
 

 

 

 

 

Predicting Signal Probabilities Using Neural Networks to Improve Test Point Insertion 

by 

Joshua Immanuel 

A thesis submitted to the Graduate Faculty of 

Auburn University 

in partial fulfillment of the 

requirements for the Degree of 

Master of Science 

Auburn, Alabama 

December 14, 2019 

Keywords: DFT, Artificial Neural Networks, Testability Analysis 

Copyright 2019 by Joshua Immanuel 

Approved by 

Spencer Millican, Chair, Assistant Professor Electrical and Computer Engineering 

Thaddeus Roppel, Associate Professor Electrical and Computer Engineering 

Ujjwal Guin, Assistant Professor Electrical and Computer Engineering 



2 

 

Abstract 

This thesis presents an artificial neural network signal probability predictor for VLSI circuits that 

considers reconvergent fan-outs. Testability analysis techniques are useful in the insertion of 

testpoints to improve circuit testability. Unfortunately, reconvergent fan-outs in digital circuits 

creates inaccurate testability analysis. Conventional testability analysis methods like COP do not 

consider reconvergent fan-outs and can degrade test point quality, while more advanced methods 

can increase test point analysis time significantly. This study shows that the training and use of 

artificial neural network to predict signal probabilities increases post-test point insertion fault 

coverage compared to using COP, especially in circuits with many reconvergent fan-outs per 

gate. 
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CHAPTER I. INTRODUCTION 

VLSI (Very Large-Scale Integration) chips have become commonplace in all industries. 

The wide adoption of the MOS transistor, developed in 1959, made VLSI possible. The first 

commercial MOS integrated circuit was introduced by General Microelectronics in the 1964 [1]. 

The initial MOS integrated circuit technology allowed for 10,000 transistors in each chip. This 

was developed into the later VLSI technology with over tens and hundreds of thousands of 

transistors in each chip.  

 The rapid rise in logic density of VLSI chips has also seen a rise in issues related to defects 

and testing of those chips. Failing to identify and eliminate defects in a chip leads to massive losses 

during manufacturing [2]. Selling a defective chip can lead to critical issues on the consumer end, 

especially in safety-critical applications. It is imperative to invest in testing VLSI chips to identify 

defective chips to detect defects and to eliminate faulty chips during manufacturing. 

A defect in a VLSI chip is an unintended difference between its specifications by design 

and its hardware implementation [3]. They can occur on a chip either during manufacturing or 

during use. Some defects in a VLSI chip include parasitic transistors, surface impurities, dielectric 

breakdown and seal leaks [4]. A defect may or may not affect the function of a circuit. When a 

defect affects the function of a circuit, it is represented as a fault.  

A fault is an abstract functional representation of a circuit defect [3]. While a defect is an 

imperfection in a circuit’s hardware, a fault is an imperfection in its function caused by a defect. 

Various fault models have been proposed to model defects but the single stuck-at fault model is 

the most commonly used fault model [3] and is the fault model used in this thesis. This will be 

elaborated on in Chapter II. 
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Detecting faults is a critical part of VLSI testing. Stuck-at faults are detected when they are 

propagated to circuit outputs. This is done by generating a test for a circuit with an automatic test 

pattern generation (ATPG) tool. Faults which do not affect the input-output function of a circuit 

are redundant faults [3] and it can be removed from a circuit without affecting its function. 

Reconvergent fan-outs are circuit structures that can possibly cause redundant faults and are 

created when when a net fans out and reconverges at a further on in the circuit. 

Testability analysis is a measure of difficulty to control or observe a net on a circuit which 

is acquired through  a topological analysis of the circuit without test vectors [3]. The controllability 

(CC) of a net is the probability the net will be logic-1 when stimulus is applied. Thus, the CC of a 

circuit input is 0.5, presuming input stimulus is random. The observability (CO) of a circuit is the 

probability that a net in a circuit can be observed. The CO of a circuit output is always 1. 

Traditional testability analysis methods include COP [5] and SCOAP [6]. COP is explained in 

detail in Chapter II. 

Calculating CC and CO values can identify the probability that a fault will propagate 

through a net and can be excited in a circuit. The CC value of a net is the probability that the net 

will have a value of logic-1 when stimulus is applied to circuit inputs. The CC value subtracted by 

1 is the probability that the net will have a value of logic-0 when stimulus is applied to circuit 

inputs.  

Problem Statement 

Reconvergent fan-outs become a major challenge for conventional testability analysis. 

Since it is virtually impossible to reduce the amount of reconvergence due to intrinsic pin limitation 

in VLSI circuits, there is a need for a testability analysis method that takes into consideration the 

existence of reconvergent fan-outs without increasing time overhead. Accurate testability analysis 
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can be determined by circuit simulation with all possible vector combinations: however, this is not 

feasible for larger circuits as the computation time for such a simulation is exponentially large. 

Conventional testability analysis treats signals at reconvergent fan-outs as independent but this is 

not the case always.  

Artificial Neural Networks (ANNs) are computer algorithms that model biological neural 

networks. They have been shown to perform better than traditional heuristic approaches in solving 

non-linear and difficult-to-solve problems. They can consider circuit structures to provide 

improved testability analysis compared to traditional methods in reasonable time. ANNs have been 

elaborated in detail in Chapter IV. 

Thesis Contributions 

This thesis presents an alternative to conventional testability analysis using ANNs to 

predict the CCs of the circuit under test (CUT). Unlike conventional strategies the ANN predictor 

considers reconvergent fanounts of the first degree in a circuit and overcomes a major shortcoming 

in the accurate prediction of a circuit’s testability. It will be shown that these ANNs predict signal 

probabilities (SP) and create more accurate testability measures compared to conventional 

methods. The ANN-predicted CCs will then be used for test point insertion (TPI) and it will be 

verified that the ANN-based SP predictor improves FC compared to conventional testability 

analysis. The novel contributions of this thesis are as follows: 

• An ANN that predicts circuit CC through training by random simulation. 

• An analysis comparing the ANN predictor against COP in predicting true SP. 

• The application of the ANN predictor to increase FC in TPI compared to conventional 

testability analysis. 
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Thesis Organization 

The remainder of this thesis is organized as follows. Section II provides background 

information, terms, and definitions to better understand the problem at hand and solutions 

proposed. Section III reviews past work done by other researchers in the field of VLSI test in 

testability analysis. Section IV elaborates on neural networks, their advantages, and their 

application in the field of VLSI test. Section V describes the method by which the theoretical 

proposals were practically implemented in a simulation environment. Section VI briefly describes 

the experiments which were run to train and test the ANN. Section VII describes the results 

obtained and confirms that the method proposed in this thesis are a better alternative to 

conventional methods. Section VII proposes some future avenues of research and section VIII 

concludes this thesis. 
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CHAPTER II. BACKGROUND 

Single Stuck-At Fault Model 

The single stuck-at fault model assumes a circuit to be an interconnection of Boolean gates 

[3] and a stuck-at fault is assumed to affect only an interconnection between gates. There are two 

types of stuck-at faults, namely stuck-at-0 (sa0) and stuck-at-1(sa1). A line is sa1 if it is set to 

logic-1 irrespective of the function of its driving node. A line is sa0, if it is set to logic-0 irrespective 

of the function of its driving node. 

The number of stuck-at faults in a circuit depends on the number of interconnections. For 

a circuit with 𝑛 interconnections, there are 2𝑛 stuck at faults. Each interconnection has a sa0 and 

sa1 fault. 

Figure 1 portrays a sa0 fault on an AND gate. The inputs to the AND gate are set to logic 

1 and hence the expected output is logic 1. However, since line A is sa0, the output of the AND 

gate will always be logic 0. 

Fault Detection 

Fault detection requires that a fault be controlled and observed. This means that the fault 

must be excited by setting its net to a certain value and then the fault’s effect must be propagated 

to a circuit output. The fault model determines the value of a line to excite the fault: a line that is 

sa0 must be set to logic-1 to detect the fault whereas it is set to logic-0 for sa1. Creating tests for 

fault detection can be done either using an ATPG tool or fault simulation.  

 
Figure 1: An example of a sa0 fault in an AND gate. 
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ATPG 

ATPG is a tool used to generate tests for a circuit to detect faults. A test generated by an 

ATPG for a fault must be able to detect and propagate the fault to an output. ATPG may initially 

apply random patterns that detect as many faults as possible and after this, tests are generated for 

the remaining faults. Popular ATPG tools include D-algorithm [7], PODEM [8] and FAN [9]. 

Fault activation and fault propagation are procedures applied to a fault to detect it. Fault 

activation sets a line to the opposite value of the type of fault. Once a fault is activated, it must 

then be propagated through logic gates to a circuit output. For fault propagation, all non-fault 

inputs of a gate need to be set to its non-controlling value. Eg., to propagate a fault through an 

AND gate, all other inputs of the AND gate must be set to logic-1, otherwise the output of the 

AND gate will be forced to logic-0 and the effect of the fault will be destroyed. 

Fault Simulation 

Fault simulation is a method of fault detection that consists of simulating a circuit with 

faults and then comparing results of the faulty circuit with a good circuit with the same patterns. 

This comparison shows which faults are detected under the given set of patterns. If the response 

of the good circuit and faulty circuit are different in the same pattern, the fault is detected. 

FC is a quantitative measure of the testability of a set of test patterns. It is defined as the 

ratio of the number of faults detected by a test to the total number of faults. To get better tests 

which achieve high FC, fault simulation is used to check if the FC of a test is adequately high. 

Once a pre-determined FC threshold is reached (possibly 99.99%), test generation is stopped. 
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Redundant Faults 

A fault is redundant if it does not affect the input-output function of the circuit. The removal 

of redundant faults can simplify a circuit. Redundant faults cannot be activated by applying test 

vectors, as they do not change the output response. 

Figure 2 depicts a redundant fault in a logic circuit. To detect this fault A needs to be set 

to logic-1. However, doing so causes the output Y to be logic-0 because of the inverter. Setting A 

to logic-0 on the other hand, would mean that the fault is not excited. There is thus no possible 

vector to excite and propagate the fault to the output and it is thus a redundant fault. 

COP 

COP [5] is a common testability analysis tool which uses a probabilistic heuristic to 

determine circuit testability. COP predicts the CC of a net by usimg the input CCs according to 

the driving gate type. Observability can then be calculated by using these CC values. Thus, CC 

must first be calculated prior to observability.  

The output CC of a gate in a circuit is a function of the combinational CCs of its input nets. 

Let the output CC of a gate be OCC and the input CCs be ICC. Thus, for an AND gate with two 

inputs, the output CC is the product of its input CCs. This is because the output of an AND gate is 

logic-1 only if all the inputs are logic-1 – 

OCC = ICC1*ICC2 

 
Figure 2: An example of a redundant sa1 fault in a circuit. 
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Likewise, for an OR gate, the output CC is the product of each input CCs subtracted from 

one. This because for an OR gate the output is logic-1 if any of the gates are logic-1 –  

OCC = 1-((1-ICC1) *(1-ICC2)) 

For an Inverter, the output controllability is merely its input controllability subtracted from 

one. This is because the inverter passes the opposite of its input to the output – 

OCC = 1-ICC 

For a buffer, the output CC is the same as the input CC. This is because a buffer merely 

allows a signal to pass through and thus does not affect its value. 

Figure 3 illustrates the COP controllability calculations for an example combinational logic 

circuit. Note how the primary input CCs are 0.5 or 50%. This is because circuit inputs are presumed 

to be to random values. This initial value is then used to calculate the testability analysis for the 

rest of the circuit. For instance, the driver of E is an AND gate, hence the CC of E is the product 

 
Figure 3: An example of COP based circuit controllabilities calculated for a simple 

combinational circuit. 

 
Figure 4: The case of the reconvergent fan-out, the shortcoming of conventional testability 

analysis. 
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of the CCs of A and B. For such a simple circuit, COP-calculated CC will be highly accurate in 

predicting true CC. This is because there are no reconvergent fan-outs and thus the CC values are 

truly a function of their driving node. 

Ideally, the CC and CO values of each net are a function of its driver node but in a realistic 

circuit, the presence of reconvergent fan-outs can change this result. This non-linearity in the case 

of reconvergent fan-outs cannot be predicted by COP, as it uses a probabilistic heuristic that only 

considers the driver node and its inputs.  

Figure 4 illustrates an example of the reconvergent fan-out creating inaccurate CC values. 

The COP-based CC values show that the output of the AND gate will be a logic-1 25% of the time 

but an analysis of the circuit would show that there is no input combination that can set the output 

to one. This circuit shows a shortcoming of the conventional COP-calculated testability analysis 

in certain circuits. 

As is evident from the equations, COP solely depends on a gate and its inputs to calculate 

CCs. Thus, the heuristic to calculate CCs would be the same at any location in the circuit. Since, 

circuit structure is not part of this heuristic, reconvergent fan-outs can cause incorrect testability 

analysis results in circuits that have them. 

Design for Test (DFT) 

DFT is a wide range of design practices that improve and enable circuit testability. DFT 

practices include avoiding the use of synchronous logic feedbacks, making flip-flops initializable, 

and avoiding gates with a large number of fan-in signals and providing test control for difficult-

to-control signals [10].  

The presence of such structures can cause poor CC and CO and lower FC. It is possible for 

expert test engineers and designers to detect such structures on logic circuits. However, as the size 
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of a circuit increases it becomes infeasible to rely on manual examination to improve circuit 

structure. Human testability is also unpredictable and inconsistent.  

Testability analysis can be used as a tool to guide DFT and test generation using ATPG 

[6]. Thus, it is imperative to have an accurate testability analysis metric for improved DFT. 

Build in Self-Test (BIST) 

BIST is a DFT technique that enables a circuit to test itself. BIST structures are capable of 

test vector generation and verifying its internal functionality. A BIST circuit includes a test pattern 

generator and an output response comparator that compares the expected output with the actual 

circuit output. It consists of circuitry that controls the tests called a test controller. 

The exponential increase in logic-to-pin ratio in VLSI chips makes observing signals on 

chips increasingly difficult [11] but BIST provides a hierarchal method to divide a system-under-

test into sub-assemblies that can be tested in a BIST cycle. BIST localizes circuit testing, 

eliminating many of the problems associated with system level testing [11]. 

BIST does not guarantee that all faults in a circuit are detected. Certain lines in a circuit 

may be hard-to-control and/or hard-to-observe. To help detect faults on such lines, TPs are used.  

Test Point (TP) 

A TP is a circuit modification that allows a net to be controlled or observed. They are logic 

gates that can improve controllability and observability. A control point sets a net to a constant 

value whereas an observe point enables the value on the net to be observed. TPs are only enabled 

when a circuit is under test mode and disabled otherwise. This means that TPs do not affect the 

regular functioning of the circuit unless it is in test mode. 

A measure or heuristic is needed to evaluate the quality of TPs to select the best set of 

control and observe points in a circuit. This is done with the use of test point insertion algorithms. 
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Test Point Insertion (TPI) 

TPI is the process of choosing the best set of control and observe points in a circuit to 

obtain the best FC possible. Probabilistic fault simulation has been suggested as a means for TPI 

in the past [12]. A probabilistic fault simulator computes fault detection probabilities using 

analytical equations. This is used to determine which signals receive control or observe points. 

Testability analysis methods like COP have been used to assist TPI in the past [13].  
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CHAPTER III. RELATED WORK AND MOTIVATION 

Testability analysis has been used to improve circuit testability by improving TPI [14]. 

There exists a correlation between results obtained by testability analysis and the probability of 

detecting faults [15]. F. Brglez [5] demonstrated the testability of a digital circuits as  a function 

of the difficulty of controlling circuit values from its inputs and observing them from its outputs. 

He proposed that the testability measures could be utilized to guide circuit design for improved 

testability and to enhance vector generation algorithms for better test generation.  

Testability Analysis for Improved Circuit Testability 

Conventional testability analysis does not take into consideration the existence of 

reconvergent fan-outs. J. Savir [16] demonstrated this shortcoming of conventional testability 

analysis by showing that it is not possible to conclusively determine the testability of a circuit 

solely based on controllability and observability values. Most industrial circuits have many fan-

outs: in fact, over half of the nodes in conventional VLSI circuits are fan-out nodes, as 

demonstrated by Ratiu et al. [17]. Since VLSI circuits have a limited number of pins, it is 

consequential that the majority of fan-out branches will reconverge [18]. Large amounts of 

reconvergent fan-outs in a VLSI circuit makes it impractical for designers to provide information 

regarding such structures [17]. Knowledge of fan-out locations and the point of reconvergence can 

be useful to improve circuit testability. Roberts et al. [19] demonstrated the importance of locating 

all reconvergences in a circuit to improve testability analysis and presented an algorithm to detect 

all reconvergences. This algorithm however, was found to be insufficient as it does not detect 

reconvergent fan-outs in all cases [18]. It also requires fan-out data be provided to existing 

testability analysis methods to improve their performance. However, this adds to the time 
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complexity of testability analysis as it requires that conventional testability analysis be first 

calculated. 

The use of testability analysis for enhancing circuit testability has been studied in detail in 

prior studies. Methods such as gate count, test vector size and controllability/observability matrices 

for linear sequential machines have been suggested in the past. Dejka [20] took these methods into 

consideration and compared them and it was found that all these methods have inadequacies. Gate 

count is an unreliable measure of circuit testability and most circuits used in industry are not linear 

sequential in nature, thus it is not possible to reliably use these measures as feedback to change 

circuit topology or the introduction of TPs. 

Previous work attempted to provide a reliable testability analysis method. Stephenson et 

al. [21] analyzed circuits at the register transfer level to propose a testability metric normalized 

between zero and one. Brglez [5] presented a method of using combinational controllability and 

observability analysis of digital circuits. It was shown that these parameters could be used as 

feedback to design engineers to rearrange circuit topology to add TPs. This is because the obtained 

CCs and COs tell the design engineer details about faults that are hard-to-detect. The critical issue 

with Brglez’s and Stephenson’s method is that they don’t take into consideration the existence of 

reconvergent fan-out branches in VLSI circuits. This can cause testability analysis results to not 

accurately model actual signal correlations in VLSI circuits that have reconvergent fan-outs.  

Testability Analysis Methods Considering Reconvergent Fanouts 

To overcome the issue of reconvergent fan-outs some methods have been proposed detect 

ing reconvergent fan-outs. Xu et al. [18] proposed an algorithm for identifying all reconvergent 

fan-out pairs and sites of reconvergence in a circuit with an algorithm that first detects all 

reconvergent pairs in a circuit and another algorithm that detects the fan-out branches that 
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reconverge at those sites. The time complexity of this algorithm was shown to be high ( 𝑂(𝑛3) at 

the least and 𝑂(𝑛4) at the most). This implies that the algorithm will not provide a robust 

improvement to existing methods in all circumstances, especially in those where time is a 

constraint since an improvement to conventional testability analysis must also do so at a reasonable 

time to be applicable in an industrial environment.  

Gu et al. [22] presented a testability analysis method that considers reconvergent fan-outs 

with an algorithm that finds a fan-out point and then checks if it is a reconvergent fan-out. This 

method does not present any empirical results to prove its effectiveness in application. There is a 

lot discussed about the theory and the algorithms used, but there has been no research into the 

usage of this method in industrial benchmark circuits to provide a reason to use it as a replacement 

to conventional methods. 

Chang et al. [23] proposed a method that enhances the results obtained by COP and then 

improves the testability analysis results by using signal correlations. Their experiments showed 

that their method, TAIR provided higher accuracy than COP. However, TAIR adds to COP and 

requires that the regular COP results be obtained first before signal correlations are computed. This 

thesis’ method computes signal correlations without any prior computation with COP, thus the 

runtime is comparable to COP, or as the results will show, faster than COP for some circuits. 

Testability Analysis for TPI 

Testability analysis methods have been used to determine the optimal selection of TPs to 

place at strategic locations to improve FC [14] and reduce area overhead [24]. However, the 

general shortcomings of conventional testability analysis impede the performance of TPI algorithm 

that uses it. Simulation of circuits with all possible vector combinations is the only means to 

provide accurate testability analysis for the TPI, but this is not practically feasible as the difficulty 
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to test a circuit for all possible vectors increases exponentially with an increase in circuit inputs. 

While it is possible to fully simulate all vector combinations in smaller circuits, most industrial 

VLSI circuits are too large to simulate all vector combinations. 
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CHAPTER IV. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANNs) are a type of computer algorithm that models a 

biological neural network in a software or hardware. ANNs excel in solving problems that can be 

difficult to solve using traditional heuristic algorithms. This is because their training on the 

problem is done with a database of existing solutions (training data) till they achieve a high 

accuracy. In the past, the use of ANNs was highly restricted due to the lack of available training 

data and the lack of computational capabilities of older systems. At present, however, ANNs are 

an industrial standard for several applications. 

Figure 5 [25] depicts the traditional approach to solving a problem. This involves the step 

of studying the problem, figuring out possible solutions and heuristics. After this, rules are written 

to solve the problem. This may include either a formula or a complex probabilistic heuristic. The 

solution is then evaluated to test if it functions as required. If the heuristic solves the problem, it is 

chosen as the algorithm to the problem. If not, the solution needs to be analyzed again. The cycle 

is repeated till a solution is found. 

 

Figure 5: Traditional approach to solving a problem. 
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Figure 6 [25] depicts the ANN method of solving a problem. This involves studying the 

problem but unlike traditional methods there is no need to write a heuristic or solution to the 

problem; rather, data is fed to the ANN model that trains itself from that data. This is used to come 

up with the algorithm. The algorithm is then analyzed either as good or bad. If an algorithm is 

good, it is chosen as the algorithm to the problem, if not the ANN keeps training itself till it reaches 

an optimal algorithm. 

ANNs consist of input and output neurons separated by one or multiple layers of hidden 

layer neurons. The function of the hidden layer is to intervene between the input and output layer 

to increase accuracy [26]. A neuron is the base unit of an ANN that is its information processing 

unit. A single neuron consists of a set of connecting links called synapses, each of which has a 

weight parameter. These weight parameters can either be positive or negative. The input signals 

to a neuron are summed according to the synaptic weight of the neuron. An activation function is 

then used to limit the output amplitude of the neuron. A simple neuron is depicted in Figure 5. 

Neurons can be structured in a diversity of architectures according to the learning algorithm 

used to train the neural network. A simple and commonly used architecture is the multi-layer 

 
Figure 6: Neural Network Approach to Solving a Problem. 
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feedforward ANN. This architecture involves one or more hidden layers of neurons, an input layer, 

and an output layer. This is depicted in Figure 7 [27]. The scope of this thesis will be restricted to 

the use of the multilayer feed forward architecture. We will discuss this in detail in Chapter V. 

ANNs need to be trained to accurately solve a problem. Training an ANN involves feeding 

it with a database of training data.  The ANN then learns from the training data to predict outputs 

for a given set of inputs. This training process can take the neural network multiple iterations over 

a given set of training data till it reaches a certain accuracy. This process, depending on the 

architecture of the ANN and the size of the training data can be computationally intensive. 

ANN Model Complexity 

The size of the training database needed to generate a high quality ANN depends on the 

application and the complexity of the ANN model. There are two major issues that can occur with 

regards to the complexity of an ANN model –  

• Overfitting – It is a condition that occurs in statistical models when the model captures the 

noise of the data. This is an issue that can occur in ANN training when the ANN model is too 

complex. This could primarily be due to a large width of input features that causes the ANN 

 
Figure 7: An example of a) a single neuron with input signals, input 

weights, and an activation function, and b) a neural network composed of 

multiple hidden layers. [20] 
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model to take in the noise of the data. This results in a model that predicts with low bias but 

high variance. Overfitting can be prevented by breaking down the problem into smaller pieces. 

• Underfitting – It is a condition in statistical models where the model is unable to classify the 

data. This occurs when an ANN model is too simple, or the width of the input features is too 

small. This implies that the neural network is unable to find the trend in the data provided to 

it. This results in a model that predicts with high bias but low variance. Underfitting can be 

prevented by providing sufficient input data and features. 

The learning rate of an ANN is the size of the steps a model takes to correct itself. While 

training, if a neural network does not accurately predict an output feature, it corrects itself. It does 

that by changing its weights either positively or negatively. If the learning rate of a neural network 

is high, it will train quicker. However, this comes at the cost of lower ultimate accuracy. Having a 

smaller learning rate increases the time taken for training the ANN but increases its accuracy. 

Supervised vs Unsupervised Learning 

Supervised learning is method of training ANNs in which the training data consists of 

desired solutions to the problem, called labels [25]. Classification is an example of a supervised 

learning task. A spam filter is a supervised ANN classification algorithm: the ANN is fed with 

data from a lot of emails with a label of spam or ham. It trains itself with this data and classifies 

new emails based on this. Regression is another example of supervised learning: regression is used 

to predict a certain numeric value, like the price of housing. This is done by feeding the neural 

network with a set of features (location, square footage, rooms, etc.). The ANN can then learn to 

predict information when fed with relevant features. In this thesis we used a Regression based 

supervised learning model. This is further elaborated on in Chapter V. 
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Unsupervised learning is an ANN model that does not use any labels in its training data 

[25]. Clustering is an example of unsupervised learning. An ANN can be fed with a large dataset, 

and it can learn to find clusters of similar subsets within the dataset. 

ANNs in VLSI Test 

The application of ANNs to solve VLSI test problems is not new and ANNs have proved 

to serve as a solution for several NP-hard problems in VLSI test. For instance, in the field of fault 

diagnosis, Kabisatpathy et al. [28] demonstrated a pseudo-random test scheme that was based on 

ANNs. They proposed a technique that used the pseudorandom noise as a test pattern while using 

a model-based observer for fault diagnosis. Amnian et al. [29] proposed an ANN model for fault 

diagnosis in analog circuits: they used wavelet and Fourier transforms, normalization and principal 

component analysis to obtain the node voltages of VLSI circuits to generate training features for a 

neural network Catelani et al. [30] designed a backpropagation ANN that could identify the most 

likely faulty element responsible for the failure of a CUT. Madani et al. [31] presented multiple 

ANN models for fault diagnosis in analog circuits including back-propagation, learning vector 

quantization and radial basis function models. Meador et al. [32] demonstrated that while 

feedforward ANN classifiers did not improve diagnostic accuracy in integrated circuits they led to 

significant reduction in fault diagnosis costs once the network had been trained. Likewise in 

ATPG, Chakradhar et al. [33] proposed an ANN based algorithm that is suitable for massively 

parallel execution. In their method, the circuit is represented as a bidirectional network of neurons.  

While ANNs have been used for several applications in VLSI test, to the best of the 

author’s knowledge ANN algorithms have not been used directly in testability analysis for VLSI 

circuits. This provides an opportunity to implement ANNs to solve the current issues with 
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conventional testability analysis and take into consideration circuit structure to present more 

accurate testability analysis at a reasonable time. 
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CHAPTER V. METHOD 

True CC 

To get the true CC of every net in the circuit, it needs to be simulated with every possible 

input vector combination. Since this is not feasible and computationally intensive for larger 

circuits, it is necessary to obtain circuit testability with a high degree of certainty by simulating 

the circuit with many random vectors. For the purpose of these experiments this thesis has 

simulated all benchmark circuits 10000 random vectors. 

 Since SP is the probability that a net in the circuit will have the value of logic-1 when 

simulated with random vectors, it is obtained by dividing the number of times a net is logic-1 by 

the total number of simulations (10000).  

ANN Model 

The ANN needs a set of features to be trained on to predict the SP. Considering the ANN 

models discussed in Chapter IV, the regression based supervised learning model is ideal for the 

problem at hand. This is because regression is used in cases where the ANN is trained with 

supervised learning to predict a trend. CC values of each net in a circuit are a trend based on the 

structure of the circuit: the CC of a net is based on its driving node and reconvergent fan-out 

structures. Thus, training an ANN with enough data on nets, their structures and their CC values 

can make an ANN that can predict SPs for circuit nets. 

Circuit Expansion 

The training dataset of the ANN requires that the generated data be in a consistent order. 

For this, must be ensured that each node in the circuit has a constant number of inputs and outputs. 

The circuit file is modified to change all nodes that have more than two inputs to two inputs and 
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more than two outputs to two outputs. This is done without changing the functionality of the circuit. 

This has been previously suggested by Yang et. al. [34]  

Input Features and Data Generation 

The inputs to the ANN are a stream of floating-point and binary valsues that represent the 

SPs of nets and gate types respectively. A gate is represented as a binary stream of 8 bits, with all 

bits except one set to zero. The activated bit indicates the type of the gate. Table 1 describes binary 

stream for each gate type.  

TABLE 1 
BINARY STREAM FOR GATE TYPES 

Gate Type Binary Stream 

AND 1,0,0,0,0,0,0,0 

NAND 0,1,0,0,0,0,0,0 

OR 0,0,1,0,0,0,0,0 

NOR 0,0,0,1,0,0,0,0 

XOR 0,0,0,0,1,0,0,0 

XNOR 0,0,0,0,0,1,0,0 

BUF 0,0,0,0,0,0,1,0 

NOT 0,0,0,0,0,0,0,1 

 

The proposed ANN considers reconvergent fan-outs of the first degree. To achieve this 

goal a backtracing algorithm is written that returns a list of nodes that are traced in the backward 

direction from the chosen net. This algorithm is described as Algorithm I. The backtracer object 

stores the root node (RN) that is the driver of the root net (Rnet) and a list of traced nodes 

(TN). The nets of each level are stored as current level nets (CLNet) while the nodes are stored 

as current level nodes (CLN). 
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Algorithm I – Backtrace 

Inputs: Circuit c, Net n 

Begin 

Step 1: For the net n on circuit c find its driving node 

(DN(n)). 

       RN = DN (n)  

Step 2: For the RN get a list of its inputs. 

            CLNet = input nets of RN 

Step 3: For every CLN get a list of its driving node 

      CLN = CLNet(n) 

Step 4: CLN = TN 

End 

Reconvergent fan-outs are then detected by checking if the TN input nets are the same as 

the either of the Rnets. If they are the same, then it indicates a reconvergent fan-out from that net 

to the root net. If a reconvergent exists a binary parameter is set to one else, it is set to zero. Not 

only does this detect all fan-out branches, but it also detects the actual location of reconvergence. 

The type of gate, reonvergent fan-outs and SP values are collected for each net of the circuit 

that is not a primary input. If the driving node of a net is a NOT or a BUFFER gate, it is not used 

in data generation. This is because the output CC of a NOT gate is merely 1 subtracted from its 

input CC whereas the output CC is the same as the input CC for a BUFFER, thus making them 

irrelevant to train the ANN, as these can be calculated accurately for any case. 

ANN Architecture 

The ANN is fed with a thirty-eight feature input represented by floating-point values. 

Hence, the input layer of the ANN has thirty-eight neurons. Since the ANN model needs to predict 

the SP of a net, there is only need for one neuron in the output layer.  

In this thesis, a single hidden layer was used for the ANN architecture. This is because it 

has been shown that in feedforward ANNs, a single hidden layer can represent a wide range of 

functions given appropriate input features [35]: this is called universal approximation theorem. 

Adding more hidden layers seldom improves the performance of an ANN as a single hidden layer 
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is enough to solve most problems. It was shown that the performance of multilayer feedforward 

ANN’s as universal approximators was not restricted to choice of activation function [36].  

There is no agreed standard on choosing the number of hidden layer neurons for an ANN. 

To select the optimal number of hidden layer neurons cross-validation is performed: cross-

validation results showed that twenty-eight neurons in the hidden layer was the most optimal in 

giving higher training accuracy. Thus, the ANN architecture is 38-28-1, representing the input 

layer, hidden layer, and output layer neurons, respectively. 

A multilayer feedforward ANN was designed in the Python language using the tensorflow 

libraries. The activation function chosen for this experiment is the sigmoid function. This is 

because the sigmoid function exists between 0 and 1 and is thus ideal for representing SP, since 

any kind of probability function exists between 0 and 1. The sigmoid activation function is 

represented as follows –  

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 

ANN SP Prediction 

Once the ANN model is trained, it can be used to predict SP values of nets in a circuit. To 

do this, the trained ANN weights are stored in a matrix. Since there are three layers in the selected 

ANN model (1 input, 1 hidden, 1 output) in the 38-28-1 architecture, there are two weight matrices: 

the first weight (𝑊1) is between the input layer and the hidden layer. It has 38 rows and 28 columns 

and the second weight (𝑊2) is between the hidden layer and the output layer. It has 28 rows and 

1 column. 

For each net, the backtracer algorithm generates data that is stored as a stream of floating-

point values in the vector. This input vector (𝐼𝑃) is thus a matrix of 1 row and 38 columns. 
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The first layer calculation is the activated matrix multiplication of 𝐼𝑃 with 𝑊1. This matrix 

𝐻 has 1 row and 28 columns. The second layer calculation is the activated matrix multiplication 

of 𝐻 and 𝑊2. This multiplication result, 𝑂 is the predicted SP of the net with input feature 𝐼𝑃. 

𝐻 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐼𝑃 ∗ 𝑊1) 

𝑂 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐻 ∗ 𝑊2) 

TPI Methodology 

Conventional TP architectures are used for this study since they are the most commonly 

used in industrial settings. A control TP sets a net on a circuit to a constant value when in test 

mode. There are two types of control TPs namely, control-0 TPs and control-1 TPs. Control-0 TPs 

set the value of a net on the circuit to a constant logic-0. A control-1 TP, on the other hand, sets a 

net on the circuit to a constant value of one.  

This paper does not present a novel test TPI method but rather uses an existing TPI 

algorithm [13] to compare two distinct testability analysis methods. The original algorithm uses 

COP testability analysis to detect the probability of detecting a fault. This probabilistic detection 

of faults is used to maximize the FC of a circuit. The probability for fault detection (𝑃𝑖) depends 

on the type of the fault, i.e., whether it is a sa0 or sa1 fault: 

𝑃𝑖 = 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦;  𝐹𝑜𝑟 𝑠𝑎0 

𝑃𝑖 = (1 − 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦) ∗ 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦; 𝐹𝑜𝑟 𝑠𝑎1 

𝐹𝐶 = (
1

𝑓𝑎𝑢𝑙𝑡𝑠
) ∗ ∑ 𝑃𝑖

∀𝑖∈𝑓𝑎𝑢𝑙𝑡𝑠

 

The 𝑃𝑖 for sa0 faults is a product of CC and CO. This is because a sa0 fault is excited by a 

logic-1 signal. Likewise, for sa1 faults, the 𝑃𝑖 is the product of the CC subtracted from one and 
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the CO. This is because a sa1 fault is excited by a logic-0 signal. The FC is calculated as the ratio 

of the sum of probabilities of detection of all faults to the total number of faults. 

 



 36 

CHAPTER VI. EXPERIMENT 

Experimental Setup 

All experiments were run on a high-performance workstation that is representative of an 

industrial environment. The workstation is equipped with an Intel i7-8700 processor and 8GB of 

RAM.  

The framework of all experiments was a circuit simulation and test toolkit developed in the 

C++ programming language that represents circuits as a collection of interconnected nets and 

nodes. This structure models single stuck-at faults well since stuck-at faults exist on 

interconnections between circuit nodes as discussed in Chapter II. The circuit object acts as a 

wrapper that holds vectors of circuit nets, nodes, inputs and outputs. A net is a data structure used 

to model circuit interconnections that can have a single driver and one or multiple outputs. It is not 

possible for a net to have more than one driver as two or more gates cannot drive a single line in 

logic circuits. A node is a data structure used to model logic gates in a circuit. It can have multiple 

inputs and multiple outputs. It works in conjunction with nets. The toolkit consists of several tools 

that are useful for the experiment like a benchmark parsing, simulator, COP testability analysis 

calculator, TPI, fault simulation etc.  

Data Generation 

Training data is generated from the eleven circuits of the ISCAS-85 benchmarks. Every 

net in the benchmarks, excluding circuit inputs and nets driven by inverters and buffers, are used 

for data generation, resulting in a total of 11,118 data points to train the neural network. The 

generated data is stored in a comma-separated value (CSV) format. 
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ANN Training  

The ANN is trained with the data generated from the ISCAS-85 benchmark circuits. The 

ANN is trained over the dataset for 225 epochs-iterations: an epoch is the number of training 

iterations equal to the size of the dataset, thus, in this case an epoch is 11,118 iterations. 225 epochs 

was enough to give a training accuracy of 99%. The weights generated while training the ANN 

are stored for later use during TPI.  

ANN Prediction 

The ANN weights are then read by a function that predicts the SPs of each net by running 

through each net in the circuit. This is done on the ITC-02 benchmark circuits on circuits b01 to 

b15. If a net is a circuit input it is assigned an SP of 0.5 by default. This can be changed to a more 

weighted value if desired, but the standard SP is 0.5. Likewise, for a net driven by an inverter, the 

SP is resolved as the SP of the input of the inverter subtracted from 1. For a net driven by a buffer, 

the SP of the buffer’s input is propagated forward as is. The results are then compared with those 

of COP against SP by simulation with random vectors. 

TPI Procedure 

The predicted SP values are then used for TPI. This is done for the ITC 02 benchmarks 

from b01 to b15. The same is done with COP based SP prediction and the resultant FCs and TPI 

times are compared. 

The constraints placed on TPI was to restrict it to a TP limit of 1% of the number of gates 

in the circuit and a time limit of two hours. To make a fair comparison, both methods use the same 

number of TPs for every benchmark. 
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CHAPTER VII. RESULTS 

Table 2 shows the results of the ANN SP predictor compared to COP in the ITC-02 

benchmark circuits. The three columns represent the accuracy of COP compared to SP by random 

simulation, the accuracy of the ANN predictor compared to SP by random simulation, and the 

increase in accuracy for the ANN predictor over COP in predicting SP by random simulation. The 

accuracy of both COP and the ANN predictor is calculated as a percentage of the absolute 

difference of the SP value by random simulation and the predicted SP value subtracted from 1.  

The SP values by random simulation are representative of true testability of the net in the 

circuit. Experimental results showed that the use of 10,000 vectors for circuit simulation resulted 

in almost constant SP values for circuit nets, demonstrating the reliability of using SP values by 

random vector simulation as a representation of true circuit testability. 
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TABLE 2 

COP VS NEURAL NETWORK ACCURACY COMPARISON  

Bench. COP Accuracy (%) ANN Accuracy (%) Accuracy Increase (%) 

b01 98.4681 99.2385 0.7704 

b02 98.3745 98.7649 0.3904 

b03 99.8015 99.9016 0.1001 

b04 99.9848 99.9945 0.0097 

b05 99.9214 99.9590 0.0376 

b06 99.3791 99.6840 0.3049 

b07 99.9630 99.9820 0.0190 

b08 99.8111 99.9544 0.1433 

b09 99.8004 99.9000 0.0996 

b10 99.8512 99.9284 0.0772 

b11 99.9134 99.9590 0.0456 

b12 99.9576 99.9787 0.0211 

b13 99.7542 99.877 0.1228 

b14 99.9970 99.9982 0.0012 

b15 99.9914 99.9911 -0.0003 

 

The results demonstrate that the ANN predictor performs consistently better than COP in 

predicting the SP values for all the tested ITC-02 benchmark circuits except b15. The set increase 

is attributed to the fact that reconvergent fan-outs that cause redundant faults are a small proportion 

of circuit nets. COP is generally accurate in predicting the circuit testability analysis in the absence 

of such redundant structures.  

A possible reason why COP is slightly more accurate than the ANN in the b15 benchmark 

is because of its large size. The ANN uses a more complex heuristic to predict SP that considers 

the SP of nets and nodes 2 levels back, whereas COP’s heuristic only uses the driver node and its 

input SPs. This can cause slight variation in prediction of results, especially in larger circuits.  
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Figure 8 demonstrates the case of the reconvergent fan-out in which the ANN results are 

significantly more accurate than COP in predicting SP by random simulation. There is no possible 

scenario in which the output of this circuit can be set to logic 1, hence the output CC must be 0. 

This SP of the output of the AND gate is 0 after 10000 random vectors are applied to the circuit. 

COP however predicts the output CC as 0.25, which implies that the net can be logic 1, 25% of 

the time. The ANN is close in its prediction of 0.62%. It is most likely instances like this that 

makes the ANN is more accurate than COP for most benchmark circuits in table 1. 

Table 3 shows the results of TPI with 10,000 random vectors on the ITC-02 benchmark 

circuits. Only circuits whose original FC was lower than 100% are shown since it is irrelevant to 

insert TPs in a circuit that already has 100% FC. 

The “Recfo” column shows the number of reconvergent fan-outs of the 10th degree, i.e., 10 

levels back from each net. While the ANN itself only considers reconvergent fan-outs of the 1st 

degree, ANNs are complex algorithms that train themselves with the provided data, hence, it is 

possible that the ANN performs better even in nets with reconvergent fan-outs on higher degrees. 

 

Fig 8: The case of the reconvergent fan-out. The NN is far more accurate than COP in 

representing testability analysis in a circuit with reconvergent fan-outs. 
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The columns “Ctrl TPs” and “Obs TPs” represent the number of control and observe points 

inserted for COP and the ANN predictor. The “TPI FC” columns indicate the FC of the circuit 

after TPI. Additional columns indicate the time (in seconds) for TPI. The Recfo/Gate column 

indicates the reconvergent fan-outs per gate in a circuit, which will be used as a metric of 

performance of the ANN over COP. 

The results from Table 3 indicate the FC for ANN-based TPI is consistently higher than 

that for COP-based TPI for all benchmarks but one (b07). This discrepancy can be attributed to 

the low number of reonvergent fan-outs in this circuit, which is the lowest in the set of benchmarks. 

Even for this case, the decrease in FC is relatively small compared to increases elsewhere. b14 is 

a case where the FC does increase is relatively small. Again, this again is a circuit that has a very 

low reconvergent fan-out to gates ratio. 

Table 3 also demonstrates that the ANN-based predictor takes a very similar amount of 

time as the COP-based predictor for TPI. As a matter of fact, it is significantly lower in certain 

circuits. This indicates that the use of a trained ANN for TPI does not add to the time complexity 

of the algorithm. 

Table 3 

Cop vs Neural Network Accuracy Comparison 

Bench. Gates Recfo TP 
Limit 

COP 
Ctrl 

TPs 

COP 
Obs 

TPs 

ANN 
Ctrl 

TPs 

ANN 
Obs 

TPs 

Original 
FC (%) 

COP TPI 
FC (%) 

ANN 
TPI FC 

(%) 

FC 
Increase 

(%) 

COP 
TPI 

Time 

(s) 

ANN 
TPI 

Time 

(s) 

Time 
Decrease 

(s) 

Recfo/Gate 

b04 652 102 6 2 4 2 4 97.7074 99.4541 99.5669 0.1128 66 62 4 0.1564 

b05 927 435 9 1 8 4 5 76.7460 78.7302 91.0482 12.318 203 194 9 0.4692 

b07 383 23 3 2 1 2 1 97.7518 99.4604 99.2443 -0.2161 13 14 -1 0.0600 

b11 726 105 7 0 7 7 0 95.3684 96.2105 96.5553 0.3448 50 46 4 0.1446 

b12 944 100 9 3 6 3 6 94.1593 95.3628 99.4477 4.0849 244 226 18 0.1059 

b14 9767 74 97 2 0 2 0 87.3098 88.1420 89.5209 1.3789 5292 4789 503 0.0075 

b15 8367 1201 83 2 0 2 0 74.9869 97.104 99.9198 2.8158 4332 3843 489 0.1435 
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CHAPTER VIII. FUTURE WORK 

Future studies must focus on expanding the ANN model to consider more circuit 

parameters, especially taking into consideration more levels back from each net. Eventually an 

ANN model can be designed that considers the whole circuit. This should provide an accurate 

testability analysis method. While the time complexity for training such an ANN could be very 

high, the trained model should still be reasonably time efficient. This would require more 

optimized neural network architectures to increase accuracy and decrease training time to 

account for the increase in input data width.  

Another avenue of future research involves the prediction of true circuit observability 

using neural networks. This is a more complex problem than predicting true circuit 

controllability since true circuit observability requires more than random simulation of vectors.  
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CHAPTER IX. CONCLUSION 

This thesis studied the use of ANNs for improving circuit testability by considering 

reconvergent fan-outs. It was shown that a testability analysis predictor using neural networks is 

more accurate than a COP-based predictor for testability analysis.  

The ANN-based predictor was also shown to have the same time complexity as COP in 

the tested benchmarks, even showing better time performance in some of the benchmarks. 

This method of testability analysis is then applied to TPI and it was shown that the ANN 

provides higher FC than the COP-based predictor. This is especially true of circuits with higher 

number of reconvergent fan-outs per gate. 
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