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Abstract

We consider a special formulation of the Backus geomagnetic problem in two and higher

dimension. Given a domain Ω ⊂ Rn, we seek to determine whether there exists a unique

harmonic function u satisfying |∇u|2 = P and ∂
∂ν

(|∇u|2) = q on the boundary ∂Ω for given

functions P and q which we refer to as the Backus problem with expanded data. In two dimen-

sional case, for a function u satisfying the Laplace equation and the above boundary conditions,

we derive a system of ordinary differential equations for the tangential and normal components

of ∇u with the coefficients in terms of P and q on the boundary. We study the explicit so-

lutions of the ODE system and establish conditions for existence and uniqueness of solutions

for the problem involving the PDE on bounded domains. To achieve this goal we introduce

the notion of generalized Hilbert transform and use representation formulas for solutions of

the boundary value problems. In addition, we perform numerical experiments to corroborate

our well-posedness results. For the higher dimensional problem, our approach is markedly

different. For harmonic functions u in Rn+1, we derive a quasilinear elliptic equation with co-

efficients involving the expanded data for the Backus problem satisfied by the restriction of u

on n-dimensional hyperplanes. The Leray-Schauder fixed point theory relates the solvability

of the Dirichlet boundary value problem to apriori estimates for solutions of a related family of

problems. This theory is not applicable to the derived equation directly due to the restriction on

the gradient of admissible function. To work around this restriction, we introduce a regulariza-

tion of the operator. The Apriori Estimates Program is fulfilled by establishing the comparison

and maximum principles, which allows the estimation of sup
Ω
|u| in terms of sup

∂Ω
|u| and additive

constants; boundary gradient estimates, that is an estimation of sup
∂Ω
|Du| in terms of sup

Ω
|u|;

interior gradient bounds, by which we estimate sup
Ω
|Du| in terms of sup

∂Ω
|Du| and sup

Ω
|u|;

and Hölder estimates for the gradient, that is an estimation of [Du]α;Ω in terms of sup
Ω
|Du|

and sup
Ω
|u|. We eventually obtain the existence of solutions of the regularized equation with

Dirichlet boundary conditions.
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Chapter 1

Introduction

The geomagnetic and gravitational fields emanating from the Earth’s interior hold essential

information about seismic activities and the internal structure. Therefore detection and analysis

of the geomagnetic and gravitational fields play an important role in geophysical exploration.

The geophysical survey is the process of collecting systematic information and geophysical

data for spatial studies. The data may be collected from above and below the Earth’s surface

or from aerial, orbital, or marine platforms and such surveys may use a great variety of sensing

instruments. In geophysical surveys, the gravitational field in steady state can be measured

with accelerometers and its strength has usually been easier to measure with such devices than

its direction relative to the surface of the Earth because atmospheric refraction interferes with

accurate measurements of the shape of the surface. The introduction of scalar devices for

measuring the magnetic field, e.g. the nuclear precession magnetometer, has produced a similar

situation in geomagnetism which provides an accurate measurement of the magnitude of the

local magnetic field but gives no indication of its direction.

The geophysical problem was first considered by Backus [2]. He sought to use the sur-

vey data to determine the external field when such data consists of field magnitudes rather

than field components. Backus introduced the following mathematical formulation of the non-

linear boundary value problem: a function u known to be harmonic in a region Ω with smooth

boundary ∂Ω needs to be determined from |∇u|, the magnitude of the gradient of u, known on

∂Ω, rather than, for example, from ∂u
∂ν

, the normal derivative of u as in the classical Neumann

problem.
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Figure 1.1: Gravitational and Magnetic Fields of the Earth

Backus considered three types of domain Ω: an open, bounded, connected set whose clo-

sure is simply connected, the exterior of the closure of such a set, and the half-plane. These

three cases are referred to as the interior, exterior and half-plane. In the two-dimensional inte-

rior problem, Backus [2] showed that for any points z0, z1, · · · , zn in Ω, there exists precisely

one harmonic function u satisfying the boundary condition such that ∇u has a chosen direc-

tion at z0, and u vanishes only at z1, · · · , zn in Ω. In dimension three or higher, no results

on existence or uniqueness for interior problem were obtained by Backus. Meanwhile, in the

exterior case, the solution can be shown to be unique under special conditions. One example

is when Ω is the exterior of an open, bounded, connected set, function u is harmonic in Ω and

vanishes at infinity, and ∂u
∂ν

> 0 on ∂Ω, then u is uniquely determined in Ω by the values of

|∇u| on ∂Ω. Another example is when Ω is the exterior of a sphere, u is a finite sum of exterior

spherical harmonics, and |∇u| is known on ∂Ω, then u is uniquely determined in Ω except for

the sign. Finally, if Ω is any type of domain, u is harmonic in Ω, and |∇u| is known in Ω, then

u is uniquely determined in Ω except for the sign. In the three-dimensional exterior case, the

uniqueness is not guaranteed. Backus gave an example [3] of two functions u and v that are

harmonic outside a solid sphere Ω, vanish at infinity, satisfy |∇u| = |∇v| everywhere on ∂Ω,

and neither u+ v nor u− v vanishes identically outside Ω.

Lieberman [23] discussed the boundary regularity of solutions of the fully nonlinear bound-

ary value problem F (x, u,Du,D2u) = 0 in Ω, G(x, u,Du) = 0 on ∂Ω for two-dimensional
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domains Ω. The Backus problem is a special case of this problem. The function F is as-

sumed uniformly elliptic and G is assumed to depend in a nonvacuous manner on Du. Lieber-

man proved the continuity estimates for first and second derivatives of u under hypotheses for

smoothness of F , G and Ω.

Jorge and Magnanini [16] [24] studied the Backus problem for the exterior gravitational

field of the Earth further. They obtained the following uniqueness result: if two smooth func-

tions u and v satisfy ∆u = ∆v = 0 in Ω;∇u ·∇u = ∇v ·∇v on ∂Ω; u, v are regular at infinity;

and u(x̄) = v(x̄) for x̄ ∈ M = {x̄ ∈ ∂Ω | ∂
∂ν

(u + v)(x̄) = 0}, then u = v in Ω. Once these

conditions are satisfied, an explicit series solution for the geophysical problem was computed

and the convergence of this series solution was proved.

Dı́az, Dı́az, and Otero [6] [7] considered a nonlinear oblique derivative interior boundary

value problem suggested by the study of the Backus problem for the external gravitational

potential of the Earth. They focused on the simplest case of a sphere: the unit ball in R3. For

the boundary value in a special form of
√

(g2 − |∇su|2)+, where ∇su denotes the tangential

or surface gradient of u, they showed the existence and uniqueness of viscosity solutions. For a

function that is harmonic outside a unit sphere Ω, vanishes at infinity and |∇u| takes prescribed

value g on Ω, the solution is not unique in general. Dı́az, Dı́az, and Otero [8] proved that

the solution is unique with the additional property that the radial component of the gradient

of u on Ω is nonpositive. If a solution u with this property exists, they showed that u is the

maximal solution of the Backus problem. Otero [25] proposed an existence program for the

Backus problem based on the establishment of a priori estimates in a Hölder space. Under

certain hypothesis and simplifications, he obtained maximum modules and gradient bounds for

the solutions.

Holota [14] discussed the linear gravimetric boundary value problem in the sense of the

weak solution. He constructed a Sobolev weight space for an unbounded domain represent-

ing the exterior of the Earth and deduced the quantitative estimates for the trace theorem and

equivalent norms. In the generalized formulation of the problem a special decomposition of

the Laplace operator was used to express the oblique derivative in the boundary condition. The
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main result concerns the ellipticity of a bilinear form associated with the problem under consid-

eration. He used the Lax-Milgram theorem to determine the existence, uniqueness and stability

of the weak solution of the problem.

Among related results, Kaiser [17] considered the geomagnetic problem in which the di-

rection of the gradient rather than its magnitude is assumed to be known on the boundary.

Kaiser was interested in the nonlinear boundary value problem in the exterior V̂ d of a sphere

Sd−1 in two and three dimensions (d = 2, 3). Given a direction field D: Sd−1 → Rd, he sought

to determine all harmonic vector fieldsB: V̂ d → Rd with asymptotic behavior |B| = O(|x|−δ),

δ ∈ N \{d − 1, d − 2} for |x| → ∞, which are parallel to D on Sd−1. For d = δ = 3, this

problem is related to the problem of reconstructing the geomagnetic field outside the Earth

from its directional data measured on the Earth’s surface. For a fixed direction field D, the

set of harmonic vector fields B forms a linear space L(D). This space was described in the

two-dimensional case and its dimension was estimated in the three-dimensional axisymmetric

case. Introducing the rotation number ρ of a Hölder continuous direction field D with respect

to S1, in the case d = 2, Kaiser [17] showed that dimL(D) = max{2(ρ−δ)+1, 0}. Similarly,

in the axisymmetric case for d = 3, he obtained the estimate dimL(D) ≤ max{ρ− δ + 2, 0}.

Thus, in an axisymmetric setting with δ = 3, uniqueness is guaranteed only for direction fields

with ρ = 2. Kaiser and Neudert [18] characterized the solution space V ⊥D of the boundary value

problem as orthogonal complement of a certain set of functions determined by the vector field

D in an appropriate Hilbert space. They determined V ⊥D and its dimension dimV ⊥D for vector

field D in the case d = 2 and in the axisymmetric case d = 3.

Isakov [15] considered and stated the inverse problem of potential theory. Glotov [12]

considered a problem related to an inverse problem for the Poisson equation with point sources

on a disk or half plane in R2. He presented a method for converting the absolute value of the

gradient and its normal derivative to the Cauchy data, i.e., values of both the solution and its

normal derivative on the boundary of the half-plane. His approach is based on the study of a

linear system of ordinary differential equations corresponding to this problem. In the case of

the unit disk, the existence of periodic solutions is equivalent to a condition that corresponds to

having a finite number of monopoles and dipoles in the domain. He introduced an additional
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constraint to guarantee the uniqueness of the solution (determined up to a constant). It was also

shown that this method can not be easily extended to three dimension.

One advantage of the approach introduced in [12] is that it allows us to estimate the number

of monopoles and dipoles in bounded domains. To fix the notation, let Ω be a bounded simply

connected domain in R2 and consider the Poisson equation ∆u = f in Ω with the source term

f of the form f =
∑M

j=1 ajδxj +
∑N

j=1 bjDδyj for some M , N ∈ N; aj ∈ R, xj ∈ Ω for

j = 1, · · · ,M and bj ∈ R2, yj ∈ Ω for j = 1, · · · , N , and where δx is the Dirac delta function

at x. Such a representation of f corresponds to monopoles of magnitude aj located at xj and

dipoles oriented and scaled by bj and located at yj . As shown in [12], we have the following

estimate

− 1

2π

∫
∂Ω

Pν
2P

dτ = − 1

2π

∫ 2π

0

q

2P
dt ≤M + 2N (1.1)

where P = |Du|2 and q = ∂
∂ν

(|Du|2) on ∂Ω.

The problem that is considered in this dissertation is a variation of the interior Backus

problem on bounded domains. In addition to the magnitude of |∇u| on ∂Ω, we assume that we

are given the value of ∂
∂ν

(|∇u|2) on the boundary as in [12].

Problem Statement. Let Ω be a bounded simply connected domain in Rn with sufficiently

smooth boundary. Given the values of P and q on ∂Ω, we seek to determine whether there

exists a unique harmonic function u defined in Ω (or a neighborhood of ∂Ω) that satisfies


|Du|2 = P,

∂

∂ν
(|Du|2) = q,

on ∂Ω. (1.2)

We refer to this problem as the Backus problem with expanded data.

Remark. In the Backus problem with expanded data, we seek a harmonic function u, which

implies from estimate (1.1) that the numbers of monopoles and dipoles of the inverse source

problem are both zero. In order to guarantee that the given data (P, q) generates a harmonic
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function in R2, we require that the following estimate holds:

− 1

2π

∫ 2π

0

q

2P
dt ≤ 0.

This dissertation is organized as follows.

In Section 2.1, we start with a harmonic function u in R2 satisfying the boundary con-

ditions |Du|2 = P and ∂
∂ν

(|Du|2) = q, and derive a system of linear ordinary differential

equations

ż(t) = A · z(t) (1.3)

for the tangential and normal derivatives z(t) = (z1(t), z2(t))T = (uτ (γ(t)), uν(γ(t)))T , where

γ represents the parametrization of the boundary of the general domain and the entries of the

matrix A are functions of P and its derivatives, namely,

A =

a1 −a2

a2 a1

 ,

where a1 =
1

2P
(Pxx

′ + Pyy
′) and a2 =

1

2P
(Pxy

′ − Pyx′) + x′y′′ − y′x′′. We have an explicit

representation of the solutions of the ODE system in complex form as follows,

z(t) = z1(t) + iz2(t) = z0e
∫ t
0 (a1+ia2)dτ .

By matching the real and imaginary parts, we obtain

z1(t) = z0

√
P (t) cos

∫ t

0

a2(τ) dτ and z2(t) = z0

√
P (t) sin

∫ t

0

a2(τ) dτ.

In Sections 2.2 and 2.3, we rewrite the well-known representation formulas for the solu-

tions of the Dirichlet and Neumann boundary value problems on the half-plane and the unit

disk in terms of the derivatives of solutions with the purpose to highlight the relation between

the representations of solutions for the two problems and motivate the introduction of the gen-

eralized Hilbert transform in Section 2.4.
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In Section 2.4, with the help of the generalized Hilbert transform, we address the unique-

ness of harmonic functions u arising from the solutions of the ODE system on the boundary

of the general bounded domain. Specifically, we assume that (z1, z2) is a solution of the ODE

system (1.3), andHz2 = z1, whereH represents the generalized Hilbert transform. Under this

hypothesis, we show that there exists a unique (up to a phase) harmonic function u satisfying

|Du|2 = P and ∂
∂ν

(|Du|2) = q on the boundary.

In Chapter 3, we introduce a numerical method for solving the non-linear boundary value

problem and present results of numerical experiments. An organizational workflow of experi-

ments mainly consists of these three steps:

• Generate the data from harmonic functions.

• Solve the ODE system.

• Use the solution of the ODE to solve the PDE.

To solve the ODE system, we use a Matlab boundary value problem solver implemented

in the function bvp4c. In order to represent the solutions z1 and z2 of the ODE system as

functions of the parameter t and supply them as data for the PDE problem, we scale z1 and z2

to satisfy the condition z2
1 + z2

2 = P and then use the cubic spline interpolation with periodic

conditions (see Appendix B) to obtain continuous functions. In the last step, the PDE Toolbox

in Matlab is used to solve the PDE problem using the Finite Element Method (FEM). The

toolbox is designed to construct numerical solutions of problems on bounded domain in the

two-dimensional plane.

Three harmonic functions are considered in the examples:

• u0 = y2 − x2,

• u1 = 0.1(x2 + y2)5 cos(10 tan−1( y
x
)),

• u2 = u0 + u1.

We measure the error in approximating the boundary data P with the solution of the ODE

system uτ and uν , namely we compute ||u2
τ+u2

ν−P ||L2(∂Ω) and estimate its rate of convergence.

7



In order to estimate the error of the approximation, we tabulate the values of the error u − ue

in the L2-norm and H1-norm for different values of the space discretization parameter. Here

ue denotes the exact values of the harmonic solution on the boundary mesh points and u =

cosα ·ud + sinα · vd is an approximate solution with ud and vd being the solutions of Laplace’s

equation with Dirichlet boundary conditions
∫ t

0
z1(θ)dθ and

∫ t
0
z2(θ)dθ, respectively and α

being the optimal phase. We next estimate the rate of convergence in the L2-norm and H1-

norm of u− ue.

In Section 4.1, we start with a harmonic function u in Rn+1, and obtain a quasilinear

equation involvingDu, the tangential gradient of u, in n-dimensional hyperplanes. Specifically,

we show that Du satisfies

Qu := div
Du√

P − |Du|2
+

1

2

σq

P − |Du|2
= 0, in Rn. (1.4)

This is a second order equation. We confirm its ellipticity by computing the eigenvalues of this

operator.

By Leray-Schauder Theorem, the solvability of the Dirichlet problem, Qu = 0 in Ω,

u = φ on ∂Ω, in the space C2,α(Ω̄) is thus equivalent to the solvability of the equation u = Tu

in the Banach space B = C1,β(Ω̄), where T : v → u is defined by letting u = Tv be the

unique solution inC2,αβ(Ω̄) of the linear Dirichlet problem. Theorem 4.3 in Section 4.1 reduces

the solvability of the Dirichlet problem to the apriori estimates in the space C1,β(Ω̄) of the

solutions of a related family of problems. In practice, it is desirable to break the derivation of

the following Apriori Estimates Program into four stages:

1. Estimation of sup
Ω
|u|.

2. Estimation of sup
∂Ω
|Du| in terms of sup

Ω
|u|.

3. Estimation of sup
Ω
|Du| in terms of sup

∂Ω
|Du| and sup

Ω
|u|.

4. Estimation of [Du]β;Ω in terms of sup
Ω
|Du| and sup

Ω
|u|.

We point out some challenges in applying Theorem 4.3 to the quasilinear equation (1.4)

and motivate the forthcoming regularization. The purpose of the regularization is to allow |Du|

8



to take arbitrarily large values. Given ε > 0, we consider the following equation in divergence

form:

Qεu = div
Du√

ξε(x, |Du|)
+

1

2

σq

ζε(x, |Du|)
= 0, (1.5)

where

ξε(x, p) =


P − |p|2 + ε|p| |p|2 ≤ P,

ε2|p|2

|p|2 − P + ε|p|
|p|2 > P,

and

ζε(x, p) =


P − |p|2 + ε|p| |p|2 ≤ P,

ε|p| |p|2 > P.

Notice that ξε(x, p) is continuously differentiable as a function of x and p and ξε(x, p) is con-

tinuous as a function of x and p. Also we note that taking the limit as ε→ 0 in the coefficients

ξε and ζε, we recover the operator Q in (1.4) for |p|2 ≤ P . We prove in Lemma 4.4 that the

operator Qε is uniformly elliptic in Ω.

We propose to study the well-posedness of the regularized quasilinear equation by follow-

ing the Apriori Estimates Program for regularized quasilinear equation (1.5) with the intention

to pass to the limit as ε→ 0 to obtain the well-posedness of equation (1.4).

In Sections 4.6 and 4.7, we develop the structure conditions and then obtain two versions

of the maximum principle: one for the divergence form and another for the non-divergence

form. These results allow the estimation of sup
Ω
|u| in terms of sup

∂Ω
|u| and additive constants,

which is Stage 1 in the Apriori Estimates Program.

In Section 4.8, we show that if u ∈ C2(Ω) satisfies Qεu = 0 in Ω, then w = Dku is a

solution of the linear elliptic equation

Lw = Di(ā
ijDjw) = −Dif

i
k.

Using that L is strictly elliptic in Ω and has bounded coefficients, we verify the Hölder estimate

[Du]α;Ω ≤ C(n,K,
ΛK

λK
,
µK
λK

,Ω,Φ),
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which is an estimation of [Du]α;Ω in terms of sup
Ω
|Du| and sup

Ω
|u|. The constant C does not

depend on ε and this is Stage 4 in the Apriori Estimates Program.

In Section 4.9, we impose an additional constraint on the domain Ω to satisfy an exterior

sphere condition. With this assumption, for the constant

µ = sup
x∈Ω

{√
P ,

2√
P

+
|DP (x)|√
P (x)3

+
q(x)

2
√
P (x)3

}
,

we derive the estimate

|p| · Λ + |b| ≤ µ · E

that holds for all (x, z, p) ∈ Ω×R×Rn with |p| ≥ µ. We therefore assert the boundary gradient

estimate for general domains

sup
∂Ω
|Du| ≤ C(n, µ,Φ, δ),

which is an estimation of sup
∂Ω
|Du| in terms of sup

Ω
|u| with the constant C not depending on ε.

This is Stage 2 in the Apriori Estimates Program.

In Section 4.10, we calculate an explicit positive constant ν = min
{min(λ1, λn)

λ
3
2
1

,
min(λ′1, λ

′
n)

λ
′ 1
2

1 (2λ′n)
3
4

}
on R for which the estimate

āij(x, p)ξiξj = DpjA
i(x, p)ξiξj ≥ ν|ξ|2

holds. In addition, we verify that

DxAε, Bε = o(|p|) as |p| → ∞.

We confirm that the choice of function Aε insures that the operator is uniformly elliptic in Ω in

the sense that

|DpAε(x, p)| ≤ µ,

where

µ = max
{max(λ1, λn)

λ
3
2
1

,
max(λ′1, λ

′
n)

λ
′ 1
2

1 (2λn − 2P )
3
4

}
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is a positive constant on R. By verifying the more general condition

g(x, p) = |DxAε|+ |Bε| ≤ µ(1 + |p|)2,

we finally arrive at the global estimate

sup
Ω
|Du| ≤ C(n, µ, ν, sup

Ω
|A(x, p)|, ∂Ω, |φ|2:Ω)

which is an estimation of sup
Ω
|Du| in terms of sup

∂Ω
|Du| and sup

Ω
|u|. This is Stage 3 in the

Apriori Estimates Program. We point out that unlike in the previous stages, we have not been

able to establish that bound on |Du| in Ω is independent of ε.

Based on the theorems we develop in the previous sections, in Section 4.11 we obtain

the apriori estimate in terms of the boundary value of Dirichlet problem for the regularized

operator.
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Chapter 2

Backus Problem in Planar Domain

In this chapter we focus on the Backus problem with expanded data in planar domains. Suppose

Ω is a bounded simply connected domain in R2 and u is a function in C2(Ω̄) that satisfies

∆u = 0 in Ω and let 
P = |Du|2,

q =
∂

∂ν
(|Du|2),

(2.1)

At each point x0 ∈ ∂Ω, we select τ to be the unit vector tangent to ∂Ω at x0 with the

counter-clockwise orientation, and ν to be the outward pointing unit normal to ∂Ω at x0. We

parametrize the boundary ∂Ω by the arc length γ : [0, T ] → ∂Ω, here T is the period of γ, so

that γ(t) = (x(t), y(t)) in coordinate form and we set

z(t) = (z1(t), z2(t))T = (uτ (γ(t)), uν(γ(t)))T .

2.1 Transformation to ODE

We start by transforming the values of |Du| and
∂

∂ν
(|Du|2) given on the boundary into the

boundary data for linear problems. In the derived system of ordinary differential equations that

affords this transformation, z1 and z2 will play the role of unknowns.

First, we expand z in Cartesian coordinates as follows

z1(t) = ∇u · τ = Du(x(t), y(t)) · (x′(t), y′(t)) = ux · x′ + uy · y′,

z2(t) = ∇u · ν = Du(x(t), y(t)) · (y′(t),−x′(t)) = ux · y′ − uy · x′.

12



Taking the derivatives of P = |Du|2 = u2
x + u2

y with respect to x and y, we have

Px = 2(uxuxx + uyuxy),

Py = 2(uxuxy + uyuyy).

Using the fact that u is harmonic, we get

uxPx − uyPy = 2(u2
xuxx − u2

yuyy) = 2Puxx,

uyPx + uxPy = 2(u2
yuxy + u2

xuxy) = 2Puxy,

or, equivalently,

uxx =
1

2P
(uxPx − uyPy), uxy =

1

2P
(uyPx + uxPy), uyy =

1

2P
(uyPy − uxPx). (2.2)

Taking the derivatives of z1(t) and z2(t) with respect to t and using (2.2), we have

ż1(t) = uxx(x
′)2 + uxyx

′y′ + uxx
′′ + uxyx

′y′ + uyy(y
′)2 + uyy

′′

=
1

2P
(uxPx − uyPy)((x′)2 − (y′)2) +

1

P
(uyPx + uxPy)x

′y′ + uxx
′′ + uyy

′′

=
1

2P
(Pxx

′ + Pyy
′)(uxx

′ + uyy
′)− 1

2P
(Pxy

′ − Pyx′)(uxy′ − uyx′) + uxx
′′ + uyy

′′,

and

ż2(t) = uxxx
′y′ + uxy(y

′)2 + uxy
′′ − uxy(x′)2 − uyyx′y′ − uyx′′

= − 1

2P
(uyPx + uxPy)((x

′)2 − (y′)2) +
1

P
(uxPx − uyPy)x′y′ + uxy

′′ − uyx′′

=
1

2P
(Pxy

′ − Pyx′)(uxx′ + uyy
′) +

1

2P
(Pxx

′ + Pyy
′)(uxy

′ − uyx′) + uxy
′′ − uyx′′.

We rewrite the equations for z(t) = (z1(t), z2(t))T in the vector form as follows:

ż(t) = Ã · z(t) + b̃ (2.3)
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where

Ã =
1

2P

Pxx′ + Pyy
′ −(Pxy

′ − Pyx′)

Pxy
′ − Pyx′ Pxx

′ + Pyy
′

 and b̃ =

uxx′′ + uyy
′′

uxy
′′ − uyx′′

 (2.4)

The next step is to rewrite (2.4) in terms of local coordinators (τ, ν) at each point (x, y) on

the boundary ∂Ω. Taking the derivatives of P with respect to τ and ν respectively, we obtain

Pτ = ∇P · τ = 〈Px, Py〉 · 〈x′, y′〉 = Px · x′ + Py · y′,

Pν = ∇P · ν = 〈Px, Py〉 · 〈y′,−x′〉 = Px · y′ − Py · x′.

Recognizing Pτ and Pν as the entries of the above matrix Ã, we can write it in terms of P , Pτ

and Pν as follows:

Ã =
1

2P

Pτ −Pν
Pν Pτ

 =
1

2P

Pτ −q
q Pτ

 (2.5)

If ∂Ω is parametrized by the arc length, we represent b̃ in the form b̃ = B̃ · z with

B̃ =
1

(x′)2 + (y′)2

x′x′′ + y′y′′ y′x′′ − x′y′′

x′y′′ − y′x′′ x′x′′ + y′y′′

 =

 0 y′x′′ − x′y′′

x′y′′ − y′x′′ 0


then equation (2.3) can be rewritten in the homogeneous form

ż(t) = A · z(t) (2.6)

where

A = Ã+ B̃ =


1

2P
(Pxx

′ + Pyy
′) − 1

2P
(Pxy

′ − Pyx′) + y′x′′ − x′y′′

1

2P
(Pxy

′ − Pyx′) + x′y′′ − y′x′′ 1

2P
(Pxx

′ + Pyy
′)


(2.7)

Next, we consider two special cases of Ω and compute the corresponding matrices A of

the homogeneous systems.
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Example 1. Let Ω be the unit diskB1(0). We parametrize the boundary ∂B1(0) by x(t) = cos t

and y(t) = sin t, and simplify the matrix (2.7) to get

A =


1

2P
(Pxx

′ + Pyy
′) − 1

2P
(Pxy

′ − Pyx′)− 1

1

2P
(Pxy

′ − Pyx′) + 1
1

2P
(Pxx

′ + Pyy
′)

 =


Pτ
2P

− q

2P
− 1

q

2P
+ 1

Pτ
2P

 . (2.8)

The domain in this example will be employed in the numerical studies in Chapter 3.

Example 2. Let Ω be the half-plane R2
+. The boundary, i.e., x-axis can be parametrized by

x = t and y = 0. The matrix A is simplified to

A =
1

2P

 Px Py

−Py Px

 . (2.9)

Suppose u is a solution of the PDE problem (2.1). In general, z(t) = (z1(t), z2(t)) =

(uτ (γ(t)), uν(γ(t))) are T -periodic if and only if

∫ T

0

a1(t)dt = 0 and
∫ T

0

a2(t)dt = 2nπ (2.10)

for some integer n, which is shown in [12], where

a1 =
1

2P
(Pxx

′ + Pyy
′) and a2 =

1

2P
(Pxy

′ − Pyx′) + x′y′′ − y′x′′

are the entries in the first column of matrix A defined in (2.7).

Theorem. Given P ∈ C1,α(∂Ω), q ∈ Cα(∂Ω), suppose (2.10) holds. Then z = (z1, z2) defined

by

z1(t) = z0

√
P (t) cos

∫ t

0

a2(τ) dτ and z2(t) = z0

√
P (t) sin

∫ t

0

a2(τ) dτ,

is a solution of (2.6).
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Proof. We will show that the expressions of z1 and z2 are a solution of (2.6) by direct substitu-

tion into the equations. First we note that

√
P = e

1
2

lnP = e
∫ t
0
Pτ
2P
dτ = e

∫ t
0 a1(τ)dτ .

Therefore,

ż1(t) = z0e
∫ t
0 a1(τ)dτa1(t) · cos

∫ t

0

a2(τ) dτ − z0

√
P (t) sin

∫ t

0

a2(τ) dτ · a2(t)

= a1(t) · z0

√
P (t) cos

∫ t

0

a2(τ) dτ − a2(t) · z0

√
P (t) sin

∫ t

0

a2(τ) dτ

= a1(t)z1(t)− a2(t)z2(t).

Similarly,

ż2(t) = z0e
∫ t
0 a1(τ)dτa1(t) · sin

∫ t

0

a2(τ) dτ + z0

√
P (t) cos

∫ t

0

a2(τ) dτ · a2(t)

= a1(t) · z0

√
P (t) sin

∫ t

0

a2(τ) dτ + a2(t) · z0

√
P (t) cos

∫ t

0

a2(τ) dτ

= a1(t)z2(t) + a2(t)z1(t).

Thus z is a solution of the ODE system (2.6).

Remark. Suppose u satisfies ∆u = 0 in Ω and (z1(t), z2(t)) = (uτ (γ(t)), uν(γ(t))). Then it

has the following averaging properties:

∫ T

0

z1(t)dt = 0, and
∫ T

0

z2(t)dt = 0. (2.11)

where T is the period of γ.

The first equation is due to the fundamental theorem of line integrals and the second one

is obtained from the divergence theorem.

In the next two sections, we rewrite the well-known representation formulas for the so-

lutions of the Dirichlet and Neumann boundary value problems in the half-plane and the unit
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disk in terms of the derivatives of solutions. The purpose of these sections is to highlight the

relation between the representations of solutions for the two problems and motivate the intro-

duction of the generalized Hilbert transform in Section 2.4. A systematic study of the Dirichlet-

to-Neumann map and the Neumann-to-Dirichlet map, in the framework of linear relations in

Hilbert spaces, is presented in [4].

2.2 Linear boundary-value problems on half-plane

Suppose that u is a solution of Laplace’s equation ∆u = 0 with the Dirichlet boundary condi-

tion g on the half-plane R2
+, that is,


∆u = 0 in R2

+,

u = g on ∂R2
+.

This solution u is given by the Poisson formula for half-plane as follows for x = (x1, x2) ∈ R2
+:

u(x) =
x2

π

∫
∂R2

+

g(y)

|x− y|2
dy. (2.12)

For the Dirichlet boundary condition we set g′ = z1 and, assuming that z1 vanishes at

−∞, we have g(y1) =
∫ y1
−∞ z1(s) ds. Then Poisson’s formula (2.12) becomes

u(x) =
x2

π

∫
R

g(y1)

|x− y|2
dy1

=
x2

π

∫
R

1

|x− y|2

∫ y1

−∞
z1(s) ds dy1

=
x2

π

∫
R
z1(s)

∫ ∞
s

1

|x− y|2
dy1 ds

To compute the inside integral, we change the variable and let x1 − y1 = x2 tan θ, then

|x− y|2 = x2
2 tan θ + x2

2 = x2
2 sec2 θ. We have dy1 = −x2 sec2 θ dθ and

∫ ∞
s

1

|x− y|2
dy1 =

1

x2

[π
2

+ tan−1
(x1 − s

x2

)]
.
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Thus

u(x) =

∫
R

[1

2
+

1

π
tan−1

(x1 − y1

x2

)]
z1(y1) dy1.

Let t = tan−1
(x1 − y1

x2

)
, which is equivalent to tan t =

x1 − y1

x2

. Taking the derivative

with respect to x2, we have sec2 t
dt

dx2

= −x1 − y1

x2
2

which implies that

dt

dx2

= − x1 − y1

x2
2 sec2 t

= −x1 − y1

x2
2

· x2
2

|x− y|2
= − x1 − y1

|x− y|2
.

Computing the derivative of u on ∂R2
+ with respect to ν, we have

uν(x) = lim
x2→0

ux2(x) = − 1

π
lim
x2→0

∫
R

x1 − y1

|x− y|2
z1(y1) dy1. (2.13)

Next we consider the Neumann problem in the half-plane. Suppose that v is a solution of

Laplace’s equation ∆v = 0 with the Neumann boundary condition, that is,


∆v = 0 in R2

+,

∂v

∂ν
= z2 on ∂R2

+.

This solution v is derived in Appendix A and given by Dini’s formula for half-plane as follows:

v(x) = −2

∫
∂R2

+

Φ(x, y)z2(y) dy (2.14)

where

Φ(x, y) = Φ(x− y) = − 1

2π
log(|x− y|)

is the fundamental solution of Laplace equation so that formula (2.14) becomes

v(x) =
1

π

∫
R

log(|x− y|)z2(y1) dy1.
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Taking the derivative of v on ∂R2
+ with respect to τ , we have

vτ (x) = lim
x2→0

vx1(x) =
1

π
lim
x2→0

∫
R

x1 − y1

|x− y|2
z2(y1) dy1. (2.15)

In summary, the representations of solutions of Dirichlet and Neumann problems yield

uν(x1, 0) = − 1

π
lim
x2→0

∫
R

x1 − y1

|x− y|2
z1(y1) dy1,

and

vτ (x1, 0) =
1

π
lim
x2→0

∫
R

x1 − y1

|x− y|2
z2(y1) dy1.

If the solutions of the Dirichlet and Neumann problems are identical, i.e. u = v, then we must

have

z2 = − 1

π
P.V.

∫
R

z1(y)

x− y
dy,

and

z1 =
1

π
P.V.

∫
R

z2(y)

x− y
dy.

Recalling the definition of Hilbert transform

Hf(x) =
1

π
P.V.

∫
R

f(y)

x− y
dy,

we can write these relations as

Hz1 = −z2 and Hz2 = z1.

This connection gives us a motivation to use Hilbert transform to connect z1 and z2 as a condi-

tion for the existence and uniqueness of the solution.

2.3 Linear boundary-value problems on unit disk

In this section, we follow the same calculations as in the previous section to obtain the results

on unit disk. Suppose that v is a solution of Laplace’s equation ∆v = 0 with the Neumann
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boundary condition on the unit ball B1(0), that is


∆v = 0 in B1(0),

∂v

∂ν
= z2 on ∂B1(0).

The solution is given by Dini’s formula for the unit ball

v(x) = − 1

π

∫
∂B1(0)

log(|x− y|)g(y) dS(y). (2.16)

The derivation of this formula also appears in Appendix A where x = (x1, x2) = (ρ cos θ, ρ sin θ)

is an arbitrary point in the unit disk (0 ≤ ρ ≤ 1) and y = (y1, y2) = (cos t, sin t) is a point on

the unit circle. Moreover, w =
〈x2,−x1〉
|x|

is a unit vector orthogonal to the vector connecting

the origin and the point x.

Suppose x̄(x̄1, x̄2) is a point on the vector w, then −→xx̄ = cw where c is a scalar, which

implies

〈x̄1 − x1, x̄2 − x2〉 =
1

|x|
〈tx2,−tx1〉,

and then

x̄1 = x1 + t
x2

|x|
and x̄2 = x2 − t

x1

|x|
.

Taking the derivative of v with respect to τ , we have

Dv(x) · w = lim
t→0

v(x)− v(x̄)

t|w|

= lim
t→0

1

π

∫
∂B1(0)

log(|x̄− y|)− log(|x− y|)
t|w|

z2(y) dS(y)

= lim
t→0

1

2π

∫
∂B1(0)

[ log

(
x1 + t

x2

|x|
− y1

)2

+

(
x2 − t

x1

|x|
− y2

)2

(x1 − y1)2 + (x2 − y2)2

t|w|

]
z2(y) dS(y)

=
1

2π

∫
∂B1(0)

lim
t→0

[ log

(
x1 + t

x2

|x|
− y1

)2

+

(
x2 − t

x1

|x|
− y2

)2

(x1 − y1)2 + (x2 − y2)2

t|w|

]
z2(y) dS(y)
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=
1

2π

∫
∂B1(0)

lim
t→0

{ log
[
1 +

t2
(
x2

1 + x2
2

|x|2

)
+ 2t

(
x1y2 − x2y1

|x|

)
(x1 − y1)2 + (x2 − y2)2

]
t

}
z2(y) dS(y)

=
1

2π

∫
∂B1(0)

lim
t→0

[ 2t

(
x2

1 + x2
2

|x|2

)
+ 2

(
x1y2 − x2y1

|x|

)
(x1 − y1)2 + (x2 − y2)2

1 +

t2
(
x2

1 + x2
2

|x|2

)
+ 2t

(
x1y2 − x2y1

|x|

)
(x1 − y1)2 + (x2 − y2)2

]
z2(y) dS(y)

= − 1

π

∫
∂B1(0)

x2y1 − x1y2

|x| · |x− y|2
z2(y) dS(y)

next, we parametrize the boundary ∂B1(0) by angle θ to obtain

Dv(x) · w = − 1

π

∫ 2π

0

1

|ρ|
ρ sin(θ − t)

ρ2 + 1− 2ρ cos(θ − t)
z2(t) dt, (2.17)

in the Principal Value sense. Letting ρ→ 1, we have

vτ (θ) = lim
|x|→1

Dv(x) · w = − 1

2π

∫ 2π

0

cot
(θ − t

2

)
z2(t) dt. (2.18)

The integral in formula (2.18) is in the principal value sense and it represents the Hilbert trans-

form H on the unit circle of z2 [19]. If the solutions of the Dirichlet and Neumann problems

are identical, then the relation in (2.18) can be written as Hz2 = z1. Similarly, starting with

a solution of Laplace’s equation with the Dirichlet boundary condition, we verify the relation

Hz1 = −z2.

2.4 Generalized Hilbert Transform and the Main Result

We start by extending the notion of Hilbert transform to the general domain. Suppose that Ω is

an arbitrary C2,α bounded domain in R2. According to the standard elliptic theory [11], given

f ∈ C1,α(Ω̄), there exists a unique solution u ∈ C2,α(Ω̄) of the following Dirichlet boundary
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value problem for the Laplace equation:


∆u = 0 in Ω,

u =
∫ t

0
f(s)ds on ∂Ω.

We define the generalized Hilbert transformH: C1,α(∂Ω)→ C1,α(∂Ω) by setting

Hf =
∂u

∂ν
. (2.19)

The main result of this section is the following existence and uniqueness theorem for the

Backus problem with expanded data on bounded planar domain.

Theorem. Suppose P ∈ C1,α(∂Ω), q ∈ Cα(∂Ω). Let z = (z1, z2) be a solution of the ODE

system (2.6) where A is given by (2.7). Suppose that z2
1(t0) + z2

2(t0) = P (t0) for some t0. In

addition, assume thatHz1 = −z2, whereH is the generalized Hilbert transform (2.19) on ∂Ω.

Then there exists a unique (up to a phase) function u that is harmonic in Ω and such that

|Du|2 = P and
∂

∂ν
|Du|2 = q on ∂Ω.

Proof. Let u be the unique solution of Laplace’s equation with Dirichlet boundary condition

generated by z1, 
∆u = 0 in Ω

u = −
∫ t

0
z1(s)ds on ∂Ω.

(2.20)

By construction uτ = z1 on ∂Ω and, based on the assumptionHz1 = −z2, we have uν = z2 on

∂Ω. Let ω(t) = z2
1(t) + z2

2(t) for t ∈ [0, T ]. Then, from (2.7), we get

ω̇(t) = 2z1(t)ż1(t) + 2z2(t)ż2(t) = 2a1(t)z1(t)2 + 2a1(t)z2(t)2 = 2a1(t)ω(t) = ω(t) · Pτ (t)
P (t)

.
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This is a separable ODE for ω. Combining with the initial condition P (t0) = z2
1(t0) + z2

2(t0),

we have

|Du|2 = u2
τ (t) + u2

ν(t) = z2
1(t) + z2

2(t) = P (t) on ∂Br(0) for t ∈ [0, 2π].

Taking the derivatives of uτ with respect to τ and ν, we have

uττ = (x′, y′) ·

uxx uxy

uxy uyy


x′
y′

 = uxxx
′2 + 2uxyx

′y′ + uyyy
′2,

uτν = (x′, y′) ·

uxx uxy

uxy uyy


 y′

−x′

 = uxxx
′y′ + uxyy

′2 − uxyx′2 − uyyx′y′.

Then

ż1 = u̇τ =
d

dt
(uxx

′+uyy
′) = uxxx

′2 + 2uxyx
′y′+uyyy

′2 +uxx
′′+uyy

′′ = uττ +uxx
′′+uyy

′′.

Similarly,

ż2 = u̇ν =
d

dt
(uxy

′ − uyx′) = uxxx
′y′ + uxyy

′2 − uxyx′2 − uyyx′y′ = uτν − uyx′′ + uxy
′′.

Solving for uττ and uτν , we get

uττ =
Pτ
2P
· z1 −

q

2P
· z2,

uτν =
q

2P
· z1 +

Pτ
2P
· z2,
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and therefore

∂

∂ν
|Du|2 =

∂

∂ν
(u2

τ (t) + u2
ν(t))

= 2uτuτν + 2uνuνν

= 2uτuτν − 2uνuττ

= 2z1

( q

2P
· z1 +

Pτ
2P
· z2

)
− 2z2

( Pτ
2P
· z1 −

q

2P
· z2

)
= q.

Hence the solution u of (2.20) is the desired solution of the Backus problem with expanded

data. The uniqueness follows from well-posedness of the Dirichlet problem.
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Chapter 3

Numerical Studies

In this chapter, we report on the results of some numerical experiments with the goal to cor-

roborate our well-posedness result in 2D. An organizational workflow of experiments mainly

consists of the following three steps:

• Generate the data from harmonic functions.

• Solve the ODE system (2.6).

• Use the solution of the ODE to solve the PDE.

We use Matlab, specifically the Boundary Value Problem solver for ordinary differential

equations and the Partial Differential Equation Toolbox to complete the task.

The domain Ω being considered in this chapter is the unit disk B1(0). To solve the

system of ordinary differential equations, the function bvp4c with periodic boundary con-

ditions may be considered as an alternative to dsolve. The former one has the function call

bvp4c(odefun, bcfun, solinit) where odefun is a handle for the function that

evaluates the right-hand side of the differential equations that is obtained from equation (2.6)

and matrix A is defined in (2.7); bcfun is a handle for the function that computes the resid-

ual in the boundary conditions and, in our experiment, we enforce the periodicity of solutions,

that is, we require that z1(0) − z1(2π) = 0 and z2(0) − z2(2π) = 0; solinit is a structure

containing the initial guess for a solution and we choose the constant values z1 = 1 and z2 = 0.

In order to represent the solutions z1 and z2 of the ODE system as functions of the angle t

and supply them as data for the PDE problem, we first scale z1 and z2 to satisfy the condition
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z2
1 +z2

2 = P and then use the cubic spline interpolation with periodic conditions. Suppose si(t)

is a cubic polynomial interpolation in each of the subintervals [ti, ti+1]. The conditions to be

satisfied by the cubic spline si(t) are as follows:

si(ti) = f(ti), i = 0, . . . n− 1,

si(ti+1) = f(ti+1), i = 0, . . . n− 1,

s′i(ti+1) = s′i+1(ti+1), i = 0, . . . n− 2,

s′′i (ti+1) = s′′i+1(ti+1), i = 0, . . . n− 2,

with two more conditions s′0(t0) = s′n−1(tn) and s′′0(t0) = s′′n−1(tn) arising from the periodicity.

The details of the construction are provided in Appendix B.

In the next step, the Partial Differential Equation Toolbox uses the Finite Element Method

(FEM) for problems defined on bounded domain in the two-dimensional plane with the equa-

tion in divergence form −∇ · (c∇u) + au = f . In the Finite Element Method, a complicated

geometry of an arbitrary smooth domain is approximated by a collection of subdomains by gen-

erating a mesh. For instance, we can approximate the computational domain Ω with the union

of triangles. The main idea in the Finite Element Method is to convert the original differential

(strong) form of PDE

−∇ · (c∇u) + au = f

into an integral (weak) form

∫
Ω

((c∇u) · ∇v + auv − fv)dx−
∫
∂Ω

(−qu+ g)vds = 0,

where v ∈ C1
0(Ω) is an arbitrary test function, and replace the infinite-dimensional linear prob-

lem with a finite-dimensional version by taking the finite-dimensional subspace to be a space

of piecewise polynomial functions, that is, expand u in a basis of elements φ1, φ2, . . . , φN as
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follows

u(x) =
N∑
j=1

Ujφj(x) (3.1)

and obtain the equations

N∑
j=1

(∫
Ω

((c∇φj) · ∇φi + aφjφi)dx+

∫
∂Ω

qφjφids
)
Uj =

∫
Ω

fφidx+

∫
∂Ω

gφidx. (3.2)

that hold for i = 1, 2, . . . , N. Using the notations

Ki,j =

∫
Ω

((c∇φj) · ∇φidx,

Mi,j =

∫
Ω

aφjφidx, Qi,j =

∫
∂Ω

qφjφids,

Fi =

∫
Ω

fφidx, Gi =

∫
∂Ω

gφidx,

we rewrite the system in the matrix form

(K +M +Q)U = F +G. (3.3)

We can apply this algorithm to solve the Dirichlet and Neumann boundary value problems.

However, the finite element matrix for the Neumann problem is close to singular. We there-

fore add the condition
∫

Ω
un dx =

∫
Ω
ud dx to the finite element matrix to resolve the non-

uniqueness, where un and ud are solutions of Laplace’s equation with Neumann and Dirichlet

boundary conditions z2 and
∫ t

0
z1(θ)dθ.

Now we describe the results of numerical experiments. We consider three harmonic func-

tions

• u0 = y2 − x2,

• u1 = 0.1(x2 + y2)5 cos(10 tan−1( y
x
)),

• u2 = u0 + u1.
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The function u0 is a harmonic polynomial of order 2 with unit magnitude; u1 is the real part of

a complex analytic function z10 with the magnitude one order less than that of u0 and relatively

high frequency oscillations; u2 models the combination of the background field of u0 and the

perturbation of u1.

The boundary values P = |Du|2 and q = ∂
∂ν
|Du|2 of such three functions are computed

explicitly as follows:

u u0 = y2 − x2 u1 = 0.1(x2 + y2)5 cos(10 tan−1( y
x
))

P 4 1

q 0 18

u u2 = u0 + u1

P 5− 4{(x2 − y2) cos(10 tan−1( y
x
)) + 2xy sin(10 tan−1( y

x
))}

q 26− 40{(x2 − y2) cos(10 tan−1( y
x
)) + 2xy sin(10 tan−1( y

x
))}

In numerical experiments, P and q on the boundary are computed numerically.

In order to estimate the error of the approximation, we compare u−ue in the L2(Ω)-norm

and H1(Ω)-norm where ue denotes the exact values of the harmonic solution on the boundary

mesh points and u = cosα · ud + sinα · vd is an estimation, where ud and vd are solutions of

Laplace’s equation with Dirichlet boundary conditions
∫ t

0
z1(θ)dθ and

∫ t
0
z2(θ)dθ, respectively

and α is the optimal phase which is described later.

The L2(Ω)-norm of a function u in the form (3.1) can be computed as follows,

||u||2L2 =

∫
Ω

|u(x)|2dx =

∫
Ω

[
∑
i

Uiφi(x)]2dx =
∑
i,j

〈φi(x), φj(x)〉UiUj = UTMU,

where M = 〈φi(x), φj(x)〉 =
∫

Ω
φi(x)φj(x) dx is the mass matrix.
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Similarly, the H1(Ω)-norm of such function u can be represented as follows,

||u||2H1 = ||∇u||2L2 + ||u||2L2 =

∫
Ω

(|∇u|2 + |u(x)|2)dx

=

∫
Ω

[
∑
i

Ui∇φi(x)]2 + [
∑
i

Uiφi(x)]2dx

=
∑
i,j

〈∇φi(x),∇φj(x)〉UiUj +
∑
i,j

〈φi(x), φj(x)〉UiUj

= UT (K +M)U,

where K = 〈∇φi(x),∇φj(x)〉 =
∫

Ω
∇φi(x)∇φj(x)dx is the stiffness matrix.

In particular, the error estimates take the form

||u− ue||L2 ≈ [(u− ue)TM(u− ue)]
1
2 ,

and

||u− ue||H1 ≈ [(u− ue)T (K +M)(u− ue)]
1
2 .

We note that the solution of (2.1) is not unique due to an additive constant and an arbitrary

constant phase. We apply vertical and phase shifts to u before evaluating the error.

In order to determine the additive constant, we ensure that
∫
B1(0)

uddx =
∫
B1(0)

uedx

and
∫
B1(0)

vddx =
∫
B1(0)

uedx by shifting ud and vd vertically. Suppose that
∫
B1(0)

uedx =∫
B1(0)

(ud + c)dx, then the additive constant c is calculated as follows

c =

∫
B1(0)

(ue − ud)dx∫
B1(0)

1 dx
=
〈1, . . . , 1〉TM(ue − ud)
〈1, . . . , 1〉TM〈1, . . . , 1〉

.

Similarly, if
∫
B1(0)

uedx =
∫
B1(0)

(vd + d)dx, we have

d =

∫
B1(0)

(ue − vd)dx∫
B1(0)

1 dx
=
〈1, . . . , 1〉TM(ue − vd)
〈1, . . . , 1〉TM〈1, . . . , 1〉

.

We update ud and vd with ud + c and vd + d, respectively.
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To match the phases for u and ue, we optimize the phase of u by minimizing the L2(Ω)-

norm of the difference (cosα · ud + sinα · vd) − ue with respect to α in the interval [−π, π].

For calculated local minimizer α, we update u = cosα · ud + sinα · vd. In Table 3.1, we list

the L2(Ω)-norms and H1(Ω)-norms of the three test functions ue in the approximation by u.

Table 3.1: Approximation errors in L2(Ω) and H1(Ω)

u0 u1 u2

Hmax L2(Ω) H1(Ω) L2(Ω) H1(Ω) L2(Ω) H1(Ω)
0.1 4.35 · 10−04 1.05 · 10−02 1.05 · 10−02 4.92 · 10−02 6.60 · 10−01 2.42 · 10−00

0.05 1.18 · 10−04 6.02 · 10−03 1.16 · 10−03 9.37 · 10−03 1.66 · 10−02 6.75 · 10−02

0.025 2.77 · 10−05 2.86 · 10−03 4.55 · 10−05 4.18 · 10−03 3.38 · 10−03 1.61 · 10−02

0.0125 7.70 · 10−06 1.47 · 10−03 1.29 · 10−05 2.26 · 10−03 1.48 · 10−05 2.69 · 10−03

With the decreasing mesh size, L2(Ω)-norms and H1(Ω)-norms become smaller and L2-

norms deceases much faster than H1-norms. Notice that the error of function u2 is significant

when the mesh size is relatively large.

Next, we estimate the rate of convergence γ for L2-norm and H1-norm of u−ue. Assume

that the norm satisfies the relation

||u− ue||L2 or H1 ≈ C · (Hmax)
γ. (3.4)

for some constants C and γ. To estimate γ, we take the natural logarithm on both sides in (3.4)

to get

log ||u− ue||L2 or H1 ≈ logC + γ · logHmax

Setting y = log ||u − ue||, x = logHmax, β0 = logC and β1 = γ, we recover γ using

linear regression for

y = β0 + β1 · x+ ε,

where ε is the error term.

Starting with a set of 4 observed values of x and y given by (x1, y1), (x2, y2), (x3, y3)

and (x4, y4). Using the simple linear regression relation, these values form a system of linear
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equations and represent these equations in matrix form as



y1

y2

y3

y4


=



1 x1

1 x2

1 x3

1 x4


·

β0

β1



Let Y =



y1

y2

y3

y4


, X =



1 x1

1 x2

1 x3

1 x4


, B =

β0

β1

. The relation becomes Y = XB.

In Matlab, we compute B using the mldivide operator as B = X\Y . The estimate of

parameter γ is the second element in vector B. The estimated rates of convergence γ for the

L2-norm and H1-normof u− ue are summarized in Table 3.2.

Table 3.2: Rates of convergence in L2(∂Ω) and H1(∂Ω)

γ u0 u1 u2

L2(∂Ω) 1.9549 3.3662 4.8629
H1(∂Ω) 0.9558 1.4489 3.1510

The graphs in Figure 3.1 are log-log plots where mesh size is on the horizontal axis, the

error is on vertical axis, and the slopes correspond to the rate of convergence. The slopes are

greater for L2-norm than H1-norm.

Table 3.3: Approximation errors in L2(∂Ω)

Hmax u0 u1 u2

0.1 4.0021 · 10−04 2.0656 · 10−01 8.2328 · 10−00

0.05 6.5553 · 10−06 1.9216 · 10−02 1.0405 · 10−01

0.025 4.8555 · 10−07 5.4880 · 10−04 4.3205 · 10−02

0.0125 3.6481 · 10−07 7.9137 · 10−05 7.9447 · 10−06
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Figure 3.1: Linear regression on errors and mesh size
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We also measure the error in approximating the boundary data P with the solution of the

ODE system uτ and uν , namely, we compute ||u2
τ + u2

ν − P ||L2(∂Ω) and estimate the rate of

convergence for this norm.

Table 3.4: Rate of convergence in L2(∂Ω)

γ u0 u1 u2

||u2
τ + u2

ν − p||L2(∂Ω) 3.4053 3.9180 6.1217

We note that, as expected, the solution of the ODE system is close to the boundary data P ,

especially with relatively small mesh size.
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Chapter 4

Quasilinear Elliptic PDE for Backus Problem in Higher Dimension

4.1 Dimension Reduction

In this section, we derive an equation involvingDu, the tangential gradient of u, in n-dimensional

hyperplanes. Suppose

u ∈ C2(R̄n+1
+ ) satisfies ∆u = 0 in Rn+1

+ .

Denote by ∆k the Laplace operator in Rk, namely, let

∆ku =
k∑
j=1

Djju, k = n, n+ 1.

We also denote

∆u = ∆nu,

so that the Laplace equation in Rn+1 becomes

∆n+1u = ∆u+Dn+1,n+1u = 0.

Write |Du|2 =
∑n

j=1(Dju)2 and let

P := |Du|2 + (Dn+1u)2. (4.1)
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Taking partial derivatives with respect to xi in equation (4.1), we obtain

2DjuDiju+ 2Dn+1uDn+1,iu = DiP, i = 1, . . . , n,

2DiuDi,n+1u+ 2Dn+1uDn+1,n+1u = Dn+1P =: q,

where, here and throughout, the summation from 1 to n is assumed for repeated indices.

Multiplying the last equation by Dn+1u and replacing in it the terms involving the partial

derivative with respect to xn+1, we arrive at

Diu(DiP − 2DjuDiju) + 2(P − |Du|2)(−∆u) = qDn+1u.

Rearranging the terms further, we obtain

(P − |Du|2)∆u+DiuDjuDiju−
1

2
DiPDiu+

q

2
σ
√
P − |Du|2 = 0 (4.2)

where σ = signDn+1u. Note that this equation involves explicitly only the partial derivatives

with respect to x1, . . . , xn.

We can transform (4.2) to the divergence form of this equation in Rn:

Qu := div
Du√

P − |Du|2
+

1

2

σq

P − |Du|2
= 0. (4.3)

Note that the left hand side of this equation is defined only when |Du|2 < P .

4.2 Legendre Transform

We investigate the equation (4.2) in the case when n = 2 with a technique called Legendre

transform. This technique is used to convert quasilinear systems of PDE into linear systems,

by reversing the roles of the dependent and independent variables.

Assume that in region Ω ⊂ R2, we can invert the relations

p1 = ux1(x1, x2), p2 = ux2(x1, x2),

35



to solve for

x1 = x1(p1, p2), x2 = x2(p1, p2).

Define

v(p) = x · p− u(x(p)),

where x = (x1, x2) and p = (p1, p2). Upon substituting into the equation (4.2), we arrive at

(
P − p2

1 − p2
2

)
Jvp2p2 − 2p1p2Jvp1p2 +

(
P − p2

1 − p2
2

)
Jvp1p1

− 1

2
Pvp1p1 −

1

2
Pvp2p2 +

q

2
σ
√
P − p2

1 − p2
2 = 0. (4.4)

The detailed derivation of equation (4.4) appears in Appendix B.

Equation (4.4) is non-linear because of the presence of J = ux1x1ux2x2−u2
x1x2

. In addition,

the boundary conditions are not easily transformed by this technique. For these reasons, the

Legendre transform approach is not pursued further in this dissertation but we state equation

(4.4) for the record.

4.3 Definitions

In this section, we recall the ellipticity of second order, quasilinear equations of the form Qu =

0 where

Qu = aij(x, u,Du)Diju+ b(x, u,Du), (4.5)

and x = (x1, . . . , xn) is contained in a domain Ω of Rn, n ≥ 2. The coefficients of Q, namely

the functions aij(x, z, p) and b(x, z, p) are assumed to be defined in U ⊆ Ω × R × Rn. We

recall the following definitions:

Definitions [11, p.259]. Let U be a subset of Ω×R×Rn. Denote by Λ the maximum eigenvalue

of [aij(x, z, p)] and by λ the minimum eigenvalue of [aij(x, z, p)].

• The operator Q is elliptic in U if the coefficient matrix [aij(x, z, p)] is positive definite

for all (x, z, p) ∈ U .

• The operator Q is uniformly elliptic in U if Λ/λ is bounded in U .
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• If Q is elliptic (uniformly elliptic) in the whole set Ω × R × Rn, then we say that Q is

elliptic (uniformly elliptic) in Ω.

4.4 Leray-Schauder Estimates

In this section, we recall how the solvability of the classical Dirichlet problem for quasilinear

equations is reduced to the establishment of certain apriori estimates for solutions. This re-

duction is achieved through the application of topological fixed point theorems in appropriate

function spaces.

The Brouwer fixed point theorem can be extended to infinite dimensional spaces with

primarily applications in Banach spaces as follows:

Theorem 4.1 (Schauder Fixed Point Theorem) [11, p.279]. Let G be a closed convex set in

a Banach space B and let T be a continuous mapping of G into itself such that the image TG is

precompact. Then T has a fixed point.

For later purposes we note the following extension of Theorem 4.1.

Theorem 4.2 (Schaefer’s Fixed Point Theorem) [11, p.280]. Let T be a compact mapping of

a Banach space B into itself, and suppose there exists a constant M such that

||x||B < M

for all x ∈ B and σ ∈ [0, 1] satisfying x = σTx. Then T has a fixed point.

In order to apply Theorem 4.2 to the Dirichlet problem for quasilinear equations, we fix a

number β ∈ (0, 1) and take the Banach space B to be the Hölder space C1,β(Ω̄). Let Q be the

operator given by (4.5) and Q is elliptic in Ω̄. We also assume, for some α ∈ (0, 1), that the

coefficients aij , b ∈ Cα(Ω̄×R×Rn), that the boundary ∂Ω is of class C2,α, and φ ∈ C2,α(Ω̄).

For all v ∈ C1,β(Ω̄), the operator T : v → u is defined by letting u = Tv be the unique solution

in C2,αβ(Ω̄) of the linear Dirichlet problem,

aij(x, v,Dv)Diju+ b(x, v,Dv) = 0 in Ω, u = φ on ∂Ω. (4.6)
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The solvability of the Dirichlet problem, Qu = 0 in Ω, u = φ on ∂Ω, in the space C2,α(Ω̄)

is thus equivalent to the solvability of the equation u = Tu in the Banach space B = C1,β(Ω̄).

The equation u = σTu in B is equivalent to the Dirichlet problem

Qσu = aij(x, u,Du)Diju+ σb(x, u,Du) = 0 in Ω, u = σφ on ∂Ω. (4.7)

By applying Theorem 4.2, we arrive at the following criterion for existence.

Theorem 4.3 [11, p.281]. Let Ω be a bounded domain in Rn and suppose that Q is elliptic in

Ω̄ with coefficients aij , b ∈ Cα(Ω̄× R× Rn), 0 < α < 1. Let ∂Ω ∈ C2,α and φ ∈ C2,α. Then,

if for some β > 0 there exists a constant M , independent of u and σ, such that every C2,α(Ω̄)

solution of the Dirichlet problems, Qσu = 0 in Ω, u = σφ on ∂Ω, 0 ≤ σ ≤ 1, satisfies

||u||C1,β(Ω̄) < M,

it follows that the Dirichlet problems, Qu = 0 in Ω, u = φ on ∂Ω, is solvable in C2,α(Ω̄).

Theorem 4.3 reduces the solvability of the Dirichlet problem Qu = 0 in Ω, u = φ on ∂Ω

to the apriori estimates in the space C1,β(Ω̄) of the solutions of a related family of problems. In

practice it is desirable to break the derivation of the apriori estimates into four stages:

Apriori Estimates Program

1. Estimation of sup
Ω
|u|;

2. Estimation of sup
∂Ω
|Du| in terms of sup

Ω
|u|;

3. Estimation of sup
Ω
|Du| in terms of sup

∂Ω
|Du| and sup

Ω
|u|;

4. Estimation of [Du]β;Ω in terms of sup
Ω
|Du| and sup

Ω
|u|.

We will consider these stages starting from Section 4.6 and establish the apriori estimates for a

family of operators that approximate (4.3) and constitute its regularization.
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4.5 Regularized Quasilinear Operator

The standard approach summarized in Theorem 4.2 is not applicable to the quasilinear operator

defined in (4.3). For this operator, the admissible set is constrained by the domain of definition

of the coefficients. Namely, the function u, for which the operator is defined, must have values

(x, u(x), Du(x)) in the set

U = {(x, z, p) ∈ Ω× R× Rn : P (x) ≥ |p|2}.

The set U is not a linear space. Moreover, the operator T : v → u where u is defined as the

solution of (4.6) is expected to map U into itself. We see that this is not the case, at least for

arbitrary chosen data in the following example.

Example. Let n = 1, P = 1, σ = 1 and q = 16 cos x. Then (4.6) becomes

uxx(1− v2
x) + v2

xuxx + 8 cosx
√

1− v2
x = uxx + 8 cosx

√
1− v2

x = 0. (4.8)

Notice that for v = sinx ∈ U , the solution of (4.8) is given by u = sin 2x. However, we note

that u /∈ U .

In view of this example and the degeneracy of equation (4.3), we recognize the need to

regularize the problem and construct approximate solutions. The idea is that in an appropriate

regime, the approximate solutions will converge to the solution of equation (4.3).

Thus we seek to preform the stages outlined in the Apriori Estimates Program for the reg-

ularized problem and amend the Program with an additional step of showing the convergence

of the approximate solutions. We propose to study the following regularized form of (4.3).

The purpose of this regularization is to expand the set of admissible functions u in equation

(4.3) and include functions with arbitrarily large values of |Du|. Let ε > 0 and consider the

following equation in divergence form:

Qεu = div
Du√

ξε(x, |Du|)
+

1

2

σq

ζε(x, |Du|)
= 0, (4.9)
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where

ξε(x, p) =


P − |p|2 + ε|p| |p|2 ≤ P,

ε2|p|2

|p|2 − P + ε|p|
|p|2 > P,

(4.10)

and

ζε(x, p) =


P − |p|2 + ε|p| |p|2 ≤ P,

ε|p| |p|2 > P.

(4.11)

Notice that ξε(x, p) is continuously differentiable as a function of x and p and ζε(x, p) is

continuous as a function of x and p. Indeed,

∂ξε(x, p)

∂x
=


DxP |p|2 ≤ P,

ε2|p|2DxP

(|p|2 − P + ε|p|)2
|p|2 > P.

∂ξε(x, p)

∂p
=


−2|p|+ ε |p|2 ≤ P,

ε3|p|2 − 2ε3|p|P
(|p|2 − P + ε|p|)2

|p|2 > P.

Therefore

lim
|p|2→P−

∂ξε
∂x

= DxP = lim
|p|2→P+

∂ξε
∂x

,

lim
|p|2→P−

∂ξε
∂p

= ε− 2
√
P = lim

|p|2→P+

∂ξε
∂p

,

and

lim
|p|2→P−

ζε = ε
√
P = lim

|p|2→P+
ζε.

We note that taking the limit as ε→ 0 in the coefficients ξε and ζε, we recover the unregularized

operator Q in (4.3) for |p|2 ≤ P .
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The corresponding non-divergence form of (4.3) is as follows:

If |Du|2 ≤ P ,

(
P − |Du|2 + ε|Du|

)
∆u+

(
1− ε

2|Du|

)
DiuDjuDiju

− 1

2
DiPDiu+

q

2
σ
√
P − |Du|2 + ε|Du| = 0 (4.12)

If |Du|2 > P ,

(
|Du|2 − P + ε|Du|

)
· ε|Du| ·∆u+

( εP

|Du|
− ε2

2

)
DiuDjuDiju

− 1

2
DiP · ε|Du| ·Diu+

q

2
σ · ε|Du| ·

√
|Du|2 − P + ε|Du| = 0 (4.13)

Lemma 4.4. The operator Qε defined as (4.12) and (4.13) is uniformly elliptic in Ω with

λ =


min{P − |p|2 + ε|p|, P + 1

2
ε|p|} |p|2 ≤ P,

min{(|p|2 − P + ε|p|) · ε|p|, ε|p|3 + 1
2
ε2|p|2} |p|2 > P,

and

Λ =


max{P − |p|2 + ε|p|, P + 1

2
ε|p|} |p|2 ≤ P,

max{(|p|2 − P + ε|p|) · ε|p|, ε|p|3 + 1
2
ε2|p|2} |p|2 > P,

Proof. We first identify the coefficients of Qε as follows:

We compute for |p|2 ≤ P ,

aijε (x, p) = δij ·
(
P − |p|2 + ε|p|

)
+
(

1− ε

2|p|

)
pi · pj,

and

bε(x, p) = −1

2
DiP · pi +

q

2
σ
√
P − |p|2 + ε|p|.
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We compute for |p|2 > P ,

aijε (x, p) = δij ·
(
|p|2 − P + ε|p|

)
· ε|p|+

(εP
|p|
− ε2

2

)
pi · pj,

and

bε(x, p) = −1

2
DiP · ε|p| · pi +

q

2
σ · ε|p| ·

√
|p|2 − P + ε|p|.

We claim that the eigenvalues of matrix A = [aijε (x, p)], when |p|2 ≤ P , are given by

λ1 = · · · = λn−1 = P − |p|2 + ε|p| and λn = P +
1

2
ε|p|

and the corresponding eigenvectors are

v1 =



−p2

p1

1

0

...

0


, v2 =



−p3

p1

0

1

...

0


, . . . , vn−1 =



−pn
p1

0

0

...

1


, vn =



p1

pn

p2

pn

...
pn−1

pn

1


.

Moreover,

Λ

λ
=

P +
1

2
ε|p|

P − |p|2 + ε|p|
or

Λ

λ
=
P − |p|2 + ε|p|

P +
1

2
ε|p|

,

and
Λ

λ
is bounded in either case.

On the other hand, when |p|2 > P , we claim the eigenvalues of matrix A are

λ1 = · · · = λn−1 =
(
|p|2 − P + ε|p|

)
· ε|p| and λn = ε|p|3 +

1

2
ε2|p|2
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and the corresponding eigenvectors are

v1 =



−p2

p1

1

0

...

0


, v2 =



−p3

p1

0

1

...

0


, . . . , vn−1 =



−pn
p1

0

0

...

1


, vn =



p1

pn

p2

pn

...
pn−1

pn

1


In addition,

Λ

λ
=

(
|p|2 − P + ε|p|

)
· ε|p|

ε|p|3 +
1

2
ε2|p|2

or
Λ

λ
=

ε|p|3 +
1

2
ε2|p|2(

|p|2 − P + ε|p|
)
· ε|p|

,

and
Λ

λ
is bounded above by 1 in both cases.

To verify that these are indeed eigenvalues and eigenfunctions of matrix A with p =

(p1, . . . , pn), we write

E =

[
v1 v2 . . . vn−1 vn

]
=



−p2

p1

−p3

p1

. . . −pn
p1

p1

pn

1 0 . . . 0
p2

pn

0 1 . . . 0
p3

pn

...
... . . . ...

...

0 0 . . . 1 1


.

43



The diagonal of matrix Di, i = 1, 2 consist of the eigenvalues of A. For |p|2 ≤ P ,

D1 =



P − |p|2 + ε|p| 0 . . . 0 0

0 P − |p|2 + ε|p| . . . 0 0

...
... . . . ...

...

0 0 . . . P − |p|2 + ε|p| 0

0 0 . . . 0 P +
1

2
ε|p|


.

For |p|2 > P ,

D2 =



(
|p|2 − P + ε|p|

)
· ε|p| 0 . . . 0 0

0
(
|p|2 − P + ε|p|

)
· ε|p| . . . 0 0

...
...

. . .
...

...

0 0 . . .
(
|p|2 − P + ε|p|

)
· ε|p| 0

0 0 . . . 0 ε|p|3 + 1

2
ε2|p|2


.

Next, we compute

E·D1 =



−
(
P − |p|2 + ε|p|

)
· p2
p1

−
(
P − |p|2 + ε|p|

)
· p3
p1

. . . −
(
P − |p|2 + ε|p|

)
· pn
p1

(
P +

1

2
ε|p|
)
· p1
pn

P − |p|2 + ε|p| 0 . . . 0
(
P +

1

2
ε|p|
)
· p2
pn

0 P − |p|2 + ε|p| . . . 0
(
P +

1

2
ε|p|
)
· p3
pn

...
...

. . .
...

...

0 0 . . . P − |p|2 + ε|p| P +
1

2
ε|p|


and

E·D2 =



−
(
|p|2 − P + ε|p|

)
· ε|p| ·

p2

p1
−
(
|p|2 − P + ε|p|

)
· ε|p| ·

p3

p1
. . . −

(
|p|2 − P + ε|p|

)
· ε|p| ·

pn

p1

(
ε|p|3 +

1

2
ε2|p|2

)
·
p1

pn(
|p|2 − P + ε|p|

)
· ε|p| 0 . . . 0

(
ε|p|3 +

1

2
ε2|p|2

)
·
p2

pn

0
(
|p|2 − P + ε|p|

)
· ε|p| . . . 0

(
ε|p|3 +

1

2
ε2|p|2

)
·
p3

pn

...
...

. . .
...

...

0 0 . . .
(
|p|2 − P + ε|p|

)
· ε|p| ε|p|3 +

1

2
ε2|p|2
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Moreover, we have

A1·E =



−
(
P − |p|2 + ε|p|

)
· p2
p1

−
(
P − |p|2 + ε|p|

)
· p3
p1

. . . −
(
P − |p|2 + ε|p|

)
· pn
p1

(
P +

1

2
ε|p|
)
· p1
pn

P − |p|2 + ε|p| 0 . . . 0
(
P +

1

2
ε|p|
)
· p2
pn

0 P − |p|2 + ε|p| . . . 0
(
P +

1

2
ε|p|
)
· p3
pn

...
...

. . .
...

...

0 0 . . . P − |p|2 + ε|p| P +
1

2
ε|p|


and

A2·E =



−
(
|p|2 − P + ε|p|

)
· ε|p| ·

p2

p1
−
(
|p|2 − P + ε|p|

)
· ε|p| ·

p3

p1
. . . −

(
|p|2 − P + ε|p|

)
· ε|p| ·

pn

p1

(
ε|p|3 +

1

2
ε2|p|2

)
·
p1

pn(
|p|2 − P + ε|p|

)
· ε|p| 0 . . . 0

(
ε|p|3 +

1

2
ε2|p|2

)
·
p2

pn

0
(
|p|2 − P + ε|p|

)
· ε|p| . . . 0

(
ε|p|3 +

1

2
ε2|p|2

)
·
p3

pn

...
...

. . .
...

...

0 0 . . .
(
|p|2 − P + ε|p|

)
· ε|p| ε|p|3 +

1

2
ε2|p|2


so that

Ai · E = E ·Di, i = 1, 2.

This identity confirms that the columns of E are the eigenvectors of A and with corresponding

eigenvalues of the diagonal of D. Since all those eigenvalues are positive and Λ
λ

is bounded,

the operator Qε is uniformly elliptic in Ω.

Corollary 4.5. The operator Q defined in (4.3) is elliptic in

U = {(x, z, p) ∈ Ω× R× Rn : P (x) ≥ |p|2},

but not uniformly ellptic.

Proof. By taking the limit as ε→ 0 in the coefficients ξε and ζε of the operatorQε, we conclude

that the eigenvalues of A are

λ := λ1 = · · · = λn−1 = P − |p|2, and Λ := λn = P.
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Since λ > 0, Q is elliptic in U , but
Λ

λ
=

P

P − |p|2
is not guaranteed to be bounded.

4.6 Comparison and Maximum Principles for Divergence Form

In this sections, we pursue the estimates of solutions of Qεu = 0 using the divergence structure

of this operator per Stage 1 in the Apriori Estimates Program.

Recall that the operator Q is of divergence form if there exists a differentiable vector

function A(x, z, p) = (A1(x, z, p), · · · ,An(x, z, p)) and a scalar function B(x, z, p) such that

Qu = div A(x, u,Du) +B(x, u,Du), for u ∈ C2(Ω). (4.14)

Furthermore, a function u, weakly differentiable in Ω, satisfies Qu ≥ 0 (= 0, ≤ 0) in Ω if

the functions Ai(x, u,Du), B(x, u,Du) are locally integrable in Ω and

Q(u, ϕ) =

∫
Ω

[A(x, u,Du) ·Dϕ−B(x, u,Du) · ϕ] dx ≤ 0 (= 0, ≥ 0) (4.15)

for all non-negative ϕ ∈ C1
0(Ω).

The divergence form of the quasilinear operator Qε in (4.9) is written out explicitly as

follows:

Qεu = div Aε(x,Du) +Bε(x,Du) = 0

where

Aε(x, p) =



p√
P − |p|2 + ε|p|

|p|2 ≤ P,

p ·
√
|p|2 − P + ε|p|
ε|p|

|p|2 > P,

(4.16)

and

Bε(x, p) =


1

2

σq

P − |p|2 + ε|p|
|p|2 ≤ P,

1

2

σq

ε|p|
|p|2 > P.

(4.17)

We notice that
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• As shown in Section 4.5, A is continuously differentiable with respect to p,

• Aε is independent of z,

• Bε, being independent of z, is non-increasing in z for fixed (x, p) ∈ Ω× Rn.

These observations allows us to conclude the following theorem that requires that the first

condition and any one of the second or third conditions are satisfied.

Theorem 4.6 (Comparison Principle) [11, p.268]. Suppose u, v ∈ C1(Ω) satisfy Qεu ≥ 0,

Qεv ≤ 0 in Ω and u ≤ v on ∂Ω. Then it follows that u ≤ v in Ω.

The comparison principle, Theorem 4.6, was proved in [28]. Certain structure conditions

are essential for establishing the maximum principle for equation in divergence form. The first

condition takes the form

p ·A(x, p) =



|p|2√
P − |p|2 + ε|p|

, |p|2 ≤ P

|p|
√
|p|2 − P + ε|p|

ε
, |p|2 > P

≥ |p|α − aα, (4.18)

x ∈ Ω, p ∈ Rn for some α ≥ 1, a > 0. For |p|2 ≤ P , the infimum of
|p|2√

P − |p|2 + ε|p|
is

attained at |p|2 = 0, which yields
|p|2√

P − |p|2 + ε|p|
≥ 1√

P
. Therefore the inequality for the

first case in (4.18) holds if a = sup
x∈Ω

√
P (x).

On the other hand, for |p|2 > P ,

|p|
√
|p|2 − P + ε|p|

ε
≥
|p|
√
ε|p|
ε

≥ |p|
3
2

√
ε
≥ |p|

3
2 − a

3
2 .

Hence the inequality for the second case in (4.18) holds if a ≥ 0, α = 3
2

and ε < 1.

Combing the two cases, (4.18) holds if a = sup
x∈Ω

√
P (x) and α = 3

2
. For the sake of

Lemma 4.7 and Theorem 4.8 below, we note that α > 1.
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The second structure condition is as follows:

B(x, p) sign z =



1

2

σq

P − |p|2 + ε|p|
, |p|2 ≤ P

1

2

σq

ε|p|
, |p|2 > P

≤ bα−1 = b
1
2 , (4.19)

x ∈ Ω, p ∈ Rn. For |p|2 ≤ P , the supremum of B(x, p) sign z =
1

2

σq

P − |p|2 + ε|p|
is attained

at either |p|2 = 0 or |p|2 = P , that is,

1

2

q

P
≤ b

1
2 and

1

2

q

ε
√
P
≤ b

1
2 ,

where b = sup
x∈Ω

{
1

4

q2(x)

P 2(x)
,
1

4

q(x)2

ε2P (x)

}
.

For |p|2 > P , the supremum of B(x, p) sign z =
1

2

σq

ε|p|
is attained at |p|2 = P , that is,

1

2

q

ε
√
P
≤ b

1
2 ,

where b = sup
x∈Ω

{
1

4

q(x)2

ε2P (x)

}
.

Hence the inequality (4.19) holds if b = sup
x∈Ω

{
1

4

q2(x)

P 2(x)
,
1

4

q(x)2

ε2P (x)

}
.

Once the structure conditions (4.18) and (4.19) are verified to hold, the development below

is along the lines of the derivation of global estimates for weak solutions of linear elliptic

equations.

Lemma 4.7 [11, p.271]. Let u ∈ C0(Ω) ∩ C1(Ω) satisfy Qεu = 0 in Ω. Then we have

sup
Ω
u ≤ C{

∥∥u+
∥∥
α

+ a+ b}+ sup
∂Ω

u+,

where C = C(n, α, |Ω|).
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Using Lemma 4.7 and the fact that Qε satisfies the structure conditions (4.18) and (4.19)

with α > 1, we derive the following apriori estimates for solutions of Qεu.

Theorem 4.8 (Maximum Principle) [11, p.272]. Let u ∈ C0(Ω) ∩ C1(Ω) satisfy Qεu = 0 in

Ω. Then we have

sup
Ω
|u| ≤ C(a+ b) + sup

∂Ω
|u|,

where C = C(n, α, |Ω|).

The technique of proof was demonstrated in [27]. This is an estimation of sup
Ω
|u| in terms

of boundary data and an additive constant. It has a disadvantage that the constant term depends

on ε. We still choose to include it here for the sake of comparison with the non-divergence

case.

4.7 Comparison and Maximum Principles for Non-divergence Form

In this section, we obtain the estimate of sup
Ω
|u| using the non-divergence structure of the op-

erator Qε that is independent of ε. Operator Qε appears in the non-divergence form as follows:

Qεu =



(
P − |Du|2 + ε|Du|

)
∆u+

(
1− ε

2|Du|

)
DiuDjuDiju−

1

2
DiPDiu

+
q

2
σ
√
P − |Du|2 + ε|Du|,

|p|2 ≤ P

(
|Du|2 − P + ε|Du|

)
· ε|Du| ·∆u+

( εP

|Du|
− ε2

2

)
DiuDjuDiju

− 1

2
DiP · ε|Du| ·Diu+

q

2
σ · ε|Du| ·

√
P − |Du|2 + ε|Du|,

|p|2 > P

From this representation, we note that

• the operator Qε is locally elliptic with respect to either u or v;

• the coefficients aij are independent of z;

• the coefficient b, being independent of z, is non-increasing in z for each (x, p) ∈ Ω×Rn;

• the coefficients aij(x, p) are continuously differentiable with respect to the p variables in

Ω× Rn.
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The comparison principle for linear operator has the following extension to quasilinear

operator Qε. This extension requires that all of the above conditions hold.

Theorem 4.9 (Comparison Principle) [11, p.263]. Let u, v ∈ C0(Ω) ∩ C2(Ω) satisfy Qεu >

Qεv in Ω, u ≤ v on ∂Ω. It then follows that u < v in Ω.

Using Theorem 4.9, we can derive the quasilinear extension of the apriori bound, which

also illustrates the significance of the function E . In the general form (4.5), E is defined as

follows:

E (x, z, p) = aij(x, z, p)pi · pj. (4.20)

Lemma 4.10. Let E be the scalar function defined in (4.20) for the operator Qε, i.e.,

E (x, p) =


(
P − |p|2 + ε|p|

)
|p|2 +

(
1− ε

2|p|

)
|p|4 = P |p|2 +

1

2
ε|p|3, |p|2 ≤ P,(

|p|2 − P + ε|p|
)
ε|p|3 +

(εP
|p|
− ε2

2

)
|p|4 = ε|p|5 +

1

2
ε2|p|4, |p|2 > P.

Then there exist non-negative constants µ1 and µ2 such that

b(x, p) sign z

E (x, p)
≤ µ1|p|+ µ2

|p|2
, (x, p) ∈ Ω× Rn.

Proof. We compute

b(x, p) · |p|2

E (x, p)
=



−1

2
DiP · pi +

q

2
σ
√
P − |p|2 + ε|p|

P +
1

2
ε|p|

, |p|2 ≤ P,

−1
2
DiP · ε|p| · pi +

q

2
σ · ε|p| ·

√
|p|2 − P + ε|p|

ε|p|3 +
1

2
ε2|p|2

, |p|2 > P.

When |p|2 ≤ P ,

−1

2
DiP · pi +

q

2
σ
√
P − |p|2 + ε|p|

P +
1

2
ε|p|

≤ |DP | · pi
2P

+
q

2

√
P + ε|p|

P +
1

2
ε|p|

≤ |DP |
2P
|p|+ q

2
√
P
.
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When |p|2 > P ,

−1
2
DiP · pi +

q

2
σ
√
|p|2 − P + ε|p|

|p|2 +
1

2
ε|p|

≤ |DP | · |p|
2|p|2

+
q

2

√
|p|2 + ε|p|

|p|2 +
1

2
ε|p|

≤ |DP |
2
√
P

+
q

2
√
P
.

If we choose µ1 = sup
x∈Ω

|DP (x)|
2P (x)

and µ2 = sup
x∈Ω

{ |DP (x)|
2
√
P (x)

+
q(x)

2
√
P (x)

}
,

then we obtain µ1|p|+ µ2 ≥
b(x, p) · |p|2

E (x, p)
, or equivalently,

b(x, p) sign z

E (x, p)
≤ µ1|p|+ µ2

|p|2
.

For the uniformly elliptic operators Qε, the inequality in Lemma 4.10 is equivalent to a

condition of the form

b(x, p) sign z

λn
≤ µ1|p|+ µ2 (x, p) ∈ Ω× Rn.

Based on Lemma 4.10, we arrive at the following Maximum Principle.

Theorem 4.11 (Maximum Principle) [11, p.264]. Let u ∈ C0(Ω)∩C2(Ω) satisfy Qεu = 0 in

Ω. We have

sup
Ω
|u| ≤ sup

∂Ω
|u|+ Cµ2 where C = C(µ1, diam Ω).

This is another estimation of sup
Ω
|u| in terms of the boundary data and an additive constant

that does not depend on ε.

The derivation of estimates in Theorem 4.8 and Theorem 4.11 is done using the standard

theory for elliptic equations. We would expect that the divergence structure affords stronger

estimates but, in our case, the non-divergence structure yields a more favorable outcome.
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4.8 Hölder Estimates for Divergence Form

In this section, we return to the divergence form of the elliptic equation (4.9):

Qεu = div Aε(x,Du) +Bε(x,Du) = 0

where Aε(x, p) and Bε(x, p) are as in (4.16) and (4.17). We copy the representations here for

the reader’s convenience.

Aε(x, p) =



p√
P − |p|2 + ε|p|

|p|2 ≤ P,

p ·
√
|p|2 − P + ε|p|
ε|p|

|p|2 > P,

and

Bε(x, p) =


1

2

σq

P − |p|2 + ε|p|
|p|2 ≤ P,

1

2

σq

ε|p|
|p|2 > P.

We note that the regularization that we choose ensures that the coefficients are sufficiently

smooth across the transition |p|2 = P for all ε > 0, namely, Aε ∈ C1(Ω × Rn) and Bε ∈

C0(Ω× Rn).

In this section, we derive interior and global Hölder estimates for the derivatives of solu-

tions of quasilinear elliptic equations (4.9) in a bounded domain Ω. These estimates correspond

to Stage 4 in the Appriori Estimates Program. We follow the standard elliptic theory and outline

the main steps in proving these estimates for the sake of completeness. Also the linear elliptic

equation (4.21) below will reappear in the derivation of the interior gradient bounds in Section

4.10.

If u ∈ C2(Ω) satisfies Qεu = 0 in Ω, we have

∫
Ω

{Aε(x,Du) ·Dζ −Bε(x,Du) · ζ}dx = 0 ∀ζ ∈ C1
0(Ω)
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Fixing k, replacing ζ by Dkζ , and integrating by parts, we then obtain

∫
Ω

{(DpjA
i
ε(x,Du) ·Djku+ δkA

i
ε(x,Du) ·Diζ +Bε(x,Du) ·Dkζ}dx = 0

where δk is differential operator defined by δkAi
ε(x, p) = DxkA

i
ε(x, p).

Hence, writing

āij(x) = DpjA
i
ε(x,Du(x)), f ik(x) = δkA

i
ε(x,Du(x)) + δikBε(x,Du(x)),

we have that the derivative w = Dku satisfies

∫
Ω

(āijDjw + f ik(x)) ·Diζdx = 0 ∀ζ ∈ C1
0(Ω) (4.21)

that is, w is a solution of the linear elliptic equation

Lw = Di(ā
ijDjw) = −Dif

i
k. (4.22)

The operator L is required to be strictly elliptic in Ω, that is, there exists a constant λ such that

aij(x)ξiξj ≥ λ|ξ|2, ∀x ∈ Ω, ξ ∈ Rn. (4.23)

We also assume that L has bounded coefficients, that is, for some constants Λ, we have

∑
i,j

|aij(x)|2 ≤ Λ2. (4.24)

The following two theorems are used as prerequisites for obtaining Theorem 4.14 below.

Theorem 4.12 [11, p.200]. Let operator L satisfy conditions (4.23), (4.24), and suppose that

f i ∈ Lq(Ω), i = 1, . . . , n for some q > n. Then if u is a W 1,2(Ω) solution of the linear

equation Lu = Dif in Ω, it follows that u is locally Hölder continuous in Ω, and for any ball
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B0 = BR0(y) ⊂ Ω and R ≤ R0 we have

osc
BR(y)

u ≤ CRα(R−α0 sup
B0

|u|+ k)

where C = C(n,Λ/λ, q, R0) and α = α(n,Λ/λ, q) are positive constants, and k = λ−1‖f‖q.

By taking R0 = d in Theorem 4.12 and estimating sup
B0

|u| in terms of its Lp norm, we

have the following interior Hölder estimate for weak solutions of equation (4.22).

Theorem 4.13 [11, p.202]. Let operator L satisfy conditions (4.23), (4.24), and suppose that

f i ∈ Lq(Ω), i = 1, . . . , n for some q > n. Then if u is a W 1,2(Ω) solution of equation

Lu = Dif in Ω, we have for any Ω′ ⊂⊂ Ω

‖u‖Cα(Ω̄′) := sup
Ω
|u|+ sup

x,y∈Ω, x 6=y

|u(x)− u(y)|
|x− y|α

≤ C(‖u‖L2(Ω) + k)

where C = C(n,Λ/λ, q, d), d = dist(Ω′, ∂Ω) and α = α(n,Λ/λ, q) > 0, and k = λ−1‖f‖q.

In the linear elliptic equation (4.22), by replacing Ω if necessary by a strictly contained

subdomain, we can assume that L is strictly elliptic in Ω and that the coefficients āij , f ik are

bounded, that is, the hypotheses of Theorem 4.12 and Theorem 4.13 are satisfied. The deriva-

tion of Theorem 4.14 and Theorem 4.15 are based on [21] and [22]. Accordingly, choosing λK ,

ΛK , µK so that

λK ≤ λ(x, p), ΛK ≥ Dpj |Ai
ε(x, p)|, µK ≥ |δkAi

ε(x, p)|+ |δikBε(x, p)|,

for all x ∈ Ω and |z|+ |p| ≤ K, we obtain the following interior estimate.

Theorem 4.14 [11, p.320]. Let u ∈ C2(Ω) satisfy Qεu = 0 in Ω where Qε is elliptic in Ω

and is of divergence form with Aε ∈ C1(Ω × Rn), Bε ∈ C0(Ω × Rn). Then for any for any

Ω′ ⊂⊂ Ω we have

[Du]α;Ω′ := sup
x,y∈Ω′, x 6=y

|Du(x)−Du(y)|
|x− y|α

≤ Cd−α,
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where

C = C(n,K,
ΛK

λK
,
µK
λK

, diam Ω),

K = |u|1;Ω = sup
Ω

(|u|+ |Du|),

d = dist(Ω′, ∂Ω), α = α(n,
ΛK

λK
)

In order to extend Theorem 4.14 to a global Hölder estimate in Ω, we recall that Qε is

elliptic in Ω̄ with Aε ∈ C1(Ω × Rn), Bε ∈ C0(Ω × Rn), that ∂Ω ∈ C2 and that u = φ on ∂Ω

where φ ∈ C2(Ω).

By replacing u with u − φ, we can assume without loss of generality that u = 0 on ∂Ω.

Since ∂Ω ∈ C2, there exists for each x0 ∈ ∂Ω a ball B = B(x0) and a one-to-one mapping ψ

from B onto an open set D ⊂ Rn such that

ψ(B ∩ Ω) ⊂ Rn
+, ψ(B ∩ ∂Ω) ⊂ ∂Rn

+,

ψ ∈ C2(B), ψ−1 ∈ C2(D).

Writing y = ψ(x), v(y) = u ◦ ψ−1(y), B+ = B ∩ Ω, D+ = ψ(B+), we have Dykv = 0

on ∂D+ ∩ ∂Rn
+, k = 1, . . . , n− 1.

Then equation Qεu = 0 in B+ is equivalent to the equation

Q̄εv = DyiĀ
i
ε(x,Du) + B̄ε(x,Du) = 0 (4.25)

in D+ where x = ψ−1(y) and the functions Āε and B̄ε are given by

Āi
ε =

∂yi
∂xr

Ar
ε, B̄ε = − ∂

∂yi

(
∂yi
∂xr

)
Ar
ε +Bε.

The derivatives w = Dykv k = 1, . . . n − 1 are generalized solutions in D+ of the linear

elliptic equation

Lw = Di(ā
ijDjw) = −Dif

i
k.
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The operator L is strictly elliptic in D+ with bounded coefficients āij and f ik. We thus

have for any D′ ⊂⊂ D,

[w]α;D′∩D+ = [Dykv]α;D′∩D+ ≤ C k = 1, . . . , n− 1, (4.26)

where

C = C(n,K,
ΛK

λK
,
µK
λK

,Ω, d), K = |u|1;Ω, d = dist(D′ ∩D+, ∂D), α = α(n,
ΛK

λK
).

The remaining derivative Dynv can be estimated as follows. Let y0 ∈ D′ ∩ D+, R ≤ d
3
,

B2R = B2R(y0), η ∈ C1
0(B2R) and let c be a constant such that

c =


w(y0), if B2R ⊂ D+

0, if B2R ∩ ∂Rn 6= Ø

Setting ζ = η2(w − c) for w = Dykv, k = 1, . . . , n − 1, then ζ ∈ W 1,2
0 (D+). By

substitution into (4.21) with Ω = D+, we then have

∫
D+

(āijDjw+ f ik) ·Diη
2(w− c) dy =

∫
D+

(āijDjw+ f ik) · (η2Diw+ 2η(w− c)Diη) dy = 0,

which implies

∫
D+

η2āijDiwDjw dy =

∫
D+

{2η(w − c)āijDiηDjw + η2f ikDiw + 2η(w − c)f ikDiη} dy

≤
∫
D+

{|2η(w − c)āijDiηDjw|+ |η2f ikDiw|+ |2η(w − c)f ikDiη|} dy,

so that, by the Schwarz inequality and the ellipticity of L, we obtain

∫
D+

η2|Dw|2 dy ≤ C

∫
D+

(η2 + |Dη|2(w − c)2) dy

where C = C(n,K, ΛK
λK
, µK
λK
,Ω).
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Suppose η is chosen in a way such that 0 ≤ η ≤ 1, η = 1 in Br(y0) and |Dη| ≤ 2
R

. We

thus obtain by (4.21),

∫
BR

|Dw|2 dy ≤ CRn−2(R2 + sup
B2R

(w − c)2) ≤ CRn−2+2α,

where C = C(n,K, ΛK
λK
, µK
λK
,Ω, d). Therefore we have

∫
BR

|Dijv|2 dy ≤ CRn−2+2α (4.27)

provided j 6= n. We solve equation (4.25) for Dnnv so that we can write

Dnnv = bijDijv + b, i = 1, . . . , n, j = 1, . . . , n− 1,

for certain functions bij , b bounded in terms of Dψ, K,
ΛK

λK
and

µK
λK

. Hence by (4.27) we have

∫
BR

|Dnjv|2 dy ≤ CRn−2+2α i = 1, . . . , n,

we can conclude that the estimate (4.26) is also valid for k = n. Returning to the domain Ω by

means of the mapping ψ−1, we thus have

[Du]α;B′∩Ω ≤ C, (4.28)

for any concentric ball B′ ⊂⊂ B, where C = C(n,K, ΛK
λK
, µK
λK
,Ω, B′). By choosing finitely

many points x0 ∈ ∂Ω and ballsB′ covering ∂Ω, we obtain the following global Hölder estimate

from Theorem 4.14 and inequality (4.28).

Theorem 4.15 [11, p.323]. Let u ∈ C2(Ω) satisfy Qεu ≥ 0 in Ω where Qε is elliptic in Ω and

is of divergence form with Aε ∈ C1(Ω× Rn), Bε ∈ C0(Ω× Rn). Then if ∂Ω ∈ C2 and u = φ

on ∂Ω where φ ∈ C2(Ω), we have the estimate

[Du]α;Ω := sup
x,y∈Ω, x 6=y

|Du(x)−Du(y)|
|x− y|α

≤ C,
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where

C = C(n,K,
ΛK

λK
,
µK
λK

,Ω,Φ), K = |u|1;Ω, Φ = |φ|2;Ω, α = α(n,
ΛK

λK
,Ω).

Theorem 4.15 is used to estimate [Du]α;Ω in terms of sup
Ω
|Du| and sup

Ω
|u| and the constant

C in the estimate does not depend on ε. Since ellipticity and regularity of functions Aε and Bε

are the only requirement for the Hölder estimates of the gradient, the standard elliptic theory

applies.

4.9 Boundary Gradient Estimates

The boundary gradient estimates developed in this section are the implementation of Stage 2

of the Apriori Estimates Program. These estimates are tied through the classical maximum

principle to natural choices of barrier functions discussed below.

Recall that the operator Qε defined in (4.9) is an elliptic operator of the form

Qεu = aijε (x,Du)Diju+ bε(x,Du)

where bε(x, p), being independent of z, is non-increasing in z. Suppose that u ∈ C2(Ω)∩C0(Ω̄)

satisfies Qεu = 0 in Ω. Suppose that, in some neighborhood N = Nx0 of a point x0 ∈ ∂Ω,

there exist two functions w± = w±x0 ∈ C
2(N ∩ Ω) ∩ C1(N ∩ Ω̄) such that

(i) ±Qεw
± < 0 in N ∩ Ω

(ii) w±(x0) = u(x0)

(iii) w−(x) ≤ u(x) ≤ w+(x), x ∈ ∂(N ∩ Ω).

It then follows from Theorem 4.9 that

w−(x) ≤ u(x) ≤ w+(x) for all x ∈ N ∩ Ω,
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and hence by (ii)

w−(x)− w−(x0)

|x− x0|
≤ u(x)− u(x0)

|x− x0|
≤ w+(x)− w+(x0)

|x− x0|
.

Consequently, the normal derivatives of w± and u satisfy

∂w−

∂v
(x0) ≤ ∂u

∂v
(x0) ≤ ∂w+

∂v
(x0). (4.29)

We call the functions w± respectively upper and lower barriers at x0 for the operator Qε and

function u. Their existence at all points x0 ∈ ∂Ω, implies the desired boundary gradient

estimate for u satisfying Qεu = 0.

Suppose that Ω satisfies an exterior sphere condition at a point x0 ∈ ∂Ω so that there

exists a ball B = BR(y) with x0 ∈ B̄ ∩ Ω̄ = B̄ ∩ ∂Ω. Let us define the distance function

d(x) = dist(x, ∂B) and set w = ψ(d) where ψ ∈ C2 [0,∞) and ψ′ > 0. We have for any

u ∈ C1(Ω̄) ∩ C2(Ω),

Q̄εw = aijε (x, u(x), Dw)Dijw + bε(x, u(x), Dw)

= ψ′aijε Dijd+
ψ′′

(ψ′)2
E + bε (4.30)

≤ n− 1

R
ψ′Λ +

ψ′′

(ψ′)2
E + bε

the last inequality follows from tr(AB) ≤ Λ(A)tr(B) where A = [aijε ] is a real symmetric

matrix and B = Dijd is a positive semidefinite matrix.

Recall that, for the special choice (4.8) of operator Qε, we have

E (x, p) = aij(x, p)pi · pj =


P |p|2 +

1

2
ε|p|3 |p|2 ≤ P

ε|p|5 +
1

2
ε2|p|4 |p|2 > P.
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Moreover, we obtained the estimate in Section 4.7

b(x, p) ≤ µ1|p|+ µ2

|p|2
· E (x, p) (x, p) ∈ Ω× Rn,

with the choice of µ1 and µ2 as follows:

µ1 = sup
x∈Ω

|DP (x)|
2P (x)

and µ2 = sup
x∈Ω

{ |DP (x)|
2
√
P (x)

+
q(x)

2
√
P (x)

}
.

Recall that in the case |p|2 > P , Λ = λ1 = (|p|2 − P + ε|p|) · ε|p| or Λ = λn =

ε|p|3 + 1
2
ε2|p|2. If Λ = λ1,

|p| · Λ + |b| = |p| ·
(
|p|2 − P + ε|p|

)
ε|p|+ µ1|p|+ µ2

|p|2
· E (x, p)

≤ ε|p|4 + ε2|p|3 +
µ1|p|+ µ2

|p|2
· E (x, p).

If Λ = λn,

|p| · Λ + |b| = |p| ·
(
ε|p|3 +

1

2
ε2|p|2

)
+
µ1|p|+ µ2

|p|2
· E (x, p)

≤ ε|p|4 +
1

2
ε2|p|3 +

µ1|p|+ µ2

|p|2
· E (x, p).

In both cases, we derive the following estimate

|p| · Λ + |b| ≤ 2

|p|
E (x, p) +

(µ1

|p|
+

µ2

|p|2
)

E (x, p) ≤
(2 + µ1√

P
+
µ2

P

)
E (x, p).

Therefore for the constant µ = sup
x∈Ω

{√
P ,

2√
P

+
|DP (x)|√
P (x)3

+
q(x)

2
√
P (x)3

}
, we have

|p| · Λ + |b| ≤ µ · E (4.31)

for all (x, z, p) ∈ Ω× R× Rn with |p| ≥ µ.
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Since |p| = |Dw| = ψ′|Dd| = ψ′, we have

ψ′ · Λ + |b| ≤ µ · E (4.32)

provided ψ′ ≥ µ = µ(M) where M = sup
Ω
|u|. Using (4.30) and (4.32), we obtain

Q̄εw <
( ψ′′

(ψ′)2
+ ν
)

E

where ν =
(

1 +
n− 1

R

)
µ. Consider the function ψ given by

ψ(d) =
1

ν
log(1 + kd)

and the neighborhood N = Nx0 = {x ∈ Ω̄ | d(x) < a}, for some a > 0. Clearly ψ′′ =

−ν(ψ′)2 in N . Moreover,

ψ(a) =
1

ν
log(1 + ka) = M if ka = eνM − 1

and

ψ′(d) =
k

ν(1 + kd)
≥ k

ν(1 + ka)
in N ∩ Ω

=
k

νeνM

≥ µ, if k ≥ µνeνM .

Consequently, if k and a are chosen to satisfy the relations

k ≥ µνeνM , ka = eνM − 1,

the functionw+ = ψ(d) is an upper barrier at x0 for the operator Q̄ε and the function u provided

u = 0 on N ∩∂Ω. Similarly the functionw− = −ψ(d) is a corresponding lower barrier. Hence
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if also Qεu = 0 in Ω, we obtain from (4.29) the estimate

|Du(x0)| ≤ ψ′(0) = µeνM .

We can therefore assert the following boundary gradient estimate on general domains.

Theorem 4.16 [11, p.337]. Let u ∈ C2(Ω) ∩ C1(Ω) satisfy Qεu = 0 in Ω and u = φ on ∂Ω.

Suppose that Ω satisfies a uniform exterior sphere condition and φ ∈ C2(Ω). Then we have

sup
∂Ω
|Du| ≤ C

where C = C(n,M, µ(M),Φ, δ), M = sup
Ω
|u|, Φ = |φ|2:Ω and δ is the radius of the exterior

spheres.

This estimate is used to approximate boundary gradient sup
∂Ω
|Du| in terms of sup

Ω
|u|. The

constant C does not depend on ε.

4.10 Interior Gradient Bounds

In this section, we are mainly concerned with the derivation of apriori estimates for the gra-

dients of solutions of quasilinear elliptic equations. That is Stage 3 in the Apriori Estimates

Program. Let u ∈ C2(Ω) satisfy the divergence form equation

Qεu = div Aε(x,Du) +Bε(x,Du) = 0,

where the vector functions Aε ∈ C1(Ω×Rn) and Bε ∈ C0(Ω×Rn) are defined in (4.16) and

(4.17) in the domain Ω.

It was shown in Section 4.8 that the derivatives Dku is a solution of the linear elliptic

equation

Lu := Di(ā
ijDju+ f ik) = 0, (4.33)

where

āij(x) = DpjA
i
ε(x,Du(x)),

62



f ik(x) = δkA
i
ε(x,Du(x)) + δikBε(x,Du(x)).

We compute DpjA
i
ε(x, p) for Aε given in (4.16) as follows:

DpjA
i
ε(x, p) =



δij(P − |p|2 + ε|p|) + (1− ε

2|p|
)pipj

(P − |p|2 + ε|p|) 3
2

|p|2 ≤ P,

δij

(
(|p|2 − P + ε|p|) · ε|p|

)
+
(εP
|p|
− ε2

2

)
pipj

ε2|p|2(|p|2 − P + ε|p|) 1
2

|p|2 > P.

In the proof of Lemma 4.4, we show that

min(λ1, λn) · |ξ|2 ≤
[
δij(P − |p|2 + ε|p|) + (1− ε

2|p|
)pipj

]
ξiξj, (4.34)

where λ1 = P − |p|2 + ε|p| and λn = P +
1

2
ε|p|. Similarly,

min(λ′1, λ
′
n) · |ξ|2 ≤

[
δij

(
(|p|2 − P + ε|p|) · ε|p|

)
+
(εP
|p|
− ε2

2

)
pipj

]
ξiξj, (4.35)

where λ′1 =
(
|p|2 − P + ε|p|

)
· ε|p| and λ′n = ε|p|3 +

1

2
ε2|p|2.

Combining (4.34) and (4.35), we obtain

āij(x, p)ξiξj = DpjA
i
ε(x, p)ξiξj ≥



min(λ1, λn)

λ
3
2
1

|ξ|2 |p|2 ≤ P,

min(λ′1, λ
′
n)

λ
′ 1
2

1 (2λ′n)
3
4

|ξ|2 |p|2 > P,

which implies that there exists a positive constant ν on R such that

āij(x, p)ξiξj = DpjA
i(x, p)ξiξj ≥ ν|ξ|2, (4.36)
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for all ξ ∈ Rn, (x, p) ∈ Ω× Rn and ν is computed explicitly as follows

ν = min
{min(λ1, λn)

λ
3
2
1

,
min(λ′1, λ

′
n)

λ
′ 1
2

1 (2λ′n)
3
4

}
= C min

{ 1√
λ1

,
1

4
√
λ′n
,

1
4
√
λ
′
1

}
= C min

{ 1√
λn
,

1
4
√
λ′n

}
.

where C is a constant. Taking the limit ε→ 0, we have

ν = inf
Ω

C√
P
,

which is a constant independent of ε, provided that P is bounded away from zero.

A global gradient bound for Qε can then be derived under the additional structure condi-

tions:

DxAε, Bε = o(|p|) as |p| → ∞. (4.37)

These conditions are verified by computing DxAε and recalling Bε:

DxAε(x, p) =


−pi ·DxP

2(P − |p|2 + ε|p|) 3
2

|p|2 ≤ P,

−pi ·DxP

2ε|p|(|p|2 − P + ε|p|) 1
2

|p|2 > P,

and

Bε(x, p) =


1

2

σq

P − |p|2 + ε|p|
, |p|2 ≤ P,

1

2

σq

ε|p|
, |p|2 > P,

We set M = sup
Ω
|u|, M1 = sup

Ω
|Du| and apply the maximum principle to the equation

(4.21) in the domain Ω̃ = {x ∈ Ω | |Du| > M1

2
√
n
}. Thus we obtain

sup
Ω̃

|Dku| ≤ sup
∂Ω̃

|Dku|+ C‖f ik‖q
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for q > n, k = 1, . . . n, where C = C(n, ν(M), q, |Ω|). Taking q = ∞ and using conditions

(4.37), we therefore have

sup
Ω
|Du| ≤ C(sup

∂Ω
|Du|+ σ(M1))

where σ(t) = o(t) as t→∞. Consequently, an apriori estimate for M1 follows.

Theorem 4.17 [11, p.374]. Let u ∈ C2(Ω) satisfy Qεu = 0 in the bounded domain Ω and the

structure conditions (4.36) and (4.37) are satisfied. Then we have the estimate

sup
Ω
|Du| ≤ C(1 + sup

∂Ω
|Du|)

where C depends on n, ν(M) and the quantities in (4.37).

The global gradient bound for solutions of the divergence structure, Theorem 4.17, is due

to [26]. Instead of pursuing global bound further, at this stage, we now turn to a consideration of

interior gradient estimates for uniformly elliptic equations. The estimates follow the standard

theory of elliptic equations. We present a simplified treatment of interior gradient bounds taking

into account the fact that the operator Qε(x, z, p) does not depend on z, but only on x and p.

We first observe that the operator Qε is uniformly elliptic in Ω in the sense that

|DpAε(x, p)| ≤ µ (4.38)

for all (x, p) ∈ Ω× Rn, where

µ = max
{max(λ1, λn)

λ
3
2
1

,
max(λ′1, λ

′
n)

λ
′ 1
2

1 (2λn − 2P )
3
4

}

is a positive constant.

Conditions (4.36) and (4.38) imply respectively the inequalities

p ·Aε(x, p)− p ·Aε(x, 0) ≥ ν · |p|2,

|Ai
ε(x, p)−Ai

ε(x, 0)| ≤ µ · (1 + |p|),
(4.39)
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Finally we take, in place of (4.37), the more general condition

g(x, p) = |DxAε|+ |Bε| ≤ µ(1 + |p|)2 (4.40)

for all (x, p) ∈ Ω × Rn. Conditions (4.36), (4.38), (4.40) can be regarded as natural for

divergence structure operators. The derivation of an apriori interior gradient bound under these

conditions is accomplished in three stages:

(i) Reduction to an Lp estimate. We replace the function ζ in (4.21) by ζDku and sum the

resulting equations over k to get

∫
Ω

(āijDjku+ f ik) ·Di(ζDku)dx = 0

Setting v = |Du|2, we obtain

∫
Ω

ζāijDikuDjku dx+

∫
Ω

(
1

2
āijDjv +Dkuf

i
k)Diζ dx+

∫
Ω

ζf ikDiku dx = 0

Hence by Young’s inequality, we have

∫
Ω

(āijDjv + 2Dkuf
i
k)Diζ dx ≤

1

2

∫
Ω

ζλ−1(f ik)
2 dx (4.41)

The following interior estimate for weak subsolutions of linear equations is applicable to

inequality (4.41).

Theorem 4.18 [11, p.194]. Let L be a linear operator satisfying conditions (4.23), (4.24), and

suppose that f i ∈ Lq(Ω), i = 1, . . . , n for some q > n. Then if u is a W 1,2(Ω) subsolution

(supersolution) of equation Lu = Dif in Ω, we have, for any ball B2R(y) ⊂ Ω and p > 1

sup
BR(y)

u(−u) ≤ C(R−n/p‖u+(u−)‖L2(B2R(y)) + k(R))

where C = C(n,Λ/λ, q, p).
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Applying this theorem to v = |Du|2 and operator L defined in (4.33) and using (4.40),

we have for any ball B2R = B2R(y) ⊂ Ω and q > n, the estimate

sup
BR(y)

v ≤ C{R−n/2‖v‖L2(B2R) + ‖(1 + |Du|)4)‖Lq(B2R)}

where C = C(n, ν(M), µ(M), q, diam Ω), M = sup
B2R(y)

|u|. Consequently for sufficiently large

p we have

sup
BR(y)

v ≤ C(n, ν(M), µ(M), diam Ω, R−n
∫
B2R(y)

vp dx). (4.42)

(ii) Reduction to a Hölder estimate. We utilize the weak form of equation

∫
Ω

(āijDjw + f ik(x)) ·Diζdx = 0 ∀ζ ∈ C1
0(Ω)

that is

Qε(u, φ) =

∫
Ω

(Ai
ε(x,Du)Diφ−Bε(x,Du)φ) dx = 0 ∀φ ∈ C1

0(Ω) (4.43)

From (4.39), we obtain that the function Aε satisfies

|Aε(x, p)| ≤ µ1 · (1 + |p|)

p ·Aε(x, p) ≥ ν1 · |p|2 − µ1

(4.44)

for all (x, p) ∈ Ω× Rn, where

µ1 = sup{µ, |A(x, 0)|, p ·A(x, 0)} and ν1 = ν

are both positive constants.

Next, we substitute into (4.43) the test function

φ = η2[u− u(y)].
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where η ∈ C1
0(B2R), B2R = B2R(y) ⊂ Ω, to get

∫
Ω

A · η2Du dx = −
∫

Ω

A · 2ηDη(u(x)− u(y)) dx+

∫
Ω

Bη2(u(x)− u(y)) dx.

Using (4.40) and (4.44) we thus obtain

ν1

∫
Ω

η2|Du|2 dx ≤ µ1

∫
Ω

η2 dx+ µ

∫
Ω

η2|u(x)− u(y)|(1 + |Du|)2 dx

+ 2µ1

∫
Ω

|ηDη| |u(x)− u(y)|(1 + |Du|) dx

≤ µ1

∫
Ω

η2 dx+ 3µω(R)

∫
Ω

η2(1 + |Du|2) dx

+ µ1ω(R)

∫
Ω

|Dη|2 dx+ 3µ1ω(R)

∫
Ω

η2(1 + |Du|2) dx

≤ µ1

∫
Ω

η2 dx+ 4(µ+ µ1)ω(R)

∫
Ω

η2(1 + |Du|2) dx

+ µ1ω(R)

∫
Ω

|Dη|2 dx,

where ω(R) = sup
B2R

|u(x)− u(y)|. Hence if R is chosen small enough to ensure that

ω(R) ≤ ν1

8(µ+ µ1)
,

we have ∫
Ω

η2|Du|2 dx ≤ C

∫
Ω

(η2 + ω(R)|Dη|2) dx, (4.45)

where C = C(µ, µ1, ν1). Replacing the function η in (4.45) by

ηv(β+1)/2, β > 0,
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where v = |Du|2, we obtain the estimate

∫
Ω

η2|Du|2β+4 dx ≤ C

∫
Ω

[
η2|Du|2β+2 + ω(R)|Dη · v(β+1)/2 +

β + 1

2
ηv(β−1)/2Dv|2

]
dx

≤ C

∫
Ω

[
|Du|2(β+1)(η2 + ω(R)|Dη|2) +

(β + 1)2

4
ω(R)η2vβ−1|Dv|2

+ ω(R)|Dη · v(β+1)/2(β + 1)ηv(β−1)/2Dv|
]
dx.

By Young’s inequality, we have

∫
Ω

ω(R)|Dη · v(β+1)/2(β + 1)ηv(β−1)/2Dv| dx

≤ 1

2

∫
Ω

ω(R)|Dη|2|Du|2β+2 + (β + 1)2ω(R)η2vβ−1|Dv|2 dx.

We thus obtain

∫
Ω

η2|Du|2β+4 dx

≤ C

∫
Ω

[
|Du|2(β+1)(η2 + ω(R)|Dη|2) + (β + 1)2ω(R)η2vβ−1|Dv|2

]
dx. (4.46)

To estimate the last term on the right hand side of (4.46), we choose in (4.41)

ζ = η2vβ

that is,

∫
Ω

(āijDjv + 2Dkuf
i
k)(2ηDiηv

β + η2βvβ−1Div) dx ≤ 1

2

∫
Ω

η2vβλ−1(f ik)
2 dx

or, equivalently,

∫
Ω

āijη2βvβ−1DivDjv dx ≤
∫

Ω

(
− 2āijDjv · ηDηvβ − 4ηDηvβ ·Dkuf

i
k

− 2η2βvβ−1Div ·Dkuf
i
k +

1

2
η2vβλ−1(f ik)

2
)
dx.

69



Using conditions (4.36), (4.38) and (4.40), we obtain

βν

∫
Ω

η2vβ−1|Dv|2 dx ≤
∫

Ω

(
2µηvβ|Dη||Dv|+ 4ηvβ|Dη||Du|µ(1 + |Du|)2

+ 2η2βvβ−1|Dv||Du|µ(1 + |Du|)2 +
1

2
η2vβλ−1µ2(1 + |Du|)4

)
dx

≤ C

∫
Ω

(
ηvβ|Dη||Dv|+ (1 + |Du|)3(ηvβ|Dη|+ βη2vβ−1|Dv|)

+ η2(1 + |Du|)4vβ
)
dx, (4.47)

where C = C(µ, ν). Hence, by Young’s inequality, we have

∫
Ω

ηvβ|Dη||Dv| dx ≤ 1

2

∫
Ω

(η2vβ−1|Dv|2 + vβ+1|Dη|2) dx (4.48)

and

∫
Ω

(1 + |Du|)3(ηvβ|Dη|+ βη2vβ−1|Dv|) dx

≤ 1

2

∫
Ω

(1 + |Du|)3(vβη2 + vβ|Dη|2 + βη2vβ−1|Dv|2 + βη2vβ−1) dx. (4.49)

Putting together (4.47), (4.48) and (4.49), we thus obtain

∫
Ω

η2vβ−1|Dv|2 dx ≤ C

∫
Ω

(1 + |Du|)2β+2[η2(1 + |Du|)2 + |Dη|2] dx, (4.50)

where C = C(µ, ν, β). Consequently, by substituting sufficiently small ω(R) in (4.37) and

using (4.46), we arrive at

∫
Ω

η2(1 + |Du|)2β+4 dx ≤ C

∫
Ω

(η2(1 + |Du|)2β+2 + |Dη|2(1 + |Du|)2β+2) dx,

where C = C(µ, ν, β). Replacing η by ηβ+2 and using Young’s inequality, we then obtain

∫
Ω

[η(1 + |Du|)]2β+4 dx ≤ C,
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where C = C(µ, ν, µ1, ν1, β, sup |Dη|). In particular, if η ≡ 1 on BR(y) and |Dη| ≤ 2

R
, it

follows that, for p ≥ 1, ∫
BR(y)

(1 + |Du|)p dx ≤ C, (4.51)

where C = C(µ, ν, µ1, ν1, p, R
−1). Combining the estimates (4.42) and (4.51), we obtain for

any ball B0 = BR0(y) ⊂ Ω the estimate

|Du(y)| ≤ C (4.52)

where C = C(n, µ, ν, µ1, ν1, α, [u]α,y), and

[u]α,y = sup
B0

|u(x)− u(y)|
|x− y|α

, 0 < α < 1.

that is, the derivation of an interior gradient bound is reduced to the existence of an interior

Hölder Estimate for u.

(iii) A Hölder estimate for weak solutions of equation (4.40). We write inequalities (4.44)

together with the condition on Bε in (4.40) in the form

|Aε(x, p)| ≤ a0|p|+ χ,

p ·Aε(x, p) ≥ ν0|p|2 − χ2,

|Bε(x, p)| ≤ b0|p|2 + χ2,

(4.53)

where

a0 = µ1, ν0 = ν1, b0 = µ, χ = sup
Ω

(µ1,
√
µ1).

are positive constants. The estimates of Theorems 4.19, 4.20 and 4.21 for uniformly elliptic

divergence structure equations were substantially developed by [20] and [21].

Theorem 4.19 [11, p.379]. Let u ∈ C1(Ω) be a weak solution of Qεu = 0 in the domain Ω and

suppose that Qε satisfies the structure conditions (4.53). Then for any ball B0 = BR0(y) ⊂ Ω
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and R ≤ R0, we have the estimate

osc
BR(y)

u ≤ C(1 +R−α0 M0)Rα,

where C = C(n, a0, b0, ν0, χ, R0,M0) and α = α(n, a0, b0, ν0,M0) are positive constants and

M0 = sup
B0

|u|.

Combining Theorem 4.19 with estimate (4.52), we arrive at the following interior gradient

estimate.

Theorem 4.20 [11, p.379]. Let u ∈ C2(Ω) satisfy Qεu = 0 in the domain Ω and the structure

conditions (4.37), (4.38) and (4.40) are fulfilled. Then we have the estimate

|Du(y)| ≤ C,

for any y ∈ Ω, where C = C
(
n, µ, ν, sup

Ω
|A(x, p)|, M0

d

)
, and M0 = sup

Bd(y)

|u| and d =

dist(y, ∂Ω).

We conclude from the interior estimate and the boundary Lipschitz estimate the following

global estimate.

Theorem 4.21 [11, p.380]. Let u ∈ C2(Ω) ∩ C0Ω̄ satisfy Qεu = 0 in the bounded domain Ω

and the structure conditions (4.37), (4.38) and (4.40) are fulfilled. Assume also that Ω satisfies

a uniform exterior sphere condition that u = φ on ∂Ω for φ ∈ C2(Ω̄). Then we have the

estimate

sup
Ω
|Du| ≤ C

where C = C(n, µ, ν, sup
Ω
|A(x, p)|, ∂Ω, |φ|2:Ω).

This theorem provides the estimation of sup
Ω
|Du| in terms of sup

∂Ω
|Du| and sup

Ω
|u|. We

note that the constant C is not guaranteed to be independent of ε.
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4.11 Existence for Regularized Problems

In this section, we assemble the results from previous sections for the regularized equation in

divergence form:

Qεu = div
Du√

ξε(x, |Du|)
+

1

2

σq

ζε(x, |Du|)
= 0,

where ξε and ζε are given by (4.10) and (4.11) respectively.

Recall taking the limit as ε → 0 in the coefficients ξε and ζε for the case |p|2 < P , we

recover the ill-posed operator Q defined in |Du|2 < P :

Qu = div
Du√

P − |Du|2
+

1

2

σq

P − |Du|2
= 0.

Based on Theorem 4.11, Theorem 4.15, Theorem 4.16 and Theorem 4.21, we obtain the

following estimate for the regularized operator:

Theorem 4.22. Let uε ∈ C2(Ω) satisfy Qεuε = 0 in Ω and uε = φ on ∂Ω where φ ∈ C2(Ω).

Suppose that Ω satisfies a uniform exterior sphere condition, we have the estimate

[Duε]β;Ω ≤ C1 sup
∂Ω
|uε|+ C2 = C1 sup

∂Ω
|φ|+ C2

where

C1 = C1(n, ν, µ1, µ2, µ3, µ4,Ω), C2 = C2(n, sup
Ω
|A(x, p)|, |φ|2:Ω, δ,Ω),

ν = min
{min(λ1, λn)

λ
3
2
1

,
min(λ′1, λ

′
n)

λ
′ 1
2

1 (2λ′n)
3
4

}
, µ1 = max

{max(λ1, λn)

λ
3
2
1

,
max(λ′1, λ

′
n)

λ
′ 1
2

1 (2λn − 2P )
3
4

}
,

µ2 = sup
x∈Ω

{√
P ,

2√
P

+
|DP (x)|√
P (x)3

+
q(x)

2
√
P (x)3

}
,

µ3 = sup
x∈Ω

|DP (x)|
2P (x)

and µ4 = sup
x∈Ω

{ |DP (x)|
2
√
P (x)

+
q(x)

2
√
P (x)

}
.

Taking the limit of as ε → 0, we obtain that ν is bounded which is illustrated in Section

4.10, and that µ2, µ3 and µ4 are independent of ε. We cannot guarantee that µ1 is bounded as
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ε → 0 to establish the bound for C1 defined in Theorem 4.22, but µ1 is bounded for a fixed ε

as in the following theorem.

Theorem 4.23. Suppose that Ω satisfies a uniform exterior sphere condition and let ε > 0.

Suppose that uε ∈ C2(Ω) satisfies Qεuε = 0 in Ω and uε = φ on ∂Ω where φ ∈ C2(Ω). Then

we have

||uε||C1,β(Ω̄) ≤M,

where M = M(n,Ω, P, q, φ, ε).

Combing Theorem 4.3 and Theorem 4.23, we obtain the following existence theorem for

the regularized problems.

Theorem 4.24. Suppose that Ω is a bounded domain in Rn and satisfies a uniform exterior

sphere condition and ∂Ω ∈ C2,α and φ ∈ C2,α. Then it follows that the Dirichlet problems,

Qεuε = 0 in Ω, uε = φ on ∂Ω is solvable in C2,α(Ω̄).
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Appendix A

Dini’s formulas for half-plane and the ball

First we derive the Dini’s formula for the half-plane [5]. Let Ω be a bounded domain in R2.

Suppose that the function u ∈ C2(Ω) ∩ C1(Ω̄). Then the following Riemann-Green formula

holds,

u(x) = −
∫

Ω

G(y, x)∆u(y) dy +

∫
∂Ω

(
G(y, x)

∂u(y)

∂ν
− u(y)

∂G(y, x)

∂ν

)
dS(y), (A.1)

where G(y, x) = Φ(x−y) + g̃(y), x ∈ Ω, y ∈ Ω̄, x 6= y, g̃(y) is an arbitrary harmonic function

in Ω and

Φ(x− y) = − 1

2π
log(|x− y|).

Now take Ω to be the upper half-plane R2
+. For x = (x1, x2), define the reflection of x by

x? = (x1,−x2). Then the function

G(y, x) = − 1

2π

[
log(|x− y|) + log(|x? − y|)

]

is the Green’s function for the Neumann problem on the half-plane.

The outward normal ν to ∂R2
+ is ν = (0,−1) and the normal derivative of G is

∂G

∂ν
=

−∂G
∂y2

= 0. Clearly, G(y, x) = − 1

π
log(|x− y|) for y = (y1, 0).

Therefore (A.1) gives a representation of solution of the problem

∆u = 0 in R2
+,

∂u

∂ν
= h on ∂R2

+,
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in the form

u(x) =

∫
∂R2

+

G(y, x)h(y)dS(y) = − 1

π

∫
R

log(|x− y|)h(y1)dy1. (A.2)

This is Dini’s formula for the half-plane.

Next we consider the Dini’s formula for the ball [10] [13]. Suppose that v is a solution of

Laplace’s equation ∆v = 0 with Neumann boundary condition on a ball Br(0) with the center

at the origin and radius r, that is


∆v = 0 in Br(0),

∂v

∂ν
= h on ∂Br(0).

Using polar coordinates (r, θ) rather than rectangular coordinates and Fourier series, we

construct a harmonic function v on Br(0) satisfying the Neumann condition.

Suppose the function h(r, θ) has the Fourier series expansion

h(r, θ) =
a0

2
+
∞∑
n=1

an cos(nθ) +
∞∑
n=1

bn sin(nθ),

where

a0 =
1

π

∫ 2π

0

h(r, θ)dθ = 0,

an =
1

π

∫ 2π

0

h(r, θ) cos(nθ)dθ n ≥ 1,

bn =
1

π

∫ 2π

0

h(r, θ) sin(nθ)dθ n ≥ 1.

Let z = ρeiθ be an arbitrary complex number where 0 ≤ ρ ≤ r and 0 ≤ θ ≤ 2π, then

zn = ρneinθ = ρn cos(nθ) + iρn sin(nθ). Since the real and imaginary parts of an analytic

function are harmonic, ρn cos(nθ) and ρn sin(nθ) are harmonic on R2.

It can be shown that

v(ρ, θ) = v0 +
∞∑
n=1

αnρ
n cos(nθ) +

∞∑
n=1

βnρ
n sin(nθ)
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is a harmonic function.

Moreover,

∂

∂ν
v(r, θ) =

∂

∂ρ
v(r, θ) =

∞∑
n=1

nαnr
n−1 cos(nθ) +

∞∑
n=1

nβnr
n−1 sin(nθ).

Choosing αn =
an

nrn−1
, and βn =

bn
nrn−1

, it appears that Neumann boundary condition
∂v

∂ν
= h is satisfied. Then harmonic function v can be rewritten as

v(ρ, θ) = v0 +
∞∑
n=1

ρn

nrn−1
[an cos(nθ) + bn sin(nθ)].

Since

an cos(nθ) + bn sin(nθ) =
1

π

∫ 2π

0

cos(nφ) cos(nθ)h(r, φ)dφ

+
1

π

∫ 2π

0

sin(nφ) sin(nθ)h(r, φ)dφ

=
1

π

∫ 2π

0

cos[n(φ− θ)]h(r, φ)dφ

=
1

2π

∫ 2π

0

[ein(φ−θ) + e−in(φ−θ)]h(r, φ)dφ

and it implies that

v(ρ, θ) = v0 +
1

2π

∞∑
n=1

ρn

nrn−1

∫ 2π

0

[ein(φ−θ) + e−in(φ−θ)]h(r, φ)dφ

= v0 +
r

2π

∫ 2π

0

[ ∞∑
n=1

1

n

(ρein(φ−θ)

r

)n
+
∞∑
n=1

1

n

(ρe−in(φ−θ)

r

)n]
h(r, φ)dφ

Using the fact that log(1− x) = −
∑∞

n=1

xn

n
, we have

v(ρ, θ) = v0 +
r

2π

∫ 2π

0

log
( r2

r2 − 2ρr cos(φ− θ) + ρ2

)
h(r, φ)dφ

= v0 −
r

2π

∫ 2π

0

log(r2 − 2ρr cos(φ− θ) + ρ2)h(r, φ)dφ (A.3)
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This is Dini’s formula for the ball in polar coordinates .This formula in rectangular coordinates

takes the form

v(x) = v0 −
r

2π

∫
∂B1(0)

log(|x− y|)h(y) dS(y). (A.4)

where x = (x1, x2) = (ρ cos θ, ρ sin θ) is an arbitrary point in the disk (0 ≤ ρ ≤ r) and

y = (y1, y2) = (r cos t, r sin t) is a point on the circle.
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Appendix B

Periodic Cubic Spline Interpolation

This is a variation of the cubic spline interpolation introduced in [1]. Suppose we are given

data values (ti, zi), i = 0, 1, . . . n, where

−π = t0 < t1 < · · · < tn−1 < tn = π, and zi = f(ti)

for some function f that may not be explicitly available and we are looking for a spline function

v(x) that satisfies v(ti) = zi for all i = 0, 1, . . . , n.

Suppose si(t) is a cubic polynomial interpolation piece in each of the subintervals [ti, ti+1].

Then si(t) can be patched together to form a continuous global spline v(t) which satisfied

v(t) = si(t), ti ≤ t ≤ ti+1, i = 0, 1, · · ·n− 1, where

si(t) = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3, (B.1a)

s′i(t) = bi + 2ci(t− ti) + 3di(t− ti)2, (B.1b)

s′′i (t) = 2ci + 6di(t− ti). (B.1c)

Moreover, we supplement the conditions to be satisfied by any cubic spline

si(ti) = f(ti), i = 0, . . . n− 1, (B.2a)

si(ti+1) = f(ti+1), i = 0, . . . n− 1, (B.2b)

s′i(ti+1) = s′i+1(ti+1), i = 0, . . . n− 2, (B.2c)
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s′′i (ti+1) = s′′i+1(ti+1), i = 0, . . . n− 2, (B.2d)

with periodic boundary conditions s′0(t0) = s′n−1(tn) and s′′0(t0) = s′′n−1(tn).

The conditions (B.2a) immediately determine

ai = f(ti), i = 0, . . . , n− 1.

Denote hi = ti+1 − ti, i = 0, . . . , n− 1, then conditions (B.2b) give

ai + hibi + h2
i ci + h3

i di = f(ti+1).

Plugging in the values of ai and dividing by hi, we have

bi + hici + h2
i di =

f(ti+1)− f(ti)

h
= f [ti, ti+1], i = 0, . . . , n− 1. (B.3)

From (B.1b) and (B.2c), we get the condition

bi + 2hici + 3h2
i di = bi+1, i = 0, . . . , n− 2.

Likewise, from (B.1c) and (B.2d), we get

ci + 3hidi = ci+1, i = 0, . . . , n− 2.

Note that we can extend the above two conditions to the case i = n − 1 by defining bn =

v′(tn) = s′0(t0) and cn = 1
2
v′′(tn) = 1

2
s′′0(t0).

We can obtain

di =
ci+1 − ci

3hi
, i = 0, . . . , n− 1.

and then yields

bi = f [ti, ti+1]− hi
3

(2ci + ci+1) i = 0, . . . , n− 1.
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Eliminating bi and di and rearranging the terms, equation (B.3) reads

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 = 3(f [ti, ti+1]− f [ti−1, ti]), i = 0, . . . , n− 1. (B.4)

The periodic condition s′′0(t0) = s′′n−1(tn) implies that

c0 = cn−1 + 3hn−1dn−1 = cn−1 + 3hn−1(
cn − cn−1

3hn−1

) = cn.

The other periodic condition s′0(t0) = s′n−1(tn) gives us

b0 = bn−1 + 2hn−1cn−1 + 3h2
n−1dn−1

and is equivalent to

2c0(hn−1 + h0) + h0c1 + hn−1cn−1 = 3(f [t0, t1]− f [tn−1, tn]). (B.5)

We write equations (B.4) and (B.5) in matrix form to obtain

Q · c = φ,

where

Q =



2(hn−1 + h0) h0 hn−1

h0 2(h0 + h1) h1

. . . . . . . . .

hn−3 2(hn−3 + hn−2) hn−2

hn−1 hn−2 2(hn−2 + hn−1)


,

c = (c0, c1, · · · , cn−2, cn−1)T and ψ = (φ0, φ1, · · · , φn−2, φn−1)T ,and where ψi is a shorthand

for

ψ0 = 3(f [t0, t1]− f [tn−1, tn]),
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ψi = 3(f [ti, ti+1]− f [ti−1, ti]), i = 1, . . . , n− 1.
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Appendix C

Legendre Transfrom

The general Legendre transform is outlined in [9]. Here we apply the transform to the following

special case.

Equation (4.2) in R2 can be rewritten as

(
P − u2

x1
− u2

x2

)
ux1x1 + 2ux1ux2ux1x2 +

(
P − u2

x1
− u2

x2

)
ux2x2

− 1

2
Px1ux1 −

1

2
Px2ux2 +

q

2
σ
√
P − u2

x1
− u2

x2
= 0. (C.1)

Assume that, in region Ω ⊂ R2, we can invert the relations

p1 = ux1(x1, x2), p2 = ux2(x1, x2),

to solve for

x1 = x1(p1, p2), x2 = x2(p1, p2).

By Hodograph transform, we get


ux1x1 = Jx2,p2 , ux1x2 = −Jx1,p2

ux2x1 = −Jx2,p1 , ux2x2 = Jx1,p1

as long as J =
∂(ux1 , ux2)

∂(x1, x2)
= detD2u = ux1x1ux2x2 − u2

x1x2
6= 0.

Define

v(p) = x · p− u(x(p)),
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where x = (x1, x2) and p = (p1, p2). We then arrive at

vp1 = x1 + p1x1,p1 + p2x2,p1 − ux1x1,p1 − ux2x2,p1 = x1,

vp2 = p1x1,p2 + x2 + p2x2,p2 − ux1x1,p2 − ux2x2,p2 = x2,

that is,

x2,p2 = vp2p2 , x1,p2 = vp1p2 and x1,p1 = vp1p1 .

We discover that 
ux1x1 = Jvp2p2

ux1x2 = −Jvp1p2

ux2x2 = Jvp1p1

Upon substituting into the equation (4.2), we derive for v the equation

(
P − p2

1 − p2
2

)
Jvp2p2 − 2p1p2Jvp1p2 +

(
P − p2

1 − p2
2

)
Jvp1p1

− 1

2
Pvp1p1 −

1

2
Pvp2p2 +

q

2
σ
√
P − p2

1 − p2
2 = 0. (C.2)

The transformed equation (C.2) is non-linear in the new variables p1, p2. The power of the

Legendre transform is to obtain a linear equation from a non-linear one. This technique does

not seem to attain a simple equation out of equation (C.1). For this reason, we do not pursue

this direction any further.
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