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Abstract

We propose a robust rank based variable selection method for a functional linear regression

model with multiple explanatory functions and a scalar response. The procedure extends rank

based group variable selection to functional variable selection and the proposed estimator is

robust in the presence of outliers in predictor function space as well as response space. The

performance of the proposed robust method is demonstrated with an extensive simulation study

and real data examples. We prove the proposed method with a group-adaptive penalty achieves

the oracle property.
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Chapter 1

Introduction

One of the important topics in statistics is the study of the relationship among variables via

regression models. Linear regression analysis, in particular, is fundamental for the functional

data analysis which is the analysis of infinite-dimensional variables as curves, images, and

time-variant inputs.

Throughout this dissertation, we consider a functional multiple linear regression model

with p functional predictors and a continuous scalar response defined by

yi = α +

p∑
j=1

∫
T
xij(t)βj(t)dt+ εi, i = 1, . . . , n, (1.1)

where yi is a scalar and xij(t)’s on T , the support of functional covariates, are L2 integrable and

independent with each other, βj(t)’s are functional parameters which are alsoL2 integrable, and

εi
iid∼ F , where F is a distribution with finite Fisher information. We follow the same definition

and notation by Gertheiss et al [12].

When a basis expansion with d basis is used for functional predictors and functional pa-

rameters, there are d × p predictors in the multiple linear regression model. Thus identifying

the subset of significant predictor functions becomes a group variable selection problem rather

than a single variable level selection problem.

There are various variable selection methods. Recently, some elaborated techniques have

been devised compared to the traditional methods such as forward, backward, and stepwise se-

lections based on Cp, AIC, orBIC. As one of the modern analyses, the regularized estimation

methods were applied to select meaningful variables since Tibshirani [41] proposed the Lasso.
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The Lasso minimizes the residual sum of squares under the penalty with the `1 norm of the

coefficients. It estimates parameters and selects a sparse subset simultaneously. Fan and Li

[10] suggested the smoothly clipped absolute deviation (SCAD) with less biases than Lasso.

Zou [47] proposed the adaptive Lasso with a different amount of contribution of each coeffi-

cient depending on their sizes. Fan and Li [10] and Zou [47] showed that their methods have

oracle properties, that is, their estimators have efficiency and consistency with proper choice of

regularization parameters.

More recently, like our problems, selecting significant groups of variables has received

significant attention. Yuan and Lin [46] extended the Lasso to the group Lasso which selects

groups of variables under the penalty with the sum of the weighted `2 norms of the coeffi-

cients on each group of variables. Wang and Leng [42] obtained the consistency and the oracle

property of their estimator by proposing the adaptive group Lasso. By using these least square

based group variable selection methods, Gertheiss et al. [12] proposed a variable selection

method for multiple functional linear regression models. The method minimizes the residual

sum of squares loss function under the penalty which controls both smoothness and sparsity.

The `1 penalty plays an important role in making a parameter exactly zero, that is, removing

non-significant variables.

The aforementioned techniques are based on `2 norm loss minimization. They are efficient

if the true underlying distribution follows the normal distribution. However, the `2 type of

objective functions is vulnerable when the data contain outliers or are heavy-tailed. The goal

of this dissertation is to develop another version of the group Lasso technique that is applied to

a functional linear model with the shortcoming of `2 loss minimization methods removed.

Several trials have been made to overcome those drawbacks and to achieve robustness

in multiple linear regression models. Rosset and Zhu [39] proposed Huberized Lasso with a

loss function similar to Huber’s loss function. Owen [36] also proposed a robust hybrid of the

Lasso and the ridge regression. Some researchers used the quantile regression loss function

called the check function in Koenker and Bassett [27]. Koenker [25] optimized the Lasso

regularized quantile regression with the original `1 Lasso penalty. Wang et al. [43] obtained

robust estimators by combining the least absolute deviation (LAD) regression and the Lasso,

2



that is, `1 norm loss for the residuals and the `1 norm penalty for coefficients. Their work is

a special case of Koenker’s [25] model which has τ = 0.5 in quantile regression. To achieve

the oracle property of the parameter estimators, Wu and Liu [45] suggested the adaptive Lasso

regularized quantile regression with the adaptive Lasso penalty.

Johnson and Peng [20] suggested a robust variable selection approach by replacing the `2

loss function with Jaeckel’s [18] dispersion function and the same Lasso `1 norm penalty as

in the original Lasso. Abebe and Bindele [1] proposed a robust variable selection procedure

based on a weighted signed-rank loss function with Lasso penalty. Wang and Li [44] used the

same rank based loss function as Johnson and Peng [20], and with the weight on the leverage

of predictors and the smoothly clipped absolute deviation (SCAD) penalty for the coefficients.

Thus Wang and Li [44] achieved robustness in both the predictor space and the response space,

whereas Johnson and Peng [20] obtained robustness in the response space only. Bindele, Abebe

and Zeng [5] used the same weighted signed-rank loss function with Lass penalty for variable

selection in single-index models.

Some regularization methods have been developed to select grouped variables robustly.

Group variable selection method based on quantile regression proposed by Kato [22] and Bang

and Jhun [4]. Kato [22] employed group l2 penalty (the original group Lasso penalty in Yuan

and Lin [46]) with the quantile regression. Bang and Jhun [4] proposed the adaptive sup-

norm regularized quantile regression which penalizes the check loss function [27] by the sum

of group-wise adaptive sup-norm penalties. It is proven that the method satisfies the oracle

property. Miakonkana et al. [32] penalized a weighted rank-based loss function same as the

one in Wang and Li [44], with a group adaptive Lasso `1 norm penalty function. It is shown that

the weighted rank-based group adaptive Lasso method achieves robustness in both the response

space and the predictor space as well as selecting meaningful group variables.

A traditional functional regression stems from the least square minimization technique.

Researchers including Ramsay and Silverman [38] expressed a functional linear model as an

ordinary multiple linear regression model using a linear basis expansion on an infinite dimen-

sional functional space. Escabias et al. [9] uses the principal component analysis method to fit

a functional logistic regression model. James [19] applied functional principal components to a
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general functional linear model and showed that it is useful when only fragments of each curve

have been observed. Müller and StadtMüller [34] also discuss the generalized functional lin-

ear model, consider estimation methods for its parameters, and select variables based on AIC.

However, the estimated parameters by these methods are greatly affected by outliers. Thus

some approaches are proposed to achieve robustness in functional regression model. Bali et al.

[3] use a robust scale function with functional principal components technique. Sawant et al.

[40] discuss robust functional principal components for a functional response and a predictor.

Denhere and Billor [7] showed that their method based on the functional principal component

analysis eliminates multicollinearity and reduces the effect of functional outliers for a logis-

tic functional linear model. Denhere and Bindele [8] proposed rank estimation for functional

linear regression model with a scalar response and functional predictors.

Researches wanted to select and estimate meaningful variables simultaneously. Most vari-

able selection techniques for a functional regression model were based on the regularization

method. The penalization shrinks coefficient functions depending on tuning parameters and

eventually selects the significant variables. We note that a variable selection problem of func-

tional linear regression model can be understood as a group variable selection of multiple linear

regression models. In this point of view, Matsui and Konishi [30] used group SCAD penalty

to select variables for a functional linear model with a scalar response and functional predic-

tors. Mingotti et al. [33] proposed “Functional Lasso” for a functional response with scalar

predictors by adapting Lasso method to functional linear model. Hone and Lian [15] applied

the Lasso regularization method for a functional response with functional predictors to solve a

linear ordinary differential equation. However, we consider the functional aspects of coefficient

function β(t) rather than applying methods for group variable selection directly. Gertheiss et

al. [12] included the functional smoothness condition of coefficient functions in the penalty

term while penalizing the sum of `2 norm of the coefficient functions for the generalized linear

functional regression model. The `2 loss function has the same drawback under the existence

of outliers even though the `2 penalty selects functional variables. To overcome this, some

robust loss approach has been proposed. Pannu and Billor [37] applied the least absolution

deviation method to functional linear model using Gertheiss’ penalty function and showed a
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robustness of their method. Also, we consider the smoothness property of functions to define a

regularization method with a robust loss functions.

In method that depend on regularization, the most difficult part is finding the optimal

tuning parameter which minimizes the objective function under the regularization. Researchers

have used BIC (Bayesian information criterion), SIC (Schwarz information criterion), AIC

(Akaike information criterion), GACV (generalized approximate cross-validation), and GCV

(generalized cross-validation) including the traditional CV (cross-validation). We will use SIC

in [4] and CV to estimate coefficient functions.

To this end, we propose a robust variable selection method for a functional linear regres-

sion model. The rank-based functional regression model is developed by modifying the work

of Miakonkana et al. [32] with the penalty function in Gertheiss et al. [12]. Since the model

has a weighted rank-based loss function, it has robustness in both the predictor space and the

response space. The proposed model conserves the smoothness of coefficient functions while

selecting significant functional variables. Also, the adaptive penalty term implies the oracle

property. In Chapter 3, we review various versions of regularized group variable selection

methods for discrete multiple linear regression. Furthermore, we compare different kinds of

loss functions and penalty functions by illustrating their geometric properties. Chapter 4 builds

up the notations for the functional regression model. Section 4.1 presents the objective function

of Gertheiss et al. [12]. We introduce the proposed method and show its performance com-

pared to the Gertheiss et al.[12]’s work by simulation studies in Chapter 5. We prove the oracle

property of estimators as well. An application to Japanese weather data is presented in Section

5.5.
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Chapter 2

Multiple Linear Regression

Let y be a response variable and x be a column vector of p predictors. Suppose that both x and

y are random and that we have their random sample (xTi , yi), i = 1, . . . , n. The multiple linear

regression model is defined as

yi = xTi β + εi, for i = 1, . . . , n (2.1)

where β ∈ Rp is unknown and ε has E(εi) = 0.

2.1 Least Squares and Least Absolute Deviations Regression

The method of least squares (LS) and the method of least absolute deviations (LAD) have been

widely used to estimate β in Equation (2.1).

The LS method finds the estimated β by minimizing the following objective function

β̂LS = argmin
β∈Rp

1

n

n∑
i=1

(yi − xTi β)2 (2.2)

It was discovered independently by Carl F. Gauss around 1795 and by Adrian M. LeGendre in

France around 1805 in [6]. The LS method performs well when the noise εi follows a normal

distribution. The LAD method works better to deal with the case in which the response has

outliers or the noise follows a heavy-tailed distribution. It does not depend on the assumption

of normality. The LAD method was presented about 50 years before the LS method, in 1757 by

Roger Joseph Boscovich [6]. The LS method overwhelmed the LAD for several decades due
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to the relative ease and simplicity of the LS method. However, nowadays, computation is not

a hurdle and its theory of tests for parameters has been established [26, 2]. The LAD method

estimates β by minimizing

β̂LAD = argmin
β∈Rp

n∑
i=1

|yi − xTi β|. (2.3)

The LAD method is optimal when εi follows the Laplace distribution. Moreover, LAD can be

understood as a special case of Quantile regression when τ = 0.5 in the following equation in

Koenker et al. [28].

β̂Quantile = argmin
β∈Rp

1

n

n∑
i=1

ρτ (yi − xTi β) (2.4)

where ρτ (u) := {τ − I(u ≤ 0)} · u is the check loss function [27]. For τ = 0.5, Equation (2.4)

will be the following equation and β̂Quatile,τ=0.5 = β̂LAD.

β̂Quatile,τ=0.5 = argmin
β∈Rp

1

n

n∑
i=1

1

2
|yi − xTi β| (2.5)

since the check loss function becomes ρ0.5(u) = 1
2
|u|. Apparently, β̂Quatile,τ=0.5 = β̂LAD.

Henceforward, for LAD method, we refer to the result of Quantile regression with τ = 1/2.

2.2 Rank-Based Regression

The goal of the rank-based regression method is to estimate the coefficient vector β in Equation

(2.1). The rank-based method pursues also to estimate the parameter β under the presence of

outliers similar to LAD. We assume that the errors are independent and identically distributed

(iid) with a continuous probability density function (pdf) f(t). Let y = (y1, . . . , yn)T be the

n× 1 vector of responses, X = (x1, . . . ,xn)T the n× p design matrix, and ε = (ε1, . . . , εn)T

the n× 1 error vector. Then we can rewrite Equation (2.1) as

y = Xβ + ε. (2.6)
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LS regression minimizes the Euclidean distance and LAD regression minimizes the absolute

deviations measure between y and Xβ̂ which is the estimated y. We define a new distance

measure to achieve the rank-based estimator for the coefficient vector β based on Jaeckel’s dis-

persion function [18]. We follow the notations and terminology by Jaeckel [18] and Jurečková

[21].

Before defining the rank-based method, we introduce the definition of a pseudo-norm as

in Hettmansperger and McKean [14]. An operator || · ||ϕ is called a pseudo-norm if it satisfies

the following four conditions.

1. ||u + v||ϕ ≤ ||u||ϕ + ||v||ϕ for all u,v ∈ Rn

2. ||αu||ϕ = |α|||u||ϕ for all α ∈ R,u ∈ Rn

3. ||u||ϕ ≥ 0 for all u ∈ Rn

4. ||u||ϕ = 0 if and only if u1 = · · · = un

Jaeckel’s dispersion function measuring the distance between two vectors is defined by

D(β) = ||y −Xβ||ϕ, (2.7)

where

||u||ϕ =
n∑
i=1

a(R(ui))ui, (2.8)

R denotes the rank, a(t) = ϕ( t
n+1

), and ϕ is a nondecreasing and L2-integrable score function

defined on the interval [0, 1] as in Kloke and McKean [24]. Without loss of generality, we

assume
∫
ϕ(s)ds = 0 and

∫
ϕ2(s)ds = 1. Then one can check || · ||ϕ in Equation (2.8) is a

pseudo-norm. A primal-dual relationship between quantile regression and rank estimation is

given in Gutenbrunner and Jurecková [13].
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Let ϕ be Wilcoxon score, that is, ϕ
( t

n+ 1

)
=

t

n+ 1
− 1

2
. Then, Jaeckel’s Wilcoxon-type

dispersion function D(β) can be written as

D(β) = ||y −Xβ||ϕ (2.9)

=
1

2(n+ 1)

∑
i<j

|εi − εj| (2.10)

Johnson and Peng [20] used the following objective function similar to Equation (2.10) for the

linear regression model in Equation (2.1).

∑
i<j

|εi − εj| (2.11)

Furthermore, to achieve robustness in the predictor space, Wang and Li [44] proposed the

weighted rank-based loss function ∑
i<j

bij|εi − εj| (2.12)

where

bij = b(xi,xj) = h(xi)h(xj), (2.13)

which degrades high leverage points, where

h(xi) = min

[
1,

b

(xi − µ̂)TS−1(xi − µ̂)

]
(2.14)

with (µ̂, S) being the robust minimum volume ellipsoid estimators of the location and spread

as in Wang and Li [44] and Miakonkana et al. [32].

We call this weighted Wilcoxon-type rank-based method as the rank-based regression

method. The rank-based (RB) method estimates β by minimizing the following weighted

Wilcoxon-type dispersion function.

β̂RB = argmin
β∈Rp

∑
i<j

bij|εi − εj| (2.15)
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where bij is defined by Equation (2.13). We use the rank-based method as the loss function for

the proposed rank-based penalized method for functional linear regression model.

2.3 Loss Functions

We define three loss functions.

1. The L2 loss is written as the square of `2 norm of residuals

LossLS(β,X,y) =
1

n

n∑
i=1

(yi − xTi β)2 (2.16)

=
1

n

n∑
i=1

ε2i . (2.17)

2. The L1 loss is the `1 norm of residuals

LossLAD(β,X,y) =
1

n

n∑
i=1

1

2
|yi − xTi β| (2.18)

=
1

2n

n∑
i=1

|εi|. (2.19)

3. The rank-based loss function LRB [32, 20, 44] is

LossRB(β,X,y) =
1

n

∑
i<j

bij|(yi − xTi β)− (yj − xTj β)| (2.20)

=
1

n

∑
i<j

bij|εi − εj|. (2.21)

The kinds of loss functions determine the robustness of estimation under the existence of

outliers when we solve a linear regression problem (2.1).

2.4 Penalty Function for the Regularized Method

The variable selection is important for high dimensional models. Traditional approaches such

as forward, backward, and stepwise selections are computationally expensive and unstable.

Alternative approach has been made under the sparsity assumption. We assume that the true

10



model has contributions of a few meaningful covariates and that other nonsignificant covariates

do not affect the model completely.

For the regularized method, several penalty functions have been proposed. The original

Lasso is proposed by Tibshirani [41]. For the discrete original multiple linear regression, we

will consider only the original Lasso penalty, that is, `1 penalty for β. The discrete non-grouped

`1 penalty is

pλ,`1(β) =
λ

n
||β||1 =

λ

n

p∑
j=1

|βj|. (2.22)

The component adaptive Lasso penalty function is

pλ,a`1(β) =
λ

n
||λaβ||1 =

λ

n

p∑
j=1

|λajβj|, (2.23)

where λaj = 1/|β̃j| for a suitable initial estimate β̃j of βj , j = 1, . . . , p.

2.5 Objective Functions

We consider the objective functions for this dissertation by combining LS, LAD, and RB loss

functions with the `1 penalty function.

2.5.1 LS-Based Objective Functions

LS `1 method is the traditional Lasso by Tibshirani [41]. The objective function is combined

by the loss function LLS and the `1 penalty.

QLS `1(β) = LossLS(β,X,y) + pλ,`1(β) (2.24)

=
1

n

n∑
i=1

(yi − xTi β)2 +
λ

n
||β||1 (2.25)
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LS a`1 method is the adaptive Lasso. The objective function is combined by the loss

function LLS and the adaptive `1 penalty pλ,a`1(β).

QLS a`1(β) = LossLS(β,X,y) + pλ,a`1(β) (2.26)

=
1

n

n∑
i=1

(yi − xTi β)2 +
λ

n

p∑
j=1

|βj|
|β̃j|

(2.27)

where β̃j is an initial estimate of βj , j = 1, . . . , p.

2.5.2 LAD-Based Objective Functions

The objective function is combined by the loss function LLAD and the `1 penalty. We use the

quantile regression loss function with τ = 1/2 for LAD regression.

QLAD `1(β) = LossLAD(β,X,y) + pλ,`1(β) (2.28)

=
1

n

n∑
i=1

1

2
|yi − xTi β|+

λ

n
||β||1 (2.29)

LAD a`1 method is the adaptive Lasso. The objective function is combined by the loss

function LLAD and the adaptive `1 penalty pλ,a`1(β).

QLAD a`1(β) = LossLAD(β,X,y) + pλ,a`1(β) (2.30)

=
1

n

n∑
i=1

1

2
|yi − xTi β|+

λ

n

p∑
j=1

|βj|
|β̃j|

(2.31)

where β̃j is an initial estimate of βj , j = 1, . . . , p.
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2.5.3 RB-Based Objective Functions

The objective function is combined by the loss function LRB and the `1 penalty. We use the

quantile regression loss function with τ = 1/2 for RB regression.

QRB `1(β) = LossRB(β,X,y) + pλ,`1(β) (2.32)

=
1

n

∑
i<j

bij|(yi − xTi β)− (yj − xTj β)|+ λ

n
||β||1 (2.33)

=
1

n

∑
i<j

bij|εi − εj|+
λ

n
||β||1 (2.34)

RB a`1 method is the adaptive Lasso. The objective function is combined by the loss

function LRB and the adaptive `1 penalty pλ,a`1(β).

QRB a`1(β) = LossRB(β,X,y) + pλ,a`1(β) (2.35)

=
1

n

∑
i<j

bij|(yi − xTi β)− (yj − xTj β)|+ λ

n

p∑
j=1

|βj|
|β̃j|

(2.36)

=
1

n

∑
i<j

bij|εi − εj|+
λ

n

p∑
j=1

|βj|
|β̃j|

(2.37)

where β̃j is an initial estimate of βj , j = 1, . . . , p.

13



Chapter 3

Grouped Multiple Linear Regression

3.1 Grouped Multiple Linear Model

We summarize the existing regularized estimation method for group variable selection in mul-

tiple linear regression model. We consider the following multiple linear regression model with

K groups as follows.

Y =
K∑
k=1

Xkβk + ε (3.1)

where Y is a n × 1 vector of response yi’s, Xk is an n × pk matrix corresponding to the kth

group, βk is a coefficient vector of size pk for the kth group variable, and ε is an n × 1 vector

of errors εi for i = 1, . . . , n and k = 1, . . . , K. Additionally, εi’s are assumed to be statistically

independent with mean 0 and standard deviation σ. Also, we assume that ||βk||2 6= 0 for

1 ≤ k ≤ k0 and βk ≡ 0 for k ≥ k0 where || · ||2 is the `2 norm.

Statisticians have proposed regularized estimation techniques which can achieve variable

selection and parameter estimation simultaneously. These methods stemmed from Lasso by

Tibshirani [41] which combines a loss function and a penalty function. In general, we can

summarize an objective function based on a loss and a penalty as follows.

L(Y,X,β) + λ

K∑
k=1

pλk(βk) (3.2)

We review various techniques by combining L2, L1, or a rank-based loss LRB as L(Y,X,β) ,

and ||βk||2, ||βk||1, ||βk||∞, or SCAD as the penalty function pλk(βk) with or without adaptivity

tuning parameter λk.
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3.2 Loss Functions for Grouped Model

The loss functions for grouped model are the same as those for the non-grouped linear regres-

sion model. We detect the group feature of the given data with a grouped version of penalty

functions.

We use the same loss functions as follows. Let X be the horizontally concatenated design

matrix with X1, . . . ,XK andβ the corresponding vertically stacked coefficient parameters with

β1, . . . ,βK . That is X = (X1, . . . ,XK) and β = (β′1, . . . ,β
′
K)′.

1. The L2 loss is written as the square of `2 norm of residuals

LossLS(β,X,y) =
1

n

n∑
i=1

(yi − xTi β)2 (3.3)

=
1

n

n∑
i=1

ε2i . (3.4)

2. The L1 loss is the `1 norm of residuals

LossLAD(β,X,y) =
1

n

n∑
i=1

1

2
|yi − xTi β| (3.5)

=
1

2n

n∑
i=1

|εi|. (3.6)

3. The rank-based loss function LRB [32, 20, 44] is

LossRB(β,X,y) =
1

n

∑
i<j

bij|(yi − xTi β)− (yj − xTj β)| (3.7)

=
1

n

∑
i<j

bij|εi − εj|. (3.8)

The choice of the loss function determines the robustness of estimation under the existence

of outliers when we solve a linear regression problem (2.1).
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3.3 Grouped Variable Selection via Regularization

3.3.1 Penalty Functions for Grouped Variables

Several group regularized penalty functions are proposed including group SCAD, group `1,

group `2 and group `∞. We compare group `1 and group `2 penalty functions.

The penalty functions for grouped variable selection are defined as follows. For a d-

dimensional vector v = (v1, . . . , vd), we use the following norms of v.

||v||2 =
( d∑
k=1

v2k

)1/2
(3.9)

||v||1 =
d∑

k=1

|vk| (3.10)

1. The `2 group Lasso penalty for the kth group is

pλk,2(β) = λk||βk||2. (3.11)

The `2 group Lasso penalty has been used for group variable selection by Yuan and Lin

[46]. It detects or deselects the entire group at once. We can achieve group adaptivity by

choosing λk as 1/||β̃k||2 with initial estimates β̃k, k = 1, . . . , K.

2. The `1 group Lasso penalty for the k-th group is

pλk,1(β) = λk||βk||1. (3.12)

Miakonkana et al. [32] proposed both group-wise and element-wise adaptive `1 Lasso

penalty
∑K

k=1

∑pk
j=1 λkj|βkj|. The nature of this formula achieves both within-group

sparsity and between-group sparsity.

The penalty function expresses group adaptivity with nontrivial group tuning parameter

λk’s. However, the penalty function excludes group adaptivity when all λk’s are 1. Depending

on λk for each group k, we can express group adaptivity or not.
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The group adaptive `2 penalty function is the sum of all K penalties.

Pλ,ag`2(β) = λ

K∑
k=1

pλk,2(β) (3.13)

= λ
K∑
k=1

λk||βk||2 (3.14)

The group non-adaptive `2 penalty function is the sum of all K penalties with λk = 1 for

all k = 1, . . . , K.

Pλ,g`2(β) = λ
K∑
k=1

p1,2(β) (3.15)

= λ
K∑
k=1

||βk||2 (3.16)

The group adaptive `1 penalty function is the sum of all K penalties.

Pλ,ag`1(β) = λ
K∑
k=1

pλk(β) (3.17)

= λ
K∑
k=1

λk||βk||1 (3.18)

The group non-adaptive `1 penalty function is the sum of all K penalties with λk = 1 for

all k = 1, . . . , K.

Pλ,g`1(β) = λ
K∑
k=1

p1,1(β) (3.19)

= λ
K∑
k=1

||βk||1 (3.20)
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Figure 3.1: The unit ball for the group `2 norm (left) and the group `1 norm (right) : β =
(β1,β2) where β1 = β1,β2 = (β21, β22)

3.3.2 Geometry of Penalty Functions

The differences between group penalty functions can be shown with their geometry. Figure 3.1

has two grouped vectors β1 and β2 where β1 is in R and β2 is in R2. The unit ball for the group

`1 is

{(β1, β21, β22) ∈ R3 : |β1|+ |β21|+ |β22| ≤ 1} (3.21)

and the unit ball for the group `2 is

{(β1, β21, β22) ∈ R3 : |β1|+ (β2
21 + β2

22)
1/2 ≤ 1}. (3.22)

We can have the minimum of the LS or RB loss functions at the edges or vertices of

the balls. An `1 ball can meet at a vertex with a high chance to minimize the loss functions.

However, an `2 ball meets with the circular edges to optimize the loss functions when β1 = 0

and β2 6= 0. The group `2 penalty can obtain the estimated beta with all nonzero component

values, but the group `1 penalty can estimate some zero values for a true parameter with all

nonzero components. The group `2 penalty can achieve only the sparsity between groups. The

group `1 penalty can accommodate the sparsity inside each group as well as between groups.
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group `2 group `1
L2 LS g`2 LS g`1
L1 LAD g`2 LAD g`1
LRB RB g`2 RB g`1

Table 3.1: Combinations of Loss and Penalty

adaptive group `2 adaptive group `1
L2 LS ag`2 LS ag`1
L1 LAD ag`2 LAD ag`1
LRB RB ag`2 RB ag`1

Table 3.2: Combinations of Loss and Group Adaptive Penalty

3.4 Objective Functions for Grouped Variables

We can build 6 objective functions for group variable selection for multiple linear regression in

Table 3.1 by combining three different loss functions in Section 3.2 and three different penalty

functions in Section 3.3. Also, we consider their adaptive versions listed in Table 3.2.

We understand RB as a special case of LAD by generating n(n− 1)/2 data pairs from the

original data pair as follows.

xij = xi − xj and yij = yi − yj (3.23)

for i, j = 1, . . . , n and ij = 1, . . . , n(n− 1)/2.

3.4.1 LS-based Objective Functions

The objective function QLS g`2(β) is the group Lasso objective function by Yuan and Lin [46].

The Lasso technique for multiple linear regression by Tibshirani [41] used the L2 loss function

which minimizes the residual sum of squares. It was extended to group linear regression model

by modifying the penalty function with ||βk||2 to select group variables as in Yuan and Lin

[46]. It pursued to select relevant groups rather than only individual variables and to deselect

irrelevant groups by penalizing grouped parameters together and estimate parameters. The
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objective function of Yuan and Lin [46] is equivalent to the following formula.

QLS g`2(β) = LossLS(β,X,y) + Pλ,g`2(β) (3.24)

=
1

n

n∑
i=1

(
yi −

K∑
k=1

xTikβk

)2
+
λ

n

K∑
k=1

||βk||2 (3.25)

Wang and Leng [42] modeled adaptive group Lasso by combining different tuning param-

eters for different groups. It is equivalent to minimize

QLS ag`2(β) = LossLS(β,X,y) + Pλ,ag`2(β) (3.26)

=
1

n

n∑
i=1

(
yi −

K∑
k=1

xTikβk

)2
+
λ

n

K∑
k=1

λk||βk||2. (3.27)

It was shown that the adaptive group Lasso estimates the true model consistently and that the

estimator satisfies the oracle property.

Similarly, we can define objective functions by combining Pλ,g`1(β) and Pλ,ag`1(β). Ap-

parently, non-adaptive penalty turns out to be the original Lasso in Tibshirani [41], that is,

QLS g`1(β) = QLS `1(β).

QLS g`1(β) = LossLS(β,X,y) + Pλ,g`1(β) (3.28)

=
1

n

n∑
i=1

(
yi −

K∑
k=1

xTikβk

)2
+
λ

n

K∑
k=1

||βk||1 (3.29)

This does not detect a group feature. However, the group adaptive penalty function can obtain

a group structure.

QLS ag`1(β) = LossLS(β,X,y) + Pλ,ag`1(β) (3.30)

=
1

n

n∑
i=1

(
yi −

K∑
k=1

xTikβk

)2
+
λ

n

K∑
k=1

λk||βk||1 (3.31)

But still this is equivalent to a special case of adaptive non-grouped Lasso method in Section

2.5.1. We have a group adaptive penalty λk, k = 1, . . . , K instead of element-wise adaptive

penalty λj , j = 1, . . . , p.
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3.4.2 LAD-Based Objective Functions

TheL1 loss function is a special case of quantile regression when τ = 0.5. L1 loss minimization

was suggested to overcome the shortcoming of the least square minimization method. Bang and

Jhun [4] used the quantile regression loss function for group variable selection method with the

group `∞ penalty for multiple linear regression model. Lilly and Billor [29] proposed the least

absolute deviation (LAD) group variable selection method with L1 loss with group `1 penalty

for multiple linear regression model.

QLAD g`1(β) = LossLAD(β,X,y) + Pλ,g`1(β) (3.32)

=
1

2n

n∑
i=1

∣∣∣yi − K∑
k=1

xTikβk

∣∣∣+
λ

n

K∑
k=1

||βk||1 (3.33)

This is equivalent to non-grouped LAD Lasso model, however, the group feature can be

captured by the LAD loss function with group adaptive penalty function.

QLAD ag`1(β) = LossLAD(β,X,y) + Pλ,ag`1(β) (3.34)

=
1

2n

n∑
i=1

∣∣∣yi − K∑
k=1

xTikβk

∣∣∣+
λ

n

K∑
k=1

λk||βk||1 (3.35)

3.4.3 LRB Loss Functions

Johnson and Feng [20] Wang and Li [44] proposed a rank-based variable selection method for

multiple linear regression model without a group structure.

1

n

n∑
i=1

bij|ei − ej|+ n

p∑
j=1

pλ(|βj|) (3.36)

where pλ is the SCAD penalty function for variable selection. Wang and Li added the weighted

factor bij for the robustness in predictors whereas the model of Johnson and Feng [20] has

bij = 1 for all 1 ≤ i, j ≤ n.
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We combine the RB loss function with Pλ,ag`2(β), Pλ,g`2(β), Pλ,ag`1(β), and Pλ,g`1(β)

in Section 3.3.1. Similarly to the non-grouped case, we generate new data set xij and yij for

ij = 1, . . . , n(n − 1)/2. Then, we perform LAD group Lasso with or without adaptivity for

n(n− 1)/2 generated data pairs to obtain RB group Lasso estimates.

3.5 Choice of Tuning Parameter λ

We use 10-fold cross-validation (CV) and Schwarz information criterion (SIC) to choose the

optimal tuning parameter λ for a grouped penalized model. We choose λ that minimizes the

prediction errors for the test sets. Bang and Jhun [4] used a robust SIC for LAD. Kim and

Koivunen [23] used BIC for RB which is equivalent to SIC. We calculate SIC for each loss

function as follows.

SICLS = ln
1

n

∑
i

||ei||2 +
1

n
df · lnn (3.37)

SICLAD = ln
1

n

∑
i

|ei|+
1

2n
df · lnn (3.38)

SICRB = ln
1

N

∑
i<j

bij|ei − ej|+
1

2n
df · lnn (3.39)

where N = n(n− 1)/2, n is the number of observations, and df is the model size. We choose

the best tuning parameter λ which minimizes SIC for each loss function.
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Chapter 4

Functional Linear Model

The mathematical foundation for functional data analysis assumes that we observe curve data.

Functional data analysis is concerned with functional observations defined on a set T . Even

though the data has the form of repeated measurements at finitely many points only, the nature

of some data has functional structure in it. For example, we observe temperature over the year

at discrete time points, but, the temperature data can be understood as a continuous functional

data. We use functional data analysis tools for converting raw discrete data to functional con-

tinuous data. That is, we smooth out the sparse and disconnected observed data with the use of

kernel, B-spline, Fourier, polynomial, or wavelet basis as described in Ramsay and Silverman

[38].

With pre-processed data, we develop the analysis technique over a Hilbert space, L2(T ),

which is a complete infinite-dimensional normed space of functions on T .

We model the observed data functions as single entities rather than a sequence of indi-

vidual observations. We convert a sequence of individual discrete observations xs = x(ts) for

s = 0, 1, . . . ,m to a function x with values x(t) for an arbitrary t ∈ T by smoothing. Linear

algebra plays a roll to represent functions as a linear combination of basis functions over a

Hilbert space of L2(T ) integrable functions on T with L2(T ) norm given by

||x||22 = 〈x, x〉 =

∫
T
x2(t)dt (4.1)
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where 〈·, ·〉 is the inner product on this functional space defined by

〈x, y〉 =

∫
T
x(t)y(t)dt for any x and y ∈ L2(T ). (4.2)

For any basis φk of L2(T ), we have

x(t) =
∞∑
`=1

〈x, φ`〉φ`(t) (4.3)

by the Karhunen-Loéve expansion where the convergence is in L2(T ) with probability one.

For a fixed number d of basis, we may approximate x(t) with

x(ts) ≈
d∑
`=1

c`φ`(ts). (4.4)

The coefficients are obtained by minimizing the following sum of squares

min
m∑
s=1

(
x(ts)−

d∑
`=1

c`φ`(ts)

)2

. (4.5)

Let φ be the m × d matrix {φ`(ts)}`,s, x the discrete data vector {x(ts)}s = {xs}s, and c the

coefficient vector {c`}` of length d. Then the previous approximation equation (4.4) becomes

x ≈ cTφ. (4.6)

If we write Equation (4.4) on a continuous functional space,

x(t) ≈ cTφ(t) (4.7)

where the choice of the basis φ` and the dimension d is crucial, which might depend on the dis-

crete data. Usually we use Fourier basis for periodic data, B-spline basis for non-periodic data,

and wavelet bases for the data without differentiability requirements. The optimal dimension

d for approximation is found by minimizing the mean squared error as discussed by Horváth
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and Kokoszka [16]. Ramsay and Silverman [38] discussed about the methods for choosing the

number of basis to approximate. A larger d improves the approximation in Equation (4.5), but

increases the variance of the estimated statistics. However, this dissertation will use a fixed

number of basis without optimization for the dimension d. The choice of basis for functional

principal component technique is discussed in Horváth and Rice [17] using a hypothesis test

method. The L2 norm of the second derivative of x(t) is related to the curvature of the function

curve x(t). A smaller L2 norm ||x′′(t)||22 obtains a smoother functional curve. We can control

smoothness of the functional version x(t) of the discrete data xs = x(ts) by adding the term

||x′′(t)||22 to the least square minimization Equation (4.5). Considering all these facts, we can

determine a proper basis and the number of basis with a proper smoothness.

Several functional linear regression model can be considered as follows. We can combine

a scalar or a functional response with scalar or functional predictors to set up a functional

linear model. First, a model with both functional response and functional predictors with scalar

parameters can be described by

yi(t) = α +

p∑
j=1

βjXij(t) + ε. (4.8)

In this dissertation, we focus on the model with functional predictors and a scalar response.

Consider a functional multiple linear regression model with p functional predictors and a con-

tinuous scalar response defined by Equation (1.1).

yi = α +

p∑
j=1

∫
T
Xij(t)βj(t)dt+ εi, i = 1, . . . , n,

where yi is a scalar and Xij(t)’s on T , the support of functional covariates, are L2 integrable

and independent with each other, βj(t)’s are functional parameters which are alsoL2 integrable,

and εi
iid∼ F , where F is some distribution with finite Fisher information. The functional linear

regression model in Equation (1.1) has been studied to estimate the parameter function β(t)’s

using L2 [38], L1 [29], and LRB [8] loss functions.
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4.1 Penalized Functional Linear Model for Variable Selection

We reviewed the regularized methods for group variable selection in ordinary multiple regres-

sion model in Chapter 3. The ideal technique for group variable selection is expected to select

significant groups and estimate parameters simultaneously which performs well under a di-

verse range of distribution of errors in response and high leverage predictor data. These can be

achieved by combining a loss function to take care of non-normal errors in response space, a

penalty term to select sparse meaningful group variable, and weight in loss function to control

high leverage in predictor space. Moreover, if we add group adaptivity, the parameter estimators

acquire the oracle property. In addition, we consider the smoothness of estimated parameter

functions by controlling the concavity with their second derivatives. We formulate Equation

(1.1) using a basis expansion on a functional space in Section 4.1.1. Section 4.1.2 expresses the

functional linear model in Equation (1.1) based on a transformed basis to include the second

derivative of the parameter functions. Section 4.1.3 sets up for the penalized functional linear

model with L2 loss and group adaptive `2 penalty in Gertheiss et al. [12].

4.1.1 Functional Linear Model as a Multiple Linear Regression

We express a multiple functional linear model as an original multiple linear regression model

with a group structure using basis expansion. We express the functional model in Equation

(1.1) as a discretized form over {t1, . . . , tm} ∈ T with an appropriate kind of basis set {φ(t)}

and an appropriate finite number of basis d. With the finite basis φj1, . . . , φjd, the parameter

function βj(t) can be written as a finite dimensional approximation

βj(t) ≈
d∑
`=1

cj`φ`(t). (4.9)
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Then we can approximate the integration in (1.1) as

∫
T
Xij(t)βj(t)dt ≈

m∑
s=1

Xij(ts)βj(ts)(ts − ts−1) (4.10)

≈
∑
`

(∑
s

Xij(ts)φ`(ts)δs

)
cj` (4.11)

=
∑
`

Φij`cj` (4.12)

= ΦT
ijcj (4.13)

where i = 1, . . . , n, j = 1, . . . , p, δs = ts − ts−1, cj = (cj1, . . . , cjd)
T , Φij = (Φij1, . . . ,Φijd)

T

and Φij` =
∑

sXij(ts)φ`(ts)δs.

The discretized version of our model is written as

yi = α +

p∑
j=1

ΦT
ijcj + εi, i = 1, . . . , n (4.14)

which is a grouped multiple linear regression model with p groups, d predictors in each group,

and n observations. The functional linear regression model in Equation (1.1) becomes a discrete

grouped regression model to estimate grouped parameters cj’s for j = 1, . . . , p.

4.1.2 Penalty with the Second Derivatives of the Coefficient Functions

We express the penalty terms by changing basis to include the second derivative of parameter

functions. Then we model the penalized functional linear model for variable selection with

loss functions and penalty functions. We discuss about the LRB loss with l2 penalty for the

functional regression model in section 5. Gertheiss et al. [12] proposed a functional variable

selection method which estimates coefficient functions and controls functional smoothness si-

multaneously about (1.1) by using the sparsity-smoothness penalty J(fj)in Meier et al. [31].

J(fj) = λ1

√
||fj||2n + λ2I2(fj) (4.15)

where I2(fj) =
∫

(f ′′j (x))2dx measures the smoothness of fj .
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The penalty term is a functional version of `2 group Lasso penalty including the second

derivative of parameter functions βj(t), j = 1, . . . , p to control smoothness. The objective

function is
n∑
i=1

(
yi − α−

p∑
j=1

ΦT
ijcj

)2
+

p∑
j=1

Pλ,ϕ(βj) (4.16)

where

Pλ,ϕ(βj) = λ(||βj||22 + ϕ||β′′j ||22)1/2, (4.17)

|| · ||2 is the functional L2 norm in Equation (4.1), and β′′j (t) = d2βj(t)/dt
2.

Here we focus on the functional 2-norm penalty term in Equation (4.17) which is anal-

ogous to the group `2 penalty function in Equation (3.11). λ is the tuning parameter which

controls sparseness. If λ is zero, we do not drop any variables and include all predictors as

significant in the estimated model. However, a huge λ value can shrink down the estimated

model by selecting none of predictors as significant. The smoothness of the parameter func-

tions is controlled by ϕ. As the smoothness parameter ϕ increases, the estimated parameter

functions β̂j(t) achieve more smoother curve. For examples, ϕ = 0 case will make the most

fluctuating estimated curve. If ϕ is large enough, we may expect to have straight lines as es-

timated functional parameters. The suitable λ and ϕ are chosen via K-fold cross-validation

by minimizing the prediction error of the estimation. We follow the setting in Gertheiss et al.

[12] to restructure the penalty function Pλ,ϕ(βj) in Equation (4.17). For each j = 1, . . . , p, we

define the inner products Ψj between the basis functions and the inner product Ωj between the

second derivative of basis functions for a adequately chosen d degree of freedom as follows.

Ψj =



〈φj1, φj1〉 〈φj1, φj2〉 · · · 〈φj1, φjd〉

〈φj2, φj1〉 〈φj2, φj2〉 · · · 〈φj2, φjd〉
...

... . . . ...

〈φjd, φj1〉 〈φjd, φj2〉 · · · 〈φjd, φjd〉


(4.18)
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Ωj =



〈φ′′j1, φ′′j1〉 〈φ′′j1, φ′′j2〉 · · · 〈φ′′j1, φ′′jd〉

〈φ′′j2, φ′′j1〉 〈φ′′j2, φ′′j2〉 · · · 〈φ′′j2, φ′′jd〉

. . . . . .
. . . . . .

〈φ′′jd, φ′′j1〉 〈φ′′jd, φ′′j2〉 · · · 〈φ′′jd, φ′′jd〉


(4.19)

Cϕ,j = Ψj + ϕΩj (4.20)

The linear combination of Ψj and Ωj can span L2 functional space and reduce the functional

penalty term (4.17) as

Pλ,ϕ(βj) = λ(||βj||22 + ϕ||β′′j ||22)1/2 (4.21)

= λ(cTj Cϕ,jcj)
1/2. (4.22)

Furthermore, Cϕ,j can be written as

Cϕ,j = Lϕ,jL
T
ϕ,j (4.23)

where Lϕ,j is a non-singular lower triangular matrix by Cholesky decomposition. From Equa-

tions (4.16) and (4.23), we have

ΦT
ijcj = ΦT

ijId×dcj (4.24)

= ΦT
ij(L

T
ϕ,j)
−1LTϕ,jcj (4.25)

= (L−1ϕ,jΦij)
TLTϕ,jcj (4.26)

= Φ̃T
ij c̃ϕ,j (4.27)
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where Φ̃ij = L−1ϕ,jΦij and c̃ϕ,j = LTϕ,jcj . The penalty function (4.22) with the second deriva-

tives is

Pλ,ϕ(βj) = λ(||βj||22 + ϕ||β′′j ||22)1/2 (4.28)

= λ(cTj Cϕ,jcj)
1/2 (4.29)

= λ||c̃ϕ,j||2. (4.30)

4.1.3 Gertheiss’ Objective Function for L2 Loss and `2 Penalty for Various Adaptivity

The functional linear regression model (1.1) can be written as

yi = α +

p∑
j=1

Φ̃T
ij c̃ϕ,j + εi for i = 1, . . . , n. (4.31)

Thus, Gertheiss et al. [12] uses the following objective function to estimate α̂ and ˆ̃cj using the

group Lasso method.

QL2,`2(α, c̃j) =
n∑
i=1

(
yi − α−

p∑
j=1

Φ̃T
ij c̃ϕ,j

)2
+

p∑
j=1

λ||c̃ϕ,j||2 (4.32)

The above equations (4.31) and (4.32) do not reflect the group adaptivity. Gertheiss et

al. define the adaptive penalization similar to the adaptive group Lasso by Zou [47] by adding

weights to control the contribution of the jth parameter function βj(t) and its second derivative

β′′j (t) for each j = 1, . . . , p. Their adaptive penalty function is

Pa,λ,ϕ(βj) = λ(wj||βj||22 + ϕvj||β′′j ||22)1/2 (4.33)

where the weights wj’s and vj’s are chosen depending on data. The tuning parameter λ con-

trols the entire penalty function and ϕ controls the concavity of estimated parameter functions

βj(t)’s. However, the weights wj and vj reflect the size of the jth parameter function βj(t)

for each j by defining wj = 1/||β̂j||2 and vj = 1/||β̂′′j ||2 for a set of estimated coefficient

function β̂j(t). These weights help to detect the correct nonzero coefficient functions by giving
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smaller weights to meaningful covariates and larger weights to insignificant covariates. These

two weights are not tuning parameters but fixed values. Thus the adaptiveness does not change

add any difficulty to computation to optimize an objective function. Specifically, the penalty

function (4.33) can be rewritten in the following way. Similarly, we define Ca,ϕ,j as

Ca,ϕ,j =
√
wjΨj + ϕ

√
vjΩj (4.34)

and rewrite using Cholesky decomposition as

Ca,ϕ,j = Laϕ,j(L
a
ϕ,j)

T (4.35)

with a non-signular lower triangular matrix La,ϕ,j . Equation (4.16) can be written as

ΦT
ijcj = ΦT

ijId×dcj (4.36)

= ΦT
ij(L

T
a,ϕ,j)

−1LTa,ϕ,jcj (4.37)

= (L−1a,ϕ,jΦij)
TLTa,ϕ,jcj (4.38)

= Φ̃T
a,ij c̃a,ϕ,j (4.39)

where Φ̃a,ij = L−1a,ϕ,jΦij and c̃a,ϕ,j = LTa,ϕ,jcj .

The most general expression for the functional linear model (1.1) becomes

yi = α +

p∑
j=1

Φ̃T
a,ij c̃a,ϕ,j + εi for i = 1, . . . , n. (4.40)

The group adaptivity `2 penalty function will give the following objective function with L2

loss.

Qa,L2,`2(α, c̃ϕ,j) =
n∑
i=1

(
yi − α−

p∑
j=1

Φ̃T
a,ij c̃a,ϕ,j

)2
+

p∑
j=1

λ||c̃a,ϕ,j||2 (4.41)

We may apply different kinds of adaptivity by setting wj = 1 for all j = 1, . . . , p or vj = 1

for all j = 1, . . . , p. If the initial coefficient functions have expressive difference on their sizes,

but all coefficient functions have similar smoothness, we employ only wj by setting vj = 1
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for j = 1, . . . , p. On the other hand, we utilize only vj by letting wj = 1 for all j = 1, . . . , p

in the case that we have similar sizes for all coefficient functions with larger variance on their

smoothness.

In general, we use Equation (4.40) for the group adaptivity in functional linear regression

model.

yi = α +

p∑
j=1

Φ̃T
a,ij c̃a,ϕ,j + εi, for i = 1, . . . , n

We estimate the optimal α and c̃ϕ,j for j = 1, . . . , p in Equation (4.40) using the rank-based

loss function, LRB, in (2.20) with the group `2 in (3.11) penalty function in Chapter 5.

32



Chapter 5

Rank Based Group Variable Selection for Functional Linear Model

5.1 Introduction

We propose the rank-based group variable selection method for functional linear model. We

combine the rank-based loss function LRB, in Equatioin (2.20) and the group `2 penalty func-

tion in Equation (3.11) and finally define an LRB objective function as follows using the group

adaptive penalty function (4.33).

Qa,RB =
1

n

n∑
i<j

bij|εi − εj|+
p∑
j=1

Pa,λ,ϕ(βj) (5.1)

where

Pa,λ,ϕ(βj) = λ(wj||βj||22 + ϕvj||β′′j ||22)1/2

= λ||c̃a,ϕ,j||2

with Equation (4.40)

yi = α +

p∑
j=1

Φ̃T
a,ij c̃a,ϕ,j + εi, for i = 1, . . . , n

We use the same setting as Gertheiss et al.[12] except for the loss function. Then we apply the

grouped multiple linear regression method with the RB loss functions with the group `2 penalty

with or without adaptivity. The rank-based loss function in Equation (2.20) has the weights

depending on predictors and can reduce the effect of data observations with high leverage.
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Moreover, the nature of the rank-based loss can achieve the robustness under the existence of

outliers in the response space.

We explain the weights bij’s and how to obtain λ and ϕ. We create the simulation data

without outliers in both the predictor space and response space. Afterwards, we generate the

contaminated data with the outliers in the response space and the observations with high lever-

age value in the predictor space.

The rank-based estimator estimates and selects β(t) simultaneously. We obtain the optimal

smoothness by choosing the best ϕ. With adaptivity, we can see the oracle property of the

estimator of β(t) in Chapter A.

5.2 Weights bij

The weights bij are from the pairwise difference data xij = xi − xj and yij = yi − yj . We

define as Equation (2.13)

bij = b(xi,xj) = h(xi)h(xj) (5.2)

which degrades high leverage points, where

h(xi) = min

[
1,

b

(xi − µ̂)TS−1(xi − µ̂)

]
(5.3)

with (µ̂, S) being the robust minimum volume ellipsoid estimators of the location and spread-

ness, and b the 95th percetile of χ2(p) for the number of predictors p, as in Wang and Li [44] and

Miakonkana et al. [32]. We calculate the robust estimators, (µ̂, S), using the MCD (Minimum

Covariance Determinant) by ocvMcd() function in the R package robustbase.

5.3 Choosing Tuning Parameters λ and ϕ

We use cross-validation (CV) and Schwarz information criterion (SIC) to choose the optimal

tuning parameter λ for a functional penalized model as we discussed about the grouped linear

model in Section 3.5.

The K-fold cross-validation selects the optimal λ and ϕ for the L2 loss function in Equa-

tion (4.41) and the rank-based loss function in Equation (5.1) with the group `2 penalty. We
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split the data observations into K subsets randomly. For each subset, we estimate the parame-

ters using the rest ofK−1 subsets and then predict the response for one chosen subset based on

the estimates by K − 1 subsets. We choose the best tuning parameters such that they minimize

the mean of the prediction error for the response over K subsets.

To optimize the tuning parameters using SIC, we use the following definitions.

SICLS = ln
1

n

∑
i

||ei||2 +
1

n
df · lnn

SICLAD = ln
1

n

∑
i

|ei|+
1

2n
df · lnn

SICRB = ln
1

N

∑
i<j

bij|ei − ej|+
1

2n
df · lnn

where N = n(n− 1)/2, n is the number of observations, and df is the model size.

For a simple simulation study with p = 4 predictor functions, we try to find the optimal λ

by minimizing the root mean squared error of β, (RMSE(β)), since we know the true β(t)’s

with CV.

5.4 Simulation Study

We generate sine-like functional predictors similarly as in Gerthesis [12] and generate the re-

sponses by adding errors from different kinds of distributions to the inner product between the

coefficient functions β(t)’s and the functional predictors. We create the contaminated predic-

tors which resembles the data with high leverage observations. We compare the results between

LS, LAD, and RB loss with the group `2 penalties with and without optimization of smooth-

ness.
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Figure 5.1: c0: Predictor functions without contamination

5.4.1 Data Generation

Consider an example in which four functional covariates are observed at a set of 100 equidistant

points in (0, 100) for each sampling unit. Define for i = 1, . . . , n, and k = 1, . . . , 4,

xik(t) =
5∑
r=1

aikr sin
(2π(5− aikr)

150

)
t−mikr, k = 1, . . . , 4 (5.4)

yi =
4∑

k=1

∫ 100

0

xi,k(t)βk(t)dt+ εi, i = 1, . . . , n (5.5)

where aikr ∼ U(0, 5), mikr ∼ U(0, 2π), i = 1, . . . , n, k = 1, . . . , 4, r = 1, . . . , 5 and t ∈

[0, 100]. Figure 5.1 shows the predictor functions. The true parameter functions β1(t) and

β2(t) are γ distribution density curves with different stretches and β3(t) = β4(t) = 0 as shown

in Figure 5.2.
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Figure 5.2: True parameter β(t) curves

For the response yi, we use εi ∼ N(0, 1) (en) , t3 (et3), and a mixed normal, 0.95N(0, 1)+

0.05N(0, 102), (em) to compare the performance. We run the simulation 100 times. We dis-

cretize the functional simulation data with 10 B-spline basis as in Chapter 4, then compare the

result based on the LS, LAD, and RB loss functions with group `2 penalty function. We will

simulate the date with the sample size n = 100 and 150 for p = 4. We compare the result for

p = 10 with n = 100.

To see the effect of the weights bij , we generate the contaminated data in the predictor

space. We use the contamination criteria in Fraiman and Muniz [11]. We use three types of

15% contamination for each predictor function with the contamination size constant M = 5.

The types are asymmetric, symmetric, and partial contaminations. They are generated by the

following definitions.
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• Asymmetric contamination(c1):

zai,k(t) = xi,k(t) + cM

where c ∼ Bernoulli(0.15) and M = 5

Figure 5.3: c1: Predictor functions with 15% asymmetric contamination

• Symmetric contamination(c2):

zsi,k(t) = xi,k(t) + cσM

where c ∼ Bernoulli(0.15), M = 5, and σ is a random variable independent of c which

is 1 or −1 with probability 0.5.

• Partial contamination(c3):
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Figure 5.4: c2: Predictor functions with 15% symmetric contamination

zpi,k(t) =


xi,k(t) + cσM , t > T

xi,k(t) , t < T

where T ∼ U(0, 10), c ∼ Bernoulli(0.15), M = 5, and σ is a random variable indepen-

dent of c which is 1 or −1 with probability 0.5.

• No contamination (c0):

znoi,k(t) = xi,k(t)

Thus, we consider asymmetric contamination in Figure 5.3, symmetric contamination in

Figure 5.4, and partial contamination in Figure 5.5 contaminations in the x direction and three

kinds of y direction errors, the standard normal (en) , t3 (et3) and the mixed normal errors (em)
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Figure 5.5: c3: Predictor functions with 15% partial contamination

with box-plots as shown in Figure 5.6 . We compare the results between LS, LAD, and RB loss

functions with different combinations of contaminations.

The following sections summarize the simulation results by comparing LS, LAD and RB

methods under the different combinations of contaminations and with or without the optimiza-

tion for the smoothness parameter ϕ. We search the RMSE (Root Mean Squared Error) of β(t)

to compare the performance between loss functions. The RMSE(β) is defined as

RMSE(β) =
[ ∫

(β̂(t)− β(t))2dt
]1/2

where β̂(t) is the estimated parameter function for the true parameter function β(t).

5.4.2 Results on c0 : No outliers in the predictor space

We start with the result on the data without x-direction contaminations and with the standard

normal error (en), Huber mixed normal errors (em) and t3 errors (et3) for n = 50 observations.

40



Figure 5.6: Boxplots of responses for all combinations of x and y-contaminations

Since we do not have the x contaminations, we use the weight bij = 1 for all i, j = 1, . . . , 50.

And we do not penalize the smoothness by letting ϕ = 0 for all cases. We optimize the tuning

parameter λ by 10-fold cross-validation and by minimizing the root mean squared error of β

(RMSE(β)). We run 100 simulations for each y error. We only compare LS and RB.

LS RB
x1 x2 x3 x4 Model.Size Model.Error x1 x2 x3 x4 Model.Size Model.Error

c0 en 1 1 0.34 0.41 2.75 0.0645 1 1 0.33 0.37 2.7 0.067
em 1 0.93 0.48 0.33 2.74 0.109 1 1 0.37 0.39 2.76 0.072
t3 1 1 0.44 0.40 2.84 0.093 1 1 0.37 0.46 2.83 0.079

Oracle 1 1 0 0 2 0 1 1 0 0 2 0

Table 5.1: Comparison under y outliers based on RMSE(β)

Table 5.1 shows the comparison between LS and RB methods under the presence of the

outliers in the response space. LS performs better than RB method under the standard normal

error since LS has the smaller model error. With the presence of outliers in the response space,

RB estimates better than LS. RB and LS have 0.072 and 0.109 as the model errors, respectively.

LS fails to detect the second variable in 7%, however, RB detects the second one as significant

41



Figure 5.7: Estimated β(t) under Huber mixed normal errors by RMSE(β)

LS RB
x1 x2 x3 x4 Model.Size Model.Error x1 x2 x3 x4 Model.Size Model.Error

c0 en 1 1 0.63 0.68 3.31 0.0658 1 1 0.54 0.62 2.674 0.0648
em 1 0.95 0.62 0.52 3.19 0.1102 1 1 0.59 0.51 3.1 0.0765
t3 1 0.98 0.61 0.59 3.18 0.0959 1 1 0.53 0.58 3.11 0.0818

Table 5.2: Comparison under y outliers based on CV

variable in 100%. The rank-based method also has a smaller model error for t3 error with a

smaller model size. This simulation result says the rank-based method performs better under

the presence of response outliers. Figure 5.7 shows the performance difference between LS

and RB under Huber mixed normal errors by choosing λ which minimizes RMSE(β). RB

method gives better precision with narrower estimated clouds than LS. The estimation using

the cross-validation in Table 5.2 gives similar results with smaller model errors by the rank-

based method.

cont LS RB
x1 x2 x3 x4 Model.Size Ave(RMSE(β)) Sd(RMSE(β)) x1 x2 x3 x4 Model.Size Ave(RMSE(β)) Sd(RMSE(β))

c0 en 1 1 0.680 0.730 3.410 1.501 0.439 1 1 0.780 0.780 3.560 1.546 0.374
em 1 0.990 0.640 0.700 3.330 2.255 0.491 1 1 0.790 0.800 3.590 1.833 0.462
et3 1 1 0.700 0.650 3.350 1.995 0.416 1 1 0.760 0.800 3.560 1.910 0.520

Table 5.3: y-contaminated data with optimization for λ and ϕ

Table 5.3 has the result 100 simulations for n = 100 observations without x contami-

nations with considering the smoothness parameter ϕ and the weight for the rank-based loss,

bij . We optimize both λ and ϕ using 10-fold cross-validation. The case with standard normal

error has a smaller average of RMSE(β) for the estimated β under LS method. However, RB

method obtains smaller average of RMSE(β) than LS method.
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5.4.3 Results under x and y outliers when p = 4

This section shows the results under outliers in both the predictor space and the response space.

Firstly, we optimize the smoothness penalty ϕ for non-contaminated data set using LS loss

function. This case should give an ideal ϕ estimation and it can be applied to all other loss

functions, LAD and RB and the data sets with outliers. After choosing an optimal ϕ, we

use the estimated nonzero ϕ for all models and choose tuning parameter λ using 10-fold CV

(cross-validation) and SIC (Schwarz information criterion). Since we know the true β, we

use the weights for ||β(t)||2 and ||β′′(t)||2 as the true β(t)’s for adaptive estimations. Adapt0

estimates β(t)’s without any adaptation. Adapt1 uses the adaptivity for ||β(t)||2 and Adapt2

uses the adaptivity for both ||β(t)||2 and ||β′′(t)||2. We compare results based on different

loss functions, x and y outliers, and different adaptivities using two tuning parameter choosing

methods, 10-fold CV and SIC with different numbers of observations. The data sets are same

to the previous simulation results under RMSE(β) and CV. The data sets have the same 4

predictor functions and the same y outliers with the same true β(t) in 5.2. However, we use 4

degree of freedom for basis instead of 10 and compare the results for 100 and 150 observations

to check the oracle property. The following sections include the results for x outliers, c0, c1,

c2, and c3 of 100 simulations. We compare the performances between different loss functions

based on RMSE(β) and the average model sizes. We also check the oracle property based

on RMSE(β) and the average model sizes by comparing the results between different sample

sizes. The table below provide the average model size (df), the mean RMSE(β) (m(β)), and

the standard deviation of RMSE(β) (sd(β)).

A. x contamination : c0

Tables 5.4 through 5.9 show the results of 100 simulations for n = 100 and n = 150

observations without x contaminations for three different loss functions under y outliers.

LS performs best under the standard normal error in y direction as expected since LS works

best under a normal error in both CV and SIC with or without adaptivity. Under normal

errors, RB after LS performs better than LAD. However, RB performs best under mixed
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n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 3.42 2.007 0.134 3.34 2.11 0.141 3.46 2.049 0.133
100 em 3.19 2.423 0.358 3.5 2.207 0.18 3.5 2.127 0.189
100 et3 3.31 2.209 0.253 3.45 2.172 0.174 3.46 2.166 0.238
150 en 3.43 2.005 0.155 3.51 2.075 0.148 3.54 2.045 0.157
150 em 3.27 2.169 0.257 3.39 2.056 0.139 3.58 2.05 0.187
150 et3 3.45 2.121 0.201 3.44 2.111 0.191 3.54 2.112 0.2

Table 5.4: c0 Adapt0 by CV

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2.27 2.029 0.149 2.53 2.15 0.183 2.38 2.09 0.216
100 em 1.8 2.66 0.904 2.25 2.168 0.159 2.13 2.134 0.209
100 et3 2.18 2.262 0.347 2.39 2.181 0.191 2.23 2.178 0.292
150 en 2.14 1.983 0.149 2.31 2.082 0.181 2.13 2.012 0.157
150 em 1.94 2.242 0.373 2.17 2.044 0.119 2.07 1.993 0.091
150 et3 2.06 2.116 0.199 2.25 2.083 0.17 2.08 2.04 0.131

Table 5.5: c0 Adapt0 by SIC

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2 2.049 0.147 2 2.19 0.104 2 2.115 0.153
100 em 1.97 2.439 0.362 2.02 2.24 0.146 2.01 2.189 0.19
100 et3 2 2.259 0.259 2 2.26 0.168 2 2.219 0.217
150 en 2.01 2.017 0.153 2 2.166 0.139 2 2.046 0.167
150 em 1.99 2.224 0.269 2.01 2.149 0.122 2.01 2.045 0.16
150 et3 1.99 2.181 0.244 2 2.187 0.154 2 2.127 0.197

Table 5.6: c0 Adapt1 by CV

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2 2.065 0.18 2 2.239 0.201 2 2.085 0.195
100 em 1.65 2.924 0.771 2.01 2.319 0.218 2 2.204 0.255
100 et3 1.97 2.504 0.453 2 2.349 0.275 2 2.305 0.317
150 en 2 2.009 0.157 2 2.155 0.183 2 2.022 0.162
150 em 1.82 2.5 0.532 2 2.18 0.188 2 2.041 0.172
150 et3 1.98 2.276 0.36 2 2.236 0.225 2 2.108 0.23

Table 5.7: c0 Adapt1 by SIC

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2.05 2.173 0.136 2 2.211 0.105 2 2.217 0.118
100 em 1.98 2.427 0.312 2 2.229 0.105 2.05 2.259 0.158
100 et3 1.99 2.297 0.212 2 2.253 0.125 2.02 2.272 0.173
150 en 2.11 2.113 0.165 2 2.204 0.091 2.07 2.178 0.137
150 em 1.99 2.268 0.177 2 2.205 0.09 2.06 2.194 0.122
150 et3 2 2.243 0.168 2 2.221 0.113 2.06 2.23 0.143

Table 5.8: c0 Adapt2 by CV
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n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2 2.096 0.175 2 2.265 0.141 2 2.089 0.191
100 em 1.64 2.715 0.503 2.01 2.305 0.166 2 2.198 0.235
100 et3 1.96 2.364 0.36 2 2.313 0.167 2 2.243 0.285
150 en 2 2.042 0.163 2.01 2.262 0.117 2 2.027 0.164
150 em 1.83 2.366 0.43 2 2.26 0.13 2 2.027 0.161
150 et3 1.99 2.221 0.28 2 2.293 0.147 2 2.102 0.225

Table 5.9: c0 Adapt2 by SIC

normal errors and t3 errors and then LAD and LS in order. CV always estimated larger

model sizes than SIC. That is, CV chooses a smaller tuning parameter λ than SIC.

With adaptivities, the estimated model sizes approach to the true number of nonzero pre-

dictor functions. Moreover, we can check the oracle property with adaptivities, Adapt1 and

Adapt2, using all different loss functions under all y outliers by both CV and SIC. All re-

sults report the smaller RMSE(β) with the larger number of observations, n = 150. The

objective functions have numerous local minima to choose a tuning parameter λ especially

by CV. SIC makes sudden decreases in its value while λ increases. Thus, we can compare

the performance between Adapt1 and Adapt2 by SIC. Most of cases using any loss func-

tions, Adapt2 gives better results with smaller RMSE(β). In all adaptivities, three loss

functions have the order, RB, LAD, and LS in terms of RMSE(β) under the mixed normal

error (em).

B. x contamination : c1

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 3.98 2.079 0.095 2.74 3.23 0.01 3.93 2.248 0.259
100 em 3.75 2.423 0.393 2.81 3.23 0.011 3.95 2.442 0.403
100 et3 3.95 2.217 0.233 2.87 3.232 0.009 3.92 2.45 0.374
150 en 3.97 1.996 0.083 2.76 3.211 0.134 3.87 2.108 0.214
150 em 3.94 2.151 0.257 2.74 3.207 0.154 3.85 2.103 0.251
150 et3 4 2.082 0.153 2.65 3.218 0.097 3.79 2.175 0.294

Table 5.10: c1 Adapt0 by CV

Tables 5.10 through 5.15 show the results of 100 simulations for n = 100 and n = 150 ob-

servations with asymmetric contaminations (c1) in predictors for three different loss func-

tions under y outliers. In all adaptivities, LAD performs worst under all y error using both
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n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 3.79 2.125 0.149 2.08 3.229 0.019 3.49 2.492 0.439
100 em 2.55 2.843 0.419 2.01 3.234 0.011 3.29 2.676 0.605
100 et3 2.95 2.583 0.427 2.06 3.233 0.012 3.45 2.836 0.745
150 en 3.76 2.028 0.086 3.05 2.521 0.495 3.41 2.238 0.33
150 em 2.73 2.662 0.412 3.05 2.446 0.468 3.18 2.219 0.422
150 et3 3.38 2.322 0.302 2.94 2.558 0.49 3.19 2.388 0.501

Table 5.11: c1 Adapt0 by SIC

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2.29 2.095 0.059 2 3.21 0.011 2.63 2.234 0.231
100 em 2.1 2.359 0.288 2 3.208 0.018 2.6 2.386 0.33
100 et3 2.24 2.193 0.145 2 3.211 0.012 2.62 2.413 0.308
150 en 2.24 2.035 0.04 2 3.094 0.304 2.55 2.111 0.194
150 em 2.12 2.131 0.147 2 3.156 0.217 2.36 2.088 0.189
150 et3 2.11 2.091 0.091 2 3.175 0.18 2.39 2.181 0.216

Table 5.12: c1 Adapt1 by CV

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2 2.093 0.058 2 3.215 0.008 2.07 2.257 0.257
100 em 2 2.377 0.294 2 3.216 0.009 2.03 2.368 0.304
100 et3 2 2.191 0.148 2 3.217 0.01 2.04 2.458 0.478
150 en 2 2.035 0.043 2.14 2.585 0.388 2.05 2.113 0.207
150 em 2 2.155 0.169 2.03 2.628 0.408 2 2.097 0.206
150 et3 2 2.092 0.091 2.08 2.642 0.404 2.01 2.23 0.279

Table 5.13: c1 Adapt1 by SIC

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2.42 2.108 0.04 2 3.288 0.009 2.59 2.271 0.168
100 em 2.13 2.294 0.268 2 3.288 0.01 2.62 2.361 0.229
100 et3 2.31 2.161 0.095 2 3.291 0.01 2.63 2.355 0.255
150 en 2.4 2.094 0.029 2 3.264 0.166 2.71 2.185 0.144
150 em 2.23 2.154 0.098 2 3.268 0.153 2.46 2.175 0.16
150 et3 2.26 2.127 0.071 2 3.278 0.112 2.52 2.24 0.16

Table 5.14: c1 Adapt2 by CV

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2 2.104 0.033 2 3.294 0.007 2.12 2.294 0.2
100 em 2 2.278 0.221 2 3.295 0.008 2.07 2.383 0.257
100 et3 2 2.158 0.09 2 3.296 0.008 2.04 2.432 0.452
150 en 2 2.092 0.025 2.23 2.66 0.418 2.28 2.222 0.221
150 em 2 2.165 0.125 2.02 2.718 0.394 2.05 2.202 0.158
150 et3 2 2.119 0.055 2.05 2.783 0.409 2.13 2.295 0.297

Table 5.15: c1 Adapt2 by SIC
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CV and SIC with or without adaptivity. In most cases, LS performs better than other loss

functions. The simulations are based on the same weights of β and β′′ for the true param-

eter functions β(t). We could try to use the estimated parameter for each loss function to

calculate the weights for adaptivities. The estimation under Adapt2 does not improve the

result comparing with Adapt1. This might come from a wrongly chosen ϕ and the weight

for the smoothness since ϕ is estimated under the non-contaminated case in x and y. How-

ever, in each adaptivity, we can check the oracle property for each loss function. Also, in

Adapt0 and Adapt1, RB performs best with the mixed normal error (em). Adapt1 gives

better results than Adapt0 if we compare the results limited on each loss function.

C. x contamination : c2

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 3.98 2.059 0.087 2.63 3.232 0.013 3.92 2.23 0.225
100 em 3.86 2.395 0.382 2.7 3.236 0.01 3.95 2.383 0.368
100 et3 3.97 2.193 0.226 2.78 3.234 0.012 3.96 2.412 0.375
150 en 4 2.004 0.09 2.92 3.23 0.006 3.71 2.139 0.268
150 em 3.95 2.131 0.221 2.87 3.195 0.18 3.66 2.109 0.227
150 et3 3.98 2.082 0.154 2.86 3.231 0.005 3.69 2.209 0.337

Table 5.16: c2 Adapt0 by CV

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 3.69 2.138 0.187 2.04 3.229 0.014 3.47 2.452 0.423
100 em 2.44 2.863 0.396 2.01 3.234 0.011 3.22 2.651 0.65
100 et3 3.03 2.573 0.423 2.04 3.23 0.027 3.54 2.937 0.783
150 en 3.81 2.029 0.079 3.21 2.453 0.443 2.38 2.079 0.244
150 em 2.92 2.578 0.421 3.03 2.48 0.49 2.05 2.016 0.163
150 et3 3.41 2.271 0.317 2.89 2.554 0.508 2.23 2.119 0.327

Table 5.17: c2 Adapt0 by SIC

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2.26 2.09 0.059 2 3.212 0.008 2.61 2.217 0.206
100 em 2.04 2.354 0.298 2 3.212 0.011 2.47 2.356 0.297
100 et3 2.24 2.182 0.141 2 3.214 0.01 2.48 2.362 0.266
150 en 2.2 2.038 0.053 2 3.061 0.327 2.6 2.103 0.195
150 em 2.12 2.129 0.148 2 3.102 0.307 2.49 2.089 0.19
150 et3 2.15 2.094 0.109 2 3.128 0.241 2.4 2.2 0.252

Table 5.18: c2 Adapt1 by CV
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n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2 2.087 0.058 2 3.216 0.008 2.04 2.254 0.259
100 em 2.01 2.379 0.3 2 3.217 0.009 2.02 2.394 0.348
100 et3 2 2.181 0.143 2 3.218 0.009 2.02 2.438 0.431
150 en 2 2.035 0.043 2.11 2.557 0.369 2.04 2.098 0.207
150 em 2 2.148 0.167 2.05 2.558 0.384 2.01 2.078 0.193
150 et3 2 2.094 0.094 2.06 2.671 0.399 2 2.21 0.259

Table 5.19: c2 Adapt1 by SIC

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2.28 2.105 0.034 2.02 3.291 0.009 2.59 2.255 0.17
100 em 2.11 2.284 0.261 2 3.291 0.009 2.44 2.342 0.227
100 et3 2.34 2.16 0.092 2 3.292 0.01 2.55 2.335 0.222
150 en 2.27 2.095 0.032 2 3.185 0.282 2.2 2.23 0.143
150 em 2.21 2.153 0.1 2.01 3.197 0.294 2.18 2.203 0.104
150 et3 2.19 2.123 0.063 2 3.251 0.175 2.11 2.245 0.15

Table 5.20: c2 Adapt2 by CV

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2 2.103 0.032 2 3.296 0.007 2.17 2.317 0.231
100 em 2.01 2.275 0.221 2 3.296 0.008 2.04 2.382 0.242
100 et3 2 2.156 0.088 2 3.297 0.008 2.05 2.422 0.412
150 en 2 2.092 0.025 2.17 2.679 0.425 2.03 2.264 0.166
150 em 2 2.164 0.127 2.06 2.747 0.388 2 2.262 0.136
150 et3 2 2.121 0.059 2.1 2.8 0.419 2 2.316 0.178

Table 5.21: c2 Adapt2 by SIC
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Tables 5.16 through 5.21 show the results of 100 simulations for n = 100 and n = 150

observations with symmetric contaminations (c2) in predictors for three different loss func-

tions under y outliers. The results of c2 are similar to them under c1. LAD performs worst

in terms of RMSE(β) even if it estimates the model size properly in most cases. The re-

sults do not have improvement with Adapt2 from Adapt1. However, in each loss function,

we can see the oracle property holds. For Adapt0 and Adapt1, RB performs better than LS

under the mixed normal error (em).

D. x contamination : c3

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 3.99 2.001 0.083 3.05 3.402 0.011 3.81 2.178 0.248
100 em 3.89 2.396 0.437 3.11 3.404 0.011 3.81 2.266 0.337
100 et3 3.96 2.15 0.218 3.1 3.404 0.01 3.78 2.284 0.328
150 en 3.97 1.949 0.091 2.38 3.369 0.011 3.96 2.191 0.291
150 em 3.91 2.089 0.2 2.44 3.357 0.108 3.92 2.145 0.251
150 et3 3.98 2.036 0.152 2.41 3.359 0.066 3.94 2.268 0.3

Table 5.22: c3 Adapt0 by CV

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 3.72 2.057 0.139 2.09 3.401 0.014 3.52 2.502 0.521
100 em 2.72 2.864 0.489 2.06 3.403 0.014 3.21 2.437 0.563
100 et3 3.26 2.508 0.46 2.1 3.403 0.013 3.5 2.751 0.627
150 en 3.78 2.001 0.091 3.23 2.542 0.556 3.52 2.225 0.335
150 em 2.85 2.618 0.458 3.17 2.536 0.571 3.28 2.202 0.395
150 et3 3.63 2.267 0.328 3.2 2.539 0.569 3.31 2.376 0.485

Table 5.23: c3 Adapt0 by SIC

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2.12 2.051 0.06 2 3.382 0.013 2.63 2.17 0.212
100 em 2.05 2.334 0.297 2 3.383 0.014 2.62 2.252 0.256
100 et3 2.12 2.161 0.158 2 3.388 0.015 2.64 2.355 0.347
150 en 2.26 2.014 0.046 2 3.273 0.299 2.93 2.07 0.235
150 em 2.05 2.124 0.161 2 3.267 0.301 2.84 2.069 0.22
150 et3 2.15 2.088 0.144 2 3.298 0.252 2.78 2.172 0.227

Table 5.24: c3 Adapt1 by CV

Tables 5.22 through 5.27 show the results of 100 simulations for n = 100 and n = 150

observations with partial contaminations (c3) in predictors for three different loss functions

under y outliers. The results of c3 are similar to them under c1 and c2. LAD performs
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n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2 2.05 0.058 2 3.375 0.009 2.13 2.224 0.352
100 em 2 2.371 0.321 2 3.376 0.011 2.01 2.242 0.287
100 et3 2 2.156 0.152 2 3.381 0.011 2.02 2.277 0.318
150 en 2 2.013 0.043 2.07 2.699 0.449 2.04 2.05 0.208
150 em 2 2.159 0.186 2.02 2.712 0.438 2.01 2.026 0.179
150 et3 2 2.084 0.104 2.06 2.78 0.493 2.04 2.158 0.257

Table 5.25: c3 Adapt1 by SIC

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2.2 2.123 0.039 2 3.463 0.01 2.6 2.17 0.145
100 em 2.12 2.296 0.233 2 3.465 0.011 2.61 2.212 0.141
100 et3 2.23 2.186 0.109 2 3.469 0.012 2.54 2.257 0.219
150 en 2.32 2.106 0.032 2 3.35 0.272 3.21 2.081 0.208
150 em 2.13 2.171 0.115 2 3.404 0.199 3.06 2.077 0.2
150 et3 2.18 2.143 0.132 2 3.396 0.207 2.9 2.166 0.218

Table 5.26: c3 Adapt2 by CV

n y ls.df ls.m(β) ls.sd(β) lad.df lad.m(β) lad.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2 2.121 0.036 2 3.457 0.008 2.22 2.259 0.28
100 em 2 2.301 0.224 2 3.458 0.009 2.03 2.238 0.169
100 et3 2 2.18 0.106 2 3.462 0.01 2.09 2.285 0.261
150 en 2 2.103 0.029 2.02 2.893 0.453 2.31 2.162 0.217
150 em 2 2.184 0.132 2.05 2.881 0.441 2.12 2.197 0.193
150 et3 2 2.134 0.062 2.04 2.968 0.451 2.15 2.253 0.23

Table 5.27: c3 Adapt2 by SIC
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worst in terms ofRMSE(β) even if it estimates the model size properly in most cases. The

results do not have improvement with Adapt2 from Adapt1. However, in each loss function,

we can see the oracle property holds. We have better results in model size estimation and

RMSE(β) in all three methods. For Adapt0 and Adapt1, RB performs better than LS

under the mixed normal error (em).

Figure 5.8: True β(t)’s when p = 10

5.4.4 Results under x and y outliers when p = 10

We consider 10 predictor functions with 5 nonzero and 5 zero coefficient functions with 4 cubic

spline basis functions. The true coefficient functions are in Figure 5.8

We use the same kind of, sine-like, predictor functions with the same three kinds of con-

taminations in predictor space. We consider the standard normal error (en), the mixed normal

error (em) and t3 error in the response space. For all cases, we use an estimated constant ϕ

using non-contaminated data. For the fixed estimated ϕ, we find the tuning parameter λ using

CV with LS and RB loss functions when the number of observation is n = 100.

Table 5.28, 5.29 and 5.30 have the results for p = 10 with n = 100 observation under 100

simulations using CV. Without adaptivity, (Adapt0), RB outperforms LS in all cases in terms of

average model sizes and RMSE(β) except c0 with the standard normal error (en). In Adapt1,

RB performs better in c0 cases without the standard normal errors (en). For other x outliers,

RB has smaller RMSE(β) with larger model sizes. In Adapt2, RB outperforms LS under all

51



cont LS RB
x y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 MS Ave(β) Sd(β) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 MS Ave(β) Sd(β)
c0 en 1 1 1 1 1 0.87 0.85 0.84 0.87 0.80 9.23 3.39 0.26 1 1 1 1 1 0.95 0.87 0.99 0.91 0.88 9.60 3.49 0.26
c0 em 1 1 1 1 1 0.86 0.58 0.82 0.79 0.82 8.87 4.76 0.92 1 1 1 1 1 0.90 0.81 0.93 0.87 0.85 9.36 3.78 0.33
c0 et3 1 1 1 1 1 0.82 0.75 0.89 0.85 0.82 9.13 3.95 0.50 1 1 1 1 1 0.87 0.83 0.91 0.90 0.88 9.39 3.88 0.42
c1 en 1 1 1 1 1 1.00 1.00 1.00 0.98 1.00 9.98 5.98 0.20 1 1 1 1 1 0.97 1.00 1.00 1.00 1.00 9.97 3.79 0.37
c1 em 1 1 1 1 1 0.98 0.99 0.99 1.00 1.00 9.96 6.51 0.54 1 1 1 1 1 0.93 0.99 1.00 1.00 1.00 9.92 4.13 0.53
c1 et3 1 1 1 1 1 1.00 0.99 0.99 0.99 1.00 9.97 6.17 0.38 1 1 1 1 1 0.98 1.00 1.00 0.99 1.00 9.97 4.28 0.59
c2 en 1 1 1 1 1 1.00 1.00 1.00 1.00 0.99 9.99 5.84 0.22 1 1 1 1 1 0.95 1.00 1.00 1.00 1.00 9.95 3.62 0.35
c2 em 1 1 1 1 1 1.00 1.00 1.00 0.99 1.00 9.99 6.29 0.57 1 1 1 1 1 0.99 1.00 1.00 1.00 1.00 9.99 3.82 0.43
c2 et3 1 1 1 1 1 1.00 1.00 1.00 0.99 1.00 9.99 6.00 0.38 1 1 1 1 1 0.98 1.00 1.00 1.00 1.00 9.98 4.03 0.53
c3 en 1 1 1 1 1 1.00 1.00 1.00 1.00 0.99 9.99 5.49 0.21 1 1 1 1 1 0.68 0.98 0.98 0.63 1.00 9.27 3.98 0.49
c3 em 1 1 1 1 1 0.99 0.99 1.00 0.99 0.99 9.96 6.00 0.56 1 1 1 1 1 0.75 0.99 0.99 0.60 0.96 9.29 4.39 0.55
c3 et3 1 1 1 1 1 1.00 0.99 0.99 1.00 1.00 9.98 5.66 0.41 1 1 1 1 1 0.71 0.99 0.97 0.61 0.99 9.27 4.48 0.73

Table 5.28: p = 10,n = 100 with Adapt0 by CV

cont LS RB
x y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 MS Ave(β) Sd(β) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 MS Ave(β) Sd(β)
c0 en 1 1 1 1 1 0.00 0.00 0.00 0.00 0.00 5.00 3.22 0.22 1 1 1 1 1 0.00 0.01 0.00 0.00 0.00 5.01 3.25 0.24
c0 em 1 1 1 1 1 0.00 0.00 0.00 0.00 0.00 5.00 4.41 0.95 1 1 1 1 1 0.00 0.00 0.00 0.00 0.00 5.00 3.39 0.27
c0 et3 1 1 1 1 1 0.00 0.00 0.00 0.00 0.00 5.00 3.68 0.45 1 1 1 1 1 0.01 0.01 0.00 0.00 0.01 5.03 3.50 0.33
c1 en 1 1 1 1 1 0.00 0.11 0.04 0.02 0.07 5.24 6.52 0.15 1 1 1 1 1 0.00 0.18 0.31 0.20 0.27 5.96 3.49 0.36
c1 em 1 1 1 1 1 0.03 0.06 0.03 0.02 0.10 5.24 6.78 0.38 1 1 1 1 1 0.00 0.26 0.39 0.25 0.38 6.28 3.76 0.51
c1 et3 1 1 1 1 1 0.01 0.12 0.05 0.01 0.05 5.24 6.58 0.30 1 1 1 1 1 0.22 0.35 0.15 0.15 0.27 6.14 3.94 0.98
c2 en 1 1 1 1 1 0.04 0.06 0.13 0.15 0.04 5.42 6.37 0.14 1 1 1 1 1 0.00 0.22 0.26 0.44 0.46 6.38 3.47 0.31
c2 em 1 1 1 1 1 0.03 0.02 0.06 0.10 0.04 5.25 6.62 0.36 1 1 1 1 1 0.00 0.15 0.18 0.38 0.47 6.18 3.73 0.57
c2 et3 1 1 1 1 1 0.04 0.06 0.11 0.13 0.03 5.37 6.43 0.30 1 1 1 1 1 0.00 0.28 0.22 0.39 0.50 6.39 3.80 0.49
c3 en 1 1 1 1 1 0.00 0.05 0.02 0.05 0.05 5.17 6.19 0.15 1 1 1 1 1 0.17 0.41 0.18 0.15 0.21 6.12 3.51 0.75
c3 em 1 1 1 1 1 0.01 0.08 0.00 0.02 0.04 5.15 6.45 0.39 1 1 1 1 1 0.16 0.37 0.25 0.15 0.20 6.13 3.82 0.92
c3 et3 1 1 1 1 1 0.04 0.05 0.06 0.05 0.07 5.27 6.25 0.30 1 1 1 1 1 0.22 0.35 0.15 0.15 0.27 6.14 3.94 0.98

Table 5.29: p = 10,n = 100 with Adapt1 by CV

cont LS RB
x y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 MS Ave(β) Sd(β) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 MS Ave(β) Sd(β)
c0 en 1 1 1 1 1 0.06 0.05 0.07 0.03 0.02 5.23 3.78 0.23 1 1 1 1 1 0.13 0.09 0.07 0.09 0.06 5.44 3.19 0.20
c0 em 1 1 1 1 1 0.13 0.08 0.06 0.07 0.04 5.38 4.79 0.94 1 1 1 1 1 0.08 0.08 0.10 0.08 0.02 5.36 3.45 0.68
c0 et3 1 1 1 1 1 0.10 0.06 0.11 0.08 0.09 5.44 4.14 0.45 1 1 1 1 1 0.08 0.09 0.06 0.07 0.07 5.37 3.44 0.36
c1 en 1 1 1 1 1 0.01 0.19 0.04 0.06 0.15 5.45 7.68 0.10 1 1 1 1 1 0.09 0.09 0.09 0.14 0.09 5.50 7.14 0.50
c1 em 1 1 1 1 1 0.07 0.17 0.07 0.05 0.16 5.52 7.80 0.25 1 1 1 1 1 0.07 0.05 0.12 0.09 0.10 5.43 7.31 0.59
c1 et3 1 1 1 1 1 0.02 0.20 0.09 0.06 0.14 5.51 7.72 0.21 1 1 1 1 1 0.09 0.08 0.10 0.09 0.11 5.47 7.28 0.54
c2 en 1 1 1 1 1 0.01 0.22 0.23 0.14 0.02 5.62 7.56 0.10 1 1 1 1 1 0.00 0.07 0.13 0.09 0.13 5.42 7.14 0.36
c2 em 1 1 1 1 1 0.02 0.07 0.09 0.13 0.04 5.35 7.68 0.24 1 1 1 1 1 0.01 0.04 0.10 0.09 0.05 5.29 7.22 0.36
c2 et3 1 1 1 1 1 0.05 0.12 0.16 0.14 0.07 5.54 7.60 0.20 1 1 1 1 1 0.02 0.12 0.14 0.12 0.14 5.54 7.21 0.49
c3 en 1 1 1 1 1 0.01 0.02 0.01 0.07 0.02 5.13 7.57 0.10 1 1 1 1 1 0.13 0.33 0.18 0.27 0.20 6.11 6.76 0.56
c3 em 1 1 1 1 1 0.02 0.08 0.03 0.04 0.03 5.20 7.70 0.25 1 1 1 1 1 0.15 0.25 0.16 0.19 0.13 5.88 6.97 0.50
c3 et3 1 1 1 1 1 0.04 0.06 0.06 0.10 0.11 5.37 7.61 0.20 1 1 1 1 1 0.07 0.21 0.12 0.16 0.16 5.72 6.98 0.44

Table 5.30: p = 10,n = 100 with Adapt2 by CV
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combinations of c0, c1, c2 and three y outliers. RB has average model sizes closer to the true

model size, 5, than LS and has smaller RMSE(β). Under c3, RB has smaller RMSE(β) with

slightly larger average model sizes. For example, Figure 5.9 shows the differences between LS

and RB to estimate nonzero coefficient functions. The estimated coefficient curves under RB

have closer to the true β(t)’s with narrower spreads than them under LS. In most cases, we can

summarize that RB performs better than LS under the existence of outliers.

Figure 5.9: Estimated nonzero β(t)’s for c0, em, Adapt 1 by CV, LS (grey), RB (blue)

5.5 Real Data Application: Weather Data

We apply the proposed rank-based method to analyze weather data in Matsui and Konishi [30]

available in Chronological Scientific Tables 2005. The weather data includes monthly observed

average temperatures (TEMP), average atmospheric pressure (PRESSURE), time of daylight

(DAYLIGHT), average humidity (HUMIDITY), and annual total precipitation at 79 stations

from 1971 to 2000 in Japan. We assume the annual total precipitation is a response variable de-

pending four predictor functions, TEMP, PRESSURE, DAYLIGHT, and HUMIDITY in Figure

5.10 since these four predictors are trajectories over time.

Sawant [40] shows the curves of TEMP and PRESSURE for the 78th and 79th observa-

tions and the curves for the 1st, 2nd, and 3rd observations for the HUMIDITY are outliers. We

see an outlier in the response on the box plot in Figure 5.11. The weather data set has outliers

in both the predictor space and the response space. We approach to find the relation between
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Figure 5.10: The predictors of Weather Data

predictor functions and the continuous discrete response using the multiple functional linear

model in Equation (1.1).

yi = α +
4∑
j=1

∫
T
xij(t)βj(t)dt+ εi, i = 1, . . . , 79, (5.6)

where yi’s are the annual total precipitations and xij(t)’s are TEMP, PRESSURE, HUMIDITY,

and DAYLIGHT functions at n = 79 stations. We assume nonzero intercept exists.

First, we find the λ and ϕ which minimize the objective functions QL2,`2 in Equation

(4.32) and QaRB,`2 in Equation (5.1) by 10 fold cross-validation. We estimate the coefficient

parameter functions for predictor functions using the optimal λ and ϕ for three methods.

We estimate the coefficient function curves for predictor functions. LS detects all four

predictors as significant without adaptivity (Adapt0) and chooses PRESSURE as relevant with

adaptivities. However, LAD detects one predictor, PRESSURE as significant with all adap-

tivities. RB selects three significant predictors, TEMP, HUMIDITY and DAYLIGHT with all
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Figure 5.11: Boxplot of the response, annual average precipitation

adaptivities as in Table 5.31. LS and LAD have small values between 0 and 0.05 for PRES-

SURE with Adapt1 and Adapt2. With Adapt1 and Adapt2, RB has values close to the horizontal

axis. The mean values of prediction error over 10-folds (CV-value) with Adapt2 are calculated

as 133.42(LS), 134.70(LAD), and 169.35 (RB). In all loss functions, Adapt2 has slightly larger

CV-values than Adapt1.

The estimated coefficient curves are in Figures 5.12, 5.13, and 5.14. In Adapt0, LS de-

tects all predictors are significant and RB chooses three predictors except PRESSUE. TEMP

and HUMIDITY have a positive effect to the response value since their estimated coefficient

functions are positive over the range. It means that a positive amount of TEMP or HUMIDITY

contribute positively to the response, the annual total precipitation. In TEMP, LS estimate gives

increasing weight over time, but RB estimate has a constant weight over time. In HUMIDITY,

both LS and RB have similar decreasing weight over time. DAYLIGHT estimate functions

for LS and RB has positive and negative values at the same time. Under LS method, Spring

time has a positive contribution of Daylight to the response and other seasons have negative
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TEMP PRESSURE HUMIDITY DAYLIGHT CV
Adapt0 LS X X X X 90.29

LAD X 134.23
RB X X X 214.52

Adapt1 LS X 133.40
LAD X 134.68
RB X X X 160.91

Adapt2 LS X 133.42
LAD X 134.70
RB X X X 169.35

Table 5.31: Relevant Predictors for Weather Data

contribution. Under RB method, Daylight is negative from January to October and positive

after October. The estimates of PRESSURE are close or identical to zero compared to other

estimated coefficient functions in all three loss methods.

Adapt1 and Adapt2 choose only one coefficient for PRESSURE for LS and LAD which

is close to zero. However, RB chooses the same three predictors as significant. Similarly to

Adapt0, TEMP and HUMIDITY have positive values and DAYLIGHT has negative values over

time.

5.6 Conclusion

We establish the rank-based method with preserving group structures by using the group `2

penalty. By using the group `2 penalty, we can obtain only between-group sparsity to express a

functional coefficient precisely by taking as many as possible nonzero coefficients for all basis

functions. The rank-based loss function with the weight bij to control observations with high

leverage values in predictor space. Also, the rank-based loss function takes care of non-normal

errors in the response space. The rank-based loss functions performs best among all loss func-

tions and it endures all kinds of outliers to estimate the coefficient functions and the model size

close to the true ones, especially in the simulation result with p = 10. Also, the regularized

rank-based method for functional model achieves the oracle property with adaptivities in Ap-

pendix. The proposed method for functional multiple linear model can control the smoothness

of the estimated coefficient functions with the smoothness penalty ϕ. Compared to LS and

LAD, RB detects a meaningful and size-able set of predictors in a real data example.
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Figure 5.12: Estimated coefficients for Weather data of LS(purple), LAD(red), and RB(blue)
with Adapt0

However, it is challenging to find the optimal tuning parameters. It is computationally

expensive and there are numerous local minima of λ with CV and SIC. SIC or other criteria

except CV might depend on the combination of the number of basis for function, the sample

size, and errors in the response.

One extension of the proposed method can be to establish a proper relation between the

number of basis, the sample size, and errors to find the optimal tuning parameter for rank-based

loss function using SIC, BIC, AIC, GACV, or GCV.
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Figure 5.13: Estimated coefficients for Weather data of LS(purple), LAD(red), and RB(blue)
with Adapt1
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Figure 5.14: Estimated coefficients for Weather data of LS(purple), LAD(red), and RB(blue)
with Adapt2
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Appendix A

Oracle Property in RB Loss with Adaptive Group `2 Penalty

A.1 Oracle Property on Discrete Multiple Linear Model

We consider the estimation consistency, the variable selection consistency and the oracle prop-

erty for the rank-based group variable selection with `2 penalty.

We show that the group `2 penalized rank-based variable selection estimator has the oracle

property under some regularity conditions. In this section, we follow the definition and notation

as Miakonkana et al.[32] and Wang and Li [44]. We assume that only the first k0 ≤ K groups

are significant, that is, ||βk||2 6= 0 for k ≤ k0 and ||βk||2 = 0 for k > k0. Denote β0 the

true parameter, βa the vector containing all relevant groups and βb the vector of all irrelevant

groups. Let β̂a and β̂b be their corresponding penalized rank-based estimator.

The following regularity conditions will be assumed.

C1. The errors εi are iid with a density function f that is absolute continuous and has a finite

fisher informations. That is,

I(f) =

∫ ∞
−∞

[f ′(e)
f(e)

]2
f(e)de <∞

C2. The matrices X and WX satisfy the Huber’s condition.

C3. n−1X′WX
P−→ C, and n−1X′X P−→ Σ are positive definite matrices.
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given by

C =
1

2

∫ ∫
(x2 − x1)(x2 − x1)

′b(x1,x2)dM(x2)dM(x1)

V =

∫
{
∫

(x2 − x1)b(x1,x2)dM(x2)}{
∫

(x2 − x1)b(x1,x2)dM(x2)}′dM(x1)

Σ =
1

2

∫ ∫
(x2 − x1)(x2 − x1)

′dM(x2)dM(x1)

and M(x) denotes the CDF of x, X is a matrix whose rows are xi, and the entries ωij of the

matrix W are defined like in Naranjo and Hettmansperger (1994)[35], defined by

ωij =


n−1bij if i 6= j

n−1
∑

k 6=i bij if i = j

(A.1)

We derive conditions for model selection and estimation consistency when when the sample

size n increases.

Following the notation in Wang and Leng (2008)[42] define

an = max{λkj : 1 ≤ j ≤ k; k ≤ k0} and bn = min{λkj : 1 ≤ j ≤ k; k > k0},

and H(x, y) be the joint distribution between the covariate x and the response variable y.

Theorem A.1. Let (y1,x1), · · · , (yn,xn) be independent and identically distributed fromH(x, y).

Assume the regularity conditions C1–C3.

a. If
√
nan

P−→ 0 then ||β̂n − β0||2 = Op(n
−1/2)

b. If
√
nan

P−→ 0 and
√
nbn

P−→∞ then β̂b
P−→ 0

c. Under local shrinking contamination, H∗n(x, y),
√
n(β̂a − βa)

D−→ N(η, τ 2C−111 V11C
−1
11 )
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To prove Theorem A.1, we define the following expressions defined in Wang and Li [44]

with the group `2 penalty.

Qn(θ) =
1

n

∑
i<j

bij|εi − εj|+ n

K∑
k=1

( pk∑
j=1

(λkjθkj)
2
)1/2

Dn(θ) =
1

n

∑
i<j

bij|εi − εj|

Sn(θ) =
1

n

∑
i<j

bij(xi − xj)sgn((yi − yj)− (xi − xj)
′θ)

An(θ) = (2
√

3τ)−1(θ − θ0)′X′WX(θ − θ0)− (θ − θ0)′Sn(θ0) +Dn(θ0)

Every above expression is identical to the one in Wang and Li [44] except the group `2 penalty.

We can borrow the result of the following lemma.

Lemma A.1. Under assumptions C1–C3,

i. for all ε > 0 and c > 0,

[ sup√
n||θ−θ0||≤c

|Dn(θ)− An(θ)| ≥ ε]
P−→ 0

under either H or H∗n,

ii. n−1/2Sn(θ0)
D−→ N(0,V/3) under H ,

iii. n−1/2Sn(θ0)
D−→ N(η,V/3) under H∗n.

We follow the same logic to Miakonkana et al. for the proof of Theorem A.1 with the

group adaptive `2 penalty instead of the group and element-wise adaptive `1 penalty.

Proof. To prove part (a), it is sufficient to show that ∀ε > 0, there exists a large constant C

such that

P
(

inf
||u||=C

Qn(θ0 + n−1/2u) > Qn(θ0)
)
≥ 1− ε

where u is a vector of dimension p. Since Qn(θ) is convex in θ, this implies that with prob-

ability at least 1 − ε the penalized estimator lies in the ball {θ0 + n−1/2u : ||u|| ≤ C}. Let

Gn(u) = Qn(θ0 +n−1/2u)−Qn(θ0). Denote by ukj the component of u corresponding to θkj .
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By Lemma A.1,

Gn(u) = (2
√
3)−1u′[n−1X′WX]u− u′n−1/2Sn(θ0)

+ n

K∑
k=1

[( pk∑
j=1

(λkj(θkj + n−1/2ukj))
2
)1/2

−
( pk∑
j=1

(λkjθkj)
2
)1/2]

+ op(1)

≥ (2
√
3)−1u′[n−1X′WX]u− u′n−1/2Sn(θ0)−

√
n

k0∑
k=1

( pk∑
j=1

(λkjukj)
2
)1/2

+ op(1)

= (2
√
3)−1u′[n−1X′WX]u− u′Op(1)−

√
n

k0∑
k=1

( pk∑
j=1

(λkjukj)
2
)1/2

+ op(1)

≥ (2
√
3)−1u′[n−1X′WX]u− u′Op(1)− k0

√
nan(||u||2) + op(1).

Note that n−1X′WX
P−→ C, a positive definite matrix, and

√
nan

P−→ 0. Therefire, for n

sufficiently large, the first term on the right hand side of the ineuqality above dominates. Gn(u)

can be made positive when the size of ball C is chosen to be sufficiently large. We now prove

part (b). Suppose that θ̂b 6= 0, ∀n ∈ N. Let k be such that k0 < k < K and θ̂kj 6= 0 for some j

such that 1 ≤ j ≤ pk. Since Qn(θ) is differentiable at any point, except the origin, θ̂kj must be

solution of the equation

0 = n−3/2
∑
i<j

bij(xik − xjk)sgn(yi − yj)− (xi − xj)
′θ) +

√
nλkjsgn(θkj).

Now, by the consistency of θ̂n and part (ii.) of lemma A.1, the first term of the right hand

side of the equation above is Op(1). In addition,
√
nbn

P−→∞ implies that
√
nλkj

P−→∞. So the

equation does not hold for large values of n, as we assume that θ̂kj 6= 0. Therefore, θ̂b
P−→ 0.

The proof of part (c) is identical to the proof of Theorem 2 given in the Web Appendix of

Wang and Li (2009)[44], and will therefore be omitted here.
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A.2 Oracle Property on Functional Linear Model

We convert the functional linear model in Equation (2.1) to the discretized model in Equa-

tion (5.1) considering the functional group adaptive penalty. Similarly, we can see the oracle

property of the rank-based estimates with the adaptive group `2 penalty for functional linear

model.
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