 -106.45

a Calculations performed at the CCSD(T)-F12b/aQZ level.
b Calculations performed at the CCSD(T)/aQZ+(3s2p1d) level.
c Calculations performed at the CCSD(T)/aQZ+(3s3p2d1f1g) level.

(both at the FC CBS limit). The complete set of MP2, MP2-F12, CCSD, and CCSD-F12

interaction energies for all nine structures is given in Appendix A. The below-CCSD(T)

calculations result in qualitatively incorrect energy differences between the minima, which

is in line with previous studies [118, 141, 142].

Another important feature of the total interaction energies in Tables 3.7 and 3.9 is the

ordering of the stationary points on the CO–CO and CO–N2 potential energy surfaces. In

the CO–CO case, the C2h structure is more favorable at the FC CCSD(T)/CBS level (by

1.4 cm −1), however, the inclusion of the post-CCSD(T) corrections reverses this ordering,
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Table 3.10: Differences between the global (C2h) and local minima (C2h and Cs)
well depths for the CO–CO complex calculated at different levels of theory. The
MP2, CCSD, and CCSD(T) values were obtained from the MP2-F12/(a5Z,a6Z), CCSD-
F12b/(a5Z,a6Z), and CCSD(T**)-F12b/(a5Z,a6Z) extrapolations, respectively, and the
higher-level corrections were computed in the basis sets specified in Sec. 3.2.1.

Theory level ∆E(cm−1)
EGlobal − ELocal(C2h) EGlobal − ELocal(Cs)

MP2 45.65 43.62
CCSD 1.67 2.11
CCSD(T) 8.51 9.92
CCSDT 15.91 15.40
CCSDT(Q) 15.63 14.82
CCSDTQ 16.94 16.27
+core 17.67 16.87
+relativistic 17.68 16.86

with the Cs structure being now more favorable by 0.8 cm−1. For CO–N2, the differences

are even smaller: at the FC CCSD(T)/CBS level, the C2v structure is deeper by less than

0.5 cm−1 than the Cs one, while at the highest theory level considered in this work, the

two stationary points are virtually isoenergetic.

We have extended our calculations for CO–CO and computed interaction energies

with different levels of theory along the pathway passing through the global and local

minima [119] (Fig. 2 in Appendix B). The best estimate of the all electron CCSD(T)/CBS

value was calculated as a sum of the FC CCSD(T**)-F12b/(aQZ,a5Z) result and the

CCSD(T)/aug-cc-pCV5Z correction for the core-core and core-valence correlation. We

also included corrections from the higher-order CC excitations: CCSDT/aQZ and

CCSDT(Q)/aTZ. Moreover, we estimated energies employing the level of theory from
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Ref. [120], that is, all-electron non-CP corrected CCSD(T)-F12b with and without ex-

trapolation from the cc-pCVXZ-F12≡CVXZ-F12 basis set family [143] with X=D,T,Q.

Figure 2 (Appendix B) confirms that the post-CCSD(T) corrections are significant for this

system, and consequently influence the shape of the minimum-energy pathway. Figure 3

in Appendix B clearly shows that the CCSD(T)/CBS level of theory is highly inaccurate

for CO–CO. Interestingly, the results computed with the level selected in Ref. [120] are

close to our CCSDT(Q) values, which is the effect of error cancellation between the ba-

sis set incompleteness effects at the CCSD(T) level and contributions from higher-order

coupled-cluster excitations. Therefore, CO–CO is the epic example of a system for which

we cannot neglect the interaction energy contributions beyond the CCSD(T)/CBS level.

3.3 Summary

We have observed high-order coupled-cluster interaction energy effects all the way through

CCSDTQ to be significant for the CO–CO, N2–N2, and CO–N2 complexes, which is in

line with earlier investigations at lower levels of theory [118, 141, 120]. The δ(Q) term is

always negative and its magnitude increases with the basis set size, amounting to 2.1–6.5%

of the CCSD(T) interaction energy at the CBS limit. The δT term can be of either sign,

although most of the time it is positive (between −5.1 and 0.9% of the CCSD(T)/CBS in-

teraction energy), canceling the δ(Q) contribution to a large extent. A notable exception is

the CO–CO global minimum where δT and δ(Q) are of the same sign and add up to 3.0% of

the CCSD(T)/CBS value. The higher-order δQ correction is smaller but still nonnegligible,

amounting to between −1.5 and 0.5% of the CCSD(T)/CBS interaction energy. The core

correlation and relativistic corrections are less significant.
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As post-CCSD(T) calculations at the level presented here are not feasible for the

entire potential energy surface, one cannot at present directly assess the importance of

the δT, δ(Q), and δQ corrections on observables such as rovibrational transitions for all

considered complexes. However, the differences between the CO–CO global and local

minima well depths provide compelling indirect evidence for the critical influence of the

post-CCSD(T) effects on the properties of this complex. The FC CCSD(T) approach at its

CBS limit underestimates the difference between the minima by a factor of 1.7 for the Cs

local-minimum structure and more than 2 for the C2h one. Thus, even the CCSD(T)/CBS

level of theory is not sufficient to map out the correct landscape of the potential energy

surface in the region surrounding the minima.

It should be pointed out that the highly successful potentials of Refs. [120, 121, 129,

135] calculated at the “gold standard” CCSD(T)/CBS level for CO–CO, N2–N2, and CO–

N2 are strongly benefiting from a cancellation of the error from basis set incompleteness

with the error from the lack of higher-order coupled-cluster corrections.
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Chapter 4

Deducing the Optimal Damping Function for the D3 Dispersion Correction to
Density Functional Theory

4.1 Introduction

The standard semilocal density functional theory (DFT) does not describe long-range elec-

tron correlation effects, and hence it fails in the description of noncovalent interactions.

The quest to incorporate dispersion interactions into DFT has been an active research area

in computational chemistry [144, 145, 146, 147, 89] and many dispersion correction ap-

proaches have been exploited. Following the “stairway to heaven”, proposed by Klimeš

and Michaelides, each step of the stairway introduces more robust but computationally

more expensive correction schemes [89]. However, the most straightforward and effec-

tive way to include dispersion in a density functional calculation of interaction energy is

the D3 atom-pairwise dispersion correction by Grimme [2]. The DFT+D method relies

on supplementing the DFT energy by a dispersion contribution Edisp written as a sum of

atom-atom terms:

Edisp = −1

2

∑
A 6=B

∑
n=6,8,10,..

CAB
n

rnAB
fdamp,n(rAB). (4.1)
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where the sum runs over all atom pairs in the system, CAB
n denotes the averaged (isotropic)

nth-order dispersion coefficient (orders n = 6, 8, 10, ...) for atom pair AB, and rAB denotes

their internuclear distance. Over the years, different expressions for the damping function

have been investigated with the most popular being Chai-Head-Gordon (CHG) [148] and

Becke-Johnson (BJ) [95] formulas (see section 4.2 for more details). One needs to point

out that the original parameters of these damping functions were fitted to the training set

containing 130 datapoints broken into 72 intermolecular interactions and 58 thermochem-

istry datapoints. A recent development of databases of noncovalent interactions opened up

avenue for reoptimizing DFT-based approaches on a much larger scale. Smith et al. [4]

showed that a refitting of original D3 damping parameters can significantly improve the

overall accuracy of the DFT-D3 methods, however, the performance degradation at short

range cannot fully be ameliorated by refitting. This research highlights limitations of the

damping functions currently employed in the popular DFT+D approaches.

In our study, in order to eliminate constraints of the currently utilized DFT-D3 disper-

sion corrections, we propose and investigate new physically meaningful forms of damping

functions, such as: 1) a linear combination of error functions, and 2) a piecewise-defined

function. Their performance is compared with the -D3, -D3M, -D3(BJ), and -D3M(BJ)

approaches. Moreover, the possibility of designing a damped dispersion function without

higher than C6 dispersion coefficients is demonstrated.

4.2 Overview of Damping Functions Used in the DFT+D Approaches

The damping function fdamp is utilized to include charge-overlap effects beyond the mul-

tipole approximation (physical effects) and to prevent double counting of correlation at
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short range (an unphysical effect). In the DFT-D3 method, there are two broadly utilized

damping functions:

• Chai-Head-Gordon (CHG) [148]:

ED3
disp = −1

2

∑
A 6=B

(
CAB

6

r6AB

1

1 + 6(rAB/(sr,6RAB
0 ) +RAB

0 β)−14

+ s8
CAB

8

r8AB

1

1 + 6(rAB/RAB
0 +RAB

0 β)−16

)
(4.2)

which has two optimized parameters s8, and sr,6 (a third optional parameter β was

introduced in Ref. [4]).

• Becke-Johnson (BJ) [95]:

E
D3(BJ)
disp = −1

2

∑
A 6=B

(
CAB

6

r6AB + (α1 ·RAB
0 + α2)6

+ s8
CAB

8

r8AB + (α1 ·RAB
0 + α2)8

)
(4.3)

containing three optimized parameters s8, α1, and α2.

The RAB
0 parameter is the cutoff radius for atom pair AB. The above damping functions

with variables reoptimized on a broader database [4] are denoted by -D3M and -D3M(BJ).

An alternative damping function “C-Six-Only” (CSO) was intruduced by Schröeder

et. al [149]. It simplifies the -D3(BJ) expression, and includes only the C6 dispersion coef-

ficients while the eighth-order term is approximated by means of a sigmoidal interpolation

function. Consequently, this approach reduces the number of fitted parameters to two (s6
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and α1). The -D3(CSO) dispersion correction is given by:

E
D3(CSO)
disp = −1

2

∑
A 6=B

C6

r6AB + (2.52)6

[
s6 +

α1

1 + exp(RAB − 2.5RAB
0 )

]
. (4.4)

However, this scheme was trained only on the S66 database [150], which contains ex-

clusively systems at equilibrum distances. It has been shown that the efficiency of DFT-

D3(CSO) is not transferable to more balanced data sets [151].

Quite recently, Witte et al. in the paper titled: “Assessing DFT-D3 Damping Func-

tions Across Widely Used Density Functionals: Can We Do Better?” proposed an “op-

timized power” damping function (DFT-D3(op)) [151]. The new scheme generalizes the

standard -D3(BJ) one by adding a parameter whose role is to determine the rate at which

the dispersion is switched on:

E
D3(op)
disp = −1

2

∑
A 6=B

(
CAB

6

r6AB

rβAB
rβAB + (α1 ·RAB

0 + α2)β

+ s8
CAB

8

r8AB

rβ+2
AB

rβ+2
AB + (α1 ·RAB

0 + α2)β+2

)
. (4.5)

The damping parameters α1, α2, β, and s8 were optimized on 2475 noncovalent binding

energies and isomerization energies. While the authors observed an improvement of DFT-

D3(op) over the existing damping functions [151], the results seem to be biased, because

of the used MUE statistical metric which, most likely, overemphasizes errors originating

from water and ion-water clusters.

The question “Can we do better?” still stands.
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4.3 Damping Function Development

The target of the DFT approach for noncovalent interactions is to reproduce CCSD(T)-

quality results at different intermolecular distances. Therefore, in the damping function

development, the choice of an appropriate unbiased dataset plays the key role; it has to be

large, rich with diverse interaction types, and balanced [4, 25]. Moreover, the data should

be split into a training set against which the parameters are optimized, and a validation

set, allowing to assess whether the optimized parameters are transferable to complexes

outside of the training set. To satisfy these requirements, we utilized the comprehensive

dataset of noncovalent interactions collected by Smith et. al [4]. This database contains

8,299 structures split into training (1,526 points) and validation (6,773 points) sets. The

nature of intermolecular interactions in the dataset can be inferred by the three SAPT

components: electrostatics, induction, and dispersion, and they were visualized in the

form of ternary diagrams (see Ref. [4]). Another significant aspect of this development

is a proper selection of a statistical metric. Since the database covers a large range of

interaction energies, the statistical technique has to allow all curves in the datasets to be

treated equally, as well as to prevent from running into singularities at short range when

the PES crosses the zero line or at long range where the interaction energy is very small.

It has been shown [4, 25] that for performing overall statistics, mean capped unsigned

relative error (MCURE) is particularly suitable metric:

MCURE = 100% · 1

N

N∑
i

( |Eint
i − E

int,ref
i |

Eweight
i

)

Eweight
i = max{|Eint,ref

i |, ξ|E
int,ref−eq
i |
z3i

}, (4.6)
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where ξ stands for the dimensionless parameter which controls the aggressiveness of the

capping and zi=Ri/Req,i is the dimensionless reduced distance. During calculations, ξ

was set to 0.2 except for the SSI, BBI [152] data sets for which complete curves are not

available and a simple cap of 0.5 kcal/mol was applied. Moreover, being in line with Ref.

[4], we weighted each database identically, except for SSI, which always contributes 1
3

to the statistics. This approach was adopted to avoid an implicit weighting of the entire

datasets and to preserve the relevance of the SSI dataset.

An alternative statistical metric appropriate for the development in this work is capped

root mean square error (CRMSE):

CRMSE =

√√√√ 1

N

N∑
i=1

(
Eint
i − E

int,ref
i

Eweight
i

)2

. (4.7)

It is chosen to assess the performance of damping functions with parameters fitted using

the least squares method, since the sum of the squares of the residuals is minimized.

The standard DFT energies were computed in the QZVP basis set with the counter-

poise correction (CP). The optimization of damping parameters was performed for eight

density functionals B2PLYP [153], BLYP [154, 155], B3LYP [156, 157], LC-ωPBE [158],

PBE0 [159, 160], PBE [161], BP86 [154, 162], and B97 [93].

4.4 New Forms of Damping Functions

A damping function, whose purpose is to reproduce dispersion effects at short range, has

to be a fairly arbitrary increasing function of the reduced distance with limits of 0 at short
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range and 1 at long range. Therefore, our desired function fdamp(ρ) needs to satisfy the

following conditions:

• fdamp(ρ) is an increasing function of ρ,

• limρ→0fdamp(ρ) = 0,

• limρ→∞fdamp(ρ) = 1 after proper normalization.

Here, ρ is defined as the “effective distance”, that is, the ratio of the interatomic

distance and a cut-off radius for atom pair AB, rAB
RAB0

. The RAB
0 values come from the

original -D3 work [2]. Such a definition of damping function ensures that the dispersion

correction becomes zero or constant for small distances and has the proper asymptotic

form for long distances. The resulting dispersion correction with a new damping function

is expressed as:

Enew
disp = −1

2

∑
A 6=B

(
CAB

6

r6AB
fdamp,6

(
rAB
RAB

0

)
+
CAB

8

r8AB
fdamp,8

(
rAB
RAB

0

))
(4.8)

Furthermore, we performed an investigation, at which range of intermolecular dis-

tances rAB
RAB0

the damping function varies the most. For this purpose, the numbers of occur-

rences of intermolecular rAB
RAB0

values were computed on the training and validation sets.

Subsequently, utilizing that span of rAB
RAB0

, the functions which damp the C6 dispersion term

in BLYP-D3, B3LYP-D3, and B2PLYP-D3 were examined. The findings illustrated in

Fig. 4.1 indicate that our yet to be designed function should be switched on at the range

between around 0.8 and 2.2 where the intra- and short intermolecular interactions play the
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most important role. Moreover, histograms confirm that our datasets are appropriate for

probing at these separations.

Figure 4.1: The number of occurrences of intermolecular rAB
RAB0

values in the training and
validation sets. The functions that damp the C6 dispersion term in three DFT-D3 variants
are also plotted.
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4.4.1 Damping Function Expressed by an Error Function

A natural choice of a function satisfying the above conditions is the error function (erf),

which is defined as follows:

erf(x) =
2√
π

∫ x

0
e−t

2

dt. (4.9)

To provide enough flexibility to the damping function, we investigated a linear combina-

tion of shifted and scaled error functions:

fdamp(ρ) =
∫ R

0

n∑
i

cie
−αi(t−ri)2dt, (4.10)
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Figure 4.2: Error function curves with different values of αi and ri.

where parameters αi and ri correspond to the steepness and location of center of the func-

tion, respectively. Fig. 4.2 illustrates the dependence of the erf curve on these two vari-

ables.

4.4.2 Piecewise-linear Function

Alternatively, one can define a damping function utilizing a piecewise linear function with

parameters yi, satisfying the following conditions:

n∑
i=1

yi ≤ 1 (4.11)

∀
i
yi ≥ 0 (4.12)

fdamp(x) =
k∑
i=1

yi +
yk+1

xk+1 − xk
(x− xk), (4.13)

where

xk ≤ x ≤ xk+1 k = 0, 1, ..., n

(4.14)

69



The n variable denotes the number of parameters. Therefore, the previously estimated

range of reduced intermolecular distances at which the damping function is supposed to

work (ρ ∈ [0.8; 2.2]), is split into k+ 1 equal intervals and we assume that fdamp increases

linearly within each one. The k values of fdamp at the interval borders constitute the linear

fitting parameters. In order to remove the limitation of the damping function, defined in

this way, which depends solely on the “effective distance”, we introduced a new form of ρ

with a scaling parameter:

ρ =
rAB

(RAB
0 )γ

. (4.15)

4.5 Results and Discussion

We started our considerations by exploring the erf-based damping function. At the first

stage, we took into account a single error function for each of the C6 and C8 dispersion

terms including in total 4 nonlinear parameters. Subsequently, a linear combination of

two error functions was applied for the C6 contribution (keeping only one for C8), which

increases the number of parameters by 3. Additionally, in both cases, the influence of an

empirical parameter s8 was examined.

Figure 4.3 (a) displays functions based on one erf term which damp the C6

R6 dispersion

part. One can observe that the damping functions for BLYP, B3LYP, B97, and BP86

functionals work at short and medium distances (ρ ∈ [0.6; 1.5]), converging steeply to

0. Not surprisingly, short-range PBE0 and PBE functionals require adding dispersion at

longer separations up to 2.5 and 2.8, respectively. Considering the damping functions

for the C8 contribution of the multipolar expansion (Fig. 4.3 (b)), it is noticeable that

dispersion is damped at smaller separations than for the C6 term. Functionals are split into
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Figure 4.3: Damping functions based on one erf function for a) C6 and b) C8 terms in Eq.
4.10 with optimized parameters.
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three distinctive groups: B3LYP, BLYP, B97 (converged to 1 at the distance of 1.2), LC-

ωPBE, PBE0, PBE (converged to 1 at the distance of 1.4) and B2PLYP, BP86 (converged

to 1 at the distance of 1.6). Furthermore, the functions are steeper than for the C6 part with

the parameter α (Eq. 4.10) up to 103 for BLYP. This effect is related to the fundamental

fact that the C8 term of the dispersion energy increases faster at short range than the C6

one, thus it must be damped harder.

Figure 4.4 (a) depicts the behavior of the damping functions based on a linear com-

bination of two error functions with the coefficient ci not being constrained. The B3LYP,

BLYP and BP86 functionals exhibit a hump beyond 1.0. It is caused by the fact that

these functionals are highly repulsive, thus they need to be complemented with more than

100% of the asymptotic dispersion to match the benchmark interaction energy. It means

that these functionals require “antidamping” to amplify the asymptotic dispersion effects
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at medium range. An interesting effect is revealed at short distances where all density

functionals (except B2PLYP) exhibit a hump below 0, indicating a need of subtracting

dispersion at that range. However, results for PBE0 and PBE at the short range seem to

be artificially set during optimization in favor of a better description of dispersion at long

range. The inclusion or subtraction of an extra amount of dispersion seem to be in line

with Ref. [163], suggesting that damping functions correct DFT functionals for effects

unrelated to dispersion interactions.

In the case of the C8 contribution of multipole expansion (Fig. 4.4 (b)), like in the

previous model, there are three distinguishable groups of damping functions. However, in

this case, the PBE and PBE0 density functionals work at longer intermolecular separations.

It is also noticeable that damping functions are less steep (except B2PLYP and BP86).

Figure 4.5 presents damping functions based on the piecewise linear approach with

6 constrained optimized parameters. Functionals B2LYP, PBE, PBE0, and BP86 show a

very similar trend as functions increase up to 1.4 (1.2 and 1.6 in the case of B97 and PBE0,

respectively) and, subsequently, they become constant. B2PLYP and LC-ωPBE reach the

limit of 1 for ρ = 2.0, which is consistent with one erf-based damping function, while

BP86 and B97 damp dispersion at longer separations, that is, up to ρ = 1.8 and ρ = 2.2,

respectively. It seems that the PBE0 and PBE functionals are forced to converge to 1

at ρ = 2.2 because of our assumed condition of “effective distance”. When we remove

constraints from the fitting parameters, damping functions reveal new features. Figure 4.10

shows piecewise damping functions for different functionals with 6 and 13 unconstrained

coefficients. Interestingly, all functions smoothly increase up to ρ = 1.2 or ρ = 1.4, and
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Figure 4.4: Damping functions based on a linear combination of two erf functions a) the
C6 term and one erf function for b) C8 term with optimized parameters.
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beyond this region, they display more erratic behavior. However, B2PLYP, LC-ωPBE, and

BP86 functionals consistently require adding more dispersion at the region ρ ∈ [1.4; 2.2].

4.5.1 Performance of Erf-based Damping Functions

Fig. 4.6 shows the MCURE of functionals utilizing the new erf-based damping func-

tions compared to DFT-D3 with original [148] and modified [4] damping parameters. The

damping function with one erf term each for the C6 and C8 contributions improves results

only over the standard -D3 approach. The combination of two error functions for the C6

term slightly reduces the error over the previous model for all considered fuctionals except

LC-ωPBE. The largest improvement is noticeable for PBE0 and PBE for which MCURE

was decreased by 2.2% and 2.0%, respectively, compared to the one erf-based damping

function. The addition of a s8 factor, although it does not have any physical meaning,
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Figure 4.5: The piecewise linear damping functions with 6 constrained parameters for
different functionals.

makes functionals with new damping functions more efficient. The largest enhancement

of performance was achieved for the damping expressed by a linear combination of two erf

functions for C6. While this model significantly reduces MCURE versus -D3 and -D3(BJ)

(even by 10.4% for PBE with respect to PBE-D3), it provides only mild improvement

over -D3M and -D3M(BJ) (largest reduction in error is 3.4% for B97 compared to B97-

D3M). The best performer across the considered functionals and dispersion corrections is

B2PLYP with any proposed erf-based damping function with the MCURE of 5.5 – 5.6 %.

4.5.2 Performance of Piecewise Linear Damping Functions

Due to the fact that the piecewice linear damping function parameters were optimized

utilizing the least squares method, the CRMSE statistical metric is chosen for the analysis

herein.
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Figure 4.6: The MCURE values for functionals utilizing the new erf-based damping func-
tion compared to DFT-D3 with original and modified damping parameters.

Figure 4.7 presents the CRMSE values for functionals employing a piecewise damp-

ing function with 6 and 13 constrained (with constraints in Eqs. 4.11 and 4.12) or un-

constrained (free from constraints) coefficients. The variant with 6-parameter damping

functions improves the results over the standard -D3 approach by 0.4–6.2% for four func-

tionals, B2LYP, BLYP, LC-ωPBE, and B97. One can expect that the increase in the number

of coefficients would reduce the error, however, the variant with a 13-parameter piecewice

linear damping function works the worst (except PBE0 and PBE). This suggests that the

number of constrained parameters becomes too large for optimizing the function in the

range ρ ∈ [0.8, 2.2] leading to overfitting (note that all displayed CRMSE values are

computed on the validation set, which is separate from the training set). Examining the

piecewice-defined unconstrained counterparts, we can see that the 6-parameter option re-

duces the error for B3LYP, BLYP, BP86, and B97 over the constrained counterpart. The
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largest improvement is visible for BP86, where the CRMSE is lowered by 4.6%. The anal-

ysis of the flavor with 13 unconstrained parameters shows the performance being compa-

rable with the one containing 6 unconstrained parameters.

Additionally, the performance of damping functions with the reformulated “effective

distance” rAB
(R0
AB)γ

was examined (Fig. 4.8). Adding an additional fitting parameter γ to a

damping function with 6 unconstrained coefficients makes the DFT-D3 more accurate for

B3LYP, BLYP, PBE0, and PBE by 5.1%, 2.2%, 2.5%, and 2.8% respectively. This sort of

enhancement highlights the benefits of the modified “effective distance”. One can notice

that when applying the same approach to piecewise linear damping with 13 unconstrained

coefficients, we get similar errors.

It is of high importance to compare the results with -D3M and -D3M(BJ). Overall, the

B2PLYP, LC-ωPBE, and BP86 functionals with the new piecewise damping functions with

6 and 13 constrained or unconstrained parameters, B97 with a damping function utilizing 6

unconstrained parameters, as well as B3LYP and BP86 with a damping function containing

unconstrained parameters and including γ slightly beat the -D3M scheme. Comparing

our approaches with -D3M(BJ), B2PLYP with any damping function, BLYP utilizing a

damping function with 6 and 13 unconstrained parameters and including γ, as well as

LC-ωPBE, BP86, and B97 with a damping which depends on 6 and 13 constrained or

unconstrained parameters (with and without the parameter γ) work better.
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Figure 4.7: The CRMSE values of density functionals with the piecewise linear damping
function utilizing 6 and 13 constrained and unconstrained damping parameters with the
C6 and C8 coefficients, compared to DFT-D3 with original [2, 3] and modified damping
parameters [4].

4.5.3 Dispersion expressions with C6 only

A very important question arises if we can design a damped dispersion expression which

includes only the C6 term of the multipole expansion in analogy to the -D3(CSO) method

of Ref. [149]. The piecewise-defined damping function with unconstrained parameters

adds more dispersion when it exceeds the limit of 1. Being in line with this observation,

the idea of incorporating the C8 part into the C6 one as an extra dispersion contribution

above 100% of the C6 term seems to be reasonable. For this development, the “reduced

distance” was extended from 2.2 to 3.0. This region was split into equal distances with the

interval of 0.2 and 0.1, giving rise to 10 and and 21 parameters, respectively. The damping

coefficients which were fitted assuming only a C6 term are presented in Table 4.7.
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Figure 4.8: The CRMSE values of density functionals with the piecewise linear damping
function utilizing 6 and 13 unconstrained damping parameters with the C6 and C8 coef-
ficients, compared to DFT-D3 with original [2, 3] and modified damping parameters [4].
The additional parameter γ was introduced to reformulate the “effective distance” (Eq.
4.15).

The performance of our new C6-based dispersion expression for different function-

als is shown in Fig. 4.9. There is no substantial difference between the options with 10

and 21 unconstrained parameters, the largest variation amounts to 4.9% for B2PLYP. One

can notice that the C6-only function beats the standard -D3 approach for five function-

als B2PLYP, BLYP, LC-ωPBE, BP86, and B97. The introduction of the parameter γ for

an “effective distance” substantially lowers the error for B3LYP, BLYP, PBE0, and PBE

functionals with piecewise linear damping by 5.3%, 2.5%, 4.4% and 5.5%, respectively.

Generally, only the B2PLYP, BP86, B97 and LC-ωPBE functionals with the C6-based dis-

persion expression containing 10 unconstrained parameters exhibit comparable or slightly
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better performance over -D3M and -D3M(BJ). Among these variants, B2PLYP with our

new damping function is the best choice, leading to the CRMSE of 12.8%.

Figure 4.9: The CRMSE values of density functionals with theC6-based damping function
utilizing 10 and 21 unconstrained parameters with and without γ compared to DFT-D3
with original [2, 3] amd modified [4] damping parameters.

4.6 Summary

New forms of damping functions examined in this work shed some light on the current

limitations of the DFT-D3 method. The overall performance is not improved without in-

cluding empirical parameters. One issue that can be addressed is that the van der Waals

coefficients C6 and C8 as well as the cut off radii RAB
0 may not be precise enough in the

-D3 approach. One way is to examine -D4 [22] which may lead to some improvement.

Another constraint, most likely, comes from short-range intermolecular interactions. It

is assumed that the existing functionals reproduce the dispersion energies at separations
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smaller than van der Waals minimum, where exchange effects occur. However, this state-

ment was questioned in Ref. [163], proving that the DFT contribution at this region be-

haves unphysically and comes mostly from non-exchange-correlation terms. Therefore,

damping functions may correct DFT functionals at small separations for effects unrelated

to dispersion interactions.
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Figure 4.10: The piecewice linear damping functions with 6 constrained, and 6 and 13
unconstrained parameters for different functionals.
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Figure 4.11: The piecewice linear damping functions with 10 and 21 unconstrained pa-
rameters including only the C6 coefficient for different functionals.
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Table 4.1: Damping parameters for one erf each for C6 and C9 with and without an s8
factor.

Functional r6 α6 r8 α8 s8
B2PLYP 1.866582 1.684730 1.137208 21.686197 1.00
B3LYP 1.306256 33.599776 0.988453 89.993645 1.00
BLYP 1.183630 63.083942 0.945624 103.230487 1.00
LC-ωPBE 1.469472 10.507580 1.087307 41.284480 1.00
PBE0 1.659007 5.891349 1.084484 47.795724 1.00
PBE 1.781773 2.687986 1.077260 61.899548 1.00
BP86 1.169869 34.207224 1.091382 25.611600 1.00
B97 1.147321 32.844310 0.928864 51.449159 1.00
B2PLYP 2.505793 0.797034 1.301573 8.586300 2.070765
B3LYP 1.450523 44.025552 1.065208 35.501576 1.620762
BLYP 1.423536 50.028595 1.068853 25.651516 2.139820
LC-ωPBE 1.732073 5.038505 1.203817 16.160668 1.898549
PBE0 2.096682 2.730473 1.214011 15.910099 1.935984
PBE 2.507019 2.684443 1.290434 11.169536 2.678109
BP86 1.644719 56.737909 1.231064 14.500408 3.404418
B97 1.121316 50.464587 0.906327 60.591637 0.894742

83



Table 4.2: Damping parameters for a combination of error functions with and without the s8 factor. The parameter
c2 is calculated as a difference 1− c1.

Functional c1 r16 α1
6 r26 α2

6 r8 α8 s8
B2PLYP 0.705333 1.401292 15.197685 1.590710 7.780365 1.110165 21.360566 1.00
B3LYP 1.334847 0.000000 0.266747 1.291166 16.322195 0.949853 65.305952 1.00
BLYP 1.604436 0.856120 0.134526 1.239993 13.378103 0.920214 37.470008 1.00
LC-ωPBE 1.108337 0.440680 14180.17 1.417117 6.969897 1.076256 16.382199 1.00
PBE0 2.723303 0.148795 887.714156 0.734163 0.686625 0.966904 4.399108 1.00
PBE 1.805770 0.011584 137.821963 0.862079 0.373696 1.083771 21.699223 1.00
BP86 2.196850 0.247185 0.103772 1.288230 5.535931 1.047790 16.892313 1.00
B97 0.894888 46.985549 17.212141 1.112861 73.947161 0.918271 61.932123 1.00
B2PLYP 1.318265 0.399528 3342645370.00 1.505126 0.182459 1.252432 8.184294 1.576447
B3LYP 5.975438 0.551237 0.893058 1.070866 1.643820 0.998452 5.257360 2.343029
BLYP 3.595532 0.419587 0.643154 1.140520 6.322250 0.758205 13.463902 1.336507
LC-ωPBE 1.104331 0.442172 9135618.92 1.422617 6.990888 1.076789 17.366851 1.008604
PBE0 1.820802 0.068504 268.460009 2.127954 0.313017 1.361481 3.179071 4.572269
PBE 2.061108 0.071688 210.412562 1.887941 0.083885 1.368015 2.714350 5.326970
BP86 2.776212 0.696318 0.323739 1.258248 5.217628 1.036104 6.220659 1.333364
B97 0.406009 889.116629 852.312265 1.409013 30.925313 1.079037 19.593670 2.763571
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Table 4.3: Parameters for the piecewice linear damping function with 6 constrained coefficients.

Functional x1 x2 x3 x4 x5 x6

B2PLYP 0.16941088 0.24154535 0.17711725 0.17132775 0.00000000 0.24059877
B3LYP 0.25218753 0.33547078 0.24587331 0.16646838 0.00000000 0.00000000
BLYP 0.37779603 0.40784296 0.18399495 0.03036606 0.00000000 0.00000000
LC-ωPBE 0.13961128 0.28424411 0.18599323 0.06663257 0.07099198 0.25252683
PBE0 0.06936568 0.29577189 0.27085380 0.04781445 0.00000000 0.00000000
PBE 0.09164946 0.32359812 0.17750103 0.00000000 0.00000000 0.00000000
BP86 0.27707430 0.46413474 0.05202975 0.00000000 0.20676121 0.00000000
B97 0.39194187 0.53361805 0.00811184 0.00000000 0.00000000 0.00000000

Table 4.4: Parameters for the piecewice linear damping function with 6 unconstrained coefficients.

Functional x1 x2 x3 x4 x5 x6

B2PLYP 0.15829277 0.24432155 0.18304458 0.23611784 -0.09540873 0.36181346
B3LYP 0.22895080 0.36401577 0.16772643 0.56861551 -0.83595882 0.80408399
BLYP 0.31791893 0.41612900 0.22986939 0.31304389 -0.34342615 0.47663543
LC-ωPBE 0.10801363 0.27966791 0.22876414 0.13252137 0.14815767 0.33512406
PBE0 0.05548419 0.33735481 0.11488429 0.59013149 -1.04172065 0.83353122
PBE 0.08344948 0.33977673 0.07166136 0.60570497 -1.24470090 0.94194603
BP86 0.12854639 0.47899050 0.34581031 -0.09682196 0.83797688 -0.05651160
B97 0.40739365 0.47436553 0.17703637 -0.07234849 -0.24861782 -0.01015243
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Table 4.5: Parameters for the piecewice linear damping function with 13 constrained coefficients.
Functional x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

B2PLYP 0.06429131 0.13614682 0.07454092 0.14853114 0.08548999 0.02205095 0.20396055 0.00000000 0.00000000 0.00000000 0.08853393 0.17645438 0.00000000

B3LYP 0.08982046 0.18407081 0.21900355 0.10755862 0.00033300 0.32114026 0.00001938 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.07805392

BLYP 0.19014087 0.25902423 0.20881257 0.17034859 0.00005965 0.06634095 0.00007559 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.10519754

LC-ωPBE 0.06653342 0.07210648 0.21118135 0.06847704 0.06354530 0.12194734 0.02629237 0.00000000 0.00000000 0.16258981 0.00000000 0.20732689 0.00000000

PBE0 0.00000000 0.01301626 0.30328225 0.03501447 0.02717943 0.31996044 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

PBE 0.00000000 0.05485458 0.29025070 0.03122119 0.09073007 0.13495254 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

BP86 0.15176850 0.18798927 0.18889450 0.16886615 0.08263086 0.00001576 0.00000000 0.00000000 0.09197314 0.12786183 0.00000000 0.00000000 0.00000000

B97 0.19748868 0.17033055 0.33425513 0.19454702 0.03762589 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

Table 4.6: Parameters for the piecewice linear damping function with 13 unconstrained coefficients.
Functional x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

B2PLYP 0.05767625 0.12582551 0.07635599 0.14852891 0.09795883 0.03728072 0.25650337 -0.10886243 0.19753556 -0.293054 0.48546372 -0.14205791 0.18260217

B3LYP 0.06933628 0.15637789 0.23008939 0.1244838 0.00677868 0.24087121 0.47444569 -0.25396264 -0.25288994 -0.29137757 0.72622138 -0.11632913 0.1859393

BLYP 0.12844305 0.20489025 0.1967506 0.2026687 0.07825167 0.15212343 0.36857341 -0.25012147 -0.0769155 -0.02876479 0.44060289 -0.21001795 0.23752265

LC-ωPBE 0.0388252 0.05409468 0.19463233 0.08125945 0.10101882 0.17786647 0.12224254 -0.10811667 0.04418998 0.45939447 -0.45463191 0.82350838 -0.35213272

PBE0 -0.05870051 0.10665535 0.25720357 0.0619239 -0.04368324 0.31887391 0.39384409 -0.17848368 -0.57932358 0.00904219 0.27869829 0.47551513 -0.26274576

PBE -0.0569015 0.1426698 0.23857073 0.07996164 -0.08261424 0.32527708 0.40006142 -0.144603 -0.84400924 0.10440291 0.24623935 0.41498145 -0.36061069

BP86 -0.01117617 0.18681577 0.18000463 0.24139417 0.22351377 0.06410871 0.10009718 -0.15245138 0.32539167 0.73527133 -0.34848947 -0.05586361 0.27578472

B97 0.18720856 0.19964496 0.30946061 0.16408925 0.04144085 0.20730105 0.10705101 -0.36798049 -0.31260816 0.66040323 -0.81666022 0.76451515 -0.54519976
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Table 4.7: Parameters for the C6 only piecewice linear damping function with 10 unconstrained coefficients and the
γ parameter.

Functional x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 γ
B2PLYP -0.11121771 0.17331595 0.4001504 0.30515398 0.17239784 0.06668061 0.28629747 -0.35013786 0.45388105 0.30594072 0.8
B3LYP -0.28606485 0.26448874 -0.04985634 0.04881965 0.37452362 0.2693773 0.2951304 0.11313722 0.04244094 0.69263795 0.6
BLYP 0.01841217 0.08889524 0.57293187 0.51805387 0.01100087 0.37989423 0.11472881 -0.72937956 0.81787939 0.14034528 0.8
LC-ωPBE -0.02939794 0.01424245 0.29176289 0.34025753 0.04612828 0.40294835 -0.14954121 0.37295086 -0.12328295 0.60706797 0.8
PBE0 -0.38584738 0.28988485 -0.03000787 -0.06342905 0.22465796 0.23115779 0.28764829 0.09299354 -0.05679849 0.61702228 0.6
PBE -0.42802334 0.40939025 -0.09640167 -0.11610378 0.33095373 0.14235683 0.36572615 0.07926824 -0.16870372 0.61921725 0.6
BP86 -0.13823254 0.52771795 0.63047039 0.22542824 -0.02803315 0.52848637 0.20395422 0.24123384 -0.58606663 -0.1163615 0.9
B97 -0.03504169 0.29736679 -0.07740566 0.5545346 0.62406324 0.04709331 -0.31079134 0.98769333 -0.85916007 -0.22208095 0.7
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Chapter 5

Explicitly Correlated Dispersion and Exchange Dispersion Energies in
Symmetry-Adapted Perturbation Theory

One of the greatest, very often overlooked, advantages of energy decomposition methods

such as SAPT, is that various perturbation corrections can be studied separately, and con-

sequently calculated in different basis sets. Therefore, it is possible to reach a CBS limit

of a particular correction independently from others. This opens up an avenue for a devel-

opment of improved second-order dispersion E(20)
disp and exchange dispersion E(20)

exch−disp en-

ergies in SAPT, since they are, in contrast to other corrections, notably slowly convergent

with respect to the basis set size. The requirement of utilizing large correlation-consistent

basis sets augmented with diffuse functions to saturate the dispersion energy contribution

precludes its calculation for large molecular systems. The common strategies to circum-

navigate this problem in SAPT are CBS extrapolation [44, 45] and midbond functions

[46, 47, 48] (or both). However, it is worth investigating if the F12 techniques [50, 1, 51],

which are successfully used in supermolecular calculations, can also improve the basis set

convergence of dispersion in SAPT0.

Until quite recently, explicitly correlated methods in SAPT were applied only to the

helium dimer. For this complex, the E(20)
disp , E(20)

exch−disp, and E(21)
disp corrections, have been
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derived and computed employing a Gaussian-type geminal (GTG) basis [164, 114, 165],

resulting in a very accurate potential. However, due to a large number of nonlinear param-

eters in primitive basis functions, as well as the evaluation of complicated three- and four-

electron integrals, the GTG-based SAPT is not suitable for complexes larger than the he-

lium dimer. The first indirect combination of SAPT and explicitly correlated F12 methods,

termed SAPT-F12(MP2), was introduced by Frey et. al [26]. The SAPT-F12(MP2) variant

appends the ∆F12 correction to the second-order dispersion and exchange dispersion en-

ergies. This correction is calculated based on a proper selection of the double excitations

out of a local MP2-F12 calculation. A more rigorous F12 approach to E(20)
disp was proposed

by Przybytek [166]. Although Ref. [166] presents the technical details of derivation of

E
(20)
disp-F12 with fully optimized-amplitudes, this variant, because of a steep computational

scaling (O(N8)), has relatively little practical significance. Independently, we have [6]

presented a derivation and implementation of E(20)
disp-F12 as well as E(20)

exch−disp-F12, the lat-

ter obtained for the first time. Additionaly, in Ref. [6] fully optimized, EBC, optimized

diagonal, and fixed-amplitude Ansätze were explored, leading to the deduction of the most

accurate and the most computationally efficient flavor. The E(20)
disp-F12, E(20)

exch−disp-F12, and

E
(20)
disp-F12+E(20)

exch−disp-F12 corrections with various F12 Ansätze were compared with the

approximate SAPT-F12(MP2) method. This chapter summarizes the work in Appendix

C [6]. It also presents the first application of the density fitting techniques in the explic-

itly correlated dispersion and exchange dispersion methods, resulting in DF-E(20)
disp-F12 and

DF-E(20)
exch−disp-F12.
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5.1 F12 Dispersion Energy

In SAPT0, based on the RS perturbation theory, the second-order correction is expressed

as:

E(20) =
∑
m 6=0

∣∣∣〈φA
HFφ

B
HF|V |φA

mφ
B
HF〉

∣∣∣2
E0

A − Em
A

+
∑
n6=0

∣∣∣〈φA
HFφ

B
HF|V |φA

HFφ
B
n 〉
∣∣∣2

E0
B − En

B

+
∑
m 6=0

∑
n6=0

∣∣∣〈φA
HFφ

B
HF|V |φA

mφ
B
n 〉
∣∣∣2

E0
A + E0

B − Em
A − En

B

, (5.1)

where the the sums on the right hand side denote E(20)
ind,B→A, E(20)

ind,A→B, and E(20)
disp , respec-

tively. φA
m and φB

n are excited eigenfunctions of the Fock operator for monomer A, FA,

and B, FB, respectively. The related first-order wave function reads:

Ψ(10) =
∑
m6=0

〈φA
mφ

B
HF|V |φA

HFφ
B
HF〉

E0
A − Em

A

|φA
mφ

B
HF〉+

∑
n6=0

〈φA
HFφ

B
n |V |φA

HFφ
B
HF〉

E0
B − En

B

|φA
HFφ

B
n 〉

+
∑
m6=0

∑
n 6=0

〈φA
mφ

B
n |V |φA

HFφ
B
HF〉

E0
A + E0

B − Em
A − En

B

|φA
mφ

B
n 〉 (5.2)

It should be noted that φA
m depends on the coordinates of electrons 1, 2, ..., NA assigned to

monomer A and φB
n depends on the coordinates of electronsNA +1, NA +2, . . . , NA +NB

assigned to monomer B.

In order to isolate induction and dispersion effects, the QA and QB operators are

defined, which project out the ground state for a a given monomer:

QA = 1− |φA
HF〉〈φA

HF| QB = 1− |φB
HF〉〈φB

HF|. (5.3)
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The operators QA and QB have the following features: 1) they are Hermitian, 2) they

are idempotent, e.g. (QA)2 = QA, and 3) they commute, i.e. [QA,QB] = 0. Applying

the product of projection operators for monomer A and B, that is QAQB, to Eq. 5.2, the

desirable dispersion wave function is obtained:

QAQBΨ(10) = Ψ
(10)
disp. (5.4)

Alternatively,E(20)
disp-F12 can be obtained variationally by minimizing the “dispersion only”

Hylleraas functional [167] to determine the dispersion wave function (QAQBΨ(10)):

Jdisp[χ] = 〈χ|QAQB(FA + FB − E0
A − E0

B)QAQB|χ〉

+〈χ|QAQB(V − E(10)
elst |φA

HFφ
B
HF〉+ 〈φA

HFφ
B
HF|(V − E

(10)
elst )QAQB|χ〉,

(5.5)

Table 5.1: Orbital spaces used in this work.

Orbital space Monomer A Monomer B
Occupied orbitals i, k, m, o j, l, n, v

Virtual orbitals a b
Any molecular orbitals r s

Complementary auxiliary orbitals x y
Complete orthonormal or RI basis α β

The philosophy of the variational principle was also utilized to derive the expression

for E(20)
disp-F12. One can choose an arbitrary function and minimize the Hylleraas func-

tional which will provide the energy value larger or equal to the exact E(20)
disp . In our case,
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following the MP2-F12 approach [59] (see Eq. 2.47), a trial function is defined as:

χ = T ijab|Φab
ij 〉+ T ijklFklαβ|Φ

αβ
ij 〉 (5.6)

with unknown dispersion amplitudes T ijab and explicitly correlated amplitudes T ijkl . Since

it is computationally unfeasible to create all excitations from the occupied to the complete

spaces (i → α and j → β), the formally complete space is reached via a set of T ijkl

coefficients and a suitable internal contraction:

Fklαβ = 〈kl|F̂12Q̂12|αβ〉. (5.7)

In line with the established explicitly correlated methods for supermolecular calculations,

as well as Przybytek’s recommendations [166], the F̂12 ≡ F (r12) correlation factor is

expressed in a standard exponential exp(−βr12) form herein. The role of the projection

operator Q̂12 is to force strong orthogonality between the reference dispersion wavefunc-

tion and the explicitly correlated one. In the current work, the Ansatz 3 (analogs of 2.49)

is utilized for Q̂12:

Q̂12 =

(
11 −

∑
i

|i〉〈i|1
)12 −

∑
j

|j〉〈j|2

(112 −
∑
ab

|ab〉〈ab|12
)
. (5.8)

In contrast to Eq. 2.49, the above formula contains the subscripts clarifying which electron

coordinates are affected by a given part of the projector. The advantage of applying Ansatz

3 is that it leads to some simplifications when we derive a formula for E(20)
disp-F12, since

Q̂12|ab〉 = 0, and consequently the matrix elements Fklab are zero.
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Now, inserting Eq. 5.6 into Eq. 5.5 and performing some mathematical operations

(see Appendix C for the full derivation), we obtain the final formula for Jdisp[χ] [6]:

Jdisp[χ] = 4T abij T
ij
ab(ε

A
a + εBb − εAi − εBj ) + 8T ijabK

ab
ij

+ 4T klij T
ij
k′l′Bkl,k′l′ − 4

(
εAi + εBj

)
T klij T

ij
k′l′Xkl,k′l′ + 8T klij V

ij
kl

+ 8T abij T
ij
klC

kl
ab (5.9)

with the set of matrix intermediates fully analogous to these defined in the MP2-F12(3C)

method [59]:

Kab
ij = 〈ab|r−112 |ij〉 (5.10)

V ij
kl = 〈ij|r−112 Q̂12F̂12|kl〉 (5.11)

Bkl,k′l′ = 〈kl|F̂12Q̂12(f̂A1 + f̂B2)Q̂12F̂12|k′l′〉 (5.12)

Xkl,k′l′ = 〈kl|F̂12Q̂12F̂12|k′l′〉 (5.13)

Ckl
ab = 〈kl|F̂12Q̂12(f̂A1 + f̂B2)|ab〉 (5.14)

The evaluation of the above intermediate matrices leads to many three- and four-electron

integrals. The way to deal with them is the same as in the MP2-F12(3C) approach (see

section 2.3.6 for more details) as long as the Fock operator for the right monomer is applied

each time.
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In the next step, we need to calculate the amplitudes T abij and T klij that minimize Eq.

(5.9). To do so, the partial derivatives of Eq. 5.9 with respect to amplitudes are taken:

∂Jdisp
∂T abij

= 8T abij (εAa + εBb − εAi − εBj ) + 8Kab
ij + 8

∑
kl

T ijklC
kl
ab = 0 (5.15)

∂Jdisp
∂T klij

= 8
∑
k′l′

T k
′l′

ij Bkl,k′l′−8
(
εAi + εBj

)∑
k′l′

T k
′l′

ij Xkl,k′l′ +8V ij
kl +8

∑
ab

T abij C
kl
ab = 0 (5.16)

One can notice that Eqs. 5.15 and 5.16 are coupled which means that the solutions for T abij

and T klij depend on each other. When both gradients are set to zero, we obtain a system of

linear equations for each pair of occupied orbitals (i,j). Then, Eq. 5.15 is solved for T abij

and subsequently the result is inserted into Eq. 5.16:

T abij =
Kab
ij +

∑
kl T

ij
klC

kl
ab

εAi + εBj − εAa − εBb
(5.17)

∑
k′l′

T k
′l′

ij

[
Bkl,k′l′ −

(
εAi + εBj

)
Xkl,k′l′ +

∑
ab

Ck′l′
ab C

kl
ab

εAi + εBj − εAa − εBb

]

= −V ij
kl −

∑
ab

Kab
ij C

kl
ab

εAi + εBj − εAa − εBb
. (5.18)

This procedure allows one to determine fully optimized amplitudes, which will be denoted

as FULL in this work. Once we plug the optimized amplitudes into Eq. 5.9, a simplified

formula for E(20)
disp-F12 is obtained:

E
(20)
disp-F12 = 4T ijabK

ab
ij + 4T klij V

ij
kl . (5.19)
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Unfortunately, the computational cost of E(20)
disp-F12 with fully optimized amplitudes

is very unfavorable, since the number of operations needed to be performed is o3AvAo
3
BvB,

leading to overall scaling of O(N8). This variant is 3 orders of N more expensive than

the standard second-order dispersion energy E
(20)
disp , so that it cannot be competitive for

practical calculations. It needs to be stressed that the standard E(20)
disp computation scales

likeO(N5), and the newly developedE(20)
disp-F12 should not be much more computationally

expensive than the parent method. Therefore, in order to reduce the computational scaling,

we have [6] proposed and tested three simplified Ansätze, described below.

EBC Ansatz. This variant utilizes the extended Brillouin condition (EBC) , saying

that the virtual orbitals are not improved by the complementary auxiliary basis functions.

Therefore, matrix elements (fA)ax and (fA)xa are zero. As a result, Ckl
ab = 0, so that Eqs.

5.15 and 5.16 become decoupled and Eq. 5.18 takes the form:

∑
k′l′

(TEBC)k
′l′
ij

[
Bkl,k′l′ −

(
εAi + εBj

)
Xkl,k′l′

]
= −V ij

kl . (5.20)

The above equation is the most expensive step in the EBC approximation. The noniterative

way of solving a system of linear equations leads to the scaling of o4Ao
4
B, which is again

O(N8). However, it can be computed cheaper in the iterative way of solving the systems

of equations (a single iteration is simply a matrix-vector multiplication) which brings the

overall scaling down to o3Ao
3
B or O(N6).

Optimized Diagonal Ansatz (ODA). This approach assumes that the amplitudes T klij

are diagonal, that is:

T klij = T ijij δikδjl. (5.21)
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This condition simplifies Eqs. 5.17–5.18, and consequently there is no need to solve the

system of linear equations. The amplitudes are computed in oAvAoBvB operations, so that

the intermediates Eqs. of 5.10–5.14 constitute the limiting factor, as they are computed in

O(N5) operations.

Fixed-Amplitude Ansatz (FIX). This approximation assumes that all explicitly cor-

related amplitudes are diagonal and equal to a constant parameter T ijij = λ. The Hylleraas

functional Jdisp[χ], Eq. 5.9, is quadratic in λ, thus we only need to find a minimum of

this quadratic equation. We have [6] found that the optimal λ values are in the range 0.3–

0.6. The limiting factor of the FIX approximation boils down to the computation of the

intermediate matrices. Thus, the overall scaling of this approach is also O(N5).

5.2 F12 Exchange Dispersion Energy

In SAPT, two variants allowing to compute the second-order exchange dispersion energy

E
(20)
exch−disp have been proposed: 1) the conventional expression derived using density ma-

trices [168], and 2) the less popular, expression derived using the second-quantized form

of the single exchange operator [169]. Since the latter formalism requires fewer different

integrals, it will be employed herein. The E(20)
exch−disp contribution expressed in the second-

quantization formalism takes the form [170]:

E
(20)
exch−disp = 2T ijab

[
−Ka′b′

ij Sba′S
a
b′ +Kab′

i′j S
b
iS

i′
b′ − 2Kab′

ij S
b
i′S

i′
b′

+Ka′b
ij′ S

a
j S

j′
a′ − 2Ka′b

ij S
a
j′S

j′
a′ −Kab

i′j′S
j′
i S

i′
j

+2Kab
ij′S

j′
i′ S

i′
j + 2Kab

i′jS
j′
i S

i′
j′ − 2(ωB)aiS

b
i′S

i′
j

+(ωB)ai′S
b
iS

i′
j − (ωB)a

′
i S

b
a′S

a
j − 2(ωA)bjS

a
j′S

j′
i
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+(ωA)bj′S
a
j S

j′
i − (ωA)b

′
j S

b
iS

a
b′

]
(5.22)

where Sij = 〈i|j〉 is the overlap integral and (ωB)ai is the matrix element of the electrostatic

potential of monomer B, that is,

(ωB)ai = 〈a|vB|i〉+ 2Kaj
ij (5.23)

and vB is the nuclear potential of molecule B. The (ωA)bj matrix elements are defined in a

similar way. It needs to be emphasized that the amplitudes T ijab in Eq. 5.22 are taken from

the dispersion energy calculations.

In the next step, we want to obtain the expression for E(20)
exch−disp-F12. To do so, the

F12 Ansatz is defined as follows:

T ijγδ|Φ
γδ
ij 〉 −→ T ijab|Φab

ij 〉+ T ijklFklαβ|Φ
αβ
ij 〉 (5.24)

where both T ijab and T ijkl are determined in the previous E(20)
disp-F12 calculation. The above

Ansatz allows one to perform calculations in the formally complete one-electron basis |α〉

for monomer A and |β〉 for monomer B. According to the generalized Brillouin condition

(GBC) , the complementary auxiliary functions do not improve the i and j occupied or-

bitals, so that they are unchanged in the F12 approach. However, the virtual a,b orbitals

are replaced by larger spaces γ, δ (un-occupied orbitals) on A and B, respectively. This

means that the index γ runs over a and x, and the index δ runs over b and y ≡ x.

As E(20)
exch−disp is not a variational quantity, analogously to CCSD(T)-F12, we substi-

tute the Ansatz given in Eq. 5.24 into Eq. 5.22 and perform some simplifications (see
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Appendix C for the full derivation). The resulting formula for the F12 correction to the

second-order exchange-dispersion energy [6] is given by:

δE
(20)
exch−disp-F12 = 2T ijkl [F

kl
xbK

xb′
i′j S

b
iS

i′
b′ − 2F klxbK

xb′
ij S

b
i′S

i′
b′ + F klayK

a′y
ij′ S

a
j S

j′
a′ − 2F klayK

a′y
ij S

a
j′S

j′
a′

− 2F klxb(ωB)
x
i S

b
i′S

i′
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x
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b
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i′
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y
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a
j
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j′ . (5.25)

Therefore, the F12 second-order exchange dispersion energy is given by:

E
(20)
exch−disp-F12 = E

(20)
exch−disp + δE

(20)
exch−disp -F12, (5.26)

that is a sum of the conventional E(20)
exch−disp, Eq. 5.22 and the F12 correction expressed by

Eq. 5.25.

5.3 SAPT-F12(MP2)

As it was mentioned before, the SAPT-F12(MP2) method [26] computes the ∆F12 correc-

tion as a by-product of the local MP2-F12 calculation where only intermolecular double
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Figure 5.1: Schematic representation of double excitations in the local MP2 method. The
figure comes from Ref. [5].

excitation contributions to the energy are taken into account. In the original work [26],

this correction is added to the standard second-order dispersion energy E(20)
disp . However,

considering all possible electron excitations in the local MP2 method (see Fig. 5.1), most

likely, ∆F12 contains the correction to both E(20)
disp and E(20)

exch−disp.

5.4 Test Systems

The first test systems considered were five weakly interacting dimers: He–He, Ne–Ne, Ar–

Ar, H2O–H2O, and CH4–CH4 at their minimum separations. The exhaustive calculations

were performed using basis sets up to a5Z combined with auxiliary sets up to a5Z-RI (a6Z

and a6Z-RI for the helium dimer). The basis sets with one lower cardinal number, that is

aQZ and aQZ-RI, were utilized for the CH4–CH4 complex, due to the code limitations.

Tables 2–10 in Appendix C present the E(20)
disp-F12 and E(20)

exch−disp-F12 values calculated

with the FIX, ODA, EBC, FULL, and F12(MP2) Ansätze. All these results were compared

to the benchmark values computed utilizing the conventional approach in the a6Z orbital

basis set augmented with the hydrogenic a6Z midbond set, a6Z+(a6Z), except the helium

dimer, for which the Gaussian-type geminal (GTG) benchmark is available [165].
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It is important to verify if the explicitly correlated second-order energy satisfies the

variational principle (energies should be above the benchmark when X is increased). It

turned out that the E(20)
disp-F12 energies obtained in the aXZ/aXZ-RI basis sets do not obey

that condition for all rare gas dimers. An additional examination of this issue revealed that

such an effect results from a very slow convergence of the energy with the auxiliary basis.

The same basis set convergence behavior was observed for E(20)
exch−disp-F12, however, the

second-order exchange-dispersion energy is not a variational quantity, so we are not guar-

anteed an improvement of results while enlarging the basis set. Moreover, for noble gas

dimers, the E(20)
disp-F12 energies in the aDZ orbital basis sets are not converged with respect

to the RI basis even in the largest applied a5Z-RI level (a6Z-RI for He–He), as shown in

Tables 1–3 (Appendix C). It is worth emphasizing, that for the He–He dimer all E(20)
disp-

F12(FULL)/aDZ energies are below the benchmark value. Thus, we constructed a larger

auxiliary basis, a (17s15p13d11f9g7h5i) set [6] and tested it with E(20)
disp-F12(FULL)/aDZ

for this system. In this case, the resulting energy was -0.0332 kcal/mol, which is above the

variational limit. Therefore, the final conclusion is that the slow convergence of noble gas

dimer interaction energies can be linked with the auxiliary basis sets not being properly

optimized for dispersion energy calculations [6]. Such an issue is not observed for the

H2O–H2O and CH4–CH4 complexes, for which the E(20)
disp-F12 and E(20)

exch−disp-F12 energies

converge quickly with the RI basis.

From the technical point of view, when performing tests on the initial systems, we

encountered some convergence problems in the full optimization of dispersion amplitudes.

They are caused by the fact that the systems of linear equations defined by Eqs. 5.15–5.16

100



Figure 5.2: Convergence of E(20)
disp-F12 and E(20)

exch−disp-F12 as a function of basis set for the
CH4–CH4 complex. This Figure was adapted from [6].

are quite ill-conditioned. Therefore, the E(20)
disp-F12(FULL) contribution was substituted by

E
(20)
disp-F12(ODA) for each pair of orbitals (i,j) whenever numerical issues occurred.

In terms of the performance, E(20)
disp-F12 and E(20)

exch−disp-F12 phenomenally speed up

the basis set convergence over the conventional approaches. As an example, Fig. 5.2

depicts the basis set convergence for E(20)
disp-F12 and E(20)

exch−disp-F12 with various Ansätze

for CH4–CH4.

The explicitly correlated values obtained in the aDZ basis set are as good as standard

dispersion energy with added two (for E(20)
disp-F12) or more than one (for E(20)

exch−disp-F12)

shell of basis functions. However, there is a noticeable trend of overestimating the CBS

energies in the aDZ/aDZ-RI basis set combination which was observed for all noble gases.

This is a consequence of an incomplete error cancellation between the orbital and auxil-

iary basis sets truncations [6]. Thus, the aDZ/aDZ-RI basis set is not recommended for

studies of rare gas dimers. One should notice a phenomenal performance of E(20)
disp-F12

and E(20)
exch−disp-F12 in the aTZ and aQZ bases, respectively. Generally, energies are close
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to the benchmark or even better, depending on the Ansatz utilized in the calculations. It

is undisputed that E(20)
disp-F12 and E(20)

exch−disp-F12 combined with the FULL Ansatz produce

the most accurate results. Nevertheless, the ODA variant works nearly as well as the FULL

one. The E(20)
disp-F12 correction with the EBC Ansatz provides somewhat less accurate val-

ues than the ODA Ansatz, but it is opposite for E(20)
exch−disp-F12. Therefore, the crucial

step was to analyze E(20)
disp-F12 + E(20)

exch−disp-F12 since a sum of the second-order dispersion

and exchange dispersion energies is a target for improvement in SAPT0. It turned out,

that, overall, the EBC Ansatz is inferior to the optimized diagonal Ansatz and at the same

time leads to more expensive calculations. Based on these observations, the EBC Ansatz

was discarded from further tests. Although the FIX Ansatz is the worst performer, even

this approach distinctly enhances the performance compared to the standard E
(20)
disp-F12

and E(20)
exch−disp-F12. As it comes to E(20)

disp-F12(MP2), generally, it improves the dispersion

energy, and the results are converged in the aTZ basis set (see Tables 1–5 in Appendix C).

5.5 Tests on the A24 Database

After the first successful tests, we decided to examine the performance of the explicitly cor-

related second-order dispersion and exchange dispersion energies on the A24 database [7],

using up to aTZ/aTZ-RI basis sets. Overall, E(20)
disp-F12 computed with the FULL and ODA

Ansätze exhibits a very fast basis set convergence going from aDZ to aTZ (see Figures 1, 2,

S1, and S2 (Supporting Information) in Appendix C). These explicitly correlated variants

provide energies converged to the benchmark level in aTZ/aTZ-RI or even earlier, e.g. for

the NH3–H2O complex. However, there are two systems containing the argon atom which

show slightly slower convergence (Ar–CH4 and Ar–C2H4). The FULL Ansatz consistently
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leads to convergence than the ODA one, however, this enhancement is really minor. The

performance of E(20)
disp-F12 combined with the FIX Ansatz clearly shows a slower conver-

gence. This flavor combined with the aTZ basis set provides energies converging to the

level of E(20)
disp /aQZ+(aQZ) for most systems, except Ar–CH4 and Ar–C2H4, for which the

accuracy is equivalent to aTZ+(aTZ). Considering the E(20)
disp-F12(MP2) variant, the basis

set convergence seems to be more erratic. Nevertheless, two groups of systems showing

the same convergence pattern can be distinguished: 1) complexes containing at least one

polar monomer, for which E(20)
disp-F12(MP2) produces energies close to the CBS limit, 2)

nonpolar molecules, for which E(20)
disp-F12(MP2) is the worst variant among all considered

explicitly correlated Ansätze.

Analyzing, the E(20)
exch−disp-F12 energies, we also noticed an accelerated basis set con-

vergence while going from aDZ to aTZ, converging from below to the benchmark level.

The FIX Ansatz is the worst performer showing only a little improvement of E(20)
exch−disp-

F12/aTZ over the conventional E(20)
exch−disp/aQZ. In the case of E(20)

exch−disp-F12/aDZ with

the FULL and ODA Ansätze, energies are converged close to the point of conventional

E
(20)
exch−disp/aTZ+(aTZ). In the aTZ basis set, the FULL and ODA amplitudes work either

as well or better than E(20)
exch−disp/a5Z.

It is of great importance to examine the basis set convergence of the sum of E(20)
disp-

F12 and E(20)
exch−disp-F12. Again, we observed a really impressive basis set convergence

for the FULL and ODA variants, as illustrated in Figures S5 and S6 in the Supporting

Information of Appendix C. The sum E
(20)
disp-F12 + E

(20)
exch−disp-F12 computed in the aTZ

basis is converged to the benchmark level or even lower with two exceptions of the Ar–

CH4 and Ar–C2H4 complexes. The FIX Ansatz in the aTZ basis improves results over the
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conventional E(20)
disp-F12 + E

(20)
exch−disp-F12 sum in the aTZ+(aTZ) basis sets. Interestingly,

one can notice that the E(20)
disp + E

(20)
exch−disp with added -F12(MP2) correction computed in

the aDZ or aTZ basis, generally, leads to overestimated results.

To show a larger picture of the performance of the newly developed F12-corrected

dispersion, the relative errors with respect to the benchmark E(20)
disp , E(20)

exch−disp, and E(20)
disp +

E
(20)
exch−disp data were calculated. The performance of our explicitly correlated methods is

remarkable even in the aDZ basis set, as illustrated in Fig. 5.3. The E(20)
disp-F12 result with

Figure 5.3: Relative errors on the A24 database [7] for E(20)
disp-F12 computed with the

aDZ/aTZ-RI basis sets. This Figure was adapted from Ref. [6].
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the FULL Ansatz stands out from all examined variants, providing a maximum error of

-3.1% for HF–CH4/aDZ. However, E(20)
disp-F12 computed with ODA shows a very compa-

rable performance leading to the largest error of -3.7% for Ar–C2H4. The fixed-amplitude

Ansatz is the least accurate in the family of the SAPT-F12 approaches, with the maximum
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error of -6.7% for Ar–C2H4. As it comes to SAPT-F12(MP2), this approach works well for

polar complexes, but the performance degradation is noticeable for nonpolar ones. Mov-

ing on to the aTZ/aTZ-RI level, E(20)
disp-F12 with both the FULL and ODA Ansätze provide

a radical improvement over the standard E(20)
disp (see Fig. 5.4) with mean unsigned relative

errors (MUREs) values of 0.2 and 0.3%, respectively. Although the FIX and -F12(MP2)

Figure 5.4: Relative errors on the A24 database [7] for E(20)
disp-F12 computed with the

aTZ/aTZ-RI basis sets. Figure was adopted from Ref. [6].

H 2O
-NH 3 C

s

H 2O
-H 2O

 C s

HCN-HCN C
v

HF-H
F C

s

NH 3-N
H 3 C

2h

HF-C
H 4 C

3v

NH 3-C
H 4 C

3v

H 2O
-CH 4 C

s

CH 2O
-CH 2O

 C s

H 2O
-C 2H

4 C
s

CH 2O
-C 2H

4 C
s

C 2H
2-C

2H
2 C

2v

NH 3-C
2H

4 C
s

C 2H
4-C

2H
4 C

2v

CH 4-C
2H

4 C
s

BH 3-C
H 4 C

s

CH 4-C
2H

6 C
s

CH 4-C
2H

6 C
3

CH 4-C
H 4 D

3d

Ar-C
H 4 C

3v

Ar-C
2H

4 C
2v

C 2H
4-C

2H
2 C

2v

C 2H
4-C

2H
4 D

2h

C 2H
2-C

2H
2 D

2h

8

6

4

2

0

Re
la

tiv
e 

Er
ro

r [
%

]

E(20)
disp

E(20)
disp+(aXZ)

E(20)
disp-F12(FULL)

E(20)
disp-F12(ODA)

E(20)
disp-F12(FIX)

E(20)
disp-F12(MP2)

flavors are not that accurate, they still bring improvement over the standard second-order

dispersion energy, leading to MURE values of 1.0 and 0.7%, respectively. Interestingly,

the largest errors observed in our tests originate from complexes containing the argon

atom. This trend confirms our conclusions highlighted in section 5.4, that the auxiliary

basis sets for noble gas dimers are not optimized properly for dispersion calculations.
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Analyzing the statistics for E(20)
exch−disp-F12 in the aDZ/aTZ-RI basis sets (Fig. 5.5), all

F12 variants lead to a very comparable performance and bring the improvement over the

conventional E(20)
exch−disp. Fig. 5.6 shows that an additional gain in the accuracy is obtained

in the aTZ/aTZ-RI basis level (the largest error of -6.9% is reported for the FIX Ansatz).

Figure 5.5: Relative errors on the A24 database [7] for E(20)
exch−disp-F12 computed with the

aDZ/aTZ-RI basis sets.
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In Fig. 5.7 we present the total sum E
(20)
disp-F12+E(20)

exch−disp-F12 calculated in the

aTZ/aTZ-RI basis sets. Again, the ODA flavor works as well as the FULL one. It is a

very exciting observation since the former Ansatz is computationally much cheaper. The

FIX Ansatz is the least accurate, but it can still be utilized to improve results over the

standard SAPT0 dispersion. The -F12(MP2) variant, in most cases, overestimates the total

results.
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Figure 5.6: Relative errors on the A24 database [7] for E(20)
exch−disp-F12 computed with the

aTZ/aTZ-RI basis sets.

H 2O
-NH 3 C

s

H 2O
-H 2O

 C s

HCN-HCN C
v

HF-H
F C

s

NH 3-N
H 3 C

2h

HF-C
H 4 C

3v

NH 3-C
H 4 C

3v

H 2O
-CH 4 C

s

CH 2O
-CH 2O

 C s

H 2O
-C 2H

4 C
s

CH 2O
-C 2H

4 C
s

C 2H
2-C

2H
2 C

2v

NH 3-C
2H

4 C
s

C 2H
4-C

2H
4 C

2v

CH 4-C
2H

4 C
s

BH 3-C
H 4 C

s

CH 4-C
2H

6 C
s

CH 4-C
2H

6 C
3

CH 4-C
H 4 D

3d

Ar-C
H 4 C

3v

Ar-C
2H

4 C
2v

C 2H
4-C

2H
2 C

2v

C 2H
4-C

2H
4 D

2h

C 2H
2-C

2H
2 D

2h

16

14

12

10

8

6

4

2

0

Re
la

tiv
e 

Er
ro

r [
%

]

E(20)
exch disp

E(20)
exch disp+(aXZ)

E(20)
exch disp-F12(FULL)

E(20)
exch disp-F12(ODA)

E(20)
exch disp-F12(FIX)

5.6 Density-Fitting Approximation in SAPT-F12

The bottleneck of the implementation of the E(20)
disp-F12 and E(20)

exch−disp-F12 methods is the

integral evaluation and Fock matrix construction for the most computationally demanding

step O(N2N2
aux), where N is the number of one-electron basis functions and Naux stands

for the number of auxiliary functions. In order to remove this limitation, and to speed up

calculations, the density-fitting (DF) approximation [27, 28, 29] was applied.

Using the density-fitting technique, the two-electron repulsion integrals (ERI) are

represented as follows:

Kµν
λρ ≈ (µν|A)[J−1]AB(B|λγ) (5.27)
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Figure 5.7: Relative errors on the A24 database [7] for the sum E
(20)
disp-F12+E(20)

exch−disp-F12
computed with the aTZ/aTZ-RI basis sets.
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where the Coulomb metric JAB and the three center integrals are defined as:

JAB =
∫
A(r1)

1

r12
B(r2)d

3r1d
3r2 (5.28)

(B|λσ) =
∫
B(r1)

1

r12
λ(r2)σ(r2)d

3r1d
3r2, (5.29)

where µ, ν, λ, ρ are AO functions, A and B are the functions from the DF basis (which is

in general different from the RI basis).

In our new F12-corrected dispersion energies, in addition to two-electron repulsion

integrals, we need to fit four types of explicitly correlated integrals containing the opera-

tor: F̂12, F̂ 2
12, F̂12r

−1
12 , and [[F̂12, t̂1 + t̂2], F̂12]. The last operator contains the commutator
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between the correlation factor and the sum of kinetic energy operators for monomer A and

B, respectively.

This set of integrals has to be evaluated employing density fitted formulas which are

explicitly robust [29, 171]:

(pq|v̂12|rs)robust ≈ (p̃q|v̂12|rs) + (pq|v̂12|r̃s)− (p̃q|v̂12|r̃s). (5.30)

The integrals are approximated by expanding each orbital product density in an auxiliary

density fitting basis set, that is |pq) ≈ |p̃q). The v̂12 operator in the above formula is

a 2-electron operator, e.g. F̂12. This approach fulfils the condition that (pq|v̂12|rs) −

(pq|v̂12|rs)robust is quadratic in the fitting error. In order to find fitting coefficients, we

minimize the residual:

∆w
pq = (pq − p̃q|ŵ12|pq − p̃q). (5.31)

One can choose that ŵ12 = v̂12, but it is not recommended since additional charge con-

straints have to be assumed [29]. Therefore, the ŵ12 = r−112 weight factor is utilized from

now on.

Applying the DF and robust DF formalism to the V , X , B and C intermediate matri-

ces of Eqs. 5.10–5.14, we obtain:

Notation : (5.32)

JAB = (A|r−112 |B)

FAB = (A|F̂12|B)
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KF
AB = (A|F̂12r

−1
12 |B)

F 2
AB = (A|F̂ 2

12|B)

UF
AB = (A|[[F̂12, t̂1 + t̂2], f̂12]|B)

JAij = (A|r−112 |ij)

FA
ij = (A|F̂12|ij)

KF
A,ij = (A|F̂12r

−1
12 |ij)

F 2
A,ij = (A|F̂ 12|ij)

UF
A,ij = (A|[[F̂12, t̂1 + t̂2], f̂12]|ij)

DA
ij = [J−1]AB(B|r−112 |ij)

V ij
kl ≈ DA

ikK
F
A,jl +KF

A,ikD
A
jl −DA

ikK
F
ABD

B
jl

− JAirD
A
js(D

C
krF

C
ls + FC

krD
C
ls −DC

krFCDD
D
ls )

− JAixD
A
jn(DC

kxF
C
ln + FC

kxD
C
ln −DC

kxFCDD
D
ln)

− JAimD
A
jx(D

C
kmF

C
lx + FC

kmD
C
lx −DC

kmFCDD
D
lx) (5.33)

Xkl
mn ≈ DA

kmF
2
A,ln + F 2

A,kmD
A
ln −DA

kmF
2
ABD

B
ln

− (DA
krF

A
ls + FA

krD
A
ls −DA

krFABD
B
ls)(D

C
mrF

C
ns + FC

mrD
C
ns −DC

mrFCDD
D
ns)

− (DA
kxF

A
lv + FA

kxD
A
lv −DA

kxFABD
B
lv)(D

C
mxF

C
nv + FC

mxD
C
nv −DC

mxFCDD
D
nv)

− (DA
koF

A
lx + FA

koD
A
lx −DA

koFABD
B
lx)(D

C
moF

C
nx + FC

moD
C
nx −DC

moFCDD
D
nx)

(5.34)
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Ckl
ab = faxF

kl
xb + F kl

axfxb

≈ fax(D
A
kxF

A
lb + FA

kxD
A
lb −DA

kxFABD
B
lb)

+ (DA
kaF

A
lx + FA

kaD
A
lx −DA

kaFABD
B
lx)fxb (5.35)

Bkl,mn ≈ DA
kmU

F
A,ln + UF

A,kmD
A
ln −DA

kmU
F
ABD

B
ln

+ (DA
xm(fxk + kxk) +DA

rm(frk + krk))F
2
A,ln

+ (F 2
A,xm(fxk + kxk) + F 2

A,rm(frk + krk))D
A
ln

− (DA
xm(fxk + kxk) +DA

rm(frk + krk))F
2
ABD

B
ln

+ DA
km(F 2

A,xn(fxl + kxl) + F 2
A,sn(fsl + ksl))

+ F 2
A,km(DA

xn(fxl + kxl) +DA
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− DA
kmF

2
AB(DB

xn(fxl + fxl) +DB
sn(fsl + ksl))
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mxF
C
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C
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D
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C
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D
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maFCDD
D
nx)
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ls (DC

mrF
C
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mrFCDD
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mxD
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+ (DA
kr(frx + krx) +DA

kx′ (fx′x + kx′x))

×FABDB
lv(D

C
mxF

C
nv + FC

mxD
C
nv −DC

mxFCDD
D
nv)

− (DA
kr(fro + kro) +DA

kx(fxo + kxo))

×FA
lx(DC

moF
C
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moD
C
nx −DC

moFCDD
D
nx)

− (FA
kr(fro + kro) + FA

kx(fxo + kxo))D
A
lx
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moF

C
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C
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moFCDD
D
nx)
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D
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A
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C
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D
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C
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C
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mrFCDD
D
ns)

+ DA
krFAB(DB

ls′ (fs′s + ks′s) +DB
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×(DC
mrF

C
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C
ns −DC

mrFCDD
D
ns)

− DA
kx(F

A
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×(DC
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moFCDD
D
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A
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(5.36)

Note that in the above formulas fkx and kkx are matrix elements of the Fock and

exchange operators computed in various bases.

The density-fitted explicitly correlated second-order exchange-dispersion energy, DF-

E
(20)
exch−disp-F12, is expressed as follows:

E
(20)
exch−disp-F12 = 2T ijkl [(D
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′
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′
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j′ ] (5.37)

The DF-E(20)
disp-F12(ODA) and DF-E(20)

exch−disp-F12(ODA) algorithms have been imple-

mented in the PSI4NUMPY framework [172]. Although the optimization of the code is

currently in progress, the DF approach dramatically improves the performance over the

non-DF variant (see Table 5.2).

Table 5.2: The calculation times (in s) for the DF and non-DF E
(20)
disp-F12(ODA)+

E
(20)
exch−disp-F12(ODA) corrections performed on the Hopper Supercomputer at Auburn

University using 1 core. The results do not include the time for SCF calculations.

basis non-DF DF
H2O–H2O

aDZ/aDZ-RI 759.04 20.03
aTZ/aTZ-RI 4393.62 72.18
aQZ/aQZ-RI 34758.14 348.12
a5Z/a5Z-RI 688424.07 1278.98

CH4–CH4

aDZ/aDZ-RI 2798.12 43.58
aTZ/aTZ-RI 20057.72 191.44
aQZ/aQZ-RI 478924.25 914.21
a5Z/a5Z-RI no result 4199.16

5.7 Summary

In this work, we presented and tested a novel development in SAPT, that is SAPT-F12.

The F12 techniques significantly boost the basis sets convergence of the SAPT dispersion

and exchange dispersion energy, resulting in the F12 calculations in an X-tuple zeta basis

about as accurate as conventional calculations in bases with cardinal numbers (X + 2) for
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E
(20)
disp and either (X + 1) or (X + 2) for E(20)

exch−disp. We also succeeded in finding an ap-

proximation, Optimized Diagonal Ansatz (ODA), which is computationally very efficient

(scales likeO(N5)), free from numerical issues, and leading to the accuracy comparable to

the fully optimized-amplitude approach. Moreover, the density-fitted explicitly correlated

dispersion and exchange dispersion methods were presented for the first time, bringing

excellent performance. However, it should be noted that the DF-E(20)
disp-F12(ODA) and DF-

E
(20)
exch−disp-F12(ODA) implementations are not yet optimal and further work is underway

to reduce the cost of these methods.
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Chapter 6

Conclusions

In this work, in an attempt to compute high-accuracy interaction energies of triply bound

systems, the characteristic points on the CO–CO, N2–N2, and CO–N2 potential energy

surfaces were studied. At the frozen core CCSD(T) level, the basis space was saturated

utilizing a combination of midbond functions, basis set extrapolation, and explicit cor-

relation. In order to ensure the spectroscopic accuracy, the post-CCSD(T) corrections,

relativistic effects, and core-core and core-valence correlations were included. The impor-

tance of higher-orders of coupled cluster theory, which may have a critical impact on the

shape of the potential energy surface, was highlighted for triply bound systems.

The new forms of damping functions for the DFT-D3 approach were presented. The

models were designed based on a linear combination of error functions and a piecewise-

linear function. We also explored the possibility of constructing a damped dispersion func-

tion without higher than C6 dispersion coefficients. The testing of new damping functions

showed that they were unable to improve the performance over the -D3M and -D3M(BJ)

variants without including an empirical s8 factor. One limitation of DFT-D3 may originate

from the van der Waals coefficients C6 and C8 as well as the cutoff radius RAB
0 not being
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sufficiently precise. However, it seems that the currently utilized damping functions in the

DFT-D3 method are unable to reproduce effects at the short range which may be missing

in the DFT functionals.

The explicitly correlated dispersion and exchange dispersion energies, E(20)
disp-F12 and

E
(20)
exch−disp-F12, were derived and implemented within the PSI4NUMPY framework. The

most efficient and accurate approximation, Optimized Diagonal Ansatz (ODA), was pro-

posed. The DF algorithm was applied to the explicitly correlated dispersion and exchange

dispersion corrections, DF-E(20)
disp-F12(ODA) and DF-E(20)

exch−disp-F12(ODA), resulting in a

remarkable speedup. This step is crucial to extend the SAPT-F12 calculations to medium

and large systems.

6.1 Future and Outlook

They are many directions to continue the development of SAPT-F12. In the first step,

the DF-E(20)
disp-F12(ODA) and DF-E(20)

exch−disp-F12(ODA) implementation will be ported to

the public version of the PSI4 quantum chemistry program [173]. There is also ongoing

massively parallel implementation of F12 dispersion in LS-Dalton [174]. Another direc-

tion is to apply the F12 formalism to the intramolecular E(21)
disp correlation contribution and

higher-order dispersion corrections.
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[72] A. Köhn, G. W. Richings, and D. P. Tew, J. Chem. Phys. 129, 201103 (2008).

[73] E. F. Valeev, Phys. Chem. Chem. Phys. 10, 106 (2008).

123



[74] M. Torheyden and E. F. Valeev, Phys. Chem. Chem. Phys. 10, 3410 (2008).

[75] M. Torheyden and E. F. Valeev, J. Chem. Phys. 131, 171103 (2009).

[76] T. Yanai and T. Shiozaki, J. Chem. Phys. 136, 084107 (2012).
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[169] R. Moszyński, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 100, 1312 (1994).

128



[170] K. Patkowski and K. Szalewicz, J. Chem. Phys. 127, 164103 (2007).

[171] J. C. Womack and F. R. Manby, J. Chem. Phys. 140, 044118 (2014).

[172] D. G. A. Smith, L. A. Burns, D. A. Sirianni, D. R. Nascimento, A. Kumar, A. M.
James, J. B. Schriber, T. Zhang, B. Zhang, A. S. Abbott, et al., J. Chem. Theory
Comput. 14, 3504 (2018).

[173] R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince, III,
E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio, R. M. Richard, et al.,
J. Chem. Theory Comput. 13, 3185 (2017).

[174] LS-DALTON, a linear-scaling molecular electronic structure program, Release
Dalton2016, 2016, http://daltonprogram.org .

129



Appendices

130



Appendix A

Triple bonds and coupled-cluster convergence: CCSDTQ interaction energies for
complexes involving CO and N2

131



Supporting Information for

Triple bonds and coupled-cluster convergence: CCSDTQ

interaction energies for complexes involving CO and N2

1



TABLE SI: Interaction energy (in cm−1) of different CCSD(T)/CCSD(T)-F12 variants and

basis sets for the C2h local minimum of the CO dimer.

X

method D T Q 5 6

CCSD(T)/aXZ -83.24 -110.22 -117.37 -120.83 -122.77

ext. -121.99 -123.64 -124.36 -125.32

CCSD(T)/aXZM -103.59 -119.63 -123.28 -124.11 -124.49

ext. -126.11 -125.99 -125.00 -125.00

CCSD(T)-F12a/aXZ -128.35 -130.13 -125.10 -124.91 -124.89

ext. -130.50 -121.49 -124.68 -124.80

CCSD(T**)-F12a/aXZ -135.77 -133.04 -126.46 -125.65 -125.35

ext. -131.50 -121.72 -124.76 -124.87

CCSD(T)-F12b/aXZ -118.48 -126.42 -123.28 -123.88 -124.26

ext. -129.38 -121.05 -124.48 -124.72

CCSD(T**)-F12b/aXZ -125.90 -129.33 -124.64 -124.62 -124.71

ext. -130.39 -121.28 -124.56 -124.78

CCSD(T)-F12a/aXZM -120.33 -125.04 -125.50 -125.34

ext. -126.94 -125.75 -125.16

CCSD(T**)-F12a/aXZM -128.75 -128.07 -126.88 -126.08

ext. -127.69 -125.92 -125.22

CCSD(T)-F12b/aXZM -112.49 -122.38 -124.29 -124.69

ext. -126.45 -125.60 -125.09

CCSD(T**)-F12b/aXZM -120.92 -125.41 -125.67 -125.43

ext. -127.20 -125.77 -125.15

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.

2



TABLE SII: Interaction energy (in cm−1) of different CCSD(T)/CCSD(T)-F12 variants

and basis sets for the Cs local minimum of the CO dimer.

X

method D T Q 5 6

CCSD(T)/aXZ -90.32 -110.53 -117.10 -120.26 -121.70

ext. -119.69 -122.43 -123.03 -123.62

CCSD(T)/aXZM -102.62 -119.04 -121.95 -122.63 -122.91

ext. -124.29 -123.83 -123.25 -123.28

CCSD(T)-F12a/aXZ -120.57 -124.48 -123.03 -123.13 -123.27

ext. -126.01 -122.02 -123.18 -123.42

CCSD(T**)-F12a/aXZ -127.87 -127.31 -124.35 -123.84 -123.71

ext. -126.95 -122.25 -123.26 -123.48

CCSD(T)-F12b/aXZ -114.05 -121.87 -121.73 -122.39 -122.80

ext. -125.04 -121.69 -123.02 -123.32

CCSD(T**)-F12b/aXZ -121.35 -124.69 -123.05 -123.10 -123.23

ext. -125.98 -121.91 -123.09 -123.37

CCSD(T)-F12a/aXZM -120.21 -123.68 -123.73 -123.59

ext. -124.87 -123.69 -123.43

CCSD(T**)-F12a/aXZM -128.30 -126.62 -125.06 -124.30

ext. -125.65 -123.85 -123.49

CCSD(T)-F12b/aXZM -114.21 -121.56 -122.76 -123.07

ext. -124.39 -123.56 -123.38

CCSD(T**)-F12b/aXZM -122.30 -124.50 -124.09 -123.78

ext. -125.16 -123.72 -123.44

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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TABLE SIII: Interaction energy (in cm−1) of different CCSD(T)/CCSD(T)-F12 variants

and basis sets for the C2v T-shape saddle point of the N2 dimer.

X

method D T Q 5 6

CCSD(T)/aXZ -76.12 -93.48 -98.26 -100.05 -101.33

ext. -99.91 -101.71 -101.96 -103.06

CCSD(T)/aXZM -91.82 -100.59 -102.06 -102.35 -102.50

ext. -104.08 -103.24 -102.69 -102.70

CCSD(T)-F12a/aXZ -109.09 -103.21 -102.36 -102.59 -102.62

ext. -100.31 -101.68 -102.86 -102.64

CCSD(T**)-F12a/aXZ -115.39 -105.61 -103.48 -103.20 -102.99

ext. -101.07 -101.87 -102.91 -102.69

CCSD(T)-F12b/aXZ -101.80 -100.44 -101.11 -101.88 -102.18

ext. -99.44 -101.56 -102.69 -102.58

CCSD(T**)-F12b/aXZ -108.10 -102.84 -102.24 -102.48 -102.55

ext. -100.20 -101.75 -102.75 -102.63

CCSD(T)-F12a/aXZM -100.67 -102.49 -103.03 -102.90

ext. -103.29 -103.39 -102.76

CCSD(T**)-F12a/aXZM -107.53 -104.96 -104.15 -103.50

ext. -103.91 -103.54 -102.80

CCSD(T)-F12b/aXZM -94.57 -100.44 -102.17 -102.44

ext. -102.95 -103.40 -102.73

CCSD(T**)-F12b/aXZM -101.43 -102.91 -103.29 -103.04

ext. -103.57 -103.55 -102.78

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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TABLE SIV: Interaction energy (in cm−1) of different CCSD(T)/CCSD(T)-F12 variants

and basis sets for the D2h configuration of the N2 dimer.

X=

method D T Q 5 6

CCSD(T)/aXZ -45.83 -67.63 -71.99 -74.92 -76.93

ext. -77.11 -76.17 -77.82 -79.60

CCSD(T)/aXZM -60.34 -75.13 -77.58 -78.42 -78.73

ext. -81.23 -79.46 -79.27 -79.14

CCSD(T)-F12a/aXZ -84.65 -81.77 -78.94 -78.70 -78.86

ext. -80.28 -77.24 -78.52 -79.03

CCSD(T**)-F12a/aXZ -91.43 -84.39 -80.16 -79.36 -79.27

ext. -81.14 -77.46 -78.58 -79.09

CCSD(T)-F12b/aXZ -74.90 -78.12 -77.20 -77.70 -78.25

ext. -79.20 -76.91 -78.29 -78.97

CCSD(T**)-F12b/aXZ -81.68 -80.73 -78.43 -78.36 -78.66

ext. -80.05 -77.12 -78.36 -79.03

CCSD(T)-F12a/aXZM -76.99 -78.95 -79.24 -79.22 -79.17

ext. -79.94 -79.53 -79.22 -79.09

CCSD(T**)-F12a/aXZM -84.55 -81.67 -80.48 -79.89 -79.58

ext. -80.61 -79.71 -79.28 -79.15

CCSD(T)-F12b/aXZM -69.51 -76.54 -78.22 -78.69 -78.86

ext. -79.66 -79.53 -79.21 -79.08

CCSD(T**)-F12b/aXZM -77.06 -79.25 -79.47 -79.36 -79.27

ext. -80.34 -79.71 -79.26 -79.14

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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TABLE SV: Interaction energy (in cm−1) of different CCSD(T)/CCSD(T)-F12 variants

and basis sets for the Cs near T-shape saddle point of the CO–N2 complex.

X

method D T Q 5 6

CCSD(T)/aXZ -84.79 -97.73 -102.87 -105.05 -106.30

ext. -102.98 -106.18 -107.41 -108.02

CCSD(T)/aXZM -99.3 -106.18 -107.12 -107.39 -107.51

ext. -109.58 -108.12 -107.73 -107.70

CCSD(T)-F12a/aXZ -116.34 -107.07 -107.11 -107.61 -107.67

ext. -103.18 -106.89 -108.09 -107.75

CCSD(T**)-F12a/aXZ -123.26 -109.75 -108.36 -108.29 -108.08

ext. -104.07 -107.11 -108.16 -107.80

CCSD(T)-F12b/aXZ -108.08 -103.84 -105.60 -106.75 -107.12

ext. -102.07 -106.64 -107.91 -107.64

CCSD(T**)-F12b/aXZ -115.0 -106.52 -106.86 -107.43 -107.54

ext. -102.96 -106.86 -107.98 -107.69

CCSD(T)-F12a/aXZM -105.37 -108.01 -108.04 -107.93

ext. -108.83 -108.02 -107.79

CCSD(T**)-F12a/aXZM -112.85 -110.77 -109.31 -108.61

ext. -109.61 -108.20 -107.85

CCSD(T)-F12b/aXZM -98.36 -105.57 -107.00 -107.38

ext. -108.31 -108.00 -107.75

CCSD(T**)-F12b/aXZM -105.83 -108.33 -108.27 -108.06

ext. -109.08 -108.18 -107.81

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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TABLE SVI: Interaction energy (in cm−1) of different CCSD(T)/CCSD(T)-F12 variants

and basis sets for the C2v T-shape saddle point of the CO–N2 complex.

X

method D T Q 5 6

CCSD(T)/aXZ -76.14 -97.76 -102.50 -105.00 -106.51

ext. -105.92 -106.57 -107.72 -108.51

CCSD(T)/aXZM -92.59 -104.76 -107.04 -107.55 -107.78

ext. -109.75 -108.84 -108.14 -108.09

CCSD(T)-F12a/aXZ -129.47 -110.06 -107.73 -107.87 -108.00

ext. -101.49 -105.85 -108.01 -108.15

CCSD(T**)-F12a/aXZ -135.28 -112.36 -108.80 -108.45 -108.35

ext. -102.31 -106.04 -108.07 -108.20

CCSD(T)-F12b/aXZ -121.23 -107.11 -106.40 -107.13 -107.55

ext. -100.76 -105.72 -107.88 -108.11

CCSD(T**)-F12b/aXZ -127.03 -109.41 -107.48 -107.71 -107.91

ext. -101.58 -105.90 -107.94 -108.16

CCSD(T)-F12a/aXZM -104.33 -107.79 -108.40 -108.32

ext. -109.11 -108.76 -108.21

CCSD(T**)-F12a/aXZM -110.81 -110.16 -109.48 -108.90

ext. -109.76 -108.91 -108.26

CCSD(T)-F12b/aXZM -97.98 -105.71 -107.50 -107.84

ext. -108.83 -108.73 -108.16

CCSD(T**)-F12b/aXZM -104.46 -108.09 -108.59 -108.42

ext. -109.48 -108.88 -108.21

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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TABLE SVII: Interaction energy (in cm−1) of different MP2/MP2-F12 and

CCSD/CCSD-F12 variants and basis sets for the global minimum geometry of the CO

dimer.

X

method D T Q 5 6

MP2/aXZ -129.10 -141.76 -149.15 -152.52 -153.97

ext. -148.87 -153.97 -155.55 -155.97

MP2/aXZM -138.29 -151.09 -154.11 -155.12 -155.53

ext. -156.75 -156.04 -156.11 -156.09

MP2-F12/aXZ -152.15 -154.51 -155.30 -155.72 -155.92

ext. -155.63 -155.89 -156.13 -156.17

MP2-F12/aXZM -151.90 -155.58 -155.95 -156.06

ext. -157.06 -156.27 -156.18

CCSD/aXZ -76.08 -85.56 -91.40 -93.83 -94.78

ext. -91.34 -95.09 -95.88 -96.09

CCSD/aXZM -85.14 -94.03 -95.34 -95.66 -95.77

ext. -98.04 -96.04 -95.93 -95.90

CCSD-F12a/aXZ -97.44 -97.06 -96.64 -96.45 -96.33

ext. -97.02 -96.35 -96.22 -96.15

CCSD-F12b/aXZ -91.28 -94.42 -95.33 -95.67 -95.82

ext. -95.86 -96.01 -96.01 -95.99

CCSD-F12a/aXZM -97.37 -97.81 -96.85 -96.41

ext. -97.93 -96.20 -95.96

CCSD-F12b/aXZM -91.81 -95.68 -95.94 -95.94

ext. -97.24 -96.18 -95.94

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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TABLE SVIII: Interaction energy (in cm−1) of different MP2/MP2-F12 and

CCSD/CCSD-F12 variants and basis sets for the C2h local minimum of the CO dimer.

X

method D T Q 5 6

MP2/aXZ -69.56 -94.51 -101.79 -105.56 -107.77

ext. -105.43 -108.17 -109.40 -110.71

MP2/aXZM -86.95 -103.25 -107.74 -109.06 -109.74

ext. -109.84 -111.07 -110.45 -110.66

MP2-F12/aXZ -114.66 -116.20 -110.86 -110.55 -110.57

ext. -116.46 -107.03 -110.20 -110.53

MP2-F12/aXZM -103.89 -109.63 -110.66 -110.77

ext. -111.95 -111.33 -110.87

CCSD/aXZ -60.08 -82.33 -88.16 -91.07 -92.72

ext. -92.10 -93.47 -94.01 -94.89

CCSD/aXZM -76.81 -90.12 -93.16 -93.83 -94.16

ext. -95.46 -95.43 -94.54 -94.60

CCSD-F12a/aXZ -105.08 -102.45 -96.06 -95.27 -94.93

ext. -100.97 -91.45 -94.40 -94.40

CCSD-F12b/aXZ -95.21 -98.74 -94.24 -94.23 -94.30

ext. -99.85 -91.01 -94.20 -94.32

CCSD-F12a/aXZM -93.60 -95.75 -95.53 -95.15

ext. -96.56 -95.28 -94.74

CCSD-F12b/aXZM -85.77 -93.09 -94.32 -94.50

ext. -96.07 -95.13 -94.67

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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TABLE SIX: Interaction energy (in cm−1) of different MP2/MP2-F12 and

CCSD/CCSD-F12 variants and basis sets for the Cs local minimum of the CO dimer.

X

method D T Q 5 6

MP2/aXZ -80.88 -99.04 -105.36 -108.66 -110.30

ext. -107.33 -110.52 -111.57 -112.48

MP2/aXZM -90.89 -106.58 -110.00 -111.13 -111.68

ext. -111.52 -112.25 -112.22 -112.43

MP2-F12/aXZ -111.55 -114.21 -112.26 -112.20 -112.37

ext. -115.21 -110.90 -112.08 -112.55

MP2-F12/aXZM -109.63 -112.16 -112.39 -112.48

ext. -112.96 -112.49 -112.57

CCSD/aXZ -67.01 -83.30 -88.63 -91.32 -92.54

ext. -90.80 -93.06 -93.61 -94.14

CCSD/aXZM -76.45 -90.33 -92.74 -93.30 -93.54

ext. -94.50 -94.25 -93.79 -93.87

CCSD-F12a/aXZ -97.66 -97.51 -94.73 -94.31 -94.19

ext. -97.34 -92.75 -93.81 -93.98

CCSD-F12b/aXZ -91.14 -94.90 -93.43 -93.56 -93.71

ext. -96.37 -92.41 -93.65 -93.88

CCSD-F12a/aXZM -94.56 -95.26 -94.67 -94.35

ext. -95.29 -94.18 -94.00

CCSD-F12b/aXZM -88.56 -93.14 -93.70 -93.83

ext. -94.81 -94.05 -93.95

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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TABLE SX: Interaction energy (in cm−1) of different MP2/MP2-F12 and

CCSD/CCSD-F12 variants and basis sets for the global minimum geometry of the N2

dimer.

X

method D T Q 5 6

MP2/aXZ -108.79 -125.92 -131.45 -134.18 -135.93

ext. -132.94 -135.55 -136.80 -138.29

MP2/aXZM -120.04 -133.51 -136.23 -137.04 -137.46

ext. -139.00 -138.20 -137.91 -138.03

MP2-F12/aXZ -139.79 -138.41 -137.46 -137.62 -137.83

ext. -137.91 -136.86 -137.77 -138.12

MP2-F12/aXZM -133.73 -137.10 -137.88 -137.99

ext. -138.70 -138.44 -138.11

CCSD/aXZ -56.19 -68.98 -72.87 -74.76 -76.00

ext. -74.17 -75.79 -76.50 -77.65

CCSD/aXZM -67.59 -75.65 -76.79 -76.95 -77.06

ext. -78.86 -77.60 -77.14 -77.22

CCSD-F12a/aXZ -85.50 -80.08 -78.01 -77.62 -77.49

ext. -77.89 -76.59 -77.19 -77.30

CCSD-F12b/aXZ -77.83 -77.20 -76.67 -76.85 -77.01

ext. -77.01 -76.37 -77.03 -77.22

CCSD-F12a/aXZM -79.58 -78.38 -78.01 -77.64

ext. -78.04 -77.73 -77.24

CCSD-F12b/aXZM -72.96 -76.19 -77.09 -77.16

ext. -77.72 -77.74 -77.22

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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TABLE SXI: Interaction energy (in cm−1) of different MP2/MP2-F12 and

CCSD/CCSD-F12 variants and basis sets for the C2v T-shape saddle point of the N2 dimer.

X

method D T Q 5 6

MP2/aXZ -100.46 -117.53 -122.69 -124.79 -126.27

ext. -123.83 -126.42 -127.02 -128.27

MP2/aXZM -113.30 -124.29 -126.50 -127.23 -127.60

ext. -128.71 -128.22 -128.03 -128.12

MP2-F12/aXZ -135.22 -128.82 -127.71 -127.94 -127.98

ext. -125.70 -126.84 -128.19 -128.01

MP2-F12/aXZM -124.31 -127.27 -128.02 -128.12

ext. -128.56 -128.54 -128.21

CCSD/aXZ -54.92 -68.26 -71.92 -73.29 -74.33

ext. -72.99 -74.56 -74.77 -75.72

CCSD/aXZM -68.21 -74.30 -75.09 -75.20 -75.29

ext. -76.65 -75.77 -75.36 -75.42

CCSD-F12a/aXZ -88.11 -78.22 -76.14 -75.92 -75.67

ext. -73.63 -74.58 -75.69 -75.32

CCSD-F12b/aXZ -80.82 -75.45 -74.90 -75.20 -75.23

ext. -72.76 -74.45 -75.53 -75.26

CCSD-F12a/aXZM -77.57 -76.45 -76.19 -75.83

ext. -76.01 -75.97 -75.45

CCSD-F12b/aXZM -71.47 -74.40 -75.33 -75.37

ext. -75.67 -75.98 -75.42

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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TABLE SXII: Interaction energy (in cm−1) of different MP2/MP2-F12 and

CCSD/CCSD-F12 variants and basis sets for the D2h configuration of the N2 dimer.

X=

method D T Q 5 6

MP2/aXZ -81.26 -103.52 -108.22 -111.57 -113.89

ext. -113.19 -112.65 -114.91 -116.99

MP2/aXZM -93.35 -111.19 -114.29 -115.54 -116.07

ext. -118.57 -116.64 -116.81 -116.79

MP2-F12/aXZ -121.14 -119.53 -116.38 -116.17 -116.40

ext. -118.59 -114.45 -116.02 -116.66

MP2-F12/aXZM -111.22 -115.96 -116.50 -116.68 -116.77

ext. -118.12 -116.98 -116.89 -116.89

CCSD/aXZ -23.76 -40.36 -43.31 -45.65 -47.28

ext. -47.64 -46.47 -47.93 -49.42

CCSD/aXZM -34.98 -46.38 -47.94 -48.53 -48.75

ext. -51.05 -49.17 -49.10 -49.04

CCSD-F12a/aXZ -62.07 -54.59 -50.32 -49.47 -49.24

ext. -51.17 -47.57 -48.65 -48.88

CCSD-F12b/aXZ -52.32 -50.94 -48.58 -48.47 -48.64

ext. -50.08 -47.24 -48.42 -48.82

CCSD-F12a/aXZM -51.54 -50.34 -49.69 -49.39 -49.23

ext. -49.99 -49.31 -49.08 -49.01

CCSD-F12b/aXZM -44.05 -47.92 -48.68 -48.86 -48.92

ext. -49.71 -49.31 -49.06 -49.00

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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TABLE SXIII: Interaction energy (in cm−1) of different MP2/MP2-F12 and

CCSD/CCSD-F12 variants and basis sets for the global minimum geometry of the CO–N2

complex.

X

MP2/aXZ -105.68 -121.30 -127.44 -130.08 -131.51

ext. -127.87 -131.68 -132.33 -133.43

MP2/aXZM -114.09 -128.79 -131.50 -132.39 -132.81

ext. -133.61 -133.32 -133.27 -133.37

MP2-F12/aXZ -132.40 -133.88 -133.06 -133.13 -133.25

ext. -134.59 -132.54 -133.18 -133.41

MP2-F12/aXZM -129.84 -133.14 -133.31 -133.36

ext. -134.28 -133.46 -133.42

CCSD/aXZ -66.68 -79.43 -84.42 -86.46 -87.50

ext. -84.79 -87.82 -88.09 -88.88

CCSD/aXZM -75.14 -86.48 -87.95 -88.26 -88.41

ext. -89.88 -88.86 -88.54 -88.59

CCSD-F12a/aXZ -92.63 -90.99 -89.33 -89.02 -88.90

ext. -90.38 -88.19 -88.68 -88.71

CCSD-F12b/aXZ -86.95 -88.63 -88.19 -88.36 -88.48

ext. -89.42 -87.95 -88.52 -88.62

CCSD-F12a/aXZM -89.87 -90.13 -89.39 -89.02

ext. -89.99 -88.87 -88.63

CCSD-F12b/aXZM -84.51 -88.22 -88.56 -88.59

ext. -89.54 -88.83 -88.61

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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TABLE SXIV: Interaction energy (in cm−1) of different MP2/MP2-F12 and

CCSD/CCSD-F12 variants and basis sets for the Cs near T-shape saddle point of the

CO–N2 complex.

X

method D T Q 5 6

MP2/aXZ -97.39 -110.83 -116.89 -119.52 -121.06

ext. -116.28 -120.87 -122.36 -123.18

MP2/aXZM -109.93 -119.24 -121.33 -122.15 -122.55

ext. -123.67 -123.18 -123.06 -123.13

MP2F12/aXZ -132.61 -122.24 -122.31 -122.83 -122.95

ext. -117.89 -122.12 -123.33 -123.12

MP2-F12/aXZM -119.40 -122.57 -122.99 -123.12

ext. -123.61 -123.25 -123.24

CCSD/aXZ -62.01 -70.92 -74.84 -76.49 -77.48

ext. -74.47 -77.26 -78.29 -78.83

CCSD/aXZM -74.36 -78.13 -78.35 -78.42 -78.47

ext. -80.22 -78.83 -78.55 -78.56

CCSD-F12a/aXZ -94.16 -80.55 -79.22 -79.13 -78.90

ext. -74.84 -78.00 -78.99 -78.58

CCSD-F12b/aXZ -85.95 -77.35 -77.73 -78.28 -78.36

ext. -73.73 -77.76 -78.81 -78.47

CCSD-F12a/aXZM -81.11 -80.28 -79.43 -79.05

ext. -79.64 -78.77 -78.63

CCSD-F12b/aXZM -74.14 -77.85 -78.40 -78.50

ext. -79.13 -78.75 -78.59

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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TABLE SXV: Interaction energy (in cm−1) of different MP2/MP2-F12 and

CCSD/CCSD-F12 variants and basis sets for the C2v T-shape saddle point of the CO–N2

complex.

X

method D T Q 5 6

MP2/aXZ -97.28 -110.84 -116.95 -119.60 -121.16

ext. -116.34 -120.97 -122.46 -123.29

MP2/aXZM -109.87 -119.3 -121.42 -122.25 -122.66

ext. -123.78 -123.28 -123.17 -123.24

MP2F12/aXZ -132.61 -122.33 -122.42 -122.94 -123.06

ext. -118.01 -122.23 -123.45 -123.24

MP2-F12/aXZM -119.48 -122.67 -123.10 -123.23

ext. -123.72 -123.37 -123.35

CCSD/aXZ -61.68 -70.69 -74.64 -76.31 -77.30

ext. -74.28 -77.09 -78.13 -78.66

CCSD/aXZM -74.08 -77.93 -78.18 -78.25 -78.31

ext. -80.07 -78.67 -78.38 -78.39

CCSD-F12a/aXZ -93.92 -80.39 -79.06 -78.97 -78.74

ext. -74.70 -77.84 -78.84 -78.42

CCSD-F12b/aXZ -85.66 -77.16 -77.55 -78.11 -78.19

ext. -73.59 -77.60 -78.65 -78.31

CCSD-F12a/aXZM -80.95 -80.13 -79.27 -78.89

ext. -79.48 -78.61 -78.46

CCSD-F12b/aXZM -73.94 -77.68 -78.23 -78.33

ext. -78.96 -78.59 -78.42

The extrapolated value (rows ext.) in the X column is computed using interaction energies

in bases a(X -1)Z and aXZ.
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ABSTRACT
High-accuracy noncovalent interaction energies are indispensable as data points for potential energy surfaces and as benchmark values for
improving and testing more approximate approaches. The preferred algorithm (the gold standard) for computing these energies has been the
coupled-cluster method with singles, doubles, and perturbative triples [CCSD(T)] converged to the complete basis set (CBS) limit. However,
gold-standard calculations are expensive as correlated interaction energies converge slowly with the basis set size, and establishing the CBS
limit to better than 0.05 kcal/mol typically requires a CCSD(T) calculation in a basis set of at least triple-zeta quality. If an even higher
accuracy is required (for example, for the assignment of complicated high-resolution spectra), establishing a superior platinum standard
requires both a precisely converged CCSD(T)/CBS limit and the corrections for the core correlation, relativistic effects, and higher-order
coupled-cluster terms at least through the perturbative quadruple excitations. On the other hand, if a triple-zeta CCSD(T) calculation is not
feasible but a double-zeta one is, it is worthwhile to look for a silver standard that provides the most accurate and consistent approximation to
the gold standard at a reduced computational cost. We review the recent developments aimed at (i) increasing the breadth and diversity of the
available collection of gold-standard benchmark interaction energies, (ii) evaluating the best computational strategies for platinum-standard
calculations and producing beyond-CCSD(T) potential energy surfaces for spectroscopic and scattering applications of the highest precision,
and (iii) improving the accuracy of the silver-standard, double-zeta-level CCSD(T)/CBS estimates through the use of explicit correlation and
midbond basis functions. We also outline the remaining challenges in the accurate ab initio calculations of noncovalent interaction energies.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116151., s

I. INTRODUCTION

A reliable description of intermolecular interactions is essential
for a large variety of problems in chemistry, physics, biology, and
materials science. Weak interactions between gas molecules give rise
to deviations from ideal gas law, which can be quantified, e.g., via
second and higher virial coefficients. The latter coefficients can be
used, for example, to establish a connection between pressure, tem-
perature, and the speed of sound in a gas that can be employed to
construct a new temperature standard.1 Weak interactions with a
background gas result in broadening and shifting of spectral lines,
and a combination of accurate measurements and calculations is
required to advance the description of spectral line shapes beyond
the conventional convolution of Lorentzian and Gaussian pictures.2

The intermolecular rovibrational bound states give rise to rich (and

hard to assign) infrared and microwave spectra,3 while the unbound
states determine cross sections for elastic and inelastic scattering
processes essential for astrophysical modeling.4 A delicate balance
of two-, three-, and higher-body interactions determines the stability
of molecular clusters,5 the structure and polymorphism of molecular
crystals,6 and the thermodynamical properties of liquids.7 Noncova-
lent interactions are an important factor in catalysis as they can pref-
erentially stabilize the transition state for a desired reaction.8 Inter-
actions within layered materials9 and between adsorbate molecules
and surfaces or porous media10 are crucial for the performance of
modern materials in a variety of applications ranging from semi-
conductors to carbon capture. Last but not least, weak interactions
stabilize the structures of proteins and nucleic acids and bind sub-
strates (as well as inhibitors) to the active sites of enzymes.11 Thus,
it is not a surprise that the field of intermolecular interactions has
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continually attracted widespread interest from experimentalists and
theorists alike.

From the computational perspective, the necessary prerequisite
to determining spectra, scattering cross sections, and many other
quantities of experimental interest is the generation (in whole or in
part) of the potential energy surface (PES), that is, a function that
expresses the energy of the complex in terms of the internal and rel-
ative geometries of its constituent molecules. This energy is a sum
of the energies of individual molecules (monomers), including the
energetic penalty incurred when the monomers adapt their geo-
metric configurations in the complex instead of their individually
optimized structures, and the actual interaction energy. The con-
struction of a PES involves three steps: establishing a grid of configu-
rations that span the surface, interaction energy calculations for each
grid point, and a fitting or interpolation of an analytical function that
provides a reasonable PES approximation in between the computed
grid points as well as at larger intermolecular separations. Recently,
significant advances have been made on optimizing the selection of
grid points,12 making the fitting more robust,13 and automating the
whole process of PES construction;14,15 however, the vast majority
of computer time still needs to be spent on the middle step, that
is, electronic structure calculations on each configuration from the
grid. While the individual interaction energies can be computed
directly via symmetry-adapted perturbation theory (SAPT),16 it is
more common to obtain these values via subtraction of monomer
energies from the total energy of the complex, within the so-called
supermolecular framework. In such a case, the accuracy of interac-
tion energy hinges on a cancellation of errors (which arise due to
the use of an approximate electronic structure theory and an incom-
plete basis set) between the quantities that are subtracted. Obviously,
this cancellation is much easier if the individual errors are small to
begin with: this is one of the reasons why intermolecular interac-
tion energies place particularly high demands on the accuracy of
the underlying electronic structure theory. The other reason is the
van der Waals dispersion forces which arise entirely out of electron
correlation and thus require a high-level account of the correlation
energy.

Except for few-electron complexes where full configuration
interaction (FCI) calculations are possible, the most successful strat-
egy for computing accurate correlated interaction energies has been
the coupled-cluster (CC) approach.17 In particular, the coupled-
cluster variant with single, double, and perturbative triple excitations
[CCSD(T)]18 has been termed the gold standard of electronic struc-
ture theory as it provides consistently accurate interaction energies
for closed-shell complexes. In fact, due to favorable error cancella-
tion, CCSD(T) typically performs in this context just as well as the
variant with full iterative triples, CCSDT.19 It should be noted that,
when the interacting molecules cannot be qualitatively described by
individual determinants, single-reference CC methods in general,
and perturbative variants such as CCSD(T) in particular, are unable
to provide reliable interaction energies. In such a case, computing a
high-accuracy PES is a much more difficult task, and multireference
electronic structure methods of benchmark quality are still under
active development—see, e.g., a recent perspective for a review.20

It might be noted in passing that the CC methods have the attrac-
tive property that the extent of multireference character for a prob-
lematic system can be inferred from examining the cluster ampli-
tudes. In this perspective, we will be concerned with single-reference

complexes so that CCSD(T) is indeed a reliable gold standard as
long as the results are converged to the complete basis set limit
(CBS).

Computing a gold standard CCSD(T)/CBS interaction energy
is an expensive task due to both an unfavorable N7 computa-
tional scaling of CCSD(T) with the system size and a slow basis set
convergence of correlated interaction energies. The scaling can be
reduced by exploiting spatial locality of electron correlation; how-
ever, the errors of the local approximation sometimes exceed the
accuracy one would expect from the gold standard interaction ener-
gies.21 Nevertheless, local CCSD(T) variants are undergoing con-
stant improvement22–25 and are on the verge of becoming a reliable
source of benchmark-quality gold standard estimates. The basis set
convergence of CCSD(T) interaction energies can be improved by a
number of techniques—see Ref. 26 for a recent review. These tech-
niques can be used separately or in combination and include the
composite MP2/CBS+δ[CCSD(T)] treatment {where the easier-to-
compute CBS limit of the second-order Møller-Plesset perturbation
theory (MP2) is augmented with a δ[CCSD(T)] = CCSD(T)−MP2
correction computed in a moderate basis set}, CBS extrapolations,
midbond functions, and various variants of the explicitly correlated
CCSD(T)-F12 approach.27,28 Even with these enhancements, one
typically cannot avoid performing a CCSD(T) calculation in at least
a partially augmented triple-zeta basis set: otherwise, the basis set
truncation errors overwhelm the intrinsic errors of the CCSD(T)
approach.

The gold standard CCSD(T)/CBS estimates are a centerpiece
of the field of accurate ab initio studies of weakly interacting com-
plexes and a centerpiece of this perspective. In addition to numerous
investigations of PESs for individual systems of experimental inter-
est, the gold standard calculations have led to the establishment
of benchmark noncovalent databases that compile accurate inter-
action energy values for a diverse selection of complexes and con-
figurations. The available noncovalent databases have been recently
reviewed in Refs. 26 and 29: the most widely employed sets include
the S2230 and S6631 databases of the Hobza group. In the last couple
of years, benchmark databases have grown larger and more diverse
in order to meet the growing demands of the community as var-
ious more approximate (but much less computationally demand-
ing) approaches are formulated and tested against high-accuracy
ab initio data. Such approximate but efficient techniques may
be based on density functional theory (DFT),32 semiempirical
methods,33 or machine learning (ML).34 At the same time, one fre-
quently needs to go either above or slightly below the gold stan-
dard. For example, using PESs to reproduce and interpret high-
resolution spectroscopic data might call for interaction energies
beyond the CCSD(T)/CBS level. Thus, it has been worthwhile to
establish a platinum standard of interaction energy calculations of
subspectroscopic accuracy. On the other hand, for larger complexes,
a CCSD(T) calculation in a triple-zeta basis set, required by the
gold standard, might be unaffordable and one needs to resort to
CCSD(T)/CBS estimates that only require a CCSD(T) calculation
in a double-zeta basis set or even estimates that do not require a
CCSD(T) calculation at all. For this purpose, silver, bronze, and even
pewter standards of interaction energy calculations have been des-
ignated,35 with the goal of providing the most accurate approxima-
tions to the gold standard at a given (significantly reduced) level of
computational complexity.
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The aim of this perspective is to describe the current state of
the art for the entire family of “precious metals” standards of inter-
molecular interaction energies. Therefore, after a brief introduction
to the methodology of interaction energy calculations in Sec. II, we
continue by reviewing recent progress in gold-standard calculations,
with emphasis on the development of diverse and balanced bench-
mark databases and accurate PESs for systems of experimental inter-
est, in Sec. III. We then move on to calculations of even higher accu-
racy, illustrating some important applications of platinum-standard
interaction energies in Sec. IV. Finally, in Sec. V, we review the estab-
lishment and refinement of the silver-standard level of theory as a
cost-effective alternative to the gold standard. In all cases, we try to
focus on the current directions of research as well as the remain-
ing challenges that will likely be addressed in the near future. As the
accuracy of more approximate approaches (for example, those based
on DFT) has been steadily improving,36,37 the bronze and pewter
standards do not provide benchmark interaction energies with suf-
ficient precision to evaluate the best performers. Therefore, the pri-
mary focus of this perspective is the levels of accuracy from the silver
standard onward.

II. METHODOLOGY
For a given complex A–B, the interaction energy calculation

at the silver, gold, or platinum level requires three CCSD(T) runs18

combined within the supermolecular framework38

ECCSD(T)
int = ECCSD(T)

A-B − ECCSD(T)
A − ECCSD(T)

B . (1)

The energies for the individual subsystems A and B are evaluated
at their geometries adopted in the complex, which might not be
the same as the optimal geometries for isolated monomers. The
energetic penalty of distorting A and B to their geometries in the
complex, called the deformation energy,39 can (and often should) be
included separately; however, in this perspective, we will focus on
the computation of the interaction energy proper, that is, Eq. (1)
[which can be used with CCSD(T) or with any other electronic
structure method, for example, MP2]. The typical choice of basis
sets used to perform the CCSD(T) computations is the correlation-
consistent cc-pVXZ family of Dunning and coworkers,40 enhanced
with diffuse functions to form the completely augmented aug-cc-
pVXZ ≡ aXZ sets41 or the partially augmented “calendar” bases
such as jun-cc-pVXZ.42 In order to achieve a cancellation of most
of the electronic structure and basis set errors between the quan-
tities subtracted in Eq. (1) and obtain an interaction energy that
goes to zero at large A–B separations, the basis functions centered
on molecule A have to be the same in the calculations of ECCSD(T)

A-B
and ECCSD(T)

A , and those centered on B have to be the same in
the calculations of ECCSD(T)

A-B and ECCSD(T)
B [note that another pos-

sible issue that would break the correct long-range limit could be
the use of a size-inconsistent approach, such as a truncated con-
figuration interaction method, in place of CCSD(T)]. However, if
the ECCSD(T)

A and ECCSD(T)
B calculations contain only the subsystem’s

own basis functions, another problem appears: the description of,
say, A is more complete in ECCSD(T)

A-B than in ECCSD(T)
A , thanks to

the additional flexibility afforded by the basis functions centered
on the other subsystem. This inconsistency is called the basis set

superposition error (BSSE), and the most popular remedy for it is
the counterpoise (CP) correction of Boys and Bernardi.43 In the CP-
corrected supermolecular framework, all three quantities in Eq. (1)
are computed in the full basis set of the complex, that is, the cal-
culation of ECCSD(T)

A includes ghost basis functions centered at the
locations of B’s nuclei in the complex and vice versa. As the basis set
is enlarged, the CP-corrected and uncorrected interaction energies
[the latter obtained from Eq. (1) with the calculations of ECCSD(T)

A
and ECCSD(T)

B utilizing only the basis set of the subsystem] typically
bracket the CBS value of ECCSD(T)

int , converging there from below
(CP-uncorrected) and above (CP-corrected). This behavior has two
consequences. First, some authors have argued that the CP scheme
overcorrects the true BSSE44 and the merits of the counterpoise
correction were a hot topic in the literature some time ago. Sec-
ond, a “half-corrected” scheme, that is, the arithmetic mean of the
CP-corrected and uncorrected interaction energies,45,46 might some-
times be more accurate than either variant alone. On the practical
side, an extensive comparison of CCSD(T)/CBS estimates obtained
from CP-corrected, uncorrected, and half-corrected calculations was
performed by Burns et al.,47 concluding that the averaged scheme
avoids the worst errors incurred by either variant alone; however, in
most cases, the fully corrected and half-corrected approaches per-
form similarly well and either one can be recommended. As the
fully CP-corrected interaction energy calculations are currently the
most prevalent, throughout the rest of this perspective, all compu-
tations will be assumed CP-corrected unless explicitly stated other-
wise. Another point that, in our opinion, tips the scales toward the
fully CP-corrected approach is that it is the only one compatible with
the addition of extra basis functions centered on the intermolecular
bond.48

For the gold and silver standard accuracy, an approximation
to CCSD(T)/CBS is all that is needed, and it is normally suffi-
cient to perform the CCSD(T) calculations of Eq. (1) within the
frozen core approximation, where only the valence electrons are
correlated. However, going beyond the gold-standard level of the-
ory requires a concerted effort as several neglected contributions
might be of comparable size: the core-core and core-valence correla-
tion, the coupled-cluster excitations beyond CCSD(T), the relativis-
tic effects, and sometimes even the quantum electrodynamics (QED)
term. At the same time, residual errors of the leading, frozen-core
CCSD(T)/CBS term tend to be comparable to the corrections men-
tioned above, and the generation of a PES beyond the gold standard
of accuracy requires both a further refinement of the CCSD(T)/CBS
estimate and the inclusion of terms beyond the frozen-core CCSD(T)
level.

If one sets out to compute, say, a double zeta-level CCSD(T)
interaction energy, there are many variants to choose from, and
all of them are of comparable computational complexity. One can
opt for conventional CCSD(T) or for any variant of explicitly cor-
related CCSD(T), such as the CCSD(T)-F12a, CCSD(T)-F12b,49,50

or CCSD(F12∗) (T) ≡ CCSD(T)-F12c51 approximations. The triples
contribution in an F12 calculation can be included as-is or scaled
to approximately account for the lack of explicit correlation in (T).
The scaling factor is commonly taken as the ratio of MP2-F12
and MP2 correlation energies,50 and when the ratio obtained for
the dimer is also used in monomer calculations to maintain size
consistency,52 such an approach is denoted (T∗∗).53 Alternatively,
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FIG. 1. Summary of the silver, gold, and platinum stan-
dards described in this perspective, providing successive
approximations to the FCI/CBS interaction energy.

the triples scaling factor can be chosen as the ratio of the correla-
tion energies from CCSD-F12b (or CCSD-F12c) and conventional
CCSD.54 Instead of the standard aDZ basis set, one might opt for
the cc-pVDZ-F12 set specifically developed for F12 calculations55 or
even its aug-cc-pVDZ-F12 counterpart with additional diffuse func-
tions added.56 The atom-centered basis set might be supplemented
by midbond functions. Basis set superposition error might be alle-
viated by the CP correction, but uncorrected or half-corrected cal-
culations are also possible. Finally, for any choice described above,
one might perform a simple CCSD(T) calculation or a composite
MP2/CBS+δ[CCSD(T)] one, with the MP2/CBS limit established
with either conventional MP2 or MP2-F12, with or without a com-
plete basis set extrapolation. Thus, a “double zeta-level CCSD(T)
interaction energy” might mean many different things, and we need
to be precise when defining the actual theory and basis set level des-
ignated as the precious-metal standard. This issue becomes even
more pronounced in the case of the gold standard which is collo-
quially known as simply CCSD(T)/CBS. Sections III–V of this per-
spective will review the research that established what it means to
converge the CCSD(T) interaction energy to the CBS limit suffi-
ciently well to be accepted as the gold (or silver) standard, and what
precise combinations of CCSD(T)/CCSD(T)-F12 variants, basis sets,
and other details mentioned above are the most effective in achiev-
ing the required accuracy at an optimal computational cost. Here, we
just summarize the recommendations that have been established and
give the most important examples of precise theory and basis set lev-
els that have been deemed worthy of a platinum/gold/silver standard
designation. These examples as well as representative applications of
precious-metal standards described in this work are summarized in
Fig. 1.

The most common precise designation of the gold standard
CCSD(T)/CBS approximation35 is MP2/(aTZ,aQZ)+δ[CCSD(T)]/
aTZ, where the notation (aXZ, aYZ) signifies that the two sets have
been employed in the standard X−3 extrapolation of the correlation
energy contribution.57,58 The Hartree-Fock part of the MP2 inter-
action energy is usually quite well converged in the aQZ basis and
no extrapolation is performed for this part. A platinum-standard

calculation needs to extend the coupled-cluster level at least to
CCSDT(Q),59 that is, include full triple and perturbative quadru-
ple excitations on top of CCSD(T). In addition, the leading frozen-
core CCSD(T) term has to be converged to CBS even tighter than
for the gold standard, and corrections for the core-core and core-
valence correlation, relativistic effects, and possibly even terms
neglected in the Born-Oppenheimer approximation60 need to be
included. Such a composite designation of the platinum standard
is inspired by the high-accuracy composite approaches to thermo-
chemistry, such as HEAT (high accuracy extrapolated ab initio ther-
mochemistry),61 the Weizmann-n (Wn) family of methods,62 the
Feller-Peterson-Dixon algorithm,63 and the correlation consistent
composite approach (ccCA).64 The silver standard has been des-
ignated in Ref. 35 as the DW-CCSD(T∗∗)-F12/aDZ level, employ-
ing the dispersion-weighted combination of CCSD(T∗∗)-F12a and
CCSD(T∗∗)-F12b proposed in Ref. 53. Several other possible silver
standards using double-zeta basis sets with midbond functions will
be introduced in Sec. V.

III. THE GOLD STANDARD—CCSD(T)
AT THE COMPLETE BASIS SET LIMIT
A. Designation of the gold standard

We envision the gold standard of interaction energy calcula-
tions to be suitable for all benchmarking applications, where the
quality of, e.g., DFT or ML approaches is assessed, and most PES
applications, where the experimental spectroscopic, scattering, or
thermophysical data are to be recovered from the ab initio PES.
At present, the strictest challenge to the former requirement arises
from the recent combinatorially optimized density functionals such
as ωB97M-V,65 which attains a root mean standard deviation of
0.18 kcal/mol on an extensive set of (comparatively) “easy” dimers.37

The severity of the latter requirement obviously varies, and many lat-
est high-resolution spectroscopic and scattering experiments neces-
sitate going beyond the gold standard of theory, as will be illustrated
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in detail in Sec. IV. Overall, it is clear that the successful gold stan-
dard needs to be accurate, on the average, to well below 0.1 kcal/mol:
one would actually prefer the errors to stay within 0.05 kcal/mol even
for (most) outliers. At this level of precision, it is quite nontrivial
to even assess the performance of a gold standard candidate—we
need something better than gold standard for reference! It would
be highly desirable to obtain such a reference from experiment, but
it is immensely difficult.66 Interaction energies are not directly mea-
surable, and other experimental quantities such as spectra or cross
sections require further calculations (such as solving the nuclear
Schrödinger equation) beyond the PES construction (which brings
about other sources of uncertainty besides the interaction energy
itself) and always probe more than a single geometry on the PES.
Thus, our best option to assess potential gold-standard candidates
is by comparison to even higher-level ab initio interaction energies
and, as of right now, there is exactly one benchmark database that
has sufficient accuracy to serve as a reference: A24.67,68

The current best-estimate A24 interaction energies contain the
frozen-core CCSD(T)/CBS term extrapolated from the aQZ and a5Z
bases (a5Z and a6Z for selected systems)47 enhanced by the correc-
tions for core correlation, relativistic effects, and an estimate of the
higher-order coupled-cluster terms from the CCSDT(Q)59 calcula-
tions. Thus, these energies are sufficiently accurate to both judge the
performance of the CCSD(T)/CBS treatment and evaluate various
approximations to this CBS limit. Note that while the gold stan-
dard level is often referred to simply as CCSD(T)/CBS, its practical
realization requires a particular, sufficiently precise, way to estimate
the CBS limit using finite-basis calculations. In fact, the screening
of potential gold-standard candidates should be performed in refer-
ence to a precise CCSD(T)/CBS estimate (such as the one computed
in Ref. 47 and adopted in Ref. 68) with the higher-level correc-
tions omitted to keep the candidate and the reference on an equal
footing. For the A24 database, such a screening was performed in
Ref. 69 for conventional CCSD(T) and CCSD(T)-F12, and Ref. 70
extended this screening to bases with midbond functions. The results
of Ref. 69 show that the CCSD(T) estimates that require only aDZ-
level coupled-cluster calculations are quite accurate on the aver-
age {with the mean unsigned error (MUE) of only 0.03 kcal/mol
for MP2/(aTZ,aQZ)+δ[CCSD(T)]/aDZ}; however, individual errors
extend all the way from −0.1 to 0.1 kcal/mol, so this level of theory
cannot be recommended as an unambiguous gold standard. In con-
trast, in the aTZ basis sets, both straight-up F12 calculations [e.g.,
CCSD(T∗∗)-F12b/aTZ49,50] and composite conventional ones {e.g.,
MP2/(aTZ,aQZ)+δ[CCSD(T)]/aTZ, the originally designated gold
standard from Ref. 35} are capable of bringing the MUE down to
0.01 kcal/mol, with all results within 0.05 kcal/mol of the CBS ref-
erence. Therefore, any of these variants can be adopted as the gold
standard.

We will review the strategies for improving gold-standard
interaction energies, and the applications for which such improve-
ment is crucial, in Sec. IV, and the most accurate double-zeta-level
approximations to the gold standard in Sec. V. For now, we go back
to the two primary areas of gold-standard applications stated at the
beginning of this section: the construction of benchmark nonco-
valent databases and the generation of accurate PESs for individ-
ual complexes. Both areas have witnessed an enormous progress in
recent years, and it is worthwhile to summarize the most significant
new developments.

B. Benchmark noncovalent databases
We have established how to calculate a gold-standard interac-

tion energy for an individual structure of an intermolecular complex.
Now, we have to consider how to select the structures and com-
plexes that make up a noncovalent database suitable for benchmark-
ing applications, that is, sufficiently diverse and balanced. While the
early benchmark databases such as the widely popular S22 set30

were composed of a handful of (mostly organic) dimers in their
respective van der Waals minimum geometries, it was realized soon
afterward that the off-minimum radial and angular configurations,
including long-range (nearly asymptotic) and short-range (repul-
sive) ones, are just as important as the minimum structures. In fact,
when constructing a dataset, it is not even crucial to precisely pin
down the optimal geometry of the complex (unless the geometry
itself serves as a reference71–73), as an adequate coverage of dif-
ferent PES regions is much more important than having a single
point at the actual minimum configuration. As a result, most of the
newer databases contain also off-minimum configurations (radially
displaced, angularly displaced, or both). A way to achieve the ulti-
mate configurational diversity is to pick the entire set of grid points
used to construct an ab initio PES for a given system, or the full
set of configurations that are attained in actual systems (such as
the entire set of amino acid sidechain-sidechain contacts found in
the Protein Data Bank74). Beyond the geometries of a single system,
it is imperative to build a database out of complexes with differ-
ent interaction types. One particularly useful way of elucidating the
physical origins of interaction and classifying systems into interac-
tion types is symmetry-adapted perturbation theory (SAPT).16,75,76

The relative importance of three possible attractive SAPT compo-
nents, electrostatics, induction, and dispersion, can be displayed and
analyzed by means of ternary diagrams35,77 so that the relative cov-
erage of the diagram is a measure of the database diversity. It might
be noted in passing that the presence of very different interaction
strengths (both between different complexes and between different
radial configurations of the same system) makes it nontrivial to select
a suitable statistical measure to quantify the agreement of an approx-
imate approach with the benchmark values. The commonly used
mean unsigned error (MUE), also termed mean absolute deviation
(MAD), is not a good description of structures with very different
interaction energies, and the mean unsigned relative error (MURE)
runs into a problem around the points where the PES crosses zero
as small absolute errors can lead to very large relative errors in
this case. Several improved metrics have been proposed,78–81 and
the reader is referred to Ref. 26 for a more detailed discussion of
the database diversity and performance assessment. Overall, sev-
eral highly diverse benchmark databases have been constructed in
recent years37,81,82 by combining (and sometimes extending) smaller
sets available in the literature: each of these composite datasets con-
tains more than 1000 accurate interaction energies. An even larger
dataset, with 247 560 interaction energies, has been created in order
to improve the MP2 theory with neural network-optimized spin
component scaling;83 however, this set can hardly be called balanced
as nearly half of the structures involve a water molecule as one of the
subsystems.

In parallel to the improvements in the database scope and
diversity, the accuracy of some older benchmark interaction ener-
gies has undergone improvement as well. At the beginning of this
decade, quite a bit of effort was directed into refining the original S22
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benchmark data30 as some of them were obtained at the MP2/(cc-
pVTZ,cc-pVQZ)+δ[CCSD(T)]/cc-pVDZ level that, as we will see in
Sec. V, is not even up to the silver standard of accuracy. The cur-
rently established benchmark values compiled in Ref. 84, termed
S22B, have been computed84–87 at several different levels of basis set
saturation: importantly, the δ[CCSD(T)] term has been obtained in
at least the aTZ basis set for all 22 systems. The differences between
the refined S22B values and the original benchmark range up to
nearly 0.7 kcal/mol, confirming that the original data of Ref. 30 were
not up to current benchmark standards. Besides the S22 set, several
other popular databases such as S66x831 and WATER2788 have been
recently refined using explicitly correlated coupled-cluster calcula-
tions;54,89–91 see Sec. V for more details. It should be stressed that,
according to our theory level classification, the existing benchmark
databases are split into gold-standard and silver-standard data. In
fact, complete gold-standard calculations would be too costly for
some of the largest databases such as the amino acid sidechain-
sidechain interactions (SSI) set of Ref. 74. The bare minimum that
can be considered as silver-standard benchmark accuracy is the
inclusion of the CCSD(T) interaction energy in at least a partially
augmented double-zeta basis, in either stand-alone CCSD(T)-F12
calculation or the composite MP2/CBS+δ[CCSD(T)] one (Sec. V
will examine the optimal strategies for computing silver-standard
interaction energies). While the silver-standard accuracy is sufficient
for current applications of the benchmark datasets, some potential
upgrades to gold-standard accuracy might be pursued in the future.
Overall, in our opinion, the existing collection of benchmark nonco-
valent databases is sufficiently accurate and sufficiently broad for the
assessment and development of new DFT, wavefunction, semiem-
pirical, and machine-learning approaches for ground-state closed-
shell complexes involving small and medium-sized molecules com-
posed of light atoms; however, the extensions to open-shell systems,
excited states, heavy atoms, and large systems still require significant
progress. The most notable applications of benchmark noncovalent
databases have been reviewed, e.g., in Refs. 26, 29, and 36; see also
Refs. 37 and 92.

C. Accurate potential energy surfaces
The other key application of gold-standard interaction ener-

gies is the development of spectroscopically accurate PESs for indi-
vidual systems of interest. While going beyond CCSD(T)/CBS is
sometimes necessary for the highest accuracy (some relevant exam-
ples will be discussed in Sec. IV), there exists a large class of
complexes (roughly speaking, those containing 2–6 nonhydrogen
atoms) for which post-CCSD(T) calculations on the entire set of
PES grid points are not feasible; however, the CCSD(T)/aTZ or even
CCSD(T)/aQZ calculations (with or without F12 and/or midbond
functions) can be carried out with relative ease and used to gen-
erate all data points. With the recent progress in the automated
PES generation14,15 and the improved understanding of the CBS
convergence of finite-basis CCSD(T) interaction energies (brought
about by many developments reviewed in this perspective), the
construction of gold-standard PESs is nowadays close to a routine
task. Thus, ab initio electronic structure theory has happily deliv-
ered on the numerous requests for accurate intermolecular PESs,
with applications to spectroscopy, scattering, virial coefficients,
viscosities, and condensed phase properties. In the rest of this

section, we will review a few of these PESs. Their selection is moti-
vated only by their subjective appeal to us, and the list is far from
complete.

The particular significance of interaction potentials for water
stems from both its special role in sustaining life and its unusual
physical properties in the liquid (such as the density maximum at
4 ○C). While an accurate description of any condensed phase
requires at least the three-body potential (that is, the account
of nonadditive interactions in molecular trimers) in addition
to the two-body one,6 water is a particularly demanding case
where the three-body interactions are unusually significant and
even the four-body ones are not entirely negligible.93 There-
fore, both two-body and three-body potentials for water have
attracted widespread attention. While reaching this point required
many years of development by multiple research groups, ab initio
potentials for (H2O)2

94 and (H2O)3
95 are now available at

the gold-standard level of theory including all internal degrees
of freedom for the water molecules. The two-body potential94

was built from 42 508 interaction energies computed at the
CCSD(T)/(aTZ+(3s3p2d1f),aQZ+(3s3p2d1f)) level, where the addi-
tional (3s3p2d1f) basis functions are centered on the midbond.
The three-body potential95 employed 12 347 trimer interaction
energies obtained with CCSD(T)/aTZ+(3s3p2d1f). These poten-
tials have been successful at reproducing a range of experimen-
tal quantities, from strictly dimer data such as the vibration-
rotation-tunneling spectrum96 and the second virial coefficient97

to the structure and energetics of small water clusters5,98,99 to prop-
erties of liquid water such as density and radial distribution func-
tions.100 Several other CCSD(T)-level PESs for water have been
introduced101–103—see Ref. 104 for a review.

At the beginning of this century, a strong driving force for
the generation of ab initio PESs was the spectroscopy of molecules
embedded in superfluid helium nanodroplets.105 Many molecules
were investigated in this way, and carbonyl sulfide (OCS) has
been one of the most popular as it is quite rigid, linear (so the
spectra are simple), and polar (so it is a strong chromophore in
both microwave and infrared regions). One of the first experi-
ments compared the infrared spectrum of OCS in 4He and 3He
nanodroplets, with the sharp rotational lines in the former envi-
ronment confirming its superfluid nature.106 Early on, it seemed
that the gold-standard level of theory is not absolutely necessary
for the He-OCS interaction since the fourth-order Møller-Plesset
perturbation theory MP4/aTZ+(3s3p2d) potential has proven
quite successful at reproducing experimental vibrational shifts in
Hen-OCS clusters with n = 1, . . ., 8.107 Later, a gold-standard four-
dimensional He-OCS PES has been constructed by Li and Ma108

employing the CCSD(T)/aQZ+(3s3p2d1f1g) theory and basis set
combination, resulting in substantially improved agreement with
experimental microwave and infrared transitions relative to the
potential of Ref. 107. Helium is not the only important interact-
ing partner for OCS: the availability of high-resolution infrared109

and microwave110 spectra of OCS in para- and ortho-hydrogen
clusters prompted the development of a six-dimensional H2-OCS
PES at the gold-standard CCSD(T)-F12a/aTZ level.111 The (OCS)2
homodimer is also of significant interest to spectroscopy, and the
interplay of its polar and nonpolar minima has been elucidated
with the help of a CCSD(T)-F12b/cc-pVTZ-F12 potential energy
surface.112

J. Chem. Phys. 151, 070901 (2019); doi: 10.1063/1.5116151 151, 070901-6

Published under license by AIP Publishing



The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

Another source of demand for high-level PESs is the astro-
physical community, where accurate scattering cross sections are
required to understand and model the rates of collisional processes
occurring in various interstellar objects.113 One of the collisional
partners is usually helium or H2, but the other partner can be
selected from the long and ever-growing list of molecules detected
in interstellar media. An important and unusual (from the perspec-
tive of Earth) class of such systems are linear carbon chains, both
unsubstituted and capped at one end by hydrogen or another atom.
The astrophysical applications have prompted the creation of several
high-accuracy PESs involving such chains. The linear tricarbon (C3)
molecule is an important member of this class, and in the past, our
group has contributed to the development of a new He–C3 poten-
tial that was employed to compute rate coefficients for the rotational
excitation and deexcitation of C3 by helium114 [the underlying PES
actually went beyond the gold standard and contained contributions
from coupled-cluster excitations beyond CCSD(T)]. More recently,
Walker et al. have constructed rigid C6H−–H2 and C6H−–He
potential surfaces at the gold-standard CCSD(T∗)-F12b/cc-pVTZ-
F12 level.115 Interestingly, the long and highly anisotropic C6H−

anion interacts very differently with helium and hydrogen, lead-
ing to strongly different rotationally inelastic cross sections. We
mention in passing another interesting astrophysically motivated
PES, the very recent CCSD(T)-F12b/(cc-pVTZ-F12,cc-pVQZ-F12)
potential for a helium atom interacting with a propylene oxide
molecule.116 Propylene oxide is the first chiral organic molecule
detected in the interstellar space,117 and the measurement and mod-
eling of its spectral and collisional properties might shed some
light onto the (likely extraterrestrial) origins of the homochirality of
life.118,119

We conclude this section by mentioning a few of the largest
systems for which gold-standard (or close) PESs have been con-
structed. The sizes of these complexes illustrate the current com-
putational capabilities for running a large number of triple-zeta
CCSD(T) calculations and manipulating the resulting data (for
example, fitting an analytical PES expression). For CCSD(T) cal-
culations with the full aTZ basis set on all atoms, the largest
system with a PES is probably the ethane dimer, for which the
MP2/(aQZ,a5Z)+δ[CCSD(T)]/(aDZ,aTZ) potential has been devel-
oped by Hellmann120 and used to compute the second virial coef-
ficient and some transport properties of dilute ethane gas. In the
partially augmented haTZ basis (with diffuse basis functions on
nonhydrogen atoms only), one should mention the CCSD(T)-F12a
PES for the formic acid dimer by Qu and Bowman.121 While
this surface does not extend to all possible geometries, it is suf-
ficiently broad to cover not only all normal modes of the com-
plex but also the entire pathway for the concerted double pro-
ton tunneling between the HCOOH molecules. Quite surprisingly,
the largest atom-molecule system with a gold-standard PES comes
from a 10-year old paper on the benzene-argon complex,122 with
the ab initio data obtained at the CCSD(T)/aTZ+(3s3p2d1f1g)
level. The interaction energies turned out to be very similar to
those obtained in an earlier CCSD(T)/aDZ+(3s3p2d1f1g) study;123

therefore, subsequent PES calculations on complexes between a
rare gas atom and an aromatic molecule tend to use the aDZ
basis supplemented by bond functions.124,125 To our knowledge,
no gold-standard PESs for interactions between two aromatic
molecules exist; however, all symmetry-nonequivalent close dimers

in the benzene crystal have been studied at the CCSD(T)-F12a/aTZ
level.126

IV. THE PLATINUM STANDARD—WHEN CCSD(T)
IS NOT ENOUGH
A. What is a good platinum standard?

Even the gold-standard CCSD(T)/CBS interaction energies are
not always accurate enough to interpret high-resolution spectra or
scattering cross sections. However, as already mentioned, going
beyond the gold standard requires a simultaneous further refine-
ment of the CCSD(T)/CBS leading term and the inclusion of cor-
rections beyond the frozen-core CCSD(T) level. As far as the former
improvement is concerned, one needs to go to basis sets of aug-
mented quintuple-zeta (or even sextuple-zeta) quality, combined
with CBS extrapolation, the F12 approach, and/or midbond func-
tions. The best strategy for pinpointing an ultra-precise CBS esti-
mate is actually an interesting question. While explicit correlation is
so effective in improving small- and medium-basis estimates, con-
ventional CCSD(T) calculations in the largest possible bases are
sometimes superior to the CCSD(T)-F12 calculations in the largest
basis sets available at that level.127,128 The primary reason for this
somewhat unexpected observation is the residual inaccuracies of the
a/b/c approximations to full CCSD(T)-F12. Overall, the accuracy of
both CCSD(T) and CCSD(T)-F12 is strongly enhanced by the pres-
ence of bond functions, and ultra-precise CBS estimates might need
ultra-large midbond sets. Below, we focus on the additional contri-
butions past the CBS limit of the frozen-core CCSD(T) interaction
energy.

The interaction energy contribution arising from the correla-
tion of core electrons is easy to compute as the difference between
the all-electron and frozen-core CCSD(T) values, obtained in a basis
set that includes compact functions optimized for core correla-
tion, such as the aug-cc-pCVXZ and aug-cc-pwCVXZ sequences
of Dunning and co-workers.129 The relativistic correction can be
approximated at the scalar one-electron level using the second-
order Douglas-Kroll-Hess Hamiltonian130 or, more recently, the
spin-free exact two-component theory in the one-electron approx-
imation (SFX2C-1e or X2C for short).131 However, the two-
electron relativistic interaction energy corrections, such as the spin-
(own)-orbit term, might also be nonnegligible.132 The effects of
higher-order coupled-cluster excitations might be the most diffi-
cult to compute due to the steep computational scaling increase
with every excitation level included. Overall, there are two strate-
gies for computing post-CCSD(T) interaction energy terms: full-
configuration-interaction (FCI) calculations for few-electron sys-
tems and coupled-cluster calculations with full triples (CCSDT),
perturbative quadruples [CCSDT(Q)], or even full quadruples
(CCSDTQ) for systems where FCI is not feasible. For the lat-
ter strategy, it is important to identify the theory level that pro-
vides consistent improvement over the gold-standard CCSD(T)
calculation—a level that can be recommended as the “platinum
standard” for computing interaction energies of subspectroscopic
accuracy.

The importance of the CCSDT, CCSDT(Q), and CCSDTQ
interaction energy corrections was first studied on individual sys-
tems, mainly rare gas dimers.133,134 The first systematic study of these
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corrections over a range of systems (including the newly established
A24 database of 24 small complexes67) was performed by Hobza
and co-workers.19,135 By comparison with interaction energies com-
puted with the full inclusion of pentuple excitations (CCSDTQP) or
with FCI for the smallest systems, Šimová et al. showed19 that the
inclusion of full noniterative triples does not provide a systematic
improvement over CCSD(T). In order to reach a “platinum stan-
dard” level of electron correlation, one needs to include connected
quadruple excitations. Fortunately, the perturbative treatment of
quadruples via the CCSDT(Q) approach59 provides an excellent
approximation to full iterative CCSDTQ results. Thus, CCSDT(Q)
[more precisely, the composite CCSD(T)/CBS+δT+(Q) treatment] is
a good candidate for the platinum standard level of theory, but what
basis sets are appropriate for computing the very expensive δT+(Q)
= CCSDT(Q)−CCSD(T) correction?

In the benchmark studies of the Hobza group,19,67,135 the post-
CCSD(T) corrections were computed using very small bases 6-
31G∗(0.25) and 6-31G∗∗(0.25,0.15) (with the numbers in parenthe-
ses indicating the altered exponents of the polarization functions
relative to 6-31G∗∗)—only a limited subset of complexes employed
the somewhat larger aDZ basis. However, the δT+(Q) correction,
just like the δ[CCSD(T)] one,84,136 strongly varies with the basis
set and requires at least the aTZ basis to obtain a reasonably sat-
urated value. This behavior of δT+(Q) was established by one of
us and co-workers137 on a set of 21 small weakly bound com-
plexes. Relative to the benchmark δT+(Q) values computed in basis
sets aTZ and larger, the 6-31G∗∗(0.25,0.15) estimates were off by
80% on average, showing that it is almost as bad to neglect the
post-CCSD(T) contribution altogether as to calculate it in such
a small basis set! The aDZ results were better but still far from
converged, deviating by an average 35% from the δT+(Q) bench-
mark. In view of this observation, the earlier CCSDT(Q) bench-
marks of the Hobza group were subsequently refined68 by includ-
ing the δT+(Q)/aDZ estimate. The resulting improved A24 database
remains the only set of benchmark interaction energies for diverse
systems computed at the platinum standard level of theory, and this
database has become a keystone for high-accuracy studies of inter-
molecular interactions including the further refinement of the gold
standard.69

B. Ultra-accurate calculations for four-electron
complexes

Having made recommendations on how to compute platinum-
standard interaction energies for small complexes, we now turn to
several important examples where attaining accuracy beyond the
gold standard is critical for experimental or fundamental reasons.
We first examine the simplest systems which have four electrons
total, namely, the He–He, He–H2, and H2–H2 complexes. In this
case, CCSDTQ is equivalent to FCI and is feasible in at least a
moderate basis set.

The helium dimer poses the most stringent demands for the
accuracy of the pair potential as its second virial coefficients (density,
acoustic, and dielectric) are necessary for the most accurate mea-
surements of the thermodynamic temperature and, consequently,
for the development of an improved temperature (and pressure)
standard.1 These measurements utilize constant-volume, acoustic,
and dielectric-constant gas thermometers filled with helium, and

the nonideality effects of the gas need to be known to extrapolate
to zero pressure (note that these effects are particularly minor for
helium as the virial coefficients are small in the first place). Indeed,
the current best available pair potential for helium,138 the culmi-
nation of a long-term series of ever-improving descriptions of this
interaction,139–145 exhibits millikelvin (nanohartree) accuracy, with
the total interaction energy at the near-minimum separation of 5.6
bohrs amounting to −10.995 57 ± 0.000 20 K. Attaining this accu-
racy has only been possible by going beyond one-electron basis sets
and computing the nonrelativistic potential variationally (that is,
at the FCI level) in a four-electron explicitly correlated Gaussian
basis. Moreover, the relativistic, quantum electrodynamic, and adi-
abatic corrections were carefully determined and included in the
potential.

The accuracy of the best available He–He interaction ener-
gies is truly remarkable, and it cannot at present be matched for
any other weakly interacting system, including the seemingly sim-
ilar four-electron complexes He–H2 and H2–H2. There are three
reasons why the latter systems, especially the hydrogen dimer, are
much more difficult than He–He: the dimensionality of the prob-
lem (the fully flexible He–He, He–H2, and H2–H2 PESs are 1D, 3D,
and 6D, respectively), the number of required centers for basis func-
tions, and the point-group symmetry of the problem (which sim-
plifies the He–He calculations significantly while a general H2–H2
configuration may have no symmetry elements at all). Consequently,
the uncertainties for the best available He–H2 and H2–H2 poten-
tials, while still impressively low, cannot match the He–He poten-
tial uncertainty. Specifically, the interaction energies at the van der
Waals minima amount to −15.870 ± 0.065 K for He–H2

146 and
−56.96 ± 0.16 K for H2–H2.147 The potentials of Refs. 146 and 147
were obtained using large one-electron Gaussian basis sets with all
excitation levels up to FCI taken into account. At the respective
minimum configurations, these higher-level excitations contribute
about −0.57 and −1.8 K [beyond gold standard, FCI−CCSD(T)] or
−0.005 and−0.044 K [beyond platinum standard, FCI−CCSDT(Q)])
for He–H2 and H2–H2, respectively. The two potentials have been
employed in fully quantum calculations of the second virial coeffi-
cient including the effects of monomer flexibility.148,149 While the
flexibility effects are not entirely negligible and the quantum treat-
ment is the only one appropriate below about 50 K, overall, the
second virial coefficients are only moderately sensitive to the inter-
action potential. Some more demanding applications of these PESs
include scattering cross sections,150 bound state properties, and the
pressure broadening and shifting effects on the line shapes of Raman
transitions in H2. The quest for a precise description of the spectral
line shapes has already prompted an extension of the original He–H2
potential146 to a substantially larger range of H–H vibrations, which
has a noticeable effect on the computed pressure broadening and
shifting coefficients.151 In conjunction with the ongoing improve-
ment in the spectral resolution of the experimental H2 transitions,
the “platinum-standard” theoretical PES of Refs. 146 and 151 is
expected to enable a fundamentally new description of spectral line
shapes beyond the commonly used Voigt profile (the convolution of
Lorentzian and Gaussian shapes).2,152

The same He–H2 complex poses a significant and exciting
challenge to ab initio quantum chemistry also in the excited state,
where experimental rate coefficients153,154 for the Penning ioniza-
tion He(23S)+H2 → He + H+

2 + e− are precise enough to pinpoint
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inaccuracies even in the platinum-standard calculation. While the
inclusion of a post-CCSD(T) correction from FCI/aQZ clearly
improved the CCSD(T)/CBS description of rate coefficients, some
discrepancies remain at low collision energies. In Ref. 154, these
discrepancies were resolved by an ad hoc scaling of the correlation
energy by a factor of 1.004; however, a purely ab initio description of
the experimentally observed low-energy resonances has not yet been
achieved.

C. Applications of the CCSDT(Q)-level platinum
standard

We now move on to somewhat larger complexes where a
FCI calculation is not feasible, but the interaction energy accuracy
beyond the gold-standard level can be achieved by including higher-
order coupled-cluster corrections. In many cases, the existing spec-
troscopic data are sufficiently precise to confirm the advantage of a
post-CCSD(T) treatment over the CCSD(T) one or at least to pin-
point the residual inaccuracies in the CCSD(T)/CBS estimates. Our
first example of this kind is the H2–CO complex which has been
thoroughly studied with both theory and experiment. The high-
resolution infrared spectrum of this system is rich in features and
strongly depends on the nuclear spin coupling in the H2 monomer.
While the infrared spectrum of para-H2–CO has been measured
and assigned a long time ago,155 the assignment of the more com-
plex ortho-H2–CO spectrum, also recorded in Ref. 155, provided a
challenge that took more than a decade to overcome. Importantly,
an older H2–CO potential computed at the CCSD(T)/CBS level of
theory156 had insufficient accuracy to explain the congested spec-
trum, so a platinum-standard PES was necessary. In fact, H2–CO
was one of the first complexes for which the importance of post-
CCSD(T) corrections was demonstrated as the CCSDT(Q) calcula-
tions at the two minimum geometries gave substantial (and unequal)
corrections beyond CCSD(T).157 Accordingly, a new PES was con-
structed in Ref. 3 using the CCSD(T)/CBS+δT+(Q)/aDZ level of the-
ory, with an estimated accuracy within 0.5 cm−1 around the van
der Waals minimum. This platinum-standard PES led to an impres-
sive agreement with the experimental high-resolution ortho-H2–CO
spectrum, with the discrepancies in infrared transition energies not
exceeding 0.06 cm−1, so that a complete assignment of the spectral
lines was finally possible. The same PES was also highly successful in
the reproduction of experimental microwave spectra,158 scattering
cross sections,159 and second virial coefficients.160 More recently, a
similar inclusion of the δT+(Q)/aDZ interaction energy term signifi-
cantly improved the He–HCN potential,161 reducing the deviations
of rovibrational energy levels from experimental values162 by a factor
of five.

In some cases, the calculation of a PES at a level of theory higher
than CCSD(T) is not feasible, but high-resolution experimental data
indicate that the accuracy of the CCSD(T)/CBS treatment might
not be sufficient. A prime example is the combined experimental-
theoretical study of low-energy resonances in the H2–NO interac-
tion.163 Two CCSD(T)-level NO–H2 potentials are available,164,165

differing in the details of how the CBS limit has been established.
The experimental integral cross sections at near-resonance colli-
sion energies163 were sufficiently precise to favor the CCSD(T)-
F12a/aTZ+(3s3p2d2f1g1h) potential of Ref. 165 over the conven-
tional CCSD(T) potential extrapolated from the (aTZ,aQZ) bases.164

However, as stated in Ref. 163, this does not mean that the for-
mer CCSD(T)/CBS estimate is more accurate than the latter: quite
likely, the opposite is true. However, the slight deviation of the
Ref. 165 potential from the CBS values of Ref. 164 might be com-
pensating for the lack of interaction energy terms beyond CCSD(T).
Thus, it would be worthwhile to construct a CCSDT(Q)-level H2–
NO PES to resolve the remaining differences. This is, however, a
very formidable task, due in no small part to the open-shell, orbitally
degenerate character of NO and the necessity to compute two PESs
for the two diabatic states of the complex.

A careful reader has noticed by now that all many-electron
examples presented so far involve a molecule with a triple bond
(CO, HCN, NO). This is not a coincidence. Interactions of triply
bonded molecules are notoriously difficult to describe with low lev-
els of electron correlation. A simple (and crude) justification of
this behavior is the importance of π → π∗ excitations for the elec-
tronic structure of the interacting molecule: for a triple bond, a full
description of the π → π∗ states requires a method with quadru-
ple excitations such as CCSDT(Q) or, preferably, full CCSDTQ.
Therefore, complexes involving triply bonded monomers typically
come out as the worst offenders in database-level benchmarks
of coupled-cluster interaction energies: notable examples are the
HF–HCN and H2O–CN− systems among 16 hydrogen-bonded
complexes investigated by Boese166 and the two N2–N2 struc-
tures among the 21 complexes examined in Ref. 137. Interactions
involving triply bonded molecules require extra care at all stages
of the calculation: not only the δT = CCSDT−CCSD(T) and δ(Q)
= CCSDT(Q)−CCSDT differences constitute up to several percent
of interaction energy each but even the δQ = CCSDTQ−CCSDT(Q)
contribution might alter the final result by another percent or so.137

Moreover, the pioneering CCSDT(Q) investigations on the P2–P2
and PCCP–PCCP complexes167 suggest that the importance of
post-CCSD(T) corrections does not diminish as heavier atoms are
present.

The complexes of two triply bonded molecules present quite a
range of different behaviors of the post-CCSD(T) corrections. For
the N2–N2 system, the CCSDT−CCSD(T) and CCSDT(Q)−CCSDT
effects are substantial but cancel each other to a large extent. At the
near van der Waals minimum geometry, the CCSD(T)/CBS interac-
tion energy amounts to −108.2 cm−1, while the δT/aQZ, δ(Q)/aTZ,
and δQ/aDZ corrections are 3.7, −5.3, and 1.3 cm−1, respectively.
This cancellation of higher-order effects appears to hold throughout
the entire N2–N2 PES: a highly accurate, CCSD(T)/CBS+δT+(Q)/aDZ
potential (including also core correlation and relativistic effects) was
constructed by Hellmann168 and it successfully reproduced the best
experimental data for virial coefficients, viscosity, and thermal con-
ductivity of a dilute nitrogen gas. Hellmann observed that his δT+(Q)
correction for different angular configurations was similar in mag-
nitude, but opposite in sign, to the correction for full triples only,
illustrating the (partial but consistent) cancellation. Hellmann also
found that his recovery of experimental second virial coefficient data
was improved when the δT+(Q) contribution was scaled by a factor
of 0.5. This scaling likely implicitly accounts for both the basis set
incompleteness effects of the δT+(Q)/aDZ value and the contribution
from full quadruple excitations.

For a long time, the isoelectronic CO–N2 complex was com-
putationally investigated only at lower levels of accuracy. However,
in 2018, three CCSD(T)/CBS level surfaces for this system were
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published.169–171 The precise theory level for the ab initio grid points
ranged from CCSD(T)-F12b/aQZ169 to CCSD(T)/aQZ+(3s2p1d)170

to CCSD(T)/aQZ+(3s3p2d1f1g).171 These small differences in the
CCSD(T)/CBS estimates resulted in differences of below 0.01 bohr
for the minimum intermolecular separation, up to 7○ in the angles
of CO and N2 with respect to the center-of-mass axis and up
to 0.8 cm−1 (out of about 118 cm−1) in the minimum interac-
tion energies. The potential of Ref. 171, a tiny bit deeper than the
other two, was observed to provide the best agreement with the
experimental rovibrational level data, suggesting that a properly
selected “gold-standard” estimate might be adequate for CO–N2.
However, our calculations at the van der Waals minimum geome-
try indicate that δT/aQZ, δ(Q)/aTZ, and δQ/cc-pVDZ contribute 2.2,
−3.9, and 0.6 cm−1, respectively, to the interaction energy. Thus,
CCSD(T) calculations require some error cancellation between
basis set incompleteness effects and the higher-order terms to pro-
duce a spectroscopically accurate representation of the CO–N2
surface.

The CO–CO complex happens to be especially difficult for low-
level electronic structure methods. It was observed already in 1999
that CCSD(T) is not accurate for this system as it misses impor-
tant fifth-order interaction terms.172 Nevertheless, the CCSD(T)-
level potential developed by Dawes et al.173 was successful at accu-
rately reproducing experimental rovibrational levels173 as well as
rotationally inelastic cross sections.174 However, the success of this
potential is a consequence of picking a specific, reasonably accu-
rate but not converged, CCSD(T)/CBS estimate so that the basis
set incompleteness errors partially cancel the post-CCSD(T) effects.
Dawes et al. chose the all-electron CCSD(T)-F12b approach without
the counterpoise correction extrapolated from the cc-pCVXZ-F12
≡ CVXZ-F12175 basis set family with X = D,T,Q. The different CO–
CO minima are connected by a pathway with very minimal barriers
so that even the lowest rovibrational states of this complex extend
over all of them. Thus, the precise landscape of the minimum-
energy pathway, in particular, the difference between the mini-
mum depths, has a large influence on the computed spectroscopic
data.

The dependence of the CO–CO interaction energy along
the minimum-energy pathway on the theory level is presented
in Fig. 2 [the calculations in this figure used a slightly differ-
ent C–O bond length (2.137 bohrs) than Ref. 173 (2.132 bohrs)].
In addition to the CCSD(T)-F12b/CVXZ-F12 levels employed in
Ref. 173, X = D, T, Q, we present our best estimate of the all-
electron CCSD(T)/CBS limit, computed by combining the frozen-
core CCSD(T∗∗)-F12b/(aQZ,a5Z) value with the CCSD(T)/aug-cc-
pCV5Z correction for the core-core and core-valence correlation.
Note that the standard X−3 extrapolation used above, while not
exactly optimal for explicitly correlated calculations,176 is certainly
better than no extrapolation at all (and it was employed for some
variants of the PES in Ref. 173). Furthermore, we add the correc-
tions for full triples (from CCSDT/aQZ) and perturbative quadru-
ples [from CCSDT(Q)/aTZ]. The large discrepancies between differ-
ent theory and basis set levels in Fig. 2 indicate the inherent difficulty
of this complex: the lowest level shown, CCSD(T)-F12b/CVDZ-F12,
predicts a saddle point in the global minimum location! One can
see that the post-CCSD(T) effects are large and drastically alter the
landscape of the minimum-energy pathway. While the δ(Q) term
is fairly constant, deepening the surface by 2.1–3.4 cm−1, the δT

FIG. 2. CO–CO interaction energies along the pathway passing through the
global and local minima of the complex, computed at various levels of the-
ory. The angle Θ is the angle of one of the CO molecules with respect to the
line joining the centers of masses; all other intermolecular degrees of freedom
are optimized [at the counterpoise-corrected CCSD(T)-F12b/aTZ level] for each
Θ to stay on the minimum energy pathway. All results have been computed
in the present work. The results marked in black are similar (but not identi-
cal) to the data points of the best-performing PES of Ref. 173—our calcula-
tions use a slightly different C–O bond length and a different CBS extrapolation
scheme.

contribution is quite erratic, ranging all the way from −1.9 to
6.4 cm−1. Thus, the two leading post-CCSD(T) effects can both
amplify each other (like in the global minimum) or partially can-
cel out (like in the local minima). This behavior is illustrated in
Fig. 3 which presents the differences between lower levels of theory
and our benchmark CCSDT(Q)-level interaction energies. The (very
computationally demanding) full CCSDTQ/aDZ calculations were
performed for two high-symmetry minima, and even the δQ correc-
tion turned out to be nonnegligible, amounting to −0.7 cm−1 for the
global minimum and 0.6 cm−1 for the local one [thus, even the plat-
inum standard CCSDT(Q)/CBS approach underestimates the dif-
ference between the two minima by more than 1 cm−1]. Figure 3
shows that the CCSD(T)/CBS gold standard description of the
CO–CO potential valley, enhanced only by the core correlation, is
highly inaccurate. However, the level of theory selected in Ref. 173
is consistently close to our CCSDT(Q)-level results thanks to an
error cancellation between the basis set incompleteness effects at
the CCSD(T) level and the contribution from higher-order coupled-
cluster excitations. Thus, the potential of Ref. 173 owes its very
good performance to a clever selection of a CCSD(T)/CBS estimate
that facilitates this error cancellation. The large discrepancies shown
in Figs. 2 and 3 are clearly not typical and result from a partic-
ularly unfortunate combination of a large magnitude of the post-
CCSD(T) terms and their variations in sign. We present this worst-
case scenario to serve as a cautionary tale against automatically
neglecting the interaction energy contributions beyond the gold
standard.
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FIG. 3. Differences between lower levels of theory and our best platinum-standard
CCSDT(Q)-level estimate (the red diamonds in Fig. 2) for the CO–CO minimum
interaction energy pathway depicted in Fig. 2.

V. THE SILVER STANDARD—WHEN CCSD(T)/ATZ
IS NOT AN OPTION
A. Approximations to the gold standard

We have postulated in Sec. III that the gold-standard pre-
cision in the determination of the CCSD(T)/CBS limit requires,
one way or another, a CCSD(T) calculation in a basis set of
triple-zeta quality and size. When such a calculation is avail-
able, a suitable CCSD(T)/CBS estimate can be generated in several
ways including the explicitly correlated approach [for example,
CCSD(T∗∗)-F12b/aTZ], the composite treatment {for example,
MP2/(aQZ,a5Z)+δ[CCSD(T)]/aTZ}, or a combination of both. It
should be noted, however, that a CBS extrapolation involving a
double- and triple-zeta basis set {for example, CCSD(T)/(aDZ,aTZ)
or MP2/(aQZ,a5Z)+δ[CCSD(T)]/(aDZ,aTZ)} is typically inferior to
plain aTZ as the information from the small aDZ basis set does more
harm than good.84

Unfortunately, for a large class of medium-sized systems,
CCSD(T)/aDZ is feasible but CCSD(T)/aTZ is not. In such a case,
the precision attained by a CBS limit estimate involving only aDZ-
level CCSD(T) [or CCSD(T)-F12] calculations might not be up to
the gold-standard requirements. Nevertheless, it is highly useful to
establish a level of theory and basis set that can be termed “sil-
ver standard,” that is, it is feasible when CCSD(T)/aDZ is feasible,
reasonably accurate, and free from particularly bad outliers as long
as the underlying complexes are entirely single reference. A silver-
standard benchmark calculation is accurate enough for many prac-
tical purposes, including the refinement of more approximate meth-
ods based on DFT, semiempirical approaches, or machine learning.
Therefore, there is a large market for accurate silver-standard bench-
mark interaction energies and it is worthwhile to examine the best
options to utilize CCSD(T)/aDZ-level results in the determination
of benchmark values.

The selection of approximate electronic structure methods
that do the best job at recovering gold-standard interaction energy
benchmarks was thoroughly studied by Burns et al.35 In this work,
which should be credited for coining the terms “silver standard”
and “bronze standard,” the benchmark level of theory was chosen
as MP2/(aTZ,aQZ)+δ[CCSD(T)]/aTZ. Relative to this realization of
the gold standard, 394 different combinations of theory level and
basis set were tested on a dataset of 345 weak interaction ener-
gies. Among the methods that require some aDZ-level CCSD(T)
calculation, the best performer (the “silver standard”) was found to
be the DW-CCSD(T∗∗)-F12/aDZ dispersion-weighted approach.53

The silver-standard interaction energies deviated by an average
of 0.05 kcal/mol from the gold-standard values, indicating a very
acceptable and consistent accuracy. Burns et al.35 went on to propose
also a “bronze standard” MP2C-F12/aDZ model chemistry, based on
the “coupled MP2” (MP2C) approach of Hesselmann,177 that leads
to an average error of 0.16 kcal/mol and is significantly cheaper than
even a double-zeta CCSD(T) calculation. One should note, however,
that the 0.16 kcal/mol accuracy is only marginally better than the one
afforded (on similar weakly interacting systems) by the most modern
variants of density functional theory.37 Therefore, the bronze stan-
dard may not be accurate enough for an important class of applica-
tions, the benchmarking and refinement of DFT-based approaches
to weak interactions, and we will focus exclusively on the silver
standard from now on.

B. Double-zeta CCSD(T) interaction energies
As we have already stated in Sec. II, a “double zeta-level

CCSD(T) interaction energy” might mean many different things.
Therefore, a thorough assessment of the performance of different
possible variants is worthwhile. A careful study of the influence of
the F12 variant and basis set on the quality of the CCSD(T)-F12
interaction energies was published by Sirianni et al.69 The authors
examined in detail the A2467 and S2230 noncovalent databases and
compared the performance of different CCSD(T)-F12 approxima-
tions as well as of the aXZ and cc-pVXZ-F12 basis set families.
Probably the most interesting finding of Ref. 69 was the clearly infe-
rior performance of the cc-pVXZ-F12 sequence compared to the
standard aXZ one (the same phenomenon was observed earlier for
a much smaller class of systems127,128). The underperformance of
CCSD(T)-F12/cc-pVXZ-F12 interaction energies might be some-
what surprising—contrary to what the basis set name suggests, for
atoms other than H and He, the cc-pVXZ-F12 set has more func-
tions than the aXZ one at the same X. It has been argued69 that the
high-angular-momentum exponents of the cc-pVXZ-F12 sets, opti-
mized for molecular correlation energies, are not diffuse enough for
noncovalent interaction energy computations. Our criticism of the
cc-pVXZ-F12 basis sets in the context of interaction energy calcula-
tions is not meant to discredit a series of recent benchmark interac-
tion energy reevaluations54,89–91 for the S66x8,31 WATER27,88 and
X40x10178 databases using a combination of MP2-F12/CBS and
the CCSD−MP2 and CCSD(T)−CCSD corrections calculated using
either the F12 approach with cc-pVXZ-F12 basis sets or the conven-
tional approach with heavy-augmented cc-pVXZ bases. The bench-
mark interaction energies computed in this way are clearly superior
to the original estimates due to the sheer power of the F12 approach
and a careful selection of the CCSD-F12 variant, the (T) estimate,
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and the treatment of the counterpoise correction. However, it
is quite likely that similarly accurate (or better) CCSD(T)/CBS
estimates could have been obtained at a reduced computational
cost should the authors of Refs. 54 and 89–91 have chosen
the standard aXZ basis set family instead of the cc-pVXZ-F12
one.

As far as the aXZ basis sets are concerned, Sirianni et al.69

found that the CCSD(T∗∗)-F12b and CCSD(F12∗)(T∗∗) variants
exhibited very similar (and impressive) performance on both the
A24 and S22 databases. The performance of CCSD(T∗∗)-F12a is
more erratic—it happens to be the best aDZ-level variant for A24
but the worst one for S22. For the latter dataset, the highest aDZ-
level accuracy was attained by the DW-CCSD(T∗∗)-F12 combi-
nation.53 As DW-CCSD(T∗∗)-F12/aDZ performed also respectably
well on the A24 dataset, its designation as the silver standard35

was confirmed in Ref. 69. Overall, the combination of the F12
approach, aXZ basis sets, and the counterpoise correction emerged
as the best strategy to converge to the CBS limit, especially at
the silver-standard level requiring only double-zeta coupled-cluster
calculations.

C. The role of midbond functions
The authors of Ref. 69 did not consider one more technique

that has proven successful in accurately recovering weak interac-
tion energies—the addition of midbond functions. Such functions
increase the basis set size only slightly as one additional basis func-
tion center is added to all the atomic centers in the complex (one
may note in passing that the placement of more than one mid-
bond center, or even the determination whether more than one
center is needed, has not been investigated so far, but some ini-
tial tests have been carried out for a “cloud” of off-center Gaus-
sians surrounding the complex179,180). As a result, for molecules of
the size targeted by the silver standard, an aDZ+(bond) calcula-
tion is significantly cheaper than an aTZ one. The use of midbond
functions has initially been popularized by Tao,181,182 who designed
standard midbond sets such as (3s3p2d) and established, through
tests on very simple complexes, that neither the precise location
of the midbond center nor the precise midbond exponents have
a significant influence on the accuracy of the resulting interaction
energies. Thus, present-day calculations involving midbond func-
tions typically use either one of the standard midbond sets (inde-
pendent of the atom-centered basis set) or a hydrogenic aXZ basis
with the cardinal number X that varies together with the cardi-
nal number of the atom-centered set. The latter choice somewhat
simplifies calculations that require density-fitting and/or resolution-
of-identity basis sets [such as MP2-F12 and CCSD(T)-F12] as the
required auxiliary bases are readily available for aXZ. In contrast,
for standard midbond sets, only one auxiliary basis has been con-
structed and tested.183 While the use of bond functions requires
a dimer basis set in all calculations (in other words, the counter-
poise correction must be included), there is nothing wrong with
combining midbond functions with CBS extrapolation184 and/or the
F12 approach.127 Thus, it is worthwhile to check if the inclusion of
bond functions in aDZ-level CCSD(T) and/or CCSD(T)-F12 calcu-
lations can lead to an improved silver standard of interaction energy.
A recent study from our group70 has shown that the answer is
yes.

In order to build directly on the findings of Ref. 69, Ref. 70
examined the same A2467 and S2230 databases. The performance
of CCSD(T), CCSD(T)-F12a, and CCSD(T)-F12b (with or with-
out the scaling of triples) has been compared between midbond-
less aXZ bases and the same atom-centered aXZ sets augmented
by a constant [(3s3p2d) and (3s3p2d2f )] or variable (hydrogenic
aXZ) set of functions centered on the intermolecular bond. The
one-step CCSD(T) approaches were compared to the composite
MP2/CBS+δ[CCSD(T)] ones, and the partially augmented basis
sets (from the “calendar” family: jul-cc-pVXZ, jun-cc-pVXZ, . . .42)
were investigated together with the fully augmented aXZ ones.
As far as the F12 variant is concerned, an interesting observa-
tion was made that confirmed earlier findings for a more lim-
ited class of systems:80,185 the CCSD-F12a variant, which is more
approximate (contains fewer diagrams) than CCSD-F12b,49,50 per-
forms best when combined with unscaled triples (which can be
viewed as more approximate than scaled triples—even if the scal-
ing is imperfect, it is almost certainly better than no scaling at
all). An exception to this observation are the data in the smallest
aDZ basis when CCSD(T∗∗)-F12a accidentally happens to be the
best one. The CCSD-F12b variant, in turn, performs best when a
scaled (T∗∗) contribution is added to it. This suggests that while
the CCSD(T∗∗)-F12b [or CCSD(F12∗)(T∗∗)] combination provides
“the right answer for the right reason,” the CCSD(T)-F12a approach
benefits from an (accidental but quite systematic) error cancellation
between the CCSD part and the triples part. By comparing against
separate CCSD/CBS and (T)/CBS benchmarks for the A24 database,
the authors of Ref. 70 showed that this is indeed the case, espe-
cially for larger basis sets and when the milder, CCSD-based scal-
ing54 is used for the triples contribution instead of the MP2-based
one.

The addition of midbond functions improved the accuracy of
all variants considered in Ref. 70 except for CCSD(T∗∗)-F12a. In the
case of conventional CCSD(T) and of CCSD(T)-F12b with unscaled
and CCSD-scaled triples, the improvement increased systematically
as the midbond basis set was enlarged, while for CCSD(T)-F12a
and CCSD(T∗∗)-F12b, the ordering of results with different mid-
bonds was more erratic. It was observed that the combination of
midbond functions and CCSD(T)-F12b with CCSD-scaled triples
was the least reliant on error cancellation between the CCSD part
and the triples part and thus likely to provide the most consis-
tent performance for systems outside of the investigated databases.
Moreover, the combination of midbond functions and the compos-
ite MP2/CBS+δ[CCSD(T)] treatment is still capable of providing
accurate results when some or all diffuse functions are removed
from the atom-centered part of the basis set. In fact, the cheapest
variant that delivered an average accuracy within 0.1 kcal/mol for
both databases was MP2/CBS+δ[CCSD(T)]/cc-pVDZ+(3s3p2d2f ),
where the only diffuse functions present were those centered on
the midbond. The switch from δ[CCSD(T)] to a suitably chosen
variant of δ[CCSD(T)-F12] decreased the errors further, and consid-
ering both the accuracy and the computational cost, the authors of
Ref. 70 went ahead to propose three new silver standards. The afore-
mentioned MP2/CBS+δ[CCSD(T)]/cc-pVDZ+(3s3p2d2f ) level was
designated the “silver-minus” one as it is significantly cheaper
than the established DW-CCSD(T∗∗)-F12/aDZ silver standard35

but only slightly less accurate. The newly designated “silver” level,
MP2/CBS+δ[CCSD(T)-F12a]/jun-cc-pVDZ+(3s3p2d2f ), is both a
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FIG. 4. The accuracy (MUE values on
the A24 and S22 databases) and com-
putational efficiency (relative timings for
the parallel-displaced benzene dimer) of
different CCSD(T)/CBS approximations
that require only double-zeta coupled-
cluster calculations. The original silver
standard of Ref. 35 and the new “silver-
minus,” “silver,” and “silver-plus” stan-
dards introduced in Ref. 70 are included.
(3322) is a shorthand notation for the
(3s3p2d2f ) set of midbond functions.
Reprinted with permission from Dutta
and Patkowski, J. Chem. Theory Com-
put. 14, 3053–3070 (2018). Copyright
2018 American Chemical Society.

little more accurate and a little more efficient than the silver standard
of Ref. 35. Finally, the “silver-plus” level, CCSD(Tbb)-F12b/aDZ +
(3s3p2d2f ), where (Tbb) denotes the CCSD-F12b-based scaling of
triples,54 is somewhat more expensive than the original silver stan-
dard but provides much higher accuracy. The performance of differ-
ent silver-standard variants considered in Ref. 70 is summarized in
Fig. 4.

In Ref. 70, substantial improvement to the double-zeta-level
CCSD(T)/CBS estimates was achieved with standard, off-the-shelf
sets of midbond functions. It remains to be seen whether additional
gains in the accuracy can be attained by optimizing the exponents
of midbond functions and/or their precise placement in the interac-
tion region. As the original work of Tao182 suggested this is not the
case, little effort has been made in the literature to design improved
midbond sets. However, a recent work by Shaw and Hill186 has
challenged this paradigm. These authors optimized compact sets of
bond functions at the MP2 and CCSD(T) levels for several noble gas
dimers, alkali metal dimers, and small molecular complexes investi-
gated in Ref. 128. Shaw and Hill concluded that while the commonly
used intermolecular midpoints were close to the optimal location
for the midbond center, the dependence of the interaction energy
on the midbond exponents was quite considerable, and the opti-
mization made their compact midbond sets highly competitive with
larger unoptimized sets (on the negative side, the optimized expo-
nents did not appear to be transferable between different systems).
The findings of Ref. 186 suggest that there is still room for improve-
ment of the silver standard by choosing carefully optimized mid-
bond sets instead of the unoptimized ones. We expect this direc-
tion of research to be pursued in the near future, together with
an extension of the silver-standard performance studies to larger
and more diverse databases including off-minimum intermolecular
separations.

VI. CONCLUDING REMARKS
We have presented the current state of the art in the calcula-

tions of accurate interaction energies in small- and medium-sized

complexes. This state of the art is quite impressive—there exists an
established gold standard that is typically accurate to several hun-
dredths of a kcal/mol and capable of producing PESs that reproduce
experimental observables for all but the highest-resolution spectro-
scopic and scattering measurements. Moreover, this gold standard
can be either further improved if even higher accuracy is required or
relaxed to provide interaction energies of near-gold-standard accu-
racy at a significantly reduced computational cost. Thus, the gold
standard, realized in practice by MP2/(aTZ,aQZ)+δ[CCSD(T)]/aTZ
or a similar calculation, is supported by the higher-accuracy plat-
inum standard, composed of an accurate frozen-core CCSD(T)/CBS
estimate plus corrections for higher-level coupled-cluster excita-
tions through CCSDT(Q), the correlation of core electrons, and
relativistic effects. On the other side, the gold standard is accom-
panied by the silver one, with average interaction energy errors
still well below 0.1 kcal/mol attained using only a double-zeta
CCSD(T) calculation. The accuracy of CCSD(T)/aDZ is strongly
improved by the explicitly correlated CCSD(T)-F12 approach, the
composite MP2/CBS+δ[CCSD(T)] treatment, the addition of mid-
bond functions, or, preferably, by a combination of at least two
of these enhancements.69,70 Thus, at this point, we have a very
clear understanding of how to attain a given level of accuracy for
a small closed-shell complex, and given the recent advances in
the automatic generation of the entire PES,14,15 the development
of new gold-standard-level potentials for complexes of experimen-
tal interest is now close to routine. Moreover, with significant
computational effort required to compute CCSDT(Q) interaction
energies, one can produce an even more accurate platinum-
standard PES that is capable of resolving the intricacies of compli-
cated spectra and locating resonances in elastic and inelastic cross
sections.

Impressive progress has also been made in the construction of
gold- and silver-standard benchmark noncovalent databases, both in
terms of the accuracy of the individual data points and the breadth
and diversity of the entire dataset. As a result, the newest compos-
ite databases involve at least 103 CCSD(T) interaction energies: in
one case,83 the number of data points is over 105! This increase in
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the amount of available high-accuracy data is particularly helpful
for developing machine-learning approaches which are notoriously
data-intensive. Interestingly, while nearly all gold-standard PESs for
individual complexes have been obtained in bases with midbond
functions (cf. Sec. III), very few numbers included in noncovalent
databases have been computed with midbonds. There is no good
algorithmic reason for this: it is likely that the awareness of the ben-
efits of midbonds in the benchmarking community is lower than
in the PES community. One relatively unexplored issue of adding
midbond functions is the dependence of the accuracy improvement
on the size of the complex: it is quite intuitive that the addition
of a single midbond center will provide more benefit for an atom-
atom complex, where the midbond constitutes 1/3 of the basis func-
tion centers, than, say, for a coronene dimer where the midbond
is just 1 out of 73 centers. For a stacked structure of the latter sys-
tem, it is likely that more than one midbond center is required for
a good coverage of the large contact area between the molecules.
However, the best practices of placing multiple midbond centers, or
even deciding whether more than one center is needed, are yet to be
explored.

Contrary to the situation for closed-shell systems, the exist-
ing benchmark data for open-shell noncovalent complexes are quite
scarce. A few small datasets for interactions involving radicals have
been constructed using high-level calculations,187–189 but each set is
composed of fairly similar systems and none of them contain off-
minimum configurations. Thus, substantial progress is required to
assess the accuracy of approximate approaches for open-shell inter-
actions on an equal footing with the closed-shell ones, and we expect
new extended open-shell databases to appear in the near future.
Another direction of current and future progress is the extension of
benchmark datasets beyond just interaction energies. Indeed, there
already exist pilot benchmark studies of noncovalent geometries,72,73

and a recent database of CCSD(T)-level dipole moments190 includes
some noncovalent complexes in addition to single molecules. How-
ever, more variety in the benchmark data for each of these kinds
would be desirable as would a benchmark dataset of harmonic vibra-
tional frequencies in some noncovalent complexes. Actually, there
is some evidence that these frequencies are even more sensitive to
the theory level than interaction energies: some MP2 normal modes
for water clusters are very far off the benchmark CCSD(T) val-
ues.191 Finally, several current applications including the construc-
tion of first-principles-based force fields192,193 and physics-based
machine learning of noncovalent interaction energies194 strongly
benefit from an accurate physical energy decomposition, that is,
a partitioning of the overall interaction energy into well-defined
terms of different physical origins. Such a partitioning can be pro-
vided by SAPT,16 and in recent years, the accuracy of different-level
SAPT decompositions has been thoroughly tested,195 including the
generation of a small set of benchmark SAPT data for the highest-
accuracy, coupled-cluster treatment of intramolecular electron
correlation.196

Perhaps the most pressing issue in the accurate calculations
of noncovalent interaction energies is an extension of the bench-
mark methodology to larger systems. This specific issue has been the
subject of a recent perspective by Al-Hamdani and Tkatchenko;197

here, we will just mention a few obstacles that lie ahead. There cur-
rently exist two small benchmark datasets of large intermolecular
complexes: L7198 and S12L.199,200 The reference energies for the S12L

set were obtained by (approximately) back-correcting experimen-
tal association free energies for effects such as harmonic zero-point
energy, entropy, and solvent influence. The L7 reference interaction
energies were computed ab initio, using MP2/CBS plus a correction
for higher-level correlation obtained from the quadratic configu-
ration interaction method with singles, doubles, and perturbative
triples [QCISD(T)] in a very small 6-31G∗(0.25) basis set. Thus,
both reference data are not fully up to even the silver standard dis-
cussed in Sec. V. Several other high-level calculations have been
performed for partial or whole L7 and S12L datasets,21,201,202 includ-
ing domain-based local pair natural orbital CCSD(T) [DLPNO-
CCSD(T)]203 and diffusion Monte Carlo (DMC).204 However, those
high-level results differ from the original reference energies and
from each other by several kcal/mol,197 indicating that the accu-
racy with which the L7 and S12L interaction energies are known
is significantly inferior to the precious metals standards discussed
in this perspective. The challenges facing such accurate calculations
are not limited to the computational cost: one has to also minimize
the residual errors of the local CCSD(T) approximation (or, alter-
natively, the fixed-node errors in DMC), and for some important
classes of complexes (for example, those involving large polycyclic
aromatic hydrocarbons), even full CCSD(T) might be inaccurate due
to the emerging multireference character. Thus, the accurate ab ini-
tio treatment of larger complexes still leaves a lot to be desired, and
we expect continuous improvement of large benchmarks in the near
future.
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135J. Řezáč, L. Šimová, and P. Hobza, J. Chem. Theory Comput. 9, 364 (2013).
136B. Temelso, C. R. Renner, and G. C. Shields, J. Chem. Theory Comput. 11, 1439
(2015).

137D. G. A. Smith, P. Jankowski, M. Slawik, H. A. Witek, and K. Patkowski,
J. Chem. Theory Comput. 10, 3140 (2014).
138M. Przybytek, W. Cencek, B. Jeziorski, and K. Szalewicz, Phys. Rev. Lett. 119,
123401 (2017).
139T. Korona, H. L. Williams, R. Bukowski, B. Jeziorski, and K. Szalewicz, J. Chem.
Phys. 106, 5109 (1997).
140W. Cencek, M. Jeziorska, R. Bukowski, M. Jaszuński, B. Jeziorski, and
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Chem. 118, e25580 (2018).
181F.-M. Tao and Y.-K. Pan, J. Phys. Chem. 95, 3582 (1991).
182F.-M. Tao, Int. Rev. Phys. Chem. 20, 617 (2001).
183R. Podeszwa, R. Bukowski, and K. Szalewicz, J. Phys. Chem. A 110, 10345
(2006).
184M. Jeziorska, W. Cencek, K. Patkowski, B. Jeziorski, and K. Szalewicz, Int. J.
Quantum Chem. 108, 2053 (2008).
185S. Li, D. G. A. Smith, and K. Patkowski, Phys. Chem. Chem. Phys. 17, 16560
(2015).
186R. A. Shaw and J. G. Hill, Mol. Phys. 116, 1460 (2018).

187S. N. Steinmann and C. Corminboeuf, J. Chem. Theory Comput. 8, 4305
(2012).
188P. R. Tentscher and J. S. Arey, J. Chem. Theory Comput. 9, 1568 (2013).
189B. Alday, R. Johnson, J. Li, and H. Guo, Theor. Chem. Acc. 133, 1540 (2014).
190D. Hait and M. Head-Gordon, J. Chem. Theory Comput. 14, 1969 (2018).
191J. C. Howard and G. S. Tschumper, J. Chem. Theory Comput. 11, 2126 (2015).
192J. G. McDaniel and J. R. Schmidt, J. Phys. Chem. A 117, 2053 (2013).
193S. Vandenbrande, M. Waroquier, V. Van Speybroeck, and T. Verstraelen,
J. Chem. Theory Comput. 13, 161 (2017).
194T. Bereau, R. A. DiStasio, A. Tkatchenko, and O. A. von Lilienfeld, J. Chem.
Phys. 148, 241706 (2018).
195T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem.
Phys. 140, 094106 (2014).
196T. Korona, Mol. Phys. 111, 3705 (2013).
197Y. S. Al-Hamdani and A. Tkatchenko, J. Chem. Phys. 150, 010901 (2019).
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ABSTRACT: The individual interaction energy terms in symmetry-adapted perturbation theory (SAPT) not only have
different physical interpretations but also converge to their complete basis set (CBS) limit values at quite different rates.
Dispersion energy is notoriously the slowest converging interaction energy contribution, and exchange dispersion energy, while
smaller in absolute value, converges just as poorly in relative terms. To speed up the basis set convergence of the lowest-order
SAPT dispersion and exchange dispersion energies, we borrow the techniques from explicitly correlated (F12) electronic
structure theory and develop practical expressions for the closed-shell Edisp

(20)-F12 and Eexch−disp
(20) -F12 contributions. While the latter

term has been derived and implemented for the first time, the former correction was recently proposed by Przybytek [J. Chem.
Theory Comput. 2018, 14, 5105−5117] using an Ansatz with a full optimization of the explicitly correlated amplitudes. In
addition to reimplementing the fully optimized variant of Edisp

(20)-F12, we propose three approximate Ansaẗze that substantially
improve the scaling of the method and at the same time avoid the numerical instabilities of the unrestricted optimization. The
performance of all four resulting flavors of Edisp

(20)-F12 and Eexch−disp
(20) -F12 is first tested on helium, neon, argon, water, and methane

dimers, with orbital and auxiliary basis sets up to aug-cc-pV5Z and aug-cc-pV5Z-RI, respectively. The double- and triple-ζ basis
set calculations are then extended to the entire A24 database of noncovalent interaction energies and compared with CBS
estimates for Edisp

(20) and Eexch−disp
(20) computed using conventional SAPT with basis sets up to aug-cc-pV6Z with midbond functions.

It is shown that the F12 treatment is highly successful in improving the basis set convergence of the SAPT terms, with the F12
calculations in an X-tuple ζ basis about as accurate as conventional calculations in bases with cardinal numbers (X + 2) for Edisp

(20)

and either (X + 1) or (X + 2) for Eexch−disp
(20) . While the full amplitude optimization affords the highest accuracy for both

corrections, the much simpler and numerically stable optimized diagonal Ansatz is a very close second. We have also tested the
performance of the simple F12 correction based on the second-order Møller−Plesset perturbation theory, SAPT-F12(MP2)
[Frey, J. A.; et al. Chem. Rev. 2016, 116, 5614−5641] and observed that it is also quite successful in speeding up the basis set
convergence of conventional Edisp

(20) + Eexch−disp
(20) , albeit with some outliers.

I. INTRODUCTION

Noncovalent intermolecular interactions are quite a demanding
case for electronic structure theory. The electron correlation is
essential to obtain even qualitatively correct interaction
energies: an uncorrelated, Hartree−Fock (HF) description
completely misses the dispersion forces. On the other hand,
correlated wave function methods such as the Møller−Plesset
perturbation theory (MPn) or the coupled-cluster approaches
with singles and doubles (CCSD) or singles, doubles, and
perturbative triples (CCSD(T)) exhibit slow convergence with

respect to the one-electron basis set. The reason for this slow
convergence has been tracked down to the inability of products
of one-electron functions to describe the interelectronic cusp,
that is, to provide the proper form of the wave function at the rij
→ 0 limit when two electrons approach each other.1,2 A
successful remedy to the cusp problem involves going beyond
the one-electron picture, that is, enriching the wave function
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Ansatz with terms that explicitly depend on the interelectronic
separations rij.

3,4 While a full variational optimization of such an
Ansatz is only possible for few-electron systems,5 a single frozen
r12-dependent function (correlation factor) is all it takes to
substantially improve the basis set convergence of the
correlation energy. After an initial exploration phase of different
correlation factors, the exponential e−γr12 6 emerged as the best
performer.7−9 For practical calculations of the required two-
electron integrals, the exponential (or other correlation factors)

is fitted to a linear combination of Gaussian e−αir12
2

terms.7 While
such Gaussian functions obviously have no cusp at r12 → 0, the
additional basis space flexibility in the small-r12 region is
sufficient to provide nearly converged molecular correlation
energies using double- or triple-ζ orbital basis sets. An extension
of a parent correlated approach with nonlinear r12-dependent
terms is referred to as the F12 method, with the MP2-F12
approach10,11 and different CCSD(T)-F12 variants12−17 being
particularly popular.
As many studies have shown,8,18−22 the improved basis set

convergence of MP2-F12 and/or CCSD(T)-F12 molecular
correlation energies does translate to an improved convergence
of supermolecular interaction energies at the same levels of
theory. At the level of double- and triple-ζ basis sets, the
improvement in interaction energies is comparable to the
improvement in molecular energies, with approximate
CCSD(T)-F12 results in the augmented correlation consistent
X-tuple ζ basis sets aug-cc-pVXZ≡ aXZ reaching similar level of
complete basis set (CBS) convergence as conventional
CCSD(T) in a much larger a(X + 2)Z (or even a(X + 3)Z)
basis.23 The CBS interaction energy estimates can also be
improved in an alternative manner, by augmenting the atom-
centered basis functions with a set of functions centered on the
intermolecular bond.24 Moreover, the benefits of the F12 Ansatz
and of the bond functions can be combined: this combination
often leads to both the most accurate CCSD(T)/CBS estimates
available22 and the best-performing CBS estimate possible with
only a double-ζ CCSD(T)-level calculation.25

Symmetry-adapted perturbation theory (SAPT)26−28 pro-
vides a decomposition of the interaction energy into its
physically meaningful electrostatic, induction, dispersion, and
exchange contributions. Such a decomposition has many
benefits, from explaining interaction energy and property trends
in a group of similar complexes29,30 to providing reference data
for a term-by-term construction of physically sound, ab initio-
based force fields.31 An additional, often overlooked benefit of
SAPT is that the CBS convergence of individual energy
contributions can be studied separately, which might lead to a
recommendation of using different basis sets for different SAPT
corrections. It has been observed that while some SAPT
corrections, especially those not involving electron correlation,
converge quickly with the basis set, other corrections converge
just as poorly as MP2 and CCSD(T) correlation energies. A
particularly important example is the dispersion energy, which,
when calculated in a small basis set, typically dominates the error
with respect to the SAPT/CBS result. Dispersion energy is also
the singular SAPT component that is significantly improved by
the addition of bond functions.32 Clearly, dispersion energy is
sensitive to the representation of the dispersion wave function
(see below for a precise definition) in the space between the
interacting molecules. This region is not the direct target of the
F12 Ansatz, and the mechanism of CBS convergence improve-
ment of supermolecular MP2-F12 or CCSD(T)-F12 interaction

energies is not entirely clear (although the improvement itself is
undisputable). It should be noted that another component of
SAPT, the second-order exchange dispersion energy, converges
with the basis set just as poorly in relative terms: however, this is
less of a practical issue as this correction is typically an order of
magnitude smaller than the dispersion energy.
The logical next step for the assessment of CBS convergence

of different SAPT corrections is finding out whether individual
SAPT terms can be improved by an explicitly correlated
approach, and the logical first choice for an F12 treatment is the
dispersion energy, followed by the exchange dispersion term. It
should be kept in mind that different levels of SAPT involve
different approximations to the dispersion energy: the
intermolecular interaction is always included within the second
order of perturbation theory but the intramolecular electron
correlation can be treated in many different ways, from a
complete neglect (within the SAPT0 approach) to a truncated
second perturbation expansion in powers of the Møller−Plesset
fluctuation potential33 (in the SAPT2, SAPT2+, SAPT2+3, ...
variants34) to a generalized Casimir−Polder integral involving
linear response functions of the electron density,35 computed at
the time-dependent HF, density functional theory [DFT,
leading to the SAPT(DFT) approach36,37], or higher levels of
theory.38 The SAPT0 approximation to dispersion energy is not
always accurate: the famous binding energy overestimation by
MP2 in π-stacked complexes39 is a direct consequence of the
dispersion energy overestimation by its SAPT0 approximation
(the dispersion energy contained in supermolecular MP2 is
roughly equivalent to SAPT0). As a result, it is often suggested34

to compute SAPT0 interaction energies in a small basis set (such
as the “calendar” set jun-cc-pVDZ40) instead of trying to
converge them to CBS, in order to facilitate an (empirical but
surprisingly consistent) error cancellation between the over-
estimation of dispersion energy by SAPT0 and the under-
estimation of dispersion energy by an incomplete basis set.
Nevertheless, the SAPT0 level provides the bulk of dispersion
energy and should be the first target for improvement associated
with an F12 Ansatz.
In this work, we develop rigorous F12 expressions for the

SAPT0-level dispersion and exchange dispersion energies,
expecting to overcome the slow CBS convergence for the
leading-order dispersion effects. This level of approximation is
also the easiest to transform into an F12 approach for three
reasons. First, the SAPT0 dispersion energy is a variational
quantity that can be accessed by minimizing a suitably defined
Hylleraas functional41 (in direct analogy to the MP2-F12
development via the Hylleraas functional of MP211). Second,
the resulting F12-enabled dispersion pair functions can be
directly inserted into the standard expression for exchange
dispersion energy in place of conventional dispersion pair
functions [very much like converged CCSD-F12 amplitudes are
typically inserted15,42 into the conventional expression for the
perturbative (T) correction]. Third, if intramolecular correla-
tion effects on dispersion and exchange dispersion are desired, a
double F12 Ansatz is likely required: one for the intermolecular
(dispersion) pair functions and another for the intramolecular
pair functions (note that such a double explicitly correlated
Ansatz has been proposed for the lowest-level intramolecular
correlation correction to dispersion in the specific case of the
helium dimer43). Therefore, while an F12 extension of higher-
level treatments of dispersion is certainly worthwhile (and such
an extension is the subject of an ongoing research in our groups),
in this work, we restrict ourselves to the simplest, SAPT0-level
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dispersion (also referred to as uncoupled Hartree−Fock
dispersion) and exchange dispersion corrections.
The problem of calculating explicitly correlated dispersion

energies has been addressed by several earlier studies. For the
helium dimer system, as already mentioned, the SAPT0
dispersion and exchange dispersion terms, as well as the leading
intramolecular correlation correction to SAPT0 dispersion
within the double perturbation formalism, have been derived
and computed using a Gaussian-type geminal (GTG) basis.43−45

An approximate F12 correction to the SAPT0 dispersion and
exchange dispersion by selecting the intermolecular pair
functions out of a local MP2-F12 computation for the complex
has recently been proposed and tested by some of us.46 Here,
this approach will be tested alongside the newly developed
SAPT-F12 corrections and referred to as SAPT-F12(MP2).
Very recently, when this work was well advanced, Przybytek
presented47 an independent derivation and pilot implementa-
tion of an F12 correction to the SAPT0 dispersion energy (but
not exchange dispersion energy). Przybytek’s recommended
approach is equivalent to the optimized-amplitude variant of our
F12 dispersion correction (presented below) up to technical
details of little practical significance. In addition, Przybytek
examined the performance of two additional variants of the F12
Ansatz and two additional correlation factors (which will not be
discussed in this work) and performed a detailed study of the
significance of the length-scale parameter γ in the correlation
factor for several complexes.
The structure of the rest of this paper is as follows. In Section

II, we derive the expression for an F12 correction to the second-
order dispersion energy, and in Section III, we develop the
corresponding correction to the second-order exchange
dispersion energy. The pertinent details of the computer
implementation of our algorithms are presented in Section IV.
The numerical results for a number of test complexes are
presented and analyzed in Section V. Finally, Section VI
contains conclusions.

II. F12 DISPERSION ENERGY
Throughout this work, we will use the notation similar to ref 11
with one important extension: the indices (i,k,m),a,r,x,α (with
primes if necessary) always relate to monomer A, and the indices
(j,l,n),b,s,y,β relate to monomer B. As far as the range of each
orbital index is concerned, indices i,j,k,l,m,n label occupied
orbitals a,b, virtual orbitals [those that are unoccupied in the
monomer Hartree−Fock references but are within the space
spanned by the atomic-orbital (AO) basis functions]; r,s, all
molecular orbitals (MOs), both occupied and virtual; x,y, the
complementary auxiliary (CA) functions approximately span-
ning the orthogonal complement of the MO space; and α,β, the
formally complete orthonormal set that is the union of the MO
and CA subspaces. We will assume the dimer-centered basis set
(DCBS) approach32 so that theMOs of both monomers (that is,
r and s) are built from the same set of AO basis functions,
centered on the atoms of both monomers (and possibly in
between the monomers), and thus span the same space.
Similarly, the CA orbitals for both monomers (that is, x and y)
span the same space so that also the monomer-A and monomer-
B approximations to the complete orbital space (that is, α and β)
are identical.
The zeroth-order wave function in SAPT is the product of

monomer ground-state Hartree−Fock determinants |ϕHF
A ϕHF

B ⟩,
and the zeroth-order Hamiltonian is the sum of the monomer
Fock operators, FA + FB

∑ϕ ϕ ϕ= = ϵ
i

k
jjjjjj

y

{
zzzzzzF E 2

i
i

A
HF
A

A
0

HF
A A

HF
A

(1)

and similarly for FB. In eq 1, ϵi
A denotes the HF orbital energy for

monomer A. Now, the complete second-order correction in the
Rayleigh−Schrödinger perturbation theory, utilizing FA + FB as
the zeroth-order operator and the intermolecular interaction
operator V as the perturbation (neglecting intramonomer
correlation completely), can be written as

∑

∑

∑ ∑
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where the three consecutive sums represent Eind,B→A
(20) , Eind,A→B

(20) ,
and Edisp

(20), respectively, and ϕm
A and ϕn

B are excited eigenfunctions
of FA and FB, respectively. The related formula for the first-order
wave function Ψ(1) = Ψind,B→A

(1) + Ψind,A→B
(1) + Ψdisp

(1) is

∑
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Let |ϕA⟩ depend on the coordinates of electrons 1, 2, ..., NA, and
|ϕB⟩on the coordinates of electrons NA + 1, NA + 2, ..., NA +
NB. For the purpose of separating out the induction and
dispersion effects, we will define the operators projecting out the
ground state for a given monomer

ϕ ϕ ϕ ϕ= − | ⟩⟨ | = − | ⟩⟨ |1 ; 1A HF
A

HF
A

B HF
B

HF
B

(4)

and consider the operator which will be written simply as A B,
but it is implied that A acts on electrons 1, 2, ...,NA and B acts
on electrons NA + 1, NA + 2, ..., NA + NB (obviously, A and B
commute with each other and each of them is idempotent, e.g.,

=A
2

A). It is easy to see that the Hermitian operator A B
annihilates the induction parts of the first-order wave function

Ψ = ΨA B
(1)

disp
(1)

(5)

We can now define a “dispersion-only”Hylleraas functional that
is a straightforward generalization of the functional used in
earlier studies of interactions between two-electron sys-
tems43−45

χ χ χ

χ ϕ ϕ

ϕ ϕ χ

[ ] = ⟨ | + − − | ⟩

+ ⟨ | − ⟨ ⟩ | ⟩

+ ⟨ | − ⟨ ⟩ | ⟩

J F F E E

V V

V V

( )

( )

( )

disp A B
A B

A
0

B
0

A B

A B HF
A

HF
B

HF
A

HF
B

A B (6)

where ⟨V⟩ ≡ ⟨ϕHF
A ϕHF

B |V|ϕHF
A ϕHF

B ⟩ is the first-order electrostatic
correction Eelst

(10). It can be shown that the dispersion wave
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function ΨA B
(1) minimizes Jdisp and that the minimum value

[ Ψ ]Jdisp A B
(1) equals the second-order dispersion energy Edisp

(20)

as expressed by eq 2.
We will now minimize Jdisp using a trial function fully

analogous to, e.g., the MP2-F12 theory11

χ = |Φ ⟩ + |Φ ⟩αβ
αβT Tab

ij
ij
ab

kl
ij kl

ij (7)

where |Φij
αβ⟩ = ÊαiÊβj|ϕHF

A ϕHF
B ⟩ is a doubly excited (once on A,

once on B) determinant. The Einstein summation convention
will be employed from now on for every repeated upper and
lower indices. Each unitary group generator Êαi produces a
singlet excitation combining two spin cases, i↑ → α↑ and i↓ →
α↓. Thus, ÊαiÊβj generates a sum of four spin cases where each
pair of orbital indices (i,α) and (j,β) occurs with both spin up
and spin down in |Φij

αβ⟩. Consequently, in the closed-shell case

δ δ δ δ⟨Φ |Φ ⟩ =αβ
α β

αα ββ′ ′
′ ′

′ ′ ′ ′4ij
i j ii jj (8)

which results in a factor of 4 in the dispersion energy expression
due to spin adaptation (a spin-up or spin-down excitation on A
interacts in the same way with a spin-up or spin-down excitation
on B). As usual in the F12 approaches, the excitations to a
formally complete space are included via a compact set of
amplitudes Tkl

ij and a suitable internal contraction

αβ= ⟨ | ̂ ̂ | ⟩αβ kl F Qkl
12 12 (9)

where F̂12 ≡ F(r12) is the correlation factor [we use the standard
exponential exp(−γr12) factor in this work], and Q̂12 is the
projection operator ensuring strong orthogonality. We will use
what is known as Ansatz 3 (cf. eq 9 of ref 11) for Q̂12

∑ ∑ ∑̂ = − | ⟩⟨ | − | ⟩⟨ | − | ⟩⟨ |
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zzzzzz
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zzzzzzQ i i j j ab ab1 1 1

i j ab
12 1 1 2 2 12 12

(10)

with the subscripts specifying which electron coordinates are
affected by a given part of the projector. Note that, unlike in the
case of an F12 correction to the correlation energy of a single
molecule, different spaces (belonging tomonomers A and B) are
projected out for electron 1 and electron 2, and there is no left−
right index symmetry in the |Φij

ab⟩ and |Φij
αβ⟩ functions in eq 7.

We will now evaluate Jdisp[χ], eq 6, for χ given by eq 7 in terms
of two-electron integrals involving molecular and/or comple-
mentary auxiliary orbitals. In the process of doing this, we will
use the fact that for Ansatz 3 = 0ab

kl and employ a simplified
form of the Fock operator. Specifically, we will assume that the
occupied and virtual orbitals for a given monomer are canonical
solutions of the Hartree−Fock equations for this monomer in
theMO basis and that the occupied orbitals cannot be improved
by the complementary auxiliary basis set (CABS). The latter
condition is referred to in ref 11 as the generalized Brillouin
condition (GBC). Thus, we will assume GBC but not
necessarily the extended Brillouin condition (EBC) (stating
that the virtual orbitals are not improved by the complementary
auxiliary basis functions), which would be a more drastic
approximation. As a result

̂ | ⟩ = ϵ | ⟩ ̂ | ⟩ = ϵ | ⟩ + | ⟩
̂ | ⟩ = | ′⟩ + | ⟩′
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and similarly for fB̂. Obviously, the one-electron Fock operator fÂ

is related to the complete operator FA of eq 1 as FA = ∑ =i
N

1
A fî

A.
Let us substitute eq 7 into eq 6
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To start simplifying eq 12, we first note that the contributions to
the last four terms that involve E(10) vanish because A B|
ϕHF
A ϕHF

B ⟩ = 0. Second, A B|Φij
ab⟩ = |Φij

ab⟩, A B|Φij
xb⟩ = |Φij

xb⟩,
and A B|Φij

ay⟩ = | Φij
ay⟩ as all of these functions involve

excitations on both monomers and thus belong to the space of
dispersion excitations. Third
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In view of those three identities, eq 12 becomes
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(14)

Now, terms 2 and 5 of eq 14 vanish because ⟨Φab
ij |Φi′j′

αβ⟩=
4δii′δjj′δaαδbβ and the resulting matrix element = 0ab

kl is zero in
the employed Ansatz. The terms 9 and 11 are equal to each other
and add up to 8Tab

ij Kij
ab, with the standard two-electron integrals

= ⟨ | | ⟩−K ij r abij
ab

12
1

(15)

To simplify the remaining terms in eq 14, we need to understand
how the projector A B acts on |Φij

αβ⟩. Splitting the complete
indices α,β into their occupied, virtual, and CA ranges and
projecting out nondispersion parts, we obtain
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Using the decomposition of eq 16, we find that the terms 10 and
12 in eq 14 are equal to each other and add up to
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(17)

where, in addition, the first term vanishes because of the

presence of kl
ab.

The terms 3, 4, 6, and 7 in eq 14 couple the ordinary and
explicitly correlated dispersion amplitudes and would vanish if
the EBC approximation was employed. Using eq 8, we find that
the pairs of terms (3, 6) and (4, 7) are identical to each other,
and these four terms add up to

+T T f T T f8 ( ) 8 ( )ij
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(18)

The last part remaining to be cast into two-electron integrals and
similar quantities is the term 8 in eq 14. To process this term, we
employ eq 16 and invoke the structure of the Fock matrix in
canonical molecular orbitals within the GBC approximation (eq
11), specifically, the result of the action of a Fock operator on a
singly excited monomer state. If the excitation is to the virtual
space, we get
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and for an occupied → CA excitation, the result is
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(21)

Note that all doubly excited functions in eq 21 belong to the
dispersion space and are unchanged by the projector A B.
Therefore, we can use eq 8 to evaluate all dot products, and the
term 8 in eq 14 becomes
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where we used = 0ab
kl to eliminate the |Φi′j′

ab⟩ terms.
Combining all terms, the complete expression for Jdisp[χ]

becomes
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While eq 23 is a complete expression for Jdisp[χ] in terms of one-
and two-electron quantities, it is not well suited for practical
applications due to the presence of several CA indices at the
same time that necessitate slowly convergent double resolutions
of identity. Instead, we will rewrite eq 23 to identify several
intermediates found in the standard MP2-F12 theory, whose
efficient evaluation avoiding a double resolution of identity (RI)
whenever possible11 can be reused for the computation of Edisp

(20)-
F12. To this end, we first expand the ( f1̂

A + f2̂
B) operator via a

double resolution of identity and eliminate the occupied and
double-virtual terms by the strong orthogonality projector
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Consequently
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All 10 resulting terms are found in eq 23 multiplied by the same
factor 4Tij

klTk′l′
ij . Moreover, the matrix element of eq 25 is the

same as the standard Bkl,k′l′ intermediate of the MP2-F12 theory
(see, e.g., eq 27 of ref 11) except for the fact that the Fock
operators f1̂

A and f2̂
B now refer to two different molecules.

Three other contributions in eq 23 can be added together as
follows
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which involves another common MP2-F12 intermediate Xkl,k′l′,
cf. eq 28 of ref 11. The last three terms in eq 23 can be written as
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with the intermediate Vkl
ij , eq 26 of ref 11, present this time.

Finally, the second and third terms in eq 23 can be expressed as
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The resulting matrix elements add up to the Cab
kl MP2-F12

intermediate, defined, e.g., in eq 29 of ref 11, except that the
Fock operators f1 and f 2 pertain to different molecules. Thus, the
final formula for Jdisp[χ], utilizing intermediates similar to the
MP2-F12 theory, reads
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It may be verified that all of the resolution of identity and
commutator transformations used to evaluate the V, X, B, and C
matrices in the MP2-F12(3C) context11 remain valid in the case
of explicitly correlated dispersion energy as long as one is careful
to employ the Fock operator for the correct monomer.
We now need to find the amplitudesTij

ab andTij
kl that minimize

eq 29. The partial derivatives of the Hylleraas functional with
respect to the amplitudes are (writing the summations explicitly
this time)
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As expected, the equations for the standard dispersion
amplitudes Tij

ab and explicitly correlated amplitudes Tij
kl are

coupled since we have not assumed the extended Brillouin
condition. Setting both gradients to zero gives a separate system
of linear equations for each pair (i,j). Inserting the solutions of
these linear equations into eq 29, we get a simplified formula for
Edisp
(20)-F12 valid for optimized amplitudes only
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The full optimization of amplitudes Tij
ab and Tij

kl proceeds by
solving eq 30 for Tij

ab and substituting the result into eq 31
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Let us denote by oA, vA (oB, vB) the numbers of occupied and
virtual orbitals for monomer A (B), respectively. For a given pair
(i,j), eq 34 is a system of oAoB linear equations for the explicitly
correlated amplitudes Tij

kl. Unfortunately, the formation of the
matrix for this linear system scales like oA

2vAoB
2vB and has to be

repeated for each of the oAoB pairs, bringing the overall scaling of
the full amplitude optimization to a highly unfavorable oA

3vAoB
3vB,

that is, N8. This nonapproximate but expensive variant of Edisp
(20)-

F12 was very recently proposed and investigated by Przybytek.47

In this work, in addition to the full amplitude optimization, we
propose and test three simplified Ansaẗze that exhibit reduced
computational scaling.

• EBC Ansatz: Assuming the extended Brillouin condition
simplifies eq 11 by zeroing out the ( fA)x

a and ( fA)a
x

coupling matrices, which results in Cab
kl = 0 so that eqs

30 and 31 are decoupled (in addition, the Bkl,k′l′
intermediate is somewhat simplified, see eq 25). Most
importantly, eq 34 simplifies to

∑ [ − ϵ + ϵ ] = −
′ ′

′ ′
′ ′ ′ ′T B X V( ) ( )

k l
ij
k l

kl k l i j kl k l kl
ijEBC

,
A B

,

(35)
In such a case, the matrix for the system of equations can
trivially be formed from the same Bkl,k′l′ and Xkl,k′l′
intermediates (which require on the order of N5

operations to evaluate), and the limiting factor becomes
the solution of eq 35 for every pair (i,j). This brings the
overall scaling of the approach to oA

4oB
4 if a complete

noniterative solution of each linear system is performed,
which is more favorable than for the non-EBC variant but
still N8. However, an iterative (e.g., conjugate gradient)
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solution of the systems of equations can deliver better
scaling as a single iteration (matrix−vector multi-
plication) for all pairs scales like oA

3oB
3 or N6.

• Optimized Diagonal Ansatz (ODA): In this approx-
imation, we assume that the amplitudes Tij

kl are diagonal,
that is

δ δ=T Tij
kl

ij
ij

ik jl (36)

With this simplification (and without assuming EBC), eqs
33 and 34 become
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Thus, no systems of equations need to be solved, and all
amplitudes can be recovered in oAvAoBvB (N

4) operations
once all of the intermediates V, X, C, B are ready.

• Fixed-Amplitude Ansatz: In this simplest approximation,
we assume that Tij

kl is not only diagonal (eq 36) but all
diagonal Tij

ij = λ for some common value of the single
parameter λ. In this case, the Hylleraas functional Jdisp[χ],
eq 29, is quadratic in λ and it is trivial to find the value of λ
that minimizes it. One should note that theTij

ab amplitudes
in this approximation are still calculated from eq 37; thus,
they do contain a nonzero contribution from the
conventional-F12 amplitude coupling. We have observed
that the optimal λ values for various systems are typically
in a fairly narrow, 0.3−0.6 range. It should be noted that
the molecular MP2-F12 and CCSD(T)-F12 calculations
commonly employ a similar fixed-amplitude Ansatz where
the values for the singlet and triplet pair functions are fixed
by the cusp conditions.6 As the SAPT dispersion wave
function does not allow for electron exchanges between
monomers (exchange corrections are added in SAPT at a
later stage, using symmetrized energy expressions with
unsymmetrized wave function corrections26), the exact
singlet and triplet coalescence conditions cannot be
enforced and we chose to treat λ as an adjustable
parameter instead. It should be noted, however, that the
fixed-amplitude Ansatz leads to negligible computational
savings over the optimized diagonal one as the limiting
factor is still the computation of intermediates, in
particular B.

III. F12 EXCHANGE DISPERSION ENERGY
In conventional SAPT, the second-order exchange dispersion
energy is usually computed in the single exchange approx-
imation, also called the S2 approximation as it neglects terms of
order higher than 2 in the intermolecular overlap integrals.26

The value of the Eexch−disp
(20) (S2) correction (the qualifier (S2) will

be dropped from now on) is obtained from dispersion
amplitudes Tab

ij , taken straight from the dispersion energy

calculation, and a host of various one- and two-electron integrals.
As we have assumed the DCBS case, that is, both the molecular-
orbital and CA bases span the same spaces for monomers A and
B, the Eexch−disp

(20) correction can be computed from two equivalent
expressions: the conventional one derived using density
matrices48 and the less popular, DCBS-only one employing
the second-quantized form of the single exchange operator.49

The latter formalism will be employed here as it contains far
fewer different integral types. The standard Eexch−disp

(20) correction
within the second-quantized formalism is given, e.g., by eq 12 of
ref 50, which, transcribed to our notation, reads
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where Sj
i = ⟨i|j⟩ is the overlap integral and (ωB)i

a is the matrix
element of the electrostatic potential of monomer B, that is

ω = ⟨ | | ⟩ +a V i K( ) 2i
a

ij
aj

B B (40)

andVB is the nuclear potential of molecule B. A similar definition
holds for the (ωA)j

bmatrix elements. Let us now imagine that we
are running the same SAPT calculation in a complete one-
electron basis |α⟩ for A and |β⟩ for B. Then, eq 39 holds, with the
occupied orbitals i,j the same as for the standard SAPT
calculation (according to GBC, the addition of CA functions
does not improve i,j) but the virtual orbitals a,b replaced by
larger sets γ,δ, which will denote unoccupied orbitals on A and B,
respectively (that is, the index γ runs over both a and x, and the
index δ runs over both b and y ≡ x). The calculation with such
large virtual spaces is, in general, unfeasible, but the F12 Ansatz
provides a compact internally contracted representation of these
spaces

|Φ ⟩ → |Φ ⟩ + |Φ ⟩γδ
γδ

αβ
αβT T Tij

ij ab
ij

ij
ab

kl
ij kl

ij (41)

where both Tab
ij and Tkl

ij have been determined in the preceding
Edisp
(20)-F12 calculation. One should note that the presence of the

projector Q̂12, eq 10, in the αβ
kl matrix element means that (1)

neither α nor β can be an occupied index so there are no
contributions outside of the |Φij

γδ⟩ space, and (2) α and β cannot
both be virtual so there is no double counting between the |Φij

ab⟩
and |Φij

αβ⟩ terms. In other words, out of different doubly excited
configurations |Φij

γδ⟩, the first term in eq 41 accounts for |Φij
ab⟩

and the second term for |Φij
ay⟩, |Φij

xb⟩, and |Φij
xy⟩. If we now

substitute the Ansatz of eq 41 into eq 39, the Tab
ij |Φij

ab⟩ term will
give the standard exchange dispersion energy and the second
term will provide the F12 correction δEexch-disp

(20) -F12. Accordingly,
the latter correction takes the following form (note the ranges of
different indices)
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The first step to transform eq 42 to a practical equation is to

eliminate the projectors Q̂12 from the αβ
kl matrix elements. We

have two forms of this projector that are equivalent in the limit of
complete RI basis, but the first form converges faster with the RI
basis as the second form involves an undesirable, slowly
converging double CABS expansion11

̂ = − | ⟩⟨ | − | ⟩⟨ | − | ⟩⟨ |

= | ⟩⟨ | + | ⟩⟨ | + | ⟩⟨ |

Q xn xn my my rs rs

ay ay xb xb xy xy

112

(43)

For the reasons that will become clear below, we will use the first
form of eq 43 for the underlined terms in eq 42 and the second
form for the terms that are not underlined. In short, we will show
that the latter terms do not lead to a double RI expansion (over
x,y) in the end, while the underlined terms would lead to such an
expansion unless explicitly prevented. On the other hand, if we
tried treating the nonunderlined terms with the first form of eq
43, three-electron integrals would appear.
Let us start with the nonunderlined terms in eq 42
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Each term in eq 44 contains an overlap integral of the type Sj
α or

Si
β. Such an integral is zero if the orbital α(β) belongs to the CA
space as all complementary functions are orthogonal to the
molecular orbitals of both monomers, e.g., Sj

x = 0. Therefore, for
each of the terms in eq 44, only one of the three contributions,
|ay⟩⟨ay| or |xb⟩⟨xb|, survives (the term |xy⟩⟨xy| always vanishes
so that the danger of a double RI expansion has been averted).
The surviving terms are
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To finalize the derivation of this part of the F12 correction to the
exchange dispersion energy, we need to split the unoccupied
indices γ,δ into their virtual and CA ranges and identify surviving
terms. Taking into account the orthogonality of the comple-
mentary auxiliary space to the orbital space and the mutual
orthogonality of the complementary functions (Sy

x = δxy), we
obtain the final expression for this part
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We can now move on to the underlined terms in eq 42,
substituting the first form of the projector from eq 43
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Let us now first examine the terms in eq 47 that result from the
unit operator in the expansion of Q̂12. In three of these terms, it is
easy to identify and eliminate the identity operator 1 = |αβ⟩⟨αβ|
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leading to the integrals identical to eq 55 of ref 11, which were
already present in the formula for the F12 dispersion energy.
The first term in eq 47 also involves the resolutions of identity
|α⟩⟨α| and |β⟩⟨β|, and it can be proven that

= = =αβ δ
α

γ
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δβ γ
β

δγ γδF S S F S F Fkl kl kl lk
(49)

The resulting operator |γδ⟩⟨γδ| is not a complete resolution of
identity because the terms involving occupied orbitals on either
monomer are missing
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The substitution of eq 50 into the first term of eq 47 gives
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All resulting integral types have been already encountered in the
calculation of intermediates for Edisp

(20)-F12: the only difference is
that the integrals involving F̂12 and F̂12r12

−1 are of the exchange
type: FAB

BA. This requires the same atomic-orbital integrals but a
slightly modified integral transformation employing the SCF
vectors of the appropriate monomer.
All that remains to be evaluated are the 12 terms from eq 47

except for the ones resulting from the identity operator in eq 43.
These terms are straightforward: we just need to determine the
proper range for the unoccupied indices γ,δ
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We have now derived all parts of the F12 correction to Eexch−disp
(20) .

Collecting them together, we obtain
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Thus, the F12-improved second-order exchange dispersion
energy in a DCBS treatment is equal to the conventional
Eexch−disp
(20) , eq 39, plus the F12 correction given by eq 53.

IV. COMPUTATIONAL DETAILS
The new expressions for Edisp

(20)-F12 and Eexch−disp
(20) -F12 developed

in the preceding sections were implemented within the
PSI4NUMPY framework,51 utilizing the integrals and monomer
Hartree−Fock vectors computed by the PSI4 code52 and the
NUMPY library to manipulate the resulting tensors Python-side.
The calculations require the same four types of F12 integrals
(over some combinations of AO and RI basis indices) as a
conventional MP2-F12 calculation, namely, Fvw

tu ≡ ⟨tu|F̂12|vw⟩,
⟨tu|F̂12

2 |vw⟩, ⟨tu|F̂12r12
−1|vw⟩, and the double commutator integrals

⟨tu|[F̂12,[t1̂2, F̂12]]|vw⟩, with t1̂2 = t1̂ + t2̂ being the kinetic energy

operator. These integrals were computed using the LIBINT

library53 performing the Obara−Saika angular momentum
recursion54 on top of auxiliary s-type integrals already
implemented in PSI4 following the formulas given in ref 55.
The intermediates involving the Fock operators, Bkl,k′l′ and Cab

kl ,
were computed in exactly the same fashion as within the 3C
approximation to conventional MP2-F12,11 taking care to pick
the Fock operator of the appropriate monomer (cf. eqs 25 and
28) for the respective orbital transformations. Compared to the
simplest and most transparent implementation utilized, e.g., in
the SAPT0 code included in the official PSI4NUMPY release,51

two modifications were made to reduce the memory and CPU
time requirements, which are both dominated by the integral
evaluation and transformation. First, the integrals of each type
were not computed all at once, but inN3 chunks where one shell
index was frozen and the other three indices ran over all shells in
the (orbital or auxiliary) basis set. This required a minor
modification of the PSI4 code so that the required subset of
integrals could be exported to the Python layer. Second, the
partially transformed integrals were reused whenever possible so
that the number of the (most expensive) transformations of the
first index was minimized. These enhancements to the
PSI4NUMPY implementation were sufficient to compute all
quantities obtained in the present work, including all Edisp

(20)-F12
and Eexch−disp

(20) -F12 values in an augmented triple-ζ basis for all
complexes in the A24 benchmark database.56 However, a further
improvement to the computational efficiency of the new
algorithms requires a robust density fitting of all four index
quantities present.57,58 While density fitting was not pursued in
the present benchmark study to avoid an additional source of
residual error in the calculations, the work on production-level
density-fitted Edisp

(20)-F12 and Eexch−disp
(20) -F12 implementations is in

progress in the Auburn research group.
The SAPT-F12(MP2) corrections to the second-order

dispersion and exchange dispersion energies proposed in ref
46 were computed using a development version of the
TURBOMOLE program. To compute the -F12(MP2) correction
for each dimer, the Hartree−Fock vectors of the corresponding
monomers are combined to the dimer orbitals, sorted by energy.
No density fitting was used in this step. The resulting dimer
Hartree−Fock vectors are orthogonalized, and an MP2-F12
calculation is carried out. The final -F12(MP2) correction is
obtained by summing the MP2-F12 pair energies of occupied−
occupied pairs where each occupied index is located on a
different monomer fragment, while the pairs with two occupied
indices on the samemonomer fragment are discarded. Although,
in principle, all approximations used for MP2-F1211 can also be
applied to the Edisp

(20)-F12(MP2) scheme, the 2*A approximation
was used in conjunction with the T+V commutator approx-
imation59 to evaluate the Edisp

(20)-F12(MP2) correction.
The orbital basis sets employed in the present work were the

augmented correlation consistent aug-cc-pVXZ ≡ aXZ sets of
Dunning and co-workers,60,61 with X ranging from D to 6. We
have chosen not to use the cc-pVXZ-F12 basis sets optimized
specifically for the F12 calculations62 as these sets were proven
to be inferior to the standard aXZ ones in intermolecular
interaction energy calculations at the supermolecular counter-
poise-corrected CCSD(T)-F12 level,23 a conclusion that is
unchanged25 by the recently proposed aug-cc-pVXZ-F12
extension.63 The resolution-of-identity (CABS) bases used to
expand the CA functions were the aXZ-RI sets, also termed
aXZ/MP2FIT,64,65 with the cardinal numberX equal or larger to
the corresponding X for the orbital set. Note that the use of
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extended auxiliary basis sets, with X larger than for the orbital
basis, has been extensively tested before in the explicitly
correlated MP266 context, and it has also been recommended67

for density-fitted SAPT(DFT) calculations. The exponential
correlation factor exp(−γr12) was used throughout the present
work, with the length-scale parameter γ equal to 1.0a0

−1. For the
purpose of integral calculation, this correlation factor was fitted
to a sum of six Gaussian terms.7 All Edisp

(20)-F12(MP2) results were
calculated using the resolution-of-identity approximation for
Coulomb and exchange integrals, which were fitted using the
same aXZ/MP2FIT basis as the one chosen as the CABS. The
SAPT-F12 corrections were computed with all electrons
correlated. For technical reasons, the SAPT-F12(MP2) results
were obtained by adding a frozen-core F12 correction on top of
an all-electron conventional SAPT result and with the length-
scale parameter γ equal to 1.4a0

−1. Both values should converge
to the all-electron CBS limit, and the partial freezing of the core
in SAPT-F12(MP2) is of little practical consequence (note that
for the systems considered in this work, unlike, e.g., alkali or
alkaline earth metal dimers, the contribution of core correlation
to the interaction energy is very minor).
Extensive tests of the convergence of different Edisp

(20)-F12 and
Eexch−disp
(20) -F12 variants with the orbital and auxiliary bases were

initially performed on five small complexes: the homodimers of
helium, neon, argon, water, and methane. The atom−atom
distances in He−He, Ne−Ne, and Ar−Ar were fixed at their
near-equilibrium values of 5.6 bohr, 3.1 Å, and 3.75 Å,
respectively, and the geometries for the water and methane
dimers were taken from the A24 benchmark database.56

Subsequently, the entire A24 set was employed to investigate
the performance of Edisp

(20)-F12 and Eexch−disp
(20) -F12 corrections in

the aDZ and aTZ orbital bases. The F12 data were compared
with conventional CBS limit estimates of Edisp

(20) and Eexch−disp
(20)

computed using the a6Z+(a6Z) basis set, where the aXZ+(aXZ)

notation signifies that the aXZ atom-centered orbital basis has
been augmented by the set of midbond functions from the same
aXZ basis, with the exponents and contraction coefficients
appropriate for hydrogen. It should be stressed that themidbond
basis functions and the RI basis functions are used in
fundamentally different contexts. The midbond set is added to
the atom-centered part of the orbital basis. In the limit of a
complete midbond set, Edisp

(20) (or any other electronic structure
theory) reaches its CBS limit: a complete set of functions
centered on any one point in space is a formally sufficient,
although woefully inefficient, way to saturate the one-electron
basis set. For a specific complex, the Edisp

(20) calculation (without
density fitting) scales like N4 with the number of midbond
functions. In contrast, the RI basis is needed to approximate the
many-electron integrals of the F12 theory. In the limit of a
complete RI set, Edisp

(20)-F12 attains its value characteristic to the
orbital basis set employed, with all many-electron integrals
computed exactly. For a specific complex, the Edisp

(20)-F12
calculation scales quadratically with the number of RI basis
functions.
The conventional SAPT0 calculations utilized the PSI4

code52,68 and employed density fitting with the a6Z-RI auxiliary
basis used for both HF and SAPT0 parts of the calculation. A
different benchmark was adopted for the helium dimer, for
which very accurate estimates of the Edisp

(20) and Eexch−disp
(20) CBS

limits are available from Gaussian-type geminal (GTG)
calculations with nonlinearly optimized amplitudes.45 The
(tiny) estimated uncertainty of these CBS limits was also
taken from ref 45: as only the uncertainty of the complete Edisp

(20) +
Edisp
(21) + Eexch−disp

(20) term was given in this reference, that value was
used for both corrections investigated here. For other systems,
the uncertainty of the a6Z+(a6Z) CBS values was conservatively
estimated as the absolute value of the difference between the
results computed in the a6Z+(a6Z) and a5Z+(a5Z) basis sets.

Table 1. Edisp
(20)-F12 Values (in kcal/mol) for the Helium Dimer for Different Combinations of the Orbital Basis aXZ and CABS

Basis aXZ-RIa

basis Edisp
(20) aDZ-RI aTZ-RI aQZ-RI a5Z-RI a6Z-RI

Fixed-Amplitude/Optimized Diagonal/Fully Optimized Ansatz
aDZ −0.0243 −0.0597 −0.0455 −0.0422 −0.0403 −0.0360
aTZ −0.0297 −0.0363 −0.0357 −0.0352 −0.0345
aQZ −0.0314 −0.0341 −0.0341 −0.0349
a5Z −0.0325 −0.0340 −0.0339
a6Z −0.0332 −0.0340

EBC Ansatz
aDZ −0.0243 −0.0598 −0.0456 −0.0423 −0.0404 −0.0360
aTZ −0.0297 −0.0360 −0.0354 −0.0348 −0.0342
aQZ −0.0314 −0.0338 −0.0338 −0.0346
a5Z −0.0325 −0.0337 −0.0336
a6Z −0.0332 −0.0339

F12(MP2) Ansatz
aDZ −0.0243 −0.0380 −0.0345 −0.0329 −0.0316 −0.0303
aTZ −0.0297 −0.0331 −0.0327 −0.0325 −0.0322
aQZ −0.0314 −0.0326 −0.0325 −0.0325
a5Z −0.0325 −0.0334 −0.0334
a6Z −0.0332 −0.0337

GTG −0.0341 ± 1.6 × 10−7

aThe fully optimized, optimized diagonal, and fixed-amplitude Ansaẗze are equivalent for this specific system. EBC stands for the extended Brillouin
condition Ansatz, eq 35, and F12(MP2) denotes the approach of ref 46. The benchmark Edisp

(20)/CBS value given at the bottom of the table was
computed in ref 45 using Gaussian-type geminals (GTGs). Note that the variational character of the Edisp

(20)-F12 expression, eq 29, holds only in the
limit of the complete RI basis and breaks down for finite auxiliary bases employed in this table.
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V. RESULTS AND DISCUSSION

A detailed analysis of the Edisp
(20)-F12 and Eexch−disp

(20) -F12 corrections
was performed on a set of five weakly interacting dimers:
He−He, Ne−Ne, Ar−Ar, H2O−H2O, and CH4−CH4 at their
van der Waals minimum geometries. Explicitly correlated
calculations employed basis sets up to a5Z along with auxiliary
sets up to a5Z-RI. The exceptions are the helium dimer, for
which the use of a6Z and a6Z-RI was possible, and the methane
dimer for which calculations were limited to aQZ. We studied
the performance of the F12 approach with fully optimized
amplitudes (FULL), as well as three approximate Ansaẗze:
optimized diagonal (ODA), EBC, and fixed amplitude (FIX).
These four variants will be collectively referred to as SAPT-F12,
as opposed to the SAPT-F12(MP2) approach of ref 46 whose
performance was also investigated. The results were compared
with benchmark CBS values determined as detailed in Section
IV.
Tables 1−10 present the Edisp

(20)-F12 and Eexch−disp
(20) -F12 values

for the abovementioned complexes with different ways of
calculating the explicitly correlated amplitudes. Tables SI−SV in
the Supporting Information display the corresponding Edisp

(20)-F12
+ Eexch−disp

(20) -F12 sums. As the helium dimer has only one
occupied orbital on each monomer and thus only one Tkl

ij

amplitude, the FULL, ODA, and FIX Ansaẗze are identical for
this system; only the EBC one is slightly different as it neglects
the coupling between the conventional and F12 amplitudes.
Interestingly, Edisp

(20)-F12 energies obtained for all rare gas dimers
break the variational principle in the aXZ/aXZ-RI basis set
combinations, converging to the benchmark result from below.

Further investigation shows that this is caused by a very slow
convergence of the energy with the CABS. Although Eexch−disp

(20) -
F12 is not a variational quantity, so an improvement of results is
not guaranteed when enlarging the basis set, the same slow
convergence pattern is noticeable. Tables 1−3 indicate that the
aDZ orbital result is not converged with respect to the RI basis
even at the largest available a5Z-RI level (a6Z-RI for He−He),
with all Edisp

(20)-F12(FULL)/aDZ values still below the variational
limit for the helium dimer. Therefore, we tested an even larger
CABS, a (17s15p13d11f9g7h5i) set obtained from the a6Z-RI
one by inserting one additional exponent (a geometric mean)
between each pair of successive exponents and then adding one
exponent larger than the largest one and one exponent smaller
than the smallest one so that the three largest and three smallest
exponents form two geometric sequences. Using this RI basis,
the helium dimer Edisp

(20)-F12(FULL)/aDZ energy amounted to
−0.0332 kcal/mol, finally above the variational limit but quite
close to it. The origin of slow convergence of noble gas dimer
interaction energies can possibly be traced down to the auxiliary
basis sets being insufficiently optimized for the purposes of
dispersion energy calculation. In contrast, the dispersion and
exchange dispersion energies for the water and methane dimers
converge rapidly with the RI basis. Moreover, we observed
occasional convergence issues in the full optimization of
dispersion amplitudes since the systems of equations that need
to be solved47 are quite ill-conditioned. This motivated us to
replace Edisp

(20)-F12(FULL) by Edisp
(20)-F12(ODA) for each pair of

orbitals (i,j) whenever the fully optimized approach encoun-
tered numerical issues as evidenced by the resulting pair

Table 2. Edisp
(20)-F12 Values (in kcal/mol) for the Neon Dimer for Different Combinations of the Orbital Basis aXZ and CABS Basis

aXZ-RIa

basis Edisp
(20) aDZ-RI aTZ-RI aQZ-RI a5Z-RI

Fixed-Amplitude Ansatz
aDZ −0.0816 −0.1883 −0.1496 −0.1385 −0.1223
aTZ −0.1087 −0.1536 −0.1434 −0.1338
aQZ −0.1203 −0.1405 −0.1364
a5Z −0.1270 −0.1341

Optimized Diagonal Ansatz
aDZ −0.0816 −0.1948 −0.1549 −0.1438 −0.1267
aTZ −0.1087 −0.1577 −0.1471 −0.1366
aQZ −0.1203 −0.1424 −0.1380
a5Z −0.1270 −0.1350

EBC Ansatz
aDZ −0.0816 −0.1910 −0.1514 −0.1370 −0.1221
aTZ −0.1087 −0.1551 −0.1447 −0.1333
aQZ −0.1203 −0.1413 −0.1364
a5Z −0.1270 −0.1343

Fully Optimized Amplitudes
aDZ −0.0816 −0.1964 −0.1556 −0.1440 −0.1269
aTZ −0.1087 −0.1584 −0.1477 −0.1367
aQZ −0.1203 −0.1430 −0.1384
a5Z −0.1270 −0.1365

F12(MP2) Ansatz
aDZ −0.0816 −0.1293 −0.1196 −0.1145 −0.1120
aTZ −0.1087 −0.1403 −0.1348 −0.1325
aQZ −0.1203 −0.1469 −0.1441
a5Z −0.1270

a6Z+(a6Z) −0.1344 ± 0.0002
aEBC stands for the extended Brillouin condition Ansatz, eq 35, and F12(MP2) denotes the approach of ref 46. The benchmark Edisp

(20)/CBS value
given at the bottom of the table was computed using the a6Z atom-centered basis augmented by the hydrogenic a6Z midbond set.
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correlation energy above the ODA value (which is against the
variational principle). While all results in the FULL Ansatz
presented in this work include this simple correction, there is no
equally simple way to detect convergence issues that result in the
Edisp
(20)-F12(FULL) pair correlation energy being too low instead

of too high. Thus, a small subset of the FULL results presented
here (and possibly also some EBC ones where no sanity check is
performed) likely contain artifacts related to the ill-conditioned
systems of equations, which on very rare occasions is evident in
the final results. The most drastic example of these convergence
issues is the Edisp

(20)-F12(FULL)/aTZ/aTZ-RI result for the argon
dimer in Table 3. The ODA and FIX Ansaẗze do not require
solving systems of equations and are completely free of this
instability problem.
The results in Tables 1−10 clearly show the enhanced

convergence of the new SAPT-F12 methods over conventional
Edisp
(20) and Eexch−disp

(20) . The Edisp
(20)-F12 energies computed in the aDZ

orbital basis along with the largest auxiliary basis set for He−He,
Ne−Ne, and Ar−Ar, as well as in aDZ/aTZ-RI for H2O−H2O
and CH4−CH4, are almost as good or superior to conventional
Edisp
(20) computed in the aQZ basis set for all investigated SAPT-

F12 flavors. The same effect is observed for Eexch−disp
(20) -F12;

however, the improvement of the F12 approach is somewhat
diminished. Thus, the new F12 methods are equivalent,
accuracy-wise, to adding two (for Edisp

(20)-F12) or more than one
(for Eexch−disp

(20) -F12) additional shell of basis functions to
conventional SAPT calculations. It is worth mentioning that
for all rare gas dimers, the explicitly correlated dispersion
energies calculated in the aDZ/aDZ-RI basis set combination

overestimate the CBS results due to an incomplete error
cancellation of the effects of orbital and auxiliary basis set
truncations. This effect explains the occasional superb perform-
ance of Eexch−disp

(20) -F12 in these small basis sets; however, this
combination of orbital and auxiliary bases is not reliable,
providing the right answer for the wrong reason.
Increasing the basis set size up to aTZ for Edisp

(20)-F12 and up to
aQZ for Eexch−disp

(20) -F12, we obtain impressive results very close to
the benchmark, or possibly even better depending on the SAPT-
F12 variant. Therefore, the investigation of the F12 dispersion
energy with different explicitly correlated amplitudes leads to the
deduction of the most accurate and the most computationally
efficient approach. As expected, the Edisp

(20)-F12 energies with the
full optimization of amplitudes exhibit the best performance
with the relative errors for the aDZ basis in the range of −5.7 to
5.6% for the five systems. The combination of this F12 variant
with the aTZ orbital basis set (still in the largest RI set available)
leads to a further substantial improvement, with the largest
errors of 1.7 and −1.7% attained for the neon and argon dimers,
respectively. The exchange dispersion effects for the helium and
neon dimers are so tiny that relative errors would be misleading,
but the convergence is still smooth: e.g., the absolute Eexch−disp

(20) -
F12(FULL) errors for the neon dimer amount to 0.0022,
0.0003, and 0.0005 kcal/mol in the aDZ, aTZ, and aQZ orbital
bases, respectively, with the largest auxiliary basis used each
time. Thus, the results are essentially converged (up to the RI
basis incompleteness effects) at the aTZ level, where the
conventional Eexch−disp

(20) value is still in error by 0.0020 kcal/mol.

Table 3. Edisp
(20)-F12 Values (in kcal/mol) for the ArgonDimer for Different Combinations of theOrbital Basis aXZ andCABS Basis

aXZ-RIa

basis Edisp
(20) aDZ-RI aTZ-RI aQZ-RI a5Z-RI

Fixed-Amplitude Ansatz
aDZ −0.4613 −0.7317 −0.6383 −0.6167 −0.6013
aTZ −0.5758 −0.6615 −0.6523 −0.6440
aQZ −0.6243 −0.6573 −0.6571
a5Z −0.6505 −0.6695

Optimized Diagonal Ansatz
aDZ −0.4613 −0.7634 −0.6675 −0.6456 −0.6295
aTZ −0.5758 −0.6789 −0.6695 −0.6609
aQZ −0.6243 −0.6681 −0.6676
a5Z −0.6505 −0.6737

EBC Ansatz
aDZ −0.4613 −0.7371 −0.6668 −0.6404 −0.6224
aTZ −0.5758 −0.6755 −0.6607 −0.6432
aQZ −0.6243 −0.6596 −0.6632
a5Z −0.6505 −0.6722

Fully Optimized Amplitudes
aDZ −0.4613 −0.7738 −0.6830 −0.6555 −0.6374
aTZ −0.5758 −0.8042 −0.6777 −0.6644
aQZ −0.6243 −0.6723 −0.6711
a5Z −0.6505 −0.6748

F12(MP2) Ansatz
aDZ −0.4613 −0.6017 −0.6125 −0.5937 −0.6242
aTZ −0.5758 −0.6483 −0.6459 −0.6506
aQZ −0.6243 −0.6603 −0.6590
a5Z −0.6505 −0.6772

a6Z+(a6Z) −0.6762 ± 0.0020
aEBC stands for the extended Brillouin condition Ansatz, eq 35, and F12(MP2) denotes the approach of ref 46. The benchmark Edisp

(20)/CBS value
given at the bottom of the table was computed using the a6Z atom-centered basis augmented by the hydrogenic a6Z midbond set.
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Table 4. Edisp
(20)-F12 Values (in kcal/mol) for theWater Dimer for Different Combinations of theOrbital Basis aXZ andCABS Basis

aXZ-RIa

basis Edisp
(20) aDZ-RI aTZ-RI aQZ-RI a5Z-RI

Fixed-Amplitude Ansatz
aDZ −2.1519 −2.5120 −2.5026 −2.5017 −2.5022
aTZ −2.4625 −2.5671 −2.5665 −2.5666
aQZ −2.5514 −2.5956 −2.5956
a5Z −2.5806 −2.6042

Optimized Diagonal Ansatz
aDZ −2.1519 −2.5684 −2.5584 −2.5572 −2.5579
aTZ −2.4625 −2.5953 −2.5947 −2.5949
aQZ −2.5514 −2.6084 −2.6084
a5Z −2.5806 −2.6117

EBC Ansatz
aDZ −2.1519 −2.5576 −2.5461 −2.5447 −2.5457
aTZ −2.4625 −2.5939 −2.5931 −2.5934
aQZ −2.5514 −2.6082 −2.6082
a5Z −2.5806 −2.6119

Fully Optimized Amplitudes
aDZ −2.1519 −2.5829 −2.5716 −2.5703 −2.5713
aTZ −2.4625 −2.6020 −2.6014 −2.6016
aQZ −2.5514 −2.6110 −2.6110
a5Z −2.5806 −2.6130

F12(MP2) Ansatz
aDZ −2.1519 −2.6070 −2.5989 −2.5977 −2.5979
aTZ −2.4625 −2.6087 −2.6078 −2.6079
aQZ −2.5514 −2.6101 −2.6100
a5Z −2.5806 −2.6097

a6Z+(a6Z) −2.6047 ± 0.0070
aEBC stands for the extended Brillouin condition Ansatz, eq 35, and F12(MP2) denotes the approach of ref 46. The benchmark Edisp

(20)/CBS value
given at the bottom of the table was computed using the a6Z atom-centered basis augmented by the hydrogenic a6Z midbond set.

Table 5. Edisp
(20)-F12 Values (in kcal/mol) for the Methane Dimer for Different Combinations of the Orbital Basis aXZ and CABS

Basis aXZ-RIa

basis Edisp
(20) aDZ-RI aTZ-RI aQZ-RI a5Z-RI

Fixed-Amplitude Ansatz
aDZ −1.0096 −1.1336 −1.1280 −1.1270 −1.1269
aTZ −1.1101 −1.1463 −1.1461 −1.1461
aQZ −1.1351 −1.1507

Optimized Diagonal Ansatz
aDZ −1.0096 −1.1398 −1.1341 −1.1331 −1.1330
aTZ −1.1101 −1.1491 −1.1489 −1.1489
aQZ −1.1351 −1.1519

EBC Ansatz
aDZ −1.0096 −1.1367 −1.1313 −1.1302 −1.1302
aTZ −1.1101 −1.1470 −1.1468 −1.1468
aQZ −1.1351 −1.1509

Fully Optimized Amplitudes
aDZ −1.0096 −1.1409 −1.1351 −1.1340 −1.1340
aTZ −1.1101 −1.1500 −1.1499 −1.1499
aQZ −1.1351 −1.1524

F12(MP2) Ansatz
aDZ −1.0096 −1.1180 −1.1159 −1.1152 −1.1152
aTZ −1.1101 −1.1436 −1.1435 −1.1435
aQZ −1.1351 −1.1487 −1.1486

a6Z+(a6Z) −1.1510 ± 0.0017
aEBC stands for the extended Brillouin condition Ansatz, eq 35, and F12(MP2) denotes the approach of ref 46. The benchmark Edisp

(20)/CBS value
given at the bottom of the table was computed using the a6Z atom-centered basis augmented by the hydrogenic a6Z midbond set.
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The Edisp
(20)-F12 and Eexch−disp

(20) -F12 corrections calculated with
the optimized diagonal Ansatz perform nearly as phenomenally
as the variant with fully optimized amplitudes while being much
cheaper computationally. When the best converged auxiliary
basis sets are used, the largest difference between the two levels
of F12 treatment amounts to 1.2% (a5Z/a5Z-RI) and −12.2%
(aTZ/a5Z-RI) for Edisp

(20)-F12 and Eexch−disp
(20) -F12, respectively,

both for the neon dimer (note that the Eexch−disp
(20) value is tiny for

this system so that even the −12.2% error is not an issue).
Considering Edisp

(20)-F12 with the EBC Ansatz, it produces
slightly worse results than the optimized diagonal Ansatz.
However, this trend is flipped for Eexch−disp

(20) -F12. The sum Edisp
(20)-

F12 + Eexch−disp
(20) -F12 with the EBC Ansatz is not as accurate as its

cheaper optimized diagonal Ansatz counterpart. Therefore, the
EBC variant was excluded from further tests because of its cost
and lower accuracy. While applying the least expensive SAPT-
F12 approximation, the fixed-amplitude Ansatz, we observe it to
be the worst performer: as long as a sufficiently converged RI
basis is used, the highest relative Edisp

(20)-F12 error amounts to
−11.1% for the argon dimer in aDZ. The Edisp

(20)-F12 + Eexch−disp
(20) -

F12 sum results in the largest error of −10.8% for the argon
dimer in aDZ. Nevertheless, even the simplest fixed-amplitude
treatment considerably improves upon conventional Edisp

(20) and
Eexch−disp
(20) .

Table 6. Eexch−disp
(20) -F12 Values (in kcal/mol) for the HeliumDimer for Different Combinations of the Orbital Basis aXZ and CABS

Basis aXZ-RIa

basis Eexch−disp
(20) aDZ-RI aTZ-RI aQZ-RI a5Z-RI a6Z-RI

Fixed-Amplitude/Optimized Diagonal/Fully Optimized Ansatz
aDZ 0.0004 0.0011 0.0010 0.0009 0.0009 0.0008
aTZ 0.0007 0.0009 0.0009 0.0009 0.0009
aQZ 0.0008 0.0009 0.0009 0.0010
a5Z 0.0009 0.0010 0.0010
a6Z 0.0009 0.0010

EBC Ansatz
aDZ 0.0004 0.0011 0.0010 0.0009 0.0009 0.0008
aTZ 0.0007 0.0009 0.0009 0.0009 0.0009
aQZ 0.0008 0.0009 0.0009 0.0010
a5Z 0.0009 0.0010 0.0010
a6Z 0.0009 0.0010

GTG 0.0011 ± 1.6 × 10−7

aThe fully optimized, optimized diagonal, and fixed-amplitude Ansaẗze are equivalent for this specific system. EBC stands for the extended Brillouin
condition Ansatz, eq 35. The benchmark Eexch−disp

(20) /CBS value given at the bottom of the table was computed in ref 45 using Gaussian-type geminals
(GTGs).

Table 7. Eexch−disp
(20) -F12 Values (in kcal/mol) for the Neon Dimer for Different Combinations of the Orbital Basis aXZ and CABS

Basis aXZ-RIa

basis Eexch−disp
(20) aDZ-RI aTZ-RI aQZ-RI a5Z-RI

Fixed-Amplitude Ansatz
aDZ 0.0024 0.0039 0.0038 0.0038 0.0035
aTZ 0.0037 0.0048 0.0048 0.0046
aQZ 0.0044 0.0052 0.0051
a5Z 0.0048 0.0052

Optimized Diagonal Ansatz
aDZ 0.0024 0.0040 0.0039 0.0041 0.0037
aTZ 0.0037 0.0050 0.0050 0.0047
aQZ 0.0044 0.0053 0.0052
a5Z 0.0048 0.0053

EBC Ansatz
aDZ 0.0024 0.0038 0.0039 0.0040 0.0037
aTZ 0.0037 0.0049 0.0050 0.0047
aQZ 0.0044 0.0053 0.0052
a5Z 0.0048 0.0053

Fully Optimized Amplitudes
aDZ 0.0024 0.0037 0.0039 0.0036 0.0035
aTZ 0.0037 0.0055 0.0051 0.0054
aQZ 0.0044 0.0053 0.0052
a5Z 0.0048 0.0052

a6Z+(a6Z) 0.0057 ± 0.0001
aEBC stands for the extended Brillouin condition Ansatz, eq 35. The benchmark Eexch−disp

(20) /CBS value given at the bottom of the table was
computed using the a6Z atom-centered basis augmented by the hydrogenic a6Z midbond set.
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The Edisp
(20)-F12(MP2) results, obtained from a purely

perturbative correction, performworst when the -F12 correction
is large. Especially for the neon dimer, the corrections needed to
achieve a converged result are too large to be recovered by the
-F12(MP2) Ansatz. The -F12(MP2) approach even fails to

obtain a physically meaningful correction for the largest a5Z/
a5Z-RI orbital and auxiliary basis set combination. Overall, Edisp

(20)-
F12(MP2) still improves upon the conventional result for the
neon dimer, but to a lesser extent than the other Ansaẗze,
especially for larger basis sets. For the other four dimers

Table 8. Eexch−disp
(20) -F12 Values (in kcal/mol) for the Argon Dimer for Different Combinations of the Orbital Basis aXZ and CABS

Basis aXZ-RIa

basis Eexch−disp
(20) aDZ-RI aTZ-RI aQZ-RI a5Z-RI

Fixed-Amplitude Ansatz
aDZ 0.0279 0.0441 0.0413 0.0406 0.0400
aTZ 0.0345 0.0423 0.0422 0.0419
aQZ 0.0392 0.0431 0.0433
a5Z 0.0421 0.0448

Optimized Diagonal Ansatz
aDZ 0.0279 0.0459 0.0431 0.0425 0.0418
aTZ 0.0345 0.0439 0.0438 0.0436
aQZ 0.0392 0.0445 0.0446
a5Z 0.0421 0.0455

EBC Ansatz
aDZ 0.0279 0.0466 0.0449 0.0418 0.0424
aTZ 0.0345 0.0433 0.0466 0.0469
aQZ 0.0392 0.0447 0.0449
a5Z 0.0421 0.0460

Fully Optimized Amplitudes
aDZ 0.0279 0.0463 0.0443 0.0431 0.0452
aTZ 0.0345 0.0271 0.0443 0.0443
aQZ 0.0392 0.0446 0.0433
a5Z 0.0421 0.0452

a6Z+(a6Z) 0.0470 ± 0.0005
aEBC stands for the extended Brillouin condition Ansatz, eq 35. The benchmark Eexch−disp

(20) /CBS value given at the bottom of the table was
computed using the a6Z atom-centered basis augmented by the hydrogenic a6Z midbond set.

Table 9. Eexch−disp
(20) -F12 Values (in kcal/mol) for the Water Dimer for Different Combinations of the Orbital Basis aXZ and CABS

Basis aXZ-RIa

basis Eexch−disp
(20) aDZ-RI aTZ-RI aQZ-RI a5Z-RI

Fixed-Amplitude Ansatz
aDZ 0.3852 0.4430 0.4421 0.4420 0.4421
aTZ 0.4420 0.4668 0.4668 0.4668
aQZ 0.4665 0.4798 0.4798
a5Z 0.4763 0.4846

Optimized Diagonal Ansatz
aDZ 0.3852 0.4519 0.4507 0.4506 0.4507
aTZ 0.4420 0.4735 0.4734 0.4735
aQZ 0.4665 0.4835 0.4835
a5Z 0.4763 0.4871

EBC Ansatz
aDZ 0.3852 0.4569 0.4551 0.4549 0.4552
aTZ 0.4420 0.4768 0.4767 0.4767
aQZ 0.4665 0.4856 0.4856
a5Z 0.4763 0.4883

Fully Optimized Amplitudes
aDZ 0.3852 0.4577 0.4560 0.4558 0.4560
aTZ 0.4420 0.4772 0.4772 0.4772
aQZ 0.4665 0.4854 0.4854
a5Z 0.4763 0.4881

a6Z+(a6Z) 0.4857 ± 0.0029
aEBC stands for the extended Brillouin condition Ansatz, eq 35. The benchmark Eexch−disp

(20) /CBS value given at the bottom of the table was
computed using the a6Z atom-centered basis augmented by the hydrogenic a6Z midbond set.
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presented in Tables 1−5, Edisp
(20)-F12(MP2) performs well and

considerably improves the dispersion energy, with sufficient
convergence often being reached already with the aTZ basis set.
The results obtained by the simplistic -F12(MP2) Ansatz are in
these cases comparable to those from the more sophisticated
Ansaẗze discussed above, justifying its usage for systems too
large to be currently treated by the newly developed methods.
To investigate the performance of our methods on a larger set

of complexes, we carried out further computations on all systems
from the A24 database,56 using up to aTZ/aTZ-RI basis sets.
The convergence of Edisp

(20)-F12 for individual systems is illustrated
in Figures 1, 2, S1, and S2 (Supporting Information) in
comparison to conventional Edisp

(20) results computed with and
without a hydrogenic set of midbond functions. It should be
noted that the +(aXZ) set of midbond functions is used in this
work to provide an example of the convergence benefits
achievable by this approach and, at the largest basis set level, to
serve as a benchmark against which small basis results are
evaluated. The results with bond functions could be made more
(less) accurate by adding a larger (smaller) set of midbond
functions, and themost popular choice in SAPT calculations, the
addition of a constant midbond set such as (3s3p2d2f), would
likely result in more accurate aDZ and aTZ values [because the
(3s3p2d2f) set is larger than the hydrogenic aXZ set] but less
accurate a5Z and a6Z ones [because the (3s3p2d2f) set is
smaller than the hydrogenic aXZ set]. For the latter reason, we
selected the +(aXZ) midbond set as the most appropriate one
for generating benchmark data, but results for small orbital bases
could be obviously improved by adding a larger set of bond
functions. Overall, the bond function and F12 approaches are
complementary rather than competitive, and it is likely that the
combination of both methods, which will be investigated in a
subsequent publication, outperforms either one of them taken
separately.
Overall, we observe a very fast convergence of Edisp

(20)-F12 with
fully optimized amplitudes and optimized diagonal Ansatz going
from aDZ/aTZ-RI to aTZ/aTZ-RI. Employing these F12
variants, energies are converged to the benchmark level in

aTZ/aTZ-RI or even earlier (e.g., the NH3−H2O complex,
Figure 1). However, this trend is challenged by complexes
containing a noble gas atom. For Ar−CH4 (Figure 2) and Ar−
C2H4 (Figure S2), Edisp

(20)-F12/aTZ with ODA is slightly inferior
to conventional Edisp

(20)/aQZ+(aQZ) level, while the FULL aTZ
result is nearly identical (Ar−CH4) or somewhat more
converged (Ar−C2H4) than the conventional aQZ+(aQZ)
one. The FULL Ansatz provides a minuscule but consistent
improvement over ODA, although in rare cases (such as the
NH3−CH4 results, Figure S1), the numerical instabilities of the
FULL method appear to affect the results slightly. The
performance of Edisp

(20)-F12 combined with the fixed-amplitude

Table 10. Eexch−disp
(20) -F12 Values (in kcal/mol) for the Methane Dimer for Different Combinations of the Orbital Basis aXZ and

CABS Basis aXZ-RIa

basis Eexch−disp
(20) aDZ-RI aTZ-RI aQZ-RI a5Z-RI

Fixed-Amplitude Ansatz
aDZ 0.0695 0.0826 0.0823 0.0822 0.0822
aTZ 0.0790 0.0846 0.0846 0.0846
aQZ 0.0833 0.0865

Optimized Diagonal Ansatz
aDZ 0.0695 0.0832 0.0829 0.0829 0.0829
aTZ 0.0790 0.0852 0.0852 0.0852
aQZ 0.0833 0.0868

EBC Ansatz
aDZ 0.0695 0.0835 0.0835 0.0835 0.0835
aTZ 0.0790 0.0858 0.0858 0.0859
aQZ 0.0833 0.0873

Fully Optimized Amplitudes
aDZ 0.0695 0.0834 0.0834 0.0834 0.0835
aTZ 0.0790 0.0859 0.0859 0.0860
aQZ 0.0833 0.0873

a6Z+(a6Z) 0.0875 ± 0.0006
aEBC stands for the extended Brillouin condition Ansatz, eq 35. The benchmark Eexch−disp

(20) /CBS value given at the bottom of the table was
computed using the a6Z atom-centered basis augmented by the hydrogenic a6Z midbond set.

Figure 1. Convergence of Edisp
(20) and Edisp

(20)-F12 as a function of basis set
for the H2O−NH3 system from the A24 database. The fully optimized,
optimized diagonal, and fixed-amplitude Ansaẗze for the explicitly
correlated amplitudes are denoted by (FULL), (ODA), and (FIX),
respectively, and (MP2) stands for the F12(MP2) approach of ref 46.
The aTZ-RI basis was used as CABS in all F12 calculations. The
notation +(aXZ) signifies that the hydrogenic aXZ set of midbond
functions has been added to the aXZ atom-centered basis, and the
conventional a6Z+(a6Z) value has been used as a reference.
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Ansatz is less impressive, with the aTZ results converging to the
point of Edisp

(20) computed in aQZ+(aQZ) for most systems and in
aTZ+(aTZ) for the Ar−CH4 and Ar−C2H4 complexes. The
Edisp
(20)-F12(MP2) Ansatz exhibits two convergence patterns. For

complexes containing at least one polar monomer (H2O, NH3,
HF), Edisp

(20)-F12(MP2) in the aDZ and aTZ bases is usually the
best-performing variant, producing energies close to the CBS
limit (even though overshooting slightly in some cases).
However, for nonpolar complexes, Edisp

(20)-F12(MP2) tends to
be the least accurate of the explicitly correlated Ansaẗze
presented in Figures S1 and S2.
As demonstrated in Figures 3 and 4, as well as Figures S3 and

S4 in the Supporting Information, the Eexch−disp
(20) -F12 energies

also show a fast convergence with increasing X, converging from
below to a reference value. Not surprisingly, the fixed-amplitude
Ansatz is the least effective compared to the remaining SAPT0
F12 variants. For this Ansatz, Eexch−disp

(20) -F12/aTZ is of better
quality than conventional Eexch−disp

(20) /aQZ but worse than
Eexch−disp
(20) /aQZ+(aQZ), thus providing a little over one cardinal

number of improvement. Moving on to Eexch−disp
(20) -F12 with fully

optimized amplitudes and the optimized diagonal Ansatz, we see
that both methods in the aDZ basis are converged close to the
level corresponding to conventional Eexch−disp

(20) with the aTZ
+(aTZ) basis set. In the aTZ basis, the FULL variant provides
consistent improvement even upon Eexch−disp

(20) /a5Z. Even though
ODA is less accurate, in most cases, Eexch−disp

(20) -F12/aTZ still
works as well or even better than Eexch−disp

(20) /a5Z.
Having these observations in mind, it is very interesting to

examine the convergence behavior for the sum of Edisp
(20)-F12 and

Eexch−disp
(20) -F12. Figures S5 and S6 in the Supporting Information

clearly show the rapid convergence of this sum computed with
fully optimized amplitudes and the optimized diagonal Ansatz,
converging at aTZ to the reference value or even lower. Again,
the two systems containing a noble gas atom, Ar−CH4 and Ar−
C2H4, follow a slightly different pattern with a somewhat larger
improvement of FULL over ODA. Outside of these two
complexes, the cheapest SAPT-F12 variant, the fixed-amplitude

Ansatz, in the aTZ basis provides modest but consistent
improvement over conventional Edisp

(20) + Eexch−disp
(20) in the aTZ

+(aTZ) basis. When the -F12(MP2) correction is added, the
Edisp
(20) + Eexch−disp

(20) energies in the aDZ and aTZ basis sets are
generally overestimated.
The relative errors with respect to the benchmark for Edisp

(20)-
F12, Eexch−disp

(20) -F12, and their sum using various options of
calculating amplitudes are plotted in Figures 5−8, S7, and S8.
The performance of explicitly correlated methods even in the
aDZ basis set is definitely encouraging, significantly reducing the
error with respect to conventional results with and without
midbond functions. In fact, Edisp

(20)-F12 with fully optimized
amplitudes (Figure 5) is consistently the top performer,

Figure 2. Convergence of Edisp
(20) and Edisp

(20)-F12 as a function of basis set
for the Ar−CH4 system from the A24 database. The fully optimized,
optimized diagonal, and fixed-amplitude Ansaẗze for the explicitly
correlated amplitudes are denoted by (FULL), (ODA), and (FIX),
respectively, and (MP2) stands for the F12(MP2) approach of ref 46.
The aTZ-RI basis was used as CABS in all F12 calculations. The
notation +(aXZ) signifies that the hydrogenic aXZ set of midbond
functions has been added to the aXZ atom-centered basis, and the
conventional a6Z+(a6Z) value has been used as a reference.

Figure 3. Convergence of Eexch−disp
(20) and Eexch−disp

(20) -F12 as a function of
basis set for the H2O−NH3 system from the A24 database. The fully
optimized, optimized diagonal, and fixed-amplitude Ansaẗze for the
explicitly correlated amplitudes are denoted by (FULL), (ODA), and
(FIX), respectively. The aTZ-RI basis was used as CABS in all F12
calculations. The notation +(aXZ) signifies that the hydrogenic aXZ set
of midbond functions has been added to the aXZ atom-centered basis,
and the conventional a6Z+(a6Z) value has been used as a reference.

Figure 4. Convergence of Eexch−disp
(20) and Eexch−disp

(20) -F12 as a function of
basis set for the Ar−CH4 system from the A24 database. The fully
optimized, optimized diagonal, and fixed-amplitude Ansaẗze for the
explicitly correlated amplitudes are denoted by (FULL), (ODA), and
(FIX), respectively. The aTZ-RI basis was used as CABS in all F12
calculations. The notation +(aXZ) signifies that the hydrogenic aXZ set
of midbond functions has been added to the aXZ atom-centered basis,
and the conventional a6Z+(a6Z) value has been used as a reference.
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producing the largest error of −3.1% for HF−CH4/aDZ.
Nevertheless, the variant with optimized diagonal amplitudes
leads to results of similar accuracy with the maximum error of
−3.7% for Ar−C2H4/aDZ. Not surprisingly, the fixed-amplitude
Ansatz constitutes the least accurate variant (among the SAPT-
F12 Ansaẗze) at the Edisp

(20)-F12/aDZ level, with the largest error of
−6.9% for Ar−C2H4. As already mentioned, the SAPT-
F12(MP2) approach works well for polar complexes but is
somewhat inferior to the other F12 flavors for nonpolar ones.
Analyzing the aTZ/aTZ-RI level of basis set (Figure 6), Edisp

(20)-
F12 with fully optimized amplitudes and the optimized diagonal

Ansatz work impressively, leading to mean unsigned relative
errors (MUREs) of 0.2 and 0.3%, respectively. The fixed-
amplitude and -F12(MP2) variants exhibit a somewhat worse
performance (although still much better than conventional
Edisp
(20)), with the respective MURE values of 1.0 and 0.7%. It is

worth emphasizing that the largest errors turn out to come from
complexes containing the argon atom. This result is in line with
our preliminary study on noble gas dimers, which showed a very
slow convergence of F12 dispersion energies with respect to the
auxiliary basis set size.
The relative errors of Eexch−disp

(20) -F12 in the aDZ/aTZ-RI basis
set are presented in Figure 7. All F12 variants are superior to

conventional Eexch−disp
(20) and show comparable performance with

the largest error of −13.0% for the HF−HF dimer computed
with the fixed-amplitude Ansatz. Eexch−disp

(20) -F12 evaluated in the
aTZ/aTZ-RI basis set (Figure 8) brings an additional enhance-
ment for all F12 treatments with the overall performance being
the worst for the FIX Ansatz (maximum error −6.9%). It is
noticeable that Eexch−disp

(20) -F12 provides larger relative errors than
Edisp
(20)-F12; nevertheless, the second-order exchange dispersion

energy is a small effect that brings about a minor absolute error.
Figures S7 and S8 show the quality of results for the total Edisp

(20)-
F12 + Eexch−disp

(20) -F12 values in the aDZ/aTZ-RI and aTZ/aTZ-RI
basis sets, respectively. Overall, the Edisp

(20)-F12 + Eexch−disp
(20) -F12

CBS values are recovered amazingly well, and while the simplest
SAPT-F12 approximation with a fixed-amplitude Ansatz is
somewhat less accurate, the optimized diagonal Ansatz is
practically as good as the full optimization leading to important
computational savings. The -F12(MP2) variant is the least
effective F12 correction among all examined ones, most of the
time overestimating the energies. However, it still brings
improvement over the conventional Edisp

(20) + Eexch−disp
(20) treatment

with and without midbond functions, especially for the aDZ
basis set.
Figures 9 and 10 display the relative errors for the F12

dispersion and exchange dispersion energies calculated with the
optimized diagonal Ansatz with various CABS bases. Acciden-

Figure 5. Relative errors on the A24 database56 for the Edisp
(20) and Edisp

(20)-
F12 corrections computed with the aDZ orbital basis set and the aTZ-
RI auxiliary basis set. The fully optimized, optimized diagonal, and
fixed-amplitude Ansaẗze for the explicitly correlated amplitudes are
denoted by (FULL), (ODA), and (FIX), respectively, and (MP2)
stands for the F12(MP2) approach of ref 46. The notation +(aXZ)
signifies that the hydrogenic aXZ set of midbond functions has been
added to the aXZ atom-centered basis, and the conventional a6Z
+(a6Z) values have been used as a reference.

Figure 6. Relative errors on the A24 database56 for the Edisp
(20) and Edisp

(20)-
F12 corrections computed with the aTZ orbital basis set and the aTZ-
RI auxiliary basis set. The fully optimized, optimized diagonal, and
fixed-amplitude Ansaẗze for the explicitly correlated amplitudes are
denoted by (FULL), (ODA), and (FIX), respectively, and (MP2)
stands for the F12(MP2) approach of ref 46. The notation +(aXZ)
signifies that the hydrogenic aXZ set of midbond functions has been
added to the aXZ atom-centered basis, and the conventional a6Z
+(a6Z) values have been used as a reference.

Figure 7. Relative errors on the A24 database56 for the Eexch−disp
(20) and

Eexch−disp
(20) -F12 corrections computed with the aDZ orbital basis set and

the aTZ-RI auxiliary basis set. The fully optimized, optimized diagonal,
and fixed-amplitude Ansaẗze for the explicitly correlated amplitudes are
denoted by (FULL), (ODA), and (FIX), respectively. The notation
+(aXZ) signifies that the hydrogenic aXZ set of midbond functions has
been added to the aXZ atom-centered basis, and the conventional a6Z
+(a6Z) values have been used as a reference.
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tally, the aDZ/aDZ-RI variant shows the best aDZ-level
performance that confirms previous observations about the
error cancellations. To avoid relying on error cancellations, we
recommend using the aDZ/aTZ-RI level of theory for near-
benchmark accuracy. The differences between the aDZ/aTZ-RI,
aDZ/aQZ-RI, and aDZ/a5Z-RI results are very small,
confirming that the aTZ-RI auxiliary set is sufficiently converged
in this case.

VI. SUMMARY
We have derived and implemented compact expressions for the
explicitly correlated SAPT0-level dispersion and exchange
dispersion energies. The resulting expressions involve the
same types of F12 integrals (over orbital and auxiliary basis
functions) as the popular MP2-F12 approach;11 the integrals
just have to be transformed to the molecular-orbital and
complementary auxiliary bases using the orbitals and Fock

operators of the appropriate monomer. Our pilot implementa-
tion makes use of the PSI4NUMPY framework51 interfaced to the
LIBINT integral library53 via the Python andC++ layers of the PSI4
code.52 At this stage, the evaluation of three- and four-electron
integrals is completely avoided by the resolutions of identity, but
the two-electron quantities are evaluated conventionally,
without density fitting. Thus, our pilot code is not nearly as
efficient as a production-level, density-fitted MP2-F12 imple-
mentation, but it is more than sufficient to complete all
calculations presented here, including the aTZ-level computa-
tions for all systems in the A24 database.
In this work, the Eexch−disp

(20) -F12 correction is derived and
implemented for the first time, following a generalization of the
second-quantized SAPT exchange formalism.49 The Edisp

(20)-F12
correction with fully optimized amplitudes (FULL) was recently
proposed by Przybytek:47 here, we reimplement Przybytek’s
fully optimized Ansatz and propose three new approximate
Ansaẗze: optimized diagonal (ODA), EBC, and fixed amplitude
(FIX). An exhaustive investigation of the two corrections is
presented on five weakly interacting dimers: He−He, Ne−Ne,
Ar−Ar, H2O−H2O, and CH4−CH4 at their van der Waals
minimum geometries. Subsequently, the performance of Edisp

(20)-
F12, Eexch−disp

(20) -F12, and Edisp
(20)-F12 + Eexch−disp

(20) -F12 with basis sets
up to aTZ/aTZ-RI was studied on the A24 database56 and
compared with SAPT-F12(MP2).46 The most accurate and
most computationally efficient Ansaẗze have been established,
and the convergence with respect to the RI basis was assessed, as
well.
Our calculations show that the explicitly correlated F12

methods significantly speed up the basis set convergence
compared to the conventional second-order dispersion and
exchange dispersion approaches. Edisp

(20)-F12 with fully optimized
amplitudes and optimized diagonal Ansatz leads to results being
converged to the CBS limit already at the aTZ/aTZ-RI level,
while Eexch−disp

(20) -F12 provides energies close to the level of
Eexch−disp
(20) /aQZ+(aQZ) using the same basis sets. As far as the

sum Edisp
(20)-F12 + Eexch−disp

(20) -F12 is concerned, its values computed
with the FULL and ODA variants are nearly converged to the
CBS limit. The Edisp

(20)-F12 Ansatz employing the extended
Brillouin condition is overall less accurate and more expensive
than the ODA approximation and cannot be recommended for
practical calculations. The FIX and -F12(MP2) flavors are the

Figure 8. Relative errors on the A24 database56 for the Eexch−disp
(20) and

Eexch−disp
(20) -F12 corrections computed with the aTZ orbital basis set and

the aTZ-RI auxiliary basis set. The fully optimized, optimized diagonal,
and fixed-amplitude Ansaẗze for the explicitly correlated amplitudes are
denoted by (FULL), (ODA), and (FIX), respectively. The notation
+(aXZ) signifies that the hydrogenic aXZ set of midbond functions has
been added to the aXZ atom-centered basis, and the conventional a6Z
+(a6Z) values have been used as a reference.

Figure 9. Dependence of the Edisp
(20)-F12 relative errors for the A24

database,56 computed with the optimized diagonal Ansatz, on the
orbital basis set aXZ and the CABS set aXZ-RI. The conventional a6Z +
(a6Z) values have been used as a reference.

Figure 10. Dependence of the Eexch−disp
(20) -F12 relative errors for the A24

database,56 computed with the optimized diagonal Ansatz, on the
orbital basis set aXZ and the CABS set aXZ-RI. The conventional a6Z +
(a6Z) values have been used as a reference.
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least accurate, but even they provide a substantial improvement
over standard Edisp

(20) and Eexch−disp
(20) . It should be stressed that the

simplest, local-MP2-F12-based Edisp
(20)-F12(MP2) correction does

not strictly represent dispersion energy but likely contains an
exchange dispersion contribution as well. The -F12(MP2)
corrected sum Edisp

(20) + Eexch−disp
(20) is markedly more accurate than

its conventional counterpart, but the precise accuracy of the
-F12(MP2) treatment varies, with a few outliers present in the
A24 set. For all variants, the A24 systems containing the argon
atom show somewhat slower convergence. We expect that the
inclusion of midbond functions in the F12 approach, quite
beneficial in supermolecular CCSD(T)-F12 interaction energy
calculations,25 can bring about further enhancement of results.
The relative errors with respect to the benchmarks for Edisp

(20)-
F12, Eexch−disp

(20) -F12, and Edisp
(20)-F12 + Eexch−disp

(20) -F12 averaged over
the A24 database revealed themost efficient approaches in terms
of accuracy and computational time. The fully optimized-
amplitude flavor is themost accurate out of all SAPT0 dispersion
corrections, leading to remarkably small MURE of 0.2, 1.6, and
0.2% for Edisp

(20)-F12/aTZ, Eexch−disp
(20) -F12/aTZ, and Edisp

(20)-F12/aTZ
+ Eexch−disp

(20) -F12/aTZ, respectively. However, this variant suffers
from serious drawbacks: it is very expensive (scales like N8) and
shows numerical instabilities due to the need to solve potentially
ill-conditioned systems of linear equations. While the FIX and
-F12(MP2) Ansaẗze provide somewhat less accurate energies,
the ODA variant is in a very good agreement with the FULL
Ansatz. Therefore, we propose to replace the more expensive
FULL treatment of Edisp

(20)-F1247 with the cheaper ODA one
which scales like N5 without losing much accuracy. In this way,
we not only significantly reduce the computational effort but
also remove numerical issues.
For the investigated rare gas dimers, we observed an extremely

slow auxiliary basis set convergence of Edisp
(20)-F12. This issue was

attributed to the auxiliary basis sets probably being inadequately
optimized for the purposes of noncovalent interaction energy
calculations. Therefore, noble gas dimers have to be calculated
close to the complete RI basis set limit, employing the largest
CABS possible. The rare gas dimer dispersion energies
calculated with the aDZ/aDZ-RI basis sets overestimate the
CBS values, which is caused by an incomplete error cancellation
of the effects of orbital and CABS set truncations. Thus, we
recommend the aTZ-RI auxiliary basis set in calculations with
the aDZ orbital basis.
Building on our successful application of explicitly correlated

methods to SAPT0, it will be beneficial to extend the F12
treatment to higher-order corrections, e.g., to the effects of
intramolecular electron correlation on the second-order
dispersion energy. Until this is accomplished, computing Edisp

(20)-
F12 and adding intramolecular correlation corrections com-
puted without F12 is a valid approachno double counting
occurs. While an investigation of the performance of such a
dispersion treatment is outside of the scope of this paper, we do
expect a significant improvement of the CBS convergence
compared to, say, that of standard SAPT2+3, in the same way as
the composite “MP2/CBS plus CCSD(T) correction” inter-
action energies converge much faster with the basis set than
stand-alone CCSD(T).69 On a different note, the introduction
of density-fitting techniques is necessary to extend the SAPT-
F12 calculations to medium and large systems and to make them
competitive with conventional (density-fitted) large-basis
SAPT. All of these enhancements are subjects of ongoing
research in our groups.
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(56) Řezać,̌ J.; Hobza, P. DescribingNoncovalent Interactions beyond
the Common Approximations: How Accurate Is the ‘Gold Standard,’
CCSD(T) at the Complete Basis Set Limit? J. Chem. Theory Comput.
2013, 9, 2151−2155.
(57) Manby, F. R. Density fitting in second-order linear-R12 Møller-
Plesset perturbation theory. J. Chem. Phys. 2003, 119, 4607−4613.
(58) May, A. J.; Manby, F. R. An explicitly correlated second order
Møller-Plesset theory using a frozen Gaussian geminal. J. Chem. Phys.
2004, 121, 4479−4485.
(59) Bachorz, R. A.; Bischoff, F. A.; Glöß, A.; Haẗtig, C.; Höfener, S.;
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TABLE SI: The E
(20)
disp-F12+E

(20)
exch−disp-F12 sum (in kcal/mol) for the helium dimer for

different combinations of the orbital basis aXZ and CABS basis aXZ-RI. The fully

optimized, optimized diagonal, and fixed-amplitude Ansätze are equivalent for this specific

system. EBC stands for the extended Brillouin condition Ansatz, and F12(MP2) denotes

the approach of Ref. 1. The benchmark E
(20)
disp + E

(20)
exch−disp/CBS value given at the bottom

of the table was computed in Ref. 2 using Gaussian-type geminals (GTGs).

Fixed-amplitude/Optimized diagonal/Fully optimized Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI a6Z-RI

aDZ -0.0239 -0.0586 -0.0445 -0.0413 -0.0394 -0.0352

aTZ -0.0290 -0.0354 -0.0348 -0.0343 -0.0336

aQZ -0.0306 -0.0332 -0.0332 -0.0339

a5Z -0.0316 -0.0330 -0.0329

a6Z -0.0323 -0.0330

EBC Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI a6Z-RI

aDZ -0.0239 -0.0587 -0.0447 -0.0414 -0.0394 -0.0352

aTZ -0.0291 -0.0351 -0.0344 -0.0339 -0.0333

aQZ -0.0307 -0.0328 -0.0329 -0.0336

a5Z -0.0316 -0.0327 -0.0327

a6Z -0.0323 -0.0329

F12(MP2) Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI a6Z-RI

aDZ -0.0239 -0.0376 -0.0341 -0.0325 -0.0312 -0.0299

aTZ -0.0290 -0.0324 -0.0320 -0.0318 -0.0315

aQZ -0.0306 -0.0318 -0.0317 -0.0317

a5Z -0.0316 -0.0325 -0.0325

a6Z -0.0323 -0.0328

GTG -0.0330 ±1.6 · 10−7
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TABLE SII: The E
(20)
disp-F12+E

(20)
exch−disp-F12 sum (in kcal/mol) for the neon dimer for

different combinations of the orbital basis aXZ and CABS basis aXZ-RI. EBC stands for

the extended Brillouin condition Ansatz, and F12(MP2) denotes the approach of Ref. 1.

The benchmark E
(20)
disp + E

(20)
exch−disp/CBS value given at the bottom of the table was

computed using the a6Z atom-centered basis augmented by the hydrogenic a6Z midbond

set.

Fixed-amplitude Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.0792 -0.1844 -0.1458 -0.1347 -0.1188

aTZ -0.1050 -0.1488 -0.1386 -0.1292

aQZ -0.1159 -0.1353 -0.1313

a5Z -0.1222 -0.1289

Optimized diagonal Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.0792 -0.1908 -0.1510 -0.1397 -0.1230

aTZ -0.1050 -0.1527 -0.1421 -0.1319

aQZ -0.1159 -0.1371 -0.1328

a5Z -0.1222 -0.1297

EBC Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.0792 -0.1872 -0.1475 -0.1330 -0.1184

aTZ -0.1050 -0.1502 -0.1397 -0.1286

aQZ -0.1159 -0.1360 -0.1312

a5Z -0.1222 -0.1290

Fully optimized amplitudes

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.0792 -0.1927 -0.1517 -0.1404 -0.1234

aTZ -0.1050 -0.1529 -0.1426 -0.1313

aQZ -0.1159 -0.1377 -0.1332

a5Z -0.1222 -0.1313

F12(MP2) Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.0792 -0.1269 -0.1172 -0.1121 -0.1096

aTZ -0.1050 -0.1366 -0.1311 -0.1288

aQZ -0.1159 -0.1425 -0.1397

a5Z -0.1222

a6Z+(a6Z) -0.1287 ± 0.0001
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TABLE SIII: The E
(20)
disp-F12+E

(20)
exch−disp-F12 sum (in kcal/mol) for the argon dimer for

different combinations of the orbital basis aXZ and CABS basis aXZ-RI. EBC stands for

the extended Brillouin condition Ansatz, and F12(MP2) denotes the approach of Ref. 1.

The benchmark E
(20)
disp + E

(20)
exch−disp/CBS value given at the bottom of the table was

computed using the a6Z atom-centered basis augmented by the hydrogenic a6Z midbond

set.

Fixed-amplitude Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.4334 -0.6876 -0.5970 -0.5761 -0.5613

aTZ -0.5413 -0.6192 -0.6101 -0.6021

aQZ -0.5851 -0.6142 -0.6138

a5Z -0.6084 -0.6247

Optimized diagonal Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.4334 -0.7175 -0.6244 -0.6031 -0.5877

aTZ -0.5413 -0.6350 -0.6257 -0.6173

aQZ -0.5851 -0.6236 -0.6230

a5Z -0.6084 -0.6282

EBC Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.4334 -0.6905 -0.6219 -0.5986 -0.5800

aTZ -0.5413 -0.6322 -0.6141 -0.5963

aQZ -0.5851 -0.6149 -0.6183

a5Z -0.6084 -0.6262

Fully optimized amplitudes

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.4334 -0.7275 -0.6387 -0.6124 -0.5922

aTZ -0.5413 -0.7771 -0.6334 -0.6201

aQZ -0.5851 -0.6277 -0.6278

a5Z -0.6084 -0.6296

F12(MP2) Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.4334 -0.5738 -0.5846 -0.5658 -0.5963

aTZ -0.5413 -0.6138 -0.6114 -0.6161

aQZ -0.5851 -0.6211 -0.6198

a5Z -0.6084 -0.6351

a6Z+(a6Z) -0.6292 ± 0.0015
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TABLE SIV: The E
(20)
disp-F12+E

(20)
exch−disp-F12 sum (in kcal/mol) for the water dimer for

different combinations of the orbital basis aXZ and CABS basis aXZ-RI. EBC stands for

the extended Brillouin condition Ansatz, and F12(MP2) denotes the approach of Ref. 1.

The benchmark E
(20)
disp + E

(20)
exch−disp/CBS value given at the bottom of the table was

computed using the a6Z atom-centered basis augmented by the hydrogenic a6Z midbond

set.

Fixed-amplitude Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -1.7667 -2.069 -2.0605 -2.0597 -2.0601

aTZ -2.0205 0.000 -2.1003 -2.0997 -2.0998

aQZ -2.0849 0.000 0.0000 -2.1158 -2.1158

a5Z -2.1043 0.000 0.0000 0.0000 -2.1196

Optimized diagonal Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -1.7667 -2.1165 -2.1077 -2.1066 -2.1072

aTZ -2.0205 -2.1218 -2.1213 -2.1214

aQZ -2.0849 -2.1249 -2.1249

a5Z -2.1043 -2.1246

EBC Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -1.7667 -2.1007 -2.0910 -2.0898 -2.0905

aTZ -2.0205 -2.1171 -2.1164 -2.1167

aQZ -2.0849 -2.1226 -2.1226

a5Z -2.1043 -2.1236

Fully optimized amplitudes

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -1.7667 -2.1252 -2.1156 -2.1145 -2.1153

aTZ -2.0205 -2.1248 -2.1242 -2.1244

aQZ -2.0849 -2.1256 -2.1256

a5Z -2.1043 -2.1249

F12(MP2) Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -1.7667 -2.2218 -2.2137 -2.2125 -2.2127

aTZ -2.0205 -2.1667 -2.1658 -2.1659

aQZ -2.0849 -2.1436 -2.1435

a5Z -2.1043 -2.1334

a6Z+(a6Z) -2.1190 ± 0.0041
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TABLE SV: The E
(20)
disp-F12+E

(20)
exch−disp-F12 sum (in kcal/mol) for the methane dimer for

different combinations of the orbital basis aXZ and CABS basis aXZ-RI. EBC stands for

the extended Brillouin condition Ansatz, and F12(MP2) denotes the approach of Ref. 1.

The benchmark E
(20)
disp + E

(20)
exch−disp/CBS value given at the bottom of the table was

computed using the a6Z atom-centered basis augmented by the hydrogenic a6Z midbond

set.

Fixed-amplitude Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.9401 -1.0511 -1.0457 -1.0448 -1.0447

aTZ -1.0311 0.0000 -1.0617 -1.0615 -1.0615

aQZ -1.0518 0.0000 0.0000 -1.0642

Optimized diagonal Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.9401 -1.0566 -1.0512 -1.0502 -1.0501

aTZ -1.0311 -1.0639 -1.0637 -1.0637

aQZ -1.0518 -1.0651

EBC Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.9401 -1.0532 -1.0478 -1.0467 -1.0467

aTZ -1.0311 -1.0612 -1.0610 -1.0609

aQZ -1.0518 -1.0636

Fully optimized amplitudes

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.9401 -1.0575 -1.0517 -1.0506 -1.0505

aTZ -1.0311 -1.0641 -1.0640 -1.0639

aQZ -1.0518 -1.0651

F12(MP2) Ansatz

Basis E
(20)
disp + E

(20)
exch−disp aDZ-RI aTZ-RI aQZ-RI a5Z-RI

aDZ -0.9401 -1.0485 -1.0464 -1.0457 -1.0457

aTZ -1.0311 -1.0646 -1.0645 -1.0645

aQZ -1.0518 -1.0654 -1.0653

a6Z+(a6Z) -1.0635 ± 0.0011
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FIG. S1: Convergence of E
(20)
disp and E

(20)
disp-F12 as a function of basis set for the A24

database. The fully optimized, optimized diagonal, and fixed-amplitude Ansätze for the

explicitly correlated amplitudes are denoted by (FULL), (ODA), and (FIX), respectively,

and (MP2) stands for the F12(MP2) approach of Ref. 1. The aTZ-RI basis was used as

CABS in all F12 calculations. The notation +(aXZ) signifies that the hydrogenic aXZ set

of midbond functions has been added to the aXZ atom-centered basis, and the

conventional a6Z+(a6Z) value has been used as a reference.
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FIG. S2: Convergence of E
(20)
disp and E

(20)
disp-F12 as a function of basis set for the A24

database. The fully optimized, optimized diagonal, and fixed-amplitude Ansätze for the

explicitly correlated amplitudes are denoted by (FULL), (ODA), and (FIX), respectively,

and (MP2) stands for the F12(MP2) approach of Ref. 1. The aTZ-RI basis was used as

CABS in all F12 calculations. The notation +(aXZ) signifies that the hydrogenic aXZ set

of midbond functions has been added to the aXZ atom-centered basis, and the

conventional a6Z+(a6Z) value has been used as a reference.
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FIG. S3: Convergence of E
(20)
exch−disp and E

(20)
exch−disp-F12 as a function of basis set for the A24

database. The fully optimized, optimized diagonal, and fixed-amplitude Ansätze for the

explicitly correlated amplitudes are denoted by (FULL), (ODA), and (FIX), respectively.

The aTZ-RI basis was used as CABS in all F12 calculations. The notation +(aXZ)

signifies that the hydrogenic aXZ set of midbond functions has been added to the aXZ

atom-centered basis, and the conventional a6Z+(a6Z) value has been used as a reference.
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FIG. S4: Convergence of E
(20)
exch−disp and E

(20)
exch−disp-F12 as a function of basis set for the A24

database. The fully optimized, optimized diagonal, and fixed-amplitude Ansätze for the

explicitly correlated amplitudes are denoted by (FULL), (ODA), and (FIX), respectively.

The aTZ-RI basis was used as CABS in all F12 calculations. The notation +(aXZ)

signifies that the hydrogenic aXZ set of midbond functions has been added to the aXZ

atom-centered basis, and the conventional a6Z+(a6Z) value has been used as a reference.
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FIG. S5: Convergence of the sums E
(20)
disp + E

(20)
exch−disp and E

(20)
disp-F12+E

(20)
exch−disp-F12 as a

function of basis set for the A24 database. The fully optimized, optimized diagonal, and

fixed-amplitude Ansätze for the explicitly correlated amplitudes are denoted by (FULL),

(ODA), and (FIX), respectively, and (MP2) stands for the F12(MP2) approach of Ref. 1.

The aTZ-RI basis was used as CABS in all F12 calculations. The notation +(aXZ)

signifies that the hydrogenic aXZ set of midbond functions has been added to the aXZ

atom-centered basis, and the conventional a6Z+(a6Z) value has been used as a reference.
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FIG. S6: Convergence of the sums E
(20)
disp + E

(20)
exch−disp and E

(20)
disp-F12+E

(20)
exch−disp-F12 as a

function of basis set for the A24 database. The fully optimized, optimized diagonal, and

fixed-amplitude Ansätze for the explicitly correlated amplitudes are denoted by (FULL),

(ODA), and (FIX), respectively, and (MP2) stands for the F12(MP2) approach of Ref. 1.

The aTZ-RI basis was used as CABS in all F12 calculations. The notation +(aXZ)

signifies that the hydrogenic aXZ set of midbond functions has been added to the aXZ

atom-centered basis, and the conventional a6Z+(a6Z) value has been used as a reference.
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FIG. S7: Relative errors on the A24 database3 for the sums E
(20)
disp + E

(20)
exch−disp and

E
(20)
disp-F12+E

(20)
exch−disp-F12 computed with the aDZ orbital basis set and the aTZ-RI

auxiliary basis set. The fully optimized, optimized diagonal, and fixed-amplitude Ansätze

for the explicitly correlated amplitudes are denoted by (FULL), (ODA), and (FIX),

respectively, and (MP2) stands for the F12(MP2) approach of Ref. 1. The notation +(aXZ)

signifies that the hydrogenic aXZ set of midbond functions has been added to the aXZ

atom-centered basis, and the conventional a6Z+(a6Z) value has been used as a reference.
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FIG. S8: Relative errors on the A24 database3 for the sums E
(20)
disp + E

(20)
exch−disp and

E
(20)
disp-F12+E

(20)
exch−disp-F12 computed with the aTZ orbital basis set and the aTZ-RI

auxiliary basis set. The fully optimized, optimized diagonal, and fixed-amplitude Ansätze

for the explicitly correlated amplitudes are denoted by (FULL), (ODA), and (FIX),

respectively, and (MP2) stands for the F12(MP2) approach of Ref. 1. The notation +(aXZ)

signifies that the hydrogenic aXZ set of midbond functions has been added to the aXZ

atom-centered basis, and the conventional a6Z+(a6Z) value has been used as a reference.
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FIG. S9: Dependence of the E
(20)
disp-F12+E

(20)
exch−disp-F12 relative errors for the A24

database3, computed with the optimized diagonal Ansatz, on the orbital basis set aXZ and

the CABS set aXZ-RI. The conventional a6Z+(a6Z) value has been used as a reference
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