
Toward a Transparent, Checkpointable Fault-Tolerant Message Passing Interface for
HPC Systems

by

Nawrin Sultana

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 14, 2019

Keywords: MPI, Fault-Tolerant, Checkpoint, Exascale

Copyright 2019 by Nawrin Sultana

Approved by

James Cross, Chair, Professor of Computer Science and Software Engineering
Anthony Skjellum, Co-chair, Professor of Computer Science, University of Tennessee at

Chattanooga
David Umphress, Professor of Computer Science and Software Engineering

Xiao Qin, Professor of Computer Science and Software Engineering
Purushotham Bangalore, Professor of Computer Science, University of Alabama at

Birmingham

Abstract

With each successive generation of large-scale high-performance computing (HPC) sys-

tems, faults and associated failures are becoming more frequent. Long-running applications in

such systems require efficient fault-tolerance support. The Message Passing Interface (MPI) is

the de facto standard for HPC message passing middleware since its first release in 1994. How-

ever, the MPI Standard itself does not provide any mechanism to continue running MPI after

a failure. Thus, there is a growing effort in the MPI community to incorporate fault-tolerance

constructs into MPI. When an MPI program experiences a failure, the most common recovery

approach is to restart all processes from a previous checkpoint and to re-queue the entire job

which incurs unnecessary overhead. The purpose of this dissertation is to design a fault-tolerant

MPI for Bulk Synchronous Parallel (BSP) applications with the goals of efficient failure recov-

ery as well as easy adoption in large-scale production applications. This dissertation describes

a new fault-tolerant model for MPI called “MPI Stages”. We discuss the design, applicability,

and performance of MPI Stages recovery model. Additionally, we provide the minimal MPI

semantics for applications and libraries to use MPI Stages. To demonstrate this new model,

we introduce “ExaMPI”, a modern C++ implementation of a subset of MPI-3.x functionality.

In addition, we analyze applications that use MPI programming model to understand the most

commonly used features and characteristics of MPI in next-generation exascale systems.

ii

Acknowledgments

I would like to express my sincere gratitude to my co-advisor (former advisor) Profes-

sor Anthony Skjellum for his supervision, inspiration, and overwhelming support during my

doctoral study. I’m thankful for all the guidance and opportunities that he has provided me

throughout my Ph.D. study for my academic and professional development.

I would also like to thank my committee chair Professor James Cross and the committee

members— Professor David Umphress, Professor Xiao Qin, Professor Purushotham Bangalore

for their valuable insights and encouragement in completion of my degree. A special thanks to

Professor Robert Nelms for being the external reader of my dissertation.

Furthermore, I express my sincere gratitude to my collaborators Ignacio Laguna and

Kathryn Mohror from Lawrence Livermore National Laboratory (LLNL) for mentoring and

providing me with valuable technical knowledge throughout this work.

I would specifically like to thank my fellow colleague Martin Rüfenacht for his many

contributions and support in completion of my work. I would also like to thank Derek Schafer

and Shane Farmer for their contributions to my work.

Also, I acknowledge the support by the department of Computer Science and Software

Engineering at Auburn University.

Finally, to my spouse, Animesh Mondal and my parents, I cannot thank you enough for

your continued support.

This work was performed under the auspices of the U.S. Department of Energy by Law-

rence Livermore National Laboratory under contract DE-AC52-07NA27344 and with partial

support from the National Science Foundation under Grants #’s 1562659, 1562306, 1617690,

1822191, 1821431, 1918987.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . ix

List of Tables . xii

List of Abbreviations . xiii

1 Introduction . 1

1.1 Motivation . 1

1.2 Dissertation Statement . 6

1.3 Audience . 6

1.4 Outline . 7

2 Background and Related Work . 8

2.1 Terminology . 8

2.2 Large-Scale Programming Models . 9

2.2.1 Message Passing Interface . 10

2.2.2 Bulk Synchronous Parallel . 11

2.2.3 Charm++ . 12

2.2.4 MapReduce . 12

2.2.5 Parallel Virtual Machine . 12

iv

2.3 Characterization of Applications . 13

2.4 Resilience in Large-Scale Systems . 14

2.4.1 Failure Detection . 14

2.4.2 Failure propagation and Consensus . 15

2.4.3 Failure Recovery Models . 16

2.4.3.1 Rollback Recovery . 16

2.4.3.2 Replication-based Recovery 20

2.4.3.3 Application-level Recovery . 21

2.4.3.4 Transactional Resilience Scheme 23

2.4.3.5 Global-Restart . 23

2.4.3.6 Our Approach—MPI Stages 26

3 Understanding the use of MPI in exascale HPC applications 27

3.1 Introduction . 27

3.2 MPI Features Classification . 28

3.3 Data Collection . 30

3.4 Overview of Applications . 32

3.5 Overview of MPI Usage in Applications . 35

3.5.1 MPI Initialization . 35

3.5.2 MPI Communication . 36

3.5.2.1 Communication Calls . 36

3.5.2.2 Communication Characterization 38

3.5.3 MPI Datatypes . 44

3.5.4 Communicators, Groups, and Topology 44

3.5.5 Dynamic Process Management . 46

3.5.6 MPI I/O (File) . 46

v

3.5.7 Error Handling . 47

3.5.8 MPI Tools and the Profiling interface . 47

3.5.9 Overall use of MPI . 48

3.6 Conclusions . 49

4 ExaMPI: A Modern Design and Implementation to Accelerate Message Passing In-
terface Innovation . 50

4.1 Introduction . 50

4.2 Requirements . 52

4.3 Design . 53

4.3.1 Architecture of ExaMPI . 53

4.3.2 Progress Engine Design . 53

4.3.3 Transport Design . 57

4.3.4 Interface . 57

4.3.5 Universe . 59

4.3.6 Runtime . 59

4.3.7 Utilization of C++17 . 60

4.4 Conclusions . 60

5 Failure Recovery for Bulk Synchronous Applications with MPI Stages 62

5.1 Introduction . 62

5.2 Terminology . 64

5.3 Fault Model . 66

5.4 Applicability of MPI Stages . 66

5.5 Design . 68

5.5.1 Interface . 68

5.5.1.1 MPI Objects . 68

vi

5.5.1.2 MPI Functions . 69

5.5.2 Failure Detection . 69

5.5.3 Failure Propagation . 73

5.5.4 Failure Recovery . 74

5.5.4.1 Loading Checkpoint . 76

5.5.4.2 Addressing In-Flight Data . 77

5.5.4.3 Handling Asymmetrical Error Code 77

5.5.4.4 Serialization and Deserialization of MPI handles 79

5.5.4.5 Agreement on epoch . 81

5.6 Sample Fault-Tolerant MPI program . 82

5.7 Implementation . 83

5.8 Conclusions . 86

6 Experimental Design and Evaluation of MPI Stages 87

6.1 Introduction . 87

6.2 Test Environment . 87

6.2.1 Applications . 87

6.2.2 Recovery Models . 88

6.2.2.1 Checkpoint/restart . 88

6.2.2.2 Reinit . 88

6.2.3 System . 89

6.2.4 File System . 89

6.3 Use Cases . 90

6.3.1 Ring Communication . 90

6.3.2 LULESH . 92

6.3.3 CoMD . 96

vii

6.3.4 Matrix Multiplication Library . 98

6.4 Conclusions . 101

7 Future Work . 102

8 Conclusions . 105

References . 107

Appendix . 118

A MPI Functions implemented in ExaMPI . 119

viii

List of Figures

Figure 1.1: Overview of recovery time (grey arrows) of a process failure for different
fault-tolerance approaches. 3

Figure 2.1: Overview of SMP architecture in cluster systems. 10

Figure 2.2: User Level Failure Mitigation (ULFM): After a process failure, the com-
municator is repaired by shrinking it to remove the failed process and the application
continues its execution thereafter. 22

Figure 2.3: Reinit: After a process failure, the application is rolled back to the last
checkpoint and continues execution from there after the MPI state is reinitialized. 24

Figure 2.4: Overview of MPI Stages. The MPI state is checkpointed at the same instance
of the application checkpoint. At a failure, both MPI and application states are restored
by reloading the most recent checkpoints. 25

Figure 3.1: Overhead added by profiling using ping-pong benchmark latency. We ob-
serve that the overhead reduces as we increase the message size. 32

Figure 3.2: Illustration of programming language, model, and library usage. We observe
that almost half of the applications use MPI+OpenMP model and C/C++ is most used
language. 34

Figure 3.3: Illustration of total number of point-to-point (P2P) and collective calls made
by the rank 0 process (left) and the middle rank process (right). We observe that com-
munication is dominated by P2P in terms of call count. 40

Figure 3.4: Total time spent in communication (point-to-point and collective) and com-
putation by the rank 0 process. We observe that majority of applications spent more time
in communication and communication time is dominated by collective operations. 40

Figure 3.5: Total time spent in communication (point-to-point and collective) and com-
putation by the middle rank process. We observe that majority of applications spent more
time in communication and communication time is dominated by collective operations. . 41

Figure 3.6: Overview of MPI point-to-point communication for the rank 0 process. . . . 41

Figure 3.7: Overview of MPI point-to-point (P2P) communication for the middle rank
process. 42

Figure 3.8: Overview of MPI collective communication for the rank 0 process. 42

ix

Figure 3.9: Overview of MPI collective communication for the middle rank process. . . 43

Figure 3.10:Overview of payload distribution by the rank 0 process. 43

Figure 3.11: Illustration of MPI features usage by percentage of applications. We observe
that point-to-point and collective features are most often used. 48

Figure 3.12: Illustration of usage of unique MPI features by applications. We observe
that the majority of applications use a small fraction of the MPI functionality. 49

Figure 4.1: General overview of the ExaMPI library. 54

Figure 4.2: Overview of Dimitrov’s Progress and Notification Classification Diagram (*
Forthcoming modes in ExaMPI). 55

Figure 4.3: Overview of the Progress layer in ExaMPI. 56

Figure 4.4: Overview of the Transport layer in ExaMPI. 58

Figure 4.5: UML diagram describing interface layers of ExaMPI. 59

Figure 5.1: Overview of runtime system dæmon layers of MPI Stages. 72

Figure 5.2: State diagram of fault dæmon. 73

Figure 5.3: State diagram of head dæmon. 74

Figure 5.4: State diagram of controller dæmon. 75

Figure 5.5: Illustration of error detection and propagation in MPI Stages. 76

Figure 5.6: Illustration of execution flow of an MPI program using MPI Stages re-
covery. 77

Figure 5.7: Illustration of asymmetrical error handling. The left figure shows that P0
and P2 are blocked in recovery phase as P1 has finalized. The right figure shows the
solution to complete the recovery by using a barrier. 78

Figure 5.8: Illustration of serialization and deserialization of MPI handles with external
libraries. 79

Figure 5.9: Illustration of agree/commit consensus algorithm (epoch∗ is the last suc-
cessful epoch of failed process). 81

Figure 5.10: Illustration of UML description of Stages interface. 85

Figure 6.1: Illustration of Ring communication with 3 processes. Here, the process P0
fails after completion of second ring. 90

x

Figure 6.2: Recovery time of MPI Stages, Reinit, and CPR for a single process fail-
ure in Ring microbenchmark. We observe that MPI Stages recovers faster compared
to Reinit and CPR. 91

Figure 6.3: Illustration of sample simulation of BSP applications. Here, process P0 fails
during second cycle/time step of simulation loop. 92

Figure 6.4: Recovery time of MPI Stages, Reinit, and CPR for a single process failure
for LULESH (strong scaling with 383). We observe that MPI Stages reduces the
recovery time compared to both CPR and Reinit. 93

Figure 6.5: Reduction in recovery time using agree/commit consensus. 94

Figure 6.6: Application checkpoint time of LULESH using different file systems. 95

Figure 6.7: Comparison of times for MPI Stages. 96

Figure 6.8: Time taken by individual MPI Stages interface functions (LULESH strong
scaling with 383). 97

Figure 6.9: Recovery time of MPI Stages, Reinit, and CPR for a single process failure
for CoMD with a problem size of 4000 atoms for processes 1 to 8 (strong scaling) and
64000 atoms for 16 processes. 98

xi

List of Tables

Table 1.1: Performance of Petascale and Exascale Systems 2

Table 3.1: Application overview . 33

Table 3.2: MPI calls used for communications . 37

Table 3.3: MPI calls invoked by application during a run 39

Table 3.4: Usage of MPI derived datatypes . 45

Table 3.5: Usage of MPI communicator, group, and topology 46

xii

List of Abbreviations

API Application Programming Interface

BLCR Berkeley Lab Checkpoint/Restart

BSP Bulk Synchronous Parallel

CPR Checkpoint/restart

ECP Exascale Computing Project

FA-MPI Fault-Aware MPI

FTI Fault-Tolerance Interface

FT-MPI Fault-Tolerant MPI

HPC High Performance Computing

I/O Input/Output

LFLR Local Failure Local Recovery

MM Matrix Multiplication

MPI Message Passing Interface

MTBF Mean-Time between Failure

P2P Point-to-Point

PMPI Profiling Message Passing Interface

xiii

RMA Remote Memory Access

RTS Run-Through Stabilization

SCR Scalable Checkpoint/restart

SMP Symmetric Multi-processor

SSD Solid State Drive

ULFM User-Level Failure Mitigation

UML Unified Modeling Language

xiv

Chapter 1

Introduction

1.1 Motivation

The computation power of high-performance computing (HPC) systems is expected to increase

from Peta (1015) to Exa (1018) Floating Point Operations (FLOPs). The coming exascale

systems will require the simultaneous use and control of millions of processing, storage, and

networking elements. Based on data from top500.org, the peak performance of the top super-

computers doubles roughly every 14 months [1]. To maintain this performance growth predic-

tion, system designers should increase the processing power through a combination of increase

in microprocessor clock frequency, the number of sockets, and the number of cores. Because

of power limitations of transistors, microprocessor clock frequency remains relatively constant

nowadays [2]. So, to increase performance, exascale systems require to increase the number of

components. An exascale system is expected to have thousands of cores per computing node,

with millions computing cores to reach the required level of performance. The first two ex-

ascale supercomputers in US, Aurora and Frontier will be built by 2021. Table 1.1 shows the

performance of top two petascale and exascale (expected) supercomputers in US.

As the hardware components and the software complexities increase in HPC systems,

the failure rate is also anticipated to increase. One of the hardest problems in these systems

will be the ability to provide reliability and availability. With a large number of hardware

components involved, future exascale systems are expected to exhibit much higher fault rates

than current systems. Such increase in the failure rate will decrease the Mean-Time Between

Failures (MTBF) of the system. It is anticipated that the mean-time to failure could be less than

1

Table 1.1: Performance of Petascale and Exascale Systems

Rank Petascale Exascale (expected)

System
Performance
(RPEAK) Cores System

Performance
(RPEAK) Cores

1 Summit 200 PFLOPS 2,414,592 Frontier ∼1.5 EFLOPS N/A
2 Sierra 125 PFLOPS 1,572,480 Aurora ∼1 EFLOPS N/A

one hour in exascale systems [3, 4]. This frequent failure will cause difficulty for applications

to make forward progress. Long-running scientific applications that are expected to run on

future exascale systems will require better application-level support to tolerate frequent failures

efficiently [5].

The Message Passing Interface (MPI) is the de facto standard for HPC message passing

middleware. Most HPC applications use MPI data communication. The HPC community

is likely to continue using MPI in future exascale systems for its flexibility, portability, and

efficiency [6]. Although MPI is a widely used programming model for large-scale scientific

applications, it has limited support for fault tolerance. The MPI Standard itself does not provide

any mechanism to continue running MPI after a failure. The MPI Standard states:

“After an error is detected, the state of MPI is undefined.” (MPI Standard 3.1, Page 340)

However, MPI provides several predefined error handlers. Also, an application can use its

own error handler. The default behavior of MPI is to abort all running processes if case of a pro-

cess failure. To overcome this shortcoming, several approaches have been proposed to address

how failures can be tolerated in MPI. Although it is agreed that better fault tolerance solutions

for MPI would be beneficial, the question of how and at what level these must be implemented

has yet to be answered. Existing fault-tolerance programming models for MPI applications can

be broadly classified as (i) rollback recovery: restart MPI application from a previously saved

program state; (ii) error code dependent: checking returned error codes per MPI operation

where, if an error is detected, recovery takes place; (iii) try/catch blocks, where groups of MPI

operations are protected; (iv) global-restart, where the state of MPI is globally reinitialized and

cleaned up upon a failure. None of these has yet been integrated to the MPI Standard. Many

of them are too difficult to use or too complex to adopt in existing codes. As a result, in HPC

2

Resources allocated Program data initialized

Program checkpoint loadedApproach 1: Checkpoint/Restart (CPR)

Approach 2: Global-Restart Program checkpoint loaded

MPI state is created, e.g.,
communicators

MPI is setup

Checkpoint stored Checkpoint stored

MPI and program checkpoint loaded
(MPI and program state is recovered)Our approach: MPI Stages

New process enters the loop and avoids initialization phase

Recovery time

Recovery time

Recovery time

User submits
job

Program
begins

Main loop
begins

End of
iteration 1

Process
failure

Time

End of
iteration 2

Figure 1.1: Overview of recovery time (grey arrows) of a process failure for different fault-
tolerance approaches.

applications, rollback recovery or checkpoint/restart (CPR) is still the most common approach

of fault tolerance. So, any new fault-tolerant method needs to be easily adoptable with existing

codes. Most HPC applications follow bulk synchronous programming (BSP) model. Based on

the programming complexity, feasibility of implementation and performance, the global-restart

model is the best option for large-scale, bulk synchronous codes as it resembles the fault tol-

erance semantics of CPR. The ideal solution for developers of MPI-based applications is that

the system (or the runtime) transparently replace a failed process, which implies that it has to

restore the previous state prior to the failure. While one can retrieve and restore the application

data, one cannot do so with MPI state. This is why we need a solution that allows to save (resp,

retrieve) the MPI state before (resp, after) failures.

In this dissertation, we present a new global-restart approach MPI Stages for transpar-

ent fault tolerance support to MPI. This approach requires minimal application code refactor-

ing; hence it is easy to adopt in large-scale HPC codes. In our approach, the failed processes are

transparently replaced by the MPI runtime and the state of MPI and application are recovered

from a saved checkpoint.

Motivating Example. Bulk synchronous HPC applications typically follow a common

programming pattern that comprises two main components: program initialization and a com-

putation loop. At the beginning of the program, the program initializes its data, then calls

MPI Init() to create MPI state. Then the program enters the main computation loop and

every n iteration in this loop, the program takes a checkpoint of its state.

3

Let us consider a bulk synchronous application executing the main computation in a loop.

Here, we assume that a process has failed during iteration 3. Figure 1.1 shows the failure

recovery time using different fault tolerance approaches. For traditional CPR (approach 1), a

process failure triggers an entire job restart. The recovery starts by the user resubmitting the

job. The system allocates all the resources again for the MPI job. The program initializes all

data and MPI Init creates all MPI state. Then, the program loads the application checkpoint

and starts execution from iteration 3. Thus, recovery time includes a new job submission, delay

while the program is selected to run in the queue again, program and MPI state initialization,

and loading the program checkpoint.

Approach 2 in Figure 1.1, global-restart, reduces recovery time since all processes start

from the beginning of the program without a job restart. Global-restart then initializes all

program data and reinitializes MPI. Then, the execution starts from iteration 3 by loading the

program checkpoint. As shown in Figure 1.1, the recovery time includes program and MPI

state reinitialization and loading the program checkpoint, the sum of which is faster than the

traditional CPR. Because the job is not restarted, this method avoids job/resource re-allocation

time, enabling the reuse of existing process connections, and enabling the application to load

checkpoints from memory (if they exist) for live processes.

Our Approach: MPI Stages. In our approach, the goal is to allow all processes to start

execution from the main computation loop instead of from the main program. We introduce the

concept of an MPI state checkpoint to replace a failed process transparently [7, 8, 9, 10]. At

the end of n iterations (as defined by the application), we store a checkpoint of MPI state along

with the program state. Figure 1.1 shows that, all processes start from iteration 3 by loading

both the program and MPI state, which removes the requirement of program data and MPI state

initialization for the live processes along with the need for job restart.

In global-restart, all processes perform the reinitialization in parallel. The initialization

phase is application dependent so the recovery time will vary based on it.

In MPI Stages, recovery time is independent of the application initialization time since

live processes avoid it.

At high-level, the benefits from our method are:

4

• Reduced Recovery Time: We replace the failed process with a new instance that repairs

both the program and MPI state faster than previous approaches as no initialization of

state is required. This leads to faster recovery as the new process can quickly continue

from where the failed one stopped.

• Ease of Adoption: As shown in Figure 1.1, traditional CPR takes a program checkpoint

after a certain number of iterations. Our approach matches the semantics of CPR. It adds

an extra checkpoint for MPI state along with that program checkpoint; hence, it is easy

to adopt.

• Complete Recovery: The program does not shrink the communicator(s) involved as in

other approaches (e.g., ULFM), thus allowing the application to continue without com-

plex reconfigurations (e.g., continuing execution with n − 1 processes).

• No Language Dependency: We do not use any programming language specific seman-

tics. The Reinit model uses setjmp/longjmp of C language which is not supported in

Fortran. Our model is applicable in both C and Fortran MPI program.

A fundamental challenge with this model is that we must be able to manage and capture

MPI state during normal operation in a meaningful and complete way. Our goal is to develop a

prototype of MPI Stages as a proof-of-concept. However, the difficulty of deep experimen-

tation with existing MPI implementations—which are quite large and complex—substantially

raises the cost and complexity of proof-of-concept activities. It also limits the community of

potential contributors to new and better MPI features and implementations alike. Also, we find

that most MPI applications use a small set of functionality from MPI Standard [11, 12, 13],

which means the complexity associated with full API support isn’t needed for many kinds of

applications and, hence, application experiments. These motivate us to introduce ExaMPI [14],

a modern C++ implementation of a subset of MPI-3.x. The goal is to enable researchers to

experiment rapidly and easily with new concepts, algorithms, and internal protocols for MPI.

We implement a prototype of our fault-tolerant model on ExaMPI.

5

1.2 Dissertation Statement

Scientific applications that are expected to run on future exascale systems will require better

application-level support to tolerate frequent failures efficiently. The purpose of this disser-

tation is to demonstrate an efficient approach to fault tolerance for HPC applications that use

MPI programming model. Our goal is to design an application-level fault-tolerant MPI that

will achieve faster recovery from failure compared to the state-of-the-practice models as well

as easily conform with existing codebases with no language dependency. This dissertation

achieves its goal as follows:

• Characterize the communication and usage patterns of MPI in exascale applications.

• Design and implement a new research MPI library with a subset of functionality to focus

on fault tolerance and optimization on such subsets.

• Design and prototype a checkpoint-based fault-tolerant model for MPI that transparently

replaces the failed processes.

• Demonstrate the performance of our recovery model by comparing it with other fault-

tolerant models of MPI.

1.3 Audience

The audience of this dissertation are both MPI and application developers and researchers who

seek to investigate new and diverse functionality with MPI.

• HPC developers and researchers investigating in fault-tolerance for large-scale systems

may find MPI Stages very useful. Also, the Fault-Tolerant Working Group (FTWG) in

MPI Forum may utilize some features of MPI Stages in the standardization of MPI in

presence of failure.

• MPI implementation developers and HPC centers can utilize the pattern of MPI usage in

exascale applications to allocate resources for optimizing the most commonly used MPI

features.

6

• MPI researchers can utilize our experimental MPI library for quick and easy prototype

implementation of new features and ideas.

1.4 Outline

The remainder of this dissertation is organized as follows: Chapter 2 provides background

work and related literature about fault-tolerance in parallel systems. Chapter 3 describes the

characterization of future exascale applications using static and dynamic analysis. Chapter 4

introduces the design and implementation of the new MPI implementation, ExaMPI. Chapter 5

introduces the design and implementation of the failure recovery model, MPI Stages along

with MPI API extension required to use it in applications and libraries. Chapter 6 presents

the experimental design and evaluation of MPI Stages. Chapter 7 discusses the future work

related to this dissertation. Finally, we summarize the research in Chapter 8.

7

Chapter 2

Background and Related Work

There are several methods available to tolerate failure in MPI. However, the increase of machine

scale necessitates the exploration of new ideas of fault tolerance as the lack of appropriate

resilience solutions is expected to be a major problem at exascale. In this chapter, we provide

background information and related literature on resilience to establish adequate context for

the rest of the dissertation.

2.1 Terminology

In this section, we offer the basic terminologies related to resilience in parallel and distributed

systems.

Error— An error is the deviation of one or more external states of the system from the

correct service state.

Fault— The hypothesized cause of an error is called a fault. Only when a fault becomes

active it results in an error, otherwise it is dormant. Faults can occur in both development

and operational phases of a system. Here, we only address the operational faults. Software,

hardware, environment, and human can cause faults. However, software and hardware faults

are predominant in supercomputers with hardware responsible for more than 50% and software

around 20% of all failures [2].

Failure— Failure is the diversion of a system from its correct behavior. One or more errors

can become effective and cause a system to encounter failure. A failure in a subsystem or a

component can cause a fault in other parts of the system. Failure can happen at any part of

8

software stack, operating system and kernel. The cause of software errors can be bugs in the

implementation. File system and disk failures happen at the storage level. Even planned or

unplanned hardware maintenance can cause applications to fail.

Fault Tolerance— The ability of a system to survive failures. There are several phases of

fault tolerance (e.g., error detection, notification, recovery). Different levels of the stack (e.g.,

hardware, system, application software) can be involved in fault tolerance of a system.

Resilience— The ability to keep applications executing to a correct result despite underly-

ing system faults. We use it interchangeably with fault tolerance in this dissertation.

Mean-Time To Failure (MTTF)— The average time it takes for a system to fail after re-

covering from the last failure.

Mean-Time Between Failures (MTBF)— The average time between two consecutive fail-

ures in a system.

Fail-stop failure— A condition in which a running process stops responding because of

reasons such as: node failure caused by defective hardware, process crash caused by segmen-

tation faults and other software related issues. It impacts one or more processes and needs

application intervention for recovery.

Transient soft faults— Transient soft fault happens in memory through unwanted bit-flips.

Causes of these faults can be cosmic rays, low voltage, or simply the age of components. Some

transient failures are detectable while others not.

Byzantine fault— When the sequence of steps of a system become arbitrary or malicious,

hence, any type of behavior can be observed. Byzantine fault can lead a system from one valid

state to another valid, but incorrect state.

2.2 Large-Scale Programming Models

In this section we provide background on several popular parallel programming models. We

detail different aspects of Message Passing Interface (MPI) programming model, which will

help us explain some of our findings later on.

9

CPU CPU

CPU CPU

Shared	
Memory

Node1

CPU CPU

CPU CPU

Shared	
Memory

Node2

CPU CPU

CPU CPU

Shared	
Memory

Node3

Network	 Interconnect	
(e.g.,	 Ethernet,	 InfiniBand)

Figure 2.1: Overview of SMP architecture in cluster systems.

2.2.1 Message Passing Interface

MPI is a message passing library standard based on the consensus of the MPI Forum, which

involve approximately 40 organizations that include major vendors of concurrent computers,

researchers from universities, government laboratories, and industry mainly from United States

and Europe. The goal of MPI is to establish a portable, efficient, and flexible standard for

writing message passing programs. Because of its portability, efficiency, and flexibility, MPI

has become the ‘standard’ for writing message passing programs on HPC platforms.

MPI primarily addresses the message-passing parallel programming model: moves data

from the address space of one process to another process through cooperative operations on

each process. Originally, MPI was designed for distributed memory architectures. However, as

architecture trends changed, shared memory Symmetric Multi-processors (SMPs) were com-

bined over networks creating hybrid distributed/shared memory systems. Figure 2.1 shows the

SMP architecture used in cluster system. MPI libraries adapted itself to handle both distributed

and shared memory SMP architectures. It also supports different network interconnects (e.g.,

Sockets, InfiniBand).

MPI Standard. The MPI standardization effort was formally started in early 1993 to facil-

itate the development of parallel applications and libraries. The first MPI specification (version

10

1.0) was released in May 1994. Since then the MPI Forum has released several versions (major

and minor) of the MPI Standard. Several new features (e.g., dynamic process management,

one-sided communication, MPI I/O) have been introduced in version 2.0. Another major up-

date to the MPI Standard is version 3.0. The MPI-3.0 standard contains significant extensions

to MPI functionality, including non-blocking collectives, new one-sided communication oper-

ations, and Fortran 2008 bindings. The latest version of MPI Standard is MPI-3.1 [15]. The

MPI Forum is currently working on MPI-4.0.

MPI Implementation. Although the MPI programming interface has been standardized,

actual library implementations differ from each other. The implementations vary based on

several factors, such as the supported version of MPI Standard, supported features, supported

network interfaces, how are MPI jobs launched, etc.

MPI implementations have existed since 1993, commencing with MPICH [16]. Over the

past 26 years, MPICH, Open MPI [17], LAM/MPI [18], and other open source MPIs have

grown in size, complexity, support, and usership. Commercial MPI products based on original

code (open source derivatives) were also created, and some of them are still in use today.

During this time, there has been consistent and even growing interest in experimenting

with MPI in terms of additions, changes, and enhancements to implementations and function-

ality. Commercial and free derivative products of these open implementations have also been

successful, such as Cray MPI [19], Intel MPI [20], IBM Spectrum MPI [21], and MVAPICH

[22].

2.2.2 Bulk Synchronous Parallel

The Bulk-Synchronous Parallel (BSP) model was proposed by Valiant as a standard interface

between parallel software and hardware [23]. The BSP model consist of three parts: the com-

ponent which performs memory operation and computation jobs, the router which works as a

message transfer unit between components, and the barrier synchronization unit for synchro-

nizing all memory and data transfer units. Basically, in the BSP model, a component calls a

number of local computations and remote data transfer operations in a time limit L as a super-

step (or just number of operations instead of time for measuring limit), then all operations are

11

synchronized using a barrier (simply blocks until all operations are completed). Most of todays

scalable applications in large government supercomputers are based on the BSP model.

2.2.3 Charm++

Charm++ [24] was introduced as a language similar to C++ with a few extensions such as

movable objects or tasks called Chares. Chares can be moved dynamically in the system and

be placed in appropriate locations and provide a better support for load balancing and per-

formance tuning. Failed chares can be moved to a safe location without restarting the entire

application stack. Charm++ separates sequential and parallel objects. One of current Charm++

implementations is on top of MPI.

2.2.4 MapReduce

MapReduce [25] is a high level large-scale data processing model that is used extensively in

industry and academia. MapReduce has two main functions implemented by the user applica-

tion: MAP and REDUCE. The MAP function is used for creating a list of key-value pairs and

then allowing REDUCE function to do specific reduce operations on key-value pairs generated

by the MAP function. It was introduced by Google and has several industry implementations

such as Apache Hadoop. MapReduce is a distributed scheme, and normally fault-tolerance is

achieved through replication of data into neighboring nodes and rescheduling individual tasks

after node failures.

2.2.5 Parallel Virtual Machine

Parallel Virtual Machine (PVM) [26] was designed to enable a collection of heterogeneous

computers interconnected by networks to be used as a coherent and flexible simultaneous com-

putational resource. It provides a straightforward and general interface for the programmer.

PVM supported both shared-memory and message passing paradigm of communication. It

also included the support for failure detection and notification. Although PVM was a step to-

wards the modern trends in distributed processing, it has been replaced by the introduction of

MPI Standard.

12

2.3 Characterization of Applications

Characterization helps to understand application behavior and provides insight to focus on

important design aspects. Both static and dynamic characterization is used to understand the

use of MPI in large-scale applications.

While a number of surveys have reported on the use of general-purpose programming

language in scientific and non-scientific programs [27, 28, 29] few studies have focused on

the use of the MPI programming model. As far as we know, the first survey of MPI usage in

scientific codes goes back to 1997 [30]. This work evaluated the use of the MPI programming

model and of other models, such as PVM in scientific codes. The goal of this study was not to

understand the use of MPI functionality but to evaluate the impact of software complexity of

these models and its implications to runtime performance.

More recently, a number of attempts has been made to understand the use of MPI better.

A survey of MPI usage in the US exascale computing project (ECP) is presented in [31]. This

study focused on applications of the US ECP projects only. The goal was to understand the

applications needs around MPI usage and surveyed issues related to possible problems of ECP

codes with respect to the MPI Standard, whether current codes expect to use MPI at exascale,

and questions about the dynamic behavior of codes. Previous work have reported MPI calls

usage in production programs in specific HPC systems and centers. Rabenseifner [32] reports

MPI calls usage in a Cray T3E and SGI Origin2000 systems.

MPI provides a profiling interface (PMPI) that can be used to collect different information

about a set of MPI routines. A number of profiling tools have been developed using PMPI

interface to characterize MPI applications.

MPIP [33] tool gathers performance data of scalable applications using profiling, MPI

tracing, and accessing hardware counters. This empirical data is used to recommend architec-

tural enhancements of those applications.

TAU [34] framework also provides an MPI wrapper to intercept MPI calls and track vari-

ous information for performance analysis.

13

Darshan [35] is a I/O characterization tool designed to continuously monitor application

I/O behavior in petascale systems. This characterization could help predict the I/O needs of

future extreme scale applications.

Autoperf [36] is a lightweight MPI monitoring tool. It is intended to monitor the MPI

usage of all jobs on a system rather than profiling a specific execution. The MPI usage logs

collected from Autoperf are used to provide key insights into the use of MPI in production.

In a more recent study, Laguna et al. [12] present the first large-scale study of the MPI

usage of applications. This survey statically analyzed more than one hundred distinct MPI

programs covering a significantly large space of the population of MPI applications. It focused

on understanding the characteristics of MPI usage with respect to the most used features, code

complexity, and programming models and languages.

2.4 Resilience in Large-Scale Systems

As HPC systems grow exponentially in scale, there is a growing concern of fault tolerance in

such systems for long-running applications. As hardware and software failure may occur more

frequently in scale while long-running parallel applications are being executed, the overall

system reliability, serviceability, and availability (RSA) has become a major concern in such

systems.

Fault Tolerance is the capability of a system (e.g., processor, network device) to continue

correct execution after it encounters failures. Though the system continues to function, the

overall performance may get affected. An efficient fault-tolerant system should not only min-

imize the failure-free overhead, but recovery operations should also be fast. There are several

considerations (e.g., how to detect failure, how to notify others about failure) while designing

a fault-tolerant system. In this section, we discuss different phases of fault tolerance.

2.4.1 Failure Detection

The first step of fault tolerance is to detect a failure. The purpose of a fault detector in dis-

tributed and parallel systems is to detect both local and remote failures. A perfect fault de-

tector provides two guarantees— (a) Accuracy: no process is reported as failed until it has

14

actually failed and (b) Completeness: all surviving processes are eventually notified about the

failure [37].

Heartbeat [38] is a failure detector for quiescent reliable communication in asynchronous

message passing systems implemented without timeouts in systems with process crashes and

lossy links. Here, each node sends a signal to its target nodes at a certain interval. A process

considers a remote process as failed if it does not receive a signal from that remote process for

a certain amount of time.

Gossiping [39] is another failure detector for distributed systems. In gossip protocol, at

every Tgossp time, each process increments its heartbeat counter (use for failure detection)

and sends it to a randomly selected process. A process is considered failed, if the heartbeat

counter has not increased for more than Tƒ seconds.

2.4.2 Failure propagation and Consensus

Error propagation disseminates the information about failures to other peers. In MPI, a pro-

cess may wait for a message from another failed process forever which may eventually cause

deadlock. So, it’s necessary to notify other peers about the detected failures. Also, failure

propagation is one of the properties of a perfect fault detector (see Section 2.4.1). Another fun-

damental building block of fault tolerance in distributed computing is consensus. Consensus

algorithm is used among peers to achieve a unique decision.

Two-Phase Commit [40] protocol uses a linear-scale consensus algorithm. One of the pro-

cesses acts as a coordinator and others are called participants. In the first phase, the coordinator

initiates a request for vote to all processes (except the failed ones) and they respond with either

commit or abort. In the second phase, the coordinator decides (commit or abort) based on the

responses and broadcasts it to all participants. However, if the coordinator fails before broad-

casting the decision, then all participants would wait until the coordinator recovers. Hursey et

al. [41] presented a modified log-scale Two-Phase Commit algorithm that removes the block-

ing requirement when the coordinator fails. Here, a termination detection algorithm is added

where a participant can linearly ask other participants whether they have received the decision

or not.

15

Three-Phase Commit [42] eliminates the need for blocking in Two-Phase Commit algo-

rithm by adding another round of messages to it. Here, the coordinator broadcasts a ready for

commit message before broadcasting the commit message which allows participants to make

a uniform decision without blocking when the coordinator fails. If the coordinator fails before

sending the ready message, the participants will abort after a timeout. One the other hand, if

the coordinator fails after the ready message and before the actual commit, participants will

commit on timeout. However, this algorithm adds more overhead as it includes another round

of operations.

Paxos [43] is another consensus algorithm that scales as well as the Two-Phase Commit

algorithm while being non-blocking. While other algorithms can only tolerate process failure,

Paxos can also tolerate network partitioning. However, it has proven challenging to understand

and develop it in practice [44].

2.4.3 Failure Recovery Models

The goal of fault tolerance is to return an application to a consistent, error-free state after a

failure. Several models have been designed to make MPI applications fault tolerant. These

models differ in their design, types of failures they address, implementation approaches, and

underlying protocols. Next, we review related work on providing fault-tolerance abstractions

to MPI programs.

2.4.3.1 Rollback Recovery

Rollback recovery attempts to restart the application from a previously saved state after a fail-

ure. It is the most commonly used recovery mechanism in HPC systems. The two major

rollback recovery techniques are checkpoint/restart and message logging.

Checkpoint/restart. The most common instance of rollback recovery is synchronous

checkpoint/restart (CPR). A checkpoint is a snapshot of the state of the process at a particular

point so that it could be restarted in case of a failure. In traditional checkpoint/restart (CPR),

the application periodically saves its state, and when a process fails, the job is killed and resub-

mitted by the user; the application then loads the last checkpoint and continues execution. For

16

large-scale HPC systems, CPR is the fault-tolerance method of choice. However, all processes

require to be in a global consistent state for checkpointing. This process of establishing a con-

sistent state may cause domino effect—may force some of the processes that did not fail to roll

back to an earlier checkpoint [45]. This domino effect may lead the application to its initial

state. Different CPR methods have been studied for HPC systems.

Uncoordinated checkpointing allows each process to checkpoint independently which re-

duces runtime overhead during normal execution [46]. However, it increases the storage over-

head as each process maintains multiple checkpoints. Also, it might be difficult to find a global

consistent state and might lead to domino effect.

Coordinated checkpointing enforces each of the processes to synchronize their check-

points. It’s not prone to the domino effect. Storage overhead is also reduced as each process

maintains only one checkpoint. However, it adds overhead as global checkpoint requires inter-

nal synchronization prior to checkpointing. CoCheck [47] provides transparent checkpointing

to MPI applications using a coordinated checkpoint/restart mechanism. To avoid global incon-

sistencies and domino effect, all processes synchronously flush their in-transit messages before

checkpointing. In case of failure, the entire MPI application restart from the last checkpoint.

CoCheck sits on top of the MPI library and uses an existing single process checkpoint method.

Unfortunately, current automatic CPR techniques might not be realistic in future exascale

systems. As it is anticipated that the Mean Time Between Failure (MTBF) will be smaller than

the time required for checkpointing and restarting [3].

Multi-level checkpointing uses system storage hierarchy to achieve low cost checkpoint-

ing in large-scale HPC systems. At scale, the cost in time and bandwidth of checkpointing

to a parallel file system becomes expensive. Multi-level checkpointing uses lightweight and

faster checkpoints to handle the most common failures and uses parallel file system check-

points only for severe and less common failures. Scalable Checkpoint/Restart (SCR) [48] and

Fault Tolerance Interface (FTI) [49] are multi-level checkpoint libraries that use memory, Solid

State Drive (SSD) storage, local disk, and parallel file system to save checkpoints. While SCR

keeps the file interface abstraction, FTI provides a data structure abstraction, masking from the

programmer how the data to be saved is actually managed by the library. Applications can

17

achieve significant performance gains by reducing checkpoint overhead with the use of these

multi-level checkpointing.

There are three main approaches to implement checkpoint/restart.

In Application-level implementations, the checkpointing activities are carried out by the

application. Basically, the application becomes responsible for saving checkpoint in persistent

storage and restarting the application from a checkpoint after failure. One of the major benefits

of this approach is that it can reduce checkpoint overhead by storing only the information nec-

essary for restating the application (small checkpoint size). However, it lacks transparency and

requires the programmer to have a good understanding of the application. Cornell Checkpoint

(pre)Compiler (C3) [50] is an application-level checkpoint implementation where the applica-

tion defines a set of directives and C3 replaces these directives with necessary checkpoint/restart

functions in compile time.

In User-level implementations, checkpoint/restart is implemented in user-level libraries

and linked to the application. This approach is not transparent to user as the application needs

to be modified for linking to the checkpointing libraries. Libckpt [51] is an example of user-

level checkpoint implementation. Distributed MultiThreaded CheckPointing (DMTCP) [52]

is another example of user-level checkpoint that supports both traditional high-performance

applications and typical desktop applications. DMTCP supports a transparent way to check-

point with no re-compilation and re-linking of user binaries. It is agnostic to the underlying

message passing library and does not require kernel modification. However, DMTCP is not

network agnostic. A recently introduced checkpoint/restart method, MANA (MPI-Agnostic

Network-Agnostic Transparent Checkpointing) [53], supports all combinations of the many

MPI implementations and underlying network libraries. It uses a split-process approach, which

separates the process memory into two halves. The lower half memory is associated with the

MPI library and dependencies, while the upper half is associated with the MPI application’s

code. Only the upper half memory is saved or restored during checkpoint and restart. At restart

time, the lower half can be replaced with new MPI libraries. To maintain consistent handles

across checkpoint/restart, MANA records any MPI calls that can modify the MPI states and

recreates those states by replaying the recorded calls during restart.

18

System-level checkpointing is implemented in either hardware or kernel. It is transparent

to the application and no modification of application is required. Usually, a snapshot of the

full-system is saved in a checkpoint. So, in large scale systems it can be impractical because

of the checkpointing size. Also, system-level checkpointing is not portable to other platforms.

Berkeley Lab Checkpoint/Restart (BLCR) [54] is a system-level CPR library. Several MPI

implementations, including Open MPI, MPICH, LAM/MPI, added BLCR support.

Message Logging. In log-based rollback recovery, sent and received messages by each

process are recorded in a log along with the checkpoint. The recorded message log is called a

determinant. In case of a process failure, it can be recovered using the checkpoint and reapply-

ing the logged messages. Typically, there are three types of message logging protocols.

Pessimistic logging synchronously logs the determinant to stable storage before it is al-

lowed to affect the computation [55]. However, synchronous logging incurs a performance

overhead as process is blocked while it logs determinant. This overhead can be lowered by

using fast non-volatile memory for stable storage [56]. Bouteiller et al. [57] provides a model

of pessimistic message logging protocol for MPI applications which reduces the overhead of

message logging when no failure occurs by reducing the intermediate message copying.

Optimistic logging asynchronously logs the determinant to stable storage [58]. It assumes

that the logging will complete before a failure occurs. Optimistic logging incurs little overhead

in fault-free mode as it does not block the application while logging determinants from volatile

storage to stable storage. However, it complicates the recovery process as volatile storage may

lose the content.

Casual message logging has the advantages of both pessimistic and optimistic message

logging [59]. Here, processes piggyback their non-stable determinants to other processes while

sending messages. Only the most recent checkpoint on stable storage is required for rollback

which reduces the storage overhead. However, it requires complex recovery protocol.

A quantitative assessment on different fault tolerance protocols shows that message log-

ging will exhibit poor efficiency in extreme scale [60].

19

2.4.3.2 Replication-based Recovery

Replication is another strategy to achieve fault tolerance in distributed systems. However, it

has been considered too costly for large HPC applications because of the increased amount of

resource requirement.

N-version programming [61] is a replication-based method of building fault-tolerant soft-

ware. It requires multiple independent implementations (“N” versions) of a specification.

These versions run in parallel on a similar environment with identical inputs and produce its

version of the output (ideally the same). The system uses the outputs of the majority, in case

the results differ.

Practical Byzantine-fault-tolerant [62] method describes an algorithm to survive Byzan-

tine faults in asynchronous systems using active replication (state machine replication). This

method replicates the state machine across different nodes in a distributed system. It requires a

minimum of 3ƒ + 1 replicas where ƒ is the maximum number of replicas that may be faulty.

Byzantine-fault-tolerant algorithms can allow a system to continue to work correctly even when

there are software errors.

PAREP-MPI [63] is an MPI implementation that uses process replication to support fault

tolerance in exascale systems by utilizing the MPI profiling layer (PMPI). It supports proactive

fault tolerance using partial replication of a set of application processes. PAREP-MPI adaptively

changes the set of replicated processes based on failure predictions. It also minimizes the

resource wastage by keeping the number of replica processes to a minimum.

Intra-parallelization [64] is another process replication based fault tolerance model for

MPI HPC applications. This model does not rely on failure prediction. Intra-parallelization

replicates all processes instead of partial replication. When an MPI processes is replicated,

both communication and computation steps are replicated on all replicas. Intra-parallelization

introduces work-sharing between the replicas by avoiding full replication of computation steps.

Instead, a computation step is divided into tasks; only one replica executes a task and sends the

result to other replicas.

20

2.4.3.3 Application-level Recovery

Application-level recovery involves application user in the recovery process. The recovery

model returns control to the application and lets the application react to a failure. Application-

level failure recovery for MPI requires significant application changes and extension of the MPI

interface.

Fault-Tolerant MPI (FT-MPI) [65] is one of the notable efforts to achieve fault tolerance

for MPI applications by providing application programmers with different methods of dealing

with failure rather than just using checkpoint/restart. Typically, application detects an error

by checking the return code of any MPI call. After a failure, FT-MPI lets the user rebuild

any communicators by—(a) SHRINK: removes failed processes and creates a new shrunk

communicator which may change the rank of the processes, (b) BLANK: keeps gap in the

communicator which creates invalid processes in the communicator, (c) REBUILD: creates

new processes to replace the failed ones, or (d) ABORT: forces a graceful abort of the applica-

tion. It also allows various modes of communication after failure—(a) NOP: returns an error

code for any communications and (b) CONT: continues communication for nodes not affected

by failures. FT-MPI is not transparent to the application and increases code complexity.

Run-Through Stabilization (RTS) [66] is another proposal to introduce failure handling to

MPI. Run-Through Stabilization allows the application to continue its execution even with fail-

stop process failure. It introduces new construct to MPI and provides a perfect failure detection

for fail-stop process failure via error handlers. In order to continue execution, it introduces

the ability to validate communicators when failure occurs and allows the application to use

these communicators. Unfortunately, this introduces implementation complexity and was not

adopted in the MPI standard.

User Level Failure Mitigation (ULFM) [67, 68, 69] is an approach of fault tolerance for

MPI applications proposed by the Fault Tolerant Working Group of the MPI Forum. ULFM

supports fault tolerance in MPI through a set of interfaces (API extension) exposed to the user.

To recover from a process failure, it creates a new communicator (not replace) by excluding the

failed processes and continue execution. Figure 2.2 shows an overview of the mechanism to

21

MPI	 process

Original	
Communicator

Process	 Failure Repaired	 shrunk	
communicator

time

communicator

✕

Figure 2.2: User Level Failure Mitigation (ULFM): After a process failure, the communicator is
repaired by shrinking it to remove the failed process and the application continues its execution
thereafter.

repair the faulty communicator in ULFM. The three basic operations of ULFM are— notifying

application about failure, propagating error to all processes, and recovering from the failure. It

masks all failures as process failure. This approach uses in-band error codes to notify the appli-

cation of failures. The application checks the error code returned by MPI routines to receive no-

tification of failures. MPI routines return the error code MPI ERR PROC FAILED to indicate

process failure (elsewhere), and the knowledge of process failures is local to any process that

receives the error code. To prevent infinite deadlocks on communication operations with failed

remote processes, ULFM introduces MPI COMM REVOKE. It is a non-local and non-collective

operation that is used to propagate failure information throughout a MPI communicator. Once

the failure notification is disseminated, all live processes use MPI COMM FAILURE ACK and

MPI COMM FAILURE GET ACKED to get the group of actual failed processes. This group of

failed processes is excluded from the continuing application. To recover from a failure, once a

MPI communicator has been revoked, the remaining live processes call the collective operation

MPI COMM SHRINK to create a new shrunken communicator. In a fault-tolerant application,

sometimes processes need to agree on certain value using an agreement algorithm. ULFM

provides MPI COMM AGREE to perform a fault tolerant agreement algorithm over a boolean

value among all alive processes. ULFM supports MPI file and one-sided objects using similar

functionality. Several fault-tolerant models have been proposed using ULFM. Local Failure

Local Recovery (LFLR) [70] is one such model that uses spare processes after failure to keep

22

the number of processes constant. Thus, LFLR eliminates the complexities of load balancing

across fewer application processes.

2.4.3.4 Transactional Resilience Scheme

Fault-Aware (FA-MPI) is a lightweight, transaction-based fault tolerance model for MPI [71,

72]. With this transaction-based model, an application can choose to use FA-MPI to achieve a

fine-grain fault tolerance model by encapsulating every MPI operation in a single transaction.

Or, should the application want to balance performance with fault tolerance, the application can

choose to instead put many MPI operations into a single transaction. As FA-MPI is designed

to be an extension of the MPI API, the application can use the fault awareness provided by FA-

MPI to determine the level of fault tolerance it wants. It allows the applications to implement

a wide range of fault-tolerant methods. The application can use checkpoint/restart, forward, or

backward recovery.

A fundamental building block of this model is a TryBlock, which allows a series of op-

erations to be tried. It commits when all operations succeed and enables an application to roll

backward or forward when some operations fail. TryBlock transactions can be local in scope—

where only the local process must decide what to do—or global in scope—where all failures

are synchronized among all processes. FA-MPI incorporates timeouts into its fault detection

methods to prevent the possibility of deadlock introduced when dealing with fault tolerance.

These timeouts can be user defined. A method for communicator recovery with the same num-

ber of original processes as prior to the failure is also provided in complement to the TryBlock

transactional framework. Finally, FA-MPI is not restricted only to addressing process failure.

2.4.3.5 Global-Restart

This approach provides rollback recovery type of resilience for MPI applications. The idea

behind global-restart is to provide a simple mechanism to restore application state after a failure

to a previously stored state saved as a checkpoint and then resume computation from that state

without killing the entire MPI job, a key goal for production MPI programs seeking resilience.

In global-restart, applications do not need to perform steps to detect and propagate failures,

23

MPI	 process

Original	
Communicator

Process	 Failure

New	 communicator	 with	
reinitialized	 MPI	 state

time

communicator

✕

Figure 2.3: Reinit: After a process failure, the application is rolled back to the last checkpoint
and continues execution from there after the MPI state is reinitialized.

and to recover the MPI state (e.g., communicators); these steps are performed by external

components.

Reinit [73] is one of the implementations of this model. Reinit is a non-shrinking recovery

where application resumes execution with the same number of processes as it had prior to the

fault. Here, upon detecting a fail-stop process failure, new processes are used to replace those

that have failed. Figure 2.3 shows the overview of Reinit recovery mechanism. This model

assumes a perfect fault detector within MPI runtime. Thus, the application need not check for

faults. However, it provides a routine MPI FAULT, which the application can use to notify

MPI about a failure. Also, the propagation of failure is done automatically within the MPI

implementation. The failure propagation is triggered as soon as MPI runtime detects a failure

without waiting for message completion at the receivers. Then, it calls the cleanup handler

to clean any application or library specific states and finally, re-initializes the MPI processes.

It introduces a new routine MPI REINIT for the reinitialization. This routine calls a restart

handler (a pointer to a user-defined function) that serves as the starting point of a resilient

application. After the reinitialization, the resulting state of the processes is the same as the

24

MPI	 process

Original	
Communicator

time

communicator
✕

Failure

rollback

MPI	 State

Application	 State

MPI	 checkpoint

Application	 checkpoint

Figure 2.4: Overview of MPI Stages. The MPI state is checkpointed at the same instance of the
application checkpoint. At a failure, both MPI and application states are restored by reloading
the most recent checkpoints.

state after MPI Init() returns. The recovery state of an MPI process is defined by— (a)

NEW: first time start process, (b) RESTARTED: the process that has been restarted due to

a fault, and (c) ADDED: the process that has been added to the existing job. To jump to

the restart handler from any point of the execution, Reinit use setjmp/longjmp semantics of C

language. The setjmp/longjmp semantics is language specific and not supported in Fortran.

Fenix [74] is another example of global-restart model that makes use of the ULFM inter-

face. It implements a non-shrinking recovery and transparently spawned a new process to repair

the communicators. The error codes returned after a failure are detected using MPI’s profiling

interface. Once the communicators are recovered, a long jump is used to return execution to

FENIX INIT which is configured to resume to the beginning of execution.

25

2.4.3.6 Our Approach—MPI Stages

The closest competitor to our approach, MPI Stages, is the global-restart approach, Reinit.

While the global-restart approach reduces the recovery time of bulk synchronous applications

by eliminating the need of terminating the job upon a failure, processes are restarted from the

beginning of the program even though they did not experience a failure. This is required to

allow the replaced process to build its own MPI state (e.g., communicators and groups), along

with the live processes before they reach the point in the computation where the failure occurs.

As shown in Figure 2.4, the core idea of our approach is to be able to checkpoint the MPI

state at similar intervals as the application checkpoints. Upon a failure, the MPI state is rolled

back to the latest checkpoint and is updated with the most recent and consistent values. The

key difference of our approach and the Reinit method is that our approach eliminates the need

of the processes to participate in rebuilding MPI state—MPI Stages saves a checkpoint of the

MPI state, which is then used to fully restore the state of the failed process. When a failure is

detected by MPI runtime, the failure is notified to all live processes which then discard their

current work and rollback to a previous checkpoint. This is similar to a collective operation in

the communicator except the failed process. Our recovery model discards the MPI states from

the last synchronous checkpoint to the failure. Any messages in transit across processes are

lost and will need to be re-sent. Chapter 5 describes in detail the MPI Stages approach.

26

Chapter 3

Understanding the use of MPI in exascale HPC applications

3.1 Introduction

The Message-Passing Interface (MPI) is an extensively used programming model for multi-

node communication in scientific computing. Many large-scale HPC applications are success-

fully using MPI in petascale systems and will continue the use in exascale systems [75, 76, 6].

To increase the applicability of MPI in next-generation exascale systems, the MPI Forum is

actively working on updating and incorporating new constructs to MPI Standard. Thus, under-

standing the state-of-the-practice of MPI usage is extremely important to the HPC community.

A detailed understanding of MPI usage is required to optimize the communication charac-

teristics of applications. The MPI usage statistics can help the MPI Standardization body to

prioritize the standardization of new features. Also, the MPI implementers and HPC centers

can allocate resources to optimizing the most commonly used MPI features from a detailed

MPI usage characterization.

Here, we focus on understanding the characteristics and communication patterns of MPI

in exascale applications. The Exascale Computing Project (ECP) is an effort to accelerate the

development and delivery of a practical exascale computing ecosystem [77]. To achieve an

exascale-capable ecosystem, ECP focuses on three areas—application development, software

technology, and hardware technology. Both application development and software technology

include various projects related to MPI. Some of the MPI-related ECP projects specifically

focus on developing high-performance MPI implementations and enabling applications to ef-

fectively use MPI to scale to future exascale systems.

27

Most ECP applications are typically large and complex with thousands to millions of lines

of code. As a means to access their performance and capabilities, most of these applications

have representative “mini-apps” to serve as their proxies or exemplars. A proxy application

is designed to represent key characteristics of the real application without sharing the actual

details. As part of ECP, multiple proxy apps have been developed. The ECP proxy apps suite

consists of proxies representing the key characteristics of the exascale ECP applications [78].

We analyze 14 ECP proxy apps using both profiling and static analysis. We analyze three

important characteristics of the apps: (a) most used MPI features and MPI routines, (b) com-

munication characteristics, and (c) use of multi-threaded environment.

The key findings from our analysis are as follows:

(1) A large proportion of the applications surprisingly do not use advanced features of MPI.

We find, for example, that point-to-point (blocking and non-blocking) routines are more

prominently used than persistent point-to-point or one-sided routines.

(2) The majority of the applications use only a small set of features from the MPI Standard—

a considerable number of applications use only the point-to-point and collective commu-

nication features of the standard, leaving other parts of the standard totally unused.

(3) MPI collectives occupy a significantly larger portion of the communication time com-

pared to point-to-point. MPI Allreduce is the most frequently used collective call.

We also find that applications mostly use small messages for collective operations.

(4) We observe that about 1/2 of the applications use a mixture of MPI and OpenMP pro-

gramming models. However, none of the applications use MPI THREAD MULTIPLE

environment. The reason might be the performance implication of MULTIPLE in MPI

implementations.

3.2 MPI Features Classification

In this section, we provide a summary of the key MPI features we analyze in the proxy appli-

cations.

28

The MPI Standard version 3.1 (the most recent version) specifies roughly 443 distinct

routines. We grouped these routines into 11 categories. In the analysis, we refer to these

categories as MPI features. We summarize these categories as follows—for more information,

the reader should refer to the MPI Standard [15]:

• Point-to-Point communication: This feature specifies how to transmit messages between

a pair of processes where both sender and receiver cooperate with each other, which is re-

ferred to as “two-sided” communication. To communicate a message, the source process

calls a send operation and the target process must call a receive operation. MPI provides both

blocking and non-blocking forms of point-to-point communications.

• Collective communication: This feature describes synchronization, data movement, or col-

lective computation that involve all processes within the scope of a communicator. All pro-

cesses of the given communicator need to make the collective call. Collective communica-

tions do not use tag. Collective communications will not interfere with the point-to-point

communications, and vice versa. It has both blocking and non-blocking variants.

• Persistent communication1: To reduce the overhead of repeated point-to-point calls with

the same argument list, this feature creates a persistent request by binding the communication

arguments and uses that request to initiate and complete messages.

• One-Sided communication: This feature defines a communication where a process can

write data to or read data from another process without involving that other process directly. It

is known as Remote Memory Access (RMA) communication. The source process can access

the memory of the target process without the target’s involvement. The source is limited to

accessing only a specifically declared memory area on the target called a “window.”

• Derived Datatype: This feature describes how to create user-defined structures to transfer

heterogeneous/non-contiguous data. It allows different datatypes to be transferred in one

MPI communication call.
1Persistent Collective communication, which is part of MPI-4, is not considered in this study.

29

• Communicator and Group management: A Group is an ordered set of processes and a

Communicator encompasses a group of processes that may communicate with each other.

This feature describes the manipulation of groups and communicators (e.g., construction of

new communicator) in MPI.

• Process Topology: An MPI application with specific communication pattern can use this

feature to specify a mapping/ordering of MPI processes to a geometric shape. Two topologies

supported by MPI are Cartesian and Graph.

• MPI I/O: This feature provides support of concurrent read/write to a common file (parallel

I/O) from multiple processes.

• Error Handling: An MPI application can associate an error handler with communicators,

windows, or files. If an MPI call is not successful, an application might use this error handling

feature to test the return code of that call and execute a suitable recovery model or abort the

application.

• Process management: This feature specifies how a running MPI program can create new

MPI processes and communicate with them.

• Tools Interface: This interface allows tools to profile MPI applications and to access internal

MPI library information.

There are also miscellaneous features, such as MPI Wtime/MPI Wtick, and general-

ized requests not specific to any of the above categories. We omit these miscellaneous features

from our analysis.

3.3 Data Collection

We use both static and runtime analysis to collect MPI usage data. We used a grep-based script

to gather MPI routines and features usage data. To analyze the communication characteristics

of these applications, we implemented a profiling tool to collect data using the PMPI interface.

Instead of using an existing profiling tool (e.g., MPIP [33], TAU [34]), we implemented our

30

own profiler. We use this new profiling tool to collect only the required information needed

for our analysis. We log the use of tag and communicator in addition to the message size and

time spent in each call in our profiler. The profiler is written in C++. The LD PRELOAD

environment variable is used to inject the profiler at runtime via the dynamic linker.

The profiler collects various MPI usage data from a running MPI job and stores them in

log files. These log files indicate all the MPI routines called by the application, the time spent

in each routine, and the number of bytes sent or received by all communication routines.

The log files are generated at MPI Finalize. The profiler collects data for all MPI

processes. However, to reduce the number of files, we only generate two log files. The first one

is for the process with MPI process rank 0 and the other one is for the process with MPI rank
N
2 (middle rank), where N is the size of MPI COMM WORLD.

The profiling tool implements an MPI wrapper for each MPI routine. Currently, the MPI

profiler only supports those MPI routines required by the ECP proxy applications. In each

such MPI wrapper, the wrapper first determines whether the call is user MPI routine or a call

generated from inside of a collective operation. For each user routine, it registers the datatype

and the count of the exchanged type that is used to calculate the bytes sent or received. Then

it records the start time using MPI Wtime. The wrapper then calls the corresponding PMPI

routine. After returning from the PMPI call, the wrapper collects the end time. Finally, for each

user routine, it stores the routine name, datatype, count, time spent in the call, source, tag, and

communicator when applicable. Algorithm 1 presents pseudocode of the MPI Send wrapper.

Algorithm 1 Pseudocode for MPI Wrapper
1: procedure MPI Send(. . .) .MPI wrapper routine
2: Determine whether user call or not
3: t1← MP Wtme
4: err ← PMP Send . Call normal MPI
5: t2← MP Wtme
6: if ser c then
7: Record the call information . Number of byte sent, time spent in call (t2-t1)

Profiler Overhead. One of the most important factors of profiling is the overhead associ-

ated with it. The profiler should not add significant overhead to the execution time as compared

to the non-profiled execution. To analyze the overhead added by our profiler, we calculate the

31

0.8

0.9

1

1.1

1.2

1.3

1.4
0 1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M

No
rm

al
ize

d
La

te
nc

y

Message Size (Bytes)

No Profiler Profiler

Figure 3.1: Overhead added by profiling using ping-pong benchmark latency. We observe that
the overhead reduces as we increase the message size.

latency of a ping-pong benchmark with and without the profiler. Figure 3.1 shows the overhead

associated with profiling. Our profiler adds almost 30% overhead for small message sizes. The

overhead starts to decrease as we increase the message size. For large messages (¿=256K), the

overhead appears to be negligible.

Limitations. Our profiling tool only intercepts the C language binding of MPI. It does not

intercept the Fortran API. Only two of the applications (PICSARlite and thornado-mini) from

ECP suite use the Fortran API. Thus, we did not collect profiling data for these two applications.

One possible solution is to extend the current wrapper to intercept Fortran API of MPI as part

of future work.

3.4 Overview of Applications

In this study, we analyzed the ECP Proxy Applications Suite 2.02 [78]. The suite comprises

15 proxy applications. These proxies represent different key characteristics (e.g., performance,

communication pattern) of ECP applications. Since ECP applications target future exascale

2Released on October 1, 2018

32

Table 3.1: Application overview

Application (language) Description
Third-
party
Library

Model

AMG(C)
Parallel algebric multigrid solver for
linear systems arising from problems
on unstructured grids

hypre
MPI +
OpenMP

Ember (C)
Represent highly simplified communication
patterns relevant to DOE application workloads N/A MPI

ExaMiniMD (C++)
Proxy application for Molecular Dynamics
with a Modular design N/A MPI

Laghos (C++)
Solves Euler equation of compressible gas
dynamics using unstructured high-order finite
elements

hypre
MFEM
Metis

MPI

MACSio (C)
Multi-purpose, scalable I/O proxy application
that mimics I/O workloads of real applications

HDF5
Silo MPI

miniAMR (C)
Applies a 3D stencil calculation on a unit cube
computational domain– divided into blocks N/A

MPI +
OpenMP

miniQMC (C++)
Designed to evaluate different programming
models for performance portability N/A

MPI +
OpenMP

miniVite (C++)
Detects graph community by implementing
Louvain method in distributed memory N/A

MPI +
OpenMP

NEKbone (Fortran)
Thermal Hydraulics mini-app that solves a
standard Poisson equation N/A MPI

PICSARlite (Fortran)
Portrays the computational loads and
dataflow of complex Particle-In-Cell codes N/A MPI

SW4lite (C, Fortran)
Solves the seismic wave equations in
Cartesian coordinates N/A

MPI +
OpenMP

SWFFT (C)
Run 3D distributed memory discrete fast
Fourier transform

FFTW3 MPI

thornado-mini (Fortran)
Solves radiative transfer equation in a multi-
group two-moment approximation HDF5 MPI

XSBench (C)
Represents a key computational kernel of the
Monte Carlo neutronics application N/A

MPI +
OpenMP

33

M
PI

M
PI

+O
pe

nM
P

C
C+

+
Fo

rt
ra

n
C/

Fo
rt

ra
n

St
an

da
lo

ne
Th

ird
-p

ar
ty

 li
br

ar
y

0
10
20
30
40
50
60
70
80
90

100

Programming Language
Usage

Programming Model
Usage

Library Usage

Pe
rc

en
ta

ge
 o

f T
ot

al
 A

pp
lic

at
io

ns

Figure 3.2: Illustration of programming language, model, and library usage. We observe that
almost half of the applications use MPI+OpenMP model and C/C++ is most used language.

systems, we chose the ECP proxies as our test corpus to understand the usage of MPI in

prospective exascale applications. We identified 14 applications in the suite that use MPI.

Table 3.1 provides an overview of the applications described in this study. The table

presents the use of programming language, model, and third-party library along with a short

description of each applications.

In addition to the direct usage of MPI, it is also interesting to note which languages and

programming models are used in MPI applications. Figure 3.2 shows the usage of programming

languages and models in ECP proxy applications. As shown, C and C++ are the predominant

programming languages among these applications. C comprises 43% of the language usage.

C++ comprises 29%, and Fortran at 21% of the application code bases. The usage of C++ is

through the MPI C interface because no C++ MPI interface exists3.

Figure 3.2 also shows the use of hybrid programming model in our sample applications.

Here, the hybrid model comprises of MPI and OpenMP, where OpenMP corresponds to multi-

threaded programming model used along with MPI for in-node parallelism. We find that 43%

of the applications use the hybrid (MPI+OpenMP) programming model.

Table 3.1 shows that almost two-thirds of the proxies are standalone applications. About

35% of the applications use a number of third-party software libraries. However, not all of

3No C++ interface exists after MPI 2.1

34

these third-party libraries are MPI-based. Four of the applications—AMG, Laghos, MACSio,

and thornado-mini use MPI-based third-party numerical and I/O libraries. One of the MPI-

based libraries, hypre [79], uses the hybrid programming model. Another library, HDF5 [80],

uses pthreads as its parallel execution model.

3.5 Overview of MPI Usage in Applications

In this section, we overview the overall use of MPI in the proxy applications. To understand the

usage of MPI, we categorize the MPI calls into MPI features. We group the MPI calls into 11

categories—P2P, Collective, Persistent, One-Sided, Datatype, Topology, Tool, Comm Group,

Error, File (MPI I/O), and Process Management based on the feature classification described in

Section 3.2. We analyze the usage of MPI for each of the features. Along with these features,

we also analyze the initialization of MPI. Finally, all the environmental management (e.g.,

memory allocation) and language bindings routines are considered as Other category and we

do not consider those in our analysis.

3.5.1 MPI Initialization

The MPI execution environment is initialized by using MPI Init or MPI Init Thread.

If MPI Init Thread is used, the program can use one out of four thread environment

options: MPI THREAD SINGLE, MPI THREAD FUNNELED, MPI THREAD SERIALIZED,

and MPI THREAD MULTIPLE. We find that 43% of the applications in our sample use the hy-

brid (MPI+OpenMP) programming model (as shown in Figure 3.2). However, not all of these

programs use MPI Init thread to initialize the thread environment.

The routine MPI Init thread takes two parameters: required which indicates the level

of desired thread support and provided indicating the actual thread support while executing the

program. In our static analysis, we only capture the required thread level specified by the

application.

Our analysis shows that almost all of these applications (90%) use MPI Init for initial-

ization. Only one application (PICSARlite) uses MPI thread-based initialization. However,

in PICSARlite, the required level of thread support is SINGLE and FUNNELED. Although,

35

roughly half of the proxy applications use the hybrid programming model; however, none of

them use the thread MULTIPLEmode. One possible reason of not observing MULTIPLEmight

be that the performance implications of MULTIPLE in MPI implementations.

3.5.2 MPI Communication

Here, we analyze the MPI features for communication—point-to-point (P2P), collective, per-

sistent, and one-sided operations. For each application, we statically collect all the MPI com-

munication calls. Then we analyze the communication characteristics (e.g., payload distribu-

tion, communication and computation time) of each application using the profiler mentioned in

Section 3.3.

3.5.2.1 Communication Calls

Table 3.2 presents the significant MPI calls used for communications in the applications includ-

ing the ones used in the third-party libraries. The table includes all the MPI communication

calls (P2P and collective) found in the application source code. During a specific run, the

application may use a subset of these calls for communications.

Two of the proxy applications (AMG and PICSARlite) use persistent point-to-point rou-

tines — MPI Send init and MPI Recv init. The application, Laghos, uses persistent

routines through its libraries. Our results also show that only one application (miniVite) uses

one-sided (RMA) routines — MPI Put and MPI Accumulate.

Two of the applications (miniQMC and XSBench) do not use any point-to-point MPI

calls. These applications primarily investigate in-node parallelism issues using OpenMP. In

XSBench, there is only one call of MPI collective routines (a barrier and a reduce) at the end

to aggregate results.

Most of the applications use point-to-point and collective operations for communications

rather than persistent and one-sided. Applications use both the blocking and non-blocking

variants of point-to-point routines. For collective routines, applications mostly use the blocking

variant.

36

Table 3.2: MPI calls used for communications

Application Point-to-point Collective
Blocking Non-blocking Blocking Non-blocking

AMG, Laghos
MPI Send
MPI Recv

MPI Isend
MPI Irsend
MPI Irecv

MPI Allreduce, MPI Reduce
MPI Allgather{v}
MPI Gather{v}
MPI Alltoall
MPI Barrier, MPI Bcast
MPI Scan
MPI Scatter{v}

N/A

Ember
MPI Send
MPI Recv

MPI Isend
MPI Irecv MPI Barrier N/A

ExaMiniMD MPI Send MPI Irecv
MPI Allreduce
MPI Scan N/A

MACSio
MPI Send
MPI Ssend
MPI Recv

MPI Isend
MPI Irecv

MPI Allreduce, MPI Reduce
MPI Allgather
MPI Barrier, MPI Bcast
MPI Gather, MPI Scatterv

N/A

miniAMR
MPI Send
MPI Recv

MPI Isend
MPI Irecv

MPI Allreduce
MPI Alltoall
MPI Bcast

N/A

miniQMC N/A N/A MPI Reduce N/A

miniVite MPI Sendrecv
MPI Isend
MPI Irecv

MPI Allreduce, MPI Reduce
MPI Alltoallv
MPI Barrier, MPI Bcast
MPI Exscan

MPI Ialltoall

NEKbone
MPI Send
MPI Recv

MPI Isend
MPI Irecv

MPI Allreduce
MPI Barrier, MPI Bcast N/A

PICSARlite MPI Sendrecv
MPI Isend
MPI Irecv

MPI Allreduce, MPI Reduce
MPI Allgather
MPI Barrier, MPI Bcast

N/A

SW4lite
MPI Send
MPI Recv
MPI Sendrecv

MPI Isend
MPI Irecv

MPI Allreduce, MPI Reduce
MPI Allgather, MPI Gather
MPI Barrier, MPI Bcast

N/A

SWFFT MPI Sendrecv
MPI Isend
MPI Irecv

MPI Allreduce
MPI Barrier N/A

thornado-mini MPI Send
MPI Isend
MPI Irecv

MPI Allreduce
MPI Allgather
MPI Barrier, MPI Bcast
MPI Scatterv

N/A

XSBench N/A N/A
MPI Barrier
MPI Reduce N/A

37

3.5.2.2 Communication Characterization

In this section, we analyze the communication characteristics of the proxy applications using

the PMPI profiler.

System. We compile and run the proxy applications at the Catalyst cluster from Lawrence

Livermore National Laboratory. The cluster has Intel (Xeon E5-2695) 24-core 2.4 GHz nodes,

128 GB of memory per node, and Infiniband QDR interconnect. The system is composed of

324 nodes with total 7776 cores. We use OpenMPI (3.0.1) as the MPI implementation with

GCC (7.3.0) as the compiler for all applications.

Analysis. We ran each application with 256 processes using the minimal configuration

required to execute it. We analyze three important communication characteristics of the apps:

(a) message traffic in term of call count and time, (b) communication and computation time,

and (c) payload distribution for both point-to-point (P2P) and collective operations. In our

analysis, we do not include miniQMC and XSBench. In miniQMC, we found no MPI routines

during the run although we found one MPI Reduce in the application code during our static

analysis. In XSBench, there is only one call to MPI Barrier and MPI Reduce, so we do

not include it in our analysis.

Table 3.3 shows the actual MPI communication routines invoked by each of the application

during our test run. It only shows the routines directly called by the application and not by any

third-party library. The table shows that the applications use small subsets of MPI routines.

We characterize the message traffic in terms of number of P2P and collective calls. Fig-

ure 3.3 presents the percentage of total P2P and collective calls made by the process of rank

0 and the process of middle rank. In terms of call count, the communication is dominated

by point-to-point calls. Only one application, SWFFT has nearly equal numbers of P2P and

collective calls. In miniAMR, the process of middle rank performs three more collective op-

erations than the process of rank 0. Here, the application creates a new communicator using

MPI Comm split and performs collective operations in a subset of processes.

From the log files of our profiler, we collect the number of times each P2P and collective

operations have been called and the total time spent on each type of operations. An MPI

38

Table 3.3: MPI calls invoked by application during a run

Application Point-to-point Collective

M
PI

Se
nd

M
PI

Is
en

d

M
PI

R
ec

v

M
PI

Ir
ec

v

M
PI

Se
nd

re
cv

M
PI

Ss
en

d

M
PI

Se
nd

in
it

M
PI

R
ec

v
in

it

M
PI

A
llr

ed
uc

e

M
PI

R
ed

uc
e

M
PI

B
ar

ri
er

M
PI

B
ca

st

M
PI

Sc
an

M
PI

A
llt

oa
ll

M
PI

A
llt

oa
llv

M
PI

G
at

he
r

AMG × × × × × × × × × ×
Ember × × × × ×
ExaMiniMD × × × ×
Laghos × × × × × × × × ×
MACSio × × × × × ×
miniAMR × × × × × × ×
miniVite × × × × × × ×
NEKbone × × × × × ×
SW4lite × × × × ×
SWFFT × × × ×

application performs many local operations (e.g., MPI Comm rank); we do not count these

local operations in our analysis.

Figure 3.4 and 3.5 show the total runtime of the proxy applications by the process of

rank 0 and the process with middle rank, respectively. The total runtime is the time between

MPI Init and MPI Finalize. We breakdown the total runtime into computation and com-

munication (P2P + collective) time. The communication time consists of point-to-point and

collective communication time collected from the log file. The computation time is calculated

by subtracting the communication time from total runtime. Figure 3.4a and 3.5a show the

percentage of P2P, collective, and computation time for the rank 0 process and the middle rank

process, respectively, whereas Figure 3.4b and 3.5b show the total time spent (in ms).

The majority of the applications spent more than 50% of their time in communication.

In terms of time, communication is dominated by collective operations, although Figure 3.3

shows that P2P call count is much higher than collective call count. Our result shows that only

the miniAMR application spent more time in P2P rather than collective. For ExaMiniMD, the

middle rank process spent more than 50% of its communication time in P2P.

39

0

20

40

60

80

100

120

Collective	 Calls	 (%) P2P	 Calls	 (%)

0

20

40

60

80

100

120

Collective	 Calls	 (%) P2P	 Calls	 (%)

Figure 3.3: Illustration of total number of point-to-point (P2P) and collective calls made by
the rank 0 process (left) and the middle rank process (right). We observe that communication

is dominated by P2P in terms of call count.

0%

20%

40%

60%

80%

100%

Computation P2P Collective

(a) Percentage of P2P, collective and computation
time.

1

10

102

103

104

105

106
Ti
m
e	
(m

s)
Computation Communication

(b) Time spent in communication (P2P +
collective) and computation.

Figure 3.4: Total time spent in communication (point-to-point and collective) and computation
by the rank 0 process. We observe that majority of applications spent more time in

communication and communication time is dominated by collective operations.

MPI Point-to-Point Operations. Figure 3.6a and 3.7a show the aggregated call count of

the point-to-point call for the rank 0 process and the middle rank process, respectively. The

non-blocking communication calls (MPI Isend and MPI Irecv) are used more frequently

than the blocking calls (MPI Send and MPI Recv). Here, we do not include MPI Ssend as

it has been invoked only 20 times by MACSio.

The aggregated time spent in each point-to-point operation in all proxy applications for

the rank 0 process and the middle rank process is shown in Figure 3.6b and 3.7b, respectively.

The MPI Waitall and MPI Wait operations dominate the P2P communication time. The

use of non-blocking operations indicates potential communication and computation overlap.

40

0%

20%

40%

60%

80%

100%

Computation P2P Collective

(a) Percentage of P2P, collective and computation
time.

1

10

102

103

104

105

106

Ti
m
e	
(m

s)

Computation Communication

(b) Time spent in communication (P2P +
collective) and computation.

Figure 3.5: Total time spent in communication (point-to-point and collective) and computation
by the middle rank process. We observe that majority of applications spent more time in

communication and communication time is dominated by collective operations.

100

101

102

103

104

105

106

Ca
ll	
Co

un
t

(a) Illustration of MPI point-to-point function usage.
We observe that non-blocking send and receive are

the most used functionality.

0

20

40

60

80

100

120

140

Send Recv Isend Irecv Sendrecv Wait Waitall Waitany

Ti
m
e	
(S
ec
)

(b) Illustration of MPI point-to-point function
usage along with potential communication and

computation overlap.

Figure 3.6: Overview of MPI point-to-point communication for the rank 0 process.

MPI Send init and MPI Recv init time tends to zero, so we do not include it in the

figure.

MPI point-to-point operations (receive and probe) allow the use of wildcard for source

process rank and/or tag. It indicates that a process will accept a message from any source and/or

tag. The source wildcard is MPI ANY SOURCE while the tag wildcard is MPI ANY TAG. The

scope of these wildcards is limited to the processes within the specified communicator.

A small number of applications (four) use a wildcard in receive and probe operations.

Three applications, AMG, MACSio, and NEKbone use the MPI source wildcard and only one

application, PICSARlite uses the MPI tag wildcard.

41

100

101

102

103

104

105

106
Ca
ll	
Co

un
t

(a) Illustration of MPI point-to-point function
usage. We observe that nonblocking send and

receive are the most used functionality.

0

50

100

150

200

250

300

Send Recv Isend Irecv Sendrecv Wait Waitall Waitany

Ti
m
e	
(S
ec
)

(b) Illustration of MPI point-to-point function
usage along with potential communication and

computation overlap.

Figure 3.7: Overview of MPI point-to-point (P2P) communication for the middle rank process.

100

101

102

103

104

105

106

Allreduce Barrier Bcast Reduce Scan Alltoall Alltoallv

Ca
ll	
Co

un
t

(a) Illustration of MPI collective function usage. We
observe that Allreduce is the most used

functionality.

0

100

200

300

400

500

600

Allreduce Barrier Bcast Reduce Scan Alltoall Alltoallv

Ti
m
e	
(S
ec
)

(b) Illustration of MPI collective function usage.
We observe that Allreduce dominates the

communication time.

Figure 3.8: Overview of MPI collective communication for the rank 0 process.

MPI Collective Operations. The aggregated count of collective operations for the pro-

cesses of rank 0 and the middle rank is shown in Figure 3.8a and 3.9a, respectively. Figure 3.8b

and 3.9b show the time spent in the processes of rank 0 and the middle rank for each collective

call. The figure does not include MPI Gather because SW4lite calls it only once. In terms

of call count and time, MPI Allreduce is the most significant collective operation. Our

results show that the rank 0 process spent more time in MPI Allreduce, MPI Barrier,

MPI Bcast, and MPI Reduce while the middle rank process spent more time in MPI Scan,

MPI Alltoall, and MPI Alltoallv.

Payload Distribution. Figure 3.10a shows the distribution of payload size of point-to-point

(P2P) send operations (MPI Send, MPI Isend, MPI Sendrecv, and MPI Sendinit) for

42

100

101

102

103

104

105

106

Allreduce Barrier Bcast Reduce Scan Alltoall Alltoallv

Ca
ll	
Co

un
t

(a) Illustration of MPI collective function usage.
We observe that Allreduce is the most used

functionality.

0

50

100

150

200

250

300

350

Allreduce Barrier Bcast Reduce Scan Alltoall Alltoallv

Ti
m
e	
(S
ec
)

(b) Illustration of MPI collective function usage.
We observe that Allreduce dominates the

communication time.

Figure 3.9: Overview of MPI collective communication for the middle rank process.

133
111
3

100

101

102

103

104

105

106

4 16 64 256 1K 4K 16K 64K 256K 1M

N
um

be
r	 o

f	 C
al
ls

Payload	 Size

Send Isend Sendrecv Sendinit

(a) Illustration of point-to-point payload
distribution. We observe that P2P operations use a

wide range of messages (from small to large).

100

101

102

103

104

105

106

4 8 16 64 128 256 512 1024 2048

N
um

be
r	 o

f	 C
al
ls

Payload	 Size	 (Byte)

Allreduce Bcast Reduce Alltoall

(b) Illustration of collective payload distribution.
We observe that majority of collectives use small

messages.

Figure 3.10: Overview of payload distribution by the rank 0 process.

the rank 0 process. Our results show that more than 60% of the send uses a message length of

less than or equal 1KiB.

The payload distribution for collective operations is shown in Figure 3.10b. All of the col-

lectives use very small payloads. The figure shows that around 90% of the collective messages

are less than 128 bytes. We found some instances of MPI Allreduce that use a payload

greater than 1KiB.

43

3.5.3 MPI Datatypes

A compliant MPI implementation provides a number of predefined basic datatypes (e.g., MPI -

INT, MPI FLOAT, MPI DOUBLE), corresponding to the primitive data types of the program-

ming languages. An MPI implementation allows user to construct derived types from existing

types (basic and derived). There are several methods to construct derived types.

• Contiguous. Creates a new contiguous datatype by concatenating user defined count

copies of an existing type.

• Vector. Creates a single datatype representing elements separated by a constant distance

(stride) in memory.

• Indexed. Defines a new datatype consisting of an user defined number of blocks of arbitrary

size. Each block can contain different number of elements.

• Struct. Creates a structured datatype from a general set of datatypes.

• Subarray. Creates a new MPI type describing a n-dimensional subarray of a n-dimensional

array. The subarray may be situated anywhere within the array.

Table 3.4 presents the derived types used in the proxy applications. Most of the MPI

operations use predefined basic types for communication. However, we found six applications

in the suite that use derived types. But, only a few instances of the communication calls use the

derived types. The majority of the derived datatypes are used in point-to-point communications.

Only two applications (MACSio and miniVite) pass user-defined “struct type” in collective

calls. Apart from these six applications, the libraries used by Laghos and thornado-mini uses

derived datatypes in a small number of point-to-point communication.

3.5.4 Communicators, Groups, and Topology

An MPI implementation typically supports two types of communicator.

44

Table 3.4: Usage of MPI derived datatypes

Application Contiguous Struct Subarray Vector
AMG ×
MACSio × ×
miniVite ×
PICSARlite × × × ×
SW4lite ×
SWFFT × ×

• Intra-Communicator. It is used for communication within a single group of processes. For

collective communication, it specifies the set of processes that participate in the collective

operation.

• Inter-Communicator. It is used for communication between two disjoint groups of pro-

cesses. The group containing a process that initiates an inter-communication operation is

called the “local group”. The group containing the target process is called the “remote group”.

The default communicator for MPI is MPI COMM WORLD (an intra-communicator), which

is available after MPI initialization. It consists of all the processes in an MPI job. However,

an MPI application can create new communicators to communicate with a subset of processes.

Also, the MPI Standard, MPI-3.0, introduces Neighborhood collectives to enable communica-

tion on a process topology. It allows the user to define their own collective communication

patterns. All processes in the communicator are required to call the collective. It has both

blocking and non-blocking variants.

Our analysis finds that the majority of the proxy applications only use the default commu-

nicator, MPI COMM WORLD. Two of the applications, NEKbone and MACSio, use a duplicate

of MPI COMM WORLD. Table 3.5 presents the applications that create new communicator along

with the MPI routines used for the creation. We identified five applications that create new com-

municators by using MPI Comm create and MPI Comm split. Three of these applications

use Cartesian topology to order the MPI processes. Although three applications use process

topology; they do not use any neighborhood collectives operations. Our analysis also shows

that the library “hypre” creates its own communicators (not duplicate of MPI COMM WORLD).

45

Table 3.5: Usage of MPI communicator, group, and topology

Application Communicator and Group Process Topology

AMG, Laghos
MPI Comm create, MPI Comm split
MPI Group incl

miniAMR MPI Comm split
PICSARlite MPI Cart create

SW4lite
MPI Comm create, MPI Comm split
MPI Group incl MPI Cart create

SWFFT MPI Cart create, MPI Cart sub

The proxy application “Laghos” uses “hypre” and thus indirectly uses the functionality. None

of the applications from the proxy apps suite create inter-communicators.

3.5.5 Dynamic Process Management

To create a new process in an already running program, MPI uses MPI Comm spawn routine.

This routine returns an inter-communicator.

Our analysis shows that none of the applications use the process management feature even

though it was introduced long ago (in version 2.0, 1997). We hypothesize that the reason is that

most production environments use batch schedulers, and such schedulers a) have little or no

support for dynamic changes in the runtime size of MPI programs, b) production applications

specify their maximum size of process utilization at startup, and c), most programs think in

terms of the build-down from MPI COMM WORLD, rather than a build-up mode of process cre-

ation and aggregation. The latter is also complex-to-cumbersome syntactically (e.g., merging

multiple intercommunicators).

3.5.6 MPI I/O (File)

The MPI Standard provides support for parallel I/O using its own file handle MPI File. In

MPI, the file open and close operations are collective over a communicator. However, the

communicator will be usable for all MPI routines (other point-to-point, collective, one-sided,

and unrelated I/O); the use of the communicator will not interfere with I/O correctness.

46

Only one of the proxy applications (miniVite) uses the MPI I/O functionality. However,

it only uses MPI I/O to read binary data from a file, which is optional for this application

execution. MACSio, a multi-purpose scalable I/O proxy application, uses Silo I/O library.

None of the other proxy applications in the ECP suite use MPI I/O.

3.5.7 Error Handling

The set of errors that can be handled by MPI is implementation dependent. There are two

predefined error handlers provided by MPI.

• Error Fatal. MPI ERRORS ARE FATAL is the default error handler. It causes the program

to abort on all executing processes.

• Error Return. MPI ERRORS RETURN returns an error code to the user. Almost all MPI

calls return a code that indicates successful completion of the operation. If an MPI call is

not successful, an application can check the return code of that call and executes a suitable

recovery model4.

Our static analysis find that only two applications (MACSio and miniAMR) set error han-

dlers for MPI COMM WORLD. MACSio uses MPI ERRORS RETURN to check the return code

of MPI calls while miniAMR uses MPI ERRORS ARE FATAL error handler.

3.5.8 MPI Tools and the Profiling interface

The MPI standard, MPI 3.0, introduces the MPI Tools interface (MPI T) to access internal

MPI library information. Since its inception, the MPI standard also provides the MPI profiling

interface (PMPI) to intercept MPI calls and to wrap the actual execution of MPI routines with

profiling code. None of the proxy applications of Table 3.1 use either of these interfaces of the

MPI Standard.

47

7% 7%
14% 14%

21%
28%

42%

86%
100%

0

20

40

60

80

100

120

File

One-S
ided

Err
or

Pers
iste

nt

To
polog

y

Comm_G
roup

Data
typ

e
P2P

Collec
tiv

e

%
 o

f T
ot

al
 A

pp
lic

at
io

ns

Unique MPI Features

Figure 3.11: Illustration of MPI features usage by percentage of applications. We observe that
point-to-point and collective features are most often used.

3.5.9 Overall use of MPI

In this section, we present the overall usage of MPI features in the proxy applications. Fig-

ure 3.11 presents the MPI usage statistics of the ECP proxy apps suite. Our results show that

all of the applications use collective communication routines. While the percentage of applica-

tions using P2P communication is above 85%, less than 15% use persistent point-to-point and

one-sided communication. Blocking and non-blocking point-to-point calls are more promi-

nently used than either persistent point-to-point or one-sided calls. None of the applications

use the process management or neighborhood collectives features.

Figure 3.12 shows the per-application usage of MPI features. Different applications use

different sets of MPI features. None of our applications uses all 11 features. We observe that

two applications use only collectives for communication. Our analysis also shows that almost

30% of the applications use only point-to-point and collective features from the standard. None

of the applications use more than five MPI features. The proxy applications only use a small

set of features from the MPI Standard.
4MPI-4.0, the next release of the MPI Standard, makes significant improvements to the situations where con-

tinuation after errors is possible. We considered applications based on MPI-3.1, where such continuation is iffy at
best post error.

48

0
1
2
3
4
5
6

miniQMC

XSB
en

ch
Em

be
r

Exa
MiniM

D

NEK
bon

e

thorn
ado

-m
ini

Lag
hos

MACSio

miniAMR

SW
FFT AMG

miniVite

PICSA
Rlite

SW
4lite

Un
iq

ue
 M

PI
 F

ea
tu

re
s

Applications

P2P Collective Datatype Comm_Group Topology

Persistent Error One-Sided File

Figure 3.12: Illustration of usage of unique MPI features by applications. We observe that the
majority of applications use a small fraction of the MPI functionality.

3.6 Conclusions

We empirically analyzed 14 ECP proxy applications to understand their MPI usage patterns.

We used the MPI profiling interface (PMPI) to collect MPI usage statistics of the applications.

Our study showed that these applications each use a small subset of MPI, with significant over-

lap of those subsets. Almost 50% of the applications use a hybrid programming model (i.e.,

MPI+OpenMP in most cases); however, the MPI threading environment is not used. The MPI

collectives dominate the communication compared to point-to-point operations. The blocking

and non-blocking point-to-point operations are more widely used than persistent or one-sided

routines—a surprising finding given that the latter could potentially improve performance over

the former.

Since these proxy applications use only a small subset of MPI and they represent the key

characteristics of real exascale applications, it may therefore be worth focusing optimization

and tuning efforts on implementing a subset of the MPI functionality, particularly in view of

the large size of the overall MPI function set. The opportunity to focus optimization, hardware-

offloading, and fault-tolerance on such subsets could well yield higher performing MPI libraries

and faster time to solution for the real applications that these 14 ECP proxy applications repre-

sent.

49

Chapter 4

ExaMPI: A Modern Design and Implementation to Accelerate Message Passing Interface
Innovation

4.1 Introduction

MPI is the standard specification for message passing libraries. There are multiple open source

production-quality implementation (e.g., OpenMPI [17], MPICH [16]) of MPI Standard avail-

able , and many high-end vendors base their commercial versions on these source bases (e.g.,

Intel MPI [20], Cray MPI [19], IBM Spectrum MPI [21], MVAPICH [22]). All of these cur-

rently available MPI libraries are monoliths (implements the full MPI specification). The com-

plexity of these leading open source implementations of MPI is daunting when it comes to

experimentation and modification with new and different concepts for MPI-4 or other research

experiments. This makes deep experimentation with or changes to MPI prohibitive, except

in device drivers and incremental APIs. For instance, changing the modes of progress or the

modes of completion of MPI implementations is a tall order, as is managing their ability to

cope with internal concurrency or state. Furthermore, constrained environments, such as em-

bedded devices and FPGAs, may also prefer to execute MPI functionality without coping with

the entirety of large middleware implementations.

Production open source MPIs have successfully focused on completeness of coverage,

correctness, compliance, and, of course, middleware portability and performance. But, they

typically leveraged software architectures rooted in legacy implementations of MPI-1 or earlier

message passing systems, where assumptions were made based on then-extant architectures,

processor resources, assumptions of intra-node concurrency, and performance levels. Produc-

tion open source MPIs possess complex internal architectures, layers, and global state, and

50

cross-cutting issues can arise when trying to experiment. Such issues make it difficult and

expensive to achieve new changes, while also limiting certain kinds of experiments like over-

lapping of communication and computation.

To enhance and simplify researchers’ ability to explore new and diverse functionality with

MPI with quality performance potential, we have devised ExaMPI, a new, BSD-licensed open

source implementation. ExaMPI is designed as a research vehicle for experimenting with new

features or ideas of MPI. There are several factors that motivates the design of ExaMPI. First, to

explore new fault-tolerant models for MPI. Second, the recognition that many MPI applications

require only a small to moderate subset of functionality also motivated our design of a new

research MPI implementation. Most MPI applications use a small set of functionality from

MPI Standard [12, 11], which means the complexity associated with full API support isn’t

needed for many kinds of applications and, hence, application experiments. By supporting

a sound design and allowing functionality to be added systematically over time, we provide

incremental ability to run practical codes while reducing the total amount of MPI middleware

by orders of magnitude. Furthermore, with a sound, first-principles design, this new MPI would

have little dead code, or the technical debt associated with assumptions about node concurrency

or progress made in the 1990s. Third, over the past few years, a number of robust data movers

such as Libfabric, Portals, and even InfiniBand verbs have decreased the importance of complex

“channel devices” and other transport abstractions within MPI itself. These transports often

include internal progress (independent of user calls to MPI) for sufficiently smart NICs and will

soon include collective communication offload for some networks. This growth has enabled

ExaMPI’s design to focus on Libfabric as the key production networking interface for ExaMPI

in addition to fundamental UDP/IP and TCP/IP network drivers. Also, ExaMPI allows us to

avoid legacy issues in the code base of existing mature implementations as well as enforce

modular design goals throughout all functionality.

The intention is not to replace key blocks of functionality or policy in existing production

MPI implementations such as MPICH and Open MPI, or in commercial derivatives thereof.

Rather, we intend to: (a) enable rapid prototyping of new algorithms or operations for MPI,

(b) identify opportunities to improve MPI at-large, (c) exploration of new fault-tolerant models

51

for MPI, and (d) integration of multiple fault-tolerant MPI models for more fine-grained failure

recovery.

The key contributions of this work are as follows:

(1) Introduces a simplified and modular MPI implementation for research purpose with no

legacy issues.

(2) Open source (BSD-licensed)implementation that enables a community of contributors.

4.2 Requirements

We gathered both functional and non-functional requirements for ExaMPI development. In

certain cases, these requirements are related to the modularity and extensibility of the software

itself for use in specific applications.

The following functional requirements were identified at the outset of the project:

(1) Support most commonly used subset of the MPI 3.1 standard instead of implementing

full MPI specification

(2) Achieve point-to-point throughput that is initially competitive with production-quality

open source MPI implementation (e.g., OpenMPI)

(3) Achieve latency that is appropriate for a strong progress implementation

(4) Implement the MPI Stages model of MPI fault tolerance (detail discussion in Chapter 5)

Followings are the non-functional requirements:

(1) Use C++ as the programming language in the development

(2) Design a modular and extensible library that is easily maintainable

(3) Enable strong progress (independent progress)

(4) Enable choice of polling and blocking notification

(5) Support socket based transport (e.g., UDP, TCP)

52

(6) Enable experimentation with new fault-tolerance models for MPI

(7) Focus on persistent and non-blocking operations as fundamental, rather than blocking

(point-to-point and collective)

(8) Enable a community of contributors of compatible extensions that are BSD-license com-

patible

4.3 Design

In this section, we provide an overview of the architecture of ExaMPI. The library is designed

to accommodate modules with well-defined interfaces. Here, we discuss different modules of

the ExaMPI library (e.g., progress, transport, interface).

4.3.1 Architecture of ExaMPI

Figure 4.1 presents the Unified Modeling Language (UML) class diagram of the ExaMPI li-

brary. This diagram contemplates both the top-down view of the standard APIs and data struc-

tures and the bottom-up view of data movers implementing transports for MPI. Each class

has well-defined interfaces that encapsulate its behavior. The encapsulation enables cohesive

classes of loose coupling, which makes the library easily understandable and maintainable.

4.3.2 Progress Engine Design

In MPI, ‘Progress’ is the software stack that resides above the network layer responsible for

the progression of outstanding messages. The Progress rule of MPI Standard has two different

standard compliant interpretation—(a) once a communication operation has been posted, the

subsequent posting of a matching operation will allow the original one to make progress regard-

less of whether the application makes any further library calls (independent message progress)

and (b) application (on the receiver/target process) requires to make further library calls to make

progress on other pending communication operations (polling). Also, an MPI implementation

can use polling and interrupt (blocking) for message completion notification. Figure 4.2 shows

53

<<interface>>
Interface

<<interface>>
Progress

<<interface>>
Transport

Universe

1

1

1..*

Protocol

Status

Request

1

Header

Communicator

Group

Payload

Datatype

1

1

1

1

1

ConfigurationDaemon

Runtime

Figure 4.1: General overview of the ExaMPI library.

different classes of MPI message progress and notification engines that are possible to be con-

structed [81]. In ExaMPI, we enable all these possible combinations of message progress and

notification. The progress engine abstraction is designed to allow any progress engine to be

implemented inside the library rather than having a fixed one. This feature is important be-

cause prior work has shown that overlapping of communication and computation is severely

hampered by polling behavior in progress and/or notification [82].

We restrict all progress to be made through the progress engine by requiring all opera-

tions to construct a request object. The request object is posted to the progress engine, which

then will progress the request objects and the underlying transport implementations. Currently,

54

Progress
Independent Polling

N
otification

B
locking

Polling

weak progress
(MPICH,
OpenMPI,
MPI/Pro,
ExaMPI*)

strong progress
(ExaMPI,
MPI/Pro)

saturated progress
(MPI/Pro,
ExaMPI*)

anti-progress

Figure 4.2: Overview of Dimitrov’s Progress and Notification Classification Diagram (* Forth-
coming modes in ExaMPI).

ExaMPI implements a strong progress engine. By “strong” we mean that the progress is inde-

pendent with separate progress threads from the user threads and the notification of completion

is blocking. When a user thread waits on a request, the user thread is unscheduled until the

request is complete. Further progress engines are being developed to implement the weak and

saturated progress classes.

Figure 4.3 shows the decomposition of the functionality within the Progress class. We

separate the matching engine from the progress engine through an interface that allows us to

implement many separate algorithms to perform matching. Currently the SimpleMatcher im-

plements a unmatched message queue and posted received queue with a complexity of O(N2).

Message Matching. The matching condition checks for communication context, source, desti-

nation, and message tag. The context identifies a group of processes that can communicate with

each other. Within a context, each process has a unique identification called rank that is used to

specify the source and destination process for the message. Finally, there is a user defined tag

value that can be used to further distinguish messages. A receive call matches a message when

the tag, source rank and context specified by the call matches the corresponding values.

55

<<interface>>
Decider

+ decide(Requst*, Universe&) : Protocol

<<interface>>
Matcher

+ post_request(Requst*)
+ post_header(Header*)
+ progress() : tuple<Header*, Request*>

<<interface>>
Progress

+ post_request(Request *)

BlockingIndependentProgress

SimpleMatcher

SimpleDecider

1

1

ComplexMatcher

ConfigurationDecider

MultidimensionalMatcher

PollingProgress BlockingPollingProgress

Figure 4.3: Overview of the Progress layer in ExaMPI.

In addition, we decompose further the mechanism for decision about which protocol (or

algorithm) is to be used for any MPI operation. The SimpleDecider object implements the ex-

pected behaviour of the point-to-point functionality. By implementing a custom decider class,

developers can map any MPI operation to any underlying protocol. Every MPI implementation

generally relies on at least two protocols:

Eager Protocol. The sender assumes that the receiver has enough memory space to store the

message; this allows to send the entire message immediately, without any agreement between

peers. It has minimal startup overhead and provides low latency for small messages.

Rendezvous Protocol. Some kind of “handshaking” between the processes involved in the

56

transfer must be implemented. It allows to transfer big messages with minimal impact on per-

formance.

Currently, ExaMPI only uses the Eager protocol to send point-to-point messages.

4.3.3 Transport Design

The transport layer present within ExaMPI is intended to allow abstraction of all available net-

work APIs. Figure 4.4 shows the hierarchy and required functions any Transport class currently

is required to have implemented. Further development on this aspect of the library will enable

shared memory transport, offloading collectives and one-sided remote memory operations.

The current implementations present are the UDP and TCP transports, which allow for

global usage but are not as performant as a high-performance network. Each transport imple-

mentation is entirely responsible for handling the memory associated with the network. As

such, TCP and UDP use the kernel IP stack as a form of network buffer, but buffer payloads

separately once received. Future implementations with more complex communications fabrics

will require handling of receive queues.

4.3.4 Interface

Here, we overview the interface layers (language bindings) of ExaMPI library. The MPI Stan-

dard defines bindings for both C and Fortran, which must be available from any compliant MPI

implementation. Currently, ExaMPI only provides the C language interface, but building the

Fortran interface is trivial above the current implementation, similar to other MPI implementa-

tions that build their Fortran bindings to simply call the C bindings.

In Figure 4.5, the current interface structure of ExaMPI is presented. The C symbol names

for both the MPI layer and PMPI layer are defined in the mpi.h header file. The MPI symbols are

defined to be weak linked to facilitate the overloading of their functionality by MPI-compatible

tools. The default MPI functions directly call the equivalent PMPI function.

The Interface class declares and defines the same interface as the C bindings of MPI but

within a C++ class structure. The PMPI layer uses the Universe object to find the interface to the

57

<<interface>>
Transport

+ provided_protocols() : map<Protocol, size_t>
+ ordered_recv() : Header*
+ fill(Header*, Request*)
+ reliable_send(Protocol, Request*)

UDPTransport

TCPTransport

IBTransport

FabricsTransport

UDPTransportPayload
0..*

TCPConnection
0..*

Header
0..*

Header
0..*

Figure 4.4: Overview of the Transport layer in ExaMPI.

underlying C++ interface. This structure allows the abstraction of various interfaces for further

work such as additional functionality for MPI Stages recovery model (StagesBasicInterface).

In addition to extendability, the BasicInterface class allows us to encapsulate all top-level

MPI behavior into a single location, which includes error checking and subsetting of blocking

and non-blocking paths into persistent path, which is implemented by the underlying library.

Currently, the ExaMPI library supports a subset of MPI-3.1 functionality. Appendix A

presents the list of currently implemented MPI functions. Here, we do not include the list of

MPI API extensions implemented to support MPI Stages fault model (discussed in Chapter 5).

58

C Interface

PMPI Interface

<<interface>>
Interface

Universe

BasicInterface StagesBasicInterface

Figure 4.5: UML diagram describing interface layers of ExaMPI.

4.3.5 Universe

In ExaMPI, the Universe is a special class to avoid global state. It is implemented as a singleton

class. The Universe owns all global states of the library (e.g., request objects, communicators,

groups, datatypes). Currently, we do not support MPI derived datatypes. Our implementation

only uses pre-defined MPI datatypes (e.g., MPI INT, MPI DOUBLE, MPI FLOAT INT,

etc).

4.3.6 Runtime

The MPI runtime system launches an MPI application. ExaMPI uses mpiexec command

to initiate the parallel job. mpiexec command takes multiple arguments. For instance,

mpeec −n X [rgs] < progrm > will run X copies of progrm in the current

runtime environment. ExaMPI’s mpiexec use SLURM [83] resource manager as opposed to

ssh, which requires the use of a hostfile. The runtime environment of ExaMPI also supports

execution of MPI application in localhost.

59

4.3.7 Utilization of C++17

The ExaMPI implementation is written using C++17, which enables many productivity and

language features that are not present in earlier C++ or C specifications. In addition, C++

allows for object-oriented programming, which allows the MPI implementation to directly deal

with objects instead of the handles to objects. Using objects allows us to develop expressive

source code without the clutter required with a C implementation.

We intend for ExaMPI to support full thread safety—with as much internal concurrency

as reasonably possible—through the entire library. This arrangement is currently achieved

with locks provided by the C++11 specification. By utilizing the built-in threading facilities,

we reduce our dependence on external libraries. In the future, we will develop thread-safe,

lockless data structures that will allow for the overhead of locking to be removed. They are

also supported with built-in atomic operations.

The C++ language also provides many capabilities that are tedious to use in C. One of

these capabilities is string objects, which provide simpler handling of textual data. Another is

exception handling. In C, the error code mechanism requires branches through the code base

and forces design decisions. Within C++, exceptions are provided and allow for much cleaner

internal working with errors. We utilize exceptions throughout the internal MPI library but

provide error codes to the top-level MPI layer.

4.4 Conclusions

In this chapter, we described ExaMPI, a new, experimental implementation of the MPI Stan-

dard. ExaMPI solves the problem that full-scale open source MPIs are legacy middleware

projects of large-scale and long-running development by many contributors; they are difficult

to learn, modify, and use for middleware research, except in limited ways. Where they are

usable, they are adequate, but many experiments are either intractable or require students and

professors to spend inordinate amounts of time “modifying around the edges” of such middle-

ware.

60

Thus far, ExaMPI has proven to be a useful research vehicle for a small number of peo-

ple. As we move to a community of developers, researchers, and users, we look to increasing

that utilization dramatically and expect the modularity of design to allow for many interesting

hybridizations of our baseline code and concepts with others’ ideas, prototypes, and additions.

61

Chapter 5

Failure Recovery for Bulk Synchronous Applications with MPI Stages

5.1 Introduction

With each successive generation of large-scale parallel systems, faults and associated failures

are becoming more frequent. Based on current knowledge of existing high-performance com-

puting (HPC) systems, it is anticipated that failure rates may increase substantially in future

exascale systems and MTBF will reduce to only few hours [3, 4]. Long-running scientific ap-

plications in such systems will require efficient fault-tolerance support [5]. The Message Pass-

ing Interface (MPI) is widely used for data communication in scalable scientific applications.

The MPI Standard provides mechanisms for users to handle recoverable errors. However, the

standard itself does not provide any mechanism to continue running MPI after a failure. Thus,

there is a growing effort in the MPI community to incorporate fault-tolerance constructs into

MPI. Several approaches have been proposed for MPI to tolerate failures (see Section 2.4.3.3).

However, none of these has yet been integrated into the MPI Standard, a crucial precondition

for widespread support and continued program portability.

According to the current standard, MPI-3.1, by default MPI programs automatically abort

if a process fails [84]. For large-scale bulk synchronous applications, since a failure in a pro-

cess quickly propagates to other processes [85], these applications typically handle failures by

periodic, global synchronous checkpoint/restart (CPR). When a failure occurs, the runtime en-

vironment kills the entire job and restarts the application from the latest (or penultimate) global

checkpoint.

62

While the CPR approach fits the MPI standard, the full job restart time in standard CPR is

significant and ejection from the job queue is not an attractive alternative in production settings

either. Also, in forthcoming exascale systems, killing the entire job for a single failure may be

infeasible. Recently, the global-restart model was introduced [73, 86] to address these issues.

In this model, the state of MPI is globally reinitialized and cleaned up automatically upon a

failure, allowing both live processes (i.e., processes that survived the failure) and new processes

(i.e., processes that replace a failed process) to be restarted from the beginning of the program

without terminating the job. This method enables a number of optimizations that can signifi-

cantly reduce failure recovery time, including avoiding job/resource allocation time, enabling

the reuse of existing process connections, and enabling the application to load checkpoints from

memory for live processes.

While the global-restart method is useful in reducing recovery time, all processes—wheth-

er they are live or new processes (replacing failed ones)—must jump back to the beginning of

the program, That is, they must re-enter main(). Ideally, if a failure occurs in the main com-

putation loop where the program spends most of its time, we would want only new processes

to start from the program beginning and live processes to remain in the main computation loop,

close to where the failure occurred. This would eliminate the need for the live processes to

perform unnecessary initialization steps after entering main() and before entering the main

loop. This form of recovery, however, is not possible with today’s global-restart approaches and

requires advanced MPI functionality to allow new processes to reintegrate with live processes

waiting for them later in the computation (i.e., the main loop).

In this chapter, we introduce our work MPI Stages [9], a new global-restart model to

support fault tolerance in bulk synchronous MPI applications that addresses the aforementioned

issues of the global-restart model. Each stage is a period between synchronous checkpoints

and provides a temporal containment of faults; stages are numbered by a user-visible epoch

maintained by MPI and the underlying runtime system. In this model, a checkpoint of the MPI

state is saved along with the application state: this MPI state can contain state that is visible to

the user (e.g., MPI communicators), and MPI state that is only visible to the MPI library (such

as network connectivity and queues).

63

MPI Stages allows the runtime system to replace a failed process transparently by restor-

ing its MPI state and application state prior to the failure. Live processes keep the MPI state

they have before the failure, which allow them to stay in the main computation loop while the

replacement process reintegrates with them. Our approach targets bulk synchronous parallel

computing applications, a model that is used in the vast majority of large-scale HPC applica-

tions. A fundamental challenge with this model is that we must be able to quantify and capture

MPI state during normal operation in a meaningful and complete way.

We introduce new API calls for MPI to support state checkpoint: MPIX Checkpoint-

read()1 to read the saved MPI state for a process, MPIX Checkpoint write() to save

the current MPI state of a process, MPIX Get fault epoch() to retrieve which checkpoint

(last synchronous) to load. We also introduce functionality in MPI to revivify MPI handles after

failure. We add an error code MPIX TRY RELOAD to let an application know when it should

stop normal operation and move to retrieve the checkpoint (and continue execution thereafter).

In summary, our contributions are as follows:

(1) We introduce the concept of MPI Stages, a global-restart model to reduce the recovery

time of stage-based bulk synchronous MPI applications.

(2) We identify requirements for production MPI implementations to support state check-

pointing with MPI Stages, which includes capturing and managing internal MPI state,

and serializing and deserializing user handles to MPI objects.

(3) We design a double-dæmon runtime system to transparently replace a failed process

which is compatible with various job scheduling systems.

5.2 Terminology

In this section, we introduce the terminology used in the design of MPI Stages.

Stages— a period between synchronous checkpoints for both MPI and application states

and provides a temporal containment of faults.

1‘X’ indicates non-standard MPI API

64

epoch— this is the “stage” notion of our design. Each stage is numbered by an epoch.

This epoch is not to be confused with MPI RMA epochs. “Epoch” could literally have been

named “stage” had we so chosen. In this work, the epoch represents a “temporal context”

as compared to the MPI-internal concept of “spatial contexts” used in MPI communicators to

scope messages.

first-time start process— when an MPI program first begins, all processes are categorized

as first-time start processes.

live process— upon a failure, the processes that have survived the failure are categorized

as live processes.

relaunched process— during recovery from a failure, processes that replace the failed

processes are categorized as relaunched processes.

resilient loop— a loop that executes a resilient MPI program using MPI Stages recov-

ery model. All of the application code resides inside the resilient loop. If a process fails during

the application execution, resilient loop takes appropriate action to recover the failure. The re-

silient loop exits when the application is successfully complete or encounters any failures not

supported by MPI Stages recovery model. MPI processes call finalize once resilient loop

completes.

main loop— a function that contains the main simulation of bulk synchronous program.

MPI Stages separates the application into two functions— main and main loop. The

main function consists of a “resilient loop” that initializes MPI and calls the main loop,

which executes all of the application code. The main loop successfully returns when the ap-

plication is complete. In Algorithm 2, the “while” loop in the main function is the resilient loop

and it calls the main loop function which contains the application code.

MPI state— an MPI state is defined as the current information pertaining to MPI pro-

cesses, groups, and communicators. During program execution, the latest values of these iden-

tified MPI objects are checkpointed.

65

Algorithm 2 Structure of MPI application using MPI Stages
1: procedure main(int argc, char **argv) . main function
2: while not s sccess do . resilient loop
3: . . .
4: s sccess = mn oop(...) . call main computation
5: MPI Finalize()
6: procedure main loop(...) . main loop function
7: all application code here
8: returns success/failure

5.3 Fault Model

For the purpose of this dissertation, we only consider fail-stop process failures and detectable

transient errors (e.g., unwanted bit-flips). The resource manager or MPI runtime is responsible

for restarting any failed processes. We assume that processes can be re-spawned to replace

the failed ones in the same node. Currently, we do not handle permanent hardware failures.

However, the resource manager could be used to replace the failed processes with spares. As

our recovery is conducted in a resilient loop, software errors (bugs) could result an infinite

recovery loop. In this case, the resilient loop should abort after certain number of tries.

5.4 Applicability of MPI Stages

An MPI application can use different types of recovery strategy based on its programming

model. In this section, we discuss different recovery models available to MPI applications, the

recovery model for MPI Stages, and the programming model that best fits MPI Stages recovery

model.

Shrinking Recovery discards the failed processes and the application recovers with a re-

duced set of processes. As a result, for many scientific problems, it requires the ability to

re-decompose and load balance them at runtime.

Non-shrinking Recovery replaces the failed processes and the application recovers with

same number of processes it had before failure. In this case, the resource manager may have

to maintain a pool of spare processes; however, application need not do any load balance and

re-decomposition.

66

Forward Recovery attempts to find a new state from which the application can continue

execution. ULFM model uses a forward recovery approach.

Backward Recovery restarts the application from a previously saved state. Reinit model

uses this approach.

Local Recovery restores a small part of the application to survive the failures. It assumes

that the impact of the failures is limited to a local state.

Global Recovery restores the global state of the application to repair the failure. In this

case, even if only one process fails, all processes need to restore their state.

We use a global, backward, and non-shrinking recovery model in MPI Stages. This

type of recovery model is best suited for bulk synchronous programs (BSP). BSP is one of the

commonly used programming models in large-scale HPC applications. In BSP, the state of the

system advances by time steps. It uses static domain decomposition and each process stores

only its assigned part of the time evolving state. Using a global, backward, and non-shrinking

recovery eliminates any complex re-decomposition and load balancing of the problem. Some

of the applications use a master-worker programming model. In master-worker model, master

distributes computation to the workers and workers return the result to the master. There is

almost no dependencies among the workers. If a worker fails, the master can sends the failed

workload to the next available worker without affecting their computation. A forward, local,

and shrinking recovery model is best suited for this type of dynamically balanced application.

We primarily target bulk synchronous programs (BSP) that use checkpoint/restart as their

recovery model. Here, we assume that the application has already managed the user’s data as

part of the application checkpoint and we apply our method on top of it. Our method requires

the checkpoints taken at a globally consistent state (no pending requests). In BSP, we reach

in a globally consistent state after each time-step (or n time-steps) of the simulation. We can

also apply MPI Stages in master-worker applications; however, a global, backward, and

non-shrinking recovery is not desirable for master-slave programming model.

67

5.5 Design

Any application-level fault-tolerant model for MPI requires extensions to the MPI Standard

(MPI API). In this section, we discuss the key design features of MPI Stages. We also

discuss the MPI API extensions introduced to use our recovery model.

5.5.1 Interface

Our model introduces only a small number of functions to MPI. In this section, we present the

new objects and functions introduced in our model, as presently conceived. These are minimal

additions at present, and no “giant API” addition is expected even in further elaboration of this

approach.

We divide the added MPI constructs (objects and functions) into two categories— (a)

Minimal constructs: required for any applications to use MPI Stages and (b) Serialization

constructs: required for applications that create user MPI handles (see Section 5.5.4.4).

5.5.1.1 MPI Objects

In this section, we present the new objects and error code introduced by MPI Stages.

For MPI objects, we only add an error code as a minimal construct. Listing 5.1 shows the

minimal construct required in our model.

MPIX TRY RELOAD— Error code returned to an application from the MPI library indi-

cating the need to initiate the failure recovery process (e.g., checkpoint load).

The list of serialization constructs is as follows (details in Section 5.5.4.4):

MPIX Handles— Structure that represents the MPI handles used in user program. Cur-

rently, we only support communicator and group handles.

MPIX Serialize handler— Function handler type for MPI handles that serializes

user handles of MPI object used in the application and libraries.

MPIX Deserialize handler— Function handler type that revivify user MPI han-

dles during recovery from a deserialized MPIX Handles object.

68

Listing 5.2 shows the constructs required to revivify user handles of MPI objects after a

failure.

5.5.1.2 MPI Functions

In this section, we present the new functions introduced by MPI Stages. We add extended

semantics to MPI Init to support our recovery (see Section 5.5.4). Here, we only show the

newly added functions.

We add three MPI routines as the minimal construct to use MPI Stages (see List-

ing 5.1).

MPIX Checkpoint read— Load MPI state from a checkpoint and wait in an implicit

barrier for all processes to complete the step.

MPIX Checkpoint write— Store MPI state into a checkpoint.

MPIX Get fault epoch— Returns the last successful checkpoint number.

Followings are functions required for serialization (details in Section 5.5.4.4) (see List-

ing 5.2):

MPIX Serialize handles— Serializes user handles of MPI objects into MPI check-

point.

MPIX Deserialize handles— Deserializes (revivify) the user handles of MPI ob-

jects from MPI checkpoint.

MPIX Serialize handler register— Pushes serialize handlers in stack. Appli-

cation and libraries can register their handlers using this function.

MPIX Deserialize handler register— Pushes Deserialize handlers in stack.

Applications and libraries can register their handlers that revivify their MPI handles using this

function.

5.5.2 Failure Detection

Failure detection is one of the first steps of fault tolerance. Our model requires a perfect fault

detector that is strongly accurate and complete. A perfect fault detector does not report a

process as failed until it actually fails and eventually all peers will be aware of the failure (see

69

1 /* * * * * * * * * MPI e r r o r code * * * * * * * * */
2 enum E r r o r s {
3 . . .
4 MPIX TRY RELOAD ,
5 . . .
6 } ;
7

8 /* * * * * * * * * MPI functions * * * * * * * * */
9 // function to load MPI checkpoint

10 i n t MPIX Checkpoint read (void) ;
11 // function to s t o r e MPI checkpoint
12 i n t MPIX Checkpoint write (void) ;
13 // function to get epoch
14 i n t MPIX Get fault epoch (i n t * epoch) ;

Listing 5.1: Minimal MPI API extension to use MPI Stages

Section 2.4.1). We have a failure detector in our MPI runtime system to detect process failures;

the runtime system could also detect network failures in future. Thus, applications do not

need to check for failures. When a failure is detected by MPI runtime, the detector propagates

the failure information proactively among the remaining surviving processes (as opposed to a

gossip-based diffusion of such information).

Runtime System. One of the major design aspects of MPI Stages is the transparent

replacement of failed process by the MPI runtime system. We use Slurm as a resource man-

ager to allocate and maintain the resources (processes/nodes) requested by the application. To

support our fault tolerance model, we design the runtime as a double-dæmon method. The

job scheduling system has the management dæmon on the node that executes a second layer

dæmon, the fault dæmon. The fault dæmon launches two more dæmons, head dæmon and

controller dæmon. These new dæmons handle the failure detection and propagation of MPI

Stages. One benefit of introducing a level of dæmon is that we do need to modify Slurm

itself. So, it is compatible with other job scheduling systems. Figure 5.1 shows the hierarchy

of different dæmons in our runtime system.

Fault Dæmon wraps the execution of the MPI application. It launches the MPI application

as a sub-process. It intercepts any MPI process failure (non 0 exits) and prevents the job

scheduling system from terminating the job prematurely. The fault dæmon also prepares the

final application environment variables. The fault dæmon waits for the process to terminate and

70

1 /* * * * * * * * * MPI o b j e c t s and function p o i n t e r s * * * * * * * * */
2 typedef s t r u c t {
3 MPI Comm * communicators ;
4 i n t comm size ;
5 MPI Group * groups ;
6 i n t group size ;
7 } MPIX Handles ;
8 // function pointer to s e r i a l i z e MPI handles
9 typedef void (* M P I X S e r i a l i z e h a n d l e r) (MPIX Handles * handles) ;

10 // function pointer to r e v i v i f y MPI handles
11 typedef void (* MPIX Deserial ize handler) (MPIX Handles handles) ;
12

13 /* * * * * * * * * MPI functions * * * * * * * * */
14 // function to s e r i a l i z e handles
15 i n t MPIX Seria l ize handles () ;
16 // function to r e v i v i f y handles
17 i n t MPIX Deserial ize handles () ;
18 // function to r e g i s t e r d e s e r i a l i z e handler
19 i n t M P I X D e s e r i a l i z e h a n d l e r r e g i s t e r (const MPIX Deserial ize handler

handler) ;
20 // function to r e g i s t e r d e s e r i a l i z e handler
21 i n t M P I X D e s e r i a l i z e h a n d l e r r e g i s t e r (const MPIX Deserial ize handler

handler) ;

Listing 5.2: MPI API extension for serialization of user handles of MPI objects

thereby avoids using any processing power from the node. This feature is useful because there

is a one-to-one application and fault dæmon relationship. Figure 5.2 shows the state diagram

of the fault dæmon. The fault dæmon also initiates the head dæmon if SLURM LOCALID2

(localid) is 0.

Head Dæmon is executed on each node. It manages a single node communicating with

both local fault dæmon and the applications. In addition, it communicates with the controller

dæmon. It initiates the controller dæmon if global task id for the process is 0 (root rank). It

implements a “barrier” inside a node— receives barrier request from application process and

sends the node barrier confirmation to controller. It also receives the “termination” request from

the fault dæmon and notify controller about the successful/unsuccessful exit of the process.

Head dæmon also participates in reaching a consensus on the epoch value after failure (see

section 5.5.4.5). Figure 5.3 shows the state diagram of head dæmon.

2Node local task ID for the process within a job.

71

Node Hardware

Operating System

Scheduling System Daemon (one per node)

Fault Daemon

Head Daemon (one per node)

Controller Daemon (rank 0)

MPI Application

Figure 5.1: Overview of runtime system dæmon layers of MPI Stages.

Controller Dæmon is only awake on the root node (rank 0) of the job allocation. It handles

communication from all head dæmons. It listens to head dæmons and sends data back to them.

It implements a “barrier” among all nodes— receives ‘node barrier’ request from all head

dæmons and sends ‘release’ command back as a confirmation of the barrier. Similarly, it sends

‘shutdown’ commands to all head dæmons once all nodes exit successfully. The controller

dæmon also propagates the failures among all head dæmons by sending ‘error’ command (see

section 5.5.3). It also generates agreement on epoch value after a failure (see section 5.5.4.5).

Figure 5.4 shows the state diagram of controller dæmon.

With this structure, there are two dæmons (head dæmon and controller dæmon) awake on

the root node of the job allocation and one dæmon (head dæmon) on every other node. This

arrangement enables hierarchical scaling for side-channel communication—that is, data not

directly related to the MPI application via socket-based TCP/IP.

72

initializing

localid == 0

fork head
dameon

launch application
inactive

active
shutdown

process
exit process

restart

Figure 5.2: State diagram of fault dæmon.

5.5.3 Failure Propagation

A perfect fault detector requires all surviving processes to be notified about a failure. Our MPI

runtime propagates the error information to all live processes. Figure 5.5 shows the error prop-

agation mechanism of MPI Stages. After launching the MPI processes, fault dæmons enter

into “inactive” mode. When an MPI process fails, the corresponding fault dæmon becomes

“active” and gets the exit code of the process. If the exit code is non zero, it notifies the head

dæmon about the failure, which in turn notifies the controller. The controller dæmon starts the

propagation of error. First, it propagates the error information to all nodes (head dæmons). In

next step, the head dæmon propagates the failure to the live processes of that node. To promptly

notify all live processes about the failure, we need a asynchronous failure propagation mecha-

nism which does not rely on polling. We use signal handler for prompt failure notification. To

receive the failure notification, all processes register an error handler after MPI initialization.

This error handler lets processes to register a signal handler (SIGUSR2). As soon as the head

dæmon gets notified by the controller, it propagates the failure by sending signal to all live

processes.

73

Initializing

Fork
Controller
daemon

Listening Barrier

Node barrier
Complete

Epoch

Termination
Node

Complete

rank = 0

Notify Controller

Figure 5.3: State diagram of head dæmon.

5.5.4 Failure Recovery

The two main design aspects of MPI Stages are (a) transparent replacement of a failed

process by the MPI runtime system and (b) managing and capturing internal MPI state.

The runtime system (fault dæmon) replaces the failed process with a new process and re-

launches it (hence, a relaunched process). After the head dæmon gets notified by the controller,

it sends a restart request to the active fault dæmons (only the dæmon corresponding to the failed

process will be active) to relaunch the failed process.

To distinguish between a first-time start process and a relaunched process, we use a new

configuration variable that we denote as an “epoch”. All first-time start processes have epoch

value of zero. We increment the value of epoch every time we take a checkpoint. The epoch

has meaning both for the application checkpoint and the MPI checkpoint. When MPI Init is

called for all first-time start processes with epoch zero, it initializes all MPI state (e.g., commu-

nicators, groups).

74

Initializing Listening

Node Barrier

Node
Shutdown

Node
Success

Process Exit

Node Epoch

Release

Shutdown

Error

Commit

Shutdown

Figure 5.4: State diagram of controller dæmon.

When we relaunch a process after failure, the epoch gets the value of the last synchronous

checkpoint. So, the relaunched process invokes MPI Init with an epoch greater than zero. In

this case, instead of initializing, MPI Init restores the MPI state from the appropriate MPI

checkpoint. Thus, we add overloaded meaning to the MPI Init function based on the value

of epoch3.

For live processes, error handling initiates when runtime triggers the signal handler to no-

tify about a failure. Here, all processes register the pre-defined error handler, MPI ERRORS-

RETURN. The error handler cleans up any pending communication (posted requests) and re-

turns an error code MPIX TRY RELOAD from every MPI function from then on. If there is

no pending communication, then the next MPI call will return that error code. The error code

tells the application to rollback and restore the last synchronous checkpoint for application

state. This allows the application to use a structured approach to in-application exception han-

dling without special language support. Note that relaunched processes eventually become live

processes after all recovery actions have been taken.

3If this were to be standardized, we might opt for a generalized initialization function that also provides for a
non-default error handler as well.

75

Controller

Head Head

Fault Fault Fault Fault Fault

MPI MPI MPI MPI MPI✕
1

1

1
22

3 3 3 3

Figure 5.5: Illustration of error detection and propagation in MPI Stages.

Figure 5.6 shows the execution flow of the MPI Stages recovery among 3 processes.

After each stage, the program takes a checkpoint of both MPI and application state and incre-

ments the epoch value. Here, process 2 fails during stage3. The live processes (process 0 and

process 1) get failure notification, clear pending requests, return error code to the application,

and wait for the failed process. On the other hand, a replacement process is launched with the

last successful epoch (2) and loads the state of MPI from checkpoint. Then all processes load

their application checkpoint and continue execution.

5.5.4.1 Loading Checkpoint

After receiving the error code, the application calls MPIX Checkpoint read(). All live

processes enter into a quiescent state (implicit barrier) and wait for the relaunched process to

synchronize. Once the relaunched process completes loading the MPI checkpoint and joins

the barrier, they all load the application checkpoint and continue execution. Any messages in

transit across processes are lost and will need to be re-sent. The application will have con-

sistency on exactly what has and has not been sent prior to the recovery. Before loading the

76

Process	 0
epoch=0

Process	 1
epoch=0

Process	 2
epoch=0

stage1,	 epoch=1

stage2,	 epoch=2

Clear	 requests
Return	 MPIX_TRY_RELOAD

Wait	 for	 others
Update	 epoch

Clear	 requests
Return	 MPIX_TRY_RELOAD

Wait	 for	 others
Update	 epoch

Replacement	 process	
Load	 MPI	 state	 (epoch=2)

Wait	 for	 others

Load	 application	
state	 for	 epoch=	 2

Load	 application	
state	 for	 epoch=	 2

Load	 application	
state	 for	 epoch=	 2

Checkpoint	 MPI	 and	 application	 state

Checkpoint	 MPI	 and	 application	 state

Figure 5.6: Illustration of execution flow of an MPI program using MPI Stages recovery.

application checkpoint, the application calls MPIX Get fault epoch() which returns the

last synchronous checkpoint number to load the application data.

5.5.4.2 Addressing In-Flight Data

A further contribution of our approach is addressing potential in-flight data after a recovery. The

epoch value is also used as part of the implementation of transports that support our approach

to resilient MPI. Each epoch represents a unique communication phase for the application.

Messages from older epochs will be dropped if received later (after recovery). By propagating

the epoch4 in to the message protocol, we eliminate the potential for inconsistency from in-

flight data. This resolves a significant issue compared to what ULFM and other systems have

had to consider. This epoch approach to versioning the transfers could also be adapted with

other fault-tolerant approaches that involve a synchronization and consensus step at recovery.

5.5.4.3 Handling Asymmetrical Error Code

During an execution, some processes may detect a failure while some other may consider the

execution was successful. Let’s imagine a ring communication among 3 processes starting with

process 0. Process 0 sends to process 1 and waiting to receive from process 2, which is waiting

4In practice, this currently adds 32 bits to messages (besides the context, source rank, and tag) aiding the
matching of messages. If such space is limited, we can make assumptions about the likelihood of wrapping in this
field due to many old messages from earlier epochs.

77

P0

P1

P2

S(1)

R(0) S(2) F(1)

W(2)

RP2

FR

FR

P0

P1

P2

S(1)

R(0) S(2)	 MB

W(2)

RP2

FR

FR

FR

P	 ⎯MPI	 process	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 S(n)	 ⎯ Send	 to	 process	 n	 	 	 	 	 	 	 	 	 R(n)	 ⎯ Recv from	 process	 n	 	 	 	 	 	 	 	
FN ⎯ Failure	 notification	 	 	 	 	 	 	 	 	 F(n)	 ⎯ Finalize	 process	 n	 	 	 	 	 	 	 	 	 	 W(n)	 ⎯Waiting	 to	 recv from	 process	 n	
MB	 ⎯MPI	 barrier	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 RP ⎯ Relaunched	 process	 	 	 	 	 	 	 	 FR	 ⎯ Failure	 recovery

Figure 5.7: Illustration of asymmetrical error handling. The left figure shows that P0 and
P2 are blocked in recovery phase as P1 has finalized. The right figure shows the solution to
complete the recovery by using a barrier.

to receive from process 1, which is waiting to receive from process 0. After process 1 receives

from process 0 and sends to process 2, its involvement in the communication has completed.

Process 1 can leave the resilient loop and call MPI Finalize. In the meantime, process 2

has failed, process 2 is relaunched, process 0 is notified; both of them enter into recovery and

wait for process 1 to complete the implicit barrier. However, process 1 has already completed

the execution. As a result, the processes will be in a deadlock. Figure 5.7 (left) illustrates the

above scenario.

To resolve the issue, MPI Stages adds an MPI Barrier before returning from main-

loop, which ensures that no processes will leave the resilient loop until all of the application

code is executed. For the above scenario, process 1 waits in the barrier (inside the resilient loop)

instead of calling MPI Finalize. When process 2 fails, all of the processes can participate

in the recovery. Figure 5.7 (right) shows that all of the processes enter into the failure recovery

phase.

A similar scenario may occur in the barrier or some processes may fail during MPI-

Finalize. Our model cannot recover once some processes are outside of the resilient loop.

However, in this case, the application has already completed its computation. MPI Stages

will abort the execution with proper error messages for the user. Alternatively, we can apply

78

1/43

MPI Application

Library A

Library B

SA SB DA DB

Deserialize
Handler
register

MP
IX
_S
er
ia
li
ze
_h
an
dl
es

Serialize
handler
register

Serialize queue Deserialize queue

MPIX_Deserialize_handles

Figure 5.8: Illustration of serialization and deserialization of MPI handles with external li-
braries.

other recovery methods such as application checkpoint/restart, although the main computation

has completed without any failure.

5.5.4.4 Serialization and Deserialization of MPI handles

MPI Stages periodically serializes the state of MPI in a checkpoint using MPIX Check-

point write. This function serializes the state of communicator (e.g., process groups, con-

text id) and state of transport (e.g., network connectivity). The relaunched process restores

the state of MPI by deserializing the checkpoint. However, an application may use multiple

communicators or groups other than MPI COMM WORLD. In this case, to restore the user MPI

handles after a failure, we need to serialize the MPI objects referred by these handles along

with the MPI state.

In the current form of the model, we use programs that are primarily restricted to using

MPI COMM WORLD. However, our model supports “re-vivifying” user handles such as other

communicators and groups. Because we require that there are no pending requests during the

79

checkpoint—a valid assumption for most bulk synchronous programs that use CPR—we do

not need to revivify MPI requests.

An MPI application may use supplemental software libraries. Complex library composi-

tion requires special design consideration for any fault-tolerant model. To maintain consistency

after failures, we need to revivify any MPI handles these libraries use.

To accomplish this, we introduce callback functions, serialize/deserialize handlers that ap-

plication and libraries can register. They can register their handlers using MPIX Serialize-

handler register and MPIX Deserialize handler register functions.

When an MPI application calls MPIX Serialize handles, it invokes the serialize

handlers in the order they were registered. An MPIX Handles object is passed as an ar-

gument to each handler. The handler populates the MPIX Handles object with user MPI

handles. After executing the handler, MPIX Serialize handles serializes all the MPI

resources referred by MPIX Handles into MPI checkpoint file. A similar funtion, MPIX-

Deserialize handles is used to revivify the user MPI handles after failure. It creates

the object MPIX Handles by deserializing the MPI checkpoint file and calls the deserialize

handlers.

Figure 5.8 shows the use of software libraries in MPI application. Here, the application

calls a library—A and library A calls the second library—B. Both libraries register their seri-

alize handlers (SA and SB) and deserialize handlers (DA and DB) into separate queues. The

MPI library serializes and deserializes the queues when the application calls the corresponding

functions.

As described in the MPI Standard, handles can be implemented using different types

(e.g., integers or pointers). Our implementation uses integer types for handles. We guaran-

tee application-level semantics for the handles after an MPI checkpoint is reloaded. More

formally, if a handle refers to the MPI resource y (stores in a checkpoint) before a failure,

we guarantee that refers to the same resource y (restores from the checkpoint) after a failure.

80

Send	 epoch*

Out-‐of-‐band	
notification

Agree	 or	
disagree	

with	 epoch

Coordinator	 (Controller) Head	 daemon
Notify

MPI	 Process

1. Detect	 Failure

2. Gather	 (decision)
3. If	 disagree,	 calculate	

new	 epoch
4. Commit

1. Propagate	 Error

2. Gather	 (epoch)
3. Send	 (decision)

4. Send	 updated	 epoch	 to	
live	 processes

5. Send	 relaunch	 request	
for	 failed	 process	 to	
fault	 daemon	 with	 new	
epoch

1. Error	 Handler

2. Update	 epoch
Send	 new	
epoch

Figure 5.9: Illustration of agree/commit consensus algorithm (epoch∗ is the last successful
epoch of failed process).

5.5.4.5 Agreement on epoch

In MPI Stages, epoch indicates the last successful checkpoint. After detecting a failure,

runtime launches a new process to replace the failed one. This relaunched process loads its

MPI state from a checkpoint during MPI initialization. So, the relaunched process needs an

epoch that is synchronized among all processes to load the MPI checkpoint.

To accomplish this, we use a consensus algorithm that determines the last synchronous

epoch value for all processes. This epoch is also used to load application checkpoint. A

consensus algorithm plays an important role in fault tolerant applications [87]. Different al-

gorithms have been introduced for distributed consensus (e.g., two-phase consensus [88]) (see

Section 2.4.2). In our model, we use a agree/commit approach of consensus. Figure 5.9 illus-

trates the agreement algorithm used in MPI Stages.

The runtime controller dæmon acts as the coordinator in the agreement process. It starts

the agreement by sending the epoch of the failed process to all head dæmons along with the

notification of failure. Head dæmons propagate the error information by notifying the live MPI

processes. The live MPI processes send an out-of-band notification to the head dæmons and

invoke their error handler. Each head dæmon now gathers the epoch value of the MPI processes

it launched and compares it with the epoch of the failed process. If all MPI processes have the

same epoch as the failed process, the server sends the decision “agree” to the coordinator. If

81

any MPI process has a different epoch, server sends that epoch to the coordinator along with

“disagree”. The coordinator gathers all decisions. If the result is unanimous, the coordinator

commits the epoch of the failed process to all head dæmons. Otherwise, it calculates the lowest

common epoch and commits the new value. Finally, the head dæmon sends the restart com-

mand to its active fault dæmon with the updated epoch to replace the failed process. It also

sends the epoch to all of the live processes. A call to MPIX Get fault epoch will return

the synchronized epoch value.

5.6 Sample Fault-Tolerant MPI program

Listing 5.3 shows a sample bulk synchronous MPI program that uses traditional CPR-based

recovery method. The program starts with MPI initialization, then initializes or restores appli-

cation state, and finally starts MPI communications over a simulation loop. After each itera-

tion, application state is saved to a checkpoint. After a fail-stop process failure, the MPI job is

restarted, the application initializes MPI, and starts execution by restoring the last application

checkpoint.

Listing 5.4 shows the same MPI program as Listing 5.3 but applies MPI Stages. In our

model the resilient loop in the main method runs until the application successfully completes

or aborts. First, the resilient loop initializes MPI similar to Listing 5.3. Then it sets an error

handler to MPI ERRORS RETURN and calls the main loop to execute the simulation with an

epoch number. The epoch is zero for initial execution and greater than zero if a failure occurs.

In the main loop, the application either initializes the state or restores it from a checkpoint.

At the end of each iteration, we store the application and MPI state in checkpoints. In the

simulation loop, we check the return error code for each MPI call. When a live process receives

error code MPIX TRY RELOAD, it returns to the resilient loop and restores its MPI state to

the last checkpoint. Note that this error-communication approach avoids language-specific

exception handling and does not require the use of setjmp/longjmp. In the meantime, the

failed process is re-spawned and also restores its state. Then all processes call the main loop,

restore the application state, and continue execution from the iteration that has failed. When

the simulation is successfully completed, it terminates the resilient loop.

82

1 # include<mpi . h>
2 i n t main (i n t argc , char * * argv) {
3 /* MPI i n i t i a l i z a t i o n */
4 MPI Init (& argc , &argv) ;
5

6 /* I n i t i a l i z e or Restore a p p l i c a t i o n s t a t e */
7 i f (checkpoint e x i s t s)
8 Application Checkpoint Read (. . .) ;
9 e l s e

10 /* I n i t i a l i z e a p p l i c a t i o n s t a t e */
11

12 /* Main simulation loop */
13 while (i t e r a t i o n < MAX ITERATION) {
14 /* MPI communications */
15 . . .
16 MPI Allreduce (. . .) ;
17 . . .
18 /* Save a p p l i c a t i o n s t a t e */
19 i f (l a s t i t e r a t i o n)
20 MPI Barrier (. . .) ;
21 e l s e
22 Applicat ion Checkpoint Write (. . .) ;
23 }
24 MPI Final ize ()
25 return 0 ;
26 }

Listing 5.3: Sample program following traditional CPR-based paradigm

In summary, our model sets an error handler, stores MPI state in a checkpoint in tandem

with application state, and restores both MPI and application state upon a failure. All processes

initialize their MPI state only once. Only the process that has failed and re-spawned need to

call MPI Init() again. However, in this case, MPI Init restores the MPI state from a

checkpoint instead of through initialization.

5.7 Implementation

Instead of using an existing MPI library—with extremely complex internal state—we imple-

ment a prototype of our fault-tolerant model in a new MPI implementation, ExaMPI [14] (see

Chapter 4). This allowed us to avoid legacy issues in the code base of existing mature imple-

mentations.

83

1 # include<mpi . h>
2 i n t main (i n t argc , char * * argv) {
3 i n t code = MPI SUCCESS ;
4 while (not done or abort) { // R e s i l i e n t loop
5 switch (code) {
6 case MPI SUCCESS :
7 /* MPI I n i t i a l i z a t i o n */
8 MPI Init (& argc , &argv) ;
9 /* Set e r r o r handler */

10 MPI Comm set errhandler (. . .) ;
11 break ;
12 case MPIX TRY RELOAD :
13 /* Restore MPI s t a t e from checkpoint */
14 MPIX Checkpoint read () ;
15 break ;
16 d e f a u l t :
17 MPI Abort (. . .) ;
18 break ;
19 }
20 /* Get the l a s t synchronous checkpoint # */
21 MPIX Get fault epoch (&epoch) ;
22 /* Main simulation loop */
23 code = main loop (argc , argv , epoch , &done) ;
24 }
25 MPI Final ize () ;
26 return 0 ;
27 }
28
29 i n t main loop (i n t argc , char * * argv , i n t epoch , i n t *done) {
30 /* I n i t i a l i z e or r e s t o r e a p p l i c a t i o n s t a t e */
31 i f (epoch > 0)
32 Application Checkpoint Read (. . .) ;
33 e l s e
34 /* I n i t i a l i z e a p p l i c a t i o n s t a t e */
35
36 /* Main simulation loop */
37 while (i t e r a t i o n < MAX ITERATION) {
38 /* MPI communication */
39 . . .
40 code = MPI Allreduce (. . .) ;
41 i f (code ! = MPI SUCCESS)
42 return MPIX TRY RELOAD ;
43 . . .
44 /* Save a p p l i c a t i o n s t a t e */
45 Applicat ion Checkpoint Write (. . .) ;
46 /* Save MPI s t a t e */
47 MPIX Checkpoint write () ;
48 }
49 /* A l l other a p p l i c a t i o n r e l a t e d code */
50 . . .
51 /* B a r r i e r to ensure no processes c a l l f i n a l i z e u n t i l the simulation

completes */
52 code = MPI Barrier (. . .) ;
53 i f (code == MPI SUCCESS)
54 *done = 1 ; /* S u c c e s s f u l completion */
55 return code ;
56 }

Listing 5.4: Sample fault-tolerant program following with MPI Stages paradigm

84

<<interface>>
Stages

+ save(std::ostream&)
+ load(std::istream&)
+ halt()
+ cleanup()

<<interface>>
StagesInterface

<<interface>>
StagesProgress

<<interface>>
StagesMatcher

<<interface>>
StagesTransport

Figure 5.10: Illustration of UML description of Stages interface.

We isolate the new API extensions (StagesBasicInterface) added by MPI Stages (see List-

ings 5.1 and 5.2) from the standard MPI API as shown in Figure 4.5 (see Section 4.3.4).

We use the command line parameter −− enbe mp stges with mpiexec to enable

the MPI Stages model.

Our recovery requires to manage and capture the internal state of MPI. To support MPI

state checkpointing, we provide a “Stages” interface as shown in Figure 5.10. This interface has

four routines— save, load, halt, and cleanup. Different modules of the MPI implementation

(e.g., Progress, Transport) implement these routines by extending the Stages interface.

The save function writes the state of the MPI into a checkpoint. The load function

reads the state of MPI from a particular checkpoint. The MPIX Checkpoint write and

MPIX Checkpoint read functions call the corresponding save/load implementations of

each module to save or load their corresponding MPI state to/from the checkpoint file. We write

the checkpoints as a binary file per MPI process. To reduce the overhead of checkpointing, we

can adopt different techniques used in the Scalable Checkpoint/Restart (SCR) library [48]. We

can cache only the latest checkpoint in the local storage of a node and discard older ones.

We can also apply the redundancy schemes used in SCR such as periodically copying a cache

checkpoint to the parallel file system or storing a copy of it to another node. We can utilize

local RAM disk or solid-state drives (SSDs) for storage based on availability.

85

To release any pending requests (waiting to receive message), we use the cleanup routine.

Finally, the halt is used to set the error code of any posted requests to MPIX TRY RELOAD.

MPI Stages could be implemented in any existing MPI implementation. However, it

requires significant engineering effort to capture and manage the internal state of MPI middle-

ware; advance design for this may be crucial.

5.8 Conclusions

We presented a new approach for fault tolerance in MPI, MPI Stages. It detects process

failure, propagates the error to all live processes, and notifies to the user application. To re-

cover from process failure, MPI Stages transparently replaces a failed process by loading

its MPI state along with its application state from a saved checkpoint. This allows surviving

(live) processes to stay within the main computation loop—close lexically to where failures

occurred—while only relaunched processes restart from the beginning of the program. MPI

Stages introduces a set of API extensions to the MPI Standard. We implemented our model

in a prototype MPI implementation (ExaMPI) and presented the requirements to implement

this fault tolerance model in a production MPI implementation. The experimental design and

evaluation of MPI Stages is discussed in Chapter 6.

86

Chapter 6

Experimental Design and Evaluation of MPI Stages

6.1 Introduction

In this chapter, we show the experimental design and evaluation of MPI Stages. We imple-

ment a prototype of MPI Stages as a proof-of-concept in ExaMPI library (see Chapter 5).

We demonstrate its functionality and performance through mini applications and microbench-

marks. We evaluate the recovery time of the test applications using MPI Stages and com-

pare its performance with other recovery models. In the following sections, we discuss the test

environment and various use cases of our fault-tolerant model.

6.2 Test Environment

In this section, we describe each aspect of the test environment in turn.

6.2.1 Applications

To evaluate the performance and functionality of MPI Stages, we test mini applications

as well as microbenchmarks. We use LULESH (Livermore Unstructured Lagrangian Explicit

Shock Hydrodynamics) [89, 90] and CoMD (Co-design Molecular Dynamics) [91] proxy ap-

plications as a representative target bulk synchronous application. We also implement two

microbenchmarks— Ring communication and matrix multiplication. We apply MPI Stages

to LULESH, CoMD, Ring communication, and matrix multiplication. We use the Slurm job

scheduling system to run the test applications. Section 6.3 discusses the details of each test

application.

87

6.2.2 Recovery Models

Our model primarily targets applications that use bulk synchronous programming model. The

state-of-the-practice recovery model for these applications is checkpoint/restart. The global-

restart model, Reinit, is a more suitable recovery model for BSP applications [73]. Also, the

closest competitor of MPI Stages is the Reinit model. We present the performance of our

model by comparing it with checkpoint/restart and the global-restart model, Reinit.

6.2.2.1 Checkpoint/restart

We implement a prototype of checkpoint/restart (CPR) recovery model in ExaMPI library. For

each test application, we implement functions to write and read its state to/from a checkpoint

file. In traditional CPR, in case of process failure, the runtime kills the entire job and restarts the

MPI application by requeuing the job again for allocation. For the purpose of this dissertation,

CPR model kills all live MPI processes in case of any process failure and restarts the MPI

application again without requeuing the job. In this case, we use “salloc” to obtain a Slurm job

allocation in the cluster. We use the same allocation to restart our applications.

6.2.2.2 Reinit

We implement a prototype of the global-restart model, Reinit, in our MPI implementation. In

the prototype, we only implement the MPI Reinit function which is the key component of

the Reinit interface. We modified our test applications to use Reinit model for recovery. Reinit

model uses a checkpoint of the application state during recovery. Here, we reuse the application

checkpoint functions developed for checkpoint/restart.

The resilient version of these applications invoke MPI Reinit right after MPI Init.

They pass a restart handler to MPI Reinit which is the start point of the program. MPI-

Reinit sets up the resilient environment and invokes the restart handler. During the reinitial-

ization of live processes, it uses the internal code of MPI Finalize to cleanup MPI resources

and MPI Init to initialize MPI again.

88

The runtime of Reinit spawns a new process after detecting a process failure. However,

no agreement is needed before relaunching the new process like MPI Stages (see Sec-

tion 5.5.4.5).

In Reinit, instead of cleaning up and returning an error code to the application, all live

processes jump to the restart point. To jump to the restart point from any point in the execution,

we use setjmp/longjmp semantics. We run our test applications by submitting a Slurm batch

job (“sbatch”) in the cluster.

6.2.3 System

To evaluate our implementation, we use the Quartz cluster with Intel (Xeon E5-2695) 36-core

2.1 GHz nodes, 128 GB of memory per node, Omni-Path interconnect and the Catalyst cluster

with Intel (Xeon E5-2695) 24-core 2.4 GHz nodes, 128 GB of memory per node, InfiniBand

QDR interconnect at the Lawrence Livermore National Laboratory (LLNL). The Quartz system

has 2,634 user-available nodes with 36 cores per node. The Catalyst system consists of 324

nodes with 24 cores per node.

6.2.4 File System

All three recovery models, MPI Stages, Reinit, and checkpoint/restart require to save and

load application states to/from a checkpoint file. Additionally, MPI Stages requires to write

and read the states of MPI. To evaluate the performance of checkpoint file storage (e.g., local

storage versus parallel file system storage), we use multiple different file systems to store the

checkpoint files, and analyze the time required to read or write a checkpoint file in those sys-

tems. We use three different file systems— (a) the temporary file system of a node (/tmp), (b)

the Linux parallel file system, Lustre (/p/lscratch#), with a capacity of 5 PB and a bandwidth of

90 GB/sec, and (c) the NFS mounted home directory (slower than temporary and parallel file

systems) to save our checkpoint files. For MPI Stages, each process creates two checkpoint

files (application and MPI checkpoint).

89

P0

P1

P2

S1(0)

R0(0)

RP0

S2(0)

R1(0) S0(0)

R2(0)

Ring0

S1(1)

R0(1) S2(1)

R1(1) S0(1)

R2(1) S1(2)

Ring1

R0(2) S2(2)

W1(2)

P	 ⎯MPI	 process	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 CPi⎯MPI	 and	 application	 checkpoint	 for	 ring	 i
RN(x)	 ⎯ Recv x	 from	 process	 N	 	 	 	 	 	 	 	 	 	 	 	 WN(x)	 ⎯Waiting	 to	 recv x	 from	 process	 N
SN(x)	 ⎯ Send	 x	 to	 process	 N	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 RP	 ⎯ Relaunched	 process

CP0

CP0

CP0

CP1

CP1

CP1

CP2

Figure 6.1: Illustration of Ring communication with 3 processes. Here, the process P0 fails
after completion of second ring.

6.3 Use Cases

Here, we discuss various use cases of MPI Stages. We evaluate our fault-tolerance model

on both standalone MPI applications and library composition.

6.3.1 Ring Communication

The first use case is a microbenchmark, ring communication. In this example, NMPI processes

communicate in a circular fashion. Process 0 starts broadcasting the data and gets the same data

back from process N − 1 (completing a ring); process 0 then modifies the received data and

starts the next ring. Figure 6.1 shows Ring communication among three processes.

The Ring starts by sending 0 from P0 to P1. After receiving data from P0, P1 takes a

checkpoint and forwards the same data to P2. Each process takes a checkpoint after receiving

the data when there is no pending requests on that process. After each ring completion, P0

increments the value by 1. Here, after the completion of the second Ring (Rng1), P0 check-

points its application and MPI state, sends next data (2) to P1, and then fails. When P1 tries

to send the data to P2 it realizes that a process has failed; whereas P2 gets notified about the

90

6569.23778
6569.13765

0

0.2

0.4

0.6

0.8

1

1.2

8 16 24 32

Re
co
ve
ry
	 T
im

e	
(S
ec
)

Number	 of	 Processes

MPI	 Stages Reinit Checkpoint/Restart

Figure 6.2: Recovery time of MPI Stages, Reinit, and CPR for a single process failure in
Ring microbenchmark. We observe that MPI Stages recovers faster compared to Reinit and
CPR.

failure and clears all of its pending requests. Both P1 and P2 rollback by returning error code

MPIX TRY RELOAD; P0 has been re-spawned. The execution resumes from checkpoint CP1.

Although P1 had a more recent checkpoint CP2, the last synchronous checkpoint among all

processes is CP1. CP1 indicates that all processes have successfully completed Rng1. So,

the Ring starts again by sending 2 from P0 to P1.

We tested the Ring example with different numbers of MPI processes. We compared the

recovery time required for the scenario shown in Figure 6.1 using our method, MPI Stages,

reinit, and traditional checkpoint/restart (CPR). Here, we saved the checkpoints in home direc-

tory (as checkpoint size is small). Figure 6.2 presents the recovery time including checkpoint

read in seconds for MPI Stages and CPR. It shows that the recovery time of MPI Stages

is at least 11× faster than CPR. However, the recovery time of Reinit is very close to our

method as the application initialization time was comparatively small.

91

MPI	
Initialization

P0 Application
Initialization

1st Cycle/
Time	 Step

2nd Cycle/
Time	 Step .	 .	 . Xth Cycle/

Time	 Step

MPI	
Initialization

P1 Application
Initialization

1st Cycle/
Time	 Step

2nd Cycle/
Time	 Step .	 .	 . Xth Cycle/

Time	 Step

MPI	
Initialization

PN-‐1 Application
Initialization

1st Cycle/
Time	 Step

2nd Cycle/
Time	 Step .	 .	 . Xth Cycle/

Time	 Step

Simulation	 loop	 starts

.	 .	 .

MPI_Init	 (loads	 MPI	 Checkpoint)P0new 2nd Cycle/
Time	 Step .	 .	 . Xth Cycle/

Time	 Step

Simulation	 continues	 from	
2nd Cycle/Time	 Step

Write	 Checkpoint
Read	 Checkpoint

✕

Figure 6.3: Illustration of sample simulation of BSP applications. Here, process P0 fails during
second cycle/time step of simulation loop.

6.3.2 LULESH

LULESH [89, 90, 92] is a simplified proxy application, used to solve a simple Sedov blast

problem. However, it represents the program pattern of a real bulk synchronous scientific

applications. We used our prototype MPI library to test LULESH (version 2.0.3) in failure-free

mode. Then, we applied MPI Stages on it to recover from process failures. We modified

the main method of LULESH by adding a “resilient loop” and by moving the main simulation

loop into a separate method “main loop” as mentioned in Section 5.6.

Figure 6.3 shows a sample simulation of a bulk synchronous application using MPI-

Stages. Here, N MPI processes (configured as a logical perfect cube of processes as re-

quired by LULESH) are participating in a simulation over X iterations. LULESH only uses

MPI COMM WORLD for communication. In MPI initialization, each process initializes its MPI

states. In the application initialization phase, each process sets up the mesh and decomposes,

92

!

!"#

$

$"#

% &' () $&#

*
+
,-
.+
/0
12
34

+
15
6
+
,7

894:+/1-;1</-,+==+=

><?16@AB+= *+3C3@ DE+,FG-3C@H/+=@A/@

Figure 6.4: Recovery time of MPI Stages, Reinit, and CPR for a single process failure for
LULESH (strong scaling with 383). We observe that MPI Stages reduces the recovery
time compared to both CPR and Reinit.

builds and initializes the main data structure (Domain), and initiates the domain boundary

communication. Then the main simulation loop starts.

After the 1stcyce, all processes save their application and MPI state in a checkpoint and

then start the next cycle. In the middle of the 2ndcyce, P0 fails. The runtime system detects

the failure, spawns a new process P0ne to replace P0. It also triggers the error handler of all

the live processes (P1 to PN−1). The live processes discard all pending requests and rollback

to the last checkpoint. In the mean-time, P0ne completes MPI Init by loading the last

synchronous MPI state checkpoint. Finally, all processes load their application state from the

last checkpoint and continues the simulation from the 2ndcyce.

We applied MPI Stages, Reinit, and CPR to recover from the process failure (see Fig-

ure 6.3). The recovery time using these three approaches is shown in Figure 6.4. Here, for all

three approaches, we isolate the recovery time and do not include the time to read the applica-

tion checkpoint. The reduction in recovery time is significant for MPI Stages as compared

to CPR. MPI Stages reduces the recovery time by at least 13×. Also, CPR exhibits a grad-

ual increase in recovery time as the number of processes increase. MPI Stages also reduces

93

!
"!
#
$
$

!
"!
%
&
'

!
"!
%
&
$

!
"!
&
#
%

!
"!
'
$
&

!
"!
#
(
)

!
"*
+
(

!
"+
%
!
$

) +' #$ *+&

,
-
./
0-
12
34
56

-
37
8
-
.9

:;6<-13/=3>1/.-??-?

@A1--BC/665D� 6HULDO

Figure 6.5: Reduction in recovery time using agree/commit consensus.

the recovery time compared to Reinit. As both of the models use global-restart model, the

reduction is comparatively smaller. The reduction mainly depends on the initialization phase

of the application and the MPI. Since, the recovery time in Reinit depends on both application

and MPI initialization time. Figure 6.4 shows that the reduction is almost 2×. Also, we find a

very slow increase in recovery time of Reinit as the number of processes increase.

We used an agree/commit consensus approach to determine the synchronous epoch value

(see Section 5.5.4.5). The serial algorithm loops through the epoch configuration file of all pro-

cesses and determines the lowest common value. The new agree/commit consensus algorithm

substantially reduces the recovery time in MPI Stages. Figure 6.5 compares the recovery

time of LULESH using these two approaches.

We ran LULESH with a problem size of 383 per domain. Here, we demonstrate the result

for strong scaling. For this size, the application checkpoint size is 15MB and the MPI check-

point size ranges from 544B to 1.3KB. The MPI checkpoint size is significantly smaller than

the application checkpoint. The time required to read/write an MPI checkpoint is negligible

compared to the application checkpoint.

94

7

789

:

:89

;

;89

< ;= >? :;9@
0
0
1*
#
,
3*
$
A
(B
4
"
#
C
0
$
*A
3(
)
*+

"
(.
D
"
#
5

EF+G"&($H(I&$#"22"2

!",-.4$+"(-*&"#3$&'5 !",-./0/12#&,3#4-5
!",-./3+05 6&*3"./0/12#&,3#4-5
6&*3"./3+05

Figure 6.6: Application checkpoint time of LULESH using different file systems.

Figure 6.6 represents the application checkpoint time for different file systems. As ex-

pected, the parallel and temporary file systems significantly reduce the checkpoint time com-

pared to the home directory.

Figure 6.7 compares the recovery and checkpoint time for our method. The recovery time

is almost always lower than the checkpoint time. In our prototype, we save the checkpoint after

each iteration. However, we can trivially reduce this overhead by taking a checkpoint after a

certain number of iterations. There are different models to determine the optimal checkpoint

interval. It can be derived using a fixed failure rate [93] or using any distribution of time

between failures [94]. We can utilize these models to determine the optimal frequency of our

checkpoint.

We isolated the time taken by individual functions of MPI Stages interface in LULESH

and presented it in Figure 6.8. Here, MPI Init (First-time) presents the average time to

initialize MPI for all first-time start (epoch 0) processes. The MPI Init for a relaunched

process is the time needed to read the MPI state from a checkpoint. Figure 6.8 shows that

the initialization of the MPI state takes more time than loading it from a checkpoint. The

95

!

!"!#

!"$

!"$#

!"%

& %' () $%#

*
+
,-
.
/0
1
2
3-
4
56

2
-7
.
2
89

:;6<2=->?-+=>823323

@28>A2=B-4562 @20C7DEDF38=0/8GC9

@20C7D/6E9 H=5/27DEDF38=0/8GC9

H=5/27D/6E9

Figure 6.7: Comparison of times for MPI Stages.

MPIX Checkpoint read time indicates the average time spent by live processes to syn-

chronize with the relaunched process (waiting time of live processes). Finally, we show the

average time to write a MPI checkpoint. We exclude MPIX Get fault epoch as it only

performs local access, so the time is negligible.

6.3.3 CoMD

CoMD is a proxy application created by Exascale Co-design Center for Materials in Extreme

Environments (ExMatEx) [91]. It is a reference implementation of classical molecular dynam-

ics algorithms and workloads. It provides implementations for calculating simple Lennard-

Jones (LJ) and Embedded Atom Method (EAM) potentials. It implements a simple geometric

domain decomposition to divide the total problem space into domains, which are owned by MPI

ranks. Each domain is a single-program multiple data (SPMD) partition of a larger problem.

CoMD uses a single communicator (MPI COMM WORLD) for the entire job.

The main program of CoMD consists of three blocks—prolog, main loop, and epilog,

which is the typical pattern of bulk synchronous applications. The job of prolog is to validate

96

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

* $) (&

,-./012342513607707

859:;<=06>?3@AB;C1@B0

859:;<=06>?3@AB;10DE2FG@H0I

859;9A@B2FJ0KD-A6=0EI

859;9A@B2FL@17BMB@.0I

Figure 6.8: Time taken by individual MPI Stages interface functions (LULESH strong scal-
ing with 383).

the input and initialize the simulation. Then main loop updates the particle positions in a time

step simulation by computing forces and communicating atoms between ranks. Finally, the

epilog handles validation and clean up of memory.

We modified the main program of CoMD to incorporate MPI Stages as shown in Sec-

tion 5.6. CoMD follows the same simulation pattern shown in Figure 6.3. However, the N

MPI processes are configured as a multiple of the ranks in , y, z direction. In our simula-

tion, all processes save their MPI and application state in a checkpoint after 10 time steps (one

iteration).

We applied MPI Stages, Reinit, and CPR to recover form the single process failure (see

Figure 6.3). The recovery time using these models is shown in Figure 6.9. The recovery time

excludes the time to read an application checkpoint. MPI Stages reduces the recovery time

by at least 8× compared to CPR.

We executed CoMD for a short run of 100 time steps. In the run, we used the many-body

Embedded-Atom Model (EAM) potential as force model. The performance of MPI Stages

and Reinit is very close for processes 1 to 8. For processes 1 to 8, we used a very small

97

!

!"#

!"$

!"%

!"&

'

' # $ & '%

(
)
*+
,)
-.
/0
12

)
/3
4
)
*5

6728)-/+9/:-+*);;);

<:=/4>?@); ()1A1> BC)*DE+1A>F();>?->

Figure 6.9: Recovery time of MPI Stages, Reinit, and CPR for a single process failure for
CoMD with a problem size of 4000 atoms for processes 1 to 8 (strong scaling) and 64000
atoms for 16 processes.

problem size (only 4,000 atoms). So, the application initialization time was comparatively

small. For 16 processes, we used a problem size of 64,000 (4,000 atoms per task). Here,

as we increase the problem size, the application initialization time of CoMD increases. So, the

recovery time of Reinit increases as well. Since, MPI Stages recovery avoids application

initialization so it reduces the recovery time by 5×.

6.3.4 Matrix Multiplication Library

We used a micro-benchmark, matrix multiplication (MM), as a use case to demonstrate the use

of supplemental software libraries in an MPI application. In this example, we developed a li-

brary that multiplies two matrices in parallel using MPI and returns the result to the application.

Our MPI application invokes the multiplication function of the library over N iterations. At the

end of each iteration, it updates the input matrices with the multiplication result and stores its

state in a checkpoint. Then, it starts the next iteration with the updated input matrices.

98

1 /* * * * * * * * * * MM L i b r a r y API * * * * * * * * * */
2 void M M l i b r a r y i n i t (MPI Comm comm) ;
3 void M M l i b r a r y f i n a l i z e () ;
4 void MM library multiply (Matrix matA , Matrix matB , Matrix * r e s u l t) ;
5 void M M l i b r a r y c a l l b a c k r e g i s t e r () ;
6

7 /* * * * * * * * * * Implementation * * * * * * * * * */
8 void M M l i b r a r y c a l l b a c k r e g i s t e r () {
9 M P I X S e r i a l i z e h a n d l e r r e g i s t e r (s handler) ;

10 M P I X D e s e r i a l i z e h a n d l e r r e g i s t e r (d handler) ;
11 }
12

13 void s handler (MPIX Handles * handles) {
14 /* A l l o c a t e memory f o r handles */
15 . . .
16 MPI Comm *comms = handles−>communicators ;
17 * (comms++) = mm comm;
18 handles−>comm size ++;
19 . . .
20 }
21 void d handler (MPIX handles handles) {
22 . . .
23 mm comm = handles−>communicators [handles−>comm size − 1] ;
24 handles−>comm size−−;
25 . . .
26 }

Listing 6.1: API of matrix multiplication library

The library creates its own communicator (mm comm) by duplicating the communicator

passed from the application. The application does not have access to the internal MPI handles

(newly created communicator) of the library. However, MPI Stages requires the application

to revivify this handle during recovery from a failure. We used the serialization/deserialization

functionality (see Section 5.5.4.4) to revivify the user handle of MPI object. Listing 5.2 presents

the API extensions of MPI added by MPI Stages for serialization/deserialization.

Listing 6.1 shows the interface of the matrix multiplication (MM) library. It uses MM-

library callback register method to register the serialize/deserialize handler (s handler and

d handler). The matrix multiplication library is not stateful, so we do not need to save any

library states other than the MPI handles.

Listing 6.2 shows the pseudocode of the application that uses the matrix multiplication

(MM) library. Here, we only show the main loop.

99

1 i n t main loop (i n t argc , char * * argv , i n t epoch , i n t *done) {
2 M M l i b r a r y i n i t (MPI COMM WORLD) ;
3 M M l i b r a r y c a l l b a c k r e g i s t e r () ;
4 i f (recovery)
5 /* D e s e r i a l i z e a l l MPI handles (both a p p l i c a t i o n and l i b r a r i e s) */
6 MPIX Deserai l ize handles () ;
7 Application Checkpoint Read (. . .) ;
8

9 e l s e
10 // I n i t i a l i z e a p p l i c a t i o n s t a t e
11

12 while (i t e r a t i o n < MAX ITERATION) {
13 MM library multiply (. . .) ;
14 . . .
15 Applicat ion Checkpoint Write (. . .) ;
16 MPIX Checkpoint write () ;
17 /* S e r i a l i z e a l l MPI handles (both a p p l i c a t i o n and l i b r a r i e s) */
18 MPIX Seria l ize handles () ;
19 }
20 . . .
21 }

Listing 6.2: Sample Fault-Tolerant Program with MPI handles serialization/deserialization

Application initializes MPI, sets the error handler to MPI ERRORS RETURN and invokes

main loop. In the main loop, it initializes the matrix multiplication library and lets the library

register its serialization/deserialization handlers. The application can also add its own handlers.

At the end of each or N iteration of the simulation, it saves application and MPI state in

separate checkpoints. Then, it calls the MPIX Serialize handles function that invokes

the previously registered serialize handler (s handler) of the matrix multiplication library and

passes MPIX Handles as parameter. The MM library adds its MPI handles (in this case

communicator handle) to MPIX Handles. Finally, MPIX Serialize handles serializes

the MPI object referred by the handle into the MPI checkpoint.

During iteration X, an MPI process fails while multiplying the matrices in the library.

The runtime spawns a new process to replace the failed one and the live processes call their

error handler. The error handler cleans up the pending requests and all subsequent MPI calls

return MPIX TRY RELOAD error code. Library writer could check the error code and return

immediately to the application. However, we do not require the external libraries to check

this error code. In MPI Stages, applications check the error code of each MPI call. So,

100

the first MPI call after MM library multiply will check the error code and return to the “re-

silient loop” (see Section 5.6). The relaunched process deserializes its handles during recovery

by calling MPIX Deserialize handles. This function deserializes the MPI object from

MPI checkpoint and creates an MPIX Handles object. Then, it calls the deserialize handler

of matrix multiplication library (d handler) which revivifies the communicator handle of the

library. Finally, all processes load their application checkpoint and continue execution.

6.4 Conclusions

MPI Stages significantly reduces the recovery time of bulk synchronous applications that

use checkpoint/restart. We implemented a prototype of MPI Stages in ExaMPI library and

demonstrated its functionality and performance on mini applications, LULESH and CoMD and

other microbenchmarks. Our results show that MPI Stages reduces the recovery time for both

LULESH and CoMD in comparison to the global-restart model, Reinit and traditional check-

point/restart. Here, we presented the first prototype of MPI Stages. Further improvements

in the prototype will increase its performance and applicability.

101

Chapter 7

Future Work

In this dissertation, we developed a tool to tolerate failure in MPI applications that primarily

use bulk synchronous programming model. There are several aspects for future direction of

this research. One direction could be to improve the current prototype tool to support open

source implementations of MPI. Another direction is extending our model to incorporate more

programming models, research problems, etc.

One of the fundamental challenge of MPI Stages is to define the minimal set of MPI

states to checkpoint. In our prototype, we define an MPI state as the current information per-

taining to MPI processes, groups, and communicators. We use these as our minimal state to

checkpoint ExaMPI, the MPI library used to prototype our model. However, production qual-

ity open source implementations of MPI (e.g., OpenMPI, MPICH) have many more complex

internal states (e.g., derived data types, network state). Further research is required to identify

the MPI states to checkpoint in open source MPI implementations. Significant engineering

effort and advanced design will be required to capture and manage the internal state of MPI

middleware.

In this work, we primarily target bulk synchronous programming model. Our global,

non-shrinking, rollback recovery model fits perfectly with this programming model. However,

applications that follow master-slave programming model might not be a good candidate for

our recovery model. In this case, application can easily discard the failed process and continue

execution with fewer number of processes. We can provide different MPI constructs for error

propagation and recovery to support multiple recovery models.

102

A large number of MPI applications use a hybrid (MPI + OpenMP) programming model.

In MPI Stages, the rollback starts after an MPI call returns MPIX TRY RELOAD error code.

Consider an application that spends most of its time in computation inside parallel loop and

only communicate with other processes using MPI at the end of computation to aggregate the

results. In case of a process failure, other processes might spend a lot of time in computation

as they are only checking the MPI return code after the computation. This will waste a lot of

computation time as those computations will need to be repeated after rollback. A possible

solution could be to introduce routine to test for faults. Even in this case, application cannot

break from the parallel region as it’s illegal in OpenMP. Further research is required on how to

handle hybrid application (e.g., cleanup OpenMP before rollback).

One-sided (RMA) operations have been introduced in MPI-2 Standard. However, only a

handful of applications actually use this feature. Current version ExaMPI does not have support

for MPI RMA operations. MPI Stages only addresses two-sided MPI operations per epoch.

Fault tolerance in one-sided operations is challenging because of the difficulty of invalidating

the RMA windows and handling of in-flight messages. Further research is required to add fault

tolerance support to one-sided operations in MPI Stages.

The ExaMPI library implements only a subset of MPI-3 functionality. The idea is to ex-

tend it by incrementally adding different MPI features as per user requirements. To demonstrate

the applicability of MPI Stages in more complex production applications, we need to imple-

ment different MPI functionality (e.g., full support of MPI communicator). Another important

future research aspect of this work is to compose multiple fault-tolerant models into ExaMPI.

Apart from single models such as ULFM or checkpoint/restart, we are not aware of successful

integration of multiple models. Both the syntax and semantics of such combined models are of

interest, but implications for MPI middleware architecture are also of tremendous consequence.

ExaMPI library can be used to explore how to manage the complementary, at-times conflicting,

and otherwise independent impacts on an MPI implementation arising from multiple models,

including how to manage conflict resolutions between multiple models. Also, composition of

multiple fault models could help to limit the effect of a failure into a smaller scope.

103

One of the challenges in adopting new fault tolerance techniques is to modify existing

code. MPI Stages requires all MPI calls to check for error code which might be impractical

for large code bases. One solution could be to use refactoring tool to add error checking.

After detecting a process failure, we do not kill the remaining live processes. This gives us

the opportunity for in-memory (diskless) checkpointing. Current prototype of MPI Stages

uses temporary file system of a node and parallel file system to checkpoint application and MPI

states. Instead, we can checkpoint data in memory. In this case, we need to adopt a buddy

system to save data into at least two different processors memory. In-memory checkpoint takes

advantage of the high speed interconnect and avoids slower I/O operations.

104

Chapter 8

Conclusions

As machine size increases, the failure rate is also anticipated to increase. Fault tolerance in

exascale has become a major concern in HPC community. Most HPC applications use MPI as

their programming model. However, the MPI Standard has limited support of fault tolerance.

Thus, MPI applications require better fault tolerance support to continue running in exascale

machines. Applications use different techniques to recover from a failure. When an MPI

program experiences a failure, the most common recovery approach is to restart all processes

from a previous checkpoint and to re-queue the entire job (checkpoint/restart). A disadvantage

of this method is that, although the failure occurred within the main application loop, live

processes must start again from the beginning of the program, along with new replacement

processes—this incurs unnecessary overhead for live processes.

To avoid such overheads and concomitant delays, we introduce the concept of “MPI

Stages”. MPI Stages saves internal MPI state in a separate checkpoint in conjunction with

application state. Upon failure, both MPI and application state are recovered, respectively,

from their last synchronous checkpoints and continue without restarting the overall MPI job.

Live processes roll back only a few iterations within the main loop instead of rolling back to

the beginning of the program, while a replacement of failed process restarts and reintegrates,

thereby achieving faster failure recovery. This approach integrates well with large-scale, bulk

synchronous applications and checkpoint/restart. We identify requirements for production MPI

implementations to support state checkpointing with MPI Stages, which includes capturing and

managing internal MPI state and serializing and deserializing user handles to MPI objects.

105

To implement a prototype of MPI Stages, we introduce ExaMPI, a new, experimental

implementation of the MPI Standard. ExaMPI solves the problem of full-scale open source

MPIs—which are quite large and complex—substantially raises the cost and complexity of

proof-of-concept activities. By enabling researchers with ExaMPI, we seek to accelerate inno-

vations and increase the number of new experiments and experimenters, all while expanding

MPI’s applicability.

Importantly, the results of this work will create middle-out requirements both on network-

ing infrastructure for recoverability from faults, and on the structure of the MPI middleware

itself. Through our test implementation, we are able to capture and manage MPI state, some-

thing that existing production middleware (such as MPICH and Open MPI) have not had to

manage and book-keep carefully. A potential outcome of this work will be specific design re-

quirements for next-generation production MPI middleware that is conscious of state as well as

networking infrastructure (device drivers and networks) that enable return to a consistent state

after faults and failures.

106

References

[1] Top 500 Supercomputing site. https://www.top500.org. 2018.

[2] Bianca Schroeder and Garth A Gibson. Understanding failures in petascale computers. In

Journal of Physics: Conference Series, volume 78, page 012022. IOP Publishing, 2007.

[3] Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and Marc Snir.

Toward exascale resilience. The International Journal of High Performance Computing

Applications, 23(4):374–388, 2009.

[4] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir. To-

ward exascale resilience: 2014 update. Supercomputing frontiers and innovations, 1(1):5–

28, 2014.

[5] Franck Cappello. Fault tolerance in petascale/exascale systems: Current knowledge, chal-

lenges and research opportunities. The International Journal of High Performance Com-

puting Applications, 23(3):212–226, 2009.

[6] David E Bernholdt, Swen Boehm, George Bosilca, Manjunath Gorentla Venkata, Ryan E

Grant, Thomas Naughton, Howard P Pritchard, Martin Schulz, and Geoffroy R Vallee. A

survey of MPI usage in the US exascale computing project. Concurrency and Computa-

tion: Practice and Experience, page e4851, 2017.

[7] M Emani, I Laguna, K Mohror, N Sultana, and A Skjellum. Checkpointable MPI: A

Transparent Fault-Tolerance Approach for MPI. Technical report, Lawrence Livermore

National Lab.(LLNL), Livermore, CA (United States), 2017.

107

https://www.top500.org

[8] N Sultana, S Farmer, A Skjellum, I Laguna, K Mohror, and M Emani. Designing a

reinitializable and Fault Tolerant MPI Library, 2017. Poster presented at EuroMPI/USA

2017, Chicago, IL.

[9] Nawrin Sultana, Anthony Skjellum, Ignacio Laguna, Matthew Shane Farmer, Kathryn

Mohror, and Murali Emani. MPI Stages: Checkpointing MPI State for Bulk Synchronous

Applications. In Proceedings of the 25th European MPI Users’ Group Meeting, page 13.

ACM, 2018.

[10] Nawrin Sultana, Martin Rüfenacht, Anthony Skjellum, Ignacio Laguna, and Kathryn

Mohror. Failure recovery for bulk synchronous applications with MPI stages. Parallel

Computing, 84:1–14, 2019.

[11] Nawrin Sultana, Anthony Skjellum, Purushotham Bangalore, Ignacio Laguna, and

Kathryn Mohror. Understanding the Usage of MPI in Exascale Proxy Applications.

[12] Ignacio Laguna, Kathryn Mohror, Nawrin Sultana, Martin Rüfenacht, Ryan Marshall, and

Anthony Skjellum. A Large-Scale Study of MPI Usage in Open-Source HPC Applica-

tions. In Proc. of SC 2019, November 2019. Accepted, in press.

[13] Nawrin Sultana, Martin Rüfenacht, Anthony Skjellum, Purushotham Bangalore, Ignacio

Laguna, and Kathryn Mohror. Understanding the Use of MPI in Exascale Proxy Applica-

tions. Concurrency and Computation:Practice and Experience, 2019. Submitted (Minor

revision) September 2019.

[14] Anthony Skjellum, Martin Rüfenacht, Nawrin Sultana, Derek Schafer, Ignacio Laguna,

and Kathryn Mohror. ExaMPI: A Modern Design and Implementation to Accelerate Mes-

sage Passing InterfaceInnovation. Concurrency and Computation:Practice and Experi-

ence, 2019. Submitted (Minor revision) September 2019.

[15] Message Passing Interface Forum. MPI: A Message-passing Interface Standard, Ver-

sion 3.1 ; June 4, 2015. High-Performance Computing Center Stuttgart, University of

Stuttgart, 2015.

108

[16] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance,

portable implementation of the MPI message passing interface standard. Parallel com-

puting, 22(6):789–828, 1996.

[17] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra, Jef-

frey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine,

et al. Open MPI: Goals, concept, and design of a next generation MPI implementation.

In European Parallel Virtual Machine/Message Passing Interface Users Group Meeting,

pages 97–104. Springer, 2004.

[18] Sriram Sankaran, Jeffrey M Squyres, Brian Barrett, Vishal Sahay, Andrew Lumsdaine,

Jason Duell, Paul Hargrove, and Eric Roman. The LAM/MPI checkpoint/restart frame-

work: System-initiated checkpointing. The International Journal of High Performance

Computing Applications, 19(4):479–493, 2005.

[19] Cray MPI. https://pubs.cray.com/content/S-2529/17.05/

xctm-series-programming-environment-user-guide-1705-s-2529/

mpt.

[20] Intel MPI Library. https://software.intel.com/en-us/mpi-library,

Aug 2018.

[21] IBM Spectrum MPI. https://tinyurl.com/yy9cwm4p.

[22] Dhabaleswar K Panda, Karen Tomko, Karl Schulz, and Amitava Majumdar. The MVA-

PICH project: Evolution and sustainability of an open source production quality MPI

library for HPC. In Workshop on Sustainable Software for Science: Practice and Experi-

ences, held in conjunction with Intl Conference on Supercomputing (WSSPE), 2013.

[23] Leslie G Valiant. A bridging model for parallel computation. Communications of the

ACM, 33(8):103–111, 1990.

109

https://pubs.cray.com/content/S-2529/17.05/xctm-series-programming-environment-user-guide-1705-s-2529/mpt
https://pubs.cray.com/content/S-2529/17.05/xctm-series-programming-environment-user-guide-1705-s-2529/mpt
https://pubs.cray.com/content/S-2529/17.05/xctm-series-programming-environment-user-guide-1705-s-2529/mpt
https://software.intel.com/en-us/mpi-library
https://tinyurl.com/yy9cwm4p

[24] Laxmikant V Kale and Sanjeev Krishnan. CHARM++: a portable concurrent object

oriented system based on C++. In ACM Sigplan Notices, volume 28, pages 91–108.

ACM, 1993.

[25] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

[26] Vaidy S. Sunderam. PVM: A framework for parallel distributed computing. Concurrency:

practice and experience, 2(4):315–339, 1990.

[27] L. Prechelt. An empirical comparison of seven programming languages. Computer,

33(10):23–29, Oct 2000.

[28] Luke Nguyen-Hoan, Shayne Flint, and Ramesh Sankaranarayana. A Survey of Scientific

Software Development. In Proceedings of the 2010 ACM-IEEE International Symposium

on Empirical Software Engineering and Measurement, ESEM ’10, pages 12:1–12:10,

New York, NY, USA, 2010. ACM.

[29] Prakash Prabhu, Hanjun Kim, Taewook Oh, Thomas B Jablin, Nick P Johnson, Matthew

Zoufaly, Arun Raman, Feng Liu, David Walker, Yun Zhang, et al. A survey of the practice

of computational science. In SC’11: Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis, pages 1–12. IEEE,

2011.

[30] Steven P VanderWiel, Daphna Nathanson, and David J Lilja. Complexity and perfor-

mance in parallel programming languages. In Proceedings Second International Work-

shop on High-Level Parallel Programming Models and Supportive Environments, pages

3–12. IEEE, 1997.

[31] David E Bernholdt, Swen Boehm, George Bosilca, Manjunath Gorentla Venkata, Ryan E

Grant, Thomas Naughton, Howard P Pritchard, Martin Schulz, and Geoffroy R Vallee. A

survey of MPI usage in the US exascale computing project. Concurrency and Computa-

tion: Practice and Experience, page e4851, 2017.

110

[32] Rolf Rabenseifner. Automatic MPI counter profiling of all users: First results on a CRAY

T3E 900-512. In Proceedings of the message passing interface developer’s and user’s

conference, volume 1999, pages 77–85, 1999.

[33] Jeffrey S Vetter and Andy Yoo. An empirical performance evaluation of scalable scientific

applications. In Supercomputing, ACM/IEEE 2002 Conference, pages 16–16. IEEE, 2002.

[34] Sameer S Shende and Allen D Malony. The TAU parallel performance system. The In-

ternational Journal of High Performance Computing Applications, 20(2):287–311, 2006.

[35] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Katherine

Riley. 24/7 characterization of petascale I/O workloads. In Cluster Computing and Work-

shops, 2009. CLUSTER’09. IEEE International Conference on, pages 1–10. IEEE, 2009.

[36] Sudheer Chunduri, Scott Parker, Pavan Balaji, Kevin Harms, and Kalyan Kumaran. Char-

acterization of MPI usage on a production supercomputer. In Characterization of MPI

Usage on a Production Supercomputer, page 0. IEEE, 2018.

[37] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-

tributed systems. Journal of the ACM (JACM), 43(2):225–267, 1996.

[38] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: A timeout-free failure

detector for quiescent reliable communication. In International Workshop on Distributed

Algorithms, pages 126–140. Springer, 1997.

[39] Robbert Van Renesse, Yaron Minsky, and Mark Hayden. A gossip-style failure detection

service. In Proceedings of the IFIP International Conference on Distributed Systems

Platforms and Open Distributed Processing, pages 55–70. Springer-Verlag, 2009.

[40] Dale Skeen and Michael Stonebraker. A formal model of crash recovery in a distributed

system. IEEE Transactions on Software Engineering, (3):219–228, 1983.

[41] Joshua Hursey, Thomas Naughton, Geoffroy Vallee, and Richard L Graham. A log-

scaling fault tolerant agreement algorithm for a fault tolerant MPI. In European MPI

Users’ Group Meeting, pages 255–263. Springer, 2011.

111

[42] Dale Skeen. Nonblocking commit protocols. In Proceedings of the 1981 ACM SIGMOD

international conference on Management of data, pages 133–142. ACM, 1981.

[43] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems

(TOCS), 16(2):133–169, 1998.

[44] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an en-

gineering perspective. In Proceedings of the twenty-sixth annual ACM symposium on

Principles of distributed computing, pages 398–407. ACM, 2007.

[45] Brian Randell. System structure for software fault tolerance. Ieee transactions on software

engineering, (2):220–232, 1975.

[46] Yi-Min Wang, Pi-Yu Chung, In-Jen Lin, and W. Kent Fuchs. Checkpoint space reclama-

tion for uncoordinated checkpointing in message-passing systems. IEEE Transactions on

Parallel and Distributed Systems, 6(5):546–554, 1995.

[47] Georg Stellner. CoCheck: Checkpointing and process migration for MPI. In Proceedings

of International Conference on Parallel Processing, pages 526–531. IEEE, 1996.

[48] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R de Supinski. Design,

modeling, and evaluation of a scalable multi-level checkpointing system. In Proceed-

ings of the 2010 ACM/IEEE international conference for high performance computing,

networking, storage and analysis, pages 1–11. IEEE Computer Society, 2010.

[49] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya

Maruyama, and Satoshi Matsuoka. FTI: high performance fault tolerance interface for

hybrid systems. In High Performance Computing, Networking, Storage and Analysis

(SC), 2011 International Conference for, pages 1–12. IEEE, 2011.

[50] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. C3: A system for

automating application-level checkpointing of MPI programs. In International Workshop

on Languages and Compilers for Parallel Computing, pages 357–373. Springer, 2003.

112

[51] James S Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Transparent check-

pointing under unix. Computer Science Department, 1994.

[52] Jason Ansel, Kapil Arya, and Gene Cooperman. DMTCP: Transparent checkpointing for

cluster computations and the desktop. In 2009 IEEE International Symposium on Parallel

& Distributed Processing, pages 1–12. IEEE, 2009.

[53] Rohan Garg, Gregory Price, and Gene Cooperman. MANA for MPI: MPI-Agnostic

Network-Agnostic Transparent Checkpointing. In Proceedings of the 28th International

Symposium on High-Performance Parallel and Distributed Computing, pages 49–60.

ACM, 2019.

[54] Paul H Hargrove and Jason C Duell. Berkeley lab checkpoint/restart (blcr) for linux

clusters. In Journal of Physics: Conference Series, volume 46, page 494. IOP Publishing,

2006.

[55] Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B Johnson.

A survey of rollback-recovery protocols in message-passing systems. ACM Computing

Surveys (CSUR), 34(3):375–408, 2002.

[56] Lorenzo Alvisi, Bruce Hoppe, and Keith Marzullo. Nonblocking and orphan-free message

logging protocols. In FTCS-23 The Twenty-Third International Symposium on Fault-

Tolerant Computing, pages 145–154. IEEE, 1993.

[57] Aurelien Bouteiller, George Bosilca, and Jack Dongarra. Redesigning the message log-

ging model for high performance. Concurrency and Computation: Practice and Experi-

ence, 22(16):2196–2211, 2010.

[58] Rob Strom and Shaula Yemini. Optimistic recovery in distributed systems. ACM Trans-

actions on Computer Systems (TOCS), 3(3):204–226, 1985.

[59] Lorenzo Alvisi. Understanding the message logging paradigm for masking process

crashes. Technical report, Cornell University, 1996.

113

[60] George Bosilca, Aurélien Bouteiller, Elisabeth Brunet, Franck Cappello, Jack Don-

garra, Amina Guermouche, Thomas Herault, Yves Robert, Frédéric Vivien, and Dounia

Zaidouni. Unified model for assessing checkpointing protocols at extreme-scale. Con-

currency and Computation: Practice and Experience, 26(17):2772–2791, 2014.

[61] Algirdas Avizienis. The N-version approach to fault-tolerant software. IEEE Transactions

on software engineering, (12):1491–1501, 1985.

[62] Miguel Castro, Barbara Liskov, et al. Practical Byzantine fault tolerance. In OSDI, vol-

ume 99, pages 173–186, 1999.

[63] Cijo George and Sathish Vadhiyar. Fault tolerance on large scale systems using adaptive

process replication. IEEE Transactions on Computers, 64(8):2213–2225, 2014.

[64] Thomas Ropars, Arnaud Lefray, Dohyun Kim, and André Schiper. Efficient process repli-

cation for MPI applications: sharing work between replicas. In 2015 IEEE International

Parallel and Distributed Processing Symposium, pages 645–654. IEEE, 2015.

[65] Graham E Fagg and Jack J Dongarra. FT-MPI: Fault tolerant MPI, supporting dynamic

applications in a dynamic world. In European Parallel Virtual Machine/Message Passing

Interface Users Group Meeting, pages 346–353. Springer, 2000.

[66] Joshua Hursey, Richard L Graham, Greg Bronevetsky, Darius Buntinas, Howard

Pritchard, and David G Solt. Run-through stabilization: An MPI proposal for process

fault tolerance. In European MPI Users’ Group Meeting, pages 329–332. Springer, 2011.

[67] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack Dongarra.

Post-failure recovery of MPI communication capability: Design and rationale. The Inter-

national Journal of High Performance Computing Applications, 27(3):244–254, 2013.

[68] Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George Bosilca, and

Jack J Dongarra. An evaluation of user-level failure mitigation support in MPI. In Euro-

pean MPI Users’ Group Meeting, pages 193–203. Springer, 2012.

114

[69] Wesley B Bland. Toward message passing failure management. 2013.

[70] Keita Teranishi and Michael A Heroux. Toward local failure local recovery resilience

model using MPI-ULFM. In Proceedings of the 21st European MPI Users’ Group Meet-

ing, page 51. ACM, 2014.

[71] Amin Hassani, Anthony Skjellum, and Ron Brightwell. Design and evaluation of FA-

MPI, a transactional resilience scheme for non-blocking MPI. In Dependable Systems

and Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference on, pages

750–755. IEEE, 2014.

[72] Amin Hassani. Toward a scalable, transactional, fault-tolerant message passing inter-

face for petascale and exascale machines. PhD thesis, The University of Alabama at

Birmingham, 2016.

[73] Ignacio Laguna, David F Richards, Todd Gamblin, Martin Schulz, Bronis R de Supinski,

Kathryn Mohror, and Howard Pritchard. Evaluating and extending user-level fault tol-

erance in MPI applications. The International Journal of High Performance Computing

Applications, 30(3):305–319, 2016.

[74] Marc Gamell, Daniel S Katz, Hemanth Kolla, Jacqueline Chen, Scott Klasky, and Man-

ish Parashar. Exploring automatic, online failure recovery for scientific applications at

extreme scales. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 895–906. IEEE Press, 2014.

[75] Rajeev Thakur, Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Torsten

Hoefler, Sameer Kumar, Ewing Lusk, and Jesper Larsson Träff. MPI at Exascale. Proc-

ceedings of SciDAC, 2:14–35, 2010.

[76] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Torsten Hoefler, Sameer

Kumar, Ewing Lusk, Rajeev Thakur, and Jesper Larsson Träff. MPI on millions of cores.

Parallel Processing Letters, 21(01):45–60, 2011.

115

[77] Exascale computing project. https://www.exascaleproject.org. September,

2017.

[78] Exascale Computing Project Proxy Apps Suite. https://proxyapps.

exascaleproject.org/ecp-proxy-apps-suite/. October, 2017.

[79] Robert D Falgout and Ulrike Meier Yang. hypre: A library of high performance precondi-

tioners. In International Conference on Computational Science, pages 632–641. Springer,

2002.

[80] HDF5 Support Page. https://portal.hdfgroup.org/display/HDF5.

[81] Rossen Petkov Dimitrov. Overlapping of communication and computation and early bind-

ing: Fundamental mechanisms for improving parallel performance on clusters of work-

stations. 2002.

[82] Rossen Dimitrov and Anthony Skjellum. Software architecture and performance com-

parison of MPI/Pro and MPICH. In International Conference on Computational Science,

pages 307–315. Springer, 2003.

[83] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux utility for resource

management. In Workshop on Job Scheduling Strategies for Parallel Processing, pages

44–60. Springer, 2003.

[84] MPI: A Message-passing Interface Standard, Version 3.1 ; June 4, 2015. 2015.

[85] Ignacio Laguna, David F. Richards, Todd Gamblin, Martin Schulz, and Bronis R.

de Supinski. Evaluating User-Level Fault Tolerance for MPI Applications. In Proceed-

ings of the 21st European MPI Users’ Group Meeting, EuroMPI/ASIA ’14, pages 57:57–

57:62, New York, NY, USA, 2014. ACM.

[86] Marc Gamell, Daniel S. Katz, Hemanth Kolla, Jacqueline Chen, Scott Klasky, and Man-

ish Parashar. Exploring Automatic, Online Failure Recovery for Scientific Applications

at Extreme Scales. Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 895–906, 2014.

116

https://www.exascaleproject.org
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://portal.hdfgroup.org/display/HDF5

[87] Joshua Hursey, Thomas Naughton, Geoffroy Vallee, and Richard L Graham. A log-

scaling fault tolerant agreement algorithm for a fault tolerant MPI. In European MPI

Users’ Group Meeting, pages 255–263. Springer, 2011.

[88] Michael Barborak, Anton Dahbura, and Miroslaw Malek. The consensus problem in

fault-tolerant computing. ACM Computing Surveys (CSur), 25(2):171–220, 1993.

[89] Ian Karlin, Jeff Keasler, and Rob Neely. LULESH 2.0 Updates and Changes,number =

LLNL-TR-641973. Technical report, August 2013.

[90] Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L. Chamberlain, Jonathan Cohen,

Zachary DeVito, Riyaz Haque, Dan Laney, Edward Luke, Felix Wang, David Richards,

Martin Schulz, and Charles Still. Exploring Traditional and Emerging Parallel Program-

ming Models using a Proxy Application. In 27th IEEE International Parallel & Dis-

tributed Processing Symposium (IEEE IPDPS 2013), Boston, USA, May 2013.

[91] Jamaludin Mohd-Yusof, Sriram Swaminarayan, and Timothy C Germann. Co-design for

molecular dynamics: An exascale proxy application, 2013.

[92] Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory. Technical

Report LLNL-TR-490254.

[93] John Daly. A model for predicting the optimum checkpoint interval for restart dumps. In

International Conference on Computational Science, pages 3–12. Springer, 2003.

[94] Yudan Liu, Raja Nassar, Chokchai Leangsuksun, Nichamon Naksinehaboon, Mihaela

Paun, and Stephen L Scott. An optimal checkpoint/restart model for a large scale high

performance computing system. In Parallel and Distributed Processing, 2008. IPDPS

2008. IEEE International Symposium on, pages 1–9. IEEE, 2008.

117

Appendix

118

Appendix A

MPI Functions implemented in ExaMPI

1 i n t MPI Abort (MPI Comm, i n t) ;
2 i n t MPI Allreduce (const void * , void * , int , MPI Datatype , MPI Op ,

MPI Comm) ;
3 i n t MPI Barrier (MPI Comm) ;
4 i n t MPI Bcast (void * , int , MPI Datatype , int , MPI Comm) ;
5 i n t MPI Comm dup(MPI Comm, MPI Comm *) ;
6 i n t MPI Comm rank (MPI Comm, i n t *) ;
7 i n t MPI Comm set errhandler (MPI Comm, MPI Errhandler) ;
8 i n t MPI Comm size (MPI Comm, i n t *) ;
9 i n t MPI Final ize (void) ;

10 i n t MPI Get count (MPI Status * , MPI Datatype , i n t *) ;
11 i n t MPI Init (i n t * , char * * *) ;
12 i n t M P I I n i t i a l i z e d (i n t * f l a g) ;
13 i n t MPI Irecv (void * , int , MPI Datatype , int , int , MPI Comm, MPI Request

*) ;
14 i n t MPI Isend (const void * , int , MPI Datatype , int , int , MPI Comm,

MPI Request *) ;
15 i n t MPI Ibsend (const void * , int , MPI Datatype , int , int , MPI Comm,

MPI Request *) ;
16 i n t MPI Irsend (const void * , int , MPI Datatype , int , int , MPI Comm,

MPI Request *) ;
17 i n t MPI Issend (const void * , int , MPI Datatype , int , int , MPI Comm,

MPI Request *) ;
18 i n t MPI Send init (const void * , int , MPI Datatype , int , int , MPI Comm,

MPI Request *) ;
19 i n t MPI Bsend init (const void * , int , MPI Datatype , int , int , MPI Comm,

MPI Request *) ;
20 i n t MPI Rsend init (const void * , int , MPI Datatype , int , int , MPI Comm,

MPI Request *) ;
21 i n t MPI Ssend init (const void * , int , MPI Datatype , int , int , MPI Comm,

MPI Request *) ;
22 i n t MPI Recv init (void * , int , MPI Datatype , int , int , MPI Comm,

MPI Request *) ;
23 i n t MPI Reduce (const void * , void * , int , MPI Datatype , MPI Op , int ,

MPI Comm) ;
24 i n t MPI Request free (MPI Request * request) ;

119

25 i n t eMPI Recv (void * buf , i n t count , MPI Datatype datatype , i n t dest , i n t
tag , MPI Comm comm, MPI Status * s t a t u s) ;

26 i n t MPI Send (const void * , int , MPI Datatype , int , int , MPI Comm) ;
27 i n t MPI Rsend (const void * , int , MPI Datatype , int , int , MPI Comm) ;
28 i n t MPI Ssend (const void * , int , MPI Datatype , int , int , MPI Comm) ;
29 i n t MPI Bsend (const void * , int , MPI Datatype , int , int , MPI Comm) ;
30 i n t MPI Sendrecv (const void * , int , MPI Datatype , int , int , void * , int ,

MPI Datatype , int , int , MPI Comm, MPI Status *) ;
31 i n t MPI Start (MPI Request *) ;
32 i n t MPI Wait (MPI Request * , MPI Status *) ;
33 i n t MPI Waitall (int , MPI Request [] , MPI Status []) ;
34 i n t MPI Test (MPI Request * request , i n t * f l a g , MPI Status * s t a t u s) ;
35 double MPI Wtime (void) ;

120

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Dissertation Statement
	Audience
	Outline

	Background and Related Work
	Terminology
	Large-Scale Programming Models
	Message Passing Interface
	Bulk Synchronous Parallel
	Charm++
	MapReduce
	Parallel Virtual Machine

	Characterization of Applications
	Resilience in Large-Scale Systems
	Failure Detection
	Failure propagation and Consensus
	Failure Recovery Models
	Rollback Recovery
	Replication-based Recovery
	Application-level Recovery
	Transactional Resilience Scheme
	Global-Restart
	Our Approach—MPI Stages

	Understanding the use of MPI in exascale HPC applications
	Introduction
	MPI Features Classification
	Data Collection
	Overview of Applications
	Overview of MPI Usage in Applications
	MPI Initialization
	MPI Communication
	Communication Calls
	Communication Characterization

	MPI Datatypes
	Communicators, Groups, and Topology
	Dynamic Process Management
	MPI I/O (File)
	Error Handling
	MPI Tools and the Profiling interface
	Overall use of MPI

	Conclusions

	ExaMPI: A Modern Design and Implementation to Accelerate Message Passing Interface Innovation
	Introduction
	Requirements
	Design
	Architecture of ExaMPI
	Progress Engine Design
	Transport Design
	Interface
	Universe
	Runtime
	Utilization of C++17

	Conclusions

	Failure Recovery for Bulk Synchronous Applications with MPI Stages
	Introduction
	Terminology
	Fault Model
	Applicability of MPI Stages
	Design
	Interface
	MPI Objects
	MPI Functions

	Failure Detection
	Failure Propagation
	Failure Recovery
	Loading Checkpoint
	Addressing In-Flight Data
	Handling Asymmetrical Error Code
	Serialization and Deserialization of MPI handles
	Agreement on epoch

	Sample Fault-Tolerant MPI program
	Implementation
	Conclusions

	Experimental Design and Evaluation of MPI Stages
	Introduction
	Test Environment
	Applications
	Recovery Models
	Checkpoint/restart
	Reinit

	System
	File System

	Use Cases
	Ring Communication
	LULESH
	CoMD
	Matrix Multiplication Library

	Conclusions

	Future Work
	Conclusions
	References
	Appendix
	MPI Functions implemented in ExaMPI

