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Abstract

This work reports on large-scale non-perturbative R-matrix quantum mechanical calcula-

tions for neutral neon and tungsten. In addition, generalized collisional-radiative modeling of

neutral neon and tungsten is conducted for fusion relevant plasma temperatures and densities.

The generalized collisional-radiative coefficients produced are important for impurity transport

modeling and in the case of tungsten for measuring erosion rates of tungsten plasma facing

components.

Neon is being used in the W7-X stellarator for divertor cooling and spectral diagnostics.

The electron-impact R-matrix calculations of the present work include cross sections for the

excited states of neutral neon (2p5nl through nl = 6p) and the 5d46s2 (5D) ground, 5d56s

(7S) metastable, and a number of excited states arising from the 5d6, 5d56s, 5d56d, 5d46s6p,

5d56s6d, and 5d36s26p configurations of neutral tungsten. Ionization from the excited states

of neutral neon was found to obey an n-scaling law allowing the data to be extrapolated to

higher excited states. In addition, the generalized collisional-radiative modeling showed that

ionization from the excited states is an important contribution to the effective ionization of

neutral neon for fusion plasma divertor and edge densities, contributing up to a factor of 3 more

than the direct ground state ionization. The atomic data for neutral neon has been archived and

made available to the fusion and astrophysical communities.

Tungsten is important because it has been selected as a plasma-facing component (PFC)

for the divertor region of ITER and is being used in a number of current tokamaks. Therefore,

an accurate real-time diagnostic is needed of tungsten’s erosion rate. The S/XB coefficient

specifies the “ionizations per photon” of the atomic species and depends upon an effective

ionization rate coefficient, related to the electron-impact ionization out of both the ground and

excited states. The work on tungsten reported here is focused on improving the electron-impact

ionization data for the ground, metastable, and excited states of neutral tungsten.
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The electron-impact ionization calculations for neutral tungsten found a number of impor-

tant effects. Configuration-mixing present in the target tungsten atom’s levels leads to contri-

butions from configurations of lesser mixing percentages, such as from the 5d5nl series for the

ground state ionization cross section. These contributions can arise from configuration-mixing

in either the initial or final target states or both. Additionally, relative differences in the ground

and metastable 5d and 6s ionization cross sections exist when compared to perturbative and

semi-classical calculations. These differences can be attributed to channel coupling of the in-

cident electron-atom system due to a shared W+ 5d46s core between the 5d46snl and 5d5nl

series, which was not reflected in previous calculations. The mixing did not allow the R-matrix

calculation to be split up into smaller calculations for each set of direct ionizations, but in-

stead had to be evaluated as one large calculation. One of the findings for neutral tungsten that

should also help guide future high-Z ionization calculations was that the N + 1 partial waves

for a given total spin value produced similar sized cross sections when summed over all of the

L-values of the partial waves. This allowed the states on the target with the highest spin values

to be evaluated relatively quickly and for the case of neutral tungsten, it allowed the ground 5D

term to be evaluated.

Tungsten ground and excited state ionization cross sections were fitted with a scaled form

of the semi-classical Exchange Classical Impact Parameter (ECIP) method. The scale factors

from the ECIP fits demonstrate a scaling with ionization potential that allowed ionization rate

coefficients to be generated for two strong separate linear correlations with respect to the term-

specific ionization potentials. These linear correlations are distinguished by the parity of the

initial target state.

Excited-state ionization for neutral tungsten contributes more than a factor of 12 than the

ground state to the effective ionization for low electron temperatures (0 - 30 eV) and 1014

cm−3 electron density. Subsequent tests on the effect of the 6p orbital scaling parameter of

the tungsten structure on the ECIP scale factors, as well as a ground-resolved S/XB coefficient

that is several orders of magnitude higher than previous measurements, suggests ionization

cross sections from odd-parity configurations are particularly sensitive to the 6p orbital scaling

parameter. A continued exploration of the sensitivity of the excited state cross sections to
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the underlying atomic structure is part of the future work of this project. In addition, other

processes may affect the S/XB value in tokamak plasmas, including non-steady state metastable

values (particularly if the sputtered tungsten atoms come off the wall with populations greater

than the steady state value), sheath effects, and non-Maxwellian electron distributions.
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Chapter 1

The Need for Atomic Population and Spectral Modeling of High-Z Elements in Plasmas:
Tungsten and Neon

Recent developments in fusion- and astrophysical-relevant plasmas have created a need for

more accurate modeling of high-Z atomic collision and population modeling in plasmas. For

example, the simultaneous observation of a neutron star merger from both gravitational and

electromagnetic spectra was achieved in 2017 [1]. Such cosmological events are believed to

produce high-Z elements such as Au, Ag, and Pb [2]. In fusion research, with the successful

completion of the W7-X stellerator [3] and the construction of ITER tokamak underway [4],

concurrent advancements in atomic population and spectral modeling are needed to properly

assess both their spectral and plasma impurity transport data. Of particular relevance for these

devices are neon and tungsten, both of which have shown useful for plasma facing and as

potential diagnostics.

1.1 Tungsten and the S/XB Ratio for Erosion Diagnostics

Tungsten, an open d−shell element with 74 protons, has many properties that make it highly

suitable as a plasma facing component (PFC) for fusion experiments, including a high melting

point, high thermal conductivity, and low sputtering and tritium retention rates [5, 6]. Figure

1.1 illustrates a cross-section of the DIII-D tokamak that includes tungsten inserts in the lower

divertor, as well as the installation of an ultraviolet spectrometer and its viewing range (red)

over the tile. Plasma is intentionally directed into the divertor region, where it comes into

contact with the PFCs. Proper diagnosis and control of the divertor region is therefore crucial

to ensure long-term efficacy of these devices as well as flushing impurities from the divertor
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region. The Joint European Torus (JET) has experienced decreased erosion rates as a result

of switching from carbon to tungsten divertors and beryllium first walls [7]. In addition to

experiments involving the DiMES probe and W-coated divertor tiles in DIII-D [8,9], the erosion

and plasma transportation of tungsten have been investigated at TEXTOR [10,11], JET [7,12],

C-Mod [13, 14], DIII-D [8], ASDEX-Upgrade [15, 16], and recently at Auburn University in

the Compact Toroidal Hybrid (CTH) [17].

Figure 1.1: Illustration of an ultraviolet spec-

trometer lines of sight within the DIII-D toka-

mak measuring emission from tungsten inserts

in the lower divertor region. A collection of op-

tics mounted on the tokamak is shown (left).

While tungsten’s significant radiation

cooling makes it an effective PFC in the di-

vertor region, it can quench the fusion re-

action if eroded tungsten transports into the

plasma core: the ionization of electrons from

high-Z atomic impurities and spectral emis-

sion from excited states depletes the energy

of the core plasma. Unlike lighter elements

such as beryllium and carbon, which have far

fewer electrons to ionize and therefore radi-

ate less power from the plasma, tungsten has

74 electrons that can be ionized. Even at

fusion relevant plasma conditions, W atoms

would not be fully stripped in the plasma

core, meaning the continued potential for radiation losses exists. Additionally, the resul-

tant changes in surface topology from its redeposition can weaken thermo-mechanical re-

silience [13, 14, 18]. At ITER, where tungsten is planned for the divertor components [16, 19],

a 10 percent relative accuracy of the tungsten influx measurement is needed [11, 20], requiring

precise spectral diagnostics.

One such diagnostic method that relates the erosion rate of a PFC to the intensity of an

associated spectral line was developed in Behringer et al. [21]. The diagnostic utilizes funda-

mental atomic data comprising the S/XB ratio, which quantifies the ‘ionizations per photon.’

Under the assumption that all eroded material becomes ionized within the observation line of
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sight, the measured intensity of a spectral line and the S/XB can then be used to calculate a

gross erosion flux.

Calculation of the S/XB coefficient requires (1) the spontaneous emission rate for the

chosen line as well as the effective electron-impact (2) ionization and (3) excitation rates. The

latter two rates can be determined through a comprehensive generalized collisional-radiative

modeling, which quantifies the populations of atomic species as a result of expected atomic

processes in the plasma. Such processes can include electron-impact ionization and excitation,

spontaneous emission, and dielectronic and radiative recombination. Rate coefficients for these

processes often assume a Maxwellian distribution of electrons, which is used to convolve a

cross section, a measure of the probability of a single process, over the free electron distribution.

Cross sections represent fundamental quantum mechanical probabilities and can be generated

through measurements, theoretical calculations, or both.

Attempts to experimentally determine the S/XB ratio for tungsten have been conducted

previously for a set of tungsten spectral lines by comparing spectral line intensities and eroded

tungsten. Measurements at TEXTOR [10] were obtained with a pure tungsten source by inject-

ing WF6, which dissociates at low temperatures [22, 23]. Brezinsek et al. 2011 first developed

this dissociation technique [23], and Laengner et al. demonstrated its feasibility in limiter con-

ditions [22]. Other S/XB measurements have been made via tungsten mass loss [8, 24, 25] and

WCO6 sublimation [26, 27]. The most common neutral tungsten line for these measurements

is the 400.88 nm spectral line arising from 5d56s 7S3 - 5d56p 7P4 [8, 10, 11, 22–28] because it

is easily accessible in the visible region. Use of this line is problematic, however, because of

the presence of a W II line at 400.88753 nm [29, 30]. The 429.5 nm (5d56s 7S3 - 5d56p (7P2)

is another spectral line being considered [8, 10, 11, 22, 24, 25].

Results from these experiments suggest (1) that current theoretical atomic data either un-

derestimates or overestimates the S/XB at higher electron densities, depending on the method

used for calculating electron-impact excitation and ionization cross sections and associated

rates, (2) the S/XB is highly dependent on metastable and excited state populations [11], and

(3) the S/XB is highly sensitive to density above ne=1019 m−3, based on measurements [8] and

current ADAS theoretical atomic data [31]. Brezinsek et al. 2017 [10], measuring the S/XB in
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the 20 to 85 eV temperature range, fit their results with previous experiments from 2 to 20 eV at

ASDEX-Upgrade [27], PISCES-B [24, 25], and PSI [28]. The experimentally measured S/XB

is 25% higher than current ADAS predictions [31] for densities between 1018 to 1019 m−3 [10].

The DIII-D DiMES experiment found similar discrepancies in the same density range [8].

All previous comparisons of the S/XB have been of semi-classical or perturbative electron-

impact rate coefficients. The ADAS data uses the semi-classical Exchange Classical Impact Pa-

rameter method (ECIP) [32] for electron-impact ionization and Plane-Wave Born for electron-

impact excitation [31]. Beigman et al. [11], on the other hand, use the perturbative Born and

Born-Ochkur approximations from the ATOM code [33] for 5d and 6s ionization from the

ground state. For electron-impact excitation, Beigman et al. used the semiempirical van Rege-

morter formula [34] and compared with experiments [26–28] in the 2.5 to 5 × 1019 m−3 range.

For temperatures above 10 eV, measurements fall below theoretical values by a factor of 1.5 to

5 depending on how excited populations are modeled. The Born and Born-Ochkur approxima-

tions tend to produce higher cross sections than expected, thus increased effective ionization

rates. Another experiment at TEXTOR, specifically measuring ionization rates [35] also sug-

gests that the ionization rather than the excitation calculations are responsible for differences in

the S/XB ratio observed at TEXTOR in a separate experiment investigating the 400.88, 498.3,

and 522.5 nm lines [10].

Other complications for tungsten S/XB and atomic modeling include sensitivites to metastable

and excited-state populations as well as electron densities beyond 1019 m−3, as seen in Figure

1.2. Metastable atomic states describe populations that do not quickly reach equilibrium of-

ten because there does not exist a rapid radiation pathway to the ground state. Beigman et al.

demonstrated the effect of varying metastable populations on possible W S/XB values [11], an

effect that is both hard to distinguish from and also directly affected by the electron-impact

ionization rates. A set of S/XB ratios were obtained based on a tungsten temperature parameter

TW , which is related to tungsten metastable populations (considered as 5d46s2 5D0,1,2,3,4 and

5d56s (7S3 levels) under Maxwell-Boltzmann statistics (the different green lines in a) ). The

range of TW considered was based on observed spectral line intensities, and the S/XB ratios ob-

tained within this range were found to differ by as much as a factor of 82, suggesting a need for
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Figure 1.2: Effect of a) metastable populations and b) electron density on the 400.88 nm tung-
sten S/XB. In a) the green lines reflect different assumed metastable populations. The blue
lines are from using the approximate electron-impact data available from ADAS [36], while
the black line is a fit made from compiled measurements of the S/XB [28]. As b) shows, the
S/XB becomes highly sensitive to electron density above 1 × 1019 m−3.

an accurate account of metastable populations. Additionally, while most measurements have

been performed at electron densities under 1019 m−3, an S/XB measurement in DIII-D at 4.5×

1019 m−3 shows a sharp increase compared to lower densities [8].

One of the factors contributing to increased effective ionization rates at higher electron

densities is ionization from excited states. Light atomic species such as He, Li, and B have

demonstrated strong contributions by high-n excited states to the effective ionization in the

low temperature and moderate to high density regime, indicated by a noticeable rise in the

effective rate coefficients [37–39]. An experiment with Li in the divertor region of the DIII-D

tokamak, for example, showed good agreement of the effective ionization rate with theoretical

calculations that include all of the excited-state ionization [40]. Excited-state ionization of

higher Z elements beyond B has currently not been studied, though included within the ADAS

suite is the ability to use ECIP rates for atomic states without electron-impact ionization data

[31]. Because the ionization potential of excited states is always lower than the ground state,

the effect of excited state ionization is particularly relevant in low temperature plasmas, such as

in the divertor region of fusion relevant plasmas, where the average electron temperature might

be below the ground state ionization potential.
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Many factors therefore influence the S/XB, particularly at higher electron densities. It

is thus of critical importance to develop accurate theoretical neutral tungsten atomic data and

employ atomic population modeling that encompasses metastable and excited states to deter-

mine accurate S/XB diagnostics over a range of electron temperatures and densities for fusion-

relevant devices. Non-perturbative atomic data for both the electron-impact excitation and

ionization of neutral tungsten is needed to replace the current perturbative and semi-classical

data.

A non-perturbative Dirac R-Matrix (DARC) calculation was recently completed by R.

Smyth et al. for the electron-impact excitation of neutral tungsten [41]. The relativistic struc-

ture used in this calculation was made with experimental guidance about which configurations

were emitting strong lines, based on a tungsten probe inserted into the Compact Toroidal Hy-

brid (CTH) at Auburn University [17] and shows an 11% average percent error compared to

compiled experimental energy levels [42]. The R-matrix method yields an exact solution to

Schrodinger’s equation for the collision of an electron with an atom that includes all possible

ways that the two can couple in terms of overall quantum numbers, as well as both exchange

and correlation effects. To fit the relativistic structure within available computational resources,

the DARC calculation did not include transitions of electrons into the continuum states, i.e.,

“pseudostates,” that would correspond to electron-impact ionization.

The primary motivation of the present work is to complete the set of non-perturbative

atomic data (ionization) necessary to model the S/XB of neutral tungsten accurately at

both low and high electron densities. An electron-impact ionization R-Matrix with pseu-

dostates (RMPS) calculation is performed that includes both configuration mixing and ion-

ization from the 5d56s (7S3) metastable as well as from excited states, in addition to the

ground. The combination of the previous DARC electron-impact excitation and the present

RMPS electron-impact ionization calculation should thus help clarify inconsistencies reported

in S/XB measurements from various lines [8, 10, 11, 24, 25].
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1.2 Neon: A Bridge between Light and Heavy Elements with Divertor Applications

Neon, at the heavier end of the light elements, can serve as an important benchmark in gaug-

ing the importance of excited-state ionization for collisional-radiative modeling of both heavier

atomic species and noble gases. Applications including divertor cooling and spectral diagnos-

tics also make neutral neon important in its own right for proper GCR modeling.

Neon is also a useful element in many plasma applications related to astrophysics [43–45],

low-temperature laboratory plasmas [46], and fusion research [47–51]. In fusion devices, neon

has been effective at mitigating disruptions [48, 49] (sudden termination of the plasma) as well

as for divertor cooling [50, 51]. Recently, the spectrum of neutral neon, along with helium, has

been investigated as a diagnostic for electron temperature and density in the edge region of the

W7-X stellerator from a gas injection [47]. Unlike helium, neutral neon is expected to emit

measurable spectral lines for high electron densities (> 1020 m−3) and low temperatures (< 10

eV). A well-developed collisional-radiative model of neon in this regime would thus provide

greater coverage and lower the uncertainty of the temperature and density profiles in the edge

region.

The electron-impact excitation and ionization of neutral neon have previously been cal-

culated and demonstrated good agreement with most measurements for the ground and lower-

energy excited states [52]; however, ionization from a large number of excited states is still

missing. Currently, cross sections for the 2p6 and 2p53s, 2p54s, 2p55s ionizations have been

calculated [53–57]. Obtaining accurate cross sections, and thus rate coefficients, requires non-

perturbative approaches, such as the R-matrix technique, coupled with the inclusion of an ad-

equate number of pseudo-states to the atomic structure in order to account for target electrons

in the continuum state. The previous calculation for ionization from the 2p5ns configurations

was limited in the number of pseudo-states that could be included. Our main objective is thus

both to check for convergence of the ns results and also to calculate new cross sections and

rate coefficients for the np, nd, and 4f states, which can then be used in collisional-radiative

modeling.
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A related goal is to provide a full account of the electron-impact excitation of neutral neon

from all LSJ-resolved levels. Neutral neon has previously been used to study the contribution

of pseudostates to cross sections, showing that the presence of more pseudo-states can signif-

icantly lower excitation cross sections for neutral species [52, 55, 58]. Excitation into higher

valence orbitals such as the 3d has only been examined in one other study [52]. Thus, we seek

to generate rate coefficients from a new non-perturbative calculation that will also serve as a

check upon the previous one.

With a full account of the electron-impact excitation and ionization from all excited states,

the most accurate set of collisional-radiative data for neutral neon to date is compiled. Further,

the importance of excited-state ionization, particularly ones that can be excited from the ground

via a electric-dipole allowed transition is demonstrated.

1.3 Unresolved Questions for High-Z Elements in Atomic Physics and Generalized Colli-

sional Radiative Theory

The completion of non-perturbative electron-impact ionization calculations for neutral neon

and tungsten should cover new frontiers in atomic physics not previously addressed in lighter

elements. Of particular relevance is how relativistic effects, configuration mixing, and shared

ionization pathways among configuration series impact electron-impact ionization cross sec-

tions and the effective ionization rate.

The configurations of W are all open d−shell and exhibit a high degree of mixing. Figure

1.3 shows a Grotrian diagram, with an emphasis on the 5d46snl, 5d5 nl, and 5d36s2nl series.

The metastable 5d56s (7S3) falls within the energy span of the ground 5d46s2 (5D) levels,

blurring the distinction between “ground” and “metastable.” Wyart, through parametric fitting

of compiled experimental measurements [42] with a Relativistic Hartree Fock (HFR) calcula-

tion that includes core polarization effects, found that only six of the low odd parity energy

levels between 5d36s26p, 5d46s6p, and 5d56s6p have a configuration percentage of 5d36s26p

greater than 60% [59]. The ground and metastable configurations for W+ include 5d46s, 5d5,

and 5d36s2, where the 5d46s (6D) ground term can can be reached directly from W via either

ground 6s or metastable 5d ionization.
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Figure 1.3: Grotrian diagram of selected neutral tungsten levels, with an emphasis on the ion-

ization pathways between the three main series, 5d46snl, 5d5nl, and 5d36s2nl. The ground and

metastable levels can be excited into two of the three series each, and the configurations are all

heavily mixed.

Configuration-averaged methods such as Distorted Wave, Exchange-Classical Impact Pa-

rameter, and Time Dependent Close Coupling consider different ionization configuration path-

ways as separate problems. For example, a calculation for the 6s ionization from the ground

state would have no information regarding the 5d ionization from the metastable state, despite

their shared W+ core. Put differently, interference effects between different initial and final

state ionization processes are not included. An LS- or LSJ-resolved R-matrix calculation, on

the other hand, can simultaneously include both neutral tungsten’s ground and metastable state

ionizations in addition to any other possible transitions into the continuum, as long as the target

structure includes the configuration series corresponding to the ionization pathway. An open
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question to be answered is therefore (1) Do all ionization pathways need to be considered

in a single calculation for accurate electron-impact ionization cross section results, or can

they be treated separately?

A related but slightly different question is (2) What is the effect of configuration mixing

on term- and level-resolved electron-impact ionization cross sections? The 5d5nl series,

for example, mixes strongly with the 5d46s nl series; however, the former cannot be reached

via the ground state from a conventional one-electron transition. Understanding the effects of

mixing is therefore important in guiding adequate target structure candidates and interpreting

their results.

A major challenge associated with non-perturbative electron-impact calculations of tung-

sten and other open d− and f− shell elements is that they require expensive computational

resources in terms of RAM, I/O, and runtime. These computational constraints are further

exacerbated by the requirements imposed by the nature of the ionization problem itself. The

R-matrix with pseudostates (RMPS) method takes an exhaustive approach to the electron-atom

collision problem: for a given target-incident electron “N + 1” set of conserved quantum num-

bers, the method requires calculating Hamiltonian matrix elements corresponding to each set of

possible coupled target and electron quantum numbers. Further, a given target quantum number

set (of one N + 1 symmetry and one Hamiltonian element within that set) values for all corre-

sponding mixed configurations must be calculated separately and summed together, weighted

by their mixing coefficients. The angular algebra associated with open d− and f− shell ele-

ments results in many more energy levels than open s− or p− shell elements, corresponding to

much larger Hamiltonian sizes. Electron-impact ionization calculations further require a large

number of additional discrete pseudostates to represent the continuum, the energy levels of

which can far exceed the regular optical energy levels associated with the target atom.

Aside from requiring a large number of pseudostates, RMPS calculations for electron-

impact ionization further requires a larger basis set to describe the continuum electron com-

pared to electron-impact excitation calculations. The basis set approach of the Belfast R-matrix

suite of codes [60] builds a continuum electron representation of orthogonal states from low
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incident electron energies upwards. So, a basis set covering an incident energy beyond the ion-

ization potential will necessarily be larger than one only covering electron-impact excitation of

a target state. Each extra member of the set corresponds to a multiplying of the dimensions of

the Hamiltonian. The R-matrix itself consists of a multiplication between two matrices, which

are of dimensions of the Hamiltonian size versus the number of target-electron channels for a

given N + 1 symmetry.

The RMPS method is therefore a computationally demanding one, made more so by the

necessity of pseudostates and larger basis sets for electron-impact ionization, and in some cases

might not even be feasible, at least for certain N + 1 symmetries with a large number of target-

electron channels. The present work is thus in part concerned with (3) how can the size or

computational burden of more expansive non-perturbative calculations be reduced while

maintaining accuracy in the results?

Finally, the electron-impact ionization results from neutral neon and tungsten should yield

new insights into atomic population modeling of plasmas. Here, modeling of both atoms should

answer (4) how important is excited-state ionization for accurate GCR modeling, partic-

ularly as concerns the effective ionization rate coefficient? Regarding the relativistic and

configuration mixing effects associated with tungsten and relativistic and configuration mix-

ing effects: (5) how important is LSJ- and LS-resolved electron-impact data for accurate

GCR modeling of high-Z elements?

Regarding these five questions, the present work on the electron-impact ionization and

Generalized-Collisional-Radiative modeling of neutral neon and tungsten will arrive at the fol-

lowing three overall conclusions:

1. Due to configuration mixing and multiple ionization pathways, at least term-level

resolution and the inclusion of all sizeably contributing pathways in the target struc-

ture are required for accurate electron-impact ionization cross sections of open

d−shell high-Z.
2. At present, computationally expensive LS-resolved non-perturbative methods are

required to obtain accurate electron-impact ionization cross sections for high-Z

open d−shell elements. However, as the incoming electron can couple to a given term
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either as spin up or down, it is reasonable to assume the two spin symmetries contribute

roughly equal to a term’s ionization cross section, and across all incident energies. This

will be demonstrated with neutral tungsten’s metastable cross section, in which the higher

and lower spin sets of N + 1 symmetries yield contributions within 10% of each other,

as well as with an analysis of scaling Exchange-Classical Impact Parameter [32] cross

sections with the obtained neutral tungsten excited state cross sections.
3. Excited-state ionization contributes more than the ground state to the effective ion-

ization rate for both neutral neon and neutral tungsten, particularly at low temper-

atures and high densities. While the photon-emissivity coefficient (PEC) requires

precise LSJ-resolved excitation rates, the effective ionization rate (SCD) demon-

strates nearly negligible change between LS- and LSJ-resolved rates.

The rest of this work is divided as follows: Chapter 2 provides a theory overview span-

ning atomic structure, electron-atom collisions, and Generalized-Collisional Radiative theory,

with an emphasis on ionization and the S/XB coefficient for erosion diagnostics. Chapter 3 de-

tails the results of neutral neon electron-impact excitation and ionization calculations, as well

as a study of the effects of excited-state ionization on the effective ionization rate. Chapter

4 describes the neutral tungsten LS-resolved electron-impact ionization calculation, includ-

ing structure details and cross section results for the ground and metastable states. Chapter

5 analyzes the ionization cross sections out of excited states from the neutral tungsten RMPS

calculation and concludes with SCD and S/XB modeling using the new ionization data. Chap-

ter 6 summarizes the current findings as well as suggests various strategies for future high-Z

electron-impact ionization calculations and future computational and atomic physics directions.

A number of code developments were required for the R-matrix calculations, and these are de-

scribed, along with excerpts, in Chapter 6 and Appendix B.
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Chapter 2

From Schrodinger’s Equation to Spectral modeling of plasma emission: R-matrix scattering
theory and Generalized Collisional-Radiative Modeling

2.1 Introduction

The goal of the R-matrix calculations reported in this dissertation is to generate reliable atomic

data for spectral modeling in plasma devices. For example, one such application involves the

spectral emission of neutral Ne to measure the electron temperature in the edge region of fusion

plasmas. The W-7X experiment in Germany is developing such a diagnostic and requested

electron-impact excitation and ionization data for use in the diagnostic (to be used in the 0-40

eV electron temperature and 1012 - 1014 cm−3 electron density ranges [47]). In this chapter

we describe the theoretical methods that bridge the gap between the quantum mechanical cross

sections and the modeling of the observed spectra. Similarly, the tungsten cross section data

will be the same theoretical framework.

The theoretical methods that will be used to calculate electron-impact excitation and ion-

ization cross sections in this dissertation will be described. These cross sections are for single

collisions of electrons at a specified energy. In order to obtain overall spectral rates in a plasma,

we must understand both the limitations of these cross sections and how they can be applied

beyond a single-electron collision. In addition, other possible atomic processes in the plasma,

such as electron recombination, radiative decay, and proton collisions, also need to be con-

sidered. We will show that for neutral tungsten modeling in tokamak divertors, that electron

recombination is not important in the modeling, while proton collisions for Ne may be impor-

tant.
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2.2 Theory of Atomic Structure

Accurate spectroscopic modeling of an atomic species in a plasma requires a well-informed

model of the atom’s structure. Metrics guiding the quality of an atomic structure include 1)

an adequate inclusion of configurations to account for both the atomic processes involved and

the observed lines seen in the spectrum, 2) the accuracy of the term/level energies, and 3) the

oscillator strengths (Einstein Aij coefficients).

The atomic processes to be modeled and available spectra can often guide the set of elec-

tronic configurations used to describe the atom. For smaller atomic species such as He or Li

with less computational constraints for collision calculations, larger sets of configurations can

be used to describe both fine-structure electron-impact excitation and ionization, as well as the

lines over a large wavelength range. To make collision calculations for heavier elements com-

putationally feasible, priorities must be assigned when generating the atomic structure based

on the kind of collision and the spectral wavelength range. For example, Smyth et al. [41], in

their calculation for neutral W electron impact excitation, use a subset of configurations in part

corresponding to strong transitions from 200-500 nm, which includes potential line candidates

for the W I S/XB diagnostic [11]. The spectral lines for which their data need LSJ-resolution,

as fine-structure transitions can easily be resolved in the spectral observations. Pseudo or-

bitals, which can account for ionization from the target, were therefore not included. A proper

electron-impact ionization calculation, on the other hand, would require a set of pseudo or-

bitals extensive enough to converge the ionization cross sections, yet, because ionization from

the J-resolved levels within an LS-term are unlikely to show large differences, performing an

LS-resolved ionization calculation allows one to reduce the size of the calculation. This is

in part because ionization cross sections are a summation of individual transitions above the

ionization potential, rather than of one transition.

The configuration set used as well as a set of orbital scaling parameters will determine

the accuracy of the structure, as noted through the resulting energy terms/levels and oscillator

strengths. In the next subsection, an overview of atomic structure theory and the program

AUTOSTRUCTURE is given.
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2.2.1 Atomic Structure through Configuration State Functions and the Variational Principle

Schrodinger’s equation for N particles and their wavefunction Ψ,

−h̄2

2

N∑
n=1

1
mn

∇2
nΨ(r1, r2, ..., rN) + V (r1, r2, ..., rN)Ψ(r1, r2, ..., rN) = EΨ(r1, r2, ..., rN)

(2.1)

can be solved analytically only for a few V(r) potentials, one of which is for the hydrogen atom.

Yet, all quantum systems have the special property of being describable by any orthonormal,

complete set of functions ψi:

Ψ(r1, r2, ..., rn) =
∑
i

ciψi

In accordance with 〈Ψ |Ψ〉 = 1,
∑
i c

2
i = 1. That is, the square of a coefficient represents the

probability of measuring that state. Thus, wavefunctions for atoms of one or more electrons

can be described as a superposition of a single centered basis. In addition, a further assump-

tion known as the self-consistent field approximation considers the total wavefunction for the N

electrons as the product of one-electron spin-orbitals. To obey particle indistinguishability, the

set of spin-orbitals corresponding to the set of quantum numbers, nlmlsms for non-relativistic,

are cast into Slater determinants, where each element represents a different interchanging of

r1, ..., rN coordinates. The possible γnlMlsms sets of quantum numbers of a given configura-

tion must obey the Pauli exclusion principle (reflected in the Slater determinants), limiting the

possible total quantum numbers, γLMLSMS .

A configuration state function Φ(γLMLSMS) for a given electron configuration

(n1l1)w1(n2l2)w2 ...(nmlm)wm), where N = ∑m
a=1wa, can then be formed from the linear com-

bination of Slater determinants of all ml and ms spin-orbitals leading to the total quantum

number set γLMLSMS . These CSFs are eigenfunctions of the N-electron Hamiltonian:

H =
N∑
i=1
−1

2∇
2
i −

Z

ri
+

N∑
i<j

1
rij

(2.2)
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The first two expressions on the right hand side correspond to the electron kinetic energies

and attraction to the nucleus respectively. The last expression accounts for electron-electron in-

teractions, where rij = |~ri−~rj| is the distance between an i,j electron pair. The Thomas-Fermi-

Dirac-Amaldi potential utilized by the program AUTOSTRUCTURE assumes that, rather than

needing to calculate each individual electron-electron interaction separately, an electron cloud

density can be used to account for the effect of the other N - 1 electrons. This cloud density,

in accordance with the self-consistent field approximation, is spherically symmetric and thus

contains no angular dependence between the position of an electron versus its effective N - 1

electron cloud. Further, the interaction expression,

1
rij

=
∞∑
l=0

rl<
rl+1
>

Pl(cosθ),

converges reasonably well within the first few values of l. Here Pl denotes the radial function

and θ the angle between the two electrons. r> and r< correspond to the radial position of the

either the ith electron or a jth electron from the cloud, whichever is farther or closest from the

nucleus, respectively.

The Thomas-Fermi-Dirac-Amaldi potential arises from considering the first three mo-

ments of the expansion:

V (ri) = −2(Z −N)
ri

+
∫ r0

0
ρ(ri)[

2
r>

+ C1
r<
r2
>

+ C2
r2
<

r3
>

]4πr2
j drj (2.3)

The interaction terms are integrated over the electron cloud radius r0. These interaction

terms correspond to the monopole, dipole, and quadrupole moments respectively. Starting with

the dipole moment, the positions of the electron with the rest of the cloud are now correlated,

where C1 and C2 account for the angular terms of the ith and jth electron. Unlike the monopole

moment, the succeeding moments all reflect a dependence of an electron’s position on the rest

of the electrons. An expression for the charge density can be solved for by minimizing the total

kinetic and potential energy of the system:

ρ(r) = 1
2π2

{
1
π

+
[ 1
π2 + V0 − V (r)

]1/2}3

(2.4)
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where

V0 = − 15
16π2 −

2(Z −N)
r0

.

The use of the Thomas-Fermi-Dirac-Amaldo potential in AUTOSTRUCTURE further em-

ploys a variational principle, a technique to find the upper bound of the lowest energy state. It

can be shown that, for an arbitrary trial wavefunction φ with a parameter or parameters λ, the

”variational” parameters, an upper bound ε can be obtained satisfying

ε = 〈φ|H|φ〉
〈φ|φ〉

such that ε ≥ E0 where E0 is the lowest eigenstate of the Hamiltonian. ε is solvable by

optimizing the expectation value of the Hamiltonian with respect to the variational parameters:

d 〈φ|H|φ〉
dλ

= 0 (2.5)

This principle prima facie makes the method very promising; however, not all trial wave-

functions are created equal, some resulting in upper bounds much farther away than E0. Wave-

functions already close in form to the actual wavefunction will be able to achieve a tighter

bound. The energies for all states, including ground and excited, are then obtained through

diagonalization of the Hamiltonian.

The Thomas-Fermi-Dirac-Amaldi potential also allows for variational scaling parameters

λd and λq for the dipole and quadrupole terms respectively per atomic orbital, under the as-

sumption of a spherically symmetric electron cloud density and the truncation of the interaction

expression:

V (ri) = −2(Z −N)
ri

∫ r0

0
ρ(ri)

2
r>

4πr2
j drj + λd

8
3π [ 1

r2

∫ r

0
ρr3

i dri +
∫ r0

r
ρ dri]

+λq
8

3π [ 1
r2

∫ r

0
ρr4

i dri + r2
∫ r0

r

ρ

r2
i

dri].
(2.6)
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In addition to solving for an atom’s term and/or level energies with the TFDA potential,

AUTOSTRUCTURE incorporates another set of λnl scaling parameters, one per orbital. Func-

tionally, these parameters can shift the average position of the wavefunction closer or farther

away from the nucleus, allowing for closer agreement to NIST. These parameters can either be

manually tuned by the user, or else a subset can be chosen to be optimized with the other λd

and λq parameters.

A mathematically complete set of configurations is required to yield an exact solution to

the atom’s eigenfunctions and eigenenergies. Recall, the configuration state functions (CSF’s)

assume a radially symmetric potential, the simplest case of course being a hydrogenic poten-

tial. A proper solution to Hamiltonians with electron-electron interactions, then, requires a

superposition of CSF’s,

Ψ(γLS) =
M∑
i=1

ciΦ(γLS).

The coefficients ci, termed mixing coefficients, reflect the presence of configuration in-

teraction (CI) observed as off-diagonal elements of the Hamiltonian. For cases in which the

wavefunctions are on their own exact eigenfunctions of the Hamiltonian, corresponding to

unique energy levels, all off-diagonal elements will be zero due to orthonormality. A detailed

discussion on the rules governing which configurations will interact and to what degree can be

found in [61]. They can be summarized as follows:

1. CI is zero unless both the bra and ket have the same parity.
2. Configurations can differ in at most two orbitals.
3. Configurations must have a common LS value (for LS-resolution).
4. CI is large for configurations that are close in energy.
5. CI is large between configurations whose shared Coulomb matrix elements are large.

These rules are related to which conditions will yield non-zero off-diagonal elements. 1)

results from the Hamiltonian operator being even. 2), 4), and 5) relate to the off-diagonal

Coloumb elements. Mixing will of course be large as a result of the off-diagonal elements be-

tween configurations being large. Further, the Coulomb elements involve summing the possible

interactions between two electrons of either the same or different orbitals, hence 2). Finally,
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from orthonormality, configurations must have the same total angular momentum quantum

numbers. These rules are often used as a rule of thumb for guiding which configurations to

include in a structure: one includes all of the single-electron promotion configurations within

the same complex (i.e., same n-shell), and if this is not sufficient, then one includes the double-

electron promotions within the same complex.

Accuracy of an atomic structure can be gauged both from the generated series of ter-

m/level energies from the variational procedure with the TFDA potential as well as by the

oscillator strengths describing transitions between states. The Einstein Aji coefficient and os-

cillator strength fji describing the rate of spontaneous emission of a photon corresponding to a

transition from state φj down to φi can be calculated from

Aji =
2e2w3

ji

3ε0hc3
1
gj

∑
φi

| < |φi|~r|φj > |2, (2.7)

and

fij = − e2w2
21

18πε0mc3
gj
gi
Aji.

Here, wji is the oscillation frequency between the two states, proportional to the difference

in their energies. The ~r operator is related to the dipole operator of an electric field, the

dominant term of electromagnetic radiation. Obtaining accurate Aij’s and oscillator strengths

therefore requires optimizing transitions where this expression is expected to be large, i.e.,

dipole-allowed transitions. gi and gj are the statistical weights of the lower and upper levels

respectively. Given that the operator has an odd parity, the two states must therefore have op-

posite parities in order for the term to be non-zero. From the spherical harmonic functions,

opposite parities will occur if the difference in angular momenta between the states ∆J equals

±1. Where LS-coupling is appropriate, this additionally corresponds to ∆L = ±1. In de-

veloping an accurate atomic structure, therefore, configurations representing possible strong

dipole transitions should be included and their oscillator strengths optimized to match NIST

values. Of course, in the multi-configurational case, the atomic states are superpositions of

CSFs. Furthermore, other transitions, such as magnetic dipole and electric quadrupole, are also
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possible, complicating defining transitions by a simple set of rules. Thus, a more rigorous test

on the structure would be to check the spontaneous emission rates of the non-dipole transitions.

Rigorous and tentative rules regarding possible transitions can be found in [61].

2.2.2 Semi-relativistic and Relativistic Structures

For heavier elements, including neon and tungsten, relativistic effects must be included in cal-

culating the atomic structure. The equation governing the relativistic structure of an atom is the

Dirac equation. Though this equation was used in the electron-impact excitation calculation of

W, where the fine structure led to fine resonances in the cross sections, we restrict ourselves

to a semi-relativistic and LS-resolved structure for the neutral neon electron-impact excitation

and for all electron-impact ionization calculations respectively.

For a semi-relativistic structure, the Breit-Pauli Hamiltonian may be used, which incorpo-

rates new relativistic shift (RS) and fine stucture (FS) terms [62]:

HBP = HNR +HRS +HFS

Equations for each HRS and HFS term can be found in [62]. Important relativistic shift

terms include the mass, velocity, and Darwin terms, as well as the spin-orbit interaction. The

fine structure spin-orbit interaction term,

HSO = α2Z

2
∑
i=1

N
1
r3
ij

li · si, (2.8)

where α = 1
c

explicitly depends on the total angular momentum operator J2. The final wave-

functions can now be described as superpositions of LS states leading to overall JMJ values:

Ψ(γJMJ) =
M∑
i=1

ciΦ(γiLiSiJMJ). (2.9)

2.2.3 Pseudostates

For neutrals, for which the coulomb force of attraction of an electron with the nucleus is roughly

equal to the force of repulsion felt by the other N - 1 electrons, the electronic states are less
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tightly bound, and coupling of states to those in the continuum can occur. Recall, mixing

between different configurations will be greater when the configurations are closer in energy.

Therefore, bound states that are higher and energy, i.e., closer to the ionization potential, are

more likely to experience mixing with continuum states.

Pseudostates serve an additional purpose in account for ionization of an electron into the

continuum. A regular structure calculation only allows for transitions between bound states.

Ionization can be considered as a summation of the pseudostates whose energies are above the

ionization potential, provided an adequate number of pseudostates are included to converge the

cross section.

The functions known as Sturmian-type orbitals [63] can used to represent these states

and are expressible as rie−αr. Their shape is similar to continuum orbitals, except that they

dissipate to zero as the radial coordinate approaches infinity. The parameter α, different from

the previous α = 1
c
, becomes defined through diagonalization of the Hamiltonian.

Figure 2.1 depicts a generic energy level diagram with pseudostates included (blue lines),

representing the kinds of energies one might expect from an atomic structure calculation. Here,

two configuration series, nl1 and nl2 are shown, for which the ionization potential is relative

to the first series. The energies of levels from these optical orbitals converge at the ionization

potential. A series of pseudostates, used to represent the continuum, n̄l1 and n̄l2 extend from

just below the ionization potential into the continuum. Though the continuum itself is not

discrete, the energy levels resulting from the pseudostates are. As shown, the lines from the

configuration series on the left and right is in groups of five and three respectively, each group

corresponding to one configuration. If assuming J-resolution, the lines would correspond to

the 2J + 1 states.

2.2.4 Summary of Atomic Structure Theory and Practice

Generating an accurate atomic structure requires first deciding upon a set of configurations.

Because the configuration state functions form a complete set, more configurations will re-

sult in a more accurate structure. In reality, particularly for more complex atoms with many

terms/levels, configurations must be decided upon judiciously based on 1) the atomic process
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Figure 2.1: An example diagram of the resultant energies of an atomic structure calculation.
Two series of optical configurations are shown. The pseudostate energies (blue) are discrete
and used to represent the continuum.
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being modeled (more pseudostates for ionization), 2) which configurations will mix heavily,

and 3) which configurations will correspond to strong transitions observed in a spectrum. Aside

from changing the set of electron configurations, one can also vary the set of λnl orbital parame-

ters in AUTOSTRUCTURE. These parameters can either be adjusted manually or else a subset

can be included in the variational procedure.

2.3 Atomic Collisions and Cross Sections

The dominant atomic processes for neon and tungsten that determine the main spectral features

are due to electron-impact collisions. Accurate rates for electron-impact excitation and ion-

ization, and these processes for neutral systems require non-perturbative methods that give the

collision proper consideration of its inherently quantum-mechanical nature and account for the

many-body effects in the collision process. This section is organized as follows: 1) A descrip-

tion is provided of the parameters involved in a collision process, such as the cross section, 2)

an overview of semi-classical and perturbative methods is given, and 3) a detailed description

of R-matrix, the non-perturbative method to be used in the present work, is given.

2.3.1 Basic Collision Model

Figure 2.2 shows a classical picture of the collision of a particle, such as an electron, with

an arbitrary central potential V (r) as a function of radial distance r. Of primary importance

is an impact parameter b, the perpendicular distance from the radial axis. From the classical

kinetic energy, the impact parameter is related to the angular momentum l and energy E of the

projectile through, b = l√
2mE . b can further be related to the probability dσ of the particle being

scattered through an angular area dΩ = sin θdθdφ, where dφ is the azimuthal angle. From the

relation dσ = bdφdb, the differential cross section can be calculated as

dσ

dΩ = b

sin θ |
db

dθ
|.

The differential cross section can further be integrated to give the total cross section. For

example, integration of the differential cross section for a classical hard sphere of radius r
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Figure 2.2: Classical diagram of the scattering problem of a particle of perpendicular distance
b away from the radial axis. b can be related to the differential cross section dσ, the probability
of the particle distending through an angular range dΩ = sin θdθdφ.

would yield πr2, indicating that all incident particles striking the face of the sphere – an area

of πr2– are scattered.

In quantum mechanical collisions, the picture of the particle as a point striking a sphere is

no longer valid. Instead one can imagine a plane wave interacting with a spherical potential,

yielding the following general form of a wavefunction for the incident and scattered particle:

Ψ ≈ eikz + f(θ)e
ikr

r
(2.10)

The left and right expressions indicate the incident and scattered wavefunctions respec-

tively. f(θ) is a function that will contain the problem-specific scattering information: the goal

of quantum mechanical scattering calculations is to solve for this function. One can think of

the differential cross section as the probability density per unit time for a scattered particle of

incident velocity v passing through dΩ = 2π sin θdθ:

dσ = v|f(θ)|2dΩ = 2π sin θ|f(θ)|2dθ,
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where the incident wavefunction is normalized to the velocity. A further complication of quan-

tum mechanical collisions is the treatment of inelastic effects. For an inelastic collision, the

energy of the scattered electron will change as a result of an internal change of state of the

target. For example, in an electron-atom collision, energy in the form of a photon might be

used for a target transition into or out of an excited state. The present work on electron-impact

excitation and ionization shall therefore be concerned with inelastic collisions.

For both inelastic and elastic atomic collisions, the wavefunction ul of a continuum elec-

tron of l angular momentum and k2 = 2E will be solved through considering a spherically

symmetric potential U(r):

(
d2

dr2 −
l(l + 1)
r2 − U(r) + k2

)
ul(r) = 0. (2.11)

It can be shown [64] that as r →∞,

ul ≈ sl(kr) + cl(kr) tan δl(k), (2.12)

where sl and cl are related spherical Bessel and Neumann functions jl(r) and nl(r) re-

spectively and represent the solution when no potential is present. With proper choice of nor-

malization constant, ul can be rewritten as,

ul ≈ exp(−iθl)− exp(−iθl)Sl(k), (2.13)

where θl = kr − 1
2 lπ and Sl(k) is the diagonal elements of the S-matrix:

Sl(k) = exp[2iδl(k)] = 1 + iKl(k)
1− iKl(k) . (2.14)

Kl(k) is in turn the diagonal elements of Kl(k) = tan δl(k). δl can be understood as a

phase shift of the continuum electron as a result of the potential U(r). From 2.12 and 2.10, one

can further derive an expression of the scattering amplitude f(θ, φ) in terms of δl [64]:

f(θ, φ) = 1
2ik

∞∑
l=0

(2l + 1){exp[2iδl(k)]− 1}Pl(cos θ) (2.15)
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Obtaining quantum mechanical cross sections therefore requires solving for the phase shift

δ of the continuum electron ul.

Scattering properties will be determined based on the differences in the electron wave-

function as a result of U(r). Therefore, one way to conceptualize the scattering problem is to

consider the projection of the wavefunction without U(r) onto the Hamiltonian operator with

U(r), and vice versa. That is,

〈vl(r)|Hu|ul(r)〉 and 〈ul(r)|Hv|vl(r)〉 ,

where vl refers to the solution to the wavefunction of a continuum electron absent any potential.

Carrying out the Hamiltonian operators and subtracting the latter from the former,

∫ ∞
0

(
vl(r)

d2ul
dr2 − ul(r)

d2vl
dr2

)
dr =

∫ ∞
0

vl(r)U(r)ul(r)dr (2.16)

The left-hand side admits use of Green’s theorem. Using the boundary conditions for ul

and vl, as specified in 2.12, it becomes

∫ ∞
0

(
vl(r)

d2ul
dr2 − ul(r)

d2vl
dr2

)
dr = vl(r)

dul
dr
− ul(r)

dvl
dr

= −k tan λl(k). (2.17)

Inserting the solution of vl and Equation 2.17 into Equation 2.16 and simplifying,

tan δl(k) = −
∫ ∞

0
jl(r)U(r)ul(r)rdr. (2.18)

2.3.2 Perturbative and Non-Perturbative Methods

Most U(r) potentials cannot be solved analytically. In certain circumstances, however, pertur-

bative and semi-classical methods can be employed to simplify the scattering problem. These

methods are normally valid when the potential is sufficiently small or when the scattered parti-

cle passes quickly.
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The Born approximation is the most traditional way of calculating scattering amplitudes.

At first order, it’s fundamental assumption is that the scattered term of Equation 2.10 is much

weaker and can be solved as a perturbation of the incident plane wave. That is, ul becomes

replaced by the free particle solution vl in Equation 2.18:

tan δBl (k) = −
∫ ∞

0
j2
l (r)U(r)r2dr. (2.19)

The corresponding scattering amplitude from δBl (k) will be,

f(θ, φ)B = − m

2πh̄2

∫ ∞
0

ei(
~k′−~k)·~rU(~r)d3~r, (2.20)

where ~k′ = k~z and ~k are in the directions of the incident and scattered wavefunctions

respectively. For inelastic collisions between an electron and an atom in which the atom is

excited from state ni to nf , the following equation for the differential cross section can be

derived [65]:

dσ

dΩ = kf
ki

m2

4π2h̄4 | 〈kfnf |U |kini〉 |
2, (2.21)

where

U(~r, ~rj) =
N∑
j=1

e2

|~rj − ~r|
(2.22)

represents the Coulomb repulsion of between the scattered electron and each of theN electrons

of the atom.

Another perturbative approach, known as the distorted wave method, builds upon Equa-

tion 2.21 by Fourier transforming a ”distorted” wavefunction under a Coulomb potential into

momentum space. A more detailed version of the following derivation can be found in [65].

Let ψ(+)
ki

(r) and ψ(−)
kf

(r) represent the incoming and scattered electron wavefunctions respec-

tively given a Coulomb potential. Importantly, the wavefunctions no longer assume that the

incoming wave function experiences no effect from the potential, in which case it would be
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a simple plane wave. Compared to Equation 2.20, the scattering amplitude of the Coulomb

potential solutions contain a distortion in the form of a phase factor e−iηiln(sin2 θ
2 ), where

ηi = mZZ ′e2

h̄2ki
(2.23)

A Fourier transform into momentum space is performed:

φ
(+)
k (p) = 1

(2π)3

∫
e−ip·rψ

(+)
k (r)dr (2.24)

The full Coulomb wavefunctions in both position and momentum space can be found in [65].

The distorted wave approximation involves expressing the Coulomb potential of Equation 2.22

as a Fourier integral:

U = e2

2π2

N∑
j=1

∫ −iq · (r − rj)
q2 dq. (2.25)

where q is over all of generalized spherical coordinate space. Inserting this Fourier integral into

the differential cross section of Equation 2.21 leads to the following equation:

dσ

dΩ = kf
ki

m2

4π2h̄4 |
e2

2π2

∫
d3~q

1
q2 〈kf |e

−iq·r|ki〉 〈nf |
N∑
j=1

e−iq·rj |ni〉 |2. (2.26)

In the distorted wave approximation, the distorted Coulomb wavefunction in momentum

space is used to calculate the first braket inside the integral, while the second braket involves

the (separate) atom wavefunction. As the Coulomb wavefunction assumes no electron-electron

interaction, the distorted wave approximation is most accurate when: 1) The atom is an ion,

such that the nuclear attractive force is much greater than the overall electron repulsive force,

2) The incoming electron interacts quickly with the atom, and 3) The incoming electron’s

trajectory is at a far distance (high impact parameter b from the atom.

Consequently from 2) and 3), the distorted wave method becomes more accurate with in-

creasing angular momentum. The method therefore proves useful when used in conjunction

with non-perturbative collisions calculations in that a distorted-wave ‘top-up’, as described

in [66], can be used to account for partial waves above a certain angular momentum threshold.
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Furthermore, distorted wave calculations can provide a simple and accurate method for calcu-

lating atomic collision data of the higher charge states of ions. For example, a distorted wave

calculation done in tandem with an R-matrix calculation for W3+ revealed that the two were

converged for that ion [67].

Most of the work presented here is regarding neutral Ne and W, for which, as will be

shown, the distorted wave method does not yield accurate data. Distorted wave calculations

can further produce diverging (asymptotic) cross sections at lower energies for ionization from

excited states. In addition, approximate methods tend to disagree with each other. The dis-

torted wave method, which does not account for exchange or correlation effects between the

incident and target electrons, typically overestimates cross sections, while another method, the

semi-classical Exchange Classical Impact Parameter (ECIP) method [32], underestimates. This

disagreement will be shown explicitly for tungsten. Non-perturbative methods, such as the R-

matrix method described in the next section, are required.

2.4 R-Matrix Theory for Electron-Impact Excitation and Ionization of Atoms

As discussed, perturbative and semi-classical methods, despite being efficient solutions and

accurate for highly charged ions and fast-moving incident electrons, can be inaccurate by large

factors for lower charge states, such as will be shown for neutral neon and tungsten. Accurate

atomic data for these species requires a more comprehensive quantum mechanical approach that

accounts for exchange and correlation effects between the incident and all target N electrons.

The R-matrix is one such non-perturbative method, in that it makes no approximations: the

exact solution to Schrodingers equation is solved by including all possible states, or channels,

of the total (N + 1) electron system. Unlike approximate methods, however, which can usually

be calculated in minutes, the R-matrix method carries with it a much larger computational cost

in terms of RAM, disk space, I/O, and time to completion. This cost in part arises from using

more finely LS- and jK-resolved atomic structures and from allowing channels to be coupled.

This section is organized as follows: 1) an overview of R-matrix theory for electron-

atom collisions is given and 2) brief summaries of the Belfast R-matrix code stages [60] are

given. Other non-perturbative methods include the Time-Dependent Close-Coupling (TDCC)
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method [68], and the Exterior complex scaling method [69, 70]. These methods are not used

in the calculations of this dissertation. However, TDCC results from a previous paper for the

electron impact ionization of neutral W [71] results are used and converted to LS-term and

LSJ-resolution’ using angular factors that are described in Section 2.5 of this dissertation.

2.4.1 Sketch of R-Matrix Theory for Electron-Impact Ionization and Excitation

A thorough description of R-matrix for electron-impact collisions with atoms can be found

in Burke [64]. Figure 2.3 depicts the setup of the R-matrix problem. One of the main dis-

tinguishing characteristics of the R-Matrix method, with or without pseudostates, is that the

wavefunction is solved in two distinct regions, whose boundary is defined by the R-matrix box

or radius a. This boundary is set far enough from the target atom such that all bound orbitals

have dissipated, and the incoming (continuum) electron is therefore effectively distinct from

the target N electrons.

In the inner region, the continuum electron is considered indistinguishable from the other

N electrons: for a given N + 1 partial wave LS (or J) symmetry, Hamiltonian HN+1 elements

for each possible LSΠTARGET + lsπ channel are calculated, where the first and second terms

correspond to the total target and incident electron’s quantum numbers respectively. The N +

1 Hamiltonian in the LS case includes the kinetic energy of the incident electron, as well as its

nuclear attraction to the nucleus and repulsion from the N electrons:

HN+1 =
N+1∑
n=1

(
−1

2∇
2
n −

Z

rn
+

N+1∑
m>n

1
rnm

)
(2.27)

Regarding the incident electron, the Queen’s University at Belfast R-Matrix suite of codes

make a further assumption that the orbitals describing it are orthogonal to the target orbitals

[72]. Because the incoming electron orbitals must form a complete set, i.e., account for all

possible states, additional bound orbitals for the incoming electron must also be included to

account for states where it is bound to the target. Most of the R-matrix calculation therefore

30



Figure 2.3: Depiction of the R-matrix problem. Schrodinger’s equation is solved separately in
the inner and outer region, separated by the ”box” radius a. Computing the R-matrix from the
inner region determines the boundary conditions of the continuum electron wavefunction in the
outer region at r = a.
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consists of 1) calculating the continuum-continuum, bound-continuum, and bound-bound ele-

ments of a Hamiltonian matrix and 2) diagonalizing the Hamiltonian. Upon diagonalization,

the following energy-independent basis states are obtained:

ψk(x1...xN+1) = A
∑
ij

cijkΦ̄i(x1...xN ; r̂N+1σN+1) 1
rN+1

uij(rN+1) +
∑
j

dijχj(xj...xN+1).

(2.28)

Equation 2.28 is known as the close coupling equation. The first and second terms signify

the continuum and bound contributions respectively. For a given set of quantum numbers of

the system k, such as total L, S and parity Π, the continuum orbital uij can couple to a target

term/level through a certain set of combinations, referred to as channels Φ̄i. To be specific, the

expression Φ̄i includes a target term wavefunction as well as the angular momentum factors re-

sulting from recoupling the continuum electron wavefunction. The bound contribution reflects

the possibilities in which the incident electron becomes bound to the atom and leads to reso-

nances in the cross sections. The N + 1 Hamiltonian matrix therefore consists of continuum-

continuum, continuum-bound, and bound-bound elements. Importantly, the quantum numbers

of the continuum electron must be recoupled to those of the target to ensure indistinguishability

from the target electrons. The coefficients cijk and dij are determined from diagonalization of

the N + 1 Hamiltonian.

The result from HN+1 diagonalization does not yield a full solution to the scattered elec-

tron wavefunction. The integration of Hamiltonian elements is not performed across all radial

space, only up to the R-matrix box at a. The solution in the inner region is therefore energy-

independent up to this point: its full solution as well as the solution outside of the box must be

obtained from matching the solutions of each region at the box r = a. An additional complica-

tion from the truncated integration is that HN+1 is not unitary. Its eigenvalues and eigenvectors

will therefore not be probability conserving. Full diagonalization is therefore performed on the

unitary expression HN+1 - L, where

L(a, b0) = δ(r − a)
(
d

dr
− b0

r

)
(2.29)
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is the Bloch operator and b0 is a arbitrary constant generally set to 0 [64].

The continuum electron in the outer region will not require indistinguishability but will be

subject to the long-range multiple potential. Projecting channel i onto the total N + 1 wave-

function leads to a solution of the reduced radial wavefunction Fi(r) such that, 〈Φ̄i|Ψ〉 = 1
r
Fi(r),

describing the incident and scattered wavefunction. The full N + 1 wavefunction in the outer

region will now lack the antisymmetrization A operator as well as the bound terms:

ΨEXT (x1, ..., xN) =
∑
i

Φ̄i(x1, ...xN ; r̂N+1σN+1) 1
rN+1Fi(rN+1) (2.30)

From projecting the channels functions onto ΨEXT , one can derive [60] the following

differential equation for Fi(r):

(
d2

dr2 −
li(li + 1)

r2 + 2z
r

+ k2
i

)
Fi(r) == 2

λmax∑
λ=1

n∑
j=1

aλij
rλ+1Fj(r) (2.31)

where z = Z-N and aλij represents the long-range potential coefficients:

aλij = 〈Φ̄i|
N∑
m=1

rλmPλ(cosθm,N+1)|Φ̄j〉 (2.32)

As with the case of a general collision of a radially symmetric potential, cross sections, in

this case regarding transitions of the target atom, can be obtained by asymptotically expanding

this function to infinity Fi(r → ∞). These asymptotic conditions will depend on the k2
i of the

continuum electron of a particular channel. If k2
i < 0, the channel is said to be closed, and its

solution will diminish exponentially. Conversely, if k2
i > 0, the channel is said to be open, and

its asymptotic solution will be oscillatory.

Obtaining the full outer region solution will require imposing boundary conditions both at

infinity and at the R-matrix box. Determining the boundary at the box is accomplished via the

R-matrix. In the preceding discussion on scattering in a radial potential, Green’s theorem was

used to describe differences between a free particle solution vl and solution in the presence of

a potential ul. A similar technique can be applied in deriving the R-matrix boundary condition.
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Given the eigenstates of HN+1 diagonalization, ψk, the total energy-dependent wavefunction

can be written as a superposition of these states at a given energy E:

ΨN+1 =
∑
k

AEkψk (2.33)

Starting from 2.33 and using the following projection relation, in which () reflects no radial

integration performed,

(ψk|HN+1|ΨN+1)− (ΨN+1|HN+1|ψk) = (E − Ek)(ψk|ΨN+1), (2.34)

one can show [60]:

−1
2
∑
i

[(wik|
d2

dr2 |Fi)− (Fi|
d2

dr2 |wik)] = (E − Ek)AEk. (2.35)

Here, the wik = ∑
j cijkuij reflect the eigenvectors from HN+1 diagonalization. From

Green’s theorem and using the boundary conditions for uij , 2.35 becomes

−1
2
∑
i

wik(a)
(
dFi
dr
− b

a
Fi

)
r=a

= (E − Ek)AEk. (2.36)

Solving for the AEk coefficients, an expression for Fi(a) can then be obtained:

Fi(a) =
∑
j

Rij(E)(adFj
dr
− bFj)r=a, (2.37)

where Rij is finally the shining R-matrix:

Rij(E) = 1
2a
∑
k

wik(a)wjk(a)
Ek − E

. (2.38)

Ek represents the eigenvalues from HN+1 diagonalization and E the incident electron en-

ergy. Upon obtaining the boundary conditions of Fi at r = a and asymptotically expanding

the solution, cross sections corresponding to transitions between all of the target states can be

obtained relative to the energy of the incident electron. Ionization cross sections can be ob-

tained through a summing of transitions going into a targets pseudostates above the ionization
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potential. These discrete states are included in the target structure to account for the continuum,

and their inclusion can dramatically increase the size of electron-impact ionization calculations

compared to an excitation calculation.

2.4.2 The Basis Set Representation of the Continuum Electron

Knowledge of the continuum electron prior to N + 1 Hamiltonian diagonalization is somewhat

limited; however, from the fundamental principles of quantum mechanics, that a solution can be

represented by any complete set of states, the problem becomes determining the best complete

set for the atomic scattering problem. While, for example a superposition of sine and cosine

waves could suffice, an excessively high number of them would be required to converge the

solution. Recall that for representing target states, configuration state functions arising from

the hydrogenic solution are used. The R-matrix basis set uij , in keeping with the scattering

problem, will assume a solution to a scattered particle in the presence of a radially symmetric

potential V0(r). For the RMATRX I codes [60], a further assumption is made that this basis set

is mutually orthogonal to each other and to the target bound and pseudo orbitals [60]. They

represent solutions of the following:

(
d2

dr2 −
li(li + 1)

r2 − V0(r) + k2
ij

)
uij(r) =

li+nli∑
nb=li+1

λijnbPnbli(r), i = 1, ..., n, j = 1, ..., nc,

(2.39)

where kij represent the eigenvalues and V0 is represents the static potential of the target, typ-

ically in its ground state. A Thomas-Fermi potential for the atom may be used instead [64].

An angular momentum li is assumed for each orbital. The right-hand side reflects the use of

Lagrange multipliers to orthogonalize to the bound orbitals Pnbli , where nb is the total num-

ber of bound orbitals, though Gram-Schmidt orthogonalization can be performed instead. The

continuum orbitals are subject to the following boundary conditions:

uij(0) = 0 (2.40)
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and

a

uij(a)
duij
dr
|r=a = b (2.41)

where b is the same constant, typically set to 0, that was used with the Bloch operator.

The size of the basis set nc will determine the range of the incident electron energy, relative

to the ground state, for which converged cross sections can be obtained. The larger the basis

set, the farther in incident energy that the calculation can cover. A common metric for judging

the basis set coverage prior to the full calculation is to take 2/3rd of the lowest last energy

eigenvalue, relative to each angular momentum li, as the farthest the calculation can extend

[60].

A practical constraint of the continuum basis set is that a limited number of orbitals are

used to represent it, while in reality a complete set representing the continuum would be in-

finitely large. A correction known as the Buttle correction [73] to the R-matrix can account

for the continuum orbitals not included. For more complex atoms, heavy configuration mix-

ing is present such that the process of both orthogonalizing to the bound orbitals and applying

the Buttle correction is not feasible for larger sets of configurations. The structure used for

the tungsten calculation of the present work, for example, was restricted to include only up

to n = 11; a solution could not be obtained if including orbitals beyond this such that target

optical state, pseudostate, and continuum wavefunction orthogonality could be maintained, in

addition to the Buttle correction. In such cases, an orthogonal basis set may not be desirable,

and another complete, yet non-orthogonal, basis set still solving Equation 2.39 might prove

more effective. One such basis set is the B-Spline set [74], which has been used in the past for

elements such as neon [75]. Because the B-splines form a complete set, no Buttle correction

is required. Nevertheless, non-orthogonal methods face the more generalized singular value

decomposition of the N + 1 Hamiltonian, rather than eigenvalue decomposition of a Hermitian

matrix, and therefore requires more memory at this stage.
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2.4.3 Short Description of the Belfast R-matrix Suite of Codes

The Belfast R-matrix codes can be broken down into four main stages [60], which will be

referenced throughout the rest of this work. Below is a description of each in order:

Stage 1: Setting up the continuum basis and calculating the radial integrals

The continuum basis set is calculated using equation 2.39. The orbitals are orthogonalized

to each other, the bound orbitals, and the pseudo orbitals. The radial integrals of the target

structure, obtained from a prior AUTOSTRUCTURE run, are required as input. All radial

integrals to be used for the (N+1) system are also calculated and written to a set of files to be

accessed in the next stage. This stage generally runs in no more than an hour depending on the

size of the basis set and number of target states.

Stage 2: Calculation of the Target and (N + 1) Hamiltonian Matrix Elements

Both the target and N + 1 Hamiltonians HN and HN+1 are calculated, using both the

results from the former and the close-coupling equations for the latter. HN+1 is done per

partial wave N + 1 LSΠ symmetry. Given that they are symmetric, the N + 1 Hamiltonians are

stored as their upper triangles, and they include the continuum-continuum, bound-continuum,

and bound-bound elements resulting from the inner product of the close-coupling equation.

Stage 3: Diagonalization of the Inner Region N + 1 Hamiltonian

The N + 1 Hamiltonian, with the inclusion of the Bloch operator, of each partial

wave is diagonalized separately using ScaLAPACK’s parallel divide and conquer algorithm

PDSYEVD [76]. The eigenvalues and eigenvectors are stored.

Stage f: R-matrix (Matrix-Matrix Multiplication) to Solve the Outer Region

The outer region is solved, using the R-matrix to determine Fi(a). Cross sections for all

possible target transitions over a set of user-supplied energy points are obtained.
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The R-matrix method thus generates fundamental atomic data describing the general cases

of electron-impact, as well as photoionization. These atomic processes are used in modeling

codes that determine the resultant spectrum of a plasma. To bridge the gap between singu-

lar processes and spectra, an understanding of these processes given an overall population of

electrons will be required, detailed in Section 2.6.

2.5 Sampson Branching Ratios for Configuration-Averaged, LS, and LSJ Rates

In certain cases, such as for electron-impact ionization of heavy elements, in which LSJ-

resolution of both the structure and atomic processes is appropriate, performing the full non-

perturbative calculation in LSJ-resolution might yield relatively small gains in accuracy. Unlike

electron-impact excitation, with which we are concerned with fine structure and elucidating the

N + 1 resonances, electron-impact ionization cross sections are much coarser, having been

summed over all pseudostates above the ionization potential. To avoid unnecessary computa-

tional burden, performing a configuration-averaged or LS-resolved calculation might be more

desirable.

Sampson [77] derive formulas for calculating branching ratios, in order to convert a

configuration-averaged cross section into a set of constituent LSJ- or LS-resolved cross sec-

tions, arising from the target configuration. For example, an ionization cross section of the

3s from the neutral neon 2p53s configuration can be split into separate cross sections for each

possible LSJ level: 3P0,1,2 and 1P1. In contrast with a classical statistical weighting of each

unique LS or LSJ state, these branching ratios are derived from the wavefunctions used to rep-

resent the collision and from angular algebra. They are thus distinctly quantum mechanical. If

statistically-weighted, all the degenerate states, e.g. (2S+ 1)(2L+ 1) total for a given LS term,

contribute the same to the configuration-averaged cross section σCA such that,

σLSi = (2Si + 1)(2Li + 1)∑
i(2Si + 1)(2Li + 1) × σCA (2.42)

where the sum is over all of the LS states. A similar expression can be obtained from LSJ-

multiplicity.
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In discussing the Sampson branching ratios, and for many other discussions to follow,

reference will be made to a quantity known as the collision strength Ωij representing a transition

from i to j:

Ωij = giE(Ry)
πa2

0
σij (2.43)

where a0 is the Bohr radius, gi the statistical weight of i, E(Ry) the incident electron energy in

Rydbergs, and σij the corresponding cross section. This quantity can be useful for integration

of cross sections to yield rate coefficients [78], as discussed in the next section. Whereas

excitation cross sections exhibit a sharp peak followed by a sharp decrease, collision strengths

are slowly varying, often flat, over the incident energy range. The collision strength carries

an additional meaning as a ratio between the cross section and the square of the de Broglie

wavelength of the relative motion of the collision [78].

Derivation of the branching ratios involves using angular algebra to manipulate the colli-

sion wavefunctions. These wavefunctions formulate the reactance matrixR, similar to Equation

2.18. R includes both direct and exchange effects Rd and Re, such that R = Rd − Re, though

Sampson shows the exchange effects do not affect the final branching ratios [77]. The direct

part of the reactance matrix can be calculated through,

ZRd(βtJtkljJ ; β′tJ ′tk′l′j′J) = 2
∑

Mt,m,M ′
t,m

′

C(JtjMtm; JM)C(J ′tj′M ′
tm
′; JM)

×
∫
dx1

∫
dx2 · · ·

∫
xN+1ΨβtJtMt ∗ (x−1

i )ukljm ∗ (xi)

×(
∑
q(6=i)

1
rqi

)Ψβ′
tJ

′
tM

′
t
(x−1

i )uk′l′j′m′(xi) (2.44)

where Z is the atomic number ;Jt, j, and J are the angular momenta of the target ion, incoming

electron, and total system respectively; βt is any additional angular momentum quantum num-

bers of the target ion; k and l are the wavenumber orbital angular momentum quantum number

of the impact electron respectively; and the C’s are Clebsch Gordon coefficients. The primes

designate quantum numbers after the collision has occurred. Psi and u represent the target and
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continuum wavefunctions respectively, integrated over the coordinates xi of all N + 1 electrons.

The reactance matrix can be related to the cross section through

Z2Ωij(βtJt − β′tJ ′t) = 2
∑
J

(2J + 1)
∑
l,l′,j,j′

|ZR|2. (2.45)

Formulas for the branching ratios can then be obtained from angular algebra manipula-

tions of the wavefunctions in Equation 2.44, inserted back into Equation 2.45. These manipu-

lations themselves are exact; however, the wavefunctions are assumed to be hydrogenic or by

extension configuration-averaged. Two shortcomings result from the above formalism, how-

ever. First, the accuracy of both the target structure and resultant cross sections will depend on

the accuracy of the wavefunctions corresponding to the original cross section for the particu-

lar collision. The branching ratios would not account for atomic processes of higher angular

momentum resolution, such as spin-orbit interaction, in either the target ion or the collisional

Hamiltonians. Another problem is that the branching ratios assume only one hydrogen-like

or configuration-averaged wavefunction; configuration mixing is not considered. The follow-

ing equation denotes conversion of a configuration-averaged cross section of an active subshell

Q(nalaja − n′al′aj′a) into LSJ-resolution via branching ratios:

∑
J ′
a

Q(nalwa αaSaLaJa − nalw−1
a α′′aS

′′
aL
′′
aJ
′′
an
′
al
′
aj
′
aJ
′
a)

=

 la L′′l Ll

Ll−1 La L′′a


 1

2 S ′′l Sl

Sl−1 Sa S ′′a


×w[(lw−1

a α′′aS
′′
aL
′′
a|}lwa αaSaLa)]2 ×

∑
ja

(2Sa + 1)(2La + 1)(2J ′′a + 1)(2ja + 1)

×


S ′′a L′′a J ′′a

1
2 la ja

Sa La Ja



2

Q(nalaja − n′al′aj′a) (2.46)

The primes denote final states of both the scattered electron and the target ion, whose quantum

numbers are denoted by the subscript a. The target subshell in losing an electron changes from
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lwa to lw−1
a . The sum over Ja’ on the left-hand side is thus over the total final angular momentum

of both the lw−1
a subshell, J ′′a = L′′a + S ′′a and the ionized electron ja = la + 1/2. The first two

bracketed terms and the last bracketed term on the right-hand side are known as 6− j and 9− j

symbols, to account for recoupling of three and four angular momentum quantum numbers

respectively. The 6 − j symbols are not included in the original Sampson formulation [77], in

which hydrogen orbitals with effective atomic numbers are used, but the symbols are needed

for configuration-averaged cross sections in which the angular momentum quantum numbers

of the ionized electron must be recoupled out from the active subshell’s quantum numbers. The

9− j symbol reflects recoupling of S ′′a , L′′a, sa, and la for a total target angular momentum Ja.

The term [(lw−1
a α′′aS

′′
aL
′′
a|}lwa αaSaLa)], known as a coefficient of fractional parentage, accounts

for the number of ways, here the double primed quantum numbers, that lw−1
a can be recoupled

up to lwa . Through summing over the possible total angular momenta of the ionized electron and

shell, the following branching ratio formula for an LS-resolved cross section can be obtained:

∑
J ′
a,j

′
a,J

′′
a

Q(nalwa αaSaLaJa − nalw−1
a α′′aS

′′
aL
′′
aJ
′′
an
′
al
′
aj
′
aJ
′
a) =

w[(lw−1
a α′′aS

′′
aL
′′
a|}lwa αaSaLa)]2 ×Q(nalwa αaSaLa − nalw−1

a α′′aS
′′
aL
′′
an
′
al
′
a) (2.47)

In the present work, LS-resolved electron-impact ionization cross sections for both neutral

neon and tungsten needed to be converted to LSJ-resolved cross sections, having to convert

back to configuration-averaged cross sections via statistical weights. A modification of the

Sampson branching ratios [77] to attain LSJ resolution from the LS-resolved ionization cross

sections was derived. For an LS-resolved R-matrix with pseudostates calculation, the pseu-

dostates with energy E above the ionization potential IP are summed:

Q(nlwLS − nlw−1L′′S ′′) =∑
n′l′L′S′

Q(nlwLS − n′l′w−1L′′S ′′n′l′L′S ′) (E > IP)
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Recoupling to LSJ leads to the following relation:

Q(nljLSJ − nljw−1L′′S ′′J ′′) =

 la L′′l Ll

Ll−1 La L′′a


 1

2 S ′′l Sl

Sl−1 Sa S ′′a


×
∑
ja

(2Sa + 1)(2La + 1)(2J ′′a + 1)(2ja + 1)

×


S ′′a L′′a J ′′a

1
2 la ja

Sa La Ja



2

Q(nlLS − nlw−1L′′S ′′) (2.48)

Importantly, this LSJ-resolution for ionization of an N-electron target requires that the N - 1

ion also be in LSJ and also that the LS state of the final N - 1 ion is known.

2.6 Generalized Collisional Radiative Modeling

To bridge the gap between the quantum mechanics of the atomic collisions and what we are

able to measure, i.e., the spectrum, we need an understanding of the fundamental collisional

processes given a population of electrons and their dynamics in a plasma environment. That is,

we must first calculate rate coefficients from the cross sections atomic processes over a range

of electron temperatures. From these rate coefficients, we can then account for the expected si-

multaneous rates of atomic and collisional processes through Generalized Collisional Radiative

modeling, described in detail in [79].

The rate coefficients are generated from a combination of the fundamental atomic data,

i.e., cross sections for each atomic process, and also from assuming an energy distribution

function of the free-electrons in the plasma. In general, a Maxwellian electron-distribution

function is assumed, given by

fTe(E) = 1
kTe

2√
π

(
E

kTe

)1/2
exp

(
− E

kTe

)
. (2.49)

The Maxwellian assumption depends on certain criteria regarding the magnitude of the

timescales τ of the plasma, collisional, and atomic processes, namely the following [80]:
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τP ≈ τm ≈ τion � τO � τee. (2.50)

τP represents the timescale for plasma dynamics (e.g., temperature fluctions, edge localized

modes). It is roughly of the same magnitude as τm and τion, the ”metastable” and ionization

time scales respectively (which are determined by collisional ionization and recombination

time-scales). The populations of excited states will in general radiatively decay down to a lower

state faster than can be populated and will therefore reach steady-state in a shorter timescale,

τO. The term “metastable” refers to atomic states that require a longer time scale to reach

steady state. These states might be the result of forbidden transitions to populated states. For

example, neutral tungsten’s metastable 5d56s (7S3) state is both close to the ground state energy

and also forbidden to the ground 5d46s2 (5D0) from ∆J = 0, thus its only radiative decay is

relatively slow, leading to long equilibrium time-scales.. A greater mathematical distinction

between metastable and excited states with regards to the rates will be made in the generalized

collisional-radiative modeling discussion. Discussions on metastable states often implicitly

include the ground state as well, as it is on the same timescale. Free-electron thermalization,

related to the electron distribution function, is assumed the smallest timescale, τe. If τe is in

fact of the order of the plasma τP , then the Maxwellian distribution function is no longer valid.

If a cross section is quantifying the probability of each transition given collision with a

single electron, the rate coefficient is providing a statistical account of how often the transition

occurs given a distribution of electrons. To generate rate coefficients from cross sections, cross

sections can be converted into effective collision strengths, given by

Υi→f (Te) =
∫ ∞

0
wi

εi
IH

σi→f
πa2

0
e−(

εf
kTe

)d
(
εf
kTe

)
(2.51)

for a Maxwellian electron distribution. σi→f is the cross section from state i to f, Te the tem-

perature (eV), εi the incident electron energy, and IH the binding energy of hydrogen, 13.606

eV. The effective collision strength arises from integrating the collision strength from Equation

2.43 over εi/kTe. As discussed in the previous section, integrating over the collision strength
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can provide greater numerical stability than over a cross section. Electron-impact excitation

rate coefficients can then be calculated through

qi→f (Te) = 2
√
παca2

0
1
wf

IH
kTe

Υi→f (Te) (2.52)

where α the fine structure constant is 1
137 and c the speed of light. For the ionization rate

coefficients from cross sections σi→γ+ ,

Si→γ+(Te) = 2αc√
π

( 1
IH

) 1
2
( 1
kTe

)3/2 ∫ ∞
Ip

εiσi→γ+e−
εi
kTe dεi (2.53)

Three other atomic processes have so far been neglected for which rate coefficients can be

obtained: radiative, dielectric, and three-body recombination. All involve a state in which the

incident electron is captured. In radiative recombination, the electron remains captured, and a

photon is released:

Az+1(ρ) + e(εi)→ Az(γ) + e(ε‘)→ Az+(i) + hṽ (2.54)

A photon is similarly ejected for dielectric recombination, but an additional resonance step of

the atom-electron system results in one of the electrons of the atom being promoted:

Az+1(ρ) + e(εi)→ Az+(ρ′nl)→ Az+(ρnl) + hṽρ′→ρ (2.55)

In three-body recombination, two electrons collide with the atom, one of which is captured.

This recombination is therefore the reverse process of electron-impact ionization:

A(z+1)+(γ) + e(ε′) + e(ε”)→ Az+(i) + e(ε) (2.56)

Rate coefficients can be derived for these processes as well, found in [80]. Other atomic

processes exist, described in [79], but that will be neglected for present purposes of fusion

plasmas. Ion-ion collisions can also cause excitation and ionization. In charge exchange, an
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electron or electrons are transferred from one ion to another. In more optically dense plasmas,

photo-excitation and ionization, i.e, from photons, can also occur.

The change in population density of each level with respect to time will thus depend on

the collection of radiative, excitation, ionization, and recombination rates either transitioning

into or out of the level, as in the following equation:

dNi

dt
= ΣγNeN

+
γ (α(r)

γ→i + α
(d)
γ→i +Neα

(3)
γ→i) + Σj<iNjNeqj→i (2.57)

+Σj>iNj(Neqj→i + Aj→i)

−Ni[Σj<i(Neqi→j + Ai→j) + ΣγNeSi→γ]

whereNe is the total electron population, andN andN+ are the populations of the current

z+ and z+1 ion states. The equation, in which each term is a population density rate, reflects

spontaneous radiative decay Aij from a higher level or down to a lower level; excitation qij

into or out of the level; ionization Si→γ out of a level; and radiative α(r)
γ→i, dielectric α(d)

γ→i, and

three-body α(3)
γ→i recombination into a level.

Collisional-radiative theory, first outlined in [81], describes the basic method of modeling

ion populations in plasmas given the rates of atomic processes in 2.57. Without making any

assumptions, the level populations would be solved from the system of rate equations. The rates

of these atomic processes can be described via a matrix, Cij , whose elements represent the sum

of the different rates from level i to level j. This system of equations is Markovian: the level

populations depend only on the previous time step. So, given an initial population, perhaps

every atom in the ground state for example, one can examine the evolution of the populations

over time. A steady-state solution would correspond to solving the eigenvalue problem for the

Cij matrix.

The solutions to the collisional-radiative matrix can depend heavily on both electron tem-

perature and density, and various approximations can be made, particularly for low or high

densities. In low-density plasmas, electron-impact collisions causing transitions between ex-

cited states occur much less frequently, causing the bulk of the atom population to remain in the
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ground state. Accordingly, the coronal approximation for low-density plasmas assumes only

collisional excitation from the ground can populate the excited states and only spontaneous

emission from those states can depopulate them:

dNi

dt
= NeN1q1→i −Ni

∑
j

Ai→j. (2.58)

For high electron density plasmas, the populations are in local thermodynamic equilib-

rium, in which case the levels populations do not change, i.e., dNi/dt = 0. The levels are thus

statistically populated according to the electron temperature.

In other cases, within the collisional-radiative density region, the quasi-static approxima-

tion can be used. In the collision-radiative theory first proposed in [81], all of the levels except

the ground state considered to be in steady state. The rate of change of the population of each

level dNi/dt besides the ground state is therefore set to 0. This approximation is in accordance

with the timescales discussed earlier.

In Generalized Collisional Radiative (GCR) theory, proposed in [82], the longer-lived

metastable levels are also assumed not to be in steady state. Starting with the Cij collisional

radiative matrix, separate expressions for the metastable and for the excited state populations

can be derived from the elements of Cij . The excited state populations can be solved directly,

while the metastable state populations must either be propagated through time or solved for at

steady state.

Solving the GCR matrix can reveal larger trends in how atomic processes are driving the

level populations. An effective ionization rate Sβ→γ , or SCD, from a ground or metastable state

can be obtained:

Sβ→γ = Sβ→γ − ΣjSj→γΣj′(Cz
jj′)−1Cz

j′β (2.59)

This rates includes both direct ionization from the ground (or metastable) as well as

through the intermediary excited states. A photon emissivity coefficient, or PEC, proportional

to the spectral line intensity I for a transition from level i to j can be obtained,
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PECσ,(j→i) = Aj→i
Nj

Nσ
(2.60)

where σ designates a metastable level and Nσ its population. If there are no metastables other

than the ground, the denominator would reflect the overall ion population N z. In the general

case of metastables, N z will correspond to the sum of all of the metastable populations. The in-

tensity of a spectral line will correspondingly be the total light emitted as a result of a transition,

given the ion’s total population:

I = ΣσPECj→iN
σ

ΣσNσ
, (2.61)

The PEC therefore reflects how often a spontaneous emission transition will occur, relative

to the upper level’s population ratio to the overall ion population N z. A spectrum can then be

obtained from the collection of PECs over a wavelength range, with the spectral lines being

of heights relative to each other. Both the PEC and SCD depend on electron temperature

and density. An important application of collisional-radiative modeling is therefore line ratio

diagnostics: determining the electron temperature and density of a plasma given a set of line

ratios that are sensitive to different electron temperatures and densities.

Of particular interest for tungsten is the ratio of the SCD and PEC: the S/XB. This ratio

was originally proposed as a diagnostic for plasma surface erosion in [21]. The diagnostic

assumes that all of the material eroded from a surface becomes ionized. The total erosion flux

Γ therefore obeys the following relation to the SCD:

Γ =
∫ ∞

0
neN

zSz→z+1dx (2.62)

From some mathematical reimagining on the right-hand side, the equation can be written,

Γ =
∫ ∞

0
ne
Sz→z+1

PECj→i
(PECj→i ×N z)dx. (2.63)

From Equation 2.61 and from the expression for the S/XB,
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SXBz
j→i = Sz→z+1

PECj→i
, (2.64)

Equation 2.63 becomes,

Γ =
∫ ∞

0
neSXB

z
j→iIdx. (2.65)

In other words, the erosion rate from a plasma surface material can be determined from the

S/XB and measured spectral line of a transition j → i. If more than one metastable is present,

than both the SCD and PEC must be metastable-resolved. As discussed in the introduction

chapter, the work of Beigman et al. suggests that the S/XB for the neutral tungsten 400.88 nm

line is highly sensitive to metastable populations, in which case metastable resolution will be

required.

Problems in accurate modeling the SCD, PEC, and, by extension, the S/XB, can come

from 1) their temperature and density dependence, 2) how many metastable states are included,

3) how much ionization from excited states is included, and 4) the accuracy of the atomic data.

These problems will be delineated further in the next two chapters and observed for both neutral

neon and tungsten.

2.7 Conclusions

An overview of theoretical atomic physics, from atomic structure to generating a spectrum has

been provided. For both neutral tungsten and neon, we are ultimately interested in understand-

ing the relationship between an observed spectrum and the underlying atomic processes of the

plasma. Atomic structures can be calculated with codes such as AUTOSTRUCTURE [83],

which use configuration-state functions as building blocks for more complex terms. From the

self-consistent field approximation and the variational principle, a series of LS-resolved terms

or LSJ-resolved levels, jK-resolved for relativistic structures, are calculated, corresponding to

a set of radial orbital solutions. This structure also results in a set of oscillator strengths, each

quantifying the spontaneous emission rate between two levels. The atomic structure can then

48



be used in programs such as the Belfast R-matrix suite of codes [60] to determine electron-

impact and/or photoionization and photoexcitation cross sections. Cross sections can then be

converted into rate coefficients corresponding to the likelihood of an atomic process, given

an energy distribution of electrons in the plasma. Level and ion populations can then found

through generalized collisional-radiative modeling with the set of rate equations describing the

set of atomic processes going into and out of a level. The ADAS suite of codes [36] or the

recently developed ColRadPy [84] can be used for GCR modeling. In the next two chapters we

will describe work on Ne (Chapter 3) and then on W (Chapter 4) that goes from cross sections

through to quantities used in plasma modeling.
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Chapter 3

Generating Accurate Neutral Neon Atomic Data using Electron-Impact Excitation and
Ionization R-matrix Calculations

For its applications in the W7-X stellerator divertor [47] and as a benchmark for excited-state

ionization in higher Z elements, the following study was performed regarding the electron-

impact excitation and ionization of neutral neon along with a generalized collisional-radiative

treatment of its effective ionization rate. When impurity transport codes track the charge state

balance for an element in a plasma, they use ‘effective ionization’ rate coefficients. These

coefficients include all of the ways that electrons can ionize from one charge state to the next.

Historically, there has been a focus on calculating and measuring ground state ionization cross

sections. However, it is now well known that the excited states can contribute significantly

to the total ionization for a charge state, particularly for near neutral systems. This has been

shown in H [85], He [37], Li [38], B [39]. Thus, an important topic in this chapter will be to

use the atomic data that is generated to investigate the role of excited state ionization on the

total ionization of neutral neon at different plasma conditions.

An overview of previous electron-impact excitation and ionization calculations for neu-

tral neon is provided in Section 3.1. The new structure and electron-impact calculations are

described in detail in Section 3.2. The electron-impact excitation and ionization cross sections

and rate coefficients resulting from the new RMPS calculations are presented in Sections 3.3

and 3.4 respectively and are compared with previous results. Various checks of convergence

of the calculation are also given. Finally, the results from GCR modeling with the new cross

section data and the role of excited state ionization are presented in Section 3.5.
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3.1 Literature Review of Neutral Neon Collisional Data

3.1.1 Review of the electron-impact excitation of neutral neon

Previous studies, particularly by Zatsarinny and Bartschat, have investigated the disagreement

between the theoretical calculations and measurements of neutral neon electron-impact colli-

sions [52]. Zatsarinny and Bartschat attributed a major source of this discrepancy, especially

in the 20 to 40 eV range, to an undervaluing of the number of pseudostates to accurately re-

flect intermediate coupling to the continuum [52]. For their excitation calculation, the most

recent, they utilize the non-orthogonal B-Spline R-matrix (BSR) method [74] for configura-

tions 2p53s, 2p53p, and 2p53d, spanning an incident electron energy range from the threshold to

300 eV and representing 457 states, 87 bound and 370 in the ionization continuum, henceforth

referred to as BSR-457. This calculation builds upon their previous LS-resolved one [56] by

employing the semirelativistic Breit-Pauli approximation and jK -coupling. Their energy levels

differ by less than 0.2 eV from those listed in NIST [86].

Aside from Zatsarinny and Bartschat, the most large-scale electron-impact excitation cal-

culation of neutral neon was performed by Ballance and Griffin [58], whose Breit-Pauli calcu-

lation’s bound states cover from 2p53s to 2p54f , and for 2p55s and 2p55p. Their pseudostates

include 2p5 5̄d; 2p5 5̄f ; 2p5n̄l, as well as from n̄ = 6 to n̄ = 8 and l̄ = 0 to l̄ = 3; 2p59̄s; 2p59̄p;

and 2p5 ¯10s. 235 levels were thus included, 79 of which were spectroscopic, 28 bound and 128

continuum pseudostates. Their results at the time did not converge due to a lack of compu-

tational power. Ballance and Griffin also performed nonrelativistic, LS-coupled calculations

with pseudostates to illustrate the effect of adding pseudostates, the most extensive of these

calculations having pseudostates with valence orbitals spanning from n̄ = 6 to n̄ = 12.

Other calculations obtained excitation cross sections from the ground to bound spectro-

scopic states up through n = 3 [87, 88]. Similar to Ballance and Griffin [58], these calculations

incurred computational limitations of the time. Further, they did not fully match experimental

measurements beyond the 3s cross section, nor have any experiments measured excitations past

2p53p [52,89]. Zatsarinny and Bartschat made comparison cross sections of their BSR-457 and
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BSR-31 with that of Ballance and Griffins’ unconverged calculation and of Chilton et al.’s mea-

surements in the 20 to 100 eV range for the 3p states [52]. Though the BSR-457 calculation

agrees for the 3s cross section, it falls below Chilton’s and outside of the error bar range; yet,

Ballance and Griffins’ limited calculation appears to agree with Chilton et al. Zatsarinny and

Bartschat [52] and Ballance and Griffin [58] include the only available ground to 3d excitation

cross section calculations, and the two do not match.

Hoshino et al. [90] recently measured cross sections for the electron-impact excitation

from ground into the 3s[3/2]1 and 3s′[1/2]1 states using incident energies from 20 to 300 eV,

and BSR-457 fell within their uncertainty [90]. Other measurements from [88,91–93] are either

partially or completely above Hoshino et al.’s and Zatsarinny and Bartschats’ cross sections in

the 20 to 100 eV region at and after the ionization limit [52,90]. Suzuki et al. [94] and Allan et

al. [95], who make measurements above 300 eV and around the threshold respectively, match

both Hoshino et al. and BSR-457.

Hoshino et al. thus help clarify the discrepancy in that previous measurements fall some-

where in between calculations with and without pseudostates for the 3s cross sections. Zat-

sarinny and Bartschat compare their pseudostate-inclusive BSR-457 angle-integrated cross sec-

tion with recent experiments [88, 92, 94], as well as to one of their previous calculations of 31

states that lacked continuum coupling, BSR-31 [75], and to a simple 5-state BSR calcula-

tion [52]. The cross sections without pseudostates exhibit a large peak, BSR-5 greater than

BSR-31, not seen experimentally in the 20 to 40 eV range, while the 457-state cross sections

lack this extra peak [52]. Previous measurements typically fall in between BSR-457 and BSR-

31 [52, 90], but the measurements of Hoshino et al. agree well with BSR-457 [90].

Other experimental benchmarks include an angle-integrated cross section by Chilton et

al. [89] measuring the electron-impact excitation from the ground state to the 2p53s levels with

an incident energy range from 0 to 200 eV. Boffard et al. [96] reports the integrated cross

section from the metastable 2p53s state to a few of the 2p53p levels from 0 to 450 eV. Khakoo

et al. [88] offer an integrated cross section in the range 0 to 400 eV that has been compiled to

include their measurements as well as those of Register et al. [93] and Kanik et al. [91] from

the ground state to the 2p53s levels.
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A converged semi-relativistic Breit-Pauli calculation including pseudostates both below

and above the ionization threshold and similar to that of Griffin and Ballance can thus provide

a more complete, accurate picture of the electron-impact excitation of neutral neon beyond the

3s valence shell, with previous measurements and calculations serving as benchmarks. Reliable

rate coefficients can then be derived from the resultant cross sections, and this is the aim of the

work in this chapter.

3.1.2 Review of the electron-impact ionization of neutral neon

Past work determining the cross sections of the electron-impact ionization of neutral neon has

been fruitful overall, particularly with the use of programs that account for the large continuum

coupling effect of neutral atoms, though cross sections are missing for states beyond 2p53s,

4s, and 5s that, as will be shown, have a significant impact on the effective ionization rate

ceofficient [55].

In neutral atoms, the force of attraction to the nucleus for each electron is of the same

order as the force from the other electrons. Thus, the coupling terms from the electron coulomb

repulsions should have a higher impact on the dynamics of neutral collisions compared to those

involving ions. This coupling can also occur between electrons in spectroscopic orbitals and

electrons in the continuum. As previously mentioned, Ballance and Griffin [58] demonstrated

the effect of continuum coupling through a comparison of an R-matrix calculation for neutral

neon both with and without pseudostates. The pseudostates play a further role in accounting for

ionization; that is, the transitions are summed whose upper energies are above the ionization

threshold. Convergence of ionization cross sections therefore requires that enough pseudostates

be present to account for all electron transitions into the continuum.

Previous theoretical work has focused on the electron-impact ionization from the ground

state [53–56] and the 3s [56, 57], 4s [55], and 5s [55] excited state orbitals. The most recent

and complete calculation, also by Zatsarinny and Bartschat [56] and which employs the same

BSR with pseudostates method as their excitation calculation, is LS-resolved and includes 679

terms, 55 bound and 624 above the ionization threshold, covering the 0.1 to 200 eV energy

range with the pseudostates reaching 85 eV. Partial waves extended to L = 25, and a top-up
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approximation was used to account for the contributions of higher angular momenta. Zatsarinny

and Bartschat provide integrated cross sections for ionization from the 2s22p6(1S) ground state

and the 2p53s(3P ) configurations. Ballance et al. (2009) performed an LS-resolved BPRM

calculation of the ground state, 2p53s, 2p54s, and 2p55s configurations, over energy ranges of

0 to 100 eV for the ground-state ionization and 0 to 45 eV for the excited-state ionization [55].

The ground-state ionization converged by L = 9, while the excited-state ionizations’ partial

waves extended to L = 21, and a top-up approximation was also used [55]. Their pseudostate

range included 2p5 n̄l and 2s2p6 n̄l configurations from n̄l = 5d̄ to 16ḡ.

Theoretical calculations mostly agree with measurements, though a slight discrepancy ex-

ists between Zatsarinny and Bartschat [56] and Ballance et al. [57] The BSR-679 cross section

of [56] lies below all of the measurements [97, 98] in the roughly 30-130 eV energy range but

matches the most recent experiment by Rejoub et al. [97] from 130-200 eV [56]. Yet, the cross

section of Ballance et al. [57] matches Krishnakumar and Srivastava [98] but is slightly higher

than Rejoub et al. for all energies [55]. The 2p53s(3P ) ionization cross sections agree between

BSR-679, that of Ballance et al. [57], and the measurements of Johnston et al. [99].

Aside from the ground and the 2p53s, 4s, and 5s states, no data could be found in the

literature for ionization cross sections from other excited states. We seek both to verify the

existing excited-state ionization cross sections and to provide new converged cross sections

from the ionization of excited states through 2p55p.

3.2 Description of New Neutral Neon Structure and R-Matrix Calculations

3.2.1 Neutral neon atomic structure calculations

Badnell [83] describes in detail the program AUTOSTRUCTURE that we used to create the

atomic structure for this paper. This program utilizes the Thomas-Fermi-Dirac-Amaldi (TFDA)

statistical potential for the spectroscopic orbitals. The 2p orbital was modified with a scaling

parameter to give good agreement with experimental energies [86]. For both the electron-

impact excitation and ionization models, configurations included the 2p6, 2p5nl, and 2s2p6nl

series. The target structures were each composed of twelve optical orbitals, up to 5p. Laguerre
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pseudo-orbitals were used for the remaining orbitals, extending to n̄ = 12 and l̄ = 4 and to n̄ =

12 and l̄ = 6 for the electron-impact excitation and ionization models respectively.

The structure used for the electron-impact excitation calculation, which included interme-

diate coupling, yielded 633 jK-resolved levels from 337 LS terms. As will be discussed in the

next section, 233 of these levels were removed from the calculation before LS-jK recoupling,

leaving 400 levels for the N + 1 Hamiltonian diagonalization. A comparison of our energy

levels to those of NIST [86] can be found in Table 3.2.1. All energy levels agree within 0.3

percent, and A-values had an average of 27 percent difference to those available on NIST. The

electron-impact ionization calculation used the same base structure but without intermediate

coupling and including more pseudostates, from 5̄d through n̄ = 12, l̄ = 6, resulting in 545 LS

terms.

31 and 24 continuum orbitals were used to represent the scattering electron for the ex-

citation and ionization respectively. These sizes were chosen to make the energy ranges of

each calculation as large as possible while still fitting within computational constraints. The

ionization incident energy range extended past the excited-state ionization peaks, about 20 eV

for the 3s metastable, enabling an accurate fit of the cross sections for higher energies. To en-

sure accurate spectral modeling, we compared the calculated oscillator strengths to those from

the B-spline method [100] and NIST values [86] for dipole transitions to the ground state, as

shown in Table 3.2.

3.2.2 Scattering calculations

We perform a similar semi-relativistic Breit-Pauli RMPS (BPRM) calculation to that of Bal-

lance and Griffin [58] for the electron-impact excitation cross sections, but with additional

pseudostates extending to l̄ = 6. A parallel BPRM suite [58] was used that is based on mod-

ified versions of the RMATRX I suite [60, 72]. Similar to the standard R-matrix, the BPRM

breaks apart the collision into an inner and outer region. The two regions are divided by a

box of radius 74 atomic units for the present calculations. The inner region assumes that the

continuum electron is indistinguishable from the target N electrons, the N + 1 basis set de-

scribable by the close coupling equations [64]. The Breit-Pauli N + 1 Hamiltonian includes
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Table 3.1: Atomic structure NIST comparison to first 40 levels.
NIST Theoretical Percent

Configuration Term J-Value Energy (eV) Energy (eV) Difference
2s2.2p6 1S 0 0 0 0
2s2.2p5.(2P ∗<3/2>).3s 2[3/2]* 2 16.619 16.607 0.07

1 16.671 16.675 0.02
2s2.2p5.(2P ∗<1/2>).3s 2[1/2]* 0 16.716 16.729 0.08

1 16.848 16.946 0.58
2s2.2p5.(2P ∗<3/2>).3p 2[1/2] 1 18.382 18.324 0.32

0 18.712 18.527 0.99
2s2.2p5.(2P ∗<3/2>).3p 2[5/2] 3 18.556 18.554 0.01

2 18.576 18.598 0.12
2s2.2p5.(2P ∗<3/2>).3p 2[3/2] 1 18.613 18.631 0.1

2 18.637 18.699 0.33
2s2.2p5.(2P ∗<1/2>).3p 2[3/2] 1 18.694 18.716 0.12

2 18.704 18.723 0.1
2s2.2p5.(2P ∗<1/2>).3p 2[1/2] 1 18.727 18.74 0.07

0 18.966 19.081 0.61
2s2.2p5.(2P ∗<3/2>).4s 2[3/2]* 2 19.664 19.645 0.1

1 19.689 19.683 0.03
2s2.2p5.(2P ∗<1/2>).4s 2[1/2]* 0 19.761 19.767 0.03

1 19.78 19.802 0.11
2s2.2p5.(2P ∗<3/2>).3d 2[1/2]* 0 20.025 20.011 0.07

1 20.027 20.013 0.07
2s2.2p5.(2P ∗<3/2>).3d 2[7/2]* 4 20.035 20.022 0.06

3 20.035 20.023 0.06
2s2.2p5.(2P ∗<3/2>).3d 2[3/2]* 2 20.037 20.025 0.06

1 20.041 20.029 0.06
2s2.2p5.(2P ∗<3/2>).3d 2[5/2]* 2 20.049 20.037 0.06

3 20.049 20.038 0.05
2s2.2p5.(2P ∗<1/2>).3d 2[5/2]* 2 20.137 20.123 0.07

3 20.137 20.15 0.06
2s2.2p5.(2P ∗<1/2>).3d 2[3/2]* 2 20.138 20.15 0.06

1 20.14 20.151 0.05
2s2.2p5.(2P ∗<3/2>).4p 2[1/2] 1 20.15 20.154 0.02

0 20.26 20.165 0.47
2s2.2p5.(2P ∗<3/2>).4p 2[5/2] 3 20.189 20.176 0.06

2 20.197 20.193 0.02
2s2.2p5.(2P ∗<3/2>).4p 2[3/2] 1 20.211 20.198 0.06

2 20.215 20.26 0.22
2s2.2p5.(2P ∗<1/2>).4p 2[3/2] 1 20.291 20.295 0.02

2 20.298 20.303 0.02
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Table 3.2: A selection of oscillator strengths for comparison to previous results from B-spline
[100] as well as NIST [86].

Oscillator B- % %
Configuration Level Strength Spline [100] Diff. NIST Diff.
2p5(2P*<3/2>)3s 2[3/2]1 0.0088 0.0118 29.61 0.0118± 0.0030 29.61
2p5(2P*<1/2>)3s 2[1/2]1 0.1693 0.159 6.26 0.1490± 0.0373 12.74
2p5(2P*<3/2>)4s 2[3/2]1 0.0143 0.0126 12.30 0.0086± 0.0022 49.46
2p5(2P*<1/2>)4s 2[1/2]1 0.0239 0.0174 31.30 0.0130± 0.0033 58.91
2p5(2P*<3/2>)3d 2[1/2]1 0.0039 0.00479 19.28 0.0057± 0.0014 36.33
2p5(2P*<3/2>)3d 2[3/2]1 0.0131 0.0146 10.70 0.0160± 0.0040 19.80
2p5(2P*<1/2>)3d 2[3/2]1 0.0066 0.00718 8.47 0.0065± 0.0016 1.48

additional mass-velocity, Darwin, and spin-orbit relativistic effects not present in standard LS

formulations [62]. The target state interactions are initially calculated in LS coupling but are

then recoupled into the jK states before diagonalizing the Hamiltonian. N + 1 partial wave sym-

metries, described with JΠ, extended from 2J = 1 to 2J = 43. Exchange effects were excluded

for 2J = 15 and above. To account for higher partial waves beyond 2J = 43, a Burgess ‘top-up’

was applied [66]. Additionally, only the first 400 levels were kept at the recoupling stage to

fit within our computational resources. These 233 levels, including primarily pseudostates and

some 2s2p5nl states, covered a 2.70 to 6.69 Ryd energy range, roughly 0.75 Ryd above the

maximum incident electron energy cross section that we calculated.

At the diagonalization stage for the electron-impact excitation calculation, we additionally

set the energies of the Hamiltonian to match NIST energies. This stage has further been paral-

lelized such that partial waves can be diagonalized concurrently [55]. Dimensions of the partial

wave Hamiltonians reached a maximum of 78,670. From the inner region solution, a boundary

condition at the box radius can be obtained through the R-matrix, which can then be matched

to an outer region solution that considers the continuum electron as distinguishable from the

target. An absolute integrated cross section is then generated from an asymptotic expansion of

the matched solution. Cross sections for the electron-impact excitation were obtained over an

incident electron energy mesh from 1.12 to 1.93 Ryd, in 0.0012 Ryd increments.

The electron-impact ionization cross sections were performed using the same suite of

codes but without LS-jK recoupling. Using LS-coupling both reduced the size of the calculation

and allowed for more pseudostates. Our model improves upon that of Ballance et al. [55] by
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increasing the pseudostate orbital angular momentum range from l̄ = 4 to l̄ = 6, increasing the

number of possible transitions of the excited-state electrons into the continuum.While the LS

energies from the RMPS ionization calculatoin were not shifted to NIST energies, a NIST shift

was applied when the LS cross section data was split into LSJ resolution using the appropriate

angular factors. No terms were cut prior to diagonalizing the N + 1 Hamiltonian. The inclusion

of more pseudostates required diagonalization of larger Hamiltonians, the partial wave Hamil-

tonians reaching 114,459 dimension size. The calculation included partial waves from L = 0 to

L = 20 with exchange effects, and a ‘top-up’ was applied for partial waves beyond L = 20. 100

energy mesh points were computed in the range 1.1 to 3.1 Ryd, encompassing the 1.5850 Ryd

2p ionization potential [86].

The electron-impact excitation and ionization calculations extended to maximum energies

of 26 eV and 20 eV respectively, just past the ionization peaks of the chosen terms for the

latter. These ranges were chosen to fit our computational capabilities. Though we are primarily

concerned with lower temperatures, we wanted to extend the results to as wide of a temperature

range as possible. Using the method proposed by Burgess and Tully [78], we extrapolated our

excitation cross sections to an infinite energy point limit. For ionization, Rost-Pittard [101] and

Younger [102] fits were used in the energy range below and above twice the ionization potential,

respectively. The parameters fit the data well, allowing us to push the ionization cross sections

beyond 20 eV. Bethe high-energy limit points obtained from Configuration-Averaged Distorted

Wave runs were used in the Younger fits.

3.2.3 Generalized Collisional-Radiative modeling

The main goal of these new R-Matrix calculations is to generate reliable atomic data for spec-

tral modeling in plasma devices. One such application is in creating plasma temperature and

density diagnostics from the ratio of different emitted spectral lines. The W7-X fusion energy

experiment in Germany is pursuing such a diagnostic in the 0 - 40 eV and 1012 − 1014 cm−3

ranges [47]. Another important area of study for neon in fusion plasmas is tracking the transport

of neon and its charge states as it gets transported through the plasma. Neon is often used to

cool the divertor, but it is important that it not get into the core plasma and radiate power. One
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of the coefficients used in impurity transport codes is the effective ionization rate coefficient,

representing the total ionization from one charge state to the next. Given the new ionization

data, it is possible to determine the impact that high quality excited-state ionization data will

have on the effective ionization rate coefficients.

Rate coefficients for all available electron-impact excitation and ionization cross sections

were calculated and GCR modeling performed using a recently developed suite, ColRadPy

[84]. The effective ionization rate coefficient, or SCD, was then examined at different electron

temperatures and densities to assess the impact of excited-state ionization.

3.3 Electron-impact excitation cross sections and rate coefficients

3.3.1 Convergence Checks

We first consider the electron-impact excitation of neutral neon. A series of convergence

checks were run to ensure:

1) enough partial waves were included,

2) energy points were included up as far as the basis set was valid,

3) false energy points resulting from numerical instability were removed, and

4) the cross sections tended towards their infinite energy points at higher energies.

Figure 3.1 shows the results of a convergence check on the first transition cross section,

excitation from the ground 2p6 (1S0) to 2p53s (3P2). Cross sections going up to varying partial

waves are included: to 2J=13, 27, and 43. As shown, the set of partial waves converged

at 2J = 13. The red line indicates the last incident energy that was considered in the final

calculation. After roughly 26.2 eV, the cross section starts to oscillate, an indication that the

basis set is no longer adequate in this energy region. Furthermore, around 25 eV the cross

section begins turning downwards, another indication of an incomplete basis set at these higher

energies. In other examined cross sections, this oscillation as well as the downward slant

are not as noticeable. To ensure accurate extrapolation towards the infinite energy limits at
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higher energies, the decision was made to consider only points up to 26.24 eV. It is common

within the R-matrix community to consider energies up to two-thirds of the smallest final energy

eigenvalue of the continuum orbitals with respect to the angular momentum as safe. In this

case, l=0 had the smallest last energy eigenvalue, at 33.50 eV, two-thirds of which is 22.33

eV. The choice in the incident energy range thus represented a compromise between the safe

choice dictated from the Stage 1 continuum orbital eigenvalues and where from observation the

calculation started to oscillate and trend downward.

Figure 3.1: Electron-impact excitation of neutral neon from the ground state to 2p53s (3P2).

Partial wave convergence is demonstrated at 2J=13. The red line indicates the last point con-

sidered accurate, above which the cross section trends downwards and begins to oscillate.

Another consideration when processing the cross sections was the criteria for removing

points due to numerical instability. The R-matrix method elucidates resonances, or peaks, in

the cross section at energies corresponding to the presence of N + 1 configurations. Other

points, typically isolated, are artificially higher as a result of their energies occurring on poles
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of R-Matrix, in which its denominator approaches zero. These points must be removed from

the cross section, while retained as many of the N + 1 resonances as possible. The presence

of numerical noise in the cross section is problematic for generating rate coefficients, in which

the integration now assumes the presence of high, albeit thin, triangles, artificially raising the

rate coefficient. This excess contribution can further prevent convergence of rates in partial

waves. Figure 3.2 illustrates the 2p54f (3D3) - 2p55s 1P1 cross section, which, without any

cross section processing, demonstrated the worst convergence between the rate coefficients qij

if including up to 2J=41 and 43 respectively, as measured by the taking the ratio q41
q43

. The

numerical noise is clearly skewing two cross sections otherwise in agreement, as well as artifi-

cially raising the rate coefficients.

Figure 3.2: The 2p54f (3D3) - 2p55s 1P1 cross section. The red line and black dots indicate the

raw cross sections if including up to 2J=41 and 43 respectively. This transition had the most

numerical noise, as measured by the ratio of rate coefficients q41
q43

.
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A threshold for adjacent points was chosen such that points more than 20% higher than

previous points were removed. Other thresholds were explored as well, from 5% to 40%. The

20% threshold removed all of the spikes in 3.2 while keeping the peak at 0.5 eV. Figure 3.1

further suggests the validity of this threshold, in which its large, thin peak is also kept.

Figures 3.3 and 3.4 show transitions from the ground to 2p53p (3P1) and 2p53d (1P1), spin-

forbidden and dipole transitions respectively. As with Figure 3.1, cross sections if including up

to 2J=13, 27, and 43 are included, and convergence is seen at 2J = 13. Some small numerical

noise is still observed at higher energies, despite the threshold criteria, though the amount is

relatively small. A coarse energy mesh at high energies at been considered; however, the range

of the calculation would ideally extend past the N + 1 resonances for use of a coarse mesh. The

N + 1 resonances of neutral systems are typically of a wider energy spread than ionic states,

and the 2p53d excitation cross section in particular exhibits resonances up through 25 eV, at the

upper end of the energy mesh.
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Figure 3.3: Electron-impact excitation cross sections from the ground to the spin-forbidden

2p53p (3P1) and dipole-allowed 2p53d (1P1) states. Separate cross sections for partial waves

through 2J=13, 27, and 43 are shown, and convergence is demonstrated at 2J=13.

Excitation from excited states generally required more partial waves for convergence of

cross sections and rates. Figure 3.4 shows two excitation cross sections from the metastable

2p53s (3P2) to the 2p53p (3D3) and (1D2) states. Despite ground state excitation convergence

at 2J=13, the metastable excitations converged much higher, with 2J=41 and 2J=43 (black

line). The final calculation therefore included through 2J=43 with top-up. Figure 3.5 shows a

convergence check on the rate coefficients for all the transitions of the 79 levels. If converged,

the ratio of the rate coefficients from including through 2J=41 versus 2J=43, q41
q43

, should be

close to 1. Less than a percent of the transitions have ratios either above 1.05 or below 0.95,

suggesting convergence. In most cases where the ratio is farther from 1, the 2J=41 rates are less

than the 2J=43 rates, and typically for excitation from higher excited states (higher transition

numbers), in keeping with increased partial wave convergence of 2J=43.
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Figure 3.4: Electron-impact excitation cross sections from the metastable 2p53s (3P2) to the

2p53p a) (3D3) and b) (1D2) states. Convergence required much more partial waves, up to

2J=43 (black line).
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Figure 3.5: Convergence check on the electron-impact excitation rates, as measured by taking

the ratio of the rate coefficients from including partial waves up to 2J=41, q41, and up to 2J=43,

q43, for ever transition. More than 99% of transitions have ratios within 0.05 of 1. The rates

were taken at an electron temperature of 26 eV, where the cross sections should experience the

least partial wave convergence.

Figures 3.6, 3.7, and 3.8 show comparisons of the new RMPS-400 cross sections from

the ground state excitation to four levels each of the 2p53s, 3p, and 3d configurations. The

cross sections are close to those of BSR-457 for every transition. Further, transitions from the

ground state to 3s and 3p orbitals often agree more closely with experiments. Our original

structure included a total of 524 pseudostates and 109 spectroscopic levels, though, due to

processing capability, we cut down the number of levels before jK-recoupling to a total of 400:

319 pseudostates and 81 spectroscopic levels. The energy range of the cut levels extends from

36.59 eV to 91.07 eV. We used a fine energy mesh of a roughly 0.016 eV increment that reached

26.260 eV, well below the range of these levels. Therefore, the structure of the 400 remaining

levels offers greater inclusion of continuum coupling. All shown cross sections are convolved
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to an energy width of 0.5 eV. Particularly for the 3s orbital transitions, the new RMPS results

exhibit the same peaks and resonances as BSR-457.

Figure 3.6: Ground state angle-integrated excitation to 2p53s cross sections (solid black).

Though our calculation only extended to 26 eV, we show results of previous measurements

by Khakoo et al. (green diamond) [88], Phillips et al. (blue flipped triangle) [92], Register et

al. (purple triangle) [93], Hoshino et al. (brown square) [90], and the most recent B-Spline

(BSR-457) calculation [52] (red dashed), with whom our results are within range.
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Figure 3.7: Ground state angle-integrated excitation to 2p53p cross sections (solid black), in-

cluding previous measurements by Chilton et al. (black circle) [89], the R-Matrix with Pseu-

dostates (RMPS-235) calculation by Ballance and Griffin (black star) [58], and the most recent

B-Spline (BSR-457) calculation (dashed red) [52], with whom our results are within range.
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Figure 3.8: Ground state angle-integrated excitation to 2p53d cross sections (solid black), in-

cluding the B-Spline (BSR-457) (dashed red) results [52], with whom ours are within range.

Figure 3.9 shows cross sections for excitation from the metastable 3s[3/2]2 level. For the

sake of clarity, comparison points before 2 eV are omitted. Of all cross section comparisons,

the metastable RMPS-400 cross sections differ the most from previous results, falling slightly

below the BSR-457 that do not include cascade effects [52] and a factor of two below the mea-

surements of Boffard et al. [96] for excitation to 3p[3/2]2 and 3p′[3/2]2. Cascade effects are

not shown for the RMPS-400. BSR-457 also disagrees with these two measurements, even if

including cascade effects. The addition of more pseudostates might contribute to the RMPS-

400 cross sections being 10-20% lower than BSR-457. In previous results [56], adding more

pseudostates led to a decrease in cross section, in connection to a greater representation of

continuum coupling. These metastable excitations, closer to the ionization potential, should be
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Figure 3.9: R-Matrix with Pseudostates (RMPS-400) metastable 3s[3/2]2 state angle-integrated
excitation to 2p53p cross sections (solid black), including the previous B-Spline (BSR-457) both
with and without cascade effects (dashed and dashed-dot red respectively) [52] and experimen-
tal results [96] (black circle). RMPS-400, cascade effects not shown, agrees reasonably well
with BSR-457 without cascades for all states, but differs by a factor of two for the 3p[3/2]2 and
3p′[3/2]2 states. Cross sections are relative to the metastable level energy, which is 16.607 eV
above the ground. For the sake of clarity, comparison points with BSR-457 before 2 eV are
omitted.

more affected by continuum coupling than ground state transitions. Overall, the strong agree-

ment of our excitation cross sections with results for most previously modeled and measured

transitions indicates the suitability of our calculation for accurate rate coefficients.

3.4 Electron-impact excited state ionization cross sections

The overall goal of our ionization calculation was to determine accurate cross sections for

extending up to 2p55p, our last optical configuration. To test the accuracy of our model, we

also compare to previous metastable cross sections for the 3P states from the 3s, 4s, and 5s

configurations [55, 99].
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Figure 3.10: Configuration-averaged (CADW) results for the electron-impact ionization of
neon.

Prior to running the R-matrix calculation, cursory configuration-averaged distorted wave

(DW) calculations were run for valence ionization from each of the 2p5nl configurations as well

as ground state ionization of 2s. Figure 3.10 shows a comparison of the electron-impact ion-

ization of these states. The cross sections increase dramatically going to higher excited states,

with the 4f valence ionization being the largest. The ground state ionization cross section falls

well below the excited states and starts at a much higher energy as well, 21.56 eV. Ionization of

2s, which begins much farther at around 46 eV and is much smaller than the rest, was factored

into the atomic structure of the R-matrix calculation, but was not considered otherwise.

Figure 3.10 also demonstrates a problem for distorted wave calculations for the ioniza-

tion of neutral systems in that the excited states diverge after 4p, becoming asymptotic at low

energies.

As previously discussed, we set up our model to represent the continuum as accurately as

computationally feasible at energies below 20 eV through an inclusive set of Rydberg series,

pseudostates, and partial waves. These parameters were at the cost of fewer continuum basis
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Figure 3.11: Ionization cross sections from the 2p53s (3P) state. The solid black, dashed-dotted
green, and dashed red lines designate our R-Matrix with Pseudostates (RMPS-545) model,
RMPS-297 [55], and the second-most recent B-Spline (BSR-679) model respectively [56]. Our
model agrees well other calculations, including time-dependent close-coupling (TDCC) results
(purple square) [57] and measurements by Johnston et al. (brown flipped triangle) [99]. The
RMPS-545 1P ionization is also shown.

orbitals, and this trade-off was reflected in the results. Figure 3.11 shows the cross sections for

the 3s(3P ) valence shell ionization, including a comparison to previous calculations [55, 57]

and the measurements of Johnston et al. [99]. As shown, our RMPS-545 calculation agrees

well with past theoretical and experimental data up to 20 eV, after which, the continuum basis

set is not adequate. A cross section for the ground state was also extracted, but ours clearly

does not match previous calculations, due to the limited energy range coverage. To extract

ionization rate coefficients from the ground state, we instead used the BSR-679 ground state

cross section [56].

Figure 3.12 shows cross sections from the 2p53s, 4s, and 5s(3P ) and (1P ) states) from 0

to 20 eV, compared to the previous R-Matrix with Pseudostates (RMPS-297) 3P results [55].

The two models agree well, particularly for the 3s, with a steady increase in percent difference
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Figure 3.12: Ionization cross sections from the 2p53s (blue), 4s (green), and 5s states (red),
compared with the 2009 R-Matrix with Pseudostates (RMPS-297) model (dot-dashed) for 3P
states [55] and the configuration-averaged TDCC results (squares) [57]. 3P and 1P states are
indicated by solid and dashed lines respectively. Percent difference between the two models
steadily rises with increasing n-shell.

with the increase in n-shell. The RMPS-545 5s(3P ) cross section peaks about 15% higher than

the previous model. The cross sections from the new model, then, generally agree for lower

states and become increasingly greater for higher state ionization, consistent with an increased

pseudostate coverage for higher excited-state ionizations.

Table 3.3 describes some of the basic characteristics of the 2p5np, nd, and 4f term-

resolved ionization cross sections out of the respective shells. The 2p5np, nd, and 4f con-

figurations all give rise to six total singlet or triplet term each, ranging from L = 0 to 2, L = 1

to 3, and L = 2 to 4 respectively. Peak spread refers to the difference in Mb from the highest to

the term-resolved cross section at the peak.

The cross sections from the higher nl = 2 and 3 orbitals were much closer together than

those from the np orbitals, as indicated by the peak spread. The 1S and 3S, the highest and
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Table 3.3: Descriptions of the term-resolved ionization peaks for each l = 1 - 3 optical config-
uration. Cross section measurements are rounded to the nearest hundred Mb.
Ionized Highest Cross Lowest Cross Peak Spread Average Peak
Orbital Section Term Section Term (Mb) (Mb)
3p 1S 3S 1000 1400
4p 1S 3S 3100 6300
5p 1S 3S 6600 15000
3d 1D 3P 300 6200
4d 1D 1P 800 16500
4f 3F 3D 300 17500

lowest respectively for each np cross section, deviated the most from the average of the term-

resolved peaks per configuration. The singlet terms almost always had higher cross sections,

with the exception of the 4f (3F ) and (1F ), though the difference between the two was very

small.

Figure 3.13 shows cross sections for the 2p5np and nd term ionizations for selected terms,

3D and 1D for the former and 3F and 1F for the latter. Also included is an n4-scaled cross

section for comparison for the 4d and 5p. Classically, the ionization cross sections are expected

to exhibit an n4-scaling for high nl states [85], such that the ionization cross section of a higher

nf l electron, σ+
nf l

, can be scaled from a lower nil ionization cross section as n4
f/n

4
i × σ+

nil
.

A similar comparison was made of the higher excited states of B, B+, and B2+, to test for

convergence [103]. The cross sections of the second-highest calculated ni, 3 for d and 4 for p,

were used to generate the scaled results of the highest nf , and the incident energy was scaled

by the ratio of the ionization potentials.

Overall, the term-resolved cross sections show good agreement with the n-scaled cross

sections. The 4d valence orbital cross sections match everywhere for all terms except at the

peak, at which the n-scale is roughly 10% higher. The 5p cross sections all exhibit the same

pattern, in which the RMPS-545 cross sections fall about 10% lower than the n-scaled ones

throughout all energy ranges. These results suggest our calculation is converged and that higher

n’s can be extrapolated.

Of particular interest to future electron-impact ionization calculations is how high in

pseudo orbital angular momentum is required to converge the cross section for all of the ex-

cited states. Figure 3.14 depicts the contribution of each set of final state pseudo orbitals of a
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Figure 3.13: Ionization cross sections from the a) 2p5 np (3D) and (1D) states, as well as
the b) 2p53d(3F ) and (1F ) states. Solid and dashed lines represent triplet and singlet states
respectively. Theoretical cross sections (black) are included for the higher 2p55p and 4d states,
derived from an n4 scaling with the lower 2p54p and 3d state cross sections respectively.
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Figure 3.14: Breakdown by angular momentum l̄ of the final state pseudo orbital contribution
to the 5s valence shell ionization cross section. Each curve shows the contributions of ≤ l̄.

given angular momentum, through l̄ = 6 to the valence shell 5s ionization cross section. While

previous calculations have typically limited the pseudo orbital angular momentum range from

l̄ = 0 to 5, the ionization to the l̄ = 6 states contributes over 20% to the total cross section at the

peak.

3.5 Generalized-Collisional Radiative Modeling and the Effective Ionization Rate

The main consideration in the GCR modeling reported here is to determine which states con-

tributed most to the effective ionization at relevant densities. GCR modeling of neutral neon

was performed using these new electron-impact excitation and ionization data. Rate coeffi-

cients were included for all excitation and ionization transitions (based on the cross sections

reported earlier in this chapter), and radiative and dielectronic recombination rate coefficients

were included as well. The dielectronic and radiative recombination rate coefficients were taken

from Zatsarinny et al. [104] and Badnell [105] respectively. The calculation of infinite energy
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points for the excitation transitions and ionization fits to high energies enabled rate coefficients

to be calculated up to electron temperatures beyond the range of the R-matrix calculations.

LS-resolution has traditionally been used for light elements. Neutral neon represents a

transition point where LSJ-resolution may be required. Proton collisions can efficiently redis-

tribute populations of the levels within an LS term. For elements below neon, proton collisions

redistribute level populations such that the relative populations of the J-levels within an LS term

are given by the relative statistical weights of each level. Thus for neon, we made both an LS

and an LSJ dataset.

While the LS-resolved ionization rate coefficients considered only ionization to the Ne II

ground term 2p5 (2P ), the LSJ-resolved rate coefficients were split by the Ne II ground term’s

two J-values, 1.5 (ground) and 0.5. This LSJ-resolution was achieved from the LS ionization

cross sections by using the variation of the Sampson branching ratios [77] given by Equation

2.48.

Ionization of the 2s subshell occurs 26.91 eV higher than the 2p subshell [86], and a

configuration-averaged distorted wave calculation suggested the cross-section from this stage

was negligible compared to the valence shell ionization, in agreement with the findings of

[55]. Therefore, 2s ionization was not considered in our model. Likewise with the excitation,

the LSJ-resolved calculations were term-averaged to generate LS excitation rate coefficients

for the LS-resolved dataset. To make the atomic dataset as accurate as possible, we further

replaced our A-values with those of NIST [86]. Both LS and LSJ datasets will be made

available to the community in a standard ADAS format known as an adf04 file [36].

Figure 3.15 gives an example comparison between the original LS-resolved cross section

of the valence shell 4d (3P ) ionization, being LSJ-resolved via branching ratios. Of the three

initial J values, 0, 1, and 2, all ionization transitions to either a 2p5 (2P ) J = 0.5 or 1.5 (ground)

state are possible, except initial J = 0 to final J = 1.5. For all but initial J = 1, transition into the

metastable final J = 0.5 has a much greater, or non-zero, cross section.

Figure 3.16 shows the effective ionization rate coefficient as a function of (Maxwellian-

averaged) electron temperature through 25 eV, using the LS-resolved dataset. Included are

rate coefficients at both low and high electron densities, 104 and 1014 cm−3. As expected, the
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Figure 3.15: Demonstration of the LS- to LSJ- branching ratios for valence shell 4d (3P0,1,2)
ionization. Each level can ionize either to 2p5 (2P ) J = 0.5 or 1.5, except initial J = 0 for which
final J = 1.5 is forbidden.
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low-density effective ionization rate coefficient (dashed black) nearly matches that of just the

ground (solid green), slightly diverging with increasing electron temperature. This reflects that

most of the population is in the ground state at low densities.

At high electron density, excited-state ionization has a greater contribution to the SCD than

ground-state ionization in the 0 - 25 eV electron temperature range. The ratio of the SCD when

including all excited states and ground ionization (solid black line) compared to the SCD from

including only ground-state ionization (SCDgr) declines exponentially, reaching roughly three

times SCDgr at 25 eV. The solid blue line, omitting the 2p5np, nd, and 4f ionizations, further

suggests most of the excited-state contribution comes from the ns series, while the solid red line,

omitting the nd and 4f ionizations, suggests the nd and 4f ionizations contribute less than one

percent to the SCD. At 25 eV, the 4s ionization contributes the most to the effective ionization,

followed by the ground and 3s ionizations. Given the strong dipole-allowed radiative rates

that depopulate the ns states, one might think that they may not contribute significantly to the

ionization. Yet, the populations of the ns states is quite large, due to cascades from higher np

states and direct excitation from the ground, leading to a larger contribution to the SCD.

The Exchange Classical Impact Parameter (ECIP) method [32], a semi-classical approach,

was used for comparison with the new RMPS-545 ionization data. The ECIP method has been

recommended in the past over configuration-averaged distorted-wave for use in accounting for

excited states when non-perturbative data is not available [55]. We replaced the RMPS-545 rate

coefficients for ionization from the np, nd, and 4f orbitals with ECIP rate coefficients, and the

resulting SCD matched what would be obtained from excluding these higher excited state rate

coefficients from modeling. Ionization cross sections from n-scaling of the R-matrix data for

the 4d and 5p orbitals converged with calculated ones (see Fig. 3.13) suggesting that n-scaling

of the R-matrix data would be more accurate than using semi-classical or distorted-wave data

for these states.
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Figure 3.16: a) The effective ionization rate coefficient (SCD) (cm3 s−1) versus electron tem-

perature (eV). The dotted and solid black lines show the SCD including all possible states at

electron densities of 104 and 1014 cm−3 respectively. The ionization rate coefficient of the

ground only (solid green) is roughly a factor of three lower at 25 eV and 1014 cm−3. The

dashed, dot-dashed, and solid blue lines show the SCD if including the ground as well as the

2p53s; 3s and 4s; and 3s, 4s, and 5s states respectively. The dashed, dot-dashed, and solid

red lines include the ground and ns states, as well as the 3p; 3p and 4p; and 3p, 4p, and 5p

states respectively. b) The ratio of the SCDs to the SCD if only the ground state ionization rate

coefficient is included (SCDgr).

3.5.1 Infinite-energy point extrapolation and additional rate coefficient processing

Though the neon atomic data is to be used primarily in the divertor region, it can also serve

useful in other plasma situations, such as in the presence of Edge Localized Modes, or ELMs,

during which the electron temperature in parts of the edge region can suddenly reach > 100

eV citeelms. For the electron-impact ionization data, in which the extracted cross sections all
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extended past the ionization peaks, higher temperature rates could be properly extracted from

Younger fits. Extrapolation of electron-impact excitation rates for higher temperatures requires

a more thorough treatment based on the classification of transition, i.e., whether it is dipole-

allowed, optically forbidden, etc.

Burgess and Tully [78] outline a method for extrapolating electron-impact cross sec-

tions using infinite energy points dependent on transition type. The procedure, assuming a

Maxwellian electron distribution, requires scaling of the energy (electron temperature) to a

dimensionless variable from 0 (threshold energy) to 1 (infinite energy), and of the effective

collision strengths from 0 to value y in a unique Burgess-Tully. The manner of scaling is

distinguished by transition type as follows:

Type 1 - dipole-allowed transitions, non-zero oscillator strengths fij

x = 1− lnC

ln( kT
Eij

+ C)

y(x) = Υij

ln( kT
Eij

+ e)
(3.1)

Type 2 - optically-forbidden (multipole) transitions

x =
( kT
Eij

)
( kT
Eij

+ C)

y(x) = Υij (3.2)

Type 3 - change in ion spin with negligible magnetic interactions

x =
( kT
Eij

)
( kT
Eij

+ C)

y(x) = (kT
Eij

+ 1)Υij (3.3)

80



Type 4 - dipole-allowed transitions, but with small fij

x = 1− lnC

ln( kT
Eij

+ C)

y(x) = Υij

ln( kT
Eij

+ C)
(3.4)

Eij represents the difference in energies between the final and initial levels, kT the elec-

tron temperature, andC an adjustable parameter. A good test of the quality of the higher-energy

electron-impact excitation data is whether the extrapolation with the above scaling trends to-

wards the expected infinite energy points, defined as follows:

Types 1 and 4:

y(1) = 4wifij
Eij

(3.5)

Type 2:

y(1) = high energy limit of Ω (3.6)

Type 3:

y(1) =
∫ ∞

0
Ωd( Ej

Eij
) (3.7)

Ω represents the collision strength, Ej the incident electron energy, and wi the statistical

weight of the lower level. The infinite energy points for Types 1 and 4, 2, and 3 can be derived

from the Bethe [106], Born, and Ochkur approximations respectively [78]. Types 1 - 3 have an

initial x(0) = Ω(0), while x(0) = Ω(0)
ln(C) for Type 4.

We therefore extrapolate the electron-impact excitation cross section rate coefficients for

electron temperatures greater than 25 eV and use the infinite energy points as an accuracy

check. Extrapolation of higher temperatures was performed using the most recent version
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of adasexj.f, which includes extrapolation towards infinite energies. Prior to running ada-

sexj.f, the 20% threshold on adjacent energy points was applied to the R-matrix cross-sectional

OMEGA file. A separate OMEGA file, as well as an input file for adasexj.f, was generated

for the infinite energy points from AUTOSTRUCTURE [83]. Through setting “BORN=INF”

and “RAD=ALL”, AUTOSTRUCTURE will calculate infinite energy points with a Breit-Pauli

structure using the above approximations based on their transition type [107]. Prior to run-

ning adasexj.f, three pre-processing steps must be performed. 1) Transitions involving levels

corresponding to pseudo orbitals must be removed from each OMEGA file prior to running ada-

sexj.f. For neon, the first 79 levels were therefore retained. 2) The infinite energy OMEGA file

must be reordered such that its levels correspond to the R-matrix file. This processing step can

be accomplished from the utility code “omorder.f” The input file for adasexj.f generated from

AUTOSTRUCTURE must similarly be reordered. This task was accomplished by a custom

suite of Python code, “adf04utility.py”, discussed in Appendix refpycodes. 3) The OMEGA

files from the R-matrix and AUTOSTRUCTURE infinite energy runs must then be combined

into one OMEGA file. Removal of energy points via a threshold must be done on the R-matrix

OMEGA file without the infinite energy point.

Figures 3.17 - 3.20 show Burgess-Tully plots for each type from selected transitions, us-

ing the set of effective rate coefficients generated from the adasexj.f code. The variables follow

the x and y relations defined in the previous discussion. The plots include the infinite energy

points, indicated by a triangle, for Types 1 and 4, the dipole-allowed types. The other triangle

on the indicates the point where extrapolation begins. Extrapolated effective rate coefficients in

the Burgess-Tully space are indicated by the dotted line for types 2 and 4. A few hundred of the

3081 total transitions were examined, including transitions from higher excited states. In gen-

eral, the infinite energy points and high temperature extrapolation show reasonable agreement

with the trends of the rate coefficients.

Following high temperature excitation rate coefficient extrapolation, additional adf04 pro-

cessing needed to be performed. Both level energies and Aij-values for spontaneous emission

were replaced with those of NIST [86]. Due to the rounding of energies in the OMEGA files,
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Figure 3.17: Selected Type 1 (dipole-allowed) transitions in Burgess-Tully space. a) and b) are
transitions from the ground and higher excited states respectively. The first triangle indicates
where the extrapolation begins and the second the infinite energy point.
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Figure 3.18: Selected Type 2 (optically-forbidden) transitions in Burgess-Tully space. a) and b)
are transitions from the ground and higher excited states respectively. The dotted lines indicate
extrapolated rate coefficients.
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Figure 3.19: Selected Type 3 (spin-change) transitions in Burgess-Tully space. a) and b) are
transitions from the ground and higher excited states respectively. The dotted lines indicate
extrapolated rate coefficients.
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Figure 3.20: Selected Type 4 (dipole-allowed, small fij) transitions in Burgess-Tully space. a)
and b) are transitions from the ground and higher excited states respectively. The first triangle
indicates where the extrapolation begins and the second the infinite energy point.
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this switch resulted in a couple of levels being out of order. These levels were therefore re-

ordered throughout the OMEGA file using the Python utility code ”adf04utility.py”. As a

result, two transitions corresponding to the switched levels (58/59 and 73/74) were now in re-

verse order, such excitation was assumed from the higher level down to the lower level (58 - 59

and 73 - 74). These were manually switched around, and the A-values were converted by the

ratio of the statistical weights.

Recombination rates were also added, using the ADAS codes for the latter [36].

3.6 Summary and Conclusions

Using new semi-relativistic non-perturbative RMPS calculations for the electron-impact exci-

tation and ionization of neon, we obtained cross sections that generally agreed with previous

ones and that were then used to generate reliable spectral data for any range of temperatures and

densities. We performed new electron-impact excitation and ionization calculations for neutral

neon at low energies that included more pseudostates than previous calculations and showed

convergence for ionization from all excited states through 2p55p.

The 2p5ns(3P ) series in comparison to Ballance et al. [55] demonstrated the increased

pseudostate coverage of our calculation at higher n’s, in which the 5s (3P ) ionization cross

section experienced a 20% increase across all energies. Ionization of valence electrons from

the 4d and 5p orbitals both fit well to an n4 scaling using the 3d and 4p cross sections. This

follows the trend expected classically, as also seen with B, B+, and B2+ [103].

The effect of excited-state ionization on the effective ionization rate coefficient, in which

the excited states contributed as much as three times the ground state at high density (1014

cm−3) and 25 eV electron temperature, highlights its importance in proper GCR modeling

throughout all temperature ranges. Most of the excited state contribution comes from the 2p5ns

series, despite being dipole-allowed to the ground state. This can be explained by the low

electron-impact excitation rates to the nd levels, as indicated by their cross sections, as well as

by the dipole-allowed spontaneous emission from the np levels to the ns levels. For divertor

applications, the effective ionization rate becomes increasingly significant from Te = 5 to 10 eV.

The differences in the SCD from a divertor temperature range to the edge region temperature
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range (Te = 20 to 25 eV [47]) will impact comparisons made at W7-X between He and Ne lines

in the two regions [47].

We further tested the effectiveness of the semi-classical ECIP ionization rate coefficients

for higher excited states. ECIP rates usually fall below non-perturbative approaches, whereas

the configuration-averaged distorted-wave (CADW) perturbative method leads to diverged

cross sections for higher excited states for near neutral systems. The ECIP rate coefficients

underestimated the contribution of 2p5np and nd valence shell ionization to the SCD. However,

R-matrix ionization cross sections of the higher n states showed good agreement with n-scaling

of the lower n-shell R-matrix data. This work therefore indicates a pattern that can be used

for other elements: perform non-perturbative calculations to achieve cross sections for

as high in n as possible or until n-scaling is attained and then use n-scaling for higher

excited-state ionization rate coefficients.

There is also a question on what level of resolution in the angular momentum coupling is

appropriate for the final datasets. For elements below neon, it is normal to use LS-resolved data

with the assumption that the J-levels are statistically populated due to proton-ion collisions.

For elements above Ne, one normally uses J-resolution, since the splitting in the level energies

is making ion collisions less efficient at redistributing in J . For neon, we generated both LS

and LSJ files, along with a recommendation for line ratios to determine which is appropriate

for a particular plasma. They involve transition pairs of different J-values going to the same

final state. The two transition pairs are:

2p53p(3D3) - 2p53s(3P2), λ = 640.225 nm;

2p53p(3D2) - 2p53s(3P2), λ = 633.443 nm

and

2p53p(3P2) - 2p53s(1P1), λ = 667.828 nm;

2p53p(3P1) - 2p53s(1P1), λ = 659.896 nm.

LS-resolution is appropriate when the ratio of the statistically weighted A-values of

each transition pair is close to the observed line ratio. Both LS- and LSJ-resolved atomic

88



data were thus compiled, containing the most accurate set of electron-impact excitation and

ionization as well as dielectronic and radiative recombination rate coefficients to date.

In summary, we have generated new electron-impact excitation and ionization data for

neutral Ne and investigated the contributions to the effective ionization rate coefficient from

the excited states. The datafiles have been made available to the community through the ADAS

database.
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Chapter 4

Electron-Impact Ionization R-matrix with Pseudostates Calculations for Neutral Tungsten

4.1 Introduction

The aim of this chapter is to calculate and investigate the electron-impact ionization of the

ground and metastable states of neutral tungsten using the non-perturbative R-matrix with

psueodstates method. At present, only a small number of non-perturbative electron-impact

collision calculations have been performed for high-Z neutral atoms, except molybdenum

[108, 109] and the recent electron-impact excitation Dirac R-matrix calculation and ioniza-

tion TDCC calculation by Smyth et al. [41] and Pindzola et al. [71] respectively. Modeling of

high-Z elements presents a challenge in that they are relativistic and can contain open d− and

f− subshells.

Unlike previous neutral tungsten electron-impact ionization calculations, the RMPS

method allows for coupling between all sets of channels, including those of different ioniza-

tion pathways. Aside from the present work, the only other non-perturbative electron-impact

ionization calculation of neutral tungsten was performed by Pindzola et al. [71] using the Time-

Dependent Close-Coupling (TDCC) method [68] for the 5d and 6s ionization out of the 5d46s2

ground state configuration. The calculation, which uses orbitals derived from a semi-relativistic

Hartree Fock structure [61], solves the close-coupling equation for a configuration-averaged

case and considers each orbital ionization separately (i.e., no coupling between different chan-

nels). The TDCC results were compared to relativistic Distorted Wave (R-DW) calculations,

for which the 6s ionization cross section is systematically slightly below R-DW and about

three-fifths below R-DW for 5d ionization. The TDCC’s 5d ionization peaked much higher in
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incident electron energy than R-DW: 75 eV compared to 40 eV. The configuration-averaged

TDCC calculation had a distorted wave top-up applied for partial-waves beyond l = 5. Ioniza-

tion from the metastable 5d56s (7S3) state, 0.37 eV above the ground state [29], was also not

considered.

Other calculations, all either perturbative or semi-classical, similarly do not include

channel-coupling effects and for the most part assume configuration-resolved collisions. This

includes the two datasets, ECIP from ADAS [31, 32] and the Born and Born-Ochkur ground

state calculations by Beigman et al. [11], that have been used for generating and comparing

S/XB ratios. Kwon et al. [110] calculate the 5d46s2 (5D) and metastable 5d56s (7S) ionization

cross sections using the semi-classical binary-encounter Bethe (BEB) model. Their calculation

uses a binding energy, kinetic energy (involving the momentum expectation value), and occu-

pation number of the orbital derived from a relativistic multiconfiguration Dirac-Fock (MCDF)

structure [111]. Unlike these calculations, the R-DW method of the HULLAC codes, employed

by Purohit et al. [112], uses a fully relativistic LSJ- rather than configuration-averaged basis

set to represent the continuum orbitals. LS− or LSJ− resolved non-perturbative results that

include both the ground and metastable states, as well as account for the expected high amount

of configuration mixing, would enhance the ionization data available for neutral W.

As discussed in Chapter 1, the primary motivation of the present work is therefore to

provide a complementary calculation to the excitation calculation by Smyth et al. [41] that

can yield accurate electron-impact cross sections for ionization out of the ground, metastable,

and excited states in order to obtain an accurate S/XB. The generation and specifications of

the neutral tungsten target structure used in the electron-impact ionization calculation are de-

scribed in Section 4.2. Computational details are provided in Section 4.3. This is followed in

Section 4.4 by results from convergence checks on the highest spin set of partial-waves, the

octets, which contain many less coupled channels than the sextet or quartet partial wave sets.

Metastable and ground state cross sections are reported and analyzed in Sections 4.5 and 4.6.

An approximation supported by the metastable cross sections, that the two coupling spin sets

contribute roughly equally to a term’s ionization cross section, is used to generate the ground

state cross section, in which the sextet partial wave contribution is doubled rather than calculate
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the quartet partial-waves. The results from both the ground and metastable ionizations suggest

the importance of incorporating a complete list of configuration series corresponding to each

single-electron ionization pathway and, further, that the ionization processes out of the ground

5D and metastable 7S terms are interfering with each other, leading to behavior distinguished

from previous methods where coupling between channels was neglected.

4.2 Neutral Tungsten Atomic Structure Details

As explained in Section 1.3, the atomic structure of neutral tungsten is challenging due to the

high level of mixing present between the three open d−shell configuration series, 5d46snl,

5d5 nl, and 5d36s2nl. Figure 1.3 also depicted the four possible ionization pathways from the

5d46s2 (5D) ground and 5d56s (7S) metastable states arising from 5d and 6s ionizations. It will

be shown in Section 4.4 that all three of the main series must be included in the structure for

proper convergence of ionization cross sections. Before proceeding further, it is important to

note the use of the words “ground” and “metastable” as they are used in the present discussion

regarding neutral tungsten. It is likely that additional excited states of neutral tungsten are

behaving like metastable states. However, a general analysis of which states are metastable is

beyond the scope of this dissertation, and a method to determine which states are metastable

has discussed by Johnson et al. [41]. For this work, the 5D ground, 7S metastable, and excited

state ionization cross sections are calculated and labeled thus. The user of the data is then free

to include some of the excited states as metastables in their collisional-radiative modeling.

Another challenge in obtaining an accurate neutral tungsten structure is a lack of available

data regarding energy levels and A-values. Based on the set of experimentally measured W

I energy levels and transitions compiled by Kramida and Shirai [42], many gaps still persist

in neutral tungsten energy level identification, particularly for the 5d36s2nl series. Quinet et

al. 2010 and 2011 [113, 114] performed HFR parametric fits similar to that of Wyart [59], but

with expanded sets of configurations. Both Quinet et al. [114] and Wyart show good agreement

with both experimental level energies and transition probabilities. Though Wyart used a limited

number of configurations and thus agrees less well, the mean error of his energy levels is 131

cm−2, or around 0.016 eV.
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Smyth et al. iteratively refined their relativistic structure in tandem with spectral obser-

vations from a tungsten probe inserted into the Auburn University Compact Toroidal Hybrid

(CTH) [41]. Their structure calculation utilized the relativistic multiconfigurational Dirac-

Fock (MCDF) method, which optimizes the (2J + 1)-weighted trace of the Dirac-Coulomb

Hamiltonian. Their final 25 configurations included 5d4{6s2, 6p2, 6d2, 6s6p, 6s6d, 7s2, 7p2};

5d5{6s, 6p, 6d, 7s, 7p}; 5d3{6d3, 6s27s}; 5d6; 5p5{5d7,5d66s}; 5p4{5d8, 5d66s2, 5d76s};

and 5s5p65d7, leading to 7,825 levels. These configurations were chosen to cover the 200 -

500 nm range of fine-structure lines observed by the CTH tungsten probe, which includes the

range of lines being considered for the S/XB diagnostic. This structure was further employed

in their electron-impact excitation Dirac R-Matrix calculation. To fit their DARC calculation

within computational constraints, they were unable to include pseudostates in their structure

and therefore excluded core polarization and continuum coupling effects. Nevertheless, their

structure shows good agreement with Kramida and Shirai [42], with an average error of 11%

in their 250 level energies. After shifting to these experimental energies, their transition rates

show agreement anywhere from 0.02% to 35% for select strong dipole transitions and those

relevant to a possible S/XB diagnostic. The excitation data, when used in collisional-radiative

models has been shown to produce good agreement with CTH spectral measurements of W

I emission. Thus, it seems likely that the electron-impact excitation data is of good quality.

The Smyth et al. [41] calculation was for electron-impact excitation and did not include pseu-

dostates. Thus no ionization cross sections could be extracted. In this chapter we use the RMPS

method to calculation ionization data to supplement the available excitation data from Smyth

et al. [41].

To keep the current electron-impact ionization calculation within RAM and I/O con-

straints, certain compromises to the structure had to be made while still preserving an accurate

representation of neutral tungsten’s ionization. Similar to the previous electron-impact ion-

ization R-matrix calculation for W3+ [67], the calculation was constrained to LS-resolution,

though structure was optimized from the levels obtained through intermediate coupling. Opti-

mization of an LS-resolved structure based on the level-averaged term energies of NIST [29]

had also been considered; however, these level-averaged energies would not properly represent
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the J-resolved nature of neutral tungsten. That is, the assumption of a statistically weighted

population between an LS term’s levels may no longer be valid. Furthermore, the term-resolved

5d56s (7S) is 0.186672 eV below 5d46s2 (5D), reversing the order of the ground and metastable

terms compared to their levels. To best reflect the LSJ resolution of tungsten while still fitting

the ionization calculation into modern computational resources, an LS-resolved RMPS calcu-

lation optimized by the levels expected from intermediate coupling is thus performed, and the

final LS cross sections are recoupled back into LSJ using a modified version of the Sampson

branching ratios [77], described in the next section.

The atomic structure package AUTOSTRUCTURE [83] was employed, using a Thomas-

Fermi-Dirac-Amaldi (TFDA) statistical potential to generate wavefunctions for the radial spec-

troscopic orbitals. Non-orthogonal Laguerre pseudo orbitals were also included to represent

the continuum in the structure. These pseudo orbitals are important not only because they

represent ionized states for energy levels above the ionization potential, but also because they

can account for configuration interaction between the spectroscopic and continuum states, a

particularly strong effect for neutral atoms.

The addition of these pseudostates significantly increases the number of terms and levels in

the calculation. It was therefore important to limit the number of pseudostates to be just enough

for convergence of the final electron-impact ionization cross section. Limitations on the pseudo

orbitals were further imposed due by the orthogonality constraints imposed by the continuum

orbitals in the R-matrix calculation and also the R-matrix box size. A suitable structure could

not be found such that pseudo orbitals beyond n̄ = 11 were included while orthogonality with

the continuum orbitals was attained, and that the wave-functions attenuated to an acceptably

small value inside the R-matrix box. Similar issues also required making the 4f and 4g into

pseudo orbitals. Further convergence checks were made on what angular momentum range

would lead to RMPS convergence, described in the next section, and convergence was seen for

l̄ = 5, similar to the findings of [67]. Pseudo states thus extended from 6̄f to ¯11h, including

also 4̄f and 4̄g, and they included 5d46sn̄l, 5d36s2n̄l, and 5d5 n̄l configurations, reflecting 6s

and 5d ionization from both the ground and metastable levels.
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Table 4.1: Neutral tungsten orbital scaling parameters that were held consistent between com-
peting structure models.

1s 2s 2p 3s 3p 3d
1.39098 1.1317 1.0844 1.07701 1.05743 1.04124
4s 4p 4d 4f 5s
1.03131 1.02228 1.00507 0.99319 1

Choosing a concise set of spectroscopic configurations required further trade-offs regard-

ing optimization of the energy levels and transition rates. We limited the number of spectro-

scopic configurations compared to those used by Quinet et al. [114] and Smyth et al. [41],

which were more targeted towards a high accuracy of the fine structure. Because the cross

sections going into states above the ionization potential are summed over, less fine structure

accuracy is required. Therefore, our structure followed a similar direction to Wyart [59], who

obtained relatively good agreement for both level energies and transition rates, in that we pri-

marily considered spectroscopic configurations from the 5d46snl, 5d5 nl, and 5d36s2nl series.

Over one hundred structure runs were performed that varied additional configurations and

lambda parameters, and each selection carried with it both benefits and costs. Table 4.1 lists

the orbital scaling parameters that were not in general changed during structure runs. These

parameters were obtained from a general structure run optimizing for the lowest energy levels.

Most of the structure optimization were performed through modifying the 5p, 5d, 6s, and 6p

orbital scaling parameters. Table 4.2 shows these orbital scaling parameters for five considered

structures. Out of these, Structure No. 1 was the final one that was used to generate the orbital

wavefunctions used in the R-matrix calculation. Structures No. 4 and 5 contain additional

configurations 5d46p2 and 5p55d7.

Evaluating structures based on energy and A-value accuracy proved challenging, as no

single structure stood out prominently from the rest; each candidate structure had costs associ-

ated with any gains. The best target structure for electron-impact ionization was chosen based

on the following criteria: 1) agreement of the ground and metastable level energies to NIST

values and 2) agreement of the highest level dipole transition rates to those available in NIST

and Smyth et al. [41], giving preference to NIST. The largest contribution to the ionization

cross sections should be from dipole transitions into states above the ionization potential. The
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Table 4.2: Orbital scaling parameters for a sample of candidate structures of the neutral tungsten
electron-impact ionization R-matrix calculation. Structure No. 1 corresponds to the one chosen.
Configurations include 5p45d66s2 and 5d6 for mixing effects in addition to the 5d46s nl, 5d5 nl,
and 5d36s2 nl series. Structures No. 4 and 5, starred, contain additional configurations 5d46p2

and 5p55d7.
Structure No. 5p 5d 6s 6p

1 1 0.96978 0.985 1.12
2 1 0.9689 1 1.12
3 1.02 0.9631 1 1.125
4* 1 0.9646 0.985 1.107
5* 1 0.9644 0.985 1.107

transition rate with the highest upper level energy from NIST is 5d46s6p (5P1) - 5d46s2 (5D0)

and from the structure of Smyth et al. is 5d56p (5P1) - 5d46s2 (5D0).

Tables 4.3 and 4.2 show comparisons of the first 15 energy levels and selected A-values.

The candidate structure are all within reasonable agreement with NIST, each less than 13% av-

erage difference across all levels and with the correct ground state. Because we do not attempt

to calculate ionization from the triplet states, prioritization is given to ground and metastable

state accuracy, for which structures 1 and 2 show the best agreement, within a 3% average

difference.

The A-value comparison shown in Table 4.2 demonstrates much more sensitivity to small

changes in the orbital scaling parameters. Included also is a comparison with the DARC cal-

culation’s set of A-values [41]. The transitions are all dipole-allowed, and include strong tran-

sitions of ground and metastable lower levels. Experiments at CTH were performed in tandem

with the DARC calculation [41], resulting in the identification and classification of new neutral

tungsten lines. As a result, some of the labeling between NIST and the DARC calculation dif-

fers. The higher level configuration labels of the first two transitions, for example, are switched

for the DARC calculation. Matching of A-values was therefore performed using the actual

energies recorded for both NIST and DARC, and the configurations listed correspond to those

from the DARC calculation.

For these transitions, Structure No. 1 has the best average percent difference with both

NIST and DARC. A tradeoff can be observed with the 5d46s6p (7P2) - 5d56s (7S3) A-value,

for which Structure 1 differs with NIST by 153.29%. Although this is a strong transition, its

96



Table 4.3: Comparison of the first 15 energy levels of sample candidate structures with NIST.
The average percent differences are only from the levels shown in the table.

Level Energies by Structure No.
Configuration J NIST 1 2 3 4 5
5d46s2(5D) 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0152 0.0146 0.0141 0.0113 0.0125 0.0124
2 0.0303 0.0305 0.0294 0.0243 0.0266 0.0265
3 0.0440 0.0455 0.0440 0.0372 0.0405 0.0403
4 0.0567 0.0597 0.0580 0.0499 0.0541 0.0538

5d56s(7S) 3 0.0269 0.0269 0.0266 0.0265 0.0282 0.0271
5d46s2(3P ) 0 0.0868 0.1059 0.1037 0.0977 0.1016 0.1014

1 0.1213 0.1459 0.1436 0.1341 0.1378 0.1375
2 0.1755 0.1692 0.2043 0.1906 0.1983 0.1975

5d46s2(3H) 4 0.1108 0.1361 0.1345 0.1266 0.1303 0.1301
5 0.1373 0.1649 0.1631 0.1517 0.1561 0.1558
6 0.1550 0.1835 0.1819 0.1690 0.1742 0.1739

5d46s2(3G) 3 0.1216 0.1505 0.1480 0.1384 0.1430 0.1426
4 0.1497 0.1864 0.1829 0.1691 0.1699 0.1695
5 0.1807 0.2117 0.2084 0.1919 0.1981 0.1975

Avg. % Diff. 12.38 12.33 11.55 11.72 11.41
% Diff, Gr. and Meta. 2.21 2.88 11.06 6.81 6.27

upper level, at 3.25 eV, is far from the ionization potential. Agreement with the two highest

transitions in DARC and on NIST is overall best for Structure 1 as well. Although Structure

2 agrees better with DARC for 5d56p (5P1) - 5d46s2 (5D0), at 33.51%, it shows much more

disagreement for the other highest transition, 5d46s6p (5P1) - 5d46s2 (5D0). In general, all

of the candidate structures show highly varying amounts of agreement for different A-values.

Furthermore Structures 4 and 5, in which additional mixing configurations were added, showed

worse agreement for nearly all of the transitions compared to Structure 1.
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The final structure included 5p45d66s2 and 5d6 for configuration-mixing effects in addition

to the 5d46s nl, 5d5 nl, and 5d36s2 nl series. Because including 5d46p2 and 5d55d7 led to larger

differences in A-values compared to NIST and Smyth et al. [41], these configurations were left

out. Table 1 shows a selected level and transition rate comparison of this structure with NIST

and Smyth et al. [41].

A more complete list of level and term energy comparisons for the structure is provided

in Appendix C. The final structure included 15,960 terms, which leads to 40,994 levels. En-

ergies differed an average of 15.91% and 31.23% from terms and levels respectively for those

available on NIST.

4.3 Computational Details

Similar to the electron-impact ionization calculation of neutral neon outlined in Section 3.2.2,

the R-Matrix with Pseudostates (RMPS) method was used to determine the electron-impact

ionization cross sections of the metastable and ground state of neutral tungsten. The RMATRX

I suite of codes, including stages 1, 2, 3, and f, were once again used [60], described in Section

2.4.3. The ionization cross sections were obtained from summing transitions into pseudostates

above the ionization potential.

Recall, a general constraint on an R-matrix calculation is that the target radial wavefunc-

tions must become vanishingly small at the R-matrix box radius. To satisfy these constraints,

a solution to the target and continuum orbitals could only be obtained if the 5f and 5g orbitals

were pseudo-orbitals and if the pseudo-orbitals did not extend past n = 11. A structure calcu-

lation extending to n = 12 indicated the 1̄2l pseudostate terms all occurred above 16.5 eV. We

therefore chose a basis set size of 29 to fully cover the incident electron energy range up to this

point. The R-matrix box radius was set to 69 atomic units.

Stage 2, which sets up and calculates the upper triangle of the inner region Hamiltonian for

the N and N + 1 system, required code development both to allow for neutral tungsten’s closed

f -subshell and to increase computational efficiency. The codes currently allow for only up to 2

electrons in shells where l >2. The HN+1, due to its making the continuum electron indistin-

guishable from the other N electrons, requires up to two active electrons in the f -subshell. The
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Table 4.5: Neutral tungsten term energy comparison with NIST.
NIST Present Work

Configuration Term Energy (Ryd) Energy (Ryd) Percent Difference
5d46s2 5D 0.0000 0.0000 0.00
5d5(6S)6s 7S -0.0137 -0.0488 71.91
5d46s2 3P2 0.1069 0.1136 5.88
5d46s2 3H 0.0964 0.1313 26.52
5d46s2 3G 0.1144 0.1290 11.28
5d46s2 3F2 0.1099 0.1223 10.16
5d46s2 3D 0.1036 0.1318 21.43
5d5(4G)6s 5G 0.1350 0.1378 2.08
5d5(6S)6s 5S 0.1260 0.1244 1.30
5d46s(6D)6p 7F 0.1918 0.3412 43.78
5d5(4P )6s 5P 0.1447 0.1652 12.42
5d46s2 1S2 0.1432 0.1403 2.09
5d46s(6D)6p 7D 0.2078 0.3414 39.13
5d5(4D)6s 5D 0.1718 0.1750 1.80
5d46s2 1G2 0.1676 0.1608 4.26
5d46s2 1I 0.1734 0.1905 8.99
5d46s2 1F 0.1837 0.2184 15.90
5d46s2 1D2 0.1853 0.2175 14.81
5d46s(6D)6p 5F 0.2380 0.3888 38.78
5d5(6S)6p 7P 0.2087 0.6038 65.43
5d46s(6D)6p 5D 0.2367 0.4324 45.27
5d5(2F1)6s 3F 0.2099 0.2890 27.38
5d5(4F )6s 5F 0.2202 0.2344 6.06
5d5(2I)6s 3I 0.2205 0.2371 7.02
5d46s(6D)6p 5P 0.2301 0.3548 35.14
5d5(4P )6s 3P 0.2211 0.2965 25.44
5d46s2 3P1 0.2227 0.2448 9.01
5d46s2 3F1 0.2309 0.2350 1.74
5d5(4G)6s 3G 0.2485 0.2621 5.20
5d5(2D3)6s 3D 0.2544 0.2788 8.73
5d5(2G2)6s 3G 0.2665 0.2950 9.68
5d5(2I)6s 1I 0.2628 0.2964 11.36
5d5(4D)6s 3D 0.2688 0.3013 10.79
5d46s(4H)6p 5H 0.3212 0.3980 19.29
5d46s(6D)7s 7D 0.3903 0.4036 3.29
5d46s(6D)7s 5D 0.4087 0.4039 1.20

Average: 17.35
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TERMS array in pstg2r.f and stglib.f were thus extended to incorporate terms for f 12, and its

coefficient of fractional parentage was inserted using its Racah recursion relation to f 2 found in

Cowan [61]. A detailed description of the code modifications required for the closed f -subshell

can be found in Section 6.3.1.

The continuum-continuum elements of the Hamiltonian presented the largest impediment

to the calculation. The pstg2r.f code currently available is parallelized as one partial-wave

calculation per processor. For most of the partial-waves, the duration of the calculation would

exceed several months. Recent code development was completed by Ballance et al. [67] that

exploits the target atom’s sets of LSΠ symmetries, parallelizing as one target symmetry per

partial-wave per processor. Our structure, for example, led to 81 possible symmetries, each

of which would be associated with a certain set of channels based on its quantum numbers.

Splitting the calculation in this way reduces the amount of time required from a matter of

months to weeks or days. Two limitations of this approach are that it requires both a large

amount of RAM, over 60 Gb per processor in some cases, and a sizeable number of processors

to run simultaneously, here multiples of 81. Furthermore, for any given partial-wave, many if

not most of the target symmetries will have no coupled channels with the continuum electron,

resulting in many of the processors sitting idle throughout the calculation. Thus, this code was

further modified such that it was separated into two parts. First, the bound-bound and bound-

continuum elements are calculated, and a file containing all target symmetries with at least one

coupled channel, as well as the size of the Hamiltonian block of each symmetry, is printed.

Then, the continuum-continuum elements are calculated in batches, using manually chosen

target symmetries. This enables symmetries with larger Hamiltonian blocks to be calculated

separately, allowing for more RAM on cluster machines, while excluding processor allotment

for symmetries with no channels.

Another Stage 2 modification allowed unrestricted access to RAM throughout runtime.

Previously, the majority of integers were written in single precision, including the variables

governing Hamiltonian matrix allocation. As a result, an artificial cap had been placed on how

much of the Hamiltonian could be stored at once. In cases where this cap was exceeded, large

pieces of the Hamiltonian must be written into and read from a temporary space before finally
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being written to file. The code was modified throughout, such that the user can now choose the

precision of integers, e.g., double, removing the RAM cap. This change reduced the runtime

from several weeks to less than a week per partial-wave.

An incident electron coupling with the ground and metastable terms, 5D and 7S respec-

tively, will result in a total 2SN+1 + 1 = 4, 6, or 8 for the N + 1 system. The 7S metastable state

can couple to the octets and sextets, and the ground state can couple to the sextets and quartets.

Other excited states of the three nl series are singlets and triplets, such that a set of doublet

partial-waves would be needed to obtain their cross sections. These lower spin states were not

pursued at the present time.

Table 4.3 shows a comparison of the number of channels per partial-wave, split by the

2S + 1 spin states: the octets, sextets, and quartets. They reach a maximum of 738; 11,201;

and 44,756 respectively. The calculation included partial-waves spanning from L = 0 to 9 both

even and odd parities. A Burgess ‘top-up’ was applied [66] after L = 9, though in principle the

calculation was converged after L = 7. The dimensions of the N + 1 Hamiltonians, including

the continuum-continuum, bound-continuum, and bound-bound elements, ranged from 1,909

- 21,655 and 42,856 - 329,677 for the octets and sextets respectively. The quartets, whose

continuum-continuum dimensions alone would have ranged from 149,437 - 1,298,098, were

not feasible for direct calculation with modern computational resources. Instead, an approx-

imation for their contribution is provided for all quintet terms, including the ground state, as

discussed in the next section.

4.4 Convergence Checks with the Octet partial-waves

The small number of channels for the octet spin-state set of partial-waves was a tremendous

benefit in assessing the size and convergence of the neutral W electron-impact ionization R-

matrix calculation. Despite the large differences in the number of channels between spin states,

each state contributes a comparable amount to the total cross sections. For the 5d56s (7S)

ionization, for example, the set of octets and set of sextets will be shown to contribute roughly

half to the total cross section each. This can be explained physically in part from the use

of LS-resolved Hamiltonians for the target and N + 1 systems, which, unlike the relativistic
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Table 4.6: Comparison of the number of N + 1 channels split by 2SN+1 + 1 states, i.e., octets,
sextets, and quartets, for each LΠN+1.

No. Channels
partial-wave (LΠ) Octets Sextets Quartets
0, Even 134 1366 5153
0, Odd 60 1359 5159
1, Even 242 3967 15083
1, Odd 316 3974 15077
2, Even 472 6267 23904
2, Odd 398 6260 23910
3, Even 516 8098 31153
3, Odd 590 8105
4, Even 668 9443 36601
4, Odd 594 9436 36607
5, Even 639 10310 40349
5, Odd 713 10317 40343
6, Even 732 10820 42657
6, Odd 658 10813 42663
7, Even 664 11062 43930
7, Odd 738 11069 43924
8, Even 738 11170 44523
8, Odd 664 11163 44529
9, Even 664 11194 44762
9, Odd 738 11201 44756
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Hamiltonians, contain no spin or total J dependence. Convergence and structure checks were

thus performed using the much less computationally expensive octet set.

To reduce the size of the calculation, running separate R-matrix calculations for electron-

impact ionization of each of the three series had been considered. Figure 4.1 shows how split-

ting the calculation by nl series would affect the octet metastable 6s ionization cross section.

While excluding 5d36s2nl does not change the cross section significantly, excluding 5d46snl

greatly increases the size of the cross section, by a factor of more than 2 at certain energy

ranges. This behavior can be understood in part by the ability of each series to form octet N + 1

channels. Whereas the spin of the 5d46snl configurations can add to 7, such that octet channels

can be formed, the highest possible spin for the 5d36d2nl configurations is 5. For the sextets

and quartets, therefore, for which all configuration series can contribute, all configurations are

necessary to account for mixing in both the target and the N + 1 states. Thus, it was not possible

to split the calculation into separate calculations for the ground and metastable states. They had

to be evaluated in a single, larger, calculation.
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Figure 4.1: Test of the necessary configuration series required to obtain an accurate cross sec-

tion of the electron-impact 6s ionization from the metastable 5d56s (7S3) term. The cross

sections shown are from including octet partial-waves only. The blue, red, and black lines indi-

cate the cross section if including in the target structure and R-matrix calculation only the 5d5nl

series; the 5d5nl and 5d46snl series; and the 5d5nl, 5d46snl, and 5d36s2nl series respectively.

Figure 4.2 shows a further check of the octets on both the angular momentum range l̄ of

the pseudostates needed to converge the cross section and on how sensitive the cross section is

to changes in the structure. l̄ = 4 or 5 have been used in past electron impact ionization cal-

culations, such as for W3+ [67] and neutral neon [55, 56]. A test structure was made including

up to l̄ = 6 pseudo orbitals using the same orbital scaling parameters from the final structure

and resulted in 18,960 total terms. For the total metastable (7S) cross section, including 5d and

6s ionization, the cross sections from including through l̄ = 5 and 6 agree well up to 14 eV,

at which point the latter cross section experiences a 20% increase from the former. Given that

this increase occurs only within the last couple eV of our calculation range, the decision was
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made to run the sextets using pseudo orbitals through l̄ = 5. Another question when deciding

on a final structure was whether to set the structures such that the 7S metastable term energy

would equal its level energy, 0.02698 eV. The green line, representing a structure run optimized

in this way, shows good agreement through 10 eV and within 20% for higher incident energies.

For reference, the metastable term energy of the final structure is -0.0137 relative to the ground

term energy. This preliminary structure and RMPS run therefore suggested that the cross sec-

tion is not sensitive to changes in the metastable structure, within the kind of parameter space

we were exploring during optimization.

Figure 4.2: Pseudostate and structure convergence check with the 5d56s (7S) total ionization

from the octet partial-wave set. The black line indicates the cross section from the final structure

used, which includes pseudo orbitals through l̄ = 5. The red line is the resulting cross section if

adding l̄ = 6 pseudo orbitals. The two agree up to about 14 eV, at which point the cross section

with more pseudo orbitals experiences a 20% increase. The green line is the cross section from

a structure run in which the metastable 7S term energy was optimized to equal its level energy,

and it suggests the cross section is not sensitive to changes in the structure.
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4.5 Metastable 5d56s (7S) electron-impact ionization cross section results

Figure 4.3 shows the RMPS results of the metastable 5d56s (7S) ionization cross sections,

including the separate contributions from the octet (dotted) and sextet (dashed) partial-waves.

The total cross section (black) does not reach its peak within the range of the calculation, but it

starts to plateau around 850 - 900 Mb. The individual 5d and 6s ionization cross sections, red

and blue respectively, are themselves nearly equivalent. For the total cross section, the octets

and sextets are within 10% of each other, such that each contributes roughly half. The same

trend can be observed for the ionization from the 6s and 5d orbitals.

Figure 4.4 shows the metastable 5d and 6s cross sections from direct ionization, excluding

excitation autoionization. Comparing to the full cross sections, there is almost no excitation

autoionization contribution to the 5d cross section and a nearly 100 Mb contribution to the 6s

cross section. The octets (dotted) and sextets (dashed) are each still nearly equivalent, although

the 5d cross octet cross section is nearly 50 Mb higher at some incident energies.

The combined direct and excitation autoionization results of the two partial-wave spin sets

suggest the suitability of doubling the sextet ground state 5d46s2 (5D) cross section to account

for the quartet contribution.
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Figure 4.3: RMPS 5d56s (7S) results, including 5d (red), 6s (blue), and total ionization. Cross

sections include contributions from both direct ionization and direct ionization. Also shown is

the separate contributions from the octet (dotted) and sextet (dashed) spin state sets of partial-

waves. For 5d, 6s, and total ionization, the contributions of these two spin states are within

10% of each other.
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Figure 4.4: RMPS 5d56s (7S) direct 5d (red) and 6s (blue) ionization results. The contributions

from both the octet and sextet spin state partial-wave sets, dotted and dashed respectively, are

within 10% for 6s and 25% for 5d ionization across all calculated incident electron energies.

Figure 4.5 compares the RMPS total, 6s,and 5d electron-impact direct ionization cross

sections from the metastable 5d56s (7S) term, with 6s and 5d ionization comparisons to

configuration-averaged distorted wave (CADW) calculations. None of the RMPS cross sec-

tions have reached their peaks by the end of the calculation’s valid energy range. The calcula-

tion would have to extend to 25 eV to reach up to the CADW 5d ionization peak. The RMPS

5d ionization cross section is a factor of five reduced compared to CADW. Yet, the 6s cross

sections agree well.

The configuration-averaged distorted wave method is appropriate for a fast-moving elec-

tron, and it does not account for exchange, continuum coupling, or configuration mixing ef-

fects. The former two effects will reduce the cross section and are factored into RMPS. The

metastable 5d and 6s ionization cross sections might further be explained by considering mix-

ing of the ionization pathways from the 5d5n̄l and 5d46sn̄l terms that also lead to the possible
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W+ lowest energy states. Ionization of 6s, represented by the 5d5n̄l series, can only result in

5d5 (6S), whose level is 0.0676 Ryd above the ground state. The 5d ionization, represented by

the 5d46sn̄l series, can result in either the W+ ground state 6D or any of the 4(PDFG) states.

The 6D state is also possible from 5d46s2 (5D) 6s ionization, in addition to 4D. The distorted

wave results assume ionization from either 5d56s or 5d46s2, but not their simultaneous pos-

sibility. Therefore, a more accurate comparison will be the sum of the RMPS 5d56s 5d and

5d46s2 6s cross sections, compared to the sum of their respective distorted wave results.

Figure 4.5: RMPS 5d56s (7S) direct ionization cross sections compared with configuration-

averaged distorted wave (CADW), including the total term-resolved (black) and from 6s (blue)

and 5d (red). The RMPS 5d ionization cross section is a factor of five below CADW, while the

6s cross section matches.

4.6 Ground 5d46s2 (5D) electron-impact ionization cross section results

Sextet ionization cross sections were also obtained for the ground 5d46s2 (5D) term. Complete

cross sections would require the quartet spin set of partial-waves as well. Due to their large

number of channels and corresponding N + 1 Hamiltonian sizes, the quartets could not be
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calculated. Instead, the 5d, 6s, and total ground state cross sections are approximated as twice

their respective sextet cross sections, an approximation supported by the octet and sextet partial

contributions to the 5d56s cross sections.

Figure 4.6 shows the RMPS ground state ionization cross sections resulting from the sextet

partial-waves. Direct ionization, represented by the dashed lines, comprises about 90% of the

total. About two-thirds of the total comes from 5d ionization, whereas the 6s ionization is less

than 10% of the total.

A consequence of the heavy mixing between the three configuration series is the pres-

ence of a 5d5nl cross section (purple), reaching about 150 Mb. For traditional lighter systems

ionizing from ns and np orbitals, the configuration series are more pure and therefore repre-

sent distinct ionization pathways. The 5d5nl cross section, an excitation and an ionization of

the 6s electrons, arises from the large 5d46sn̄l mixing coefficients present in terms labeled as

5d5n̄l. In calculating the close-coupling Hamiltonian, configurations are calculated separately

and summed for each bra and ket channel. So, while pure 5d46snl and 5d5nl states would be

orthogonal, the 5d46sn̄l percentage present in technically 5d5n̄l terms would yield a non-zero

contribution.

In further corroboration of this result, the mixing coefficients were examined for the

ground state and a pseudostate, 5d59p̄ (5F ). This pseudostate was the largest contributor to

the total ground ionization cross section at 14 eV. 89.88% of the ground state corresponded to

the lowest 5d46s2 term. The highest percentage for the pseudostate was only 10.14%. The other

highest four percentages, ranging from 8.23% to 5.58%, came from both 5d46snl and 5d5nl

configurations. Most of the 5d5nl contribution therefore likely corresponds to transitioning into

5d46snl configurations, whose majority percentage is from a 5d5nl configuration.
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Figure 4.6: RMPS 5d46s2 (5D) results for the sextet spin state partial-wave set. The full cross

sections require the quartet set also. The solid lines include both direct ionization and excita-

tion autoionization, while the dashed lines include only direct ionization. 6s ionization (blue)

represents the largest contribution to the overall cross section, while the 5d ionization (red)

contributes less than 10%. A nonzero contribution representing ionization into the 5d5n̄l series

is also present (purple), accounting for roughly 20% of the total cross section.

Comparisons of 5d and 6s direct ionization from the ground to previous calculations reveal

further differences from configuration-averaged results. Figures 4.7 and 4.8 show the 5d and

6s direct ionization cross sections from the ground state if assuming the quartet contribution

will be approximately equal to that of the sextet. The RMPS 5d direct ionization, less than

100 Mb, is much smaller than HULLAC [112], R-DW [71], ECIP, and the non-perturbative

time-dependent close-coupling (TDCC) [71] cross sections. All of the cross sections share a

similar shape in that they do not reach their peak in the 0-25 eV incident range. Yet, the RMPS

6s direct ionization is larger by more than a factor of two past 10 eV incident energy range for

R-DW and TDCC, and by more than a factor of four for ECIP. The RMPS ground 6s results
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reach nearly 1000 Mb in the calculated energy range and has clearly not reached its peak, which

occurs around 20 eV for the other methods. The total RMPS ground ionization cross section is

about equal to the total HULLAC ground ionization cross section, however.

Figure 4.7: RMPS 5d46s2 (5D) 5d direct ionization (blue) comparison with relativistic distorted

wave (R-DW, dashed green) [71], exchange classical impact parameter (ECIP, dotted green),

time-dependent close coupling (TDCC, solid black) [71], and HULLAC (solid purple) [112].

The RMPS represent the sextet partial-wave set doubled, i.e., an equal contribution from the

sextet and quartet partial-waves.
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Figure 4.8: RMPS 5d46s2 (5D) 6s direct ionization (blue) comparison with relativistic distorted

wave (R-DW, dashed green) [71], exchange classical impact parameter (ECIP, dotted green),

time-dependent close coupling (TDCC, solid black) [71], and HULLAC (solid purple) [112].

Overall, the total RMPS ground ionization of the 6s subshell is nearly twice that of the

total relativistic distorted wave, which, due its neglective exchange and correlation effects,

often overestimate the cross section for neutral systems. Further attention is therefore required

to determine 1) the validity of the assumption that the sextet and quartet contribution are about

equal, 2) if any additional configuration series are missing that would further reduce the cross

section, and 3) if the larger RMPS cross section can be understood through quantum mechanical

effects.

The possibility of additional configuration series to fully account for mixing was also

explored. The 5d46pnl series should mix with both the 5d5nl and the 5d46snl series, and

this series might reduce the ground state cross section. This effect was witnessed with the

metastable cross section by the addition of the 5d46snl series. Because a full structure with

the 5d46pnl series and including through the same n̄l pseudo orbitals would result in over
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30,000 terms, a check on the 5d46pnl series was performed using a reduced set of pseudo

orbitals, through l̄ = 3. The octet partial-waves were calculated and the metastable cross section

extracted. This result was compared to a control calculation, which included the same pseudo

orbital reduction through l̄ = 3 but did not include the 5d46pnl series. Both the 5d46pnl and

the control structures used the same orbital scaling parameters as the structure used to obtain

the final results. The 5d46pnl structure had 19,652 terms, while the control structure had 8,176

terms. Figure 4.9 shows the 5d56s (7S) total ionization results from the octet partial-waves.

Good agreement is shown between the cross section from the control structure and R-matrix

run compared to the cross section if including the 5d46pnl series in the structure, suggesting a

convergence on configuration mixing without the 5d46pnl series.

Figure 4.9: 5d56s total ionization results for the octet partial-waves from a structure including

the 5d46pnl series (red dashed). This structure and R-matrix calculation as well as the control

structure (solid black), did not include pseudostates beyond l̄ = 3. The two exhibit close

agreement.
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The metastable 5d and 6s ionization cross sections might further be explained by consid-

ering mixing which ionization pathways from the 5d5n̄l and 5d46sn̄l terms that also lead to

the possible W+ lowest energy states. Ionization of 6s, represented by the 5d5n̄l series, can

only result in 5d5 (6S), whose level is 0.0676 Ryd above the ground state. The 5d ionization,

represented by the 5d46sn̄l series, can result in either the W+ ground state 6D or any of the

4(PDFG) states. The 6D state is also possible from 5d46s2 (5D) 6s ionization, in addition to

4D. The distorted wave results assume ionization from either 5d56s or 5d46s2, but not their

simultaneous possibility. That is, mixing between the N + 1 states would not be included. A

more accurate comparison should therefore be the sum of the RMPS 5d56s and 5d46s2 direct

ionization cross sections, compared to the sum of their respective distorted wave results.

Figure 4.10 shows the total direct ionization from the ground and metastable states, 5d and

6s, of RMPS (red) compared to previous configuration-averaged results. The configuration-

averaged distorted wave total (blue), which includes the relativistic results from [71] for the

ground and the non-relativistic results for the metastable, exhibits the same shape as RMPS

and is consistently about 20 - 20% higher. No metastable ionization cross sections from the

TDCC (black) and ECIP (green) methods currently exist. A scaling of the metastable to the

ground non-relativistic distorted wave results suggests an approximate ratio of slightly less

than 2:1, and this approximate scaling applied to the TDCC would bring its total cross section

to around 10% of the RMPS results. The RMPS total ionization results are therefore consistent

with previous ionization results for lighter systems, for which RMPS agrees reasonably well

with TDCC and is less than distorted wave.
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Figure 4.10: Comparison of the RMPS total direct electron-impact ionization from the ground

and metastable states (red) with the total from configuration-averaged distorted wave (CADW,

blue). The ground state cross sections from TDCC (black) and ECIP (green), 5d and 6s ion-

izations summed, are also shown. Despite a large ground state 6s ionization, the RMPS falls

below CADW at all energy ranges.

4.7 Discussion

For purposes of accurate collisional radiative modeling of tungsten as a plasma facing com-

ponent, a new R-matrix with Pseudostates electron-impact ionization calculation has been

performed for neutral tungsten. The calculation improves upon previous data by being non-

perturbative and also LS-resolved, allowing for configuration mixing between the three main

ionization configuration series of neutral tungsten, both in the target N and the N + 1 electron

system. The calculation also includes contributions due to excitation auto-ionization. Fur-

thermore, the RMPS calculation allows for the extraction of cross sections for ionization from

excited states, which has been shown to contribute more than ionization from the ground state

in lighter systems such as Ne [115], He [37], Li [38], and B [39].
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Neutral tungsten differs from previously studied lighter elements in that, not only does

it require a relativistic treatment, but its configuration series both share ionized states and are

heavily mixed. The importance of considering all of the these mixing configurations together

into the N + 1 Hamiltonian were observed by the dramatic reduction in the metastable 5d56s

(7S) 6s ionization cross section when the 5d46snl series was added to the structure.

The results from the new RMPS calculation differed from previous electron-impact re-

sults of lighter systems in that the ground state and metastable 6s direct ionization cross section

were respectively about twice as high as (for the ground) and equivalent to (for the metastable)

configuration-averaged distorted wave (CADW) results. CADW does not account for corre-

lation and continuum coupling effects, such that RMPS typically has a reduced cross section

compared to CADW. The need for additional configuration series for convergence was ruled

out through a test run with the 5d46pnl series.

The total direct ionization cross section of both the ground and metastable states falls

within range, though below, that of CADW, and this suggests that the shared ionization series

between the ground and metastable, as well as configuration mixing, are likely the reason for

the uniqueness of the RMPS ground and metastable cross sections with respect to perturbative

methods. This can be observed chiefly from the ionizations of 6s from 5d46s2 and 5d from

5d56s, both found by summing over the 5d46sn̄l pseudostates above the ionization potential.

The cross sections for these two ionizations differ the most from previous results, with the 5d

being much lower and the 6smuch higher. One way of interpreting the results might be: if both

metastable 5d and ground 6s ionizations are possible, mixing effects mean that nature prefers

the 6s ionization from the ground.

The importance of term or level-specific resolution of electron-impact ionization in colli-

sional radiative modeling is still an open question. That is, given that the total cross sections

including the ground and metastable states show reasonable agreement with more approximate

configuration-averaged methods, it is unclear if the term-specific differences revealed in the

RMPS cross sections will lead to significant differences in tungsten plasma modeling. The

next logical step will therefore be to examine the effect of these new RMPS electron-impact

ionization cross sections for the ground and excited states on the collisional radiative modeling
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of tungsten. In the next chapter we consider the excited state ionization of neutral W and the

effects on SCD and S/XB coefficients.
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Chapter 5

Excited-State Ionization and GCR Modeling of Neutral Tungsten

The previous chapter reported on ground and metastable cross section results for neutral tung-

sten. Given the likely importance of excited states ionization to the effective ionization of

neutral W, this chapter addresses both the calculation of excited state ionization cross sections

and possible scaling laws for the ionization rate coefficients. As with neon, the RMPS calcu-

lation discussed in the previous chapter yields cross sections for all possible target structure

transitions. Other methods such as configuration-averaged TDCC require separate calculations

for each configuration and do not account for configuration mixing and interference between

the configurations and ionization processes (i.e., the target-continuum electron channels).

With the exception of the ECIP results used in ADAS [31], no other calculations exist for

excited state ionization cross sections of neutral tungsten. Figure 5.1 illustrates the contribu-

tion of excited state ionization to the effective ionization rate coefficient using rate coefficients

derived from ECIP cross sections. The ratio of the SCD if including all excited states to the

SCD of ground-only ionization, SCDgr., suggests excited states contribute about a factor of 200

more than the ground state to the SCD at ne = 1014 cm−3 in the 0 - 30 eV temperature range,

and by a factor of more than 1,000 around 1 eV. Ground in this case is referring to the lowest

5d46s2 5D0 level and does not include ionization contributions from other 5DJ levels. The SCD

ratio is still not yet 1.0 at ne = 104 cm−3, suggesting these other low-lying levels as well as the

metastable 5d56s 7S3 have a significant population even at very low densities.
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Figure 5.1: Comparison of the excited-state ionization contribution from ECIP to the effective

ionization rate at different electron densities, as measured by the ratio to the SCD if including

only the ground ECIP ionization rate (SCDgr).

The discussion proceeds as follows: excited state cross sections from the 5d46s6p,

5d46s6d, 5d56s, 5d56d, 5d6, and 5d36s26p configurations are presented in Section 5.1. Their

pseudostate convergence and ionization potential scaling behavior is analyzed. In Section

5.2, results are presented for fitting all of the cross sectional results, including ground and

metastable, to include higher energies. Maxwellian rate coefficients are additionally evaluated

from these fits. ECIP scaling of the data is shown to be effective for purposes of better fits

and for obtaining cross sections of ionizations from excited states not included the R-matrix

calculation. A strong correlation is observed between ECIP scale factors and a state’s specific

ionization potential, and this correlation is distinct relative to the parity of the state. Finally, in

5.4, the set of neutral tungsten R-matrix and ECIP scaling results are used in GCR modeling of

the SCD, PEC, and S/XB coefficients.
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5.1 Neutral Tungsten Excited-State Ionization Cross Sections

The aim in extracting excited state ionization cross sections is to add ionization rate coefficients

to the excitation data file produced by the DARC calculation of Smyth et al. [41]. Thus, it was

necessary to map the cross sections presented in this chapter against level and term information

in the adf04 file produced from Smyth et al. [41]. Excited neutral tungsten terms present in

the DARC calculation by Smyth et al. [41] were extracted from the new RMPS OMEGA file;

however, there was not a one-to-one correspondence between the sets of terms. A full list of

the terms and levels from the DARC calculation are recorded in the final neutral tungsten adf04

file, which will be made freely available via the open-adas online database [31]. 139 of the 250

levels lacked a corresponding term-resolved RMPS electron-impact ionization cross section.

Most notably, the constraints on the electron-impact ionization RMPS calculation required

that the 7s be a pseudo orbital. So, cross sections for 5d46s7s terms and levels could not be

obtained. Further, all 5d56p terms in the ionization calculation were above the ionization po-

tential, while 5d56d terms were not and showed reasonable agreement with NIST term energies

(note that both the 6p and 6d orbitals were optical). Regarding spin states, only cross sections

for septet and quintet terms could be obtained as a result of limiting the calculation to the octet

and sextet N + 1 spin sets. Singlets and triplets could therefore not be extracted. Similar to

the ground 5D term, cross sections for excited state quintet terms were extracted through an

OMEGA file containing the sextet contribution and assuming the total cross section (quartets

plus sextets) could be obtained by doubling the sextet cross section contributions.

To begin, a check on pseudostate convergence was performed. It was shown in Section

3.4 with neutral neon that pseudo orbitals up to l̄ = 6 were required to converge all excited

state-ionization cross sections. Limits on the size of the neutral tungsten RMPS calculation

prevented adding pseudo orbitals beyond l̄ = 5. Figure 5.2 shows the results of a l̄ = 6 pseudo

orbital convergence check on the septet excited states including only the octet partial-waves.

Three 5d46s6p and one 5d46s6d septet state were extracted. The same test structure is used as

that for the metastable convergence in Figure 4.2. Across all incident energy ranges, the cross
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sections for all of the excited states are about 10 - 25% higher for the structure including l̄ = 6

pseudostates (dashed).

Figure 5.2: A pseudostate convergence check for the septet excited state ionizations using the

octet partial-wave set. A structure of the same orbital parameters but with l̄ = 6 pseudostates

included (dashed lines) is 10 - 25% higher than the structure used in the RMPS calculation

(solid lines) for all septet states across all incident energies.

Another check similar to the n4-scaling of the neon excited state cross sections was also

performed. Cross sections should increasingly resemble the classical solution with increasing

energy of the excited term. Figure 5.3 shows both the full raw septet cross sections as well

corresponding classically scaled cross sections. For the scaling a term’s ionization cross section

is multiplied by its ionization potential squared. A ratio of the incident energy to the term’s

ionization potential is used on the x-axis. These cross sections have close to the same ionization

potential. So since 3 of the 4 cross sections are close to each other, it indicates that there

is a connection between the magnitude of the neutral W ionization cross sections and their

ionization potentials. The 6s6p terms are tending towards the same scaled cross section (blue)
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as term energy increases. Further, the closeness in their shapes supports the overall consistency

of the R-matrix calculation and also that the cross sections themselves were properly extracted

from the OMEGA file.

Figure 5.3: Both raw and scaled ionization cross sections for the extracted excited states. Each

term’s specific ionization potential squared is used for the scale factor, and the ratio of the inci-

dent energy to the ionization potential is used for the horizontal axis. The 6s6p cross sections

all exhibit similar shape and show closer agreement with increasing term energy (decreasing

ionization potential).

Figures 5.4 - 5.6 show total ionization results for the quintet excited states that were ex-

tracted. The results seem reasonable in terms of shape and also consistency with each other and

with the ground and metastable cross sections. The 5d56s quintets are all almost identical, their

heights slightly increasing as ionization potential decreases. Both their shapes and trends in

height are additionally consistent with the metastable (7S) cross section (dashed line). Ioniza-

tion cross sections from the 6s6p are shown in Figure 5.5. As the 5d46pnl series could not be

included in the structure due to computational size, 6s ionization is not considered; although,
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the test calculation that included this series, demonstrated in Figure 4.9, indicated a negligible

contribution from the 6s ionization. The 6s6p Cross sections are generally smooth and tend to

peak at incident energies greater than twice the ionization potential. The 5F state closest to 0

eV (dashed magenta) peaks at roughly 37 times its ionization potential. The 5P cross section

closest to 0 eV (solid black) never reaches its peak, through to the last energy point around

10 eV. Figure 5.6 suggests the 5d56d, 5d36s26p, and 5d6 configurations share similar trends in

overall shape and farther away ionization peaks as the 6s6p configurations. The cross sections

further seem to be consistent across configurations regarding the heights of the peaks relative

to their ionization potentials.

Similar to the septet analysis, an examination of the 6s6p quintet classical scaling was

performed, in part motivated by the need to account for other excited states not extractable

from the R-matrix data. Figure 5.7 shows a subset of the 6s6p scaling. The diffuseness of

the lines, solid versus dashed versus dotted, designates the term energy order: the solid and

dotted lines represent the lowest energy term (5P at 5.54 eV) and highest energy term (5G at

7.78 eV). The heights of the scaled cross sections thus decrease with increasing term energy

and decreasing ionization potential. Furthermore, many of the cross sections, especially in

the middle of the term energy range, converge at higher incident energies. This convergence

in particular suggests that a scaling might be reasonable for obtaining cross sections of terms

missing from the RMPS calculation.
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Figure 5.4: Raw cross sections of the 5d56s quintet excited states. They all exhibit similar

shapes and, compared with the metastable (dashed) and each other, match the trend of an in-

creasing height with decreasing ionization potential.
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Figure 5.5: Raw cross sections of 6s6p ionization from the quintet states. Direct ionization of

the 6s was not considered.
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Figure 5.6: Raw cross sections of 5d56d, 5d36s26p, and 5d6 ionization. The cross sections are

overall smooth and follow similar trends regarding ionization potential versus height.
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Figure 5.7: Scaled cross sections for quintet 6s6p ionization. The cross sections are multiplied

by their ionization potentials squared and are plotted versus the ratio of the incident energy

to their ionization potential. The diffuseness of the lines indicate the term’s energy: the solid

line represents the term lowest in energy (highest ionization potential), while the dotted line

represents the term highest in energy (lowest ionization potential).

5.2 Fitting the Cross Sections and ECIP Scaling

Similar to neutral neon, all of the cross sections were fit using Rost-Pattard and Younger fits in

the lower and higher incident energy regions respectively. Unlike neon, issues arose particularly

for the ground and metastable cross sections in that the Bethe energy limit did not correspond

to the proper high energy behavior of the cross sections in LS- or LSJ-resolution. The Bethe

points are derived from a configuration-averaged distorted wave approach and therefore do not

account for the configuration mixing effects observed in the cross sections. The Rost-Pattard

fits as well tended to overestimate the cross sections, in part due to the small energy ranges of

the ground and metastable cross sections; they clearly have not reached the peak of their cross

sections yet in the available 0 - 16.5 eV incident energy span.
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A related issue to fitting the cross sections was also deriving scaled cross sections for

missing excited states. Among the missing excited state cross sections were singlet and triplet

terms as well as those arising from configurations included in the DARC structure but not in

the RMPS. An alternative to Rost-Pattard and Younger fits was therefore employed involving

a least-squares fit to the Exchange-Classical Impact Parameter (ECIP) cross sections of the

respective term’s ionization. The fit involved a single scale factor multiplied by the ECIP result

and often gave better results than the Rost-Pattard and Younger fits. Furthermore, the scale

factors can be applied directly to target levels in an adf04 file and utilized by the ADAS GCR

suite of collisional-radiative codes, allowing for a reasonable approximation for the ionization

rate coefficients for the missing excited states.

Figures 5.8 and 5.9 show a comparison of scaled ECIP results with the raw RMPS cross

sections for both 6s and 5d ionization. For 6s ground ionization and 5d metastable ionization

in particular, the high energy Younger fit (red) is producing a much higher cross section than

the general trend of the raw data. For both the ground and metastable ionizations, therefore,

the decision was made to use the scaled ECIP cross sections when making rates, rather than the

Rost-Pattard and Younger fits.
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Figure 5.8: Scaled ECIP (green) versus Rost-Pattard/Younger (red) fitting of the ground state

6s and 5d raw cross sections (black).
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Figure 5.9: Scaled ECIP (green) versus Rost-Pattard/Younger (red) fitting of the metastable

state 6s and 5d raw cross sections (black).

Rost-Pattard and Younger fits proved more reliable overall for the excited state cross sec-

tions compared to ECIP. The combination of two separate equations allows for more accurate

coverage of idiosyncrasies in the cross sections, such as extra smaller peaks prior to the overall

peak. Further, their cross sections, starting at lower energies, cover a broader cross section

range and are less sensitive to the configuration-averaged Bethe point. The Rost-Pattard and

Younger fits were therefore used when deriving rates for extractable excited states, while the

scaled ECIP cross section was used for the ground and metastable states. ECIP scaling was still

useful in determining cross sections from excited states not present in the RMPS calculation,

however.

Figures 5.10 and 5.11 show select examples of ECIP scaling for the 5d46s6p and miscel-

laneous excited state configurations respectively. Results for the fitting were mixed (pardon the

pun). In some cases the scaled ECIP result agrees well with both the raw data and its higher

energy trend. In other cases, e.g. the 5d46s6p (5H) and the 5d56d (5D), both the peak height
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and high energy trend clearly do not match the raw results. To make the ECIP and raw results

match as closely as possible, the ionization potential was shifted during the ECIP calculation

for some cross sections, such as with 5d46s6p (7F ).

Figure 5.10: ECIP scaling shown for select 5d46s6p terms. In some cases, such as the (7F )

cross section (top left), the ECIP ionization potential was shifted from that used with the RMPS

in order to produce better fits.

Cross sections from configurations and terms excluded from the RMPS calculation were

then obtained through fits to the ECIP scale factors, and these fits revealed interesting patterns

regarding parity and configuration mixing. Figure 5.11 shows a plot of the ECIP scale fac-

tors obtained from each cross section versus ionization potential and includes the ground and

metastable terms, as well as terms rising from the 5d56s, 5d46s6p, 5d36s26p, 5d56d, 5d46s6d,

and 5d6 configurations. Overall, the data appears to form two unique and possibly parallel

lines showing a positive correlation between ionization potential and the ECIP scale factor.

This trend makes physical sense in that terms with lower ionization potentials involve less
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interaction with the overall target system, and are therefore more likely to correspond to semi-

classical results. A similar result was seen with the neutral neon 4d, 4p, and 5p excited states

when n4-scaling was applied. A few exceptions are much higher than these two trend lines,

including the 5F , 5H , and 5P terms of 5d46s6p (with scales of 21.037, 11.942, and 8.116 re-

spectively) as well as 5d36s26p (5F ) (13.275 scale). The metastable scale factor shown is lower

than the two lines, though this can be explained by the choice of “1” for the occupation number

of the ECIP calculation shown. Recall, 5d and 6s ionization each contributed about half of the

total metastable (7S) cross section. The ECIP scales shown assumed ionization of only singly

occupied orbitals, namely 6s, 6p, or 6d. For ECIP, the final cross section is multiplied by the

occupation number. The large contribution of 5d ionization to the metastable, which really

should have an occupation number of 5, therefore skews its data point.

Two linear fits were thus applied to the ECIP scaling results, excluding the five outlier

terms mentioned above. Interestingly, the linear fits extended across different configurations.

The black line naturally included scale factors from 5d46s6p and 5d36s2, while the green line

included those from 5d56s, 5d46s2, 5d56d, 5d46s6d, and 5d6. The key difference between

these two configuration sets is their parities: the black and green lines correspond to ionization

from configurations of odd and even parities respectively. The odd parity fit is less precise,

y = (21.26 ± 2.78)x + (1.4295 ± 0.5415) with R2 = 0.9175, compared to the even parity

fit, y = (21.427 ± 0.804)x − (1.922 ± 0.268) with R2 = 0.9951. The two slopes are further

within 0.05 standard deviations of each other, suggesting a potential equivalence. The ECIP

method is blind to parity, and the shift between the two lines might suggest a deeper role for

the target configuration’s parity in its RMPS ionization cross section. Additionally, the three

5d46s6p configurations lying between the two lines are all 5D, a term also possible for all of

the shown even-parity configurations. Configuration mixing might therefore play a role in the

shift of these configurations closer to the green line, although another 6s6p (5D) term does not

exhibit this same shift.
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Figure 5.11: ECIP scaling shown for select configurations.
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Figure 5.12: ECIP scale factors for each extracted term cross section versus ionization potential.

Two linear fits were generated, which seem to correspond to odd (black) and even (green) parity

configurations and for which R2 = 0.9175 and 0.9951 respectively, if neglecting outliers.

Cross sections and rate coefficients for ionization out of the excited states present in the

DARC calculation but not the RMPS were therefore generated using ECIP with scale factors

calculated from one of the two linear fits of the scaling data, choosing whichever fit corre-

sponded with the excited state’s parity. A full set of ionization rates for all states of neutral

tungsten was therefore compiled from the RMPS calculation and stored in an adf04 file to be

made available to the public.

5.3 On the 5d46snl, 5d5nl, and 5d36s2nl contributions to excited state ionization cross sec-

tions and possible W+ final state resolution

An important assumption was made in generating the rate coefficients, whose validity will

be examined further in the succeeding section: the final W+ states were left unresolved. In

keeping with the raw cross sections, all of the ionization rate coefficients assume the W+ ground
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ionization potential, corresponding to 5d46s at 7.8640 eV. Configuration-averaged and LSJ

resolution of the W+ final states had been considered, including 5d5 and 5d36s2 at 8.784 eV

and 8.844 eV from the W ground state respectively. Resolving the final states would have the

effect of increasing the overall average ionization potential from each level, which would lead

to proportionately smaller cross sections and ionization rate coefficients. Yet, resolution of the

final ionized state is problematic for neutral tungsten due to both excitation autoionization and

configuration mixing typically present with both the initial and final states, which shall be the

topic of the present discussion.

Similar to the ground and metastable term-resolved ionization cross sections, the excited

state cross sections are the results of several effects related to configuration-mixing, shared

ionization pathways, and excitation autoionization. Resolution of the final W+ states would re-

quire separate accounts of the contributions from each of these processes, including which final

W+ state would result. Neutral tungsten can be ionized to 5d46s, 5d5, or 5d36s2, whose lowest

levels and energies are 6D1/2 at 0.00 eV, 6S5/2 at 0.92 eV, and 4F3/2 at 1.08 eV respectively.

As will be shown, the 5d36s2nl series contributed almost nothing to the excited state ioniza-

tion cross sections. The following discussion will therefore only consider ionization to 5d46s

or 5d5. Furthermore, a preliminary W+ structure calculation suggests that the lowest 5d46s

and 5d5 terms are highly pure, with leading percentages of 99.1% and 97.8% respectively. If

the final W+ states can be discriminated, their configurations will therefore be assumed as the

entire, rather than as a configuration contributing from a smaller mixing percentage.

The following processes related to W ionization can result in the 5d5 final state:

1. For W states that are predominantly 5d5nl, direct ionization out of the nl orbital into the

5d5n′l′ contributions of states above 0.92 eV. This includes any where the 5d5n′l′ series

are an appreciable percentage, major or otherwise.
2. For W states that are predominantly 5d46snl, direct ionization from the lesser 5d5nl per-

centage into the 5d5n′l′ contributions of final states above 0.92 eV. This includes any

where the 5d5n′l′ series are an appreciable percentage of the final state, major or other-

wise.
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For processes resulting in the 5d46s final state, the converse of the above processes are

possible in addition to a couple of others:

1. For W states that are predominantly 5d46snl, direct ionization out of the nl orbital into

the 5d46sn′l′ contributions of states. This includes any where the 5d46sn′l′ series are an

appreciable percentage, major or otherwise.
2. For W states that are predominantly 5d5nl, direct ionization from the lesser 5d46snl

percentage into the 5d46sn′l′ contributions of final states. This includes any where the

5d46sn′l′ series are an appreciable percentage, major or otherwise.
3. For 5d5nl contributions of W states, major or otherwise, direct ionization of the 5d orbital

from the 5d5nl contribution.
4. For 5d5nl contributions of W states, major or otherwise, excitation autoionization from

a 5d5n′l′ contribution, possible below 0.92 eV.

The above processes cover a wide range of possibilities for the crossing over from one

configuration series to another between initial and final states. For the general case of an

excited state term with appreciable configuration mixing, able to transition into a wide range of

heavily mixed pseudostates, one must therefore ask whether the ionization constraints upheld

in a configuration-resolved modeling of the atom are still valid. That is, for a given incident

electron energy, some of the above processes might be more favorable than others, whereas

in configuration-averaged resolution, a smaller number of processes, namely 5d and 6s direct

ionization and excitation autoionization, are possible. In both classical and quantum mechanics,

the motion and processes of a (closed) system correspond to minimizing the system’s total

energy. Ionization cross sections defined according to the ground state ionization potential of

W+ might therefore better reflect this precept of energy minimization.

As an illustration of the appropriateness of a W+ ground state resolution to the ionization

potential and also of the complications of resolving the final states, Figure 5.13 shows the

contributions of the 5d46snl, 5d5nl, and 5d36s2nl series to a representative sample of excited

states. Both the 5d46snl and 5d5nl contributions are significant for nearly all of the excited

states, shown or otherwise. Some exceptions include ionization from the 5d46s6p (5I) term,

for which there is only a 5d46snl contribution. The exclusion of other contributions for this
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term can be explained by the fact that the term can only arise from a 5d46s (4H) core. In

general, the 5d46snl series contributes the most to cross sections. Some exceptions include the

5d6 (5D) and 5d46s6p (5F ), both shown in Figure 5.13 for which the 5d5nl series contributes

the most.

The 5d36s2nl contributes less than 1% for all of the extracted cross sections, surpris-

ingly including for the 5d36s26p ionized terms. The cross sections of both of the extracted

5d36s26p terms, the 5F shown in Figure 5.13 are composed primarily of transitions to 5d46snl

states, with almost no contribution from the 5d36s2nl states. The 5d36s26p results contrast a

configuration-averaged picture, for which the system would be constrained to the much higher

5d36d2 ionization potential. They also further emphasize a breakdown in configuration-based

physical concepts of ionization: the 5d5nl contribution would correspond to an ionization,

double-excitation.
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Figure 5.13: Contributions of the 5d46snl, 5d5nl, and 5d36s2nl final state series to select ex-

cited state ionization cross sections. For most of the excited state cross sections overall, in-

cluding for terms arising from 5d36s26p (top left, e.g.), 5d46snl is the leading contributor. For

5d36s2nl contributes less than a percent for all of the cross sections, including for those cross

sections not shown.

Given that the excited-state ionization cross sections look fully-formed for all extracted

configurations relative to the ground state ionization potential and that the breakdown of con-

tributions in general strongly favors the lower energy 5d46s final state, ionization cross sections

and rates, including for missing terms requiring ECIP scaling, were obtained relative to the W+

ground state. Whether results would further be improved from full LSJ-resolution also seems

unlikely, despite most transitions not being possible to the LSJ ground level. The effect of an

potential overall shift in the ionization potential as a result of LSJ-resolution is considered in

the next section.
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5.4 Neutral Tungsten GCR Modeling Using the Full Set of R-Matrix Data

Figure 5.14 shows the resultant ground-resolved SCD from GCR modeling at electron densities

of 1013 and 1014 cm−3 of the full new tungsten dataset (red), including the DARC electron-

impact excitation results [41], the RMPS electron-impact ionization results, and ECIP scaling

of the RMPS for missing excited state ionization cross sections. The full atomic data uses ion-

ization results from branching ratios of the TDCC for the higher 5d46s2 excited states. It should

be noted that these results are still the subject of investigation and may be subject to change

(see the work in Section 5.5 on the sensitivity of the 6s6p excited state cross sections to changes

in the orbital wavefunctions). This SCD is nearly a factor of five and twelve higher at 25 eV

at lower and higher electron densities respectively compared to the SCD if only including the

RMPS ground ionization rate (green). The RMPS SCD from ground only ionization is slightly

more than half the TDCC ground only SCD across all electron temperatures from 0 to 26 eV

and both low and high electron densities. The SCD if not including ECIP, scaled or otherwise,

for missing excited states (blue) is within 20% of the results with all excited states included,

indicating that these additional excited states are not dominating the effective ionization rate

coefficient. The same trend is observed at high electron density, but the SCD without ECIP

is 60% that with scaled ECIP. As expected, therefore, the scaled ECIP rate coefficients, used

predominantly for higher excited states, contribute a larger percentage to the SCD at higher

densities, in keeping with a larger population in these states. Similarly, the TDCC and RMPS

SCDs for ionization from the ground only are further reduced at higher density. Compared to

results from unscaled ECIP rates (orange), which would correspond to the default ionization

rates in ADAS, the effective ionization rate from the new RMPS/scaled ECIP rates is increased

by about a factor of 5 or 6 at both shown electron densities.

An additional check on the importance of W+ final state resolution was performed (pur-

ple), for which the ionization potential in the adf04 file was increased by 0.5 eV. Given that

5d46s (6D) and 5d5 (6S) W+ levels range from 0.00 to 0.9199 eV, this seemed like a reason-

able approximation for a possible shift in the ionization potential due to final state resolution.

The shifted ionization potential was used to calculate the ECIP rates. The rates directly from the
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RMPS and TDCC calculation are stored in the adf04 file as being multiplied by exp(EIP /kBT)

for greater numerical stability. Upon GCR modeling, these rates were thus divided by this

factor, except the ionization potential EIP was now the shifted ionization potential. The SCD

decreased 6% and 15% for low and high densities respectively as a result of this shift.

Figure 5.14: Ground-resolved effective ionization rate coefficient results at electron densities

of 1013 and 1014 cm−3 from GCR modeling with the new tungsten atomic data. The difference

between the SCD from the full dataset (red) and those of not including ECIP for missing states

(blue), RMPS ground ionization only (green), and TDCC ground ionization only (black), illus-

trates the contribution of excited-state ionization at both low and high densities. The ground-

only results include ionization from all of the levels arising from the 5d46s2 5D term. Further,

the SCD was not sensitive to increasing the ionization potential by 0.5 eV (purple).

A similar study of the 400.9 nm photon emissivity coefficient, the denominator of the

S/XB, was performed, shown in Figure 5.15. For both 1013 and 1014 electron densities, the

full PEC, here assuming the metastable states are in steady-state with the ground population,

experiences a large reduction at higher electron temperatures, more than a factor of three and
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increasing for ne = 1014 cm−3, compared to the ones from including only ground state ioniza-

tion. Similarly, the PEC at 1014 cm−3 from unscaled ECIP ionization rates is reduced by almost

a factor of two compared to the ground only PECs. As electron-impact excitation is the main

driving force behind population of excited states, thus also of the PECs, the fact that ionization

is reducing the PEC is a significant result. Compared to ionization rates of lower levels, greater

ionization out of both the upper levels of the transitions and higher excited states that might

spontaneously emit down to the upper level are a plausible explanation. Compared to ioniza-

tion from the ground only, ionization from excited states reduces the population of the upper

level. Similar to the SCD, increasing the ionization potential by 0.5 eV has almost no effect on

the lower density PEC and a slight effect, about a third increase, on the higher density PEC.
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Figure 5.15: Ground-resolved 400.9 nm (5d56p 7P4 - 5d56s 7S3) photon emissivity coefficient

results at electron densities of 1013 and 1014 cm−3 from GCR modeling with the new tungsten

atomic data. The PEC from the full dataset (red) is reduced relative to those of not including

ECIP for missing states (blue), RMPS ground ionization only (green), and TDCC ground ion-

ization only (black). The ground-only results include ionization from all of the levels arising

from the 5d46s2 5D term. Further, the PEC experienced negligible change to a third of a ph

cm3 s−1 at low and high densities as a result of increasing the ionization potential by 0.5 eV

(purple).

So far, non steady-state metastables other than the ground state have been neglected in

GCR modeling. The ratio of the above SCD to PEC further suggests that the 400.9 nm

S/XB would be several orders of magnitude higher than those from experimental measure-

ments across all electron temperatures and densities. A ground-resolved S/XB using only un-

scaled ECIP is similarly orders of magnitude above experimental measurements, suggesting

the discrepancy is independent of the ionization data being used. In corroborotion with the
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metastable population modeling of Beigman et al. [11], then, metastable resolution might re-

solve the discrepancy of the 400.9 nm S/XB. The generalization of GCR modeling to include

multiple metastables was discussed in Section 2.6.

If metastable resolution is required for an accurate S/XB, the fraction of each metastable

population, which is unique to each plasma, must be also determined. Knowledge of these

neutral tungsten’s metastable population within plasmas such as at DIII-D is beyond the scope

of this dissertation. Another issue with metastable-resolved GCR modeling of tungsten is the

presence of a large excited state population, for which the GCR results must be appropriately

normalized. At present, a rough normalization of excited state populations is implemented in

ColRadPy [84], using a factor of the sum of the excited state populations + 1. A more complete

account of the excited state normalization will not be attempted here; however, metastable-

resolved GCR modeling with the rough population normalization used in ColRadPy might

help assess how many metastables are needed to represent plasma conditions, as well as the

relative importance of each metastable.

Figures 5.16 and 5.17 show the results of metastable resolution, performed with ColRadPy

[84], of the neutral tungsten atomic data on the SCD and 400.9 nm PEC respectively (solid

lines), at an electron density of 1014 cm−3. The first six levels, including the five arising from

5d46s2 (5D) and the one from 5d56s (7S), are used as metastables in GCR modeling. The

SCD and PEC results from GCR modeling with unscaled ECIP only is also shown (dashed

lines). Per metastables, the SCDs and PECs from modeling of the new RMPS atomic data are

about 3.33 times as large and the same order of magnitude respectively of those from modeling

with unscaled ECIP. For both cases, all of the metastable-resolved SCDs are within the same

range as each other for all electron temperatures, the RMPS/scaled ECIP SCDs slightly more

spread at higher electron temperatures. Further, the SCDs from both datasets are all higher than

their respective ground-resolved SCDs (black, diamond, and solid and dashed for the RMPS

and unscaled ECIP respectively). Overall, the metastable-resolved 400.9 nm PECs agree well

between RMPS and unscaled ECIP, with the latter being slightly higher at electron temperatures

above 5 eV for all metastables. The ground-resolved 400.9 PEC is not shown in Figure 5.17

for comparison, because it is much smaller than the metastable-resolved PECs. The small
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magnitude of the ground-resolved PEC explains why the ground-resolved S/XB appears much

larger than previous measurements.

The metastable 400.9 nm PEC plot hints at a possible way to obtain the metastable pop-

ulation fractions: the PEC is driven almost entirely by 5d56s (7S). This level is also the lower

level of the 400.9 nm line. The 400.9 nm upper level is thus populated mainly from its own

lower level, the same to which it also spontaneously emits. If other spectral lines exhibit simi-

lar behavior, being driven primarily by one of the metastables, a diagnostic for each metastable

population might then be obtained by measuring a series of lines, each being driven from a

different metastable. Collisional-radiative modeling for Mo has shown this to be the case [84],

with W showing similar behavior.
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Figure 5.16: The effective ionization rate coefficients modeled with the first six levels as

metastables, at 1014 cm−3. Across the 0 to 30 eV electron temperature range, the metastable

SCDs from the combined RMPS tungsten ionization and ECIP scaling data (solid lines) are

roughly each twice as large as their respective metastable SCDs generated using unscaled ECIP

ionization rate coefficients only (dashed lines). The ground-resolved SCDs for the full RMPS

(black, solid, diamonds) and unscaled ECIP only datasets (black, dashed, diamonds) are also

shown for comparison, which are both lower than each of their metastable-resolved counter-

parts. A rough excited state normalization factor, equal to the sum of the excited state popula-

tions + 1, is used.
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Figure 5.17: The 400.9 nm photon emissivity coefficients modeled with the first six levels as

metastables, at 1014 cm−3. Across the 0 to 30 eV electron temperature range, the metastable

PECs from the combined RMPS tungsten ionization and ECIP scaling data (solid lines) are

roughly each half their respective metastable PECs generated from using unscaled ECIP ion-

ization rate coefficients only (dashed lines)). The ground-resolved PECs for the full RMPS and

unscaled ECIP only datasets, not shown, are much smaller. In both cases, most of the PEC

is driven by the 5d56s (7S) metastable population. A rough excited state normalization factor,

equal to the sum of the excited state populations + 1, is used.

Figure 5.18 shows the lower bound of the metastable-resolved 400.9 m S/XBs resulting

from the full RMPS atomic data compared with previous measurements. Without knowledge

of the metastable populations, an exact line cannot be determined. Instead, the shown lower

bound (blue, triangles) is taken from the average of the metastable-resolved SCDs and solely

from the metastable 7S state, the highest PEC. It represents the S/XB if this metastable state

comprised the entire population of tungsten in the plasma. The upper bound, which would

correspond to the lowest PEC (the ground), is not shown, because it reaches into the hundreds
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across all shown electron densities at low electron temperatures. Three electron densities are

shown: 1012 (dot-dashed), 1013 (dashed), and 1014 (solid) cm−3 respectively. The 1013 and 1014

cm−3 lower bounds fall below previous measurements of the same density range. Yet, because

the upper bounds and the ground-resolved S/XBs are so much higher, it is hard to determine

the accuracy of the DARC/RMPS rate coefficients.

Figure 5.18: The 400.9 nm S/XB ratio from the DARC [41]/RMPS dataset compared to previ-

ous calculations and measurements [8,11,25,26,28]. Six metastables were used, and the S/XB

shown (blue, triangles) corresponds to the lower bound of the S/XB, the result of assuming all

of the population is in the 5d56s (7S) state. The ground resolved S/XB, which reaches into the

hundreds at low temperatures, is not shown. The upper bound of the S/XB with six metastables

reaches a similar high value. A rough excited state normalization factor, equal to the sum of

the excited state populations + 1, is used.
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5.5 6p orbital study to assess the accuracy of the RMPS ionization rates

A greater understanding of the accuracy of the neutral tungsten structure and RMPS calcula-

tions would help narrow the possibilities in understanding the high 400.8 nm ground-resolved

S/XB. Recall from Section 4.2 that the orbital scaling parameters were optimized primarily on

agreement of the ground and metastable energies as well as A-values for transitions with upper

levels close to the ionization potential. Most of the optimization involved adjustments to the

5d and 6s orbitals. From observation, the 6p orbital produced little effect on the energies of

the levels arising from 5d46s2 and 5d56s. Levels arising from 6p-occupied configurations were

sensitive to changes in the 6p lambda scaling parameter, however. The energies of the lowest

lying (septet) 6s6p states showed good agreement for λ6p ≈ 1.12 or 0.95. For the latter param-

eter, the A-values for emissions both from higher-lying excited states and from the 400.9 nm

transition showed significantly worse agreement. On the other hand, the ground-resolved S/XB

results suggest that the RMPS ionization rates might be too high.

Gauging the accuracy of the atomic structure along with the size of the odd parity cross

sections and rates is complicated by the presence of heavy configuration mixing between the

odd parity configurations and by the shifts in ionization potentials between configurations and

their LSJ-resolved levels. The odd parity study by Wyart [59] suggested only one odd parity

configuration has a 5d56p majority; that is, the presence of the 5d56p in the atomic structure is

primarily as a lesser percentage of 5d46s6p configurations.

A comparison of the RMPS 6s6p scaled ionization cross sections to CADW cross sections

relevant to N + 1 channel coupling are is shown in Figure 5.19, featuring the same term-specific

ionization potential EIP scaling as Figures 5.3 and 5.7. Recall, the sum of the ground and

metastable cross sections showed good agreement with the sum of the configuration-averaged

5d46s2 and 5d56s cross sections for DW and ECIP. The ground and metastable cross sections

exhibited a case of coupling between N + 1 channels, which one can think of as essentially

“N + 1 configuration mixing.” This kind of mixing arises from identical spectator electron sets

(5d46s for ground and metastable) leading to interference between Coulomb matrix elements

from otherwise orthogonal configurations. Configuration mixing is strongest between terms
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of similar energies. Similarly for the 6s6p cross sections, the septets are all within 0.04 Ryd

of each other (0.355 - 0.388 Ryd) and should therefore yield a similar comparison to the sum

of configuration-averaged cross sections corresponding to terms of similar energies. Configu-

rations relevant to the septets are 5d46s{6s, 6d}, 5d5{6p, 6d}, and 5d36s26p terms. The 6s6p

terms are heavily mixed with terms from all of these configurations, so N + 1 channel cou-

pling effects similar to those seen with the ground and metastable states are therefore possible.

Juxtaposition between the 6s6p RMPS and the DW scaled cross sections suggests the septets

and quintets demonstrate interference similar in shape to the different configuration-averaged

cross sections. A small dip in the cross sections is present around EINC./EIP = 2 for both the

CADW and RMPS septets. The RMPS quintets and septets further share peaks, in some cases

local ones only, in common with CADW. A large global peak occurs primarily for the septets

around 4.5 * EIP that significantly increases their cross sections. Ionization from all of the

configurations represented by CADW should be possible within this region, and the large in-

crease might be attributed to the 5d36s26p cross section. The sum over the cross sections all of

the configurations should be greater than the sum of the RMPS septet cross sections; however,

the RMPS septet sum would be slightly larger near this peak. On its own, this result does not

invalidate the RMPS odd ionization results. Both the sum of 6s6p cross sections and the high

ground-resolved S/XB do, however, raise the question of how reliable the RMPS results are,

particularly regarding odd parity configurations.
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Figure 5.19: Comparison of CADW 6s6p (blue), 5d56p (green), 6s6d (red), 5d56d (purple),

5d36s26p (cyan) with RMPS 6s6p term-resolved quintet (dashed) and septet (dotted) cross

sections. Cross sections are scaled by their ionization potentials EIP , and plotted over the ratio

of the incident energy EINC. with EIP .

Because adjustments to the 6p-orbital scaling parameter was primarily responsible for

shifting the 6s6p levels during optimization, an additional study was performed to gauge the

effect of the 6p-orbital scaling parameter on the ionization cross sections and rates. Atomic

structures resulting from different λ6p values between 1.12 and 0.95 were calculated along

with their cross sections resulting from the octet partial-waves. These cross sections were then

doubled, similar to the quintets in the full calculation, to approximate their entire cross sections,

and the same ECIP scaling technique was applied as described in Section 5.12.

Figure 5.20 shows ECIP scaling results for septet cross sections corresponding to struc-

tures with different 6p-orbital scaling parameters: 0.95, 1.00, 1.06, and 1.09. The black and

green lines represent the original fits to the even and odd parity configuration cross sections
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respectively. With the exception of λ6p = 0.95, cross sections for extracted even parity ioniza-

tion cross sections agree well with the original calculation, suggesting that the 6p orbital does

not have a significant effect on this set of cross sections. Uncertainty is present in generating

new fits for the datasets, as each set only has up to 5 points that are relatively close together.

Further, points corresponding to cross sections likely to experience stronger channel coupling,

as observed with the 5D terms from odd parity configurations, are likely to be apart from the

fit line and closer to the even parity data points. For example, the λ6p = 1.06 (stars) data point

that is closest to the even parity configurations is of the 6s6p (7S) term.

Some λ6p datasets suggest the odd parity configuration line should be parallel to the even

parity line, particularly for λ6p = 0.95 and 1.09. The λ6p = 1.00 and 1.06 data sets, on the

other hand, leave open the possibility that the odd and even parity configuration lines are not

parallel. Both contain an outlier point corresponding to the 5d56p (7P ) ionization cross section.

The 5d46s6p (7P ) data point from the original calculation is not an outlier, however. Linear

fitting of the λ6p = 1.06 dataset if excluding the last 6s6p (7S) point leads to an R2 value of

0.9992. Furthermore, using a parallel slope for this dataset, such that the three points highest

in ionization potential are closest to the line, results in negative ECIP scale factors for levels of

lower ionization potentials.
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Figure 5.20: Results from a series of RMPS octet partial wave calculations to study the effect

of varying λ6p. Each point represents fitted ECIP scale factor of a septet term cross section

doubled (to approximate the sextets). Datasets for λ6p = 0.95 (down triangle), 1.06 (star), 1.09

(circle), and 1.00 (up triangle) are further distinguished by even (green) and odd (black) parity

configurations. The original even and odd parity fits from the original calculation are also

shown.

A-values were further examined, the same transitions as those in Section 4.2, and a full

comparison can be found in the appendix. Some structures were clearly better than others,

though none gave good agreement for all A-values. Best overall agreement with NIST A-values

was seen in the range λ6p = 1.03 to 1.065. Agreement with A-values for higher energy levels

was reached its lowest for λ6p = 1.3, at around 3% with NIST for the two highest. Agreement

with DARC was worse than the original structure, however. It should also be emphasized that

the lowest septet energy levels became lower as λ6p was decreased, by over an 1 eV compared
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to NIST for λ6p = 1.03 for example. Therefore, values of λ6p closer to the original 1.12 would

be preferred in cases where A-values show similar agreement.

A compromise between better higher-term A-values and accurate septet energies was seen

with λ6p = 1.09, whose data points coincided with the even parity line fit. A GCR test was

therefore performed corresponding to this λ6p, for which the odd parity fit line was assumed

equal to the even parity fit line. Changes in the 400.9 nm PEC and the SCD from the original

calculation are shown in Figures 5.21 and 5.22. A 30% reduction in the SCD is seen at ne =

1014 cm−3; however, the SCD is still over four times higher than the SCD from unscaled ECIP

GCR modeling. The 400.9 nm PEC shows similar results: slight increases from the original

calculation at lower and higher densities and also several factors lower than ECIP.

Another test was performed to examine the effects of a level’s individual ionization rate

coefficient. For this test (solid green in Figure 5.22), the ionization rate coefficient of the upper

level of the 400.9 nm line was set to the unscaled ECIP rate coefficient, a reduction of over a

factor of 8. No effect was observed for the SCD, but the PEC increases by the same amount as

the λ6p = 1.09 test from 0 to 15 eV, after which it slowly becomes smaller.
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Figure 5.21: Comparison of the SCD if changing λ6p from 1.12 (red) to 1.09 (black) at 1013

and 1014 cm−3 electron densities. The unscaled ECIP SCD (dashed orange) is also shown.
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Figure 5.22: Comparison of the PEC if changing λ6p from 1.12 (red) to 1.09 (black) at 1013

and 1014 cm−3 electron densities. Results from switching only the ionization rate coefficient of

6s6p (7P ) (green), the upper level of the 400.9 nm line, yield similar results to the 6p orbital

switch. The unscaled ECIP SCD (dashed orange) is also shown.

As Figure 5.23 shows, the ground-resolved S/XB from λ6p (red) experiences a large re-

duction from the original calculation (blue), up to 80% at ne = 1013 (dashed) and 90% for ne =

1014 cm−3 (solid). The S/XB is still several factors above measurements, however.
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Figure 5.23: Comparison of the S/XB coefficient from GCR modeling with the λ6p = 1.09

structure and preliminary RMPS calculation (blue) with the original calculation (red) at ne =

1013 (dashed) and 1014 cm−3 (solid). The S/XBs from modeling with λ6p = 1.09 at 30 eV are 41

and 12 times lower than the original ground-resolved S/XBs at 1013 and 1014 cm−3 respectively.

5.6 Conclusions

Excited state ionization cross sections were extracted for the RMPS neutral tungsten electron-

impact ionization calculation that suggested separate even and odd parity configuration scaling

to the semi-classical ECIP method. Mixing of the target configurations and channel coupling

was found to play a significant role for odd parity terms with ionization potentials less than

0.15 Ryd. Configuration mixing at this energy range is of similar amounts to that observed

by Wyart [59]. The ground-resolved S/XB is orders of magnitudes too high from previous

measurements; however, the lower bound of the S/XB from GCR modeling with six metastables

suggests the S/XB is within range if assuming a high metastable population. A study on the

6p orbital suggests that the S/XB is sensitive to this orbital’s scaling parameter but that the

ground-resolved S/XB still would not agree with experiment for all electron densities.
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Chapter 6

New Insights and Future Directions in High-Z Electron-Impact Ionization, GCR Modeling,
and Code Development

6.1 Introduction

The work presented in this dissertation for neutral W represents the largest non-perturbative

RMPS calculation to date, and is focused on diagnostically important quantities. This has allow

a new understanding of important atomic effects expected to be important for other high-Z open

d-shell atoms, in addition to quantifying the role of excited state ionization and producing new

computational advancements. We reiterate and summarize these advancements. This chapter

is organized as follows:

1. Conclusions from the new R-matrix electron-impact ionization calculation of neutral

tungsten are summarized, with an emphasis on the unexpectedly strong importance of

configuration mixing and the possibility of scaling ECIP cross sections.
2. Excited state ionization effects on GCR modeling are examined for both neutral neon

and tungsten. A discussion on the effects of the new data on the SCD, PEC, and S/XB

coefficients is presented.
3. An overview is given of new code development required for the neutral tungsten electron-

impact calculation, including attempted changes that were not beneficial. Computational

limitations and future directions of code development are discussed.
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6.2 Configuration-mixing and Channel Coupling Effects and Excited-State Ionization Scaling

in the Electron-Impact Ionization of Neutral Tungsten

For open d-shell elements, all strongly contributing ionization pathways are required for accu-

rate configuration and term-resolved ionization cross sections. This was observed when running

tests with the octet set of partial-waves on the metastable 5d56s (7S) cross section. Running

each ionization pathway, 5d46sn̄l, 5d5n̄l, and 5d36s2n̄l, separately would have been beneficial

for limiting the size of the RMPS electron-impact ionization calculation. A dramatic decrease

in the metastable 6s ionization cross section was observed upon adding the 5d46sn̄l series to

the 5d5n̄l series, despite the former ionization not being extracted. In terms of the N + 1 Hamil-

tonian, this effect can be attributed to configuration mixing of the final excited states rather than

the mixing between the ground and metastable state. Recalling the rules governing configura-

tion mixing detailed in Section 2.2, mixing can only occur if two configurations have the same

parity and differ in at most two orbitals, such as is the case between all of the 5d46snl, 5d5nl,

and 5d36s2nl series. Furthermore, mixed configurations must share LS or LSJ total angular

momentum quantum numbers. Open d-shell configurations are therefore more susceptible to

mixing than open s− and p−shell configurations in that, not only can open d-shells result in

many terms, but identical quantum numbers can be generated for many combinations of d-

shell occupation numbers when other occupied shells, such as the 6s and 6p with tungsten, are

present. As discussed in Section 4.6, the ground 5d46s2 (5D) LS state had an 89.88% purity,

while the highest percentage of the largest contributing final state for the ground ionization

cross section was only 10.14%, suggesting most of the mixing effects are attributable to the

upper states. These correspond to pseudostates for direct ionization and optical states for exci-

tation autoionization. Mixing to the continuum is present in both the N-electron Hamiltonian

between optical and pseudostates, as well as in the N + 1 Hamiltonian, between combinations

of target-continuum orbital states.

Configuration mixing led to both 1) contributions from unexpected configuration series

and 2) changes in relative contributions between expected configuration series. The 5d5nl series

contributed to the 5d46s2 (5D) ionization cross section. A similar finding was noted previously
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with C+ ionization [116], whose ionic core is Be-like and more prone to mixing. Contributions

from other configuration series are not considered in perturbative approaches such as distorted

wave and in configuration-averaged methods that do not allow for coupling between target-

continuum electron channels. LS- and LSJ-resolved R-matrix, by comparison, calculates the

Hamiltonian across all possible channels and includes possible interference between them in

the off-diagonal elements of the N + 1 Hamiltonian. For the LS-resolved Hamiltonian used

in the present work, the off-diagonal elements arise from the Coulomb operators, representing

mutual repulsion between electrons. In the calculation of the Coulomb operators, described

in detail in Fano [117], “active” electrons are distinguished from “spectator” electrons. It can

be shown [61] that the spectator electrons do not contribute to the Coulomb matrix elements

except for imposing an orthogonality constraint between the bra and ket. In other words, the

spectator configurations must match on both sides for the overall matrix element to be non-zero.

Interference due to the Coulomb matrix elements can be generated in two ways: 1) from

configuration elements representing lesser percentages of states in either or both the bra and

the ket, and 2) from two different configurations sharing the same set of spectator electrons.

The 5d5nl contribution to the ground 5d46s2 ionization cross section, for example, can be seen

as a case of 1) in that the relatively pure ground state nevertheless has a non-zero contribution

resulting from the lesser 5d46snl percentages of the 5d5nl upper levels.

In the context of ionization, 2) can be understood as the presence of shared ionization

pathways. For the N + 1 Hamiltonian, only Coulomb elements associated with an active con-

tinuum orbital are considered. The other active electron in a bra or ket comes from the target.

Coulomb elements in which the spectator and active electrons represent the W+ core and ion-

ized electron respectively are of particular significance to ionization. Interference between

ionization pathways can therefore originate from Coulomb matrix elements in which the bra

and ket correspond to different ionization pathways (configuration series). The discrepancies in

the ground and metastable ionization cross sections can be attributed to this interference. The

metastable 5d and ground 6s ionizations, which share the same 5d46s core, were much lower

and higher respectively than previous calculations. Yet, the total cross section of ionization out
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of the summation of the ground or metastable states was in between distorted wave and ECIP,

in support of the overall validity of the ionization results.

Configuration mixing and channel coupling played an even more prominent role for ex-

cited states. An analysis of configuration series contributions to cross sections from 5d36s26p

states revealed almost none of the cross section was to the actual 5d36s26p series, which in a

configuration-averaged viewpoint would correspond to direct ionization. The relative contri-

butions of the series seemed to reflect the energy level ordering of the resulting W+ core: the

5d46snl series leading to the W+ 5d46s ground configuration generally contributed the most,

while the 5d36s2nl series leading to the W+ configuration highest in energy contributed almost

nothing.

The neutral tungsten ionization results therefore suggest that at least LS-resolution is nec-

essary for proper term-resolved ionization cross sections: the total term-resolved ground state

cross section is distinctly higher than even distorted wave, while the total metastable cross

section is distinctly lower than even ECIP. Whether the total ionization from all states yields

different results than perturbative and configuration-averaged methods remains unclear. That

is, configuration-averaged TDCC calculations for all tungsten configurations might still yield

roughly the same total ionization as R-matrix. The total ground and metastable ionization cross

section, essentially summing over all possible states for a given energy range, suggested that

the total ionization cross section might still be preserved. However, the available data is too

approximate to make definitive conclusions, and the ionization potential in the calculation was

assumed at the W+ ground, 7.864 eV, rather than trying to resolve the final W+ states. One

might propose that configuration mixing actually increases ionization, because it allows states

of higher associated configuration series to ionize at lower energies. For example, the lowest

possible W+ core configuration of the 5d36s26p state is 1.08 eV above the W+ ground state.

Yet, as was seen in the relative series contributions to the cross section, the 5d46snl and 5d5nl

series, which would correspond to W+ cores lower in energy, comprised almost the entire cross

section. It is therefore difficult to say for certain the effect of configuration mixing on total

ionization from a high-Z open-d shell atom, although the results of this work do suggest that at
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the very least all configurations resulting in the lowest in energy ionic cores must be calculated

for full convergence of the total ionization.

Possible scaling of excited state cross sections for both neutral neon and tungsten further

revealed interesting patterns that might help diminish the need for large calculation in the fu-

ture. Excited state cross sections for neutral neon exhibited a classical scaling of 1/(ionization

potential)2 (i.e., an n4-scaling for screened hydrogenic systems). This scaling was particularly

suitable for higher l orbitals, possibly related to the incoming electron having a higher angu-

lar momentum and thus being farther away from the atom. Classical scaling for a range of

valence n-shells could not be examined for neutral tungsten due restrictions on how high in

n optical orbitals could be used in the structure. Instead, classical scaling with the ionization

potential was investigated. Fits of the extracted cross sections to their respective ECIP cross

sections were performed, and the scaling of these fits showed strong correlation with respect to

the term/level-specific ionization potentials. Two linear fits to these scaling parameters versus

ionization potential were rendered, seeming to correspond to sets of even and odd parity target

configurations respectively. This result is being investigated and will be the subject of future

work. The lines were effectively parallel; it would be interesting to do such a study of other

complex systems to see if this trend is repeated. Further, all of the odd parity configurations

included the 6p orbital, so difference between the two lines may also be related to that orbital

instead. The even parity configurations consisted of different combinations of the 5d, 6s, and

6d orbitals. The ECIP method, while approximating exchange effects, is blind to parity. Yet,

parity can play an important role in Hamiltonian elements, where both the bra and ket must

have the same parity for any nonzero element. The source of this ECIP scaling therefore war-

rants further investigation, though it is reasonable to assume ionization cross sections of other

atoms may also scale with ECIP.

Another approximation aside from ECIP scaling proved invaluable, nay a deus ex machina,

for the success of the neutral tungsten calculation: that the upper and lower N + 1 spin sets

contribute equally to ionization cross sections. Separate octet and sextet cross sections agreed

within 10% across all incident energy ranges for the metastable 5d56s (7S) cross section.
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Other approximations in the tungsten calculation gave reasonable results regarding limit-

ing the pseudo orbital range to l̄ = 5 and neglecting relativistic correction terms such as mass-

velocity, Darwin, and spin-orbit interaction in calculating the Hamiltonian. The last would have

required recoupling to LSJ, which, as seen with the neutral neon excitation, required much more

computational power to perform. Further, whereas the neon excitation calculation recoupled to

400 levels, the tungsten calculation would require nearly 41,000 levels, over 100 times the size.

The neon ionization calculation further was converged upon including pseudostates through

l̄ = 6. The octet tests on the tungsten calculation suggested cross section convergence at the

same l̄; however, it was shown in Section 4.4 that the reduction in cross sections from mass-

velocity and Darwin effects were of the same magnitude as the increase in cross sections due

to including l̄ = 6 pseudostates. Also, while relativistic effects were not included in the N + 1

Hamiltonian, they were used in optimizing the target structure prior to the RMPS run. So, the

target orbitals themselves have radial positions that reflect the relativistic nature of the tungsten

atom, even if it is assumed relativistic effects are small for the actual collisional process.

Recall the original questions posed in Section 1.3:

(1) Do all ionization pathways need to be considered in a single calculation for accu-

rate electron-impact ionization cross section results, or can they be treated separately?

This question is in essence referring to the simultaneous inclusion of Hamiltonian elements

from configuration series corresponding to different ionization pathways. For accurate term-

resolved cross sections, yes, if the pathways/configuration series exhibit high degrees of mixing

between their configurations and/or if the pathways share a common ionic core. Configuration

series whose ionic core begins much farther from the ionic core’s ground state may not be

necessary, but should be tested. Whether ionization pathways can be treated separately for

total ionization from all states is still an open question.

(2) What is the effect of configuration mixing on term- and level-resolved electron-

impact ionization cross sections?

Configuration mixing results in 1) contributions from configuration series other than that

of the initial state that may not correspond to a direct ionization pathway, and 2) changes
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in the sizes of term- and level-resolved cross sections, due in particular to shared ionization

pathways.

6.3 R-Matrix and GCR Current and Future Code Modification, Expansion, Development, and

Scaling Graphs for high-Z Atomic Species

Recall the third question posed in Section 1.3: (3) how can the size or computational burden

of more expansive non-perturbative calculations be reduced while maintaining accuracy

in the results?

The standard (unmodified) RMATRX I [72] as it stands is not sufficient for handling the

entirety of electron-impact calculations as large and complex as those involving tungsten’s low

charge states. The present work, if all possible partial-wave spin sets had been calculated, repre-

sented the most computationally expensive R-matrix calculation to date, in terms of RAM, I/O,

and required runtime. As has been previously discussed, much of this burden was alleviated 1)

by assuming the lower spin sets yielded equal contributions to cross sections as the higher spin

sets and 2) that the ionization cross sections scaled well with ECIP. In addition to the octet and

sextet contributions being within 10% across all calculated energy ranges for the metastable

5d56s cross section, it can be observed from Figure 5.12 that the ECIP scale factors obtained

from the septet configurations fall onto the same lines as those of the quintet configurations,

whose cross sections were obtained from doubling the sextets. Further GCR testing in which

the ECIP scale factors are used for all ionizations reveals that the SCDs and PECs agree well

with those obtained from using both RMPS and ECIP scaling. In other words, nearly identical

GCR results could have been obtained from calculating only the octet contributions, doubling

the octets for the septet states, generating ECIP scale factors for the septet cross sections, and

applying a fit to the scale factors for the remaining cross sections. The ECIP scaling was not

without its limitations, however. It yielded no information regarding relative contributions of

the different configuration series to the cross sections, and the shapes of the scaled ECIP cross

sections did not always match the RMPS cross sections, as demonstrated in Figure 5.10.

While the approximations used here can serve as a strong point of reference for future cal-

culations, additional code development to the R-matrix codes and to the processing of atomic
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data remains important, not only for ensuring accurate results, but also to allow for full uti-

lization of modern supercomputer architectures. For example, Summit, the new supercomputer

at Oak Ridge and whose smaller development cluster was in part utilized in this work, is a

CPU-GPU architecture: each node is comprised of two CPUs with 21 processors and 6 GPUs

each. As will be discussed, GPUs can result in considerable speedup for linear algebra compu-

tations [118–120], such as the eigendecomposition and matrix-matrix multiplications present

in the R-matrix codes. This section contains a summary of the code development performed in

the current work, as well as some scaling graphs related to GPUs to illustrate the performance

of Stage 3 and f on the Oak Ridge Titan and Rhea supercomputers. Certain possibilities for

limiting the size of the calculation had also been explored but ultimately were not used, and

these attempts are also briefly discussed.

To summarize the code development undertaken in the present work:

1. A set of modifications to RMATRX I [72] involving Stage 2 and calculation of the N

+ 1 Hamiltonian was completed in order to 1) account for additional physics present in

high-Z atom collisions but absent in low-Z collisions, 2) to allocate computer resources

more efficiently during runtime (e.g., reducing I/O at the expense of RAM), and 3) to

reduce overall runtime.
2. Other modifications were explored as well, particularly for Stage 3 with Hamiltonian

diagonalization and for Stage f with the R-matrix matrix multiplication, which was not

suitable to be performed for the large neutral tungsten quartet partial-wave Hamiltonians

at the present time. Scaling graphs of Stages 3 and f are included, with a comparison to

a new GPU version of Stage f.
3. Finally, various Python and Fortran codes are described that process collisional data and

generate properly LSJ-resolved rate coefficients. Most notably, 1) a much more memory

efficient Python code for cross section extraction from OMEGA files (the Stage f and

final R-matrix output), as well as 2) a code to split LS- into LSJ-resolved ionization cross

sections via branching ratios were developed.
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6.3.1 Stage 2 Modifications

Stage 2, which calculates the N and N + 1 Hamiltonians, was modified in many ways related to

compensating for the the closed f -shell of tungsten, maximizing RAM usage, and reducing I/O

and runtime. Further modifications, such as streamlining the Hamiltonian element calculations

and usage of GPUs over the last configuration loops, could help reduce Stage 2 runtime and the

need for human oversight.

Fix allowing for closed f-shells

Both pstg2r.f and stglib.f, the latter of which contains many subroutines and functions related

to linear and angular algebra, required modification to allow for the presence of the closed f -

subshell of tungsten. Prior to modification, the code allows only up to 2 electrons in subshells

with l ≥ 3. This 2-electron constraint stems from a lack of angular algebra data written into the

code regarding both terms and coefficients of fractional parentage related greater occupation of

higher l subshells.

The original f -subshell problem was identified based on the values of the R-matrix poles,

or eigenvalues of the N + 1 Hamiltonian, following Stage 3 diagonalization. A calculation

displaying proper atomic collisional physics would result in the range of R-matrix poles be-

ing higher in absolute energy than the ground state of the N + 1 bound system. For example,

in a bare R-matrix calculation run with only the W6+ ground state configuration, 6s, an AU-

TOSTRUCTURE run of the N + 1 configuration, 6s2, results in an absolute ground state energy

of -15292.3950 Ryd. Yet, the range of R-matrix poles from just the 6s configuration extended

lower. Upon modifying the code as described below, the poles properly started above the N + 1

ground states for all ions and configurations tested, including with more than one configuration.

The coefficients of fractional parentage are required with the one- and two-electron opera-

tors for distinguishing ”active” and ”spectator” electrons, the rules regarding which are defined

in [117]. The N + 1 Hamiltonian includes direct Coulomb interaction operators between the

continuum electron and each bound/pseudostate orbital.
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The following changes were made related to the f -subshell:

stglib.f:

1) The TERMS array was extended to include the seniority, angular momentum, and spin

quantum numbers arising from f 12, and FUNCTION NTAB1 was modified to call the new

terms when the spectator electrons of a Coulomb matrix element include f 13. The size of the

TERMS array and its indexing arrays were correspondingly changed throughout the code.

2) A SUBROUTINE CFPF was added, which yields the coefficient of fractional parentage

arising from the f 12 terms, i.e., with f 13 spectator electrons. Although the CFP for an orbital

with two electrons is 1.0, the CFP for an orbital with two electrons missing is not. The CFP

for f 12 is calculated through the following Racah recursion relation [61]:

(l4l+2−w ¯vLS|}l4l+3−wvLS) = (−1)L+S+L̄+S̄−l−1/2

×[ w(2L̄+ 1)(2S̄ + 1)
(4l + 3− w)(2L+ 1)(2S + 1)]1/2(lw−1vLS|}lw ¯vLS), (6.1)

where w and l are the number of electrons and orbital angular momentum, and vLS and ¯vLS

represent the quantum numbers of terms arising from lw and lw−1 orbitals respectively.

pstg2r.f:

1) In SUBROUTINE CONFIG, the constraint of no more than 2 electrons was relaxed to allow

for fully occupied f -subshells.

2) The size of the TERMS array and its indexing arrays were changed throughout the code to

reflect the additional f 12 terms.

Importantly, these changes specifically considered only closed f -shells. Further modifica-

tion for open fw subshells where w > 2 would require extending the TERMS array to include

fw−1 terms and writing arrays into SUBROUTINE CFPF to include the (numerous) CFPs from

each fw−1 term.
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Memory and I/O Improvements

Two other major changes were made to pstg2r.f and stglib.f related to improving user flexibility

and reducing I/O, and these changes were discussed in Section 4.3. A sample of the code

modifications, SUBROUTINE SETMX1 that calculates the N + 1 Hamiltonian elements, has

been provided in Appendix B, along with a list of pstg2r.f variables and their definitions. To

recapitulate, an effective cap on the RAM allocated for calculation of the N + 1 Hamiltonian

elements was lifted through changing the integer precision from int*4 to *8 throughout the

code, including for the variable responsible for RAM.

The user can also now manually choose for which target symmetries to calculate N + 1

Hamiltonian elements in a given program execution. A prior print-off can be generated, through

setting “idimcheck = 1” in the dstg2 namelist, that lists the number of Hamiltonian elements

for a given target SLΠ symmetry bra (including all of its channels) and each of its kets, as well

as the total size of all of its kets. Recall that pstg2r.f has been parallelized as one processor

per partial-wave per target symmetry [67]. Prior knowledge of the number of Hamiltonian

elements per target symmetry allows the user to avoid running symmetries with no channels

and also to run symmetries of similar sizes together, increasing computational efficiency. To

manually choose target symmetries, the user must supply a list, “symlist”, which is simply a

file with a different symmetry number on each line. The symmetry number corresponds to the

one from the prior printoff. The first number of the file must equal the number of symmetries

in each file.

Beyond parallelization as one processor per partial-wave per bra target symmetry, Stage

2 could further be streamlined to automatically fetch N + 1 Hamiltonian blocks left to calculate

upon a processor finishing its symmetry; that is, a calculation stack could be implemented. This

would reduce the need for humans to manually submit batches of symmetries. In addition, the

code could further be parallelized as one processor per partial-wave per bra target symmetry

per ket target symmetry.

Use of GPUs is currently not allowed in Stage 2, and while they are not critical for the

stage, they likely would further reduce runtime. Runtime for the tungsten sextet partial-waves
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was around two weeks each prior to the RAM cap removal modifications and one to three

days after. Most of the remaining runtime was consumed in for loops over the set mixed

configurations of the bra and ket target states. For reference, the maximum number of mixing

configurations for a given target state of the neutral tungsten calculation was 706. For a given

N + 1 Hamiltonian matrix element, the contributions of all the configurations of the bra and ket

target symmetries are summed over. This step could instead be cast as a matrix multiplication

step, consisting of a matrix of all separate term-term elements, multiplied by another matrix of

the same dimensions, consisting of the outer product between the bra and ket sets of mixing

coefficients.

6.3.2 Stages 3 and f: scaling graphs and future directions

With the new Stage 2 improvements, no technical limitations now exist on the size of the N and

N + 1 Hamiltonians that can be calculated and written to file for electron-impact calculations of

large ions and with many pseudostates: as long as one has enough RAM to store (# Configura-

tions per Target Symmetry * # Channels per Target Symmetry) * (Basis Set)2 * # Channels per

partial-wave Symmetry) elements at a time per processor and target symmetry. Stages 3 and

f, responsible for N + 1 Hamiltonian diagonalization and the R-matrix matrix multiplication

respectively, are much less scalable as the Hamiltonian and channel sizes increase.

At Stage 3, the Hamiltonian matrix, stored as its upper triangle, is partitioned over proces-

sor blocks: each processor stores only a part, and the global eigenvectors need not be calculated.

ScaLAPACKs PDSYEVD, a parallel divide and conquer algorithm for real Hermitian matri-

ces, is used to diagonalize the partitions. Figure 6.1 shows the both diagonalization and overall

runtime for Stage 3 as a function of Hamiltonian size. Also included is a partition comparison

between 32 x 32 blocks (1024 processors) and 50 x 50 blocks (2500 processors). As expected,

a larger proportion of the overall runtime is spent diagonalizing the matrix for the 32 x 32

compared to greater partitioning. For larger Hamiltonians, processing, organizing and message

passing between processors becomes increasingly time-consuming for the 50 x 50 partitioning.
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Figure 6.1: Stage 3 diagonalization and total times versus Hamiltonian size. The black and blue

lines represent 32 X 32 and 50 X 50 partitioning respectively. The data points were collected

using neutral tungsten octet and sextet partial-waves run on Supercomputer Hazel Hen.

For neutral tungsten, the quartet partial-waves reach up to 45000 channels, so, with a basis

set size of 29, diagonalization of matrices beyond 1,300,000 rows/columns would be required.

Based on an exponential least squares fit of the total runtime versus Hamiltonian size with 50

X 50 partitions (the blue line in Figure 6.1), such a calculation under the same partitions would

require 8,500,000 hours, well beyond modern computational resources.

Future large-scale calculations of smaller size than neutral tungsten might still benefit from

a hybrid CPU-GPU code suite such as MAGMA [119]. MAGMA offers a hybrid eigensolver,

in which different steps of the eigendecomposition problem occur on either the CPU or GPU

[121]. Scaling tests shown by Tomov et al. show a 12x speedup from using 3 GPUs versus 12

cores on the tridiagonalization step of the eigendecomposition problem. The MAGMA routines
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require relatively small changes to existing code to implement and would therefore be worth

exploring.

To recall, Stage f calculates the R-matrix and solves the outer region, resulting in cross

sections for all possible target transitions over a set of supplied energy points. Recent code

development has allowed for the R-matrix matrix-matrix multiplication step to be performed

on GPUs, resulting in a considerable speedup.

The R-matrix matrix multiplication step described by Equation 2.38 is an ideal case for

utilizing GPUs. In recent code development [122], the previously used DGEMM has been

replaced by a CUDA Fortran subroutine. The reduced radial orbital matrices are copied to the

GPU, where the matrix multiplication is performed. The results are then copied back to the

CPU. Figure 6.2 shows a logscale comparison of Stage f runtimes on Rhea. Using the regular

Stage f, the R-matrix multiplication becomes almost the entirety of the runtime as the size of

the problem, the number of channels, increases. At 6000 channels, the GPU code runs 10 times

faster, with the matrix multiplication roughly 100 times faster.
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Figure 6.2: Stage f runtime comparison using CUDA Fortran (green) versus the original non-

GPU DGEMM from BLAS (black) for the R-matrix multiplication. The solid and dashed lines

indicate the total Stage f and R-matrix multiplication runtimes respectively.

Further modifications have been made to allow the R-matrix multiplication step to fit onto

GPU memory [122]. For the quartets, if keeping a basis set of 29 and with NCHAN = 45,000,

the matrix-matrix multiplication would require nearly a terabyte of RAM. To reduce memory

requirements, the code now splits the reduced radial matrices into smaller partitions, which are

sequentially copied over to the GPU for smaller matrix-matrix multiplications. The last point

in Figure 6.2, with NCHAN = 6,267 and MNP1 = 196,887, was obtained using this updated

GPU code, partitioning the reduced radial matrices into fourths. It suggests surprisingly small

overhead from copying back and fourth between GPU and CPU.
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Partitioned R-matrix for Stages 3 and f

Another possibility exists to limit the size of Stage 3 and f for electron-impact ionization calcu-

lations: compute only a smaller subset of eigenvalues/eigenvectors and approximate the contri-

bution of the others within the R-matrix. The theory for this idea was first described by Berring-

ton and Ballance [123]. This method had been explored for the neutral tungsten calculation,

but it ultimately suffered problems related to the accuracy of the SCALAPACK algorithms [76]

for computing only a subset of eigenvalues rather than all of them.

Partitioned R-matrix begins with the assumption that only a subset of the N + 1 Hamil-

tonian Hij eigenvalues, the lowest in energy, are known [123]. The unknown eigenvalues are

approximated as one degenerate eigenvalue, E0. Let Xk′k denote the matrix containing the full

stack of N + 1 eigenvectors and j the number of the l eigenvectors known. The assumption of

partitioned R-matrix can therefore be expressed as,

m∑
k=1

HikXkj = XijE0 j > l (6.2)

From a least-squares fit of Equation 6.2, an expression for E0 and for the R-matrix con-

taining E0 can be obtained [123]. RMATRX I [72] previously included an option to run Stage

3 and f via the partitioned R-matrix, done by setting “IPRCENT” in the namelist equal to the

percentage of eigenvectors to be calculated. This option still works in Stage 3 for finding the

subset of eigenvectors; however, in Stage f, the partitioned R-matrix is deprecated in the most

recent versions and requires some code reversions.

Accuracy in calculating only a subset of eigenvalues/eigenvectors remains questionable if

using SCALAPACK’s PDSYEVX and PDSYEVR algorithms and routines [76], particularly

given the large clustering of eigenvalues present in Hamiltonians with many pseudostates. The

two algorithms depend on first tridiagonalizing the matrix and on the present of sufficiently

large gaps in between eigenvalues [124]. Tests were run using an electron-impact excitation

calculation of O6+ with 72 partial-waves and on the neutral tungsten octet partial-waves to

determine the reliability of the partitioned R-matrix results . The older versions of pstg3r.f and

pstgf.f, for which the partitioned R-matrix code is not deprecated, were used for the O6+ test,
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while a recent pstg3r.f version was used for the octet tests. The total cross sections for O6+

if keeping 50% of the eigenvalues and eigenvectors were almost completely identical to the

cross sections from regular R-matrix, except for a nearly 25% drop in the cross section over

a 0.111 eV energy range for the transition from the ground state to the last included energy

level. In another test with the neutral tungsten octets, PDSYEVX, the algorithm used by the

partitioned code to calculate only a subset of eigenvalues and eigenvectors, crashed the code.

When PDSYEVX was replaced with the more recent PDSYEVR [124], however, the resultant

eigenvalues were consistent with those of the full calculation. For all octet partial-waves, if

calculating only 1% of the eigenvalues and eigenvectors, the first pole (eigenvalue) was equal

to that from the full diagonalization through the 9th decimal place. Further, the last pole was

suitably shifted closer to the first, and was also less than the last pole from full diagonalization.

This trend in the last pole is what should occur if the higher eigenvalues are being approximated.

The tests on the partitioned R-matrix were preliminary, and the overall effectiveness of the

method at reducing the size of an ionization calculation requires further analysis. PDSYEVR

generates “Multiple Relatively Robust Representations” of clusters of eigenvalues and relies

upon finding large gaps in values between clusters [124]. Further testing on larger partial-wave

sets and reverting the Stage f code to once again allow for partitioned R-matrices is therefore

required to gauge the effectiveness of PDSYEVR for much denser Hamiltonian eigenvalue

sets and also of how many eigenvalues/eigenvectors are necessary for accurate ionization cross

sections.

6.3.3 Other code development (Python) related to efficient OMEGA file processing and util-

ities

The size of the neutral tungsten calculation as well as the need for LS- to LSJ-resolution

also prompted the need for new code development related to processing the OMEGA file,

cross sections, rates, and adf04 files. A summary of these utility codes and their testing is

provided in Appendix C. The most important of these new codes was a new cross section

extractor for OMEGA files. The neutral tungsten OMEGA files were each over 67 GB. The

new “pystgsig.py” holds only one line of the file, corresponding to six transition cross sections
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at one incident energy, in an array at one time, as opposed to all transitions at all energies. Codes

and scripts were also made to automate transition number calculation and batching of excited

state cross section extraction. Another important new code allows for the calculation of LS-

to LSJ- Sampson branching ratios [77] for cross sections and rate coefficients, as discussed in

Section 2.5.

6.3.4 Conclusions regarding ionization approximations and code development

As discussed, while the lower-spin state and ECIP scaling approximations utilized for the neu-

tral tungsten calculation proved effective, improvements can still be made to improve the R-

matrix code to reduce runtime, RAM, and I/O usage. These changes are particularly important

for Stage 3, which currently is the bottleneck for large calculations. The GPU code develop-

ment introduced by Connor Ballance [122] greatly reduced the time required to run Stage f,

while enabling larger matrix-matrix multiplications to fit onto the smaller GPU RAM. Hybrid

CPU-GPU code suites such as MAGMA or the partitioned R-matrix approach may similarly

help reduce Hamiltonian diagonalization time.

6.4 The importance of excited-state ionization and non-perturbative LS or LSJ-resolved

electron-impact data for GCR modeling of high-Z elements

(4) How important is excited-state ionization for accurate GCR modeling, particularly as

concerns the effective ionization rate coefficient?

Excited-state ionization raised the effective ionization rate by factors of 3 and 12 for neu-

tral neon and tungsten respectively at 1014 cm−3 electron densities and electron temperatures

relevant to divertors. For neutral tungsten, contributions to the SCD from excited-state ioniza-

tion are still predicted at extremely low electron densities, as shown in Figure 5.1 at ne = 104

with ECIP rates coefficients. Ground state ionization cross sections and rates are nevertheless

important in developing an understanding of the quantum mechanical properties of an atomic

species, such as with the 5d5nl contribution to the neutral tungsten ground state.

For neutral tungsten, excited-state ionization rate coefficients also result in a significant

drop in PECs compared to GCR modeling with ground-only rate coefficients (Figure 5.15).
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This result was also observed with the smaller unscaled ECIP rate coefficients, where the 400.9

nm PEC was reduced 60% at ne = 1014 cm−3.

(5) How important is LSJ- and LS-resolved electron-impact data for accurate GCR

modeling of high-Z elements?

The RMPS neutral tungsten cross section results, particularly in light of the total

ground/metastable ionization and the demonstrated scaling of the ECIP cross sections, leave

open the possibility that more approximate methods, such as configuration-averaged TDCC

for all configurations, might still generate an accurate effective ionization rate coefficient; how-

ever, the reduction in the 400.9 nm PECs also suggests the importance of accurate level-specific

ionization rates, for which approximate methods may not be as well-suited.

Regarding level-specific accuracy, LSJ-resolved over LS-resolved rates are most likely

not necessary, due to the rules governing LS- to LSJ- branching ratios (See 2.5). Because the

low levels of W+ contain many possible final J values within a 0.762 eV energy range [29],

the total ionization rate coefficient out of an LSJ-state, summing over all possible J values,

is unlikely to change. Recall, the ionization potentials of the RMPS and scaled ECIP results

were all relative to the W+ groud. The heights of the cross sections themselves reflect an

LS-resolved electron-atom collision. The effect of LS-resolution of the final W+ states was

explored in Section 5.4, where GCR modeling was performed with the ionization potential

shifted by 0.5 eV. The SCD and PEC from this ionization potential shift still agreed well with

the original RMPS results across all electron temperatures and densities.

Future work related to GCR modeling with a full set configuration-averaged excited state

cross sections, such as from TDCC, would be helpful in clarify whether they yield different

results without the configuration-mixing and channel coupling effects present in R-matrix.

Regarding the S/XB more experimental work related to modeling metastable populations

with different measured W I lines would help quantify the reliability of the new RMPS/DARC

atomic data. The ground-resolved 400.9 nm S/XB was much higher than previous measure-

ments across relevant electron densities and temperatures. GCR modeling with six metasta-

bles, including the 5d56s (7S), suggests the 400.9 PEC is mostly driven by the 7S state. It

was demonstrated that if the metastable fraction was entirely composed of the 7S state, a lower
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bound for the S/XB in other words, the S/XB is lower than previous measurements. As was

seen in Chapter 4, the target neutral tungsten structure was far from perfect, however, and the

possibility remains that a structure more tailored to the excited states is needed. The structure

used in the present work was based on the best available data, showing good agreement with

the first 100 levels and the best agreement on available A-values. The available excited state

data, particularly of A-values close to the ionization potential, is still fairly limited, however.

The reliability of the scaling of the ECIP cross sections opens the possibility of refining the

RMPS calculation with an updated structure with relative ease. Some other complications to

S/XB modeling not considered here include sheath and other possibilities related to plasma

transport effects and non-Maxwellian electrons. New experimental measurements, particularly

S/XB measurements in combination with high resolution spectral observations of multiple W I

spectral lines, might therefore help distinguish calculation-specific effects from plasma-specific

S/XB effects stemming from metastable populations, plasma transport modeling, and a non-

Maxwellian electron distribution.

6.5 Concluding Remarks and Future Directions

The work presented here has illustrated the importance of excited-state ionization and

configuration-mixing for accurate atomic data and generalized collisional-radiative modeling.

The configuration mixing effects seen in the neutral tungsten results are original: with the

exception of one C+ term ionization cross section in Pearce [116], the effects of configura-

tion mixing on electron-impact ionization have never been studied. This work therefore serves

as a benchmark for electron-impact and GCR modeling of future high-Z open d-shell atomic

species. Analysis is still required for generating an accurate S/XB diagnostic for neutral tung-

sten, particularly regarding metastable population and plasma transport modeling, although all

of the necessary electron-impact data is now available. Additional work on electron-impact ion-

ization of other atomic species with large configuration mixing in the ionic core should further

clarify whether mixing effects change the total ionization rates, beyond just the configuration-

and term-resolved ionization rates.

178



The next logical extension of this work is with GCR modeling of W+ and W2+. Once

tungsten is ionized, its net negative charge makes it susceptible to the forces from the magnetic

field, which can lead to its redeposition. GCR modeling of the lowest charge states of tungsten

should therefore provide a way to measure redeposition rates in addition to the erosion rates.

Preliminary electron-impact ionization calculations suggest that the RMPS ground state cross

section of W2+ converges with distorted wave, suggesting the usability of more approximate

theoretical methods for higher charge states. Considerable work has already been done for

these charge states [125–138]. A full set of rate coefficients for the atomic processes of all of

tungsten’s charge states will then enable a full account of tungsten’s populations in the plasma

through ionization balance and impurity transport.
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Appendix A

Complete list of neutral tungsten structure term energies

Configuration Term J Value Energy (Ryd) NIST Percent Difference

5d46s2 5D 0 0.0000 0.0000 0.00

5d46s2 5D 1 0.0146 0.0153 3.87

5d46s2 5D 2 0.0305 0.0304 0.51

5d46s2 5D 3 0.0455 0.0441 3.39

5d46s2 5D 4 0.0597 0.0567 5.39

5d5(6S)6s 7S 3 0.0269 0.0269 0.06

5d46s2 3P2 0 0.1059 0.0869 21.97

5d46s2 3P2 1 0.1459 0.1213 20.29

5d46s2 3P2 2 0.1692 0.1755 3.56

5d46s2 3H 4 0.1361 0.1109 22.79

5d46s2 3H 5 0.1649 0.1374 20.09

5d46s2 3H 6 0.1835 0.1550 18.39

5d46s2 3G 3 0.1505 0.1217 23.69

5d46s2 3G 4 0.1864 0.1498 24.49

5d46s2 3G 5 0.2117 0.1807 17.19

5d46s2 3F2 2 0.1559 0.1256 24.20

5d46s2 3F2 4 0.1800 0.1559 15.46

5d46s2 3F2 3 0.1931 0.1614 19.73

5d46s2 3D 2 0.2139 0.1365 56.75
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Configuration Term J Value Energy (Ryd) NIST Percent Difference

5d46s2 3D 3 0.1804 0.1409 28.02

5d46s2 3D 1 0.2031 0.1648 23.24

5d5(4G)6s 5G 2 0.2069 0.1651 25.34

5d5(4G)6s 5G 3 0.2146 0.1730 24.12

5d5(4G)6s 5G 4 0.2175 0.1755 23.95

5d5(4G)6s 5G 5 0.2211 0.1781 24.18

5d5(4G)6s 5G 6 0.2203 0.1791 23.05

5d5(6S)6s 5S 2 0.2024 0.1666 21.51

5d46s(6D)6p 7F 0 0.1859 0.1767 5.23

5d46s(6D)6p 7F 1 0.1939 0.1829 6.02

5d46s(6D)6p 7F 2 0.2074 0.1955 6.14

5d46s(6D)6p 7F 3 0.2253 0.2101 7.27

5d46s(6D)6p 7F 4 0.2474 0.2257 9.63

5d46s(6D)6p 7F 5 0.2770 0.2431 13.95

5d46s(6D)6p 7F 6 0.3656 0.2702 35.33

5d5(4P )6s 5P 3 0.2293 0.1807 26.92

5d5(4P )6s 5P 1 0.2386 0.1862 28.20

5d5(4P )6s 5P 2 0.2354 0.1913 23.11

5d46s2 1S2 0 0.2259 0.1839 22.87

5d46s(6D)6p 7D 1 0.3421 0.1956 74.98

5d46s(6D)6p 7D 2 0.2474 0.2184 13.27

5d46s(6D)6p 7D 3 0.3510 0.2387 47.07

5d46s(6D)6p 7D 4 0.3683 0.2714 35.76

5d5(4D)6s 5D 4 0.2562 0.2049 25.10

5d5(4D)6s 5D 0 0.2597 0.2076 25.13

5d5(4D)6s 5D 1 0.2689 0.2138 25.79

5d5(4D)6s 5D 3 0.2736 0.2181 25.47
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Configuration Term J Value Energy (Ryd) NIST Percent Difference

5d5(4D)6s 5D 2 0.2760 0.2186 26.27

5d46s2 1G2 4 0.2497 0.2083 19.89

5d46s2 1I 6 0.2533 0.2141 18.35

5d46s2 1F 3 0.2781 0.2243 24.02

5d46s2 1D2 2 0.2741 0.2259 21.32

5d46s(6D)6p 5F 1 0.3171 0.2368 33.94

5d46s(6D)6p 5F 2 0.3222 0.2521 27.81

5d46s(6D)6p 5F 3 0.3708 0.2656 39.65

5d5(6S)6p 7P 2 0.3452 0.2391 44.44

5d5(6S)6p 7P 3 0.2715 0.2505 8.39

5d5(6S)6p 7P 4 0.2892 0.2542 13.79

5d46s(6D)6p 5D 0 0.2978 0.2427 22.74

5d46s(6D)6p 5D 1 0.3229 0.2532 27.57

5d46s(6D)6p 5D 2 0.3377 0.2661 26.92

5d46s(6D)6p 5D 4 0.3897 0.2992 30.26

5d5(2F1)6s 3F 2 0.3060 0.2448 25.00

5d5(2F1)6s 3F 4 0.3134 0.2480 26.39

5d5(4F )6s 5F 2 0.3887 0.2571 51.23

5d5(4F )6s 5F 5 0.3229 0.2573 25.49

5d5(4F )6s 5F 3 0.3241 0.2584 25.47

5d5(4F )6s 5F 4 0.3275 0.2721 20.38

5d5(2I)6s 3I 5 0.3136 0.2538 23.55

5d5(2I)6s 3I 6 0.3186 0.2588 23.13

5d5(2I)6s 3I 7 0.3276 0.2685 22.04

5d46s(6D)6p 5P 1 0.2211 0.2570 13.97

5d46s(6D)6p 5P 3 0.3909 0.2788 40.23

5d46s2 3P1 2 0.3203 0.2634 21.63
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Configuration Term J Value Energy (Ryd) NIST Percent Difference

5d5(4G)6s 3G 5 0.3485 0.2861 21.85

5d5(4G)6s 3G 4 0.3378 0.2929 15.36

5d5(2D3)6s 3D 1 0.3700 0.2951 25.40

5d5(2G2)6s 3G 5 0.3763 0.3026 24.37

5d5(2G2)6s 3G 4 0.3793 0.3126 21.36

5d5(2I)6s 1I 6 0.3724 0.3034 22.74

5d5(4D)6s 3D 3 0.3652 0.3095 18.04

5d46s(4H)6p 5H 7 0.4220 0.3619 16.63

5d46s(6D)7s 7D 1 0.4260 0.3960 7.57

5d46s(6D)7s 7D 2 0.6104 0.4094 49.13

5d46s(6D)7s 7D 5 0.3813 0.4498 15.22

5d46s(6D)7s 5D 0 0.4646 0.4122 12.74

5d46s(6D)7s 5D 1 0.4764 0.4234 12.54

5d46s(6D)7s 5D 2 0.4906 0.4382 11.97

5d46s(6D)7s 5D 3 0.5050 0.4525 11.61

5d46s(6D)7s 5D 4 0.5193 0.4659 11.46

Average: 31.23
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Appendix B

R-Matrix Stage 2 variable definitions and selected code segment

Definitions of select Stage 2 variables:

1. MZMEG: Variable governing the max memory for storing N+1 Hamiltonian elements.

Memory is in general stored per bra target symmetry. If the memory cap set by MZMEG

is exceeded, then Hamiltonian elements will be written to scratch space, and read back

out in chunks (TAKES MUCH LONGER).
2. L2P: The angular momentum l of a channel incident electron.
3. NCONAT: The number of channels for a given target term.
4. LRGL, NSPN, NPTY: The N + 1 total L, S, and Parity respectively
5. NCHAN: The number of channels of a partial-wave.
6. NCFG: The number of N + 1 bound states of a partial-wave.
7. ENAT: Target state energies.
8. NTYP: A unique number per term per configuration.
9. HNPS: Where Hamiltonian elements are stored if RAM is exceeded.

10. ARRAY: Where Hamiltonian elements are stored during their calculation.
11. HNP1: Where Hamiltonian elements are stored to be written out to file (STG2###.DAT).
12. ITSYM: Total number of target symmetries.
13. ISYM: Array returning the number of configurations per target symmetry.
14. LENGTH: Number of matrix blocks stored in memory.
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Appendix C

Python OMEGA cross section extractor and other utility codes

The following is a list of atomic utility codes available at

https://github.com/cjf0019/Physics/tree/master/AtomicPhysics:

1. pystgsig.py: Extract cross sections from an OMEGA file, given initial and final transition

numbers. Can optionally return cross sections as collision strengths.
2. pydstgsig.py: Same as ‘pystgsig.py’ but takes a dstgsig file (same format as original

stgsig code) and can be used to extract specific transitions through a list of 0’s and 1’s

after the namelist: one value on each succeeding line, with 0 and 1 designating not to

include and to include respectively. Can use “generatestgsiglist.py” to generate this list.
3. omegautility.py: Includes OMEGA and XSEC classes, the former a wrapper for

OMEGA files, storing their basic information, and the latter for cross sections. The

OMEGA class can be used to extract cross sections (see pystgsig.py and pydstgsig.py).

Rost-Pattard and Younger fits as well as both fit and raw plots can be performed using

the XSEC class (see ionsnfitandplot.py for such usage). Cross sections reflecting an n4̂

scaling (for ionization of high n states) can also be generated.
4. fitecip winfile.py: Generate scaled ECIP fits to raw cross sections from a file

‘scale ecip input’ that includes sets of configuration, term, or level-specific ionization

potentials, the occupation number of the ionized shell, the cross section file name, and

the output file names for the fit, graph, and raw ECIP cross section.
5. fitecip.py: the base code for generating scaled ECIP fits to raw cross sections. A least

squares fit is applied to a raw cross section to determine a multiplying constant, ’a’ for ’a

unscaled ecip.’
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6. ionsnfitandplot.py: Generate Rost-Pattard and Younger fits to raw cross sections in

lower and higher incident energies respectively.
7. generatestgsiglist.py: See the “pydstgsig.py” description. Reads in a TERMS file from

AUTOSTRUCTURE.
8. xsec.py: Contains the base class XSEC for reading, writing and fitting cross sections.
9. adf04utility.py: Contains various functions related to processing adf04 files (which store

the rate coefficients of various atomic processes like electron-impact and recombination.)
10. gettransnums.py: Get the transition numbers for OMEGA extraction of ionization cross

sections. NOTE: Assumes elastic collisions are not included. Needs modification if they

are present (one extra transition per level).
11. convertatomicunits.py: Contains a list of functions for converting between atomic units

(eV, Ryd, cm-1).
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