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Abstract

Vortex topology is analyzed from measurements of flow over a flat, rectangular plate with

an aspect ratio of 2 which was articulated in pitch and roll, individually and simultaneously.

The plate was immersed into a Re = 10, 000 flow (based on chord length) to provide forward

flight component of the study. Measurements were made using a 3D-3C plenoptic PIV system

to allow for the study of complete vortex topology of the entire wing. The prominent focus

is the early development of the leading-edge vortex (LEV) and resulting topology. The effect

of the wing kinematics on the topology was explored through a parameter space involving

multiple values of pitch rate and roll rate at pitch and roll angles up to 50◦. Characterization

and comparisons across the expansive data set are made possible through the use of a newly

defined dimensionless parameter, kRg. Termed the effective reduced pitch rate, kRg is a

measure of the pitch rate that considers the relative rolling motion of the wing in addition to

the pitching motion and freestream velocity. The study has found the addition of a rolling

motion to a pitching wing removes the symmetries in the vortical structures, delays vortex

evolution, and inhibits the extent of detachment of the LEV. Additionally, it was found

that increasing the kRg parameter accelerates the evolution of the LEV, from formation to

detachment, as well as advances the evolution of the LEV in nondimensionalized time.
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Chapter 1

Introduction

1.1 Opening Remarks

The unsteady behavior of vortices present in flows over aerodynamic bodies is known to

dramatically impact performance and aerodynamic loads. These flow phenomena are present

in various aerospace applications including unsteady wings, aggressive maneuvers of fixed

wing aircraft, rotorcraft, gas turbine engines, and wind turbines [3–9]. Additionally, there

exists an extensive body of work on the elegant vortex dynamics of nature’s flyers and swim-

mers [10–14], primarily focused on hovering flight or phenomena specific to flapping-wing

flight, such as wing-body interactions, wing-wake interactions, and wing-wing interactions

(e.g. “clap and fling”) [3]. It has also been found that the flapping flight used throughout

nature and by an increasing number of micro unmanned aerial vehicles (mUAVs) can exhibit

similar vortex topology to the larger aerospace bodies [13]. Of principal interest is the lead-

ing edge vortex (LEV), which has been shown to greatly alter the flow field and, moreover,

delay stall, increase lift, and increase drag. Nevertheless, few studies have addressed the for-

mation and growth of an LEV on a revolving wing in forward flight, despite the significance

throughout multiple disciplines, a few of which are shown in figure 1.1.

Of the studies that have focused on rotating wings in forward flight, the vast majority

are concerning dynamic stall. Often associated with dynamic stall is the formation of a

strong LEV, the dynamic stall vortex, which has been known to increase the lift production

of the wing. While this event can be detrimental to the operation of helicopter rotors, wind

turbines, and compressors [5, 6, 15], the LEV is fundamental to keeping the body aloft in

natural and man-made flapping flight [4, 16–28]. Concerning a purely rolling wing, a handful

of studies have made measurements when the wing is subjected to a freestream [29, 30]
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(a) (b) (c)

Figure 1.1: Various scenarios where unsteady vortices are important: (a) high-performance
aircraft such as the F-35 (b) natural flapping wing flight characteristic of the bumble bee,
and (c) micro UAVs such at the AeroVironment Nano Hummingbird (all pictures from
Wikipedia.)

using traditional 2D particle image velocimetry (PIV) or stereoscopic PIV. A consequence of

using these measurement techniques is the arduous data collection required to produce the

well-resolved three-dimensional, three-component (3D-3C) fields required to fully investigate

the flow behavior and vortex structure, even utilizing phase averaging. When the pitching

motion is combined with the rolling motion, there are far fewer studies that also employ a

freestream flow and, those that do, are typically concerned with low Reynolds numbers and

insect planforms [31, 32].

The field of rotating wings is rich with documented non-linear and intricate processes

(recently reviewed by Eldredge and Jones [33]). Yet the 3D structures resulting from the

combination of rotations about multiple wing axes remains less understood. Since the phys-

ical implications of such flow fields range from nature’s nimble fliers to high-performance

aircraft, this study seeks to examine a new dimensionless classifier for these flows. This

parameter should relate the flow morphology to the body kinematics, akin to the reduced

pitch rate (k = α̇c/2U∞) for a pitching wing and the advance ratio (J = U∞/φ̇Rg) for a

rolling wing. Such an understanding will ultimately lead to insights into how to perturb

the flow to achieve some desired end. Thus, the study presented here first documents the

vortex topology formed by articulating an aspect ratio 2 wing in specific pitching and rolling
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motions, while subjected to a Rec = 10000 freestream flow. The prescribed kinematics have

been selected such that the values of kRg = α̇effc/2URg , for the simultaneously pitching and

rolling cases will match the values of k for the purely pitching cases, through use of various

pitch and roll rates. Additionally, the element of forward flight creates a competition of

forces between: (1) the freestream velocity that convects the vortices away and (2) the ro-

tational accelerations from wing rotation that have been shown to sustain LEV attachment.

To explore the opposition between these physical factors, the parameter space encompasses

a range of k, J, and kRg values, guided by past work [30] and previous dye visualization. The

ranges were selected with the purpose of capturing two different classes of vortex structure

as described by Garmann et al. [34]: stable leading-edge vortices and arch vortices. This

dissertation seeks to describe the development of flow phenomena during the early stages of

wing motion, where the flow structure is most susceptible to control and to assess the kRg pa-

rameter and draw conclusions on the physical implications of the pitch rate and roll rate on

the formation of vortex structures. These goals are accomplished through use of a expansive

data set of volumetric flow measurements. These results from this dataset represent what

the author believe to be the first of their kind: showcasing a wide range of 3D-3C volumes,

which quantitatively characterize the behavior of the LEV on a maneuvering wing.

1.2 Framework

The following thesis is organized with the goal of providing the reader with a compre-

hensive understanding on the findings from this research. As such, the subsequent chapters

include the details of every facet.

Chapter 2 provides an extensive background and literature survey for the thesis. The

chapter is divided into sections, each relevant to the final conclusions. To begin, the previous

studies on flow over rotating wings is documented for pitching wings, plunging wings, rolling

wings, and simultaneously pitching and rolling wings. While the thesis is focused on the

findings regarding the fluid dynamics associated with a pitching and rolling wing, these
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findings have only been made possible after extensive time creating and developing the

processes associated with Plenoptic PIV. As such, section 2.2 describes previous work and

efforts at by the author associated with light-field imaging and the realization of a plenoptic

camera appropriate for PIV. The next two sections provide the details of algorithms critical

for the the post processing of plenoptic images. The background is concluded with the

preliminary research conducted to determine the feasibility of the experiments required to

support this thesis.

Chapter 3 details the experimental arrangement of an extensive 2 week research visit

to the University of Iowa to gather all of the data presented in this thesis. Also, the process

of reducing the countless plenoptic images into digestible results about the flow field is

explained.

Chapter 4 presents the ensemble-averaged flow fields for every combination of wing

kinematics measured. These result are the crux of the thesis and represent the most extensive

in the field to date. For a few cases, a glimpse into the instantaneous flow fields is provided.

Chapter 5 begins the thorough discussion and comparison of the results, with the specific

goal of understanding the significance of the kRg parameter. Another method of comparing

results, through correlation of vortex structure, is also used as an attempted to remove the

subjectivity of comparing result. Also, the helical density of vortex structures is explored,

which had been hypothesized by Wolfinger and Rockwell [35] to predict the vortex evolution

of an LEV.

Chapter 6 lists the conclusions and contributions of the paper, as well as suggesting a

future direction of the work.
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Chapter 2

Background

The background required for this dissertation is deeply rooted in a variety of fields, yet

the main focus are the contributions to the field of fluid dynamics. However, these contribu-

tions would not have been possible without the extensive research in the field of measurement

science. As a result, this chapter will begin with a thorough description of related works

on flow over rotating wings, then briefly discuss the development of the measuring system

and related post processing techniques (much of which is left for the appendices), and con-

clude with a description of the preliminary experiments that were conducted to support this

dissertation.

2.1 Flow Over Rotating Wings

Unsteady wings have various applications across multiple disciplines. In the most fa-

miliar application of a rotating wing, a helicopter, an airfoil is rotated as shown in figure

2.1a. The wing rotation becomes steady when maintaining a hover in quiescent air. A wind

turbine, seemingly similar to rotorcraft, actually has a different type of rotation, shown in

figure 2.1b. Here the incident wind flows over the airfoil, in which the lifting force causes

the turbine to rotate in the direction of the lift force. For a steady wind, the rotational rate

is constant. However, the same type of rotation is employed by natural flyers, such as birds

and insects, to create lift. This leaves one final axis for rotation, shown in figure 2.1c. This

type of rotation, often called “pitch-up”, is employed by natural flyers as part of the flapping

motion. Thus, this dissertation chooses to focus on the vortex dynamics of the rolling motion

(figure 2.1b) and the pitching motion (figure 2.1c). However, there exist many similarities

between flapping flight and the rotation shown in figure 2.1a at similar Reynolds numbers. It
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(a) (b) (c)

Figure 2.1: Schematic of common types of wing rotation

is worth mentioning a handful of studies that use rotorcraft-like rotation to study the effects

of rotation on the LEV [5, 6] and designing a higher endurance rotary wing mUAVs [36].

2.1.1 Pitching Wings

A purely pitching wing has long been associated with the phenomenon of dynamic stall.

When the wing is pitching rapidly compared to the direction of the airflow, a strong LEV

is formed, which increases the lift production of the wing. However, when the vortex has

been shed and is no longer over the surface of the wing, the airfoil is in stall and the lift

production dramatically reduces. Dynamic stall is also found on helicopter rotors when in

forward flight [5, 6, 15]. In natural and man-made flapping flight, dynamic stall is the key

to augmented lift production often required to keep the body aloft [4, 16–27].

The flow regimes associated with a purely pitching wing are primarily function of the

reduced pitch rate, the aspect ratio of the wing, and the center of rotation. The reduced pitch

rate is defined as the ratio of the angular velocity at the mid chord versus the freestream

velocity, mathematically: k = α̇c/2U∞, where α̇ is the rate of change of the geometric angle

of attack, αgeo. Thus, a faster pitch rate corresponds to a larger reduced pitch rate, which is

well-known to tighten the resulting LEV [17, 37]. At low aspect ratios (AR < 8), a pitching

wing gives rise to 3D vortical structures and 3D flow fields [4, 38]. When the aspect ratio of

the wing is increased, the 3D effect from the tip vortices is reduced and LEV is allowed to

detach from the wing earlier compared to smaller AR cases [20]. Additionally, it is noted that

spanwise flow through the vortex core can still exists in large AR and nominally 2D cases
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[17, 38]. Changes in the center of rotation most notably produces a higher peak lift as the

rotational axis is shifted closer to the leading edge (LE) [17]. Vortex topology resulting from

the pitch-up maneuver is primarily a function of the reduced pitch rate. At substantially

low reduced pitch rates (k < 0.03), an LEV does not form [17]. Further investigations

into the 3D vortex topology are largely driven by flow visualization, however, stereoscopic

PIV measurements made by Yilmaz and Rockwell [4] are most similar to this dissertation,

characterizing the vortex evolution for an aspect ratio 2 plate at k = 0.098. For this scenario,

the LEV is found to lift up from the surface of the wing in the middle region of the span,

creating an arch-like structure. This behavior is seen as early as 27◦ and becomes more

pronounced through 36◦ and 45◦. This highly 3D LEV interacted with the wing tip vortices,

contrasting the canonical 2D LEV often associated with dynamic stall.

Jantzen et al. [20] utilize an AR = 2, 4 and nominally 2D flat plate at reduced pitch

frequencies of k = 0.065–0.39 for a physical and computational experiment. The physical

experiment immersed the wings in a Re =20,000 flow whereas the computational experi-

ments had a significantly lower Re =300. While the physical experiments are suitable for

comparison to the present dissertation, the 3D vortex topology is presented only for the

computational experiment, where the Re is 2 orders of magnitude lower than the present

dissertation. Regardless, the vortex topology was characterized by the formation of a vortex

loop combining the LEV, trailing edge vortex (TEV), and the two tip vortices (TiVs), before

38◦ of pitch. Also at this time in the pitching motion, a slight arching to the LEV is visible,

although it is far less pronounced than the structure from Yilmaz and Rockwell [4]. Simi-

larities were found in plots of aerodynamic coefficients despite the disparity in Re, but this

does not guarantee that the vortex topology development is similar. Through comparison of

dye injection in the physical model and vorticity magnitude contours in the computational

results, some similarities are observed in the formation of the LEV, but there are noticeable

differences. In the physical experiment, structures are shed from the LE, while this is not

apparent in the computational results.
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A flow visualization study using a parameter space most similar to this dissertation,

(k = 0.1–0.35 and AR = 2) shows a distinct arch structure to the LEV as early as 26◦ [27].

In addition, the authors note that similar structures are seen at later times in the pitching

motion as the reduced pitch rate is increased. Specifically, similarities in vortex structure

are seen at αgeo = 25◦, αgeo = 40◦, and αgeo = 25◦ when k = 0.1, 0.2 and 0.5, respectively.

A crucial difference between this dissertation and the present dissertation is prescribed wing

kinematics. Yilmaz et al. [27] imposed a pitch-up motion from αgeo = 0◦ to 40◦, a brief

pause, and a pitch-down motion from αgeo = 40◦ to 0◦. Thus, the similar vortex structure

for the k = 0.5 case was actually at αgeo = 25◦ while pitching down. This dissertation does

not employ a pitch down motion. Additionally, Yilmaz et al. [27] move the location of the

center of rotation and found a similar shift to the vortical structures, although this was not

explored in this dissertation. It was proposed that changing these parameters simply induces

a time shift to the structures, specifically, increasing the reduced pitch rate by a factor of 3.5;

corresponding to advancing a structure in time by a factor of about 2 convective times [27].

In a similar manner, Granlund et al. [17] describe a collapse of maximum lift coefficient when

plotted against time normalized by convective time. Their experiments were performed using

a force balance and rhodamine dye visualizations for various values of K ranging from 0.01–

0.5 in a uniform freestream. Again, similarities are found across the range of K and center

of rotation; qualitatively suggesting a time-shifting of the vortical structures, as similar to

Yilmaz et al. [27].

2.1.2 Plunging Wings

Although the kinematics were not explicitly prescribed in this dissertation, the vortical

structures formed by a plunging or purely translating plate show many similarities to both

independent and simultaneous pitching and rolling maneuvers. Of the many studies on

periodically plunging air foils [39–41], the work of Akkala and Buchholz [42] proves useful

for comparison as the plunging plate was immersed in a freestream and stereo PIV was used
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to reconstruct a phase-averaged 3D flow field. While Akkala and Buchholz [42] focused on the

vorticity transport mechanisms associated with the flow, vortex topology is also presented,

detailing a strong tip vortex (TiV) and LEV. Throughout the downstroke, the LEV stays

pinned at the tip, where it is interacting with the TiV. Inboard of the tip, the LEV lifts

away from the wing surface, forming an arch-like structure which has been observed by other

studies [27, 43, 44]. Notable for the present dissertation, the isocontours marking the TiV

no longer connect to the isocontours marking the pinned LEV, at the later stages in the

motion, although the LEV does not appear to be dramatically affected.

A study by Baik et al. [45] immersed a 2D flat plate in a freestream and articulated the

plate in both plunge and pitch, simultaneously. This scenario is interesting for comparison

because it has effectively removed the spanwise variation caused by rolling motion. From

stereoscopic PIV measurements at a single plane, it was concluded that the vortex topology

and evolution is far more sensitive to changes in the reduced pitch rate k than the plunging

rate, where the plunging rate corresponds to the Strouhal number St = fL/U . For a fixed

k, it was found that increasing St increases the maximum circulation of the LEV, attributed

to the increased motion speed. Specifically related to the vortex evolution of the flow, it was

observed that throughout the parameter space, the LEV would continue to grow, resulting

in the downstream motion of the reattachment point of the separated flow. When the

reattachment point reaches the TE, the recirculation region opens and the LEV separates

from the LE. However, due to the 2D nature of these experiments, comparisons will be

limited, not only by the single plane of measurements, but also the absence of finite wing

effects.

2.1.3 Rolling Wings

A purely rolling wing produces flow regimes primarily dependent on advance ratio,

aspect ratio of the wing, and the radius of the gyration. The advance ratio is defined

as the ratio of the freestream velocity and the angular velocity at the radius of gyration,
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mathematically given as: J = U∞/Ω̇Rg, where Rg is the radius of gyration, defined as the

distance from the roll axis to the midspan. While the pitching maneuver establishes a uniform

angular velocity across the leading edge, a purely rolling wing creates a linear variation of

angular velocity along the span, which induces an angle of attack, αind. Thus, an effective

angle of attack is defined as αeff = αgeo + αind, where αind = atan(J). The effective angle

of attack is formally defined at the radius of gyration, however, it is essentially a function

of the angular velocity, and varies linearly along the span of the wing. A detailed analysis

by Lentink and Dickinson [46], worked on identifying and simplifying the parameter space

of rotating wings, ultimately verifying that the Rossby number (Ro = (J2 + 1)AR), which

can be thought of as a measure of the Coriolis acceleration, is a useful metric to predict flow

morphology. Since the aspect ratio is held constant in the present dissertation, the advance

ratio is sufficient for comparison.

Lentink and Dickinson [47] followed up their theoretical analysis with a detailed experi-

mental analysis using bubble visualization and force balance measurements on the planform

of a fruit fly in a hovering scenario, concluded that the LEV is stabilized by a spanwise

flow, seemingly independent of the rotational Reynolds number (100 ≤ Re ≤ 1400). It is

suggested that the spanwise flow is driven by a pressure gradient force within the LEV and

centrifugal pumping outside the vortex, from root to tip, which also convects the LEV into

the tip vortex. Through the simultaneous force balance measurements and visualization, is

that the LEV continues to augment lift, even after the vortex has burst. The authors sum-

marize the findings of the two papers in stating that “the single condition for LEV stability

and maximal force augmentation appears to be a sufficiently low Rossby number” suggest-

ing that many flying and swimming animals should be able to generate a stable LEV. This

implies that a lift augmentation through the stably attached LEV is a convergent solution

in nature.

Of the work on rolling wings, the majority investigate a wing immersed in quiescent

fluid (J = 0), many of which describe the development and attachment of the LEV to be
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relatively insensitive to Re or AR. Multiple factors have been suggested to stabilize the LEV

and prevent it from convecting away from the LE during the rolling motion, such as spanwise

flow through the LEV [35] and through vorticity annihilation [48]. More specifically, Wojcik

and Buchholz [48] utilized a vorticity transport analysis on stereoscopic PIV results made on

a rotating AR = 4 wing at a Rerot = 4000 for φ = 75◦ to 320◦ at αgeo = 35◦. However, it has

been suggested by the authors that vorticity annihilation could be a suitable mechanism for

maintaining the stability of the LEV in the kinematics prescribed in the present dissertation.

Thus, the vorticity transport equation is given below in equation 2.1, which will be considered

in the results presented herein. Most relevant to this dissertation are the in-plane convective

flux term (closely related to the shear layer flux), the Coriolis term (described by Lentink

and Dickinson [46] to be an important factor), and the diffusive flux from the wing surface

(closely related to the secondary vorticity).

dΓz

dt
=
∫
A

(
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∂uz
∂x

+ ωy
∂uz
∂y
−uz ∂ωz

∂z

)
dA−

∮
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∫
A
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∂x
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ρ

∫
W.S.

∂p
∂x

dx

vortex tilting spanwise
convection

in-plane
convective flux

Coriolis diffusive flux
from surface

(2.1)

It is further hypothesized that the impediment of these control mechanisms can result

in convection of the LEV from the LE and eventual degradation of the structure [35, 48].

It should be noted that this degradation of the LEV is fundamentally different than the

phenomena of vortex “bursting”, which has been found to occur at roll angles on the order

of 100◦ [49, 50], well beyond the maximum angle of this dissertation.

Two similar computational studies, Garmann et al. [34] and Garmann and Visbal [51]

used a high fidelity, implicit large eddy simulation technique to numerically estimate the

fluid motion of a revolving plate in quiescent with a fixed geometric angle of attack at

various rotational Reynolds numbers. The results were compared to similar simulations of

a plunging plate and experimental PIV results [52] for validation. It was found that for

the range of Re explored (200 ≤ Re ≤ 60000), that the development and attachment of
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the LEV was relatively insensitive to Re. It was also observed that the LEV would detach

near the tip and reconnect with the tip vortex. LEV breakdown was observed at Re ≥ 2000

and often associated with the reversal of spanwise flow through the vortex core. This flow

is often referred to as a “stabilizing jet” through the vortex core from root to tip and the

observation that the reversal of this jet is associated with the vortex breakdown aids to the

hypothesis [53–55]. In the comparison to the purely translating plate, it was noted that

both the root and tip corners of the vortex unpinned; causing the entire LEV to detach

sooner than the purely rolling case, which stayed anchored by the root corner of the LEV.

Another important finding from the numerical study is that the pressure forces were an

order of magnitude larger than the Coriolis and centrifugal forces. Additionally, the Coriolis

force was resolved to be away from the surface of the wing, indicating that is not a factor in

keeping the LEV attached. Similar behavior was seen when the Re was held constant and the

aspect ratio was varied (AR = 1,2,4) [51]. Furthermore, these findings are in agreement with

the stereo PIV experiments of Carr et al. [56] who used a nearly identical set up and Harbig

et al. [57] who simulated the planform of a fruit fly wing at a fixed geometric angle of attack

in a similar rotational motion through quiescent air with direct numerical simulation (DNS).

The experimental study of Carr et al. [56] used a rotating various flat plates in a quiescent

tank used stereo PIV to define the vortex structure of the entire plate. Through phase-

locking and phase-averaging, the 3D vortex structure, defined by Q-criterion, was described

to show outboard lift-off and inboard stability of the LEV. As the outboard portion of the

LEV lifts off, another forms and connects to the tip vortex. This description was found to

be independent of aspect ratio. These results have good agreement with the computational

work of Garmann & Visbal [51] and the experiments of Ozen and Rockwell [52].

The 3D vortex topology of a rolling wing in a quiescent fluid is characterized by Wolfinger

and Rockwell [35] using stereoscopic PIV. The same wing was rotated at 2 different radius of

gyrations such that the angular velocity at each radius of gyration was identical, resulting in

roll rates φ̇ = 3.06 and 0.53 for the shorter and longer Rg/c, respectively. The roll rate of the
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longer radius of gyration (Rg/c = 4.7) is within the range of roll rates used in this dissertation

(φ̇ =0.42–1.05). Throughout the motion, Wolfinger and Rockwell [35] characterize the LEV

structure as evenly distributed along the LE, conical in shape from root to tip along the

LE, and an arch vortex. Early in the motion, the LEV of smaller Rg/c is characterized as

conical while the LEV of the larger is characterized as evenly distributed. Focusing on the

evolution of the LEV of the larger, at about 23◦ of roll, the LEV begins to lift up from wing

surface in the middle third of the span, but remains “pinned”, or close to the wing, at the

ends of the LE. As the motion continues to 31◦, a distinct arch vortex has formed, remaining

pinned. Throughout the rest of the motion, up to 85◦, the arch vortex moves down the chord

of the wing, with the legs slowly pinching, or moving closer together, leading to the eventual

convection of the structure off of the wing.

When a freestream is introduced, Bross et al. [30] note that the vorticity concentration

is relatively independent of advance ratio (J =0–0.537) in the early to intermediate stages

of rotation (φ < 45◦), although, this observation is made only at the midspan plane. Repre-

sentations of the 3D vortex structure are created by stitching 38 stereoscopic PIV imaging

planes together, specifically for the J = 0.537 case at φ = 36◦, useful for comparison to this

dissertation. Bross et al. [30] describe a dual-vortex system at the LE, that extends from

about 40 percent of the span to the tip. In board of this point, the LEV deflect up and

away from the wing root. Additionally, the TiV is well defined and shown to have a helical

instability about its periphery. It is hypothesized that adding a freestream velocity may

shift the timing of formation of a loop vortex connecting the TiV to the root. While this

idea of a time-shift is fundamentally different than that proposed by Yilmaz and Rockwell

[4] regarding the LEV of a pitching wing, it is an intriguing outcome to changing various pa-

rameters governing both pitching and rolling wings. Furthermore, Bross et al. [30] note that

the streamline topology of the flow over the wing shows generic features over J = 0–0.537,

but the roll angle φ at which the features occurred did depend on the value of J. While
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not explicitly defined as a time shift in the sense of Yilmaz et al. [27], this shifting of flow

features over φ is similar in nature.

2.1.4 Combined Pitching and Rolling

A simultaneously pitching and rolling wing produce flow regimes that are a function

of all of the previously mentioned factors: reduced pitch frequency, advance ratio, aspect

ratio, radius of gyration, and center of rotation. Additionally, the effective angle of attack

can be defined as αeff = αgeo(t) + αind, where the geometric angle of attack is changing as

a result of the pitching maneuver. It follows that ˙αeff = ˙αgeo, when the roll rate is held

constant. Combining the pitching motion with a rolling motion has primarily been studied

with the motivation of understanding biological flight, almost exclusively in the hovering

scenario. Using the planform of a fruit fly, Birch and Dickinson [31] compared the precise

flow structure of the stable LEV to that of the hawkmoth, studied by Van den Berg and

Ellington [58]. Contrary to other findings, it was found that for the lower Reynolds numbers

and simultaneous rolling and pitching of the fruit fly wing that the LEV was stable without

separation, a stark contrast to previous findings of the higher Reynolds number, purely

rolling, hawkmoth wing. A computational study mimicking the study of Birch & Dickinson

used an in-house CFD solver capable of ‘flying’ an insect model with morphologically dynamic

wings that exhibit a simultaneously rolling and pitching stroke pattern [32]. This study

confirmed the findings of Birch & Dickinson. A previous computational study was conducted

with a 2D rolling and pitching fruit fly wing and found similar results as well [59]. Again,

all of these studies have focused on hovering flight, making a comparison of advance ratio

and reduced pitch frequency unsuitable to the proposed study.

Most relevant to this dissertation, Phillips et al. [60] utilized high-speed, stereoscopic

PIV to study the 3D vortex structure from an insect-like flapping machine, aptly named the

“flapperatus,” finding that across a range of AR, the flow fields developed nearly identically,

qualitatively characterized by a conical LEV that arches at the outboard end of the wing.
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As the stroke progressed, the LEV would eventually detach at about 70 percent of the span,

moving progressively inboard as the stroke continues. The remainder of the body of work is

focused on low Re flow of insects or animals [32, 54, 55, 58, 59, 61], including rotating actual

animal wings [62, 63], each with substantial variation from the work presented herein.

2.2 Light-Field Imaging

This section provides a brief overview on light-field imaging and the construction of

a plenoptic camera, however, extensive documentation and procedures are included in Ap-

pendix B.

The plenoptic camera has become an appealing solution for optical flow diagnostics

since it enables the rapid acquisition of light-field data with a single camera. As described

by Levoy, a light field constitutes both the spatial and angular information about the light

rays in a scene [2]. A plenoptic camera was first suggested as a tool to capture the light field

by Adelson and Bergen [64], and later realized in a compact form factor by Ng [65]. While

a conventional camera focuses light directly onto the image sensor (figure 2.2a), a plenoptic

camera records the light field by focusing the light entering the aperture of the main lens

onto an array of microlenses (figure 2.2b). The microlens then focus the light onto pixels

on the image sensor, based on the angle that the light entered the main lens. Thus, 3D

information of a scene is encoded into a plenoptic image.

(a) (b)

Figure 2.2: A schematic comparing how a conventional camera (a) and a plenoptic camera
(b) record a point source of light on the world focal plane
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The plenoptic camera used in this study was constructed from a 29 megapixel (MP)

Imperx Bobcat ICL-B6640 conventional camera with square pixels 5:5 microns in size. A

microlens array was manufactured by Jenoptik to have a focal length of 308 microns and a

microlens pitch of 77 microns, seen in the exploded view of figure 2.3.

Figure 2.3: Rendering of an exploded view of the plenoptic camera built at Auburn University

A sample image taken with plenoptic camera is shown in figure 2.4. The plenoptic

camera was set up in the laboratory and three standard playing cards were placed such that

the 6 of hearts (left) and the king of clubs (right) were located at the same depth separated

by a small gap. Further from the camera, the queen of spades was visible through the gap

between the two other cards. The plenoptic image resembles a normal image but lacks the

sharpness, due to the microlens array spreading out the light. By examining the enlarged

region of the spade symbol shows many “microimages”, or the image formed behind each

microlens. The hexagonal arrangement of the microlenses is clear. Notably, the edge of

the spade is quite blurry, despite being nominally in focus. This is a result of multiple

microlenses having a line of sight to the edge of the spade, thus spreading the information

out on the image sensor, making the image apparently blurry. However, by close examination

of a micro-image, a hard edge can be seen, depicting the edge of the spade symbol.
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Figure 2.4: A raw plenoptic image from the 29 MP camera with a rectangular array displaying
a scene of objects in the laboratory; the inset shows the micro-images formed by the each of
the microlenses

The information embedded in this image can be extracted computationally to create

new images, shown in figure 2.5. Each image was created from the single snapshot shown in

figure 2.4. The first two images show the leftmost and rightmost perspectives of the scene, as

captured through the aperture of the main lens. The parallax is elegantly demonstrated by

the amount of the queen’s face that is visible. In the leftmost perspective, only the right half

of the queen’s face is visible, as the right half is obscured by the 6 of hearts. In the rightmost

perspective, the entire left half of the queen’s face and more is visible. Additionally, the entire

scene is in focus in theses perspective images, as the images are assembled by combining one

pixel from behind each microlens to make a new image. The location of the pixel relative to

the center of microlens determines the angle of the perspective image. The entire field of view

(FOV) is in focus, because the use of one pixel has limited the effective aperture to essentially
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a pinhole. The two remaining images show a shift of the nominal focal plane, such that the

front two cards are in focus (figure 2.5c) and the queen is in focus (figure 2.5d). This process

is an integrated one, which uses a shifted image sensor plane and for each pixel on this plane,

sums the intensities recorded by the pixels on the nominal sensor plane which the light ray

passed through the pixel on the shifted sensor plane. This clearly illustrates that depth

information is encoded into each plenoptic image, which can be extracted computationally.

(a) (b)

(c) (d)

Figure 2.5: (a) A left perspective of the scene (b) a right perspective of the scene (c) focused
on the King in the front of the scene (d) focused on the Queen in the back of the scene

The Advanced Flow Diagnostics Laboratory (AFDL) of Auburn University has con-

structed several plenoptic cameras for a wide variety of applications, including plenoptic

PIV. The next subsection, §2.3, serves as a brief summary of the plenoptic PIV and the
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reconstruction technique, which is more completely described by Fahringer et al. [66]. To

assist with many of the other applications of the plenoptic camera, including the images

generated in figure 2.5, the AFDL has created the Light Field Imaging Toolbox (LFIT), an

open source MATLAB package designed to handle light field images [67].

2.3 Plenoptic PIV

The plenoptic camera functions similarly to standard PIV cameras, recording image

pairs of an illuminated volume. The images are a two-dimensional (2D) representation of the

illuminated 3D volume. Thus, when compared to traditional PIV, there is an additional step

of reconstructing the 2D plenoptic images into 3D volumes. Tomographic reconstructions

are created using an implementation of the multiplicative algebraic reconstruction technique

(MART), similar to the algorithm used for tomographic PIV. The process is detailed by

Fahringer et al. [66]. This reconstruction technique iteratively solves a system of linear

equations that model the imaging system, shown in equation 2.2. This equation can be

thought of as the projection of the volume intensity distribution E(x, y, z) onto a 2D image

I(x, y). However, the reverse of this operation is required to obtain a volume E(x, y, z) from

the image I(x, y). Thus, E(x, y, z) is initially defined as a volume discretized into cubic

voxels (vx, volume equivalent of a pixel), each with an intensity of 1. Each voxel j can then

be projected onto a pixel located at (xi, yi), mathematically expressed by

∑
j∈Ni

wi,jE(xj, yj, zj) = I(xi, yi) (2.2)

where Ni is the number of voxels in the line-of-sight of the ith pixel and wi,j is the weighting

function, which describes what portion of light emitted from a voxel strikes each pixel. The

weighting function of a plenoptic camera is different from cameras used in tomographic PIV

because the entire volume is not in focus during plenoptic PIV. Thus, a novel approach to

create the weighting function was developed by Fahringer et al. [66].
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Equation 2.3 describes the iterative procedure used to determine a solution for E(xi, yi, zi),

known as the MART Equation. Each kth + 1 iteration is defined as

E(xi, yi, zi)
k+1 = E(xi, yi, zi)

k

(
I(xi, yi)∑

j∈Nj
wi,jE(xi, yi, zi)k))µwi,j

)
(2.3)

where µ is the relaxation parameter which can range between 0 and 1. Convergence is

determined by manual inspection of the particle volumes. Fahringer et al. [66] present results

from this process for both simulated and experimental data. Once the plenoptic data has

been reconstructed into a 3D intensity distribution, cross-correlation techniques are applied

in an identical fashion to tomographic PIV.

A recently developed volumetric calibration for the plenoptic camera was performed

by imaging a dot card placed at various depths throughout the measurement volume [68],

shown in figure 2.6. This procedure, the so-called “direct light field calibration” (DLFC) is

not a traditional volumetric de-warping. Instead, the dot card images are used to create a

least-squares polynomial fit to define a mapping function from a point in object space to

a point on the image sensor. The dot cord is traversed through the measurement volume,

as shown in figure 2.6, equating the physical space to image space. The errors in this

method are estimated to be less than .1% of the reconstructed volume size in the lateral

directions x, y and 1% in the depth direction z [68]. In more recent advancements, it has

been shown that this mapping function can be substituted for the weighting function for

MART reconstructions to improve computational efficiency. Another group [69] has recently

published a similar method of using a plenoptic camera to make 3D-3C PIV measurements,

which they call ‘light-field imaging based PIV’ (LF-PIV), which is essentially the same as

plenoptic PIV presented here. Additionally, Rice et al. [70] and Shi et al. [71] have both

recently performed a comparison study using a traditional tomographic PIV set-up and a

plenoptic and LF-PIV’, respectively.
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Figure 2.6: Schematic depicting the translation of the two-stage calibration target through
multiple planes of the measurement volume in order to compute the direct light field cali-
bration
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To date, the most extensive application of plenoptic PIV is the work of Johnson et al.

[72], who presented volumetric measurements in the wake of a hemisphere. This study

was the first known publication in the field of plenoptic PIV that was not focused on the

development of the measurement system.

2.4 The Proper Orthogonal Decomposition

This dissertation revolves around the findings from a relatively large data set, comprised

of hundreds of images for each different combination of wing kinematics, about 60,000 images

in total. While the motion of the wing has been deemed repeatable to allow phase averaging,

the combination of the moving wing and highly 3D fluid motion causes difficulty when

subtracting a background image. The slightest offset in the wing position in the image causes

some particles to be removed or diminished in some frames, thereby reducing the fidelity

of the final results. Examples of this process are shown in Section 3.2.1 Thus, the proper

orthogonal decomposition (POD) was used to identify an optimized background to subtract

for each image in this dataset. The POD is commonly used as an analysis tool for fluid

measurements, known primarily for providing a method for extracting reduced information

from large sets of data. The extracted information is synthetic in the sense that it exists

only as a representation of the data set as a whole, but does not exist as an individual data

sample. The POD is a robust procedure that proves useful in analyzing large data sets from

assorted fields. An extensive summary of the POD is provided in Appendix C, that explains

the intricate math behind POD.

Fortunately, the application of the POD is much simpler than the math behind it. A

detailed explanation of how the POD has been applied for background subtraction during

the data reduction process is provided in the following sections.
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2.5 Preliminary Research

In the preliminary study, an earlier version of the 29 MP plenoptic camera was used.

A two week long experiment allowed for the collection of preliminary data and the identi-

fication of potential improvements to the experiment for the final experiment presented in

this dissertation. Smaller volumes were captured in this experiment, briefly presented in the

following subsections. The images gathered in this experiment were used in the development

of POD based background subtraction and the entire data reduction process presented in

chapter 3.2.

2.5.1 Pure Pitch

Measurements were made at two different reduced pitch rates, K = 0.1 and 0.5, at the

half-span of the wing. The volume included about 5 percent of the chord length upstream of

the leading edges and extended to about 65 percent of the chord. For each value of K, 100

3D vector fields were calculated for each angle of attack α = 5, 10, 15, 20, 25, and 30. Two

ensemble averaged flow fields are displayed using a three-view format, in figures 2.7 and 2.8

at αgeo = 5 and 20, respectively, for K = 0.1. The flow is visualized with isosurface contours

of positive and negative z vorticity ±ωz (red and blue) and swirling strength criterion λci

(yellow contours).

Specifically, in figure 2.8 a large LEV is identified in a strong recirculation region.

Unfortunately, it has been drawn to the attention of the researchers that the calibration of

the pitching motor was performed incorrectly, and the pitching data is suspect to large errors

in the angle of attack of the wing. Thus, physical implications of this data set will not be

discussed and these figures will only serve as proof that the imaging system is capable of

making such measurements.

23



(a)

(b)
(c)

Figure 2.7: Isosurfaces of swirling strength at αgeo = 5

2.5.2 Pure Roll

The results of the purely rolling wing demonstrate the development of the three di-

mensionality of the flow, which can be seen in the comparison of figure 2.9, 2.10, and 2.11.

Isosurfaces of ωz and swirling strength λci are shown for ensemble averages of φ = 3◦, 12◦,

and 25◦, respectively. Figure 2.9 shows that a prominent LEV is present at φ = 3◦, con-

nected to a downstream region of −ωz (the attached boundary layer) which trails to the end

of the measurement volume. Underneath these features, a thin region of secondary vorticity

blankets the plate, approximately 0.02c thick. At the inboard and outboard spanwise regions

of the measurement volume, the λci contours reveal a smaller vortex beginning to develop

upstream of the prominent vortex. The relative two dimensionality of the flow structure is

seen in figure 2.9c, as the LEV is nearly has nearly constant size and location across the

measurement volume. Figure 2.10 shows the same views and isosurfaces for φ = 12◦. A

third vortex is present at x/c = 0.3, which begins to lift off the surface of the plate towards
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(a)

(b)
(c)

Figure 2.8: Isosurfaces of swirling strength at αgeo = 20

the tip of the plate (–z). The two vortices closer to the leading edge stay relatively level

across z. As the roll cycle progresses to φ = 20◦, figure 2.11 the two vortices nearest to the

leading edge remain relatively the same in size and strength. The third vortex however, sees

a decrease in strength and an even greater inclination towards the tip of the plate.

The arching structure seen in the development of the LEV is similar to what has been

observed in the literature, as the LEV begins to lift off and combine with the tip vortex. The

core of the LEV is not dominated by any one direction of spanwise flow. However, it does

not appear that the LEV stabilizes over the range of φ for the given advanced coefficient

and aspect ratio that the preliminary experiments have explored.
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(a)

(b)
(c)

Figure 2.9: Isosurfaces of swirling strength at φ = 3

26



(a)

(b)
(c)

Figure 2.10: Isosurfaces of swirling strength at φ = 12
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(a)

(b)
(c)

Figure 2.11: Isosurfaces of swirling strength at φ = 20
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Chapter 3

Methods

3.1 Experimental Procedure

A flat, acrylic plate was articulated in the presence of a freestream velocity of 124 mm s−1.

The flow was created in the University of Iowa’s free-surface water channel with test sec-

tion width of 0.61 m and water depth of 0.33 m. The water channel has flow conditioning

consisting of an 8:1 contraction ratio, honeycomb, and five screens to maintain freestream

turbulence intensity below 0.3 percent. The AR 2 plate had a chord length, c =76.3 mm

and thickness of 3.3 percent of the chord, with both the leading and trailing edges rounded

with a constant radius of half the plate thickness. The maximum blockage ratio was 3.1

percent. These parameters produced a chord-based Reynolds number of Rec = 10000. The

pitching motion was always about the LE of the wing and the roll axis was situated such

that the radius of gyration was 3.25 times the chord length. The roll and pitch maneu-

vers were articulated by an Emerson XVM-8020-TONS-000 DC servo motor for roll and an

Emerson XVM-8040-TONS-000 for pitch, both using a Galil DMC-4040 motion controller

and Emerson EP-204B servo drive. Figure 3.1 shows an illustration of the arrangement and

coupling of the pitch and roll motors. The motors were fixed to a skim plate such that the

roll axis was co-planer to the skim plate. To accommodate the physical size of the motor,

a cavity protruded below the lower surface of the skim plate, allowing the rotational axis

of the motor to lie co-planar with the skim plate. This cavity was located 5 chord lengths

downstream of the plate.

The wing motion was prescribed as a linear ramp, smoothed using the Eldredge function

[73] with a smoothing parameter of 1.2. Sample wing kinematics are shown in figure 3.2.

During the pure pitch maneuver, the wing is initially set to αgeo = 0◦ and pitches to αgeo =
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Figure 3.1: Illustration of motor layout on the skim plate
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Figure 3.2: Wing kinematics for (a) pure pitch, (b) pure roll, and (c) simultaneous pitch &
roll maneuvers

45◦ in about 0.5 s. At the end of the motion, the wing is static, followed by the reverse

maneuver to return to αgeo = 0◦, where the wing remains static for about 5 s to allow the

any flow perturbations caused by the wing motion to diminish. Then the motion is repeated.

For the roll kinematics, the wing was initially set to a geometric angle of attack (in figure

3.2b αgeo = −28.4◦) and began rolling until it reached a constant roll rate, in which the

induced angle of attack αind becomes constant, resulting in αeff = αgeo + αind = 35◦. When

the wing is pitched and rolled, shown in figure 3.2c, the pitching motion does not begin

until αeff = 0◦ and dαeff

dt
≈ 0◦. Thus, the wing is set to an initial αgeo = −αind such that

once the rolling motion is reaches a constant rate, αeff = 0◦. The roll motion continues,

keeping αeff = 0, for about 0.4 s, at which point the pitching motion begins. The epoch for

the simultaneous pitching and rolling maneuver is defined when the pitching motion begins,

here at t = 0.88 s. The parameter space of this study was selected particularly to examine
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a dimensionless parameter, kRg, which is defined below in equation 3.1. This parameter is

similar to the reduced pitch rate k, yet also accounts for the wing maneuvering in a rotating

reference frame.

kRg =
α̇effc

2URg

(3.1)

URg =

√
(φ̇Rg)2 + U2

∞ (3.2)

Given the definitions of the reduced pitch rate (k = α̇c/2U∞) and the advance coefficient

(J = U∞/Ω̇Rg), equation 3.1 simplifies to

kRg =
k√

J−2 + 1
. (3.3)

Thus, it is hypothesized that the effect of adding a rolling reference frame to the vortex system

created by a pitch-up maneuver can be discerned by matching k and kRg, in a comparison

between pure pitch and combined pitch/roll kinematics. It is noted that for a purely pitching

wing, k = kRg. From table 3.1 below, it is clear that the kinematics have been specifically

selected to match k and kRg values. Moreover, the J values have been matched between

the pure rolling and simultaneously pitching and rolling cases, to isolate the effect of adding

pitch to the rolling motion.

The complete parameter space of wing kinematics is shown in table 3.1, along with a

case name by which each case will be referred to hereafter. The naming convention uses

a letter to refer to pitching, rolling, or simultaneously pitching and rolling, and subscripts

and superscripts correspondence to the prudent rate or angle. For example, case P.5 is a

purely pitching case with a reduced pitch rate of 0.5. Similarly, R.54,33 is a purely rolling

case with an advance coefficient of 0.54, and the additional subscript is the effective angle

of attack of the case αeff = 33◦. The simultaneously pitching and rolling case S .22
.46,.54, has

subscripts indicating the values of k and J, respectively, and the superscript is the kRg value.
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Case Name Rg/c Location J k kRg αeff φ
R.54,23 3.25 c 0.54 23◦ 12◦–49◦

R.54,33 3.25 r-c-t 0.54 33◦ 6◦–49◦

R.54,43 3.25 c-t 0.54 43◦ 12◦–49◦

R1.36,33 3.25 c-t 1.36 33◦ 3◦–49◦

R1.36,43 3.25 c 1.36 43◦ 3◦–49◦

P.5 3.25 r-c-t 0.50 15◦–45◦ 0◦

P.2 3.25 c-t 0.19 15◦–45◦ 0◦

S .22
.46,.54 3.25 r-c-t 0.54 0.48 0.22 15◦–45◦ 30◦–49◦

S .20
.42,.54 3.25 c-t 0.54 0.45 0.20 15◦–40◦ 31◦–49◦

S .50
1.05,.54 3.25 c-t 0.54 1.12 0.50 15◦–45◦ 25◦–40◦

S .37
.46,1.36 3.25 c-t 1.36 0.50 0.37 15◦–45◦ 24◦–38◦

r.54,33 2.50 c 0.54 33◦ 6◦–49◦

r1.36,33 2.50 c 1.36 33◦ 3◦–50◦

s .37
.46,1.36 2.50 c 1.36 0.50 0.37 15◦–45◦ 24◦–38◦

Table 3.1: Detailed parameter space of wing kinematics

For the cases with the smaller radii of gyration, the nomenclature uses a lowercase letter,

e.g. s .37
.46,1.36. The name for each case and the radius of gyration for that case are found in the

first two columns of table 3.1, respectively. The third column uses the letters r, c, and t, to

describe which measurement volumes were captured for each case, corresponding to the root,

center, and tip regions, respectively. The values of k and J are given in the fourth and fifth

columns, respectively. Additionally, the study defines the parameter kRg as a variation of

the reduced pitch frequency that accounts for the rolling motion of the wing as well, shown

in the sixth column. Here, kRg is calculated as kRg = ˙αeff/2VRg where, VRg =
√
U2
∞ + (φ̇Rg)2.

The ranges of the effective angle of attack (αeff = αgeo + αind) and the roll angle φ are given

in the seventh and eight columns, respectively.

This study employs the unique measurement capabilities of plenoptic particle image ve-

locimetry (PIV), described in the previous chapter. In this experiment a 200 mJ dual-cavity,

pulsed Nd:YAG laser illuminated a 102× 68× 68 mm volume, which included the entire

chord of the wing. The plenoptic camera was fixed on a rotational stage below the water

tunnel, viewing the wing along the span from tip to root. A schematic of the arrangement

is shown in figure 3.3.
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Figure 3.3: Experimental schematics: a top and side view of the experimental arrangement
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Plenoptic images were recorded when the wing was vertically aligned with the plenoptic

camera, which required that the initial position of the wing was preset to the negative roll

angle of a given phase. For example, when images were taken at φ = 12◦, the initial position

of the wing was set to φ = −12◦, so when the wing crossed the vertical plane aligned with the

camera, it had rolled 12◦. Additionally, the camera was rotated on the rotational stage to

match the geometric angle of attack of the wing at each phase for each kinematic case, such

that the wing position in each recorded image was consistent from phase to phase. Thus, the

data is presented in a coordinate system fixed to the wing. This coordinate system originates

on the LE of the wing, on the surface of the suction side, and at the root, shown in figure

3.4a. When αgeo = 0◦ and φ = 0◦ the wing fixed coordinate system is equal to the lab

coordinate system. The lab coordinate system is shown by xyz in the orange box in 3.4b,

where u, v, and w are the corresponding velocities in each direction. The freestream velocity

u∞ is in the x direction. When the wing is pitched, the wing fixed coordinate system, given

bt x′y′z′, is equal to xyz rotated by αgeo, shown by the superposition of the wing in figure

3.4b. In the wing fixed coordinate system velocity is given by u′, v′, and w′, where u′ is not

in the same direction as the freestream velocity u∞.

The entire span of the wing was imaged in 3 overlapping regions, illustrated in figure 3.5.

Each colored region represents a different measurement volume and the dashed line marks

the focal plane of each volume, which was also the center of each volume. The imaging

parameters are identical for each measurement volume, as the plenoptic camera and laser

was only shifted along the z′ axis. Thus, each volume has the same dimensions, extending

68 mm in the z′ direction. The measurement volumes were centered at 20, 55, and 89 percent

of the total span which allowed for an overlap of 14.7 mm and 16.2 mm for the root-center

and center-tip interfaces, respectively.

For every kinematic case, 100 image pairs were recorded except for each P.5, R.54,33,

and S .22
.46,.54 (referred herein as baseline cases) at the center volume, where 500 image pairs

were recorded for determining averaging convergence and subsequent investigations. The
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(a) (b)

Figure 3.4: The wing fixed reference frame illustrated, (a) plan view and (b) top view, where
the velocity labels are shown in green and the physical space labels in black

Figure 3.5: Plan and front view of the 3 different measurement volumes used during this
dissertation
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Parameter Value
resolution 4400× 6600 px2

bit depth 14 bit
focal length fM 85 mm
f-number f# f2.96

extension tubes 10 mm
magnification M −0.344
time between frames δt 1.75 ms
mean particle size 10µm
freestream velocity 0.124 m s−1

Reynolds number (chord) 10, 000

Table 3.2: Experimental arrangement parameters

convergence of the chordwise velocity u′ is calculated for a 5× 5× 5 vec3 region, far away

from the wing surface. Using 100 image pairs, the converged value is within 1 · 10−3 m s−1

of the converged value using 500 pairs.

A summary of all of the relevant parameters regarding the experimental arrangement is

provided in table 3.2.

3.2 Data Reduction

In total, 31,550 image pairs were gathered totaling 3.456 TB, which requires significant

computational resources/time to process. Thus, the high performance compute cluster at

Auburn University, named hopper, was utilized for the computational intensive steps in-

volved in the processing routine, diagrammed in figure 3.6. After the data collection step,

the next 3 operations utilized up to 20 nodes of hopper, with each node having 20 cores,

each kinematic case taking about 4 days to process through the 3D cross correlation using

20 nodes. After the 3D Cross correlation, the ensuing processes where done on a single 12

core machine. A sample raw plenoptic image is shown in figure 3.7 illustrating the starting

point of the many operations required to get to the desire results. The following sections

will detail each step of the processing routine.
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Figure 3.6: Flow Diagram of data processing routine

Figure 3.7: A raw plenoptic image of particle laden flow over the acrylic wing, (inset) a
magnified region showing the images formed by each individual microlens
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3.2.1 The POD Base Background Subtraction

While historically POD has been used as a post processing technique for particle image

velocimetry results, it has only recently been applied to raw particle image, Mendez et al. [74]

being the first to publish on the technique. Independently of that study, the technique has

been applied to plenoptic particle images taken by the author, the process of which converged

to similar criterion outlined by Mendez et al.. Due to the nature of the PIV algorithm, time

dependent light reflections and strongly-non-uniform backgrounds can corrupt the cross-

correlation results from the particle image pairs. Before discussing how the POD can be

used to remove background intensities, a brief discussion of the noise of particle images is

appropriate. The optimal particle images only include light that have been scattered by

particles and for the remainder of this section all other light recorded on the image sensor

will be referred to as noise. This includes the previously mentioned time dependent light

reflections and non-uniform backgrounds. In addition to this noise, each pixels on the image

sensor of the camera will randomly errors in intensity that are not present in the image,

referred to as image noise. Throughout an experiment where many image pairs are gathered,

the particle location in each image pair can be approximated as random. The modes from

the snapshots method of POD are ranked by respective eigenvalue, which correspond to the

energy in each mode. Modes with higher energy can be thought of as representing recorded

light intensities that occur more frequently than modes with less energy throughout the

data set of recorded image pairs. It follows that any intensities produced by a random or

approximately random process would be captured in modes with very low energy and that

intensities caused by any intensities caused by any process that repeats, even once, will be

captured in modes with more energy. Thus, by projecting each image onto a basis of only

the least energetic modes, the only intensities in each of the projected images would be from

light scattered by particles.

For example, figure 3.8a shows a raw plenoptic image from R.54,33 φ = 26◦, where the

wing is notably visible and there is a haze about the entire image. In figure 3.8b, the image
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has been processed with the POD background subtraction algorithm (appendix E.1). Here,

the wing has been elegantly removed and the overall haziness of the image has been removed.

Additionally, several large blur spots have been removed hear the trailing edge of the wing

(right side of image), which were likely reflections. This image was achieved by removing the

first 23 most energetic modes. This number of modes was picked by a criterion inspired by

Mendez et al. [74], where the last mode to be removed is the last mode where the difference

between the consecutive, corresponding eigenvalues is less than the inverse of the number of

images and the next consecutive pair also meets this criterion. See appendix E.1 line 222.

This criterion is mathematically given as

λC − λC+1 < N−1 & λC+1 − λC+2 < N−1 (3.4)

where N is the number of samples, and C is the index of the first eigenvalue-eigenvector

pair that will not be used for the subtraction. Thus, for the previously mentioned case,

C = 24. In figure 3.9, the normalized energy distribution for this case is shown. The x axis

shows the number of eigenvalues used, reaching the first 100 eigenvalues (for this case there

1000, as there were 500 image pairs). Each eigenvalue is normalized by the sum of all of the

eigenvalues, thus the sum of the normalized modal energy is 1 for all 1000 eigenvalues. At

the cut-off value of 23, the relative change between the modal energies has met the criterion,

with each of the corresponding modes for all modes greater than 23 have less than 0.001%

of the total modal energy, which corresponds to the more random intensities throughout all

500 image pairs.

In order to prepare the data for reconstruction, this POD algorithm was implemented

on every kinematic case and every phase independently, on hopper. The algorithm was

written in C++ and utilized on 1 node but parallelized across all 20 cores, requiring about 1

hour per phase. Once all of the images have been optimized through this algorithm, particle

volumes could be reconstructed from them.
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(a)

(b)

Figure 3.8: The first plenoptic particle image of R.54,33 φ = 26◦ before (a) and after (b) POD
background subtraction
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Figure 3.9: Normalized modal energy distribution for R.54,33 φ = 26◦

3.2.2 MART Reconstruction

Using the previously described MART algorithm, the plenoptic images were recon-

structed into volumes. This was done using an in-house software suite aptly named Dragon,

originally developed by Fahringer et al. [66]. There are two control parameters, or knobs,

to tune for using the MART algorithm: the relation parameter and number of iterations.

To properly select the parameters, a sweep of each was conducted, while trying to satisfy

continuity for the field and maximize the normalized intensity variance σ∗E as defined by

Lynch [75], given as

σ∗E =

√
1
N

∑N
j=1(Ej − Ē)2

Ē
(3.5)

where Ē is a scalar representing the average intensity of all voxels, N is the number of

samples, and E is the 3D intensity field. A high value of the normalized intensity variance
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Figure 3.10: Normalized intensity variance for parameter sweep of iterations (x axis) and µ
(legend)

indicates a sparse reconstructed field with high amplitude peaks, which is desirable for par-

ticle volumes suitable for PIV. Values of σ∗E are shown below in figure 3.10, from which

the 3 iterations and a relaxation parameter µ = 0.9 having the greatest value. However,

for the same number of iterations, µ = 1.0 had a slightly lower mean value for ∇u, and a

negligible decrease in σ∗E, thus the final selection was µ = 1.0 and 3 iterations. Fortunately,

the resulting 3 iterations save ample computational time, however, this step is by far the

most computational expensive, requiring significant use of hopper’s resources. The result-

ing volumes were 527× 357× 357 vx3, where each voxel is a cube of 0.19 mm side length.
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3.2.3 Volumetric Cross Correlation

The volume pairs were then correlated using an in-house 3D cross-correlation algorithm

which consisted of 5 passes utilizing cubic windows of 64, 48, 32, 16, and 16 voxel sides

for each pass, respectively. The algorithm is based on the VODIM [76], further detailed by

Fahringer et al. [66]. Each pass had a window overlap of 50%, resulting in a final vector field

of 63× 42× 42 vec3 physically spaced by 1.5 mm. This was also compute on hopper.

3.2.4 LE Alignment and Coordinate Transformation

From earlier testing, it was found that the physical location of the LE during the roll

cycle that was captured by the camera could fluctuate by as much at 0.5◦ within a single

phase. The design of the flapping mechanism was improved, and this variance is now esti-

mated to be within ±0.15◦. As a result, the same coordinate transformation was applied to

each vector field in a given phase of a single kinematic case. The leading edge and trailing

edge were visually selected from a raw plenoptic image in each sample, which were then re-

lated to corresponding points in the reconstructed volumes. This visual selection process is

shown in figure 3.11. Each vector volume was then interpolated onto an identical coordinate

system x′, y′z′, which also requires that the induced velocity of the wing be subtracted from

the data. The MATLAB scripts to preform all of the operations are included in appendix

E.2. During this operation, the voxels and voxel displacements are converted to m and m s−1,

respectively. Now that the entirety of each phase is sampled onto the same axes, with (0,0,0)

uniformly corresponding to the LE, suction side, and root of the wing, the phase-averaged

velocity fields can be simply calculated.

3.2.5 Vortex Identification

Vortices have been a primary interest of fluid dynamicists studying turbulence since the

early days of flow visualization. Turbulence and vortex dynamics are deeply intertwined, to

the extent that turbulence is often viewed as a tangle of vortex filaments. Thus, a better
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Figure 3.11: MATLAB figure window for visually selecting the LE and TE
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understanding of vortex dynamics promises not only to better define turbulent phenomena

such as entrainment and mixing, heat and mass transfer, chemical reaction and combustion,

drag, and aerodynamic noise generation, but also improvements in turbulence modeling.

Scientists and researchers continue to study both vortex dynamics and turbulence using

experimental and computational methods, but are hindered by the difficulty in identifying

a vortex in a flow, largely because of the vague definition of a vortex. However, there exist

a variety of identification methods, most of which depend on the velocity gradient tensor,

∇u =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 = S + Ω (3.6)

This equation can be recast as an eigenvalue-eigenvector problem as

∇u = eλe−1 (3.7)

where,

e = [vrvcrvci] (3.8)

and

λ =


λr 0 0

0 λcr λci

0 −λci λcr

 . (3.9)

In a study of the physical mechanisms of generating hairpin vortices, Zhou et al. [1] developed

a new technique for identifying and visualizing vortices, similar to the ∆-Criterion. The study

uses the imaginary part of the complex eigenvalue of ∇u. Combining equations 3.7 and 3.9

45



yields

∇u = [vrvcrvci]


λr 0 0

0 λcr λci

0 −λci λcr

 [vrvcrvci]
−1 (3.10)

where the subscript r represents the real components, and subscripts cr and ci represent the

complex real and complex imaginary components, respectively. The instantaneous stream-

lines can be locally defined by a curvilinear coordinate (y1, y2, y3) system. The axes of the

coordinate system are defined by the eigenvectors vrvcrvci, described by Equations (3.11a–

3.11c). This coordinate system is shown in Figure (3.12).

y1(t) = Cr exp
(
λrt
)

(3.11a)

y2(t) = exp
(
λcrt

[
C(1)
c cos(λcit) + C(2)

c sin(λcit)
])

(3.11b)

y2(t) = exp
(
λcrt

[
C(1)
c cos(λcit)− C(2)

c sin(λcit)
])

(3.11c)

Figure 3.12: The local streamline pattern with the eigenvectors of the velocity gradient
tensor in the neighborhood of a vortex core [1]
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Figure 3.13: Vortical structures identified by an iso-surface of (a) λ2
ci with 1.4% maximum;

(b) λ2
ci with 2.8% of maximum; (c) λ2

ci with 4.2% of maximum; (d) λ2 = −10 (from Zhou
et al. [1])

From an inspection of both Figure (3.12) and Equations (3.11a–3.11c) it follows that

the flow is stretched along the vr, while the flow swirls in the plan spanned by vcr and vci.

Furthermore, λci quantifies the strength of the local swirling motion. Thus, λci or “Swirling

Strength” Criterion is theoretically satisfied when λci > 0, indicating that the streamlines

have a swirling component. In practice, better results are achieved when the criteria for a

vortex is defined to be λci > ε > 0, where ε is a small number [77]. Zhou et al. prefer to use

λ2
ci > ε > 0 and set ε anywhere between 1% to 10% of the maximum λci value. A comparison

from Zhou et al. of the λci at different thresholds of ε and similar D of simulated hairpin

vortices is shown in Figure (3.13).
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3.2.6 Time Constant

Because of the variation between cases involving multiple parameters, a universal nor-

malization method is used. As such, a time constant, τ is defined as

τ =
c

Vrel

(3.12)

where Vrel is the relative motion of the fluid, defined as the magnitude of the freestream

velocity and whatever rotational velocities are present (from rolling or pitching). This can

be thought of as the convective time, or the time it takes for fluid to be convected across the

entire chord. The elapsed time is then nondimensionalized by τ resulting in a dimensionless

time value, defined as t′ = t/τ , where t is the elapsed time since epoch for each phase. For

both the pure roll and pure pitch kinematic cases, epoch is defined as the start of wing

motion and for the simultaneously pitching and rolling case, epoch is defined as the start of

the pitch motion, as described in chapter 3.1.

3.3 Visualization of Results

Throughout the remainder of the dissertation, both the embedded figures and online

supplementary Movies (Appendix A) utilize the same visualization of the 3D-3C data, which

is described here. For each case, phase-averaged results are visualized using isocontours of

normalized swirling strength (
λ2

ci

maxλ2
ci

) and stream ribbons of chordwise velocity normalized

by the freestream velocity (U ′/U∞). The isocontours are set by two levels: 10% and 15%

of the maximum value in each volume, following the guidelines given by Zhou et al. [1].

Stream ribbons were calculated using a two-step Runge-Kutta method with a step size of

0.25 times the vector spacing. The stream ribbons are seeded in 3 rakes of 20 streamlines

spanning from root to tip of the wing, all within the range of 6–10 mm from the leading edge

and 6–12 mm off of the wing surface, and propagated in both directions. These rakes were

designed to best seed the vortices produced at the leading edge. While the movies show a
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single phase-averaged result per frame, the included figures show the entire phase for each

case in a vertical stack. A “timeline” runs vertically down the left side of the figure, with

a point labeled by the non-dimensional time (t′) and the most relevant angle (αgeo, αeff ,

φ). Both the time and the angle are increasing from top to bottom. Note that the spacing

between phases on the timeline is not explicitly representative of the spacing between phases

in non-dimensional time.

Both the topology and evolution of the LEVs for each case are documented in this

section. To do so, it is useful to define some general terminology. The evolution of the LEV

will be broken down into the following stages:

Formation and growth: a nascent vortex forms and grows into a defined, at-

tached LEV

Transitional: the LEV is neither clearly attached to the leading edge,

nor clearly detached from the leading edge, but at some

intermediate stage

Detached: the LEV has clearly detached from the leading edge

The identification is conducted visually not only with the provided images and movies,

but also from thorough examination of each volume in a 3D volume plotting software.

While visual inspection of the vortex topology has provided significant conclusions,

the methodology is subjective and biased on who is examining the structures. Thus, a

objective, quantitative method of comparing the vortex topology between various kinematics

was desired. The result is a correlation based approach, where scalar volumes of the swirling

strength criterion are correlated together. A correlation matrix, C, of the entire parameter

space was created, such that each element is the scalar product of two phase-averaged swirling

strength criterion fields. In other words, if λa(x
′, y′, z′) represents the 3D scalar field of

swirling strength for a generalized phase of a kinematic case and λb(x
′, y′z′) represents a phase

of a second kinematic case, the entry in the correlation matrix defined as Ca,b = ~λa·~λb, where

~λa is the vectorized form of λa. However, to address the varying sizes of the volumes (e.g.

R.54,33 measured with 3 volumes and R.54,23 with only 1), only the overlapping measurement

49



domain was correlated between each case. Each value of the correlation matrix is then

normalized such that

Ca,b =
Ca,b√

Ca,aCb,b
. (3.13)

When a = b, the result is 1. Thus, each value is a metric of the similarity of the vortex

structure between any two phases in the parameter space, where the similarity is a measure

of the rotational energy that overlaps in physical space. Herein, this metric will be denoted

r, the correlation strength.

3.4 Helical Density

Another avenue for examining and predicting vortex behavior is the helical density of the

LEVs. Moffatt and Tsinober [78] describe the importance of helical density at a fundamental

level in relation to flow kinematics because it admits topological interpretation in relation to

the linkage or linkages of vortex lines of the flow, specifically citing the leading-edge vortex

as a prime example of a helical structure, in this case a vortex having a non-zero axial

component of velocity. Wolfinger and Rockwell [35] are among the few to have quantified

the helical density value, calculated as H = v · ω, for the LEV of a rolling wing. The authors

found that structures that exhibited alternating signs of helical density rapidly degenerated.

A vortex exhibiting a singular sign of helical density is helical in nature, thus, the findings

of Wolfinger and Rockwell [35] suggest that a more helical LEV exists longer than an LEV

without a helical component.

3.5 Uncertainty Analysis

The estimation of the error begins with a comparison of the error reported by Fahringer

et al. [66] and Hall et al. [68]. Fahringer et al.used a older, prototype version of the plenoptic

camera which was 16 MP and used a rectangularly packed microlens array. Using these

parameters, it is reported that MART has the potential to resolve synthetic particle locations
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better than 1 vx in the two lateral directions and 3 vx in the depth direction. Particle

displacements were then calculated to be accurate to within 0.2 vx and 1.0 vx for the lateral

and depth directions, respectively. This dissertation used a similar reconstruction process

and the identical correlation algorithm, however, the imaging parameters and the calibration

procedure was identical to the work of Hall et al.. Using a 3D light-field calibration, Hall

et al.report that particles can be located accurate to within 0.1% of the volume size for the

lateral directions and 1% for the depth direction. The caveat here is that Hall et al.did not use

MART and instead used a particle locating algorithm more suitable for sparse fields. Thus,

neither of these studies provide a viable means for estimating the error in this experiment.

To aid in quantification of measurement uncertainty of this particular application of

plenoptic PIV, 1000 image pairs of freestream flow were gathered with the identical ex-

perimental arrangement and imaging parameters, with the wing removed. Using the same

processing techniques, the vector fields were created and averaged. The standard deviation

of each velocity component was calculated at every point in the volume, allowing for the

uncertainty to be quantified spatially. The velocity components in the greater extent of

the volume have uncertainty of σu′ = 0.004, σv′ = 0.003, and σw′ = 0.01 m s−1. The most

notable variation in along the z′ axis, where the standard deviation increases for each veloc-

ity component near the edges of the volume to σu′ = 0.007, σv′ = 0.006, and σw′ = 0.015

m s−1. This is the region where phase-averaged results at each measurement volume on the

wing have been stitched together, which can lead to slight misalignment and non-continuous

structures. The primary method of presenting results in the next section is through use of

isocontours of λci, in which the stitched together regions are clearly visible. The use of iso-

contours draws attention to these minor differences, however, the analysis investigated the

results using many different variables and plotting techniques, yet isocontours of swirling

strength remain the most convenient and useful to describe the vortex topology.

This uncertainty can then be propagated as the systematic uncertainty into the ensuing

measurements. Thus, when investigating the phase averages of 100 instantaneous images,
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the error in velocity will decrease with the inverse of the square root of number of samples,

σ̄ =
σ√
N
. (3.14)

In the phase-averaged field, the error is σ̄u = 0.0004, σ̄v = 0.0003, and σ̄w = 0.001 m s−1. To

estimate the velocity gradient tensor, the basis of which vorticity and swirling strength are

calculated, a central differencing scheme was employed. Adrian and Westerweel [79], provide

a thorough discussion the error of various methods of calculating the derivatives of velocity,

indicating that the two sources of error, the noise error ε and truncation error τ , are given

by equation 3.15 and 3.16, respectively.

ε = 0.71
σu
δx

(3.15)

τ =
δx2

3!

∂3u

∂x3
(3.16)

However, the velocity data is first smoothed by a low-pass filter, which reported by Adrian

& Westerweel, reduced the noise error by 1
3
, resulting in εx = 0.032, εy = 0.024, and εz =

0.079 s−1. The truncation error is given in table 3.3, which summarizes all of the relative

parameters to the accuracy of this work, but is not carried through the rest of the present

uncertainty analysis.

Continuing this error propagation through the eigen-decomposition of the velocity gra-

dient tensor that is used to determine the swirling strength is not straight forward, as the

algorithm that MATLAB uses for eigen-decomposition is proprietary. Thus, the error is

estimated by using a Monte Carlo approach for a sensitivity analysis. The approach is

simple and the short script is included in appendix E.4. Essentially, a synthetic velocity

gradient tensor is created, where each value is randomly selected between ±4, which are the

greater bounds of values in the velocity gradient tensor, by visual inspection. The eigen-

value decomposition of this value is treated as a the truth measurement. A second matrix is

created by adding the a random percentage of ±ε to the synthetic velocity gradient tensor.
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Parameter Value
physical dimensions 102× 68× 68 mm3

voxel discretization 527× 527× 527 vx3

error in particle location 0.102× 0.068× 0.68 mm3 [68]
PIV window size 64, 48, 32, 16, 16 vx
PIV window overlap 34, 24, 16, 8, 8 vx
vector discretization 64× 42× 42 vec3

final correlation volume 3× 3× 3 mm3

vector spacing δx, δy, δz 1.5× 1.5× 1.5 mm3

number of samples, N 100
vector error, synthetic, σ̂u, σ̂v, σ̂w 0.2, 0.2, 1.0 vx [66]
vector error, experimental, σu, σv, σw 0.004, 0.003, 0.01 m s−1

vector error, phase-averaged σ̄u, σ̄v, σ̄w 0.004, 0.003, 0.01 m s−1

central difference, truncation error, τ 0.375∂
3u
∂x3

central difference, noise error, εx, εy, εz 0.032, 0.024, 0.079 s−1

phase-averaged λci-Criterion error, ελ 0.14 s−1

Table 3.3: Reference table with calculated errors

The eigenvalues are then calculated of each matrix, and the maximum, unique, imaginary

eigenvalues, the swirling strength, are then compared. The difference between these values is

averaged over one million instances. The average value is 0.089 s−1 with a standard deviation

of 0.14 s−1. Thus, as a conservative estimate, the noise error in calculation of the swirling

strength, denoted ελ is taken as 0.23 s−1. For reference, isocontours of swirling strength are

formed at values λci ≈ 15, thus, there is approximately an error of 1.5 % in the calculation

of λci-Criterion.

In addition to estimating the error in this analysis, the convergence of the velocity

measurements was also shown using up to 500 image pairs. The convergence of each velocity

component is shown in figure 3.14 for a 5×5×5 region of vectors, at various locations in the

measurement volume. At each location 2 plots are shown, one normalized by the freestream

velocity (left column) and one normalized by the final converged value of each velocity

component (right column). The first location is far from the wing surface, towards the

downstream end of the volume, near the half span. In figure 3.14a, u′ converges relatively

quickly to 1.75u∞, v′ converges slightly slower to 1.2u∞, and w′ converges slowly to 1.55u∞.
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The plot in figure 3.14b, it is shown that u′ converges to less than than 1 percent variance

from the converged value after only 100 sample, where the same convergence for v′ requires

300 samples, and 460 samples are required for less than 1 percent variance for w′. The

reduced convergence of w′ is expected due to the reduced accuracy of this measurement. At

the second location, near the formation of a dual-vortex system, the velocities in figure 3.14c

converge more slowly to values of −2.4u∞, −u∞, and −0.4u∞ for u′, v′, and w′, respectively.

In the plot shown in figure 3.14d, the u′ and v′ convergence is again quicker, requiring 200 and

290 samples, respectively. The w′ velocity requires 440 samples to converge within 1 percent

of the final value. The accuracy of the w′ component will be considered when examining the

results herein.
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Figure 3.14: Velocity convergence of all three velocity components normalized by the
freestream velocity (a,c) and normalized by the final converged value (b,d) at: (a,b) a loca-
tion far from the wing near the x′ maximum and the z′ midpoint; (c,d) near the formation
of the dual-vortex structure;
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Chapter 4

Results

The following chapter contains a description of the cases outlined in table 3.1. The

ensemble-averaged vortical structures and streamlines are shown providing an close up look

of the vortex evolution for each kinematic case. Additionally, instantaneous volumetric

velocity fields are presented, the first of their kind for a maneuvering wing.

4.1 Ensemble-Averaged Results

4.1.1 Purely Pitching

The purely pitching kinematics serve to establish a baseline characterization, which

the results of the simultaneously pitching and rolling kinematics will be compared against.

Two kinematic cases were prescribed for the purely pitching maneuver, P.5 and P.2, having

a reduced pitch rate of 0.50 and 0.19, respectively. The evolution of vortex structures

created by kinematic case P.5 (figure 4.1a and Movie 1) is characterized by the presence of a

cylindrical and attached LEV in the formation and growth stage, which ends at t′ ≤ 0.52. In

this stage, there is little change to the topology of the LEV. During the transitional stage,

the span of 0.52 < t′ < 0.61, the center region of the LEV begins to slightly lift up from the

surface. By t′ = 0.61, the LEV is clearly detached from the leading edge; forming an arch

vortex that spans from root to tip, where the legs of the vortex are pinned to the surface. In

the next and final phase, t′ = 0.79, the center span of the LEV travels further away from the

leading edge in both the chordwise and wing normal directions, while the legs remain pinned

near the surface. This description agrees well with the results of Yilmaz and Rockwell [4]

and Jantzen et al. [20]. It is noted that the LEV has slightly left the surface at the root, and
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this is hypothesized to be an effect of the rod that the wing is attached to or the mounting

bracket that extends along the chord, seen in the solid body in each of the figures.

A similar development of the LEV is seen at the slower pitch rate, P.2 (figure 4.1b and

Movie 2), where the LEV is cylindrical and stable during the formation and growth stage,

t′ ≤ 0.92. During the transitional stage, the LEV forms into a shallow arch vortex, over

the range 0.92 < t′ < 1.31. A major difference from P.5 occurs during the detached stage,

t′ ≥ 1.31, where the LEV lifts up from the surface to a y′ value nearly twice that of the

arch vortex in P.5; leaving a large void near the leading edge. In this region, two additional

LEVs form, also pinned at tip, to create a triple-vortex system by the end of the motion.

It is suggested that the vortex system continues to remain pinned throughout the motion,

although the region of data at the root was not gathered to support this hypothesis.

It is interesting to consider these results in a similar manner to the “time-shift” described

by Yilmaz et al. [27], who used an AR = 2 wing at a Re = 10, 000 articulated in a pitch-up

motion to αgeo = 45◦ immediately followed by a pitch-down motion. The two previous cases

also follow the trend described by Yilmaz et al. [27], who found that vortical structures were

advanced in time as k was increased. Through comparison of the first measured time of

the detached regime, it is seen that increasing k has advanced this nondimensionalized time

(t′ = 1.38 → 0.92 for k = 0.2 → 0.5). Conversely, by comparing vortex topology of the

two cases, it is found that the LEV of k = 0.2, t′ = 0.70 most closely resembles the LEV

in k = 0.5, t′ = 0.68 at nearly the same nondimensionalized time. This conclusion agrees

well with the observations of Granlund et al. [17], who saw a collapse of the maximum lift

coefficient for various reduced pitch frequencies when scaled by the convective time, especially

if one assumes that the evolution of the lift coefficient is closely related to the topology of

the LEV.
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(a) (b)

Figure 4.1: Phase-averaged results shown with isocontours colored by normalized swirling
strength and stream ribbons colored by normalized chordwise-velocity u′ for (a) P.5 and (b)
P.2
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4.1.2 Purely Rolling

The primary purpose of studying the purely rolling maneuver in the context of this

dissertation is to establish the vortex structures that are formed as a result of the rolling

environment. In the Section 5.1, the simultaneously pitching and rolling wing is cast as

a pitching wing in a rolling environment for comparison to a purely pitching wing. Here,

two advance ratios were prescribed at various effective angles of attack. The phase-averaged

results of each advance ratio, J = 0.54 and 1.36, at αeff = 33◦ are shown in figure 4.2, and

Movies 3 and 4, again visualized using the previously described methodology.

The intricate evolution of the vortex structure formed by R.54,33 begins with a cylindrical

shape in the formation and growth stage at t′ ≤ 0.77. As the LEV enters the transitional

stage, 0.77 < t′ < 1.68, a narrow arch vortex develops at about 80 percent of the span,

which grows in the +y′ direction as it shifts down-chord. During this motion, a dual-vortex

system forms where vortices are connected near the root and tip, becoming well-established

by t′ = 1.10. This closely resembles the dual-vortex system described by Bross et al. [30].

In the literature, the dual-vortex system has not been strictly defined for rolling wings,

although similar descriptions exist in the case of delta wings [80]. Thus, this paper defines a

dual-vortex system as a vortex system containing a localized bifurcation of a primary LEV

into two distinct vortices. Later, in the detached regime at t′ ≥ 1.68, the two components

of the dual-vortex system become entangled and convect downstream. A new LEV forms,

which again bifurcates into a dual-vortex system.

For the slower roll rate, R1.36,33, a cylindrical LEV is observed in the formation and

growth stage at t′ ≤ 0.29. In the next phase, the LEV has remained cylindrical and left the

surface slightly. By t′ = 1.15, the LEV is clearly detached from the wing and a resemblance

of a dual-vortex system is being convected away from the leading edge. Throughout the

rest of the recorded motion, a new LEV is formed and multiple structures are shed into the

freestream. Of principle interest in this case is the similarity to R.54,33, explicitly, that a

dual-vortex system is formed and shed in each case. For R.54,33, the dual-vortex system is
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formed and shed by t′ = 2.58, whereas the similar process of R1.36,33 only requires t′ = 2.01

to complete. By describing this observation as a time-shift and/or time-scaling of the vortex

structure, akin to the results from purely pitching cases, it can be stated that decreasing the

advance ratio J delays the evolution of the vortex structures. The likeness in the evolution

of these two roll cases agrees well with the observations made by Bross et al. [30], who

concluded that similar streamline topology features appear at different φ when J is varied.

Additional purely rolling cases are presented here, where the αgeo was altered to explore

the effect of αeff on the vortical evolution. In R.54,23 and R.54,43, shown in figures 4.3a and 4.3b

(Movies 5 and 6), respectively, the vortex structure developed similarly to R.54,33. Emphasis

is again placed on the development of the dual-vortex system, which is observed to move

in physical space as a result of altering αeff . In the development of R.54,23, the dual-vortex

system appears to split closer to the tip (almost out of the center measurement volume)

when compared to R.54,33. Following this trend, the bifurcation point of the dual vortex

system is not visible in the phases of R.54,43; suggesting that it is located in the root volume

(not recorded for this case). It follows that increasing the αeff shifts the bifurcation point of

the LEV towards the root. Another way of framing this relationship is to use the observed

or estimated spanwise location that the bifurcation occurs, and calculate the local effective

angle of attack at that location. With the three cases presented here, this local effective

angle of attack is found to be roughly the same. The same relationship can be observed for

the slower roll rate through comparison of R1.36,43 in figure 4.4a (Movie 7) and the previously

shown R1.36,33.

Lastly, two cases were measured using a different radius of gyration, r.54,33 and r1.36,33.

Beginning with the smaller advance ratio, r.54,33 is shown in figure 4.5a (Movie 8) a cylindrical

LEV forms in the formation and growth stage. Through the transitional stage, it appears

that narrow arch vortex is forming, however, without the tip region is impossible to know

for sure. As a whole, it seems that the LEV is evolving slower with the shorter Rg/c. For

the larger advance ratio r1.36,33 in figure 4.5b (Movie 9), the evolution varies from the R1.36,33
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greatly by the transitional stage. For r1.36,33 a multiple vortex system is formed and many

of the vortex structures remain connected in the isocontours of swirling strength throughout

the motion, a stark contrast to the distinct vortices of R1.36,33.

In the context of describing the “rolling environment” that the pitching motion will be

executed in, the following results are most critical: (1) at both advance ratios, a dual-vortex

system is formed and shed from the leading edge; creating a similar environment earlier in

the motion, and (2) the changing effective angle of attack is seen to shift structures physically

along the span of the wing.

4.1.3 Simultaneously Pitching and Rolling

Four different combinations of pitch rate and roll rate were prescribed, each yielding

a different kRg value (recall kRg = α̇eff/2VRg). The first, S .22
.46,.54 is presented in figures 4.6a

(Movie 10). For this case, image pairs were gathered every 5◦ from αeff = 15◦ to 45◦,

corresponding to roll angles between φ = 30◦ to 49◦. During the formation and growth

stage, the LEV is cylindrical across the leading edge, but slowly transforms into a more

conical shape by t′ = 1.20. As the LEV enters the transitional stage, an arch vortex forms

that is not quite as expansive as the arch vortex formed in P.5, yet is broader than the narrow

arch vortex formed by R.54,33. From this arch vortex, a dual-vortex system forms while still

connected to the wing tip. At t′ = 1.60, regions of the dual-vortex system have clearly left

the leading edge; marking the beginning of the detached regime. By the end of the motion,

the dual-vortex system has risen further from the leading edge and traveled down-chord,

coupled with a broadening of the spanwise detachment region toward the root. Despite this

evolution, the LEV has remained pinned at the wing tip throughout the entire motion. The

next kinematic case, S .20
.42,.54 in figure 4.6b and Movie 11, has nearly identical wing kinematics

as S .22
.46,.54, with only a slightly lesser reduced pitch rate. It follows that, with such similar

wing kinematics, the vortex evolution and topology is analogous, although the progression

of the LEV through the stages has been delayed in t′. This delay will be further detailed and
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(a) (b)

Figure 4.2: Phase-averaged results shown with isocontours colored by normalized swirling
strength and stream ribbons colored by normalized chordwise-velocity u′ for (a) R.54,33 and
(b) R1.36,33
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(a) (b)

Figure 4.3: Phase-averaged results shown with isocontours colored by normalized swirling
strength and stream ribbons colored by normalized chordwise-velocity u′ for (a) R.54,23 and
(b) R.54,43
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(a)

Figure 4.4: Phase-averaged results shown with isocontours colored by normalized swirling
strength and stream ribbons colored by normalized chordwise-velocity u′ for R1.36,43
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(a) (b)

Figure 4.5: Phase-averaged results shown with isocontours colored by normalized swirling
strength and stream ribbons colored by normalized chordwise-velocity u′ for (a) r.54,33 and
(b) r1.36,33

65



quantified in the next section. An additional result from the S .20
.42,.54 case is that the vortex

topology in the final measurement phase t′ = 1.75 most closely matches the phase of S .22
.46,.54

that is closest in dimensionless time (t′ = 1.80) as opposed to identical αeff . This similarity

provides verification of the selecting the relative convective time, τ , to nondimensionalize

time.

The next case, S .50
1.05,.54 figure 4.7a (Movie 12), has an identical advance coefficient to the

two previous cases, but a faster reduced pitch rate. The result is a relatively quick prescribed

motion in which the LEV does not evolve as drastically as the previous cases. During the

formation and growth stage t′ ≤ 0.53 a cylindrical LEV is formed across the leading edge.

The transitional stage is brief, with a narrow arch vortex forming, closely resembling the

narrow arch vortex in the early stages of R.54,33. By the next phase, the narrow arch vortex

has left the surface and progressed slightly down the chord, beginning the detached stage

at t′ = 0.70. Overall, it is found that the more than doubling of the reduced pitch rate

compared to S .22
.46,.54, has dramatically advanced the evolution of the LEV, specifically the

time to a detached vortex. The final case, S .37
.46,1.36 in figure 4.7b (Movie 13), utilizes the

larger advance ratio (slower roll rate) and a reduced pitch rate identical to S .22
.46,.54 and P.5.

In the formation and growth stage t′ ≤ 0.59, a cylindrical LEV forms and remains relatively

unchanged until the transitional stage. A second LEV is formed in the transitional stage

(0.59 < t′ < 0.94), where both LEVs join and are pinned at the tip. It is likely that the 2

LEVs also join in the root region, although measurements were not taken for this case. Thus,

it follows that the 2 LEVs are a dual-vortex system with elongated, cylindrical members.

At t′ = 0.83, the second LEV (closer to the leading edge) in the dual-vortex system has

dramatically weakened and the first LEV becomes more coherent. At t′ = 0.94, the first

LEV is detached and has progressed down the chord, and continues to do so in the final phase.

The second LEV strengthens as the first LEV moves away from the leading edge, both of

which remain cylindrical. Interestingly, the time required for S .37
.46,1.36 to progress through

the stages of vortex evolution is significantly faster than S .22
.46,.54. Since both of these cases
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use the same reduced pitch rate, the difference can be attributed to the advance ratio. The

observation between these two cases follows the conclusion from the purely rolling section:

that decreasing the advance ratio J delays the evolution of the vortex structures.

One case is shown at the shorter Rg/c, s
.37

.46,1.36 in figure 4.8a (Movie 14). Here the

development of the vortical structures as a whole are remarkably similar to S .37
.46,1.36. This

similarity will be discussed in Chapter 5.2, where the similarity will be quantified to deepen

the understanding of the effect of Rg/c on the vortex topology and evolution.

For the two previous kinematic cases, S .50
1.05,.54 and S .37

.46,1.36, measurements were made after

the pitching motion was complete and the rolling motion was allowed to continue, shown in

figure 4.9. In each case, the LEV began to progress down the chord, each convecting about

10 percent of the chord after about half of convective time since the pitching motion had

stopped. This suggests that the pitching motion plays a major role in stabilizing the LEV;

keeping it present at the leading edge. This role may simply be increasing the energy that is

entrained into the vortex. In which case, accelerating the roll rate when the pitching motion

has ended may assist in keeping the LEV at the leading edge. Interestingly, in both cases, a

new LEV has yet to form, despite the elapsed time and ample space to do so.

4.2 Instantaneous Results

A brief description of the instantaneous data is presented in this chapter, which aims

to illustrate the differences in vortex topology in the instantaneous flow compared to the

ensemble-averaged flow fields. Each of the baseline cases are shown here, with a single

instantaneous volume shown at each spanwise measurement location. In the instantaneous

results, the data is not stitched together at the seams as it was in the ensemble averaged,

instead it is plotted simultaneously. The reader is reminded that instantaneous data was

not taken for the entire wing at the same instant, instead the results shown here are a

composite of 3 instances. The data was somewhat particularly selected for continuity of

vortex structures across edges of the measurement volumes, but it is noted that alignment

67



(a) (b)

Figure 4.6: Phase-averaged results shown with isocontours colored by normalized swirling
strength and stream ribbons colored by normalized chordwise-velocity u′ for (a) S .22

.46,.54 and
(b) S .20

.42,.54
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(a) (b)

Figure 4.7: Phase-averaged results shown with isocontours colored by normalized swirling
strength and stream ribbons colored by normalized chordwise-velocity u′ for (a) S .50

1.05,.54 and
(b) S .37

.46,1.36
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(a)

Figure 4.8: Phase-averaged results shown with isocontours colored by normalized swirling
strength and stream ribbons colored by normalized chordwise-velocity u′ for s .37

.46,1.36
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(a) (b)

Figure 4.9: Comparison of vortex structure from post-pitch rolling motion: (a) S .50
1.05,.54

t′ = 1.34 and (b) S .37
.46,1.36 t

′ = 1.46

of structures was observed throughout the data set, proving that the careful calibration was

successful and the repeatability of the formation processes.

To begin, a comparison between the phase-averaged and the instantaneous vortex topol-

ogy for case P.5 is presented in figure 4.10. The isocontours of normalized swirling strength

are shown for P.5 at t′ = 0.78. The instantaneous volume, figure 4.10b, appears ‘noisier,’ as

the smaller structures have not been averaged out. The main structures are essentially the

same as the ensemble averaged field, even down to the extent of the TiV. Throughout this

phase, only minor differences are seen from phase-averaged results, primarily an estimated

25 percent variation in the size of the isocontour displaying the arch vortex, while keeping

the same shape.

A comparison between the phase-averaged structure and the instantaneous vortex topol-

ogy for case R.54,33 is shown in figure 4.12. Again the overall trends between the vortex

topology between the two cases is the are similar. However, the same level of isocontour

does not illustrate as completed of a structure in the instantaneous case. Notably, one of

the detached legs of the dual-vortex system does not extend as far towards the wing tip as

it does in the phase-averaged results. This phase was selected because of the more complex

vortex topology in the phase-averaged results and much of that complexity is seen in the
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(a) (b)

Figure 4.10: A comparison between phase-averaged and instantaneous vortex topology, where
the instantaneous data is presented with volume at each measurement volume, placed side
by side (no stitching) for P.5 at t′ = 0.78

(a) (b)

Figure 4.11: A comparison between phase-averaged and instantaneous vortex topology, where
the instantaneous data is presented with volume at each measurement volume, placed side
by side (no stitching) for R.54,33 at t′ = 1.68

instantaneous. However, when compared to the previously presented purely pitching com-

parison, the instantaneous results from roll do not match the ensemble-average as well. Most

notably, in an estimated 20 percent of the instantaneous volumes show an LEV across the

entire span of the LE, which is partially shown in the phase-averaged field. Seeing that a

new LEV has formed by the next phase, it follows that this phase is right on the cusp of

formation, and there may exist a mechanism that is triggering premature development of

this LEV in a limited number of samples.

Lastly, a comparison between the phase-averaged structure and the instantaneous vortex

topology for S .37
.46,1.36 is shown in figure 4.12. The data has been presented in an identical
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(a) (b)

Figure 4.12: A comparison between phase-averaged and instantaneous vortex topology, where
the instantaneous data is presented with volume at each measurement volume, placed side
by side (no stitching) for S .22

.46,.54 at t′ = 2.674

fashion to the previous cases and again the overall trends between the vortex topology

between the two cases is the are essentially the same. Throughout the phase, the major

differences from the phase-averaged results are the extent of the dual-vortex system and the

tip vortex. Specifically, the LEV nearest to the LE in the dual vortex system is below the

threshold of the swirling strength isocontour, a possible indication of the delayed formation

of the this vortex. The isocontours marking the TiV occasionally connect to the dual-vortex

system. From visual inspection, there is no apparent correlation between the presence of the

dual-vortex system and the connection of the TiV to the LEV.
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Chapter 5

Discussion

While the description of the results in the previous chapter is useful and informative,

further analysis and comparisons of different kinematic cases in this chapter provides a deeper

understanding of the effects of each prescribed motion on the vortex evolution and topology.

5.1 The kRg Parameter

Through selection of the parameter space, this study has driven towards an understand-

ing of the kRg parameter. In the previous section, each case was detailed and broken down

into 3 stages of vortex evolution, with topology assigned to each stage. For ease, the t′ of

each stage is tabulated in table 5.1 and the topology at each stage is described in table 5.2.

A natural comparison between purely pitching cases and simultaneously pitching and

rolling cases is found by matching the kRg parameter for each case (recall that k = kRg for

purely pitching). There are two instances of matching to explore kRg = 0.2 and kRg = 0.5.

The most apparent consequence from the addition of the rolling motion is the removal of

symmetry in the flow over the leading edge, thus disrupting the symmetry of the vortex

structure. This is reflected in table 5.2 where the asymmetric vortex topologies, such as

Vortex Evolution

P.2 P.5 S .20
.42,.54 S .22

.46,.54 S .37
.46,1.36 S .50

1.05,.54 R1.36,33 R.54,33

Form. & Growth ≤ 0.92 ≤ 0.52 ≤ 1.31 ≤ 1.20 ≤ 0.59 ≤ 0.53 ≤ 0.29 ≤ 0.77

Transitional
...

...
...

...
...

...
...

...

Detached ≥ 1.38 ≥ 0.61 ≥ 1.75 ≥ 1.60 ≥ 0.94 ≥ 0.70 ≥ 1.15 ≥ 1.68

Table 5.1: Tabulated dimensionless time t′ ranges of the vortex evolution stages for each
kinematic case
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Vortex Topology

P.2 P.5 S .20
.42,.54 S .22

.46,.54 S .37
.46,1.36 S .50

1.05,.54 R1.36,33 R.54,33

Form. & Growth CYL CYL CYL/CON CYL/CON CYL CYL CYL CYL/CON

Transitional ARV CYL NARV NARV CYL/DVS NARV/DVS DVS NARV/DVS

Detached DVS/MVS ARV DVS DVS CYL/DVS NARV/DVS CYL DVS

Table 5.2: Descriptions of the vortex topology at vortex evolution stages for each kinematic
case, where

CYL: cylindrical

CON: conical

ARV: arch vortex

NARV: narrow arch vortex

DVS: dual-vortex system

MVS: multiple-vortex system

conical and a narrow arch vortex, are only present in S .20
.42,.54 and S .50

1.05,.54. In regards to the

vortex evolution, it is seen that the addition of the rolling motion delays the progression of

the LEV through the defined stages. In table 5.1, the delay in the normalized time required

for a detached vortex increases from 1.38 to 1.75 from P.2 to S .20
.42,.54. At kRg = 0.5 the

delay is less substantial: from 0.61 to 0.70 (P.5 and S .50
1.05,.54). When considering both the

LEV topology and evolution simultaneously, especially through a comparison of Movie 2

versus 11 and Movie 1 versus 12, the total effect of the rolling motion is more easily realized.

Succinctly, the addition of a rolling motion to a pitching wing, while matching kRg, delays

the evolution of the LEV and reduces the extent of evolution across the span to a localized

region. While the impediment of the evolution in respect to t′ is similar to the time-shifts

described by Yilmaz and Rockwell [4] and Bross et al. [30], the localization of the evolution

has not been previously documented in this manner. A direct quantification of the time-shift

cannot be calculated in the same method as Yilmaz and Rockwell [4] (t′/kRg) because the

kRg values are matched, thus there is no variation with kRg.

Beyond matching with purely pitching cases, the kRg parameter proves useful for com-

paring the four cases of simultaneously pitching and rolling motions. Specifically regarding

the evolution of the LEV, a clear trend is seen when the tabulated non-dimensional time
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Figure 5.1: Map of vortex evolution stages as a function of kRg and t′, where each of the
cases are labeled below the x-axis, at the appropriate kRg value

values in table 5.1 are plotted against kRg. This plot is shown in figure 5.1, where purely

pitching cases and simultaneously pitching and rolling cases are plotted in the kRg− t′ plane.

For only the simultaneously pitching and rolling cases, each stage of vortex evolution is

colored across the space to create a map to predict the vortex stage at a kRg and t′ value.

The points from table 5.1 are plotted as solid symbols for simultaneous cases and hollow

for purely pitching. Overall, it is evident that increasing kRg accelerates the evolution of

the LEV through the vortex stages and advances the evolution in nondimensionalized time.

This is inherently different from the previously described time-shifts, as the total life cycle

of the LEV is actually compressed in the t′ space as kRg is increased, in addition to shifting

forward in time. Although this effect can be seen in both the purely pitching cases and the

simultaneously pitching and rolling cases, the points from the purely pitching case do not fit

the map formed by the simultaneous cases. In fact, the misalignment of these trends illus-

trate a previous observation, that the additional rolling motion stabilizes the LEV; delaying

it’s development. A consequence of the misalignment is that the map in figure 5.1 is only

valid for simultaneously pitching and rolling cases.
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To further explore the effect of the rolling reference frame, a comparison between a

simultaneously pitching and rolling case and a purely rolling case using the same roll rate is

presented. Returning to figures 4.2a and 4.6a (movies 3 and 10), the phase-averaged results

of R.54,33 and S .22
.46,.54 are compared. After a similar start up, the final 3 phases of each

kinematic case are where the vortex evolution between the cases begins to diverge. After

t′ = 1.35 for R.54,33, the dual-vortex system comes unpinned at the tip, and later sheds. Most

closely resembling this structure, the flow at t′ = 1.80 (αeff = 45◦ and φ = 49◦) for S .22
.46,.54

also contains a clearly defined dual-vortex system that is pinned at the wing tip. Thus, it

can also be concluded, that the addition of a pitching motion to a rolling motion delays the

vortex evolution in both t′ and roll angle φ. A similar comparison can be made between

R1.36,33 and S .37
.46,1.36, but the final phase of S .37

.46,1.36 is only at t′ = 1.06, which is closest to the

third phase of R1.36,33 at t′ = 1.15. At this time in R1.36,33, a dual-vortex system has formed

that does not resemble the dual vortex system that was formed in S .37
.46,1.36. Although, using

the previous conclusion that the addition of the pitching motion delays the vortex evolution,

it may be that the dual-vortex system in S .37
.46,1.36 later develops into a state the resembles

the dual-vortex system of R1.36,33. A future study may wish to explore a parameter similar

to kRg, but instead cast in terms of roll, to better understand the relation between a rolling

wing and a simultaneously pitching and rolling wing.

5.2 Correlation Approach

Using the correlation approach described in section 3.3, a complete correlation map was

formed, shown in figure 5.2a as an image, where each pixel corresponds to the correlation

between two ensemble-averaged phases. The bright diagonal represents the auto-correlations

of each phase, where r = 1. The plaid like structure is a result of the grouping of phases of

identical wing kinematics. As an example of how each value is determined, two phases have

been highlighted in this image. The row equating to correlations versus S .22
.46,.54 at t′ = 2.079

is outlined in a green box and the column representing R.54,33 at t′ = 0.745 is outlined in a red
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Figure 5.2: (a) the complete correlation map, correlating every ensemble-averaged volume
against every other volume; (b) isocontours of λci from S .22

.46,.54 and R.54,33 overlaid, illustrating
the working principle of this correlation approach

box. The intersection of this row and column is outlined as the yellow pixel, representing the

correlation of between these two phases, shown visually in figure 5.2b. Here, the isocontour

of λci from S .22
.46,.54 at t′ = 2.079 is shown translucently in green and the isocontour from

R.54,33 at t′ = 0.745 is shown translucently in red, such that the overlapping regions can be

seen. Thus, the value in the yellow box can be thought of as the fraction of overlapping

volume of these two isocontours over the total volume.

From this process, a correlation matrix is generated that compares every phase of every

case. A visualization of this matrix is provided in figure 5.2a, which shows an image, where

each pixel is colored by the by the r value of one phase of a specific case correlated with

another phase of a specific case. There exists a bright diagonal of r = 1, representing auto-

correlations. As an off diagonal example, 1 row and 1 column are boxed in green and red,

respectively. The green row corresponds to the phase of S .22
.46,.54 at t′ = 1.20 and the red

column to the phase of R.54,33 at t′ = 0.77. In figure 5.2b, two isosurfaces of normalized

swirling strength are shown for each of these phases, in their respective colors, to illustrate

how this correlation method works. Subsections of this correlation matrix will be investigated
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and presented in the following subsections. The code used to compute these correlations and

the plots is in appendix E.3.

5.2.1 Auto-correlations

To begin with the correlation based analysis, consider the auto-correlation of P.5, shown

in figure 5.3. The correlation value of each phase of P.5 is shown using a contour plot. The

t′ values of each phase are shown on the axes. The reader is reminded that data points only

exist at the intersections of the blue grid lines. The contour map fills in the area between

the points through linear interpolation, which can aid in the understanding of what the

correlation map is conveying. Markers are shown in black on each of the diagonals of the

matrix, following conventional diagonal notation. The diagonal, d0 is marked with circles,

the superdiagonal d1, or the set of elements above the diagonal, are marked with squares.

The next 2 diagonals, d2 and d3 are marked with triangles and diamonds, respectively.

Additionally, the subdiagonal family are marked with the same markers as the superdiagonal

family. The figures in the remainder of this section will use the same visualization. From

figure 5.3, an examination of the diagonal d0 shows every value equal to one, as expected.

More substantially, d1 has some significantly high values or r, notably, the values located

at (0.49,0.59) and (0.59,0.68), where r = 0.702 and 0.698, respectively. Thus, the phase

at t′ = 0.59 which corresponds to αgeo = 30◦ is a 70% match with each of its neighboring

phases, indicating little change between these phases. Moreover, the correlation of the phase

at t′ = 0.49 (αgeo = 25◦) and t′ = 0.68 (αgeo = 35◦) located on d2 returns a less significant

value of r = 0.53. Thus, when compared to the entire progression of phases, these 3 phases

are exceptionally similar indicating that over this range of motion (αgeo = 25◦ → αgeo = 35◦)

the vortex topology is relatively stable, resisting the convective forces of the flow. This

quantitative analysis echoes the description from visual inspection of P.5 in figure 4.1a.

In figure 5.4, the auto-correlation of R.54,33 is shown. Here, the phase spacing is non-

uniform and the dimensionless time is over 3 times greater than that of the P.5. Despite the
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Figure 5.3: Visualization of correlation map showing the auto-correlation of P.5, colored by
r

larger phase spacing, 12 unique correlation strengths exist with greater than 0.5 correlation

strength. The strongest of these correlation strengths exist in d1 and were easily identified

from the visual inspection. The first is correlation of t′ = 1.35 and 1.68, or φ = 21◦ and

26◦, respectively. Here r = 0.75. The next largest value of r = 0.66 is the correlation of

t′ = 2.58 and 3.16, or φ = 40◦ and 49◦, respectively. Almost an entire convective time has

passed between these two phases, yet the flow structures remains similar, possibly indicating

some relative stability to the structure. A striking result is r = 0.60 on d2 between t′ = 1.68

and 2.58. However, from the visual inspection is was found that a vortex structure is being

shed and another LEV forms, shown in figure 4.2a. This is an indication that there is exists

some repeatability to the vortex evolution. This correlation map quantitatively adds to the

a story developed from the visual inspection: the initial build up of the vortex structure

followed by a shedding event with a similar process evolving in the later phases.

The auto-correlation of S .22
.46,.54 is shown in figure 5.5. In this plot, d1 contains a strong

correlation strength for every element, each above r = 0.70, indicating that the vortex

structure has little change between neighboring phases. Additionally, d2 also contains a
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Figure 5.4: Visualization of correlation map showing the auto-correlation of R.54,33, colored
by r

strong correlation strength for every element, each above r = 0.50, indicating great simi-

larity between second neighboring phases. Since d3 has a uniform and substantial decrease

correlation strength, this plot shows that overall, the vortex structure is changing on the

order of t′ ∼ 0.9, which is the spacing between values correlated on d3. Additionally, the

vortex structure remains attached to the leading edge of the wing for this entire recorded

motion, thus this correlation information pertains to the evolution of a single LEV, unlike

the correlation plot of R.54,33 (figure 5.4) which is correlating structures that are being shed

and reformed. Again, this correlation approach has confirmed and elaborated on the visual

inspection of S .22
.46,.54 in figure 4.6a.

5.2.2 Cross-Correlations

Following the visual inspection, the first cross-correlation comparison is between P.5

and S .22
.46,.54, in figure 5.6. The correlation matrix appears unremarkable, with no value of

correlation strength exceeding 0.5. The lack of correlation allows for the conclusion that for

addition of a rolling motion completely redefines the vortex topology of the pitching motion.
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Figure 5.5: Visualization of correlation map showing the auto-correlation of S .22
.46,.54, colored

by r

Likely, this is related to the asymmetric flow profile that the rotational forces from rolling the

wing create, whereas the pitching maneuver creates a symmetric flow about that the leading

edge. To aid in this comparison, plots of the wing position vs t′ are shown in two plots, αeff

versus t′ and φ versus t′, shown in figure 5.6b and c, respectively. From both these plots it

seen that the first data point of S .22
.46,.54 occurs at a larger normalized time than the last data

point of P.5. Additionally, the entire motion of P.5 occurs in about 0.6 of a convective time,

whereas, the S .22
.46,.54 takes about 2 convective times.

Returning to the quantitative analysis, the correlation matrix of R.54,33 and S .22
.46,.54 is

shown in figure 5.7. These cases have an intersection where both have are at αeff = 33◦,

which is slightly before t′ = 1.43. Interestingly, the strongest correlation value is found right

near this point, with a value of 0.75, located at (0.77,1.43). Additionally, there is a strong

trend of low values of t′ for R.54,33 correlating quite well to significantly higher values of

S .22
.46,.54. This observation translates to R.54,33 correlating to greater values of αeff and φ of

S .22
.46,.54. It is noted that the range of roll angles in the data gathered for S .22

.46,.54 does not allow

for a direct comparison of the lower roll angles of R.54,33, yet it is unlikely that similarity
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Figure 5.6: Visualization of correlation map showing the cross-correlation of P.5 and S .22
.46,.54,

colored by r

would exist given the strong resemblance of the vortex structure at lower roll angles for

R.54,33 to the vortex structure at the higher end of the range of roll angles for S .22
.46,.54. Again,

vortex topology at similar roll angles between the two kinematic cases are unalike. Thus,

the addition of the pitching motion delays the development of vortex structures in respect

to three different parameters: t′, αeff , and φ.

A similar pattern is seen in the correlation matrix between R.54,33 and S .20
.42,.54, shown

in figure 5.8. It was observe red in the visual inspection that the slightly slower pitch rate

in S .20
.42,.54 induced vortex structure that more closely resembled the topology resulting from

R.54,33. This is clearly, and quantitatively, seen here where the correlation strength is seen

to be greater than the strengths in figure 5.7, where the maximums are r = 0.68 and 0.6,

respectively.

The kRg parameter is defined such that comparison to purely pitching cases is natural.

In figure 5.9, P.5 is correlated with S .20
.42,.54, such that k = kRg = 0.2. Despite identical

parameters, there is a stark absences of similarity across all phases recorded here. There

exists slightly more similarity between P.5 and S .50
1.05,.54, when k = kRg = 0.5, yet it is hardly
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Figure 5.7: Visualization of correlation map showing the cross-correlation of R.54,33 and
S .22
.46,.54, colored by r

notable. This comparison helps illustrate the that kRg parameter is more useful for comparing

vortex evolution, as in the previous section. For this strict correlation based approach, the

effect of the localization of the detached region from the rolling motion, significantly lowers

the scores between these two cases.

To further explore the parameter space, the correlation matrix between R.54,33 and

S .50
1.05,.54 is shown in figure 5.11. Here, a similar trend is seen to the correlation of R.54,33

and S .22
.46,.54, with the earlier phases of R.54,33 correlating well for later phases of S .50

1.05,.54. The

irregular phase spacing of S .50
1.05,.54 is due to the acquisition of two additional phases after the

wing has completed the prescribed pitching motion but continues to roll at t′ = 0.98 and 1.34.

Interestingly, the two maxima of this map are at (0.77,0.98) and (0.77,1.34), the later being

one of the points where the pitching motion has stopped. Despite having rolled significantly

further than R.54,33 and more t′ having elapsed, the early phase of roll still matches the best

with this case. This is further supporting the hypothesis that adding a pitching motion to a

rolling motion delays and advances in t′ the evolution of the LEV..
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Figure 5.8: Visualization of correlation map showing the cross-correlation of R.54,33 and
S .20
.42,.54, colored by r

To further investigate the effect of roll rate, S .37
.46,1.36 uses the slower roll rate, matching

that of R1.36,33. The correlation matrix for these two cases are shown in figure 5.12. Here

there exists only one strong correlation point at (0.29,0.75). This insipid result is the product

of correlating a kinematic case that is characterized by a LEV that is consistently shed into

the convecting flow, R1.36,33, and a cylindrical, coherent LEV that stays attached until the

wing stops pitching, S .37
.46,1.36.

In figure 5.13, P.5 and S .37
.46,1.36 are correlated. Here, P.5 correlates well at moderate

values of t′, before the LEV in the P.5 starts arching too significantly later in the motion.

Thus, while it is fair to say that the rolling motion dominates the flow structure during a

simultaneous pitching and rolling maneuver, first and foremost, the pitching motion keeps

the LEV attached to the LE and stable, throughout the parameter space of this dissertation.

While keeping the radius of gyration constant, it is useful to compare the various kine-

matic cases of simultaneous pitching and rolling to one another in order to better understand

the role of pitch rate and role rate. Shown in figure 5.14, the correlation matrix of S .22
.46,.54 and

S .20
.42,.54 shows a strong diagonal trend and, overall, closely resembles the auto-correlation of
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Figure 5.9: Visualization of correlation map showing the cross-correlation of P.2 and S .20
.42,.54,

colored by r

S .22
.46,.54. This is intuitive as the kinematics of S .22

.46,.54 and S .20
.42,.54 are nearly identical, with only

a slight difference in pitch rate. Here the vortex structure is similar, however, the LEV of

S .20
.42,.54 has a defined narrow arch vortex similar to R.54,33. Thus, the slightly slower pitch rate

resulted in a more resemblance to the purely rolling counterpart. A more substantial change

to the pitch rate has a more visible effect, shown in the correlation matrix between S .22
.46,.54

and S .50
1.05,.54, figure 5.15. Here there is still a diagonal trend, however, it is not as dominant

as in figure 5.14. The later phases of each case correlate well suggesting some convergence

in the developed vortex structure. The kinematic case S .50
1.05,.54 has two additional phases

where the wing has completed the pitching motion but has continued to roll to φ = 35◦ and

40◦. At t′ = 0.98 and 1.34, respectively the overall shape of the LEV has not changed much,

however, at the final phase the LEV has detached and began to convect downstream, only on

the order of 10% of the chord length despite having rolled an additional 6.4◦. At these phases

the correlation strength has increased. A similar trend is seen for S .37
.46,1.36 which continued

to roll after the pitching motion was complete as well. However, S .37
.46,1.36 is composed of a

slower roll rate but an identical pitch rate to S .22
.46,.54. Early in the phases of each, at similar
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Figure 5.10: Visualization of correlation map showing the cross-correlation of P.5 and S .50
1.05,.54,

colored by r

values of t′, the vortex topology is similar, however, later in the motion, the LEV in S .37
.46,1.36

shows significantly less growth in the x′ and y′ directions. As previously seen in chapter 4.1,

the vortex topology of S .37
.46,1.36 at αeff = 35◦ and t′ = 0.88 is even more cylindrical, resembling

the LEV formed by R1.36,33, but stays attached to the LE in when the pitching motion is

added. Additionally, this LEV is slightly more towards the LE than the previous structures,

as the pitching motion has not allowed the LEV to convect away up to this point in the

motion. Again, when the wing stops pitching, and continues to roll for 3 phases, the LEV

starts to grow and convect in the x′ direction causing a spike in correlation strength, as it

now lines up with the later phases of S .22
.46,.54.

The final comparison is of changing the radius of gyration. Figures 5.17-5.19 shows 3

correlation matrices for identical kinematic cases, with only the radius of gyration changing

between correlated pairs. As a whole, the matrices show better correlation earlier into the

motion, with only the case of S .37
.46,1.36 vs s .37

.46,1.36 maintaining good correlation through the

later phases, which is an initial indication that the vortex structure of a purely rolling wing

is more sensitive to changes of radius of gyration than a simultaneous pitching and rolling
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Figure 5.11: Visualization of correlation map showing the cross-correlation of R.54,33 and
S .50

1.05,.54, colored by r

wing. Additionally, given the roll rate of r1.36,33 and s .37
.46,1.36 are identical, it is suggested that

the vortex topology of a slower rolling wing is less sensitive to changes radius of gyration

than that of a faster rolling wing.

Additional correlation matrices are presented in appendix D.

5.3 Helical Density Analysis

For comparison with Wolfinger and Rockwell [35], helical density was calculated for the

present study shown in figure 5.20. Beginning with the purely rolling case, R.54,33, figure

5.20a, shows a isocontours for λci at t′ = 0.77, colored by helical density. The volume has

been rotated such that the LEV is viewed from the trailing edge, similar to the presentation

by Wolfinger and Rockwell [35]. A banding pattern is seen here, where the midspan region

of the LEV is dominated by a negative helical density, and the localized arch vortex and

region near the root exhibit helical density of the opposite sign. In agreement with the

observations of Wolfinger and Rockwell [35], this structure ultimately degenerated. In figure
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Figure 5.12: Visualization of correlation map showing the cross-correlation of R1.36,33 and
S .37
.46,1.36, colored by r

5.20b, negative helical density (blue) dominates the LEV, however, where the vortex has

lifted from the wing surface, opposing sign helical density is found on the bottom of the

vortex. The helical density in this case is arguably more uniform than the previous for

which, the LEV stays intact for the entire recorded motion here.

The simultaneous cases S .22
.46,.54 and S .50

1.05,.54 are shown in figures 5.20c and 5.20d, which

reiterate the previous findings. The case of S .22
.46,.54 exhibits similar helical density patterns

to R.54,33 foreshadowing the degradation of the vortex structure, although it is not observed

in the recorded motion. The vortex structure formed by S .50
1.05,.54 does appear more uniformly

blue than S .22
.46,.54, which may be an effect of the faster pitch rate. It has been previously

noted that the addition of the pitching motion to the rolling motion helped stabilize and

delay the evolution of the vortex structure. From the helical density plots presented here,

it follows that the pitching motion may be helping create a more established helical LEV,

characterized by a more dominant sign of helical density, thus keeping the LEV near the

leading edge for a prolonged time.
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Figure 5.13: Visualization of correlation map showing the cross-correlation of P.5 and S .37
.46,1.36,

colored by r

Figure 5.14: Visualization of correlation map showing the cross-correlation of S .22
.46,.54 and

S .20
.42,.54, colored by r
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Figure 5.15: Visualization of correlation map showing the cross-correlation of S .22
.46,.54 and

S .50
1.05,.54, colored by r

Figure 5.16: Visualization of correlation map showing the cross-correlation of S .22
.46,.54 and

S .37
.46,1.36, colored by r
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Figure 5.17: Visualization of correlation map showing the cross-correlation of R.54,33 and
r.54,33, colored by r

Figure 5.18: Visualization of correlation map showing the cross-correlation of R1.36,33 and
r1.36,33, colored by r
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Figure 5.19: Visualization of correlation map showing the cross-correlation of S .37
.46,1.36 and

s .37
.46,1.36, colored by r
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(a) (b)

(c) (d)

Figure 5.20: Isocontours of λci set to 5% of the maximum value, colored by helical density
H, depicting alternating signs of helical density in the LEV: (a) R.54,33 at t′ = 0.77 (b) P.5
at t′ = 0.88 (c) S .22

.46,.54 at t′ = 1.84 (d) S .50
1.05,.54 at t′ = 0.88
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Chapter 6

Conclusions and Contributions

In this dissertation, the examination of vortical structures across a multi-variable param-

eter space revealed how variations in kinematics affect the early development of the LEV on a

pitching and rolling wing, both independently and simultaneously, while subjected to a uni-

form flow. Vortex structures were quantitatively visualized through isocontours of swirling

strength computed from 3D-3C vector fields produced from plenoptic PIV measurements,

the first ever made on a maneuvering wing. Through visual inspection of the results, the

evolution of the LEV was characterized into 3 stages: formation & growth, transitional, and

detached. Through each stage, the topology was described. These descriptions of each case

were used to understand a new proposed parameter, kRg.

The purely pitching cases formed LEVs that were initially cylindrical, then transitioned

into a broad arch vortex, symmetrical about the half-span. The LEVs formed by the purely

rolling kinematics also had cylindrical topologies during the formation and growth stage that

evolved into asymmetric structures soon thereafter. For each value of advance ratio studied

here, a dual-vortex system was formed and a correlation between the bifurcation point of this

dual-vortex system and the effective angle of attack was found. Moreover, the formation of

the dual-vortex system was exclusively followed by the shedding of vortical structures from

the leading edge. For both the purely pitching and purely rolling kinematics, this study

has presented what the author believe to be some of the most comprehensive volumetric

measurements for a wing in forward flight.

The core of this dissertation was built around a simultaneously pitching and rolling wing

in forward flight, for which this paper has presented 3D-3C measurements documenting the

vortex topology and evolution in detail. For each of the simultaneously pitching and rolling
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cases, the evolution of the LEV was less eventful than the purely pitching and purely rolling

cases as the LEV consistently stayed closer to the wing surface and leading edge than the

previous cases. In each case, asymmetric structures were formed that eventually led to a

dual-vortex system. To aid in the understanding of the role of the wing kinematics in the

formation and evolution of these structures, the kRg parameter was introduced, analogous to

the reduced pitch rate k, yet utilizing the effective velocity. Through this parameter, purely

pitching cases were directly compared to simultaneously pitching and rolling cases of equal

kRg value. Through this matching of kRg values, it was found that the addition of a rolling

motion to a pitching wing delayed the evolution of the LEV in nondimensionalized time and

reduced spanwise extent of where the LEV detached from the leading edge. Furthermore,

when comparing the 4 different simultaneously pitching and rolling cases, it was found that

increasing kRg initiated the transition to a detached LEV sooner in nondimensionalized time

and accelerated the process of detachment.

This study also linked the behavior of the LEVs to the kinematics of the wing through

comparisons of vortex topology using a correlation technique. Overall, it was found that the

vortex topology of a simultaneously pitching and rolling wing more closely resembled the

topology of a purely rolling wing, yet the addition of a pitching motion helped to stabilize the

vortex, increasing the lifetime at the LE. In addition, the vortical structures at greater t′ for

simultaneously pitching and rolling kinematics correlated well with the smaller values of t′ for

purely rolling kinematics; suggesting a time shift of the 3D evolution caused by the addition

of pitching motion. This is similar to the time-shift that Granlund et al. [17] found for a

purely pitching flat plate immersed in a freestream. Across the parameter space, kinematic

cases of simultaneously pitching and rolling wings were less correlated with purely pitching

cases using identical pitch rates. The effect of changing Rg/c was also elucidated through

this approach, such that reducing the Rg/c was found to advance and the vortex evolution

of the purely rolling cases, while little effect was observed in the simultaneously pitching and

rolling cases. Arguably, reducing the Rg/c had the most prolific effect on the r1.36,33 case,

96



which is the identical advance ratio to s .37
.46,1.36, that remained relatively unchanged. Thus,

for this case it is concluded that the pitching motion has such a stabilizing effect that the

vortex evolution remained insensitive to the change in Rg/c.

As the working principle of the dissertation, the comparison of a purely pitching wing

to a simultaneously pitching and rolling wing prompted the experimental design such that,

during the simultaneously pitching and rolling kinematics, the rolling motion was initiated

first and allowed to stabilize. Thus, when the pitching motion was commanded, the result

was a pitching wing in a rolling reference frame. It may be that the vortical structures

and evolution of LEVs would be significantly different if the pitching motion was initiated

first. In the context of mUAVs or aggressively maneuvering aircraft, there is likely a greater

window of operable roll angles than pitch angles. The detailed insights into the flow evolution

gained in this work could be leveraged to device strategies to control the aerodynamic loads,

which may be critical, especially for vehicles that rely on the LEV for flight or post-stall

performance.

6.1 Further Considerations and Future Work

Across the parameter space, this study noted a link between the unpinning of the LEV

at the tip and the establishment of a coherent TiV. It may be that the TiV is actually causing

the LEV to come unpinned or that the pinned LEV is not allowing the TiV to grow strong

enough to be detected here. Thus a future study specifically on the interaction between the

LEV and the TiV is suggested. This study should use higher resolution data at the LE-tip

corner of the wing and perhaps explore an elliptical wing or adding a winglet. A study such

as this would help shape future LEV control schemes.

Embedded in the data presented in this dissertation are 31,250 instantaneous volumetric

flow fields which will further elucidate the development of the flow topology resulting from

the various kinematics in the parameter space used in these experiments. The observations

from the instantaneous flow fields presented agree well with the trends of the phase-averaged
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flow fields, but do show notable variations. Future work on these instantaneous flow fields

includes vortex tracking and a POD analysis, to explore these variations in the instanta-

neous flow topology and link them to possible mechanisms. Additionally, instantaneous

3D-3C measurements have never been presented on flow fields resulting from similar kine-

matics, of which a small preview was shown in this dissertation. The characterization of

the instantaneous flow represents an intimidating, yet important task, as ultimately it is the

instantaneous flow physics that any aerospace body would be subjected to. Thus, a better

understanding of the instantaneous flow will yield better performing aerospace applications.

The author recognizes a clear trajectory that future work will follow. As previously men-

tioned, the parameter space can always be expanded and further resolved, to help concrete

the hypotheses and observations shown here. However, the ultimate goal is time-resolved

3D-3C acquisition, yet, the technology to make this practical is not quite available. Provided

a suitable measurement system did exist, the employment of a camera to track the rotating

wing would be difficult. The author envisions a possible solution using mirrors at the pivot

points to always keep the optical path of the camera down the span wing. Enabling such

measurements would take much of the speculating out of the evolution of the vortex topol-

ogy, which in turn would provide the best understanding of the performance of pitching and

rolling wings, yielding superior applications.
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Appendix A

Movie References

Movies are hosted here: https://auburn.box.com/s/16cwl2jp3214wm9ecbuljatghcbv20k1

Movie 1: Phase-averaged results from P.5, shown with isocontours of normal-

ized swirling strength and stream ribbons of normalized chordwise

velocity

Movie 2: Phase-averaged results from P.2, shown with isocontours of normal-

ized swirling strength and stream ribbons of normalized chordwise

velocity

Movie 3: Phase-averaged results from R.54,33, shown with isocontours of nor-

malized swirling strength and stream ribbons of normalized chordwise

velocity

Movie 4: Phase-averaged results from R1.36,33, shown with isocontours of nor-

malized swirling strength and stream ribbons of normalized chordwise

velocity

Movie 5: Phase-averaged results from R.54,23, shown with isocontours of nor-

malized swirling strength and stream ribbons of normalized chordwise

velocity

Movie 6: Phase-averaged results from R.54,43, shown with isocontours of nor-

malized swirling strength and stream ribbons of normalized chordwise

velocity
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Movie 7: Phase-averaged results from R1.36,43, shown with isocontours of nor-

malized swirling strength and stream ribbons of normalized chordwise

velocity

Movie 8: Phase-averaged results from r.54,33, shown with isocontours of normal-

ized swirling strength and stream ribbons of normalized chordwise

velocity

Movie 9: Phase-averaged results from r1.36,33, shown with isocontours of nor-

malized swirling strength and stream ribbons of normalized chordwise

velocity

Movie 10: Phase-averaged results from S .22
.46,.54, shown with isocontours of nor-

malized swirling strength and stream ribbons of normalized chordwise

velocity

Movie 11: Phase-averaged results from S .20
.42,.54, shown with isocontours of nor-

malized swirling strength and stream ribbons of normalized chordwise

velocity

Movie 12: Phase-averaged results from S .50
1.05,.54, shown with isocontours of nor-

malized swirling strength and stream ribbons of normalized chordwise

velocity

Movie 13: Phase-averaged results from S .37
.46,1.36, shown with isocontours of nor-

malized swirling strength and stream ribbons of normalized chordwise

velocity

Movie 14: Phase-averaged results from s .37
.46,1.36, shown with isocontours of nor-

malized swirling strength and stream ribbons of normalized chordwise

velocity
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Appendix B

Plenoptic Camera Design and Realization

Before understanding a plenoptic camera, it is important to understand what it is cap-

turing: the light field. Levoy formally defines the light field, or photic field as “radiance

along rays in empty space” [2]. It serves well to closely examine this definition.

First, consider the phrase light field. It is natural to think that light flows through an

environment, but Michael Faraday first suggested that light should be interpreted as a field,

in a lecture titled Thoughts on Ray Vibrations, summarized in a letter which NASA hosts

online [81]. By treating light as a field, Adelson and Bergen [64], set out to mathematically

describe this field. Citing Leonardo da Vinci for their inspiration, Adelson and Bergen [64]

begin by asking what can potentially be seen by an observer. The answer is defined as the

plenoptic function. Adelson and Bergen [64] consider the plenoptic function to be a complete

holographic representation of the visual world, allowing for reconstruction of every possible

view, at every moment, from every position, and at every wavelength. Thus, the plenoptic

function P is expressed as

P = P (θ, φ, λ, t, Vx, Vy, Vz) (B.1)

where theta and phi represent the spherical coordinates of light seen from a viewpoint, λ is

the wavelength of the light seen from a viewpoint, t is the time that the light is seen from

a viewpoint, and Vx, Vy, and Vz are the Cartesian coordinates of a viewpoint. Thus, the

plenoptic function is a seven dimensional (7D) function.

Next, consider the definition of radiance: the amount of light traveling along a ray.

Radiance is denoted by L and has units of watts per steradian per square meter (W · sr−1 ·

m−2). By considering the plenoptic function for radiance and a single instant in time, the

plenoptic function is averaged over the wavelengths and reduced to the five dimensional (5D)
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function given by

L = L(x, y, z, θ, φ) . (B.2)

Levoy [2] notes that, if nothing is blocking the ray, the radiance along the ray remains

constant. This leads to a redundancy of the 5D plenoptic function. The plenoptic function

can be reduced to a four dimensional (4D) function using two-plane parameterization, shown

below in figure B.1.

Figure B.1: Two plane parametrization of the plenoptic function for radiance adapted from
Levoy [2]

Many different methods have been proposed to record the light field. Perhaps the

simplest to imagine is moving a camera all around a scene, to capture many different views.

For this application to work, the scene would have to remain completely stationary, as a

technician moved the camera around to gather many different views. A logical improvement

to this technique is to use multiple cameras, so that many different views can be captured at

the same time. Photographers and cinematographers will use arrays of cameras to capture

many different views of a scene at an instant in time, so that the scene does not have to

be stationary. These camera arrays can quickly grow very large, requiring many cameras,

which is both expensive and difficult to operate. If the range of viewpoints does not span

more than a couple centimeters, we can replace the array of cameras, with a single camera

and an array of lenses. First suggested by Gabriel Lippmman in 1908, a sensor behind an
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array of lenses (microlenses) records a different perspective view of the scene depending on

the position of the microlens in the array. Using the two plane parameterization, this records

a light field with a uv resolution depending on the number of microlenses and st resolution

depending on the number of pixels (px ) behind each microlens [2, 82]. If a standard lens is

placed in front of the microlens array, focusing the light onto the microlens array, the light

field is transposed such that the uv resolution depends on the number of pixels behind each

microlens and the st resolution depends on the number of microlenses. This is the basis of

a plenoptic camera. A schematic showing a 2D comparison between a conventional camera

and a plenoptic camera is seen in figure 2.2. In a conventional camera, a point source on the

world focal plane is focused onto a single pixel, shown in figure 2.2a. When a microlens array

is inserted, angular information is encoded onto the image sensor. To illustrate this effect,

light is colored depending on which pixel it strikes behind the microlens. For example, in

figure 2.2b, the light that strikes the bottom-most pixel behind the illuminated microlens,

comes only from the rays that are emitted from the point source in the range of angles

colored purple. Thusly, the same point source is now focused over 8 px with the plenoptic

camera instead of 1 with the conventional camera.

The plenoptic camera used in this dissertation was designed to be a high resolution

version of the prototype camera built by Lynch et al. [83]. The design, assembly, and

operation of this plenoptic camera has been optimized through 10 previous iterations of the

high resolution version, all built by the author. The camera body is an Imperx Bobcat B6640

conventional scientific camera. The image sensor is a 29 megapixel (MP) TRUESENSE

KAI-29050 interline transfer CCD which provides an image resolution of 6600× 4400 px2,

with square pixels 5.5 microns in size. The microlens array was manufactured by Adaptive

Optics Associates, Inc. to have a focal length of 308 microns and a microlens pitch of 77

microns such that there are approximately 14× 14 px2 per microlens. A hexagonal grid of

471×362 microlenses image light onto the image sensor [66]. The physical components of the

plenoptic camera are illustrated in the rendering, shown in figure 2.3. The micorlens array
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is the translucent glass slab in the center of the exploded view. The physical microlenses are

glued to the back of a thick glass slab to allow for easier mounting and positioning of the

lenses. The glass slab has a flange around the top edge, opposite to the microlenses, which

rests in the microlens mount (MLM) assembly, shown in figure 2.3 as the 3 components

surrounding the microlens array. The MLM assembly has undergone a number of revisions

by the author with 3 specific goals in mind: (1) the precise positioning of the microlens array

in front of the immage sensor, (2) the relative risk to the image sensor during installation of

the MLM, and (3) the risk of dust accumulation on the image sensor and related components

during regular use of the camera. The MLM shown in figure 2.3 is the latest design iteration,

machined out of aluminum at Auburn University consisting of 3 main components: the MLM

bracket, the MLM bracket holder, and the MLM cover plate. The microlens array rests in

the MLM bracket supported by the glass flange. Each component is anodized black and

then throughly cleaned in an ultrasonic cleaner. The MLM bracket is secured to the MLM

bracket holder where it supported by 3 adjustment screws and 3 springs. Tightening each of

these screws will bring the microlens array closer to the image sensor and when the screws

are loosened, the springs push the microlens array further away from the image sensor. The

3 screws are situated to give the degrees of freedom to tilt the microlens array, in order to

ensure the microlens array is uniformly 1 focal length away from the image sensor. The

densely threaded screws allow for movement as precise as 18µm. The MLM cover plate

keeps the microlens array in the MLM bracket. The MLM bracket holder has been designed

to resemble a part that is removed from the Imperx Bobcat B4820 such that the two feet on

the bracket holder fit securely into the camera body, and the microlens array is straddling

the image sensor, seen in figure 2.3 as the surface in the camera body that is slightly purple

in color.

The plenoptic camera was assembled in the clean room following the standard operating

procedure (SOP) designed by the author of this dissertation. The entire process takes place in

Auburn University’s Class-100 clean room, having less than 1 · 105 particles less than 0.1 µm

117



in size, per cubic meter. Additionally, all of the following operations occur on an ESD free

mat while the engineers wear ESD bracelets. To begin, a dab of Threadlocker Blue is put

ont oeach of the 3 adjustment screws, which are put through the MLM bracket and the

springs are slipped over the protruding ends of the screws. While the MLM bracket is upside

down on the mat (so that the springs do not fall off), the MLM bracket holder is place on

top. These parts are flipped over and the each of the 3 screws is only slightly threaded into

the MLM bracket holder. Now the microlens array is removed from the protective case and

placed into the MLM bracket. The MLM cover plate is then secured on top of the bracket.

Next, the F-mount bezel of the Bobcat B6640 was removed allowing access to the 4 screws

that secured the part that protects the circuitry around the image sensor. This part was

also removed, granting access to the cover glass of the image sensor, which was peeled off

and discarded. Using a deionized air gun, the image sensor and MLM assembly are liberally

cleaned. Finally, the MLM assembly is inserted into the B6640 body and secured. The

microlens array is then aligned by shining a single LED at the camera and monitoring the

output on a laptop. The adjustment screws are slowly tightened until the image formed

behind each of the microlenses is a uniform, tight circle, less than 4 pixels in diameter. This

indicates that the microlens array is situated 1 focal distance from the image sensor. The

camera is stored safely and the f-mount bezel is taken to the machinist to have the interior

diameter turned out to accommodate the MLM assembly. After reattaching the f-mount

bezel, the camera is ready for use.
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Appendix C

Proper Orthogonal Decomposition

The study of fluid mechanics has been associated with large data sets for some time

now, both computationally and experimentally. The differences in the resolution of these two

branches is an important factor when considering the decomposition of a data set using POD.

The computational branch is standard in both industry and research as a powerful tool that

produces finely sampled data sets with large spatial domains. Although the time resolution of

computer generated simulations is highly resolved, it is often too computationally expensive

to simulate long temporal periods. Conversely, experimental fluid mechanics are generally

associated with extensive time domains that have exceedingly fine resolution. However, data-

capturing methods such as hot-wire anemometry and laser Doppler anemometry record a

relatively small spatial resolution. An outlier in the experimental branch of fluid mechanics

is the optical measurement technique PIV, used in this thesis.

Credit for the application of POD to fluid mechanics is given to Lumley [84] who used

POD to more accurately describe the turbulent flow structures that Townsend [85] origi-

nally termed “big eddies.” These phenomena are now widely known as coherent structures.

Another researcher, A. M. Yaglom, told Lumley in a personal conversation that POD is

the natural idea to replace the usual Fourier decomposition in nonhomogeneous directions.

This idea truly was natural because it was a solution reached by many researchers in a wide

variety of fields. As a result, this technique is known by an assortment of names, primarily as

principle component analysis (PCA) in mathematics, the Karhunen-Loève transform (KLT)

in signal processing, and the Hotelling transform in multivariate quality control. The process

of POD and its many affiliates all share a common goal: representing a data set with a linear

combination of orthogonal functions that form the best basis to represent the data.
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C.0.1 Basic Math Review

Despite being a relatively simple method to apply, the math behind POD is complex.

The less math savvy reader is encouraged to review linear algebra and applied mathematics.

The author recommends Linear Algebra with Applications [86] and Applied Mathematics [87]

as a reference. Furthermore, readers that are first beginning POD are referred to A tutorial on

Principal Components Analysis [88] and An introduction to the proper orthogonal decompo-

sition [89]. Emphasis is placed on the covariance matrix [86, 88], the eigenvalue-eigenvector

problem [86, 88], the Fredholm integral equation [87], and calculus of variations [87]. A

workable example is found in the tutorial on PCA [88].

C.0.2 Overview of POD

The overall objective of POD is to approximate a data set u, defined in equation C.1.

In this definition, t is the time instance that the data is sampled and x is a the data recorded

at each instance, t. In fluid mechanics, this data is often velocity measurements, both two

component and three component, or vorticity measurements. The following definitions in

this section and the next follow the procedure outlined in The Springer Handbook of Fluid

Mechanics [90].

u = f(x, t) (C.1)

The approximation of u will be written as a sum defined in equation C.2, where φ(k)(x)

are basis functions, a(k)(t) are time function coefficients, and K is the number of basis

and time functions to be used in the approximation. As K → ∞, this approximation

will become exact. This approximation is not exclusive to POD, for example, if the basis

functions are defined as functions given a priori, equation C.2 could define a Fourier series,

Legendre polynomials, or Chebyshev polynomials. Alternatively, POD seeks to determine

basis functions that are “naturally intrinsic for the approximation of the function u(x, t)”
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[90].

u(x, t) ≈
K∑
k=1

a(k)(t)φ(k)(x) (C.2)

Thus, the general objective of POD is to choose the basis functions φ(k)(x) and then de-

termine the time functions, a(k)(t), by using the corresponding basis functions, the former

being more challenging. The next section defines the approach to defining this “naturally

intrinsic” basis function, which is shown to reduce to an eigenvalue-eigenvector problem.

C.0.3 POD: The Eigenvalue Problem

This section familiarizes the reader with the proper orthogonal decomposition drawing

from both Nobach et al. [90] and Holmes et al. [91]. To begin, let equation C.3 denote a

set of observations, or snapshots, that exist in the real positive 3 dimensional space. These

snapshots are obtained at discrete times throughout the domain of interest, Ω(x = (x, y, z) ∈

Ω)

{u(X),X = (x, tn) ∈ D = R3 × R+} (C.3)

These snapshots could be velocity fields, vorticity fields, temperature, etc. either measured

experimentally or simulated numerically, recorded at different time steps or physical param-

eters (such as Reynolds number). Lumley [84] proposes to extract coherent structures from

these random vector fields and defines a coherent structure as “the deterministic function

which is best correlated on average with the realization u(X)”. Simply put, we seek a func-

tion Φ that has the largest mean squared projection onto the observations. Mathematically,

Φ is the solution to constrained optimization problem defined in equation C.4, where 〈·〉

denotes an averaging operation (temporal, spatial, ensemble, phase average).

max
Ψ∈L2(D)

〈|(u,Ψ)|2〉
||Ψ||2

=
〈|(u,Φ)|2〉
||Φ||2

(C.4)

Here (·, ·) and || · ||2 denote the L2 inner product and the L2 norm, respectively, over D:

(u,Φ) =

∫
D

u(X) ·Φ∗(X)dX, ||u||2 = (u,u) (C.5)
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where the ∗ represents the complex conjugate. Furthermore, the function Φ is defined such

that

||Φ||2 = (Φ,Φ) = 1 . (C.6)

Previously, it was suggested that defining the basis reduces to an eigenvalue problem.

The current objective is to show that the solution to the maximization problem defined in

equation C.4 can be cast in an equivalent eigenvalue problem of the form

Av = λv. (C.7)

To accomplish this, equation C.4 first needs to be modified to the form of the Fredholm

Integral Equation, a linear equation defined as∫ b

a

k(x, y)u(y)dy − λu(x) = f(x), a 6 x 6 b (C.8)

by Logan [87]. Here, u is the unknown function, f is a given continuous function, and λ

is a parameter. The function k is called the kernel and is given a priori. The kernel is

assumed continuous on the square a 6 x 6 b, a 6 y 6 b. If it is required that equation C.8

is homogeneous (f ≡ 0) and of the second kind (λ 6= 0), it follows that

λu(x) =

∫ b

a

k(x, y)u(u)dy . (C.9)

This notation can be simplified by using integral operator notation. Seen below in equation

C.10, K is the Fredholm integral operator. equation C.9 can be rewritten as equation C.11,

which is observed to have the same form as the eigenvalue-eigenvector equation defined in

equation C.7.

Ku(x) =

∫ b

a

k(x, y)u(y)dy (C.10)

Ku = λu (C.11)
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Returning to the problem defined in equation C.4, define a new operator R : L2(D)→

L2(D) as

RΦ(X) =

∫
D

R(X,X ′)Φ(X ′)dX ′ (C.12)

where R(X,X ′) = 〈u(X) ⊗ u∗(X ′)〉, termed the two-point space-time correlation tensor.

The operator ⊗ is the dyadic product, such that if a and b are vectors, a ⊗ b = abT . X ′

represents another snapshot, that may be identical to X but is not explicitly required to be.

Here the operator R is a Fredholm integral operator, the function R is the kernel, and Φ is

the unknown function. In a general sense, this operator R is building what amounts to a

covariance matrix of a zero-mean data set. This generalization is helpful when implementing

POD computationally.

The L2 inner product (RΦ,Φ) in equation C.13 is expanded to equation C.14, then

rearranged to form equation C.15.

(RΦ,Φ) =

(∫
D

〈u(X)⊗ u∗(X ′)〉Φ(X ′)dX ′,Φ(X)

)
(C.13)

(RΦ,Φ) =

∫
D

∫
D

〈u(X)⊗ u∗(X ′)〉Φ(X ′)dX ′Φ∗(X)dX (C.14)

(RΦ,Φ) =

〈∫
D

u(X)Φ∗(X)dX

∫
D

u∗(X ′)Φ(X ′)dX

〉
(C.15)

Finally, it is seen that equation C.15 is reduced to

(RΦ,Φ) = 〈|u,Φ||2〉 (C.16)

Observe that the right hand side of equation C.16 is identically equal to the numerator of

the right hand side of equation C.4.

By repeating the steps in Equations C.13–C.15, it can be shown that

(RΦ,Υ) = (Φ,RΥ) for any (Φ,Υ) ∈ [L2(D)]2. (C.17)
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The implications of this relationship in equation C.17 can be proved using spectral theory or

calculus of variations to guarantee the maximization problem in equation C.4 has a solution

equal to the largest eigenvalue of equation C.18. In summary, because of the equality of

(RΦ,Φ) and the numerator of equation C.4 (shown in equation C.16 and the relationship

shown in equation C.17, it is concluded that maximizing RΦ will maximize equation C.4.

As defined in equation C.11, the Fredholm operator of the unknown function is equal to the

parameter λ times the unknown basis function Φ. It follows that the parameter λ represents

the eigenvalues of equation C.18, and the basis functions Φ are the eigenvectors, often called

eigenmodes or modes.

RΦ = λΦ (C.18)

To determine the time coefficients a(k), simply restructure equation C.2 to find that the

time coefficients are actually projections of u onto Φ. This conclusion is a result of the

orthonormality of eigenfunctions Φ, defined below in equation C.19. Then a(k) can be found

using equation C.20. The coefficients a(k) are mutually uncorrelated and their mean square

values are the eigenvalues themselves (equation C.21.

nc∑
i=1

∫
D

Φ
(m)
i (X)Φ

∗(n)
i (X)dX = δmn; δmn =


0, for m 6= n

1, for m = n

(C.19)

a(k) = (u,Φ) (C.20)

〈a(n)a∗(m)〉 = δmnλ
(n) (C.21)

The basis and the coefficients are now defined and equation C.2 can now be used to

approximate the data set. As K is increased, the snapshot is projected onto more modes and

the approximation becomes more accurate. Because the modes are ranked from the most

energy to least, it follows that the approximation is altered less as each successive mode is

added to the summation.
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This section has described the essence of the proper orthogonal decomposition in the

classical approach. The following subsections will outline the procedure for implementing

this technique in practice.

C.0.4 Classical Method vs Snapshots Method

Recall in the previous section that the averaging operation 〈·〉 in equation C.4 remains

undefined. This section describes the differences between two methods depending on how

the averaging operation is defined. The Classical, or Direct, method averages over time while

the Snapshots Method averages over space. These two methods are juxtaposed in figure C.1.

Selecting one method over the other is as straightforward as categorizing the working data

set.

(a) (b)

Figure C.1: A comparison between two POD methods: (a) Classical Method; (b) Snapshots
Method

Regarding fluid mechanics, Classical POD works best for experimental data. The av-

eraging operation is over time, and the correlation is across space, which works well with

data gathered using hot-wire anemometry or laser Doppler anemometry. These experimental

methods record data at specific spatial locations (often limited by the number of instruments
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in a measurement array), resulting in a data set with coarse spatial resolution. However, the

measurements made by these instruments have a dense temporal resolution. During POD,

this high-resolution temporal data is averaged and correlated across the low-resolution spa-

tial data. While Classical POD is best suited for experimental data, Snapshot POD, first

suggested by Sirovich [92], handles numerical simulation nicely. Data sets from numerical

simulation (direct numerical simulation, large-eddy simulation, etc.), are usually highly re-

solved in space and time. However, due to computational cost, the time sample is generally

very short. As a result of this constraint, computational data is more densely sampled in

the spatial domain than the temporal. Snapshot POD averages this densely sampled spatial

domain and correlates the data temporally.

An exception to this categorization is the experimental method, PIV. A typical PIV

experiment gathers image pairs, which are correlated to form a data set of velocity vectors

taken at different instances in time. A typical experiment could contain data at 1000 time

instances, with each instance corresponding to thousands or tens of thousands of velocity

vectors. In this way, PIV is more similar to numerical simulation than to the previously

mentioned experimental methods.

As shown in figure C.1, Snapshot POD is the exact symmetry of classical POD. The

mathematical implications of this are straightforward. The difference revolves around the

assumption that Φ has the form

Φ(x) =
Nt∑
k=1

a(tk)u(x, tk) (C.22)

where the coefficients a(tk), k = 1, . . . , Nt are to be determined so that Φ is a maximum to

the optimization problem previously defined in equation C.4. Following the same process, it

is shown that the maximum of equation C.4 is given by∫
Ω

R(x,x′)Φ(x′)dx′ = λΦ(x) (C.23)
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It follows that the two-point correlation tensor R(x,x′) can be estimated assuming station-

arity and ergodicity conditions as

R(x,x′) =
1

Nt

Nt∑
i=1

u(x, ti)⊗ u∗(x′, ti) . (C.24)

Finally, substituting the expression of R in equation C.24 and the decomposition of Φ in

equation C.22 into Equation (C.23 yields

Nt∑
i=1

[
Nt∑
k=1

1

Nt

(∫
Ω

u(x′, tk) · u∗(x′, ti)dx′
)
a(tk)

]
× u(x, ti) = λ

Nt∑
k=1

a(tk)u(x, tk) . (C.25)

Which can be simplified to

Nt∑
k=1

1

Nt

[u(x′.tk) · u∗(x′, ti)] a(tk) = λa(ti) , i = 1, . . . , Nt (C.26)

where the coefficients a(tk) are defined. equation C.26 can be recast as the eigenvalue-

eigenvector problem

CV = λV (C.27)

where

Cki =
1

Nt

∫
Ω

u(x, tk) · u∗(x, ti)dx and

V = [a(t1), a(t2), . . . , a(tN)]T .

The definition of C is found to be the two-point temporal correlation tensor, which is straight-

forward to calculate. In direct symmetry to the calculation of the time coefficients in equation

C.20, the basis function, or modes can be calculated similarly as

Φ(n)(x) =
1

Ntλ(n)

Nt∑
k=1

a(n)(tk)u(x, tk) . (C.28)
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Appendix D

Correlation Matrices

D.1 auto-correlations

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

(i) (j)
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D.2 Selected Correlations

Figure D.0: Visualization of correlation map showing the cross-correlation of R.54,33 and
R1.36,33, colored by r
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Figure D.1: Visualization of correlation map showing the cross-correlation of R.54,33 and
R.54,23, colored by r

Figure D.2: Visualization of correlation map showing the cross-correlation of R.54,33 and
R.54,43, colored by r

131



Figure D.3: Visualization of correlation map showing the cross-correlation of R.54,43 and
R1.36,43, colored by r

Figure D.4: Visualization of correlation map showing the cross-correlation of S .37
.46,1.36 and

S .37
.46,1.36, colored by r
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Figure D.5: Visualization of correlation map showing the cross-correlation of P.5 and P.2,
colored by r

Figure D.6: Visualization of correlation map showing the cross-correlation of r1.36,33 and
s .37
.46,1.36, colored by r
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Appendix E

Code Appendix

E.1 POD Background Subtraction

1 #define _CRT_SECURE_NO_WARNINGS

2

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <time.h>

6 #include <armadillo >

7 #include <sys/stat.h>

8 #include "tiffio.h"

9 #include "mpi.h"

10 #include "DragonJSON.h"

11

12

13 static int readImage(char *imageFileName , double **imageData , int &width ,

int &length)

14 {

15 TIFF *tif = TIFFOpen(imageFileName , "r");

16 uint16 bpp;

17 TIFFGetField(tif , TIFFTAG_IMAGELENGTH , &length);

18 TIFFGetField(tif , TIFFTAG_IMAGEWIDTH , &width);

19 TIFFGetField(tif , TIFFTAG_BITSPERSAMPLE , &bpp);

20

21 tdata_t buffer = _TIFFmalloc(TIFFScanlineSize(tif));

22

23 *imageData = (double *) calloc(width*length , sizeof(double));

24 for (int j = 0; j < length; ++j) {

25 TIFFReadScanline(tif , buffer , j, 0);

26 for (int i = 0; i < width; ++i) {

27 if (bpp == 16) {

28 (* imageData)[i*length + j] = (( uint16 *) buffer)[i];

29 }

30 else {

31 (* imageData)[i*length + j] = (( uint8*) buffer)[i];

32 }

33 }

34 }

35 _TIFFfree(buffer);

36 TIFFClose(tif);

37 return 0;

38 }

39

40 int writeImage(char *imageFileName , double * image , int length , int width)

41 {
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42

43

44 uint16 *imageData = (uint16 *) calloc(length*width , sizeof(uint16));

45

46 for (int i = 0; i < width; ++i)

47 for (int j = 0; j < length; ++j) {

48 if (image[j * width + i] < 0) {

49 imageData[j * width + i] = 0;

50 }

51 else {

52 imageData[j * width + i] = static_cast <uint16 >(image[j * width + i

]);

53 }

54 }

55 TIFF *tif = TIFFOpen(imageFileName , "wb");

56 TIFFSetField(tif , TIFFTAG_IMAGELENGTH , length);

57 TIFFSetField(tif , TIFFTAG_IMAGEWIDTH , width);

58 TIFFSetField(tif , TIFFTAG_SAMPLESPERPIXEL , 1);

59 TIFFSetField(tif , TIFFTAG_BITSPERSAMPLE , 16);

60 TIFFSetField(tif , TIFFTAG_PHOTOMETRIC , PHOTOMETRIC_MINISBLACK);

61 TIFFSetField(tif , TIFFTAG_ORIENTATION , ORIENTATION_TOPLEFT);

62

63 // CREATE BUFFER

64 uint16* buffer = (uint16 *) _TIFFmalloc(TIFFScanlineSize(tif));

65

66 // WRITE BUFFER

67 for (int j = 0; j < length; ++j) {

68 for (int i = 0; i < width; ++i) {

69 buffer[i] = imageData[i*length + j];

70 }

71 int check_IO = TIFFWriteScanline(tif , buffer , j, 0);

72 }

73 free(imageData);

74 TIFFClose(tif);

75 _TIFFfree(buffer);

76 return 1;

77 }

78

79 void PODsnapshotsBackground(char* imageDir , char* resultsDir , int imStart ,

int imEnd , int imInc , int covImages , bool loadAve , bool loadC , bool

loadMode , int camID)

80 {

81 clock_t begin = clock();

82 int totalImages = (imEnd - imStart) / imInc + 1;

83 // PRE ALLOCATION //

84

85 int width , height;

86 char imageFileNameTest [512];

87 char PODitemsDir [512];

88 sprintf(PODitemsDir ,"%s/PODitems",resultsDir);

89 mkdir(PODitemsDir ,0755);

90 double *imageTest;

91 sprintf(imageFileNameTest , "%s/0003. tif", imageDir);
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92 readImage(imageFileNameTest , &imageTest , width , height); // GET WIDTH

AND HEIGHT OF IMAGE

93 free(imageTest);

94 double *ave = (double *) calloc(width*height , sizeof(double));

95 arma::mat Cmat(covImages , covImages , arma::fill:: zeros);

96

97

98 // LOG File

99 char logFileName [512];

100 sprintf(logFileName , "%s/log.txt", PODitemsDir);

101 FILE* logFile = fopen(logFileName , "w");

102 setbuf(logFile , NULL);

103 time_t startTime = time (0);

104 char buff [20];

105 strftime(buff , sizeof(buff), "%Y-%m-%d %H:%M:%S", localtime (& startTime))

;

106 fprintf(logFile , "\t%s\n--------------------------------\n", buff);

107 fprintf(logFile , "LOG FILE FOR POD BACKGROUND SUBTRACTION\n");

108

109 // CALCULATE AVERAGE

110 fprintf(logFile , "Averaging Images: ");

111

112 if (! loadAve) {

113

114 #pragma omp parallel for

115 for (int aveInd = 0; aveInd < covImages; ++ aveInd) {

116 char imageFileNameA [512];

117 double *imageA;

118 sprintf(imageFileNameA , "%s/%04d.tif", imageDir , (aveInd*imInc)+

imStart);

119 readImage(imageFileNameA , &imageA , width , height);

120

121 for (int k = 0; k < width*height; ++k) {

122 #pragma omp atomic

123 ave[k] += imageA[k] / covImages;

124 //ave[k] = 0;

125 }

126 free(imageA);

127 }

128

129 char aveFileName [512];

130 sprintf(aveFileName , "%s/ave.bin", PODitemsDir);

131 FILE* fileID = fopen(aveFileName , "wb");

132 fwrite(ave , sizeof(double), height*width , fileID);

133 fclose(fileID);

134 sprintf(aveFileName , "%s/ave.tif", PODitemsDir);

135 writeImage(aveFileName , ave , height , width);

136 }

137 else {

138 char aveFileName [512];

139 sprintf(aveFileName , "%s/ave.bin", PODitemsDir);

140 FILE* fileID = fopen(aveFileName , "r");

141 fread(ave , sizeof(double), height*width , fileID);

142 fclose(fileID);
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143 }

144

145

146 clock_t time1 = clock();

147 double elapsedTime = (double)(time1 - begin) / CLOCKS_PER_SEC;

148 fprintf(logFile , "Complete. %.2f min \n", elapsedTime / 60);

149

150 // COVARIANCE LOOP

151 fprintf(logFile , "Calculating Covariance Matrix: ");

152

153 if (! loadC) {

154 #pragma omp parallel for

155 for (int i = 0; i < covImages; ++i) {

156 char imageFileName1 [512];

157 double *image1;

158 sprintf(imageFileName1 , "%s/%04d.tif", imageDir , (i*imInc)+imStart);

159 readImage(imageFileName1 , &image1 , width , height);

160 for (int j = i; j < covImages; ++j) {

161 char imageFileName2 [512];

162 double *image2;

163 sprintf(imageFileName2 , "%s/%04d.tif", imageDir , (j*imInc)+imStart

);

164 readImage(imageFileName2 , &image2 , width , height);

165 for (int k = 0; k < width*height; ++k) {

166 Cmat(i,j) += (image1[k] - ave[k]) * (image2[k] - ave[k]) /

covImages;

167 }

168

169 Cmat(j, i) = Cmat(i, j);

170 free(image2);

171

172 }

173 free(image1);

174 }

175 char CmatFileName [512];

176 sprintf(CmatFileName , "%s/Cmat.txt", PODitemsDir);

177 Cmat.save(CmatFileName ,arma:: raw_ascii);

178 }

179 else {

180 char CmatFileName [512];

181 sprintf(CmatFileName , "%s/Cmat.txt", PODitemsDir);

182 Cmat.load(CmatFileName , arma:: raw_ascii);

183 }

184

185 clock_t time2 = clock();

186 elapsedTime = (double)(time2 - time1) / CLOCKS_PER_SEC;

187 fprintf(logFile , "Complete. %.2f min \n", elapsedTime / 60);

188

189 // SOLVE THE EIGNENVALUE -EIGENVECTOR PROBLEM

190 fprintf(logFile , "Solving the Eigenvalue -Eigenvector Problem: ");

191 arma:: cx_vec eigval;

192 arma:: cx_mat eigvec;fprintf(logFile , ".");

193 arma:: eig_gen(eigval , eigvec , Cmat);fprintf(logFile , "."); //try arma::

eig_sym
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194 arma::mat eigvalReal = arma::real(eigval);fprintf(logFile , ".");

195 arma::mat eigvecReal = arma::real(eigvec);fprintf(logFile , ".");

196 arma::uvec energyInd = arma:: sort_index(eigvalReal , "descend");fprintf(

logFile , ".");

197 arma::vec lam = arma::sort(eigvalReal , "descend");fprintf(logFile , ".");

198 arma::mat evector(covImages , covImages , arma::fill:: zeros);fprintf(

logFile , ".");

199

200 #pragma omp parallel for

201 for (int i = 0; i < energyInd.n_elem; ++i) {

202 evector.col(i) = eigvecReal.col(energyInd(i));

203 }

204 char eVecFileName [512];

205 sprintf(eVecFileName , "%s/evector.txt", PODitemsDir);

206 char lamFileName [512];

207 sprintf(lamFileName , "%s/lam.txt", PODitemsDir);

208 evector.save(eVecFileName , arma:: raw_ascii);

209 lam.save(lamFileName , arma:: raw_ascii);

210

211 clock_t time3 = clock();

212 elapsedTime = (double)(time3 - time2) / CLOCKS_PER_SEC;

213

214 fprintf(logFile , "Complete. %.2f min\n", elapsedTime / 60);

215

216 // CALCULATE THE NUMBER OF MODES FOR EACH ENERGY LEVEL

217

218 double lamSum = arma::sum(lam);

219 arma::vec lamNorm = lam / lamSum;

220 arma::vec cumLam = cumsum(lamNorm);

221

222 // CALCULATE OPTIMIZED NUMBER OF MODES TO SUBTRACTION

223 bool optimizeFlag = 0;

224

225 optimizeFlag = 1;

226 arma::vec lamDiff = lamNorm;

227 for (int i =0; i<covImages -2; ++i){

228 lamDiff(i) = lamNorm(i)-lamNorm(i+1);

229 }

230

231 double epsilon = 1/( double)covImages;

232 int autoMode = 0;

233

234 for (int i =0; i<covImages -2; ++i){

235

236 if(lamDiff(i)<epsilon){

237 if(lamDiff(i+1)<epsilon){

238 if(lamDiff(i+2)<epsilon){

239 autoMode = i;

240 break;

241 }

242 }

243 }

244 }

245 fprintf(logFile ,"Optimized Number of modes: %d\n",autoMode);
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246 arma::mat modes2use(1, 1, arma::fill:: zeros);

247 modes2use (0)= autoMode;

248

249

250 int numOfModes = modes2use[modes2use.n_elem - 1];

251

252 // CALCULATE EACH MODE //

253

254 fprintf(logFile , "Calculating Modes: ");

255

256 if (! loadMode) {

257

258 for (int modeInd = 0; modeInd < numOfModes; ++ modeInd) {

259 double *mode;

260 mode = (double *) calloc(height * width , sizeof(double));

261 #pragma omp parallel for

262 for (int imageInd = 0; imageInd < covImages; ++ imageInd) {

263 double *imageM;

264 char imageFileNameM [512];

265 sprintf(imageFileNameM , "%s/%04d.tif", imageDir , (imageInd*imInc)

+ imStart);

266 readImage(imageFileNameM , &imageM , width , height);

267 for (int j = 0; j < width*height; ++j) {

268 mode[j] += evector(imageInd , modeInd)*( imageM[j]-ave[j]);

269 }

270 free(imageM);

271 }

272 char modeFileName [512];

273 sprintf(modeFileName , "%s/mode%d.bin", PODitemsDir , modeInd + 1);

274 FILE* fileID = fopen(modeFileName , "wb");

275 fwrite(mode , sizeof(double), width*height , fileID);

276 fclose(fileID);

277 free(mode);

278 }

279 }

280

281 clock_t time4 = clock();

282 elapsedTime = (double)(time4 - time3) / CLOCKS_PER_SEC;

283

284 fprintf(logFile , "Complete. %.2f min\n", elapsedTime / 60);

285

286

287 // SUBTRACTION OF REDUCED ORDER PROJECTIONS

288 //Main Loop

289

290 fprintf(logFile , "Calculating Reduced Order Projections and Subtracting:

");

291

292

293 for (int reconInd = 0; reconInd < modes2use.n_elem; ++ reconInd) {

294 // Make Output Dirs

295

296 char energyDir [512], subDir [512];

297 if(optimizeFlag){
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298 sprintf(energyDir , "%s/Optimized", resultsDir);

299 }

300 else {

301 sprintf(energyDir , "%s/%.0f", resultsDir , modes2use(reconInd));

302 }

303 sprintf(subDir , "%s/camera%d", energyDir ,camID);

304 mkdir(energyDir ,0755);

305 mkdir(subDir ,0755);

306 // Image loop

307 #pragma omp parallel for

308 for (int imageInd = 0; imageInd < totalImages; ++ imageInd ) {

309 double *image;

310 char imageFileName [512];

311 sprintf(imageFileName , "%s/%04d.tif", imageDir , (imageInd*imInc)+

imStart);

312 readImage(imageFileName , &image , width , height);

313 double *RO = (double *) calloc(height * width , sizeof(double));

314 for (int k = 0; k < width*height; ++k) {

315 RO[k] = ave[k];

316 }

317 // Mode Loop

318 for (int modeInd = 0; modeInd < modes2use(reconInd); ++ modeInd) {

319 double *mode;

320 mode = (double *) calloc(height * width , sizeof(double));

321 char modeFileName [512];

322 sprintf(modeFileName , "%s/mode%d.bin", PODitemsDir , modeInd +1);

323 FILE* fileID = fopen(modeFileName , "r");

324 fread(mode , sizeof(double), width*height , fileID);

325 fclose(fileID);

326 double a_num = 0, a_den = 0;

327 // Calc time coefficient

328 for (int k = 0; k < width*height; ++k) {

329 a_num += (image[k]-ave[k]) * mode[k];

330 a_den += mode[k] * mode[k];

331 }

332 double a = a_num / std::max (0.01, a_den);

333 // Calc Reduced Order

334 for (int k = 0; k < width*height; ++k) {

335 RO[k] += a*mode[k];

336 }

337

338 free(mode);

339 }

340 // Save Image minus Projection

341 double *imageSub = (double *) calloc(height * width , sizeof(double));

342 for (int k = 0; k < height*width; ++k) {

343 imageSub[k] = image[k] - RO[k];

344 }

345 char imageSubFileName [512];

346 sprintf(imageSubFileName , "%s/%04d.tif", subDir , (imageInd*imInc) +

imStart);

347 writeImage(imageSubFileName , imageSub , height , width);

348

349 free(RO);
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350 free(image);

351 free(imageSub);

352 }

353 }

354

355 clock_t end = clock();

356 elapsedTime = (double)(end - time4) / CLOCKS_PER_SEC;

357

358 fprintf(logFile , "Complete. %.2f min\n", elapsedTime / 60);

359 double totalTime = (double)(end - begin) / CLOCKS_PER_SEC;

360 fprintf(logFile , "Total Computation Time: %.2f min\n", totalTime / 60);

361 time_t endTime = time (0);

362 strftime(buff , sizeof(buff), "%Y-%m-%d %H:%M:%S", localtime (& endTime));

363 fprintf(logFile , "--------------------------------\n\t%s\n", buff);

364 fclose(logFile);

365

366

367 }

368

369 int main(int argc ,char* argv []) {

370 setbuf(stdout ,NULL);

371

372

373 MPI_Init (&argc , &argv);

374 int nodeCount , nodeID;

375 MPI_Comm_size( MPI_COMM_WORLD , &nodeCount );

376 MPI_Comm_rank( MPI_COMM_WORLD , &nodeID);

377

378

379

380 JSON *jsonID = JSON_readFile(argv [1]);

381

382 char *mainDir = JSON_getArrayStringElement(jsonID ,"mainDirectory",

nodeID);

383

384 //char *mainDir = JSON_getString(jsonID ," mainDirectory ");

385 printf("Node %d is loading images from ’%s’\n",nodeID ,mainDir);

386 /*

387 bool loadAve = JSON_getBool(jsonID ," loadAverage ") ;

388 bool loadC = JSON_getBool(jsonID ," loadCovariance ") ;

389 bool loadMode = JSON_getBool(jsonID ," loadModes ");

390 int imStart = JSON_getInt(jsonID ," imageStart ");

391 int imEnd = JSON_getInt(jsonID ," imageEnd ");

392 int imInc = JSON_getInt(jsonID ," imageIncrement ") ;

393 int covImages = JSON_getInt(jsonID ," covarianceImages ");

394 int nCameras = JSON_getInt(jsonID ," nCameras ");

395

396 char *mainDir = JSON_getArrayStringElement(jsonID ," mainDirectory",

nodeID);

397 //char *mainDir = JSON_getString(jsonID ," mainDirectory ");

398 */

399 bool loadAve = JSON_getBool(jsonID ,"loadAverage") ? JSON_getBool(

jsonID ,"loadAverage") :0;
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400 bool loadC = JSON_getBool(jsonID ,"loadCovariance") ? JSON_getBool

(jsonID ,"loadCovariance"): 0;

401 bool loadMode = JSON_getBool(jsonID ,"loadModes") ? JSON_getBool(

jsonID ,"loadModes"): 0;

402 int imStart = JSON_getInt(jsonID ,"imageStart");

403 int imEnd = JSON_getInt(jsonID ,"imageEnd");

404 int imInc = JSON_getInt(jsonID ,"imageIncrement") ? JSON_getInt(

jsonID ,"imageIncrement"): 1;

405 int covImages = JSON_getInt(jsonID ,"covarianceImages") ? JSON_getInt

(jsonID ,"covarianceImages"): imEnd - imStart +1;

406 int nCameras = JSON_getInt(jsonID ,"nCameras") ? JSON_getInt(jsonID ,

"nCameras"): 1;

407

408 //

---------------------------------------------------------------------------------------------------------------------

409

410 for (int camID = 0; camID < nCameras; ++ camID){

411 int camID = 0;

412 char resultsDir [512];

413 sprintf(resultsDir ,"%s/Processed",mainDir);

414 char imageDir [512];

415 sprintf(imageDir ,"%s/camera%i",mainDir ,camID);

416 mkdir(resultsDir ,0755);

417

418

419

420 PODsnapshotsBackground(imageDir , resultsDir , imStart , imEnd , imInc ,

covImages , loadAve , loadC , loadMode ,camID);

421 }

422

423

424 JSON_destroy(jsonID);

425 MPI_Finalize ();

426

427 return 0;

428 }

E.2 Coordinate Transformation Functions

E.2.1 Visually Click LE and TE

1 function [settings] = clickTransformationPoints(jsonFileName ,forceFun)

2

3 settings = JSON.parsefile(jsonFileName);

4 fields = fieldnames(settings);

5

6 if ~any(strcmp(fields ,’coordinateTransformation ’)) || forceFun == 1

7 addpath(genpath(’K:\ Documents\Dragon\Dragon_matlab ’))

% add Dragon functions to path

8 DragonFilePath = ’K:\ Documents\Dragon\Dragon_redist\Dragon ’;

9 isDragonLoaded = DragonLoadLibrary(DragonFilePath);

10

11 settings.algorithm = 0;
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12 struct2json(settings ,jsonFileName);

13 DragonInitFromSettingsFile(jsonFileName);

14 rawImageFile = [settings.imageDirectoryLocal (1:18) ’Raw/’ settings.

imageDirectoryLocal (19: end) ’camera0 /0000. tif’];

15 rawImage = double(imread(rawImageFile));

16 xVec = linspace(-settings.nPixelsX * settings.p_p/2,settings.nPixelsX

* settings.p_p/2,settings.nVoxelsX);

17 yVec = linspace(-settings.nPixelsY * settings.p_p/2,settings.nPixelsY

* settings.p_p/2,settings.nVoxelsY);

18 %

19 xVec = linspace( settings.xMin , settings.xMax , settings.nVoxelsX );

20 yVec = linspace( settings.yMin , settings.yMax , settings.nVoxelsY );

21

22 % Read in Volumetric Calbration Coefficients

23 fileID = fopen ([ settings.lfcalDirectoryLocal ’camera0.drg -lfcal’],’r’)

;

24 lfcoeff = fscanf(fileID ,’%f,%f’ ,[2,56]);

25 fclose(fileID);

26

27 DragonBuildRadiance ([ settings.mcalDirectoryLocal ’camera0.drg -mcal’],

rawImage);

28 % [perspectiveImage] = DragonGeneratePerspectiveViews(xVec ,yVec ,0,0);

29 refocusImage = DragonReconstructToImage(xVec ,yVec ,0,1, lfcoeff (1,:),

lfcoeff (2,:));

30 sound(randn (4096 , 1), 5000)

31 pause (1);

32 fh = figure; set(fh ,’Position ’,[ 9 169 1424 1188]);

33 imagesc(xVec ,yVec ,refocusImage ’);

34 title(’Click the Leading Edge and Trailing Edge of the Volume ’)

35 [Ax,Ay] = ginput (2);

36 close(fh)

37 beta = atan2(diff(Ay),diff(Ax));

38

39 settings.algortihm = 2;

40 settings.coordinateTransformation = [Ax(1), Ay(1), beta];

41 struct2json(settings ,jsonFileName);

42 DragonQuit ();

43 end

E.2.2 Coordinate Transformation to x′, y′z′ grid

1 function [vectorFolderOut] = coordinateTransformation(jsonFileName ,

forceFun)

2

3 settings = JSON.parsefile(jsonFileName);

4 fields = fieldnames(settings);

5

6 k = strfind(settings.vectorDirectoryLocal ,’vecs’);

7 dirOut = [settings.vectorDirectoryLocal (1:k-1) ’Processed ’ settings.

vectorDirectoryLocal(k:end)];

8

9 if exist(dirOut ,’dir’) && forceFun ~= 1

10 vectorFolderOut = folder(dirOut);

11 else
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12

13 vectorFolderOut = folder(dirOut);

14

15 [settings] = clickTransformationPoints(jsonFileName ,0);

16

17 mmPerVox = [( settings.xMax -settings.xMin)/settings.nVoxelsX;

18 (settings.yMax -settings.yMin)/settings.nVoxelsY;

19 (settings.zMax -settings.zMin)/settings.nVoxelsZ ];

20

21 fContents = dir([ settings.vectorDirectoryLocal ’*.plt’]);

22

23 for idx = 1:2%numel(fContents)

24

25 dataStruct = loadplt ([ settings.vectorDirectoryLocal fContents(idx)

.name]);

26

27 % Make the uniform grid for output

28 xVecLoc = linspace(settings.xMin ,settings.xMax ,size(dataStruct.X

,1));

29 yVecLoc = linspace(settings.yMin ,settings.yMax ,size(dataStruct.Y

,2));

30 zVecLoc = linspace(settings.zMin ,settings.zMax ,size(dataStruct.Z

,3));

31 xVecSpace = mean(diff(xVecLoc));

32 yVecSpace = mean(diff(yVecLoc));

33 zVecSpace = mean(diff(zVecLoc));

34

35 [Xq ,Yq ,Zq] = ndgrid(xVecLoc (1):xVecSpace:xVecLoc(end)*2,yVecLoc (1)

:yVecSpace:yVecLoc(end)*2,zVecLoc);

36

37

38 % shift , scale and rotate the X-Y plane

39 dataStruct.X = mmPerVox (1)*dataStruct.X + settings.xMin - settings

.coordinateTransformation (1);% This shifts the coordinate

system to centered on the LE

40 dataStruct.Y = mmPerVox (2)*dataStruct.Y+ settings.yMin - settings.

coordinateTransformation (2); % but still aligned with image

41

42 % scale and roatate the U-V velocities

43 dataStruct.U = dataStruct.U*mmPerVox (1) /(1000* settings.deltaT);

44 dataStruct.V = dataStruct.V*mmPerVox (2) /(1000* settings.deltaT);

45 %

46 % shift and scale Z and W

47 dataStruct.Z = -(mmPerVox (3)*dataStruct.Z + settings.zMin);

48 dataStruct.W = -(dataStruct.W*mmPerVox (3) /(1000* settings.deltaT));

49

50

51 dataInterp = struct;

52 dataInterp.X = Xq*cos(-settings.coordinateTransformation (3)) + Yq*

sin(-settings.coordinateTransformation (3));

53 dataInterp.Y = Yq*cos(-settings.coordinateTransformation (3)) - Xq*

sin(-settings.coordinateTransformation (3));

54 dataInterp.Z = Zq;

55
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56 varNames = fieldnames(dataStruct);

57 for vInd = 4: numel(varNames)

58 switch varNames{vInd}

59 case ’IS_VALID ’

60 dataInterp .( varNames{vInd})= interpn(dataStruct.X,

dataStruct.Y,dataStruct.Z,dataStruct .( varNames{vInd

}),dataInterp.X,dataInterp.Y,dataInterp.Z,’nearest ’

,0);

61 otherwise

62 dataInterp .( varNames{vInd})= interpn(dataStruct.X,

dataStruct.Y,dataStruct.Z,dataStruct .( varNames{vInd

}),dataInterp.X,dataInterp.Y,dataInterp.Z,’linear ’

,0);

63 end

64 end

65

66 dataInterp.U = dataInterp.U*cos(settings.coordinateTransformation

(3)) + dataInterp.V*sin(settings.coordinateTransformation (3));

67 dataInterp.V = dataInterp.V*cos(settings.coordinateTransformation

(3)) - dataInterp.U*sin(settings.coordinateTransformation (3));

68

69 dataInterp.X = Xq /1000; % mm to m

70 dataInterp.Y = Yq /1000; % mm to m

71 dataInterp.Z = Zq /1000; % mm to m

72

73 dataInterp.IS_MASKED(dataInterp.X > 0 & dataInterp.X <0.0726 &

dataInterp.Y < 0 & dataInterp.Y > -0.002) = 1; % mask wing

74 dataInterp = wingvelocity(dataInterp ,settings);

75 writeplt(dataInterp ,[ vectorFolderOut fContents(idx).name]);

76 end

77

78 end

79

80 end

E.2.3 Remove Wing Velocity

1 function [data ,phi_dot ,alpha_dot] = wingvelocity(data ,settings)

2

3

4 slashes = strfind(settings.imageDirectory ,’/’);

5 j = strfind(settings.imageDirectory ,’j0.’);

6 k = strfind(settings.imageDirectory ,’k0’);

7 krg = strfind(settings.imageDirectory ,’k_rg’);

8 Rgc = strfind(settings.imageDirectory ,’Rg_c’);

9

10 d = slashes - Rgc;

11 d(d<0) = 100;

12 a = min(d) -1;

13 RGC = settings.imageDirectory(Rgc+4:Rgc+a);

14 span = settings.imageDirectory(Rgc+a+2: Rgc+a+3);

15 Rgc = str2double(RGC);

16 span = str2double(span);

17 phi_dot = 0;
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18 alpha_dot = 0;

19

20 if isempty(j)

21 j = strfind(settings.imageDirectory ,’j1.’);

22 end

23

24 if ~isempty(j)

25 d = slashes - j;

26 d(d<0) = 100;

27 a = min(d) -1;

28 J = settings.imageDirectory(j+1:j+a);

29 J = str2double(J);

30 phi_dot = 0.12/(J*Rgc *.0762);

31 elseif ~isempty(k)

32 d = slashes - k;

33 d(d<0) = 100;

34 a = min(d) -1;

35 K = settings.imageDirectory(k+1:k+a);

36 K = str2double(K);

37 alpha_dot = .12*K/.0762;

38 elseif ~isempty(krg)

39 d = slashes - krg;

40 d(d<0) = 100;

41 a = min(d) -1;

42 KRG = settings.imageDirectory(krg+4:krg+a);

43 KRG = str2double(KRG);

44 switch KRG

45 case 0.22

46 J = 0.5;

47 K = 0.5;

48 case 0.39

49 J = 1.25;

50 K = 0.5;

51 case 0.2

52 J = 0.5;

53 K = 0.5;

54 case 0.5

55 J = 0.5;

56 K = 1.12;

57 end

58 alpha_dot = .12*K/.0762;

59 phi_dot = 0.12/(J*Rgc *.0762);

60 end

61

62

63 data.V = data.V +alpha_dot*data.X + phi_dot *(data.Z+Rgc *.0762* -.0762 +

span /100*2*.0762);

64 data.Z = data.Z + span /100*2*.0762;

E.3 Correlation Analysis

1 clear;clc;

2

3 corrFolder = ’K:\ IowaExperiment\Correlations\’;
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4 outFolder = ’C:\Users\kzj0017\Box\My Research\Correlations\’;

5 contents = dir([ corrFolder ’*.plt’]);

6

7 N = numel(contents);

8 C = zeros(N,N);

9

10 t = loadplt ([ corrFolder ’Rg_c3 .25j0.5 _35__6.plt’]);

11 zer = zeros(size(t.L,1)+5,size(t.L,2)+5,size(t.L,3)+5);

12 Z = t.Z;

13 X = t.X;

14 Y = t.Y;

15 fprintf(’Correlating: ’)

16 for i = 1:N

17 f1 = loadplt ([ corrFolder contents(i).name]);

18 X1 = zer;

19 [~,x1] = min(abs(X(:,1,1)-f1.X(1,1,1)));

20 x2 = x1+numel(f1.X(:,1,1)) -1;

21 [~,y1] = min(abs(Y(1,:,1)-f1.Y(1,1,1)));

22 y2 = y1+numel(f1.Y(1,:,1)) -1;

23 [~,z1] = min(abs(Z(1,1,:)-f1.Z(1,1,1)));

24 z2 = z1+numel(f1.Z(1,1,:)) -1;

25 X1(x1:x2 ,y1:y2 ,z1:z2) = f1.L;

26 fprintf(’\b\b\b\b\b\b\b\b%3d ’,i)

27 for j = i:N

28 f2 = loadplt ([ corrFolder contents(j).name]);

29 X2 = zer;

30 [~,x1] = min(abs(X(:,1,1)-f2.X(1,1,1)));

31 x2 = x1+numel(f2.X(:,1,1)) -1;

32 [~,y1] = min(abs(Y(1,:,1)-f2.Y(1,1,1)));

33 y2 = y1+numel(f2.Y(1,:,1)) -1;

34 [~,z1] = min(abs(Z(1,1,:)-f2.Z(1,1,1)));

35 z2 = z1+numel(f2.Z(1,1,:)) -1;

36 X2(x1:x2 ,y1:y2 ,z1:z2) = f2.L;

37 C(i,j) = sum(X1(:).*X2(:));

38 C(j,i) = C(i,j);

39 fprintf(’\b\b\b%3d’,j)

40 end

41 end

42 save([ corrFolder ’C.mat’],’C’);

43

44 load([ corrFolder ’C.mat’]);

45 Cn = C;

46 for i=1:N

47 for j = i:N

48 Cn(i,j) = C(i,j)/(sqrt(C(i,i)*C(j,j)));

49 Cn(j,i) = Cn(i,j);

50 end

51 end

1 clear;clc;close all

2 corrFolder = ’K:\ IowaExperiment\Correlations\’;

3 SVGFolder = ’D:\ Dropbox\My Research\JFMv2\figures\Correlations\’;

4 figFolder = folder ([ corrFolder ’plots\’]);

5 load([ corrFolder ’C_j.mat’])
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6 load([ corrFolder ’ordered_j.mat’])

7 load([ corrFolder ’data.mat’])

8 C= Cn;

9 f = figure (1);

10 bounds = [ 1 6;

11 7 13;

12 14 22’

13 23 28;

14 29 36;

15 37 42;

16 43 52;

17 53 60;

18 61 67;

19 68 74;

20 75 81;

21 82 89;

22 90 99;

23 100 107

24 ];

25

26 names = {

27 ’S_{m-,f}’; %1

28 ’S_{m,f}’; %2

29 ’S_{f,f}’; %3

30 ’R_{f25}’; %4

31 ’R_{f35}’; %5

32 ’R_{f45}’; %6

33 ’S_{m,s}’; %7

34 ’R_{s35}’; %8

35 ’R_{s45}’; %9

36 ’P_{s}’; %10

37 ’P_{m}’; %11

38 ’r_{f35}’; %12

39 ’s_{m,s}’; %13

40 ’r_{s35}’; %14

41

42 };

43

44 for b1 = 5

45 for b2 =2

46 b = [b1 b2];

47 tau =zeros(size(data ,1) ,1);

48 for ind = 1:size(data ,1)

49 tau(ind) = taucalc(data(ind ,:));

50 end

51

52 tauX = repmat(tau ,[1 size(C,2)]);

53 tauY = tauX ’;

54 Cmap = flipud(gray (100));

55 ind = b(1);

56

57

58 c = C(bounds(ind ,1):bounds(ind ,2) ,:);

59 i = tauX(bounds(ind ,1):bounds(ind ,2) ,:);
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60 j = tauY(bounds(ind ,1):bounds(ind ,2) ,:);

61 iMin = min(i(:)); iMax = max(i(:));

62 jMin = min(j(:)); jMax= max(j(:));

63 iRange = linspace(iMin -iMin/5,iMax+iMin /5,20);

64 jRange = linspace(jMin -jMin/5,jMax+jMin /5,20);

65 H = zeros(numel(iRange),numel(jRange));

66 h = H;

67 for idx = 1: numel(c)

68 [~,iInd] = min(abs(i(idx)-iRange));

69 [~,jInd] = min(abs(j(idx)-jRange));

70 H(iInd ,jInd)= H(iInd ,jInd) + c(idx);

71 h(iInd ,jInd)= h(iInd ,jInd) + 1;

72 end

73 MkrI = 1;

74 if numel(b) == 1

75 idx = b;

76 else

77 flag = 1;

78 idx = b(2);

79 end

80 ii = i(:,bounds(idx ,1):bounds(idx ,2));

81 jj = j(:,bounds(idx ,1):bounds(idx ,2));

82 cc = c(:,bounds(idx ,1):bounds(idx ,2));

83 %

84 set(f,’Color’ ,[1 1 1],’Position ’ ,[1 1 1001 1001] ,’visible ’,’off’);

85 pause (.5)

86 for idx2 = 1: numel(ii)

87 scatter(ii(idx2),jj(idx2),cc(idx2).^2.*1000 ,[0 0 0],’s’,’

filled ’)

88 hold on

89 end

90

91

92

93

94 ylabel(’\fontsize {20}{0}\ selectfont $\frac{t}{\ tau}$’,’interpreter

’,’latex’)

95 xlabel(’\fontsize {20}{0}\ selectfont $\frac{t}{\ tau}$’,’interpreter

’,’latex’)

96 axis square

97 set(gca ,’fontsize ’ ,20)

98 title([ names{b(1)} ’ vs ’ names{b(2)}],’fontsize ’,30,’fontweight ’,

’normal ’)

99 f.PaperPositionMode = ’auto’;

100 f_pos = f.PaperPosition;

101 f.PaperSize = [f_pos (3) f_pos (4)];

102 n1 = names{b(1)};

103 n2 = names{b(2)};

104 if any(b1 == [12 13 14])

105 n1 = [n1(1) n1];

106 end

107 if any(b2 == [12 13 14])

108 n2 = [n2(1) n2];

109 end
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110

111 print ([ SVGFolder n1 ’_’ n2], ’-deps’)

112

113

114 h = figure(’Color’ ,[1 1 1],’Position ’ ,[994 41 559 1292]);

115

116 subplot (9,1,1:3)

117 plot(ii(:,1),data(bounds(b(1) ,1):bounds(b(1) ,2) ,5),’-ok’)

118 hold on

119 plot(jj(1,:) ’,data(bounds(b(2) ,1):bounds(b(2) ,2) ,5),’--sk’)

120 ylabel(’$\alpha_\mathrm{eff}$’,’fontsize ’,15,’interpreter ’,’latex’

)

121 xlabel(’$\frac{t}{\ tau}$’,’fontsize ’,15,’interpreter ’,’latex’)

122 axis square

123 set(gca ,’fontsize ’ ,20)

124

125 subplot (9,1,5:7)

126 plot(ii(:,1),data(bounds(b(1) ,1):bounds(b(1) ,2) ,7),’-ok’)

127 hold on

128 plot(jj(1,:) ’,data(bounds(b(2) ,1):bounds(b(2) ,2) ,7),’--sk’)

129 axis square

130 set(gca ,’fontsize ’ ,20)

131 xlabel(’$\frac{t}{\ tau}$’,’fontsize ’,15,’interpreter ’,’latex’)

132 ylabel(’$\phi$’,’fontsize ’,15,’interpreter ’,’latex’)

133

134 s3 = subplot (9,1,9);

135 plot(NaN ,NaN ,’-ok’)

136 hold on

137 plot(NaN ,NaN ,’--sk’)

138 axis off

139

140 legend ({ [’$’ names{b(1)} ’$’] [’$’ names{b(2)} ’$’] },’

interpreter ’,’latex ’,’location ’,’northoutside ’,’Orientation ’,’

horizontal ’,’fontsize ’ ,15)

141 print ([ SVGFolder names{b(1)} ’_’ names{b(2)} ’_k’], ’-deps’)

142 clf

143 end

144 end

E.4 Eigen-decomposition Error

1 clear;clc;

2 ep = [.03 .03 .03; .02 .02 .02; .1 .1 .1];

3

4 K = 10^6;

5 err = zeros(K,1);

6 for i = 1:K

7 VGT = 8*rand (3) -4*ones (3);

8 VGTe = VGT +(2*ep*rand (3)-ep.*ones (3));

9

10

11 l1 = eig(VGT);

12 l2 = eig(VGTe);

13 L1 = max(unique(abs(imag(l1))));
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14 L2 = max(unique(abs(imag(l2))));

15 err(i) = abs(L1 -L2);

16 end

17 mean(err)

18 std(err)
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