
 
 
 
 
 
 

Analyzing the Use of Publicly Available Multispectral Imagery to Guide the Creation of 
Soil Sampling Schemes 

 
By 

 
Jordan Paul Oldag 

 
 
 
 

A thesis submitted to the Graduate Faculty of 
Auburn University 

in partial fulfillment of the 
requirements for the degree of Master of Science 

 
Auburn, Alabama 

May 2, 2020 
 
 
 

 
Keywords: Remote Sensing, Multispectral Imagery, Geostatistics, Soil Fertility, Soil Sampling 

 
 

Approved by 
 

Brenda Ortiz, Chair, Professor of Crop, Soil, and Environmental Sciences 
Joey Shaw, Professor of Crop, Soil, and Environmental Sciences 

Audrey Gamble, Assistant Professor of Crop, Soil, and Environmental Sciences 
Rishi Prasad, Assistant Professor of Crop, Soil, and Environmental Sciences 
Ruth Kerry, Adjunct Professor of Crop, Soil, and Environmental Sciences 

  



 

2 
 

Abstract 

 
As site-specific nutrient management has grown in popularity, the need for accurate soil 

fertility data has increased. Unfortunately, the cost of detailed soil sampling has prohibited many 

farmers and consultants from collecting samples at the proper resolution. It is necessary to develop 

techniques using easy-to-access ancillary data to guide the creation of soil sampling strategies. 

Ancillary data acquired from three publicly available sources (Landsat 7, Landsat 8, Sentinel 2a) 

and Soil Electrical Conductivity (EC) was used to determine the strength of relationship to 

commonly amended soil fertility variables (phosphorus (P), potassium (K), and soil pH). Ancillary 

data relevancy was determined by a comparison of spatial bi-correlation and fitted semi-variogram 

ranges. Additionally, principal component analysis (PCA) was performed to allow for 

unsupervised clustering of ancillary data. These clusters were used to predict zones of nutrient 

sufficiency. This method resulted in an average class accuracy of 67% (K), 78% (P), and 46% 

(pH), indicating that classification by clustering may be used to delineate soil fertility distributions 

to guide the creation of soil sampling schemes. 
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CHAPTER I: LITERATURE REVIEW 

 

In the past century, global population has grown from 1.6 to 7.6 billion individuals. This 

growth in human population has created a need for more sustainable agricultural practices. Despite 

a population increase of 143.4% between 1961 and 2015, arable land has increased only 25.1%, 

approximately 976,971,130 hectares (World Bank, 2018). This notable imbalance has caused the 

arable land, in hectares-per-capita, to be reduced from 0.371 to 0.194. To combat this imbalance, 

it has been necessary to increase the efficiency of agricultural land usage. In the past century, 

dramatic improvements have been made in the areas of mechanization, crop breeding, no-tillage 

implements, pest-management tools, and the use of precision agriculture technology.  

 Precision agriculture seeks to improve arable land use efficiency by utilizing site-specific 

management which, in most cases, involves the use of variable rate application of inputs. Until the 

1980s, most of these site-specific management strategies were conducted at a farm-level with the 

field as the smallest management unit (Oliver, 2010). At best, the soil of a field was bulk sampled 

to determine the mean value of fertility variables and pH, and the field was amended with a uniform 

application of soil amendments. Since that time, innovations in information technology, sensors, 

and controls have contributed to more precise management of soil and crop variability (Schueller, 

1997). One such innovation is the development of the microprocessor which made it possible for 

equipment and machines to be outfitted with on-board computers. This allowed for the fitting of 

global positioning systems (GPS), and sensors for the collection of spatial data for agricultural 

geographic record keeping enabling common farm equipment to be used for precision agriculture 

(Robert et al., 1999). In 2019, the International Society of Precision Agriculture defined precision 

agriculture as, “Precision Agriculture is a management strategy that gathers, processes and 
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analyzes temporal, spatial and individual data and combines it with other information to support 

management decisions according to estimated variability for improved resource use efficiency, 

productivity, quality, profitability and sustainability of agricultural production.” To accomplish 

proper site-specific management, Mulla (2015) defined the four pillars of precision agriculture as: 

1) Right source; proper crop variety, fertilizer, herbicide, irrigation source, etc. 2) Right place; to 

maximize the effectiveness of each source it must be applied in the needed locations, 

corresponding with within-field variability. 3) Right rate; beyond simply delineating zones of 

variability, inputs must be applied at variable rates to eliminate waste and increase output. 4) Right 

time; lastly, these management practices must be implemented at not only a spatially variable rate, 

but also with temporal variability to increase peak efficiency.  

With precision agriculture, inputs, energy, and crops that would be underutilized by 

traditional management methods can be tailored to best fit the natural characteristics of the land. 

These site-specific methods seek to eliminate both excess and deficiencies in seeding rates, 

fertilization, and irrigation, thus reducing excessive or insufficient inputs while maximizing yield. 

Many of these precision agriculture strategies depend upon a reliable spatial assessment of soil 

and/or crop distribution. Before decisions can be made about the seeding rates, nutrition, or 

irrigation accurate soil data acquisition is imperative. Accurate data is required for the detection 

of varying spatial distribution of nutrients. This variation must be recognized to avoid zones of 

deficient or excessive application. Depending on the nutrient, both of these application errors can 

result in reduced nutrient uptake by crops and a decreased yield. Initial soil analysis typically 

includes data about the texture, fertility, and slope of the arable land.  
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PHOSPHORUS 
 Phosphorus (P) is generally considered the second most important macronutrient in 

agricultural systems production (after nitrogen), typically making up 0.1% to 0.5% of a plant’s dry 

weight (International Plant Nutrition Institute, 1999). Soil P plays many key physiological roles 

within plants such as formation of nucleic acids, phospholipids, and adenosine triphosphate (ATP). 

Inadequate levels of available P can result in a reduction in leaf expansion and leaf surface area. 

Additionally, insufficient P slows the metabolization of carbohydrates in the plant. Without P, the 

continued production of carbohydrates often results in a dark green or purple color. Because of its 

importance to cellular and energy production, plants cannot grow without a sufficient P supply. It 

is therefore necessary to maintain a proper level of P in soils used for cropping systems. The 

recommended soil extractable threshold for 100% potential yield in Alabama crops is 50 lb./A in 

sandy soils and loams and 30 lb./A in clayey soils. These recommendations are the same for corn, 

soybeans, and cotton according to the Alabama Agricultural Experiment Station (Batchelor, 2012). 

Any amount of extractable P over this threshold is considered to be an unnecessary cost while any 

deficiencies have potential to adversely affect crop growth and final yield. 

It is not uncommon for the total amount of P in soil to be high, but it is often found in plant 

unavailable forms or outside of the rhizosphere (Schachtman et al., 1998). The relative 

unavailability of soil P often causes a demand for soil P amendment as few soils release P quickly 

enough to support optimal growth rates in crop plant species. Proper application of P for 

agricultural systems requires that farmers must first conduct a proper analysis of the soil-test P, a 

measure of the P (in solution) available to crops (Knighton and James, 1985). Results from long-

term studies across Iowa (approximately 30 years) have shown that soil P trends are greatly 

affected by the initial P value, cropping years, and annual amendment rates (Dodd and Mallarino, 

2005). This indicates the imperative nature of accurate within field assessments of P availability 
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and variability to guide the total application of P as well as the site-specific variable rate application 

of this macronutrient. 

 

POTASSIUM 
 Although potassium (K) is an essential macronutrient for plant growth, it typically has very 

low concentration in soils ranging from 0.04% to 3% (Sparks and Huang, 1985). Despite its 

relative rarity, plants accumulate large quantities of this element, which makes up 2% to 10% of a 

plant’s dry weight (Leigh and Jones, 1984; Tisdale et al., 1993). Soil K is vital to many plant 

processes but is most well-known for its role in enzyme activation. The amount of K in the plant 

tissue determines the number of enzymes that can be activated and therefore, it influences the rate 

at which the chemical reactions can occur (Evans and Sorger, 1966; Armstrong, 1987). Soil K is 

therefore effective at increasing crop yield by enhancing enzyme reactions responsible for root 

growth, photosynthesis, and transpiration. In addition to this, K produces osmotic pressure helping 

to regulate the absorption and transportation of water and nutrients.  

Soil K does not experience excessive leeching or immobilization and it is typically 

removed by plant uptake. Because of this, K can often be found in excess in systems where crops 

do not require the full amount of available K. Due to the low mobility of K in soils, pre-planting 

soil test is recommended to make future K applications cost-effective and to reduce the risk of 

over application. For corn and soybeans grown in Alabama cropping systems, it is recommended 

that soil extractable K is 80 lb./A in sandy soils and loams, and 160 lb./A in clayey soils. Due to 

its greater need for K, cotton is recommended only in sandy soils with 120 lb./A, loams with 180 

lb./A, or clayey soils with 240 lb./A (Batchelor, 2012). A deficiency of plant available K could 

result in poor crop development or reduced yield. Over application of K has been found to suppress 
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the uptake of magnesium and calcium (Walsh and O’Donohoe, 1945; Jakobsen, 1993). Accurate 

assessments of field K can help guide proper application of amendments, avoiding reduced yield 

from underapplication and unnecessary costs from overapplication. 

 

SOIL pH 
 Soil potential hydrogen (pH) is a measure of hydrogen ion concentration. Soil pH is 

typically controlled by clay minerals, organic matter, and oxidation of Al, Fe, Ca, and Na within 

soils (Thomas, 2006). It is considered by many to be the principal soil variable of agricultural 

systems (Chakraborty, 2015; Rengel, 2002). Although pH is not a crop nutrient, it is of essential 

importance to plant growth and crop development. Studies show that excessively acidic soils (low 

pH) can hamper calcium and magnesium nutrient uptake due to the soluble form of Al3+ that results 

(Tang and Rengel, 2003; Fageria and Zimmermann, 1998). Soil acidity can also affect plant growth 

by creating toxic levels of soil nutrients or by influencing microbial activity (Mallarino et al., 

2011). On the other hand, excessively high pH is known to increase the possibility of herbicide 

carryover and inhibit plant uptake of soil P, magnesium, iron, manganese, and zinc (Rogovska et 

al., 2007; Martin and Green, 1989; Lund, 2008). Nutrient unavailability, nutrient toxicity, and 

harmful microbial activity can each inhibit plant development and yield (Shubert et al, 1990; 

Fageria and Zimmermann, 1998).  

To avoid these problems, it is common practice to apply lime (or another form of calcium 

carbonate, CaCO3) to increase the soil pH and increase crop production. Unfortunately, sampled 

pH values alone are not adequate to determine lime recommendations for proper soil amendment 

(Thomas, 2006). Instead, the buffering capacity of the soil solution, a measure of its ability to resist 

changes to pH, must be calculated. The soil pH buffer must be determined to estimate the timing, 
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location, and quantity of lime needed to ensure optimal crop production (Tang and Rengel, 2003). 

Alabama Agricultural Research Station recommends a soil pH of 6.5 for commercially grown 

crops (Batchelor, 2012). While uniform liming is the least labor-intensive option, precise 

application of liming material allows for proper pH balancing and reduces the chance of over-

liming (raising the soil pH beyond healthy levels). Proper soil sampling is imperative to determine 

within-field variability of soil pH and soil pH buffer, in order to accomplish the most efficient 

application of pH amendments (Lund, 2008). 

 

SOIL SAMPLING 
 When deciding a sampling strategy for the assessment of soil nutrient levels for soil 

fertility purposes, it is important to select the strategy that accurately represents the within-field 

variability of soil nutrient levels. Farmers must evaluate their fertilization goal, soil sampling cost 

and time, as well as the quality of different sampling strategies in order to use the method best 

suited for the location.  

Grid sampling is done by creating a square or rectangular grid of some defined resolution 

(such as an area of 2.5 acres) over the area of interest (AOI). This method adopts a uniform 

approach of sampling across the AOI without accounting for changes in spatial variability of soil 

nutrients. Because of this, grid sampling is often superior at the detection of small-scale variability 

assuming that the grid resolution is fine enough to detect small-scale changes in soil properties 

(Mallarino and Witty, 2001). Unfortunately, this kind of intensive sampling can be cost-prohibitive 

due to the increased labor costs and soil testing costs (Wollenhaupt and Wolkowski, 1994). 

 Zone sampling is another popular method, due to its sampling efficiency and reduced 

costs. This flexible technique uses previous information, sampling objectives, and economic 
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conditions to provide a customizable method of soil sampling (Saleque et al., 2007). For example, 

homogenous zones within the AOI may be designed by using soil electrical conductivity (EC) to 

group the soils in a field into distinct regions. Each zone is assumed to be uniform within its 

boundaries and therefore requires relatively few samples to create a prescription maps of soil 

properties by zone (Shaner et al., 2008). Zones can be created from historical soil data, ancillary 

data, or simply by farmer observation. Unfortunately, when using zone sampling, the quality of 

results changes from field to field. Consequently, site-specific decisions must be made to 

determine if grid sampling is more appropriate for an AOI or if zones can be delineated that 

properly capture the spatial variation of soil nutrients. The majority of precision agriculture 

operations sample using a grid sampling strategy. This method has grown in popularity due to its 

relatively uniform approach at soil nutrient detection and its cost-effective nature (McBratney and 

Pringle, 1999; Robert et al., 1999; Winstead et al., 2007).  

No matter which sampling strategy is chosen, it is necessary that the sampling scheme 

created accurately captures the spatial variability of each soil nutrient. Samples are collected to be 

used in the creation of a prescription map for the variable rate application of soil amendments. It 

is necessary that the sampling strategy used produces a prescription map with high accuracy, as 

any errors will result in unnecessary inputs or insufficient soil fertilization. Without proper 

detection of soil nutrient variability accurate estimations of soil nutrients cannot be created and 

variable rate application cannot be accurately used.  

To accomplish these accurate predictions, a minimum of approximately 100 data points is 

required the creation of a reliable variogram, which may be used for the spatial interpolation 

process known as kriging (Webster and Oliver, 1992). This method is often used incorrectly, as it 

requires a much larger sample-size than most commercial farms collect. Most crop production soil 



 

18 
 

surveys are conducted at the minimum recommended resolution of a 2.5-acre (1 hectare or 100 m) 

grid (Ferguson and Hergert, 2000; Godwin and Miller, 2003). This sampling technique results in 

too small of a sample for most fields and results in the creation and use of unstable variograms for 

soil predictions. The arbitrary use of the 2.5-acre sampling interval often fails to capture the scale 

of variation present within the field. It is essential that the sampling interval selected captures data 

that is spatially dependent and correlated to allow for kriging and mapping of soil variables (Kerry 

and Oliver, 2008; Lopez-Granados et al., 2002).  

 

GEOSTATISTICS 
 Geostatistics is a class of statistics used for the description, interpretation, and estimation 

of data which is associated with spatial or spatiotemporal phenomena (Wackernagel, 1995). It is 

therefore necessary to have spatial features (coordinates) associated with the observations being 

analyzed. Least squares and linear estimation methods were initially adapted for the mining 

industry for the estimation of quantities that vary in space (Kitanidis, 1997). To do this, 

geostatistics investigates spatial autocorrelation which can be summarized using Tobler’s first law 

of geography: “everything is related to everything else, but near things are more related than distant 

things” (Tobler, 1970). The semi-variogram γ(h) is the central tool of geostatistics, which was 

defined by Matheron (1963) as half the average squared difference between points separated at 

distance h. The empirical semi-variogram is calculated as: 

!(ℎ) = 	 1
2|*(ℎ)| +(,- − ,/)0

1(2)
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where N(h) is the set of all pairwise Euclidean distances i – j = h, |N(h)| is the number of distinct 

pairs in N(h), and zi and zj are data values at spatial location i and j, respectively. h represents a 

distance measure with magnitude only (Ford, 2010). 

 Typically, semi-variance observations are grouped into bins by lag size selection, h ± d 

rather than using exact distances. Therefore, the empirical semi-variograms γ̂(h ± d) can be 

calculated for each bin: 

!3(ℎ	±	d) = 	 1
2|*(ℎ	±	d)| + |,- − ,/|0

(-,/)5	1(2	±	d	)
 

Each pair of points separated by h plus or minus lag size range d are found. These form the set of 

points	*(ℎ	±	d	) ≡ {89-, 9/: ∶ <9-, 9/< = 	ℎ	±	d	; >, ? = 1,… ,*}. The number of points in this bin 

is	*(ℎ	±	d	). For each pair of points i, j, the square of the difference in the observation is found 

(<,- −	,/<)2. These squared differences are added together and normalized by the natural 

number|*(ℎ	±	d	)| before being divided by two, to yield the semi-variogram. The measure of 

variability between pairs of points in each lag, up to the maximum specified lag, are then used to 

create the experimental semi-variogram as a discrete function. A model can then be fitted to the 

experimental semi-variogram resulting in a continuous function that can be used in kriging, the 

interpolation process (Leyk, 2008). 

 When approaching the subject of interpolation of values at unobserved locations, the value 

of the semi-variogram to geostatistics becomes apparent. If the data exemplifies spatial 

autocorrelation, prediction may be appropriate, by use of the fitted model (spherical, exponential, 

Gaussian, etc.) that best captures the spatially dependent variation of the dataset by minimizing 

residuals and predictive error. The semi-variogram model can then be used for estimation by 
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kriging. The process of kriging estimates the value of an unobserved location by interpolating from 

weighted points within the determined range of the semi-variogram model. To accomplish this, 

three major parameters are used to guide the kriging process. The range, or the distance at which 

auto-correlation between points can no longer be observed, is used to determine the suggested 

search distance for the interpolation process. The nugget is a measure of variation in observations 

that occurs at distances smaller than the sampling interval. Lastly, the sill represents the variation 

in observations that occurs at the range, where autocorrelation is no longer observed.  

 In addition to univariate kriging, allowing predictions to unobserved locations, ancillary 

data can be used to create cross-variograms, to estimate variables that vary in space with a similar 

distribution as ancillary variables (Zhang et al., 1992; Hong et al., 2002; Pimstein et al., 2011). 

These techniques have been used to interpolate permanent soil properties from sparsely sampled 

sites, by using a sampling interval of half average variogram range ancillary data (Kerry and 

Oliver, 2003; Kerry and Oliver, 2004). 

 

ANCILLARY DATA 
Remotely sensed data has long been considered a valuable source of ancillary data to guide 

precision agriculture processes (Mulla, 1997). Remotely sensed ancillary data has been used to 

study the prediction of soil characteristics including soil texture, extractable iron, total carbon 

(Sullivan et al., 2005), cation exchange capacity, magnesium, organic matter (Hong et al., 2002), 

and soil hydraulic properties (Mohanty, 2013). The data in a majority of past studies is collected 

from remotely sensed imagery (aerial imagery, unmanned aerial vehicle imagery, and satellite 

imagery). These studies tend to return a wide range of results depending on prediction technique 
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and study location. Each soil type requires unique study and techniques for regression methods to 

accurately predict soil nutrients (Yu et al., 2016).  

Table 1 shows a collection of studies that include the use of ancillary data 

(multispectral/hyperspectral imagery, soil EC, yield) and their correlation to soil macronutrients P 

and K and soil pH. Most of these studies are conducted with bare soil reflectance values to 

investigate the strength of various ancillary data sources. As a whole, these studies indicate that K 

has the strongest relationship with spectral reflectance data and achieves the most accurate 

predictions with least square support vector machines (LS-SVM) and multivariate least squares 

regression (MLSR). Likewise, P was predicted with relative strength using partial least squares 

(PLS) regression. The relationship between soil pH and remotely sensed ancillary data has not 

been studied as thoroughly, the most accurate predictions are created by use of soil EC. 

For the purposes of this study, ancillary data will not be used for the prediction of soil 

macronutrients. Ancillary data will instead be used for the prediction of zones corresponding to 

the spatial scale or soil fertility variables. Variograms created from ancillary data show the range 

of spatial dependency, which can be used to predict the spatial range of soil variables and 

determine the sampling interval for soil sampling (Kerry and Oliver, 2003). It is recommended 

that the site-specific sampling scheme is created at half of the range of spatial dependence observed 

in the variogram from corresponding ancillary data (Kerry and Oliver, 2004). This approach is 

chosen to ensure that the sample locations safely capture the variability of soil nutrients. If used to 

identify zones of predicted high or low soil macronutrient content, the range of spatial dependence 

observed in ancillary data can be used to create site specific soil sampling schemes.   
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Table 1. Soil Nutrient Prediction Review 

Predicted Variable(s) Ancillary Variable(s) Materials and Methods Study 

Ca, Mg, P, K Soil EC 
Relationships determined by 
PCA in individual fields. 
(R2=0.66 - 0.93) 

Heiniger et al. (2003) 

Soil EC (R2=0.56), CEC 
(R2=0.66), pH (R2=0.68), Mg 
(0.67), K (R2=0.59) 

Hyperspectral Imagery (soil) SMLR Models using all bands. Hong et al. (2002) 

Yield Soil EC Simple regression to create 
nitrogen and lime prescription. Lund et al. (1999) 

N (0.31 - 0.38), P (0.31 - 0.42), 
S (0.42 - 0.53), K (0.29 - 0.36) 

Hyperspectral Imagery 
(vegetation) 

Regressive models of various 
vegetative indices. Mahajan et al. (2014) 

Phosphorus deficiency Spectral Reflectance (0.68 um) Shift of red edge to shorter 
wavelengths. Milton et al. (1991) 

pH (0.66), CEC (0.843) Soil EC 

Correlation given from estimated 
soil Coarse-sand Content and 
Clay Content from mobile Soil 
EC. 

Moral et al. (2010) 

P (R2 0.61 - 0.68), N Hyperspectral Reflectance 
(vegetation) 

Prediction of P deficiencies 
present in blue and NIR through 
early growing season. 

Osborne et al (2002) 

P (DS1 + 2, 0.68), K (DS2, 0.88) Spectral Reflectance 
Prediction models created with 
subset data for each nutrient 
using PLS. 

Pimstein et al. (2011) 

K (0.6858), Soil OM (0.8708), N 
(0.7206) Spectral Reflectance 

Prediction created by PCA and 
least square support vector 
machine (LS-SVM) 

Qiao and Zhang (2012) 
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K (0.95 - 0.97) Spectral Reflectance (Soil) MLSR from Productive Index 
(PI) Yu et al. (2016) 

K, Ca, N Fertilizer Agronomic Efficiencies and 
Sustainable Yield Index 

Study analyzes yield increase 
attributed to fertilization 
recommendations created by AE 
and SYI. 

Liu et al. (2017) 

Millet Yield Soil CEC and Elevation 
Linear regression explained 
approximately 30% of variation 
observed. 

Stein et al. (1997) 

Soybean Yield (0.05 – 0.71) Soil Fertility and Topography 
Stepwise multiple regression 
with varying results depending 
on yield limiting factor.  

Kravchenko and  
Bullock (2000) 

Soil Depth, Volumetric Water 
Content 

Yield, Color Photographs, Soil 
EC, Stoniness 

Comparison of lag distances 
between permanent soil 
properties and ancillary data. 

Kerry and Oliver (2003) 
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RESEARCH OBJECTIVES 

 It is expected that remotely sensed ancillary data can be used to predict soil variable values 

for the characteristics described above (Kerry and Oliver, 2003; Ben-Dor, 2002; Agbu et al., 1990). 

This study focused on method development for soil sampling scheme estimation from predicted 

soil characteristics from ancillary data. Publicly available remotely sensed data was used (Landsat 

7, Landsat 8, Sentinel 2a) to monitor temporal and spatial variability of multispectral recordings. 

Soil sampling with nutrient analysis was also conducted to verify ancillary results expected from 

literature on the topic. 

 The ability to create site-specific soil sampling schemes to accurately represent within-

field variability of soil variables is critical for popularizing the use of precision agriculture 

technologies. Site-specific sampling schemes will allow for cost-efficient and profitable collection 

and use of spatial and temporal variability of soil variables. This study seeks to develop a 

methodology that best characterizes within-field variability among soil variables (P, K, and pH) in 

a way that leads to optimum soil sampling. The two objectives of this project are: 1) evaluate the 

use of ancillary data for indirect assessment of P, K, and pH variability on large scale production 

fields; and, 2) develop a method to predict soil fertility zones to guide creation of soil sampling 

schemes. 
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CHAPTER II: USING SPATIAL CORRELATION ANALYSIS TO IDENTIFY 
ANCILLARY DATA FOR SOIL FERTILITY MAPPING 

 

ABSTRACT 

As site-specific nutrient management has grown in popularity, the need for accurate soil 

fertility data has increased. Unfortunately, the cost of detailed soil sampling prohibits many 

farmers and consultants from collecting samples at the proper resolution. It is necessary to develop 

techniques using easy-to-access ancillary data to guide the creation of soil sampling strategies. 

Ancillary data acquired from three sources Landsat 8, Sentinel 2a, and Soil Electrical Conductivity 

(EC) was used to determine the strength of relationship to commonly amended soil fertility 

variables, phosphorus (P), potassium (K), and soil pH. First, strength-of-relationship was 

determined by Pearson Correlation analysis. Additionally, the spatial ranges of ancillary and 

fertility variables were calculated by a fitted semi-variogram model to provide a comparison of 

spatial distribution. Results indicated that ancillary imagery, captured in the low-frequency 

infrared spectrum, capture the spatial distribution of soil nutrients and may be used for predictive 

processes.  

 

INTRODUCTION 

Precision agriculture aims to increase the efficiency and yield of cropping systems by 

improving the spatial and temporal precision of inputs. To accurately estimate optimal seeding 

rates, variable rate irrigation, and variable soil amendment application it is critical that an accurate 

map of soil properties is attained. Often, maps of kriged soil properties are created by a variogram 

estimated from insufficient soil samples. This insufficiency could be caused by a small sample size 

or by sample locations that fail to adequately capture the spatial distribution of soil properties. 
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While these issues could be solved by dramatically increasing the sample count, the use of high-

resolution and comprehensive soil sampling strategies is restrictive due to the prohibitive costs of 

sampling and analysis. To maintain a cost-effective strategy, a 2.5-acre grid has been accepted as 

the standard sampling scheme among farmers and consultants looking to implement precision 

agriculture technologies (Ferguson and Hergert, 2000; Godwin and Miller, 2003). While this 

strategy is certainly better than no sampling at all, it often fails to capture the true spatial 

distribution of soil properties. For precision agriculture purposes, it is essential that the sampling 

interval used captures the spatial dependence of soil characteristics, therefore allowing accurate 

kriging and mapping of fertility variables (Kerry and Oliver, 2008; Lopez-Granados et al., 2002). 

To avoid intensive sampling schemes, ancillary data must be used to supplement the ‘gaps’ in 

spatial data collected. The use of ancillary data allows for the detection of spatial patterns in soil 

fertility without the associated cost of fine-resolution sampling intervals. One readily accessible 

form of ancillary data that can be used to analyze soil properties is reflectance values recorded by 

spectroscopy.  

The relationship between soil fertility and spectrometry has become an area of great interest 

in recent years. The ability to predict or analyze soil nutrient distribution by a non-invasive process 

has potential to drastically increase the efficiency and precision of soil amendment application. 

The progress of soil nutrient extraction has been well document since the first published acid-

fluoride reagent extraction of soil P in the 1940’s (Bray and Kurtz, 1945). Since this time the 

Mehlich 1 and 3 processes have become adopted as standards of nutrient extraction for their ability 

to give accurate results across a wide range of soil types (Mehlich, 1953; Mehlich, 1984). 

Unfortunately, it is only within recent decades that spectrometry technology has been developed 

to the point that multispectral sensors can accurately measure reflectance of color, near-infrared 
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(NIR), and short-wave-infrared (SWIR) wavelengths. The introduction of these technologies into 

soil fertility management has taken many forms. The in-lab spectral recording of soil samples has 

become a common practice and has been shown to detect soil texture, fertility, cation exchange 

capacity, and organic matter (Ben-Dor and Banin, 1995; Qiao and Zhang, 2012). Unfortunately, 

this method is limited in application as it requires the collection of soil samples and specialized 

laboratory equipment to record calibrated soil reflectance results.  

An alternative method of spectral analysis can be conducted with multispectral imagery 

collected via aircraft and satellites. Remote sensing of this data allows for non-invasive large-scale 

analysis of soil properties. To determine the viability of remotely sensed multispectral data, spatial 

bi-correlation analysis will be used to detect those wavelengths which best capture the spatial 

variability present in soil fertility variables (K, P, and pH). This study seeks to analyze the 

usefulness of bi-correlation analysis of multispectral imagery (collected via satellite) and soil 

electrical conductivity to aid the creation of soil sampling schemes for precision agriculture 

purposes. 

 

MATERIALS & METHODS 

Description of Study Sites: 

 Two study sites were used for assessment of spatial variability of soil fertility using 

ancillary data classification. Both sites are currently used in field-crop production with corn being 

the primary product. The first site, hereby called ‘Samson’ is an 18.62-hectare field located at 

31.115815, -86.093371, in Geneva County, Alabama near the city of Samson. The second site, 

hereby called ‘Autaugaville’ is a 41.56-hectare field located at 32.391148, -86.605381, in Autauga 
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County, Alabama near the town of Autaugaville. Table 2 records the soil series present at each site 

as well as the percentage of area. The study site locations are presented in Figure 1. Study site soil 

series maps are presented in Figure 2. 

 

Soil Sampling 

 For both the 2018 and 2019 growing seasons, samples were collected in late winter from 

the Samson and Autaugaville study sites before soil amendments were applied. These samples 

were collected on a 50 m grid and were tested for P, K, magnesium, calcium, and zinc as well as 

soil pH, cation exchange capacity, and organic matter using the Mehlich I extraction method. Only 

soil P, K, and pH were used in this study. Soil P and K were selected due to their huge impact on 

crop growth, health, and yield (Prajapati, 2012; Ryan et al., 2012; Wang et al., 2013); and in 

consideration that they are the only two soil macronutrients to have standardized laboratory 

extraction methods and recommendations. Additionally, soil pH is studied due to the large 

influence it has over nutrient interactions, nutrient absorption, and plant health (Haynes and Naidu, 

1998). 

Samples were collected by bulk sampling within a 3 m radius of each grid center, with a 

collection depth of six inches. 156 samples were collected in Autaugaville in 2018 and 124 samples 

were collected in 2019. Sample size and study area was decreased in 2019 due to flood conditions 

in the Northeastern portion of the study site. The full sample size for 2018 data was used for spatial 

interpolation as this data contributed to the spatial dependence of soil variables. The Autaugaville 

area of interest (AOI) was restricted to the area sampled in the 2019 season to provide comparable 

spatial results between the two years. At the Samson study site, 101 samples were collected for 

both 2018 and 2019. Additionally, a 100 m grid was placed offset to the original 50 m grid to 
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increase the sample count and allow for more accurate capturing of varying spatial ranges at the 

Samson site. Maps of the sampling strategy at both Samson and Autaugaville are shown in Figure 

3. Soil fertility distributions for Autaugaville are presented in Figure 5 and fertility distributions 

for Samson are presented in Figure 6. 

 

Ancillary Data. 

 Remotely sensed imagery was sourced using USGS Earth Explorer. Satellite data was used 

from USGS’ and NASA’s Landsat Program (Landsat 7 and 8) as well as the ESA’s Copernicus 

Program (Sentinel 2a). Theses satellites use multispectral sensors to record multiple bands of 

surface reflectance values which are corrected and calibrated by their respective space agency. 

Imagery was selected by two primary criteria. First, imagery captured near to the date of soil 

sampling was given preference. As the purpose of this study is to detect the significance of 

remotely sensed data on the creation of soil sampling schemes, using imagery that was taken soon 

before soil sampling is important as it will more accurately represent the current soil conditions 

that will be collected by soil sampling. Secondly, imagery was selected based on the lack of 

obstructions (cloud cover, vegetation, etc.) that may inhibit a clear recording of soil reflectance 

values. A table of Landsat 7, Landsat 8, and Sentinel 2a band wavelengths can be viewed in Table 

3 and collection dates at each field can be viewed in Table 4. Figure 7 shows the relationship 

between bands among the three satellites. 

 In addition to remotely sensed data, spatial correlation results were also analyzed between 

soil sampling results and another commonly recorded parameters, Soil EC. Soil EC was collected 

at both Samson and Autaugaville in 2016 using a Veris 3100 equipped with a real-time kinematic 
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GPS to record Shallow EC (approximately 1 ft.), Deep EC (approximately 3 ft), and elevation 

values. Soil EC data is mapped for Autaugaville and Samson in Figure 4. 

 

Data Preprocessing: 
 Before analysis, all geospatial data were converted to the Universal Transverse Mercator 

(UTM) coordinate system in the North American Datum of 1983 (NAD83), which uses meters as 

the standard unit of measurement. As both sites are located in Alabama, UTM zone 16N was used. 

Study sites are relatively close to the standard meridian of the projection zone; therefore, the spatial 

data is assumed to contain minimal scale distortion and can be accurately used for spatial analysis. 

Geographic transformations, tabular analysis, and spatial data creation were completed using 

ESRI’s ArcGIS 10.4.1 for Desktop. Data clipping and organization were completed using GDAL 

2.3.2 from the Open Source Geospatial Foundation. 

 

Spatial Interpolation: 
As a result of the various collection resolutions used to create data it was necessary that all 

variables were transformed to the same spatial scale before spatial correlation analysis. To 

accomplish this, an overlay grid was created for each study site. This polygon grid is necessary for 

the interpolation of original data to a standard scale. Due to the possibility of over-generalizing, a 

grid size must be defined that is fine enough to not eliminate the small-scale spatial variability 

present in original data. A polygon size of 10 m x 10 m was determined to accurately portray the 

spatial variability present while also reducing processing time and prediction errors from 

interpolation. The 10 m grids for both Autaugaville and Samson sites can be seen in Figure 3. 

Values for P, K, soil pH, soil EC (shallow and deep), Landsat 7 bands 1 – 7, Landsat 8 bands 1 – 
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7, and Sentinel 2a bands 1 – 12 were estimated for each grid polygon by ordinary kriging 

interpolation. Ordinary kriging was performed in SpaceStat 4.0.21 by BioMedware Inc. 

(https://www.biomedware.com/software/spacestat/). This interpolation process effectively 

resamples each variable into the 10 m spatial scale, resulting in a standard sample size for all 

variables. The polygon count is 4,387 for Autaugaville and 2,000 for Samson.  

Spatial interpolation by kriging is done by assigning weights to observed values based on 

their distance from the point that is to be interpolated. The process of kriging estimates the value 

of an unobserved location by interpolating from weighted points within the determined range of 

the semi-variogram model.  Ordinary kriging differs from other spatial interpolation methods (such 

as Inverse Distance Weighted, IDW) in that three major parameters are used to guide the kriging 

process. The range, or the distance at which auto-correlation between points can no longer be 

observed, is used to determine the suggested search distance for the interpolation process. The 

nugget is a measure of variation in observations that occurs at distances smaller than the sampling 

interval. Lastly, the sill represents the variation in observations that occurs at the range, where 

autocorrelation is no longer observed.  

Ordinary kriging differs from other spatial interpolation methods (such as Inverse Distance 

Weighted, IDW) in that it will only interpolate new data using observations within the threshold 

distance of spatial autocorrelation, called the range. The range of each variable is determined by 

calculating the empirical semi-variogram of the data, which plots the Euclidean distances of 

observed data pairs against the recorded difference between data pairs. The semi-variogram γ(h), 

which is defined by Matheron (1963) as half the average squared difference between points 

separated at distance h. The empirical semi-variogram is calculated as: 
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!(ℎ) = 	 1
2|*(ℎ)| +(,- − ,/)0

1(2)
 

where N(h) is the set of all pairwise Euclidean distances i – j = h, |N(h)| is the number of distinct 

pairs in N(h), and zi and zj are data values at spatial location i and j, respectively. h represents a 

distance measure with magnitude only (Ford, 2010).  

Typically, semi-variance observations are grouped into bins by lag size selection, h ± d 

rather than using exact distances. Therefore, the empirical semi-variograms γ̂(h ± d) can be 

calculated for each bin: 

!3(ℎ	±	d) = 	 1
2|*(ℎ	±	d)| + |,- − ,/|0

(-,/)5	1(2	±	d	)
 

Each pair of points separated by h plus or minus lag size range d are found. These form the set of 

points	*(ℎ	±	d	) ≡ {89-, 9/: ∶ <9-, 9/< = 	ℎ	±	d	; >, ? = 1,… ,*}. The number of points in this bin 

is	*(ℎ	±	d	). For each pair of points i, j, the square of the difference in the observation is found 

(<,- −	,/<)2. These squared differences are added together and normalized by the natural 

number|*(ℎ	±	d	)|. The result is then divided by 2 for the semi-variogram. 

A model is then fit to best capture the spatially dependent variation of the dataset by 

minimizing residuals and predictive error. Often, the fit of the model can be improved by the 

addition of a second model, allowing for each model to better fit part of the data (short and long 

spatial ranges), this linear combination of models is called a nested model. Not every semi-

variogram is best captured by a nest model and may instead be best represented by a single model. 

Two important parameters for the semi-variogram are the nugget and sill. The sill is defined as the 

difference in observation values at the range. The nugget effect is the phenomena which results in 
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a difference value greater than zero, even at an infinitesimally small separation distance. The 

nugget to sill ratio is often used to indicate what fraction of overall variance is present at a distance 

smaller than the smallest separation distance. This ratio indicates how much variance has been 

accounted for by the model (Allington, 2010). 

The nugget to sill ratio and range created from the semi-variogram are recorded from 

Autaugaville data in 2018 (Table 11) and 2019 (Table 12) and Samson data in 2018 (Table 13) 

and 2019 (Table 14).  

 

Correlation Analysis: 
 The Pearson product-moment correlation coefficient was calculated for both years at each 

study site. This relationship represents the strength of a linear relationship between soil tested 

variables and ancillary data. For this study K, P, soil pH, and soil EC were used as dependent 

variables. The strength of correlation was measured between these dependent variables and the 

ancillary data: Landsat 7 bands 1 - 7, Landsat 8 bands 1 - 7, Sentinel bands 1 - 12, and soil EC. 

Correlation relationships were calculated using Python 2.7 and the Pandas package. 

 

RESULTS AND DISCUSSION 

Soil Attributes Summary Statistics: 
The summary statistics of the soil P, K, and soil pH measured in 2018 and 2019 at both 

study sites are presented in Table 5. Autaugaville displayed relatively inconsistent variation in soil 

variables between 2018 and 2019. Soil K σ changed by 11.76 lb./acre, soil P σ changed by 15.72 

lb./acre, and soil pH σ changed by 0.08. For every variable, σ was higher for 2019 than the previous 

year. This increase in variation could be attributed to heavier rainfall during the 2018 growing 
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season, likely increasing the runoff and seepage of applied soil nutrients in portions of the field 

more suited for collecting water. 

By comparison, Samson soil variables showed very little variation between the 2018 and 

2019 testing dates. Soil K σ only changed by 4.01 lb./acre, soil P σ changed by just 1.31 lb./acre, 

and soil pH σ changed by 0.03. This, in combination with the relatively stable Min – Max values, 

indicates that soil conditions and treatments were very similar for both years.  

In general, the distributions are symmetric with only one variable, Autaugaville P, showing 

a skewness exceeding 1.0 in both 2018 and 2019. Despite the slight skewness observed, these 

observations were not transformed as the use of a logarithm did little to change the skewness of 

the distributions. The distribution of Samson K in 2019 appears to be somewhat bimodal, though 

all others display a unimodal distribution. 

The product moment correlation coefficients between soil variables, by year, all displayed 

a weak trend, as seen in the matrix at Table 6. At the Autaugaville site, all of the significant 

correlations, though relatively weak, were positive. This positive relationship results in the 

presence of “pockets” of high or low soil fertility. It is possible that this effect is caused by an 

external limiting factor (I.e. water availability or over-saturation at this non-irrigated site) which 

prohibited the full uptake of available soil nutrients by crops. Conversely, at the Samson site, P 

and K displayed a significant negative relationship during both years, although these correlations 

were relatively weak. 

 

Correlation and Semi-variogram Analysis: 
 Correlation results for soil fertility and satellite spectral bands are presented in Tables 7 

(Autaugaville, 2018), 8 (Autaugaville 2019), 9 (Samson 2018), and 10 (Samson 2019). In general, 
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the strongest relationships are seen between soil fertility variables and spectral bands in the Near-

Infrared (NIR), Shortwave-Infrared (SWIR), and Vegetation-Red-Edge (VRE) spectrums. These 

three portions of the electromagnetic spectrum each contain a different section of low-frequency 

infrared reflectance. It is also expected that if two variables are correlated they will also exhibit a 

similar spatial variability and range. A comparison of the empirical and fitted experimental semi-

variograms allows for analysis of spatial behavior. Fitted semi-variogram parameters are provided 

in Table 11 (Autaugaville 2018), 12 (Autaugaville 2019), 13 (Samson 2018) and 14 (Samson 

2019). Results are presented here by ancillary data type, further divided by study site and sampling 

year.  

 

Landsat 7 and Soil K: 
 Correlations between Landsat 7 reflectance values and soil macronutrients was completed 

for the Autaugaville study site in both 2018 and 2019, and the Samson site in 2019. At the 

Autaugaville site, bands 1 (blue) and 3 (red) displayed moderate correlations to soil K in both 2018 

and 2019. Additionally, band 4 (NIR) displayed a strong correlation to soil K in 2018 and a 

moderate correlation in 2019. This correlation with reflectance from the NIR range is consistent 

with the reflectance of potassium in both soils and crop canopy (Yu et al., 2016; Pimstein et al., 

2011).  

At the Samson site, soil K correlations were consistently higher than those recorded at 

Autaugaville, likely due to the better conditions under which imagery was collected. Strong 

relationships were observed for bands 1 (blue), 3 (red), 5 (SWIR1), and 7 (SWIR2). The 

strengthened relationship in the SWIR range (1500 – 2350 nm) is also consistent with the results 

published by Yu et al. (2016) who found a strong relationship between soil K and indices using 
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SWIR.  The ranges of the red and SWIR1 bands (258 m and 299 m), by fitted variogram model, 

are also relatively similar to the range fitted for soil K (243 m) indicating that they share a common 

spatial variability with K. The consistency of relationship strength across the two years, and two 

study sites, indicates that these bands (blue, red, NIR, SWIR) have potential to be used for the 

remote detection of soil K. It is likely that the creation of a potassium-specific indices, using a 

linear combination of red, blue, and NIR, could result in a stronger relationship and greater 

predictive power. 

 

Landsat 7 and Soil P: 
 Similar to soil K, soil P was found to have moderate relationships with Landsat 7 bands 1 

(blue), 2 (green), 3 (red), and 7 (SWIR1) at the Autaugaville study site. Additionally, the range for 

2018 soil P (2411 m) and band 7 (2344 m) were similar as were 2019 soil P (78 m) and band 4 (98 

m). Unfortunately, none of these moderate relationships were consistent between the two years 

sampled. When it comes to predictive power, this inconsistency is just as damaging as weak 

correlative relationships. A lack of temporal steadiness points towards inconsequential correlations 

and non-repeatable results. On the other hand, relationships from 2019 imagery at the Samson 

study site were strong for every band besides band 4 (NIR). It is suspected that, once again, the 

increased correlation is a result of better field conditions during the capturing of Samson imagery, 

allowing for a better recording of bare-soil reflectance. This indicates that soil P, or an external 

variable controlling the distribution of soil P, is not detectable by Landsat 7 sensors when crop 

residue is present. 

 

Landsat 7 and soil pH: 
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 Landsat 7 data failed to produce any moderate strength correlation coefficients with 

Autaugaville soil pH for both 2018 and 2019, and with Samson soil in 2019. This comprehensive 

lack of correlative strength implies that Landsat 7 sensors are not appropriate for the detection of 

soil variables responsible for pH. This is not to say that the spatial distribution of soil pH is 

undetectable by remotely sensed imagery; rather that the band widths, method of capture, or 

preprocessing of Landsat 7 imagery inhibit this detection. 

 

Landsat 8 and Soil K: 
 Correlation coefficients returned for soil K in 2018 at the Autaugaville study site contained 

no moderate or strong relationships. While it cannot be expressed with certainty, it is likely that 

the field conditions at the time of imagery capture prohibited a quality recording of soil reflectance. 

This is further strengthened by the lack of relationship between Landsat 8 data and soil P and soil 

pH for Autaugaville 2018. This lack of relationship, which differs from the results attained from 

2019 and the Samson study site indicate that noise was introduced into the imagery masking its 

relationship with soil variables. In contrast to this, Landsat 8 imagery from 2019 showed moderate 

relationships to soil K in bands 5 (NIR), 6 (SWIR1), and 7 (SWIR2). Unfortunately, none of these 

bands also exhibited similarity to the spatial range from the fitted variogram model for soil K. 

 Soil K data from the Samson study site in 2018 displayed moderate negative relationships 

with Landsat 8 bands 2 (blue), 3 (green), and 4 (red) and additional strong negative relationships 

with bands 6 (SWIR1) and 7 (SWIR2). These are similar to the results calculated from soil K data 

in the following year, 2019, which resulted in the strongest relationships with bands 2 (blue), 6 

(SWIR1), and 7 (SWIR2). It was also observed that the 2018 soil K spatial range (74 m) was 

similar to the range of band 3 (86 m) and 7 (89 m). Spatial ranges similar to 2019 soil K (244 m) 
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included bands 1 (234 m) and 7 (237 m) in 2019. The strong correlation and similar spatial ranges 

indicate that these reflectance values will be useful for the prediction of soil K spatial distribution. 

 

Landsat 8 and Soil P: 
 Similar to the results reported for soil K, Landsat 8 data correlated poorly with soil P from 

the Autaugaville study site in 2018 and resulted in moderate positive correlations for bands 5 

(NIR), 6 (SWIR1), and 7 (SWIR2) in 2019. It was observed that the spatial range for soil P in 2019 

(79 m) and band 4 (98 m) were very similar 

 At the Samson study site, in 2018, Landsat 8 bands 6 (SWIR1) and 7 (SWIR2) displayed 

moderate positive relationships with soil P. In 2019, the strongest positive relationships were once 

again produced with bands 6 (SWIR1) and 7 (SWIR2). In 2018, the range of soil P (86 m) was 

very close to that shown by band 7 (89 m), yet in 2019 the range of soil P was observed to have 

changed to 145 m, thus making it closer to the 112 m range observed for band 6. It is likely that 

both of the SWIR bands from Landsat 8 can be used for the mapping of soil P distributions. 

 

Landsat 8 and Soil pH: 
 Interestingly, Landsat 8 data correlated only weakly with soil pH values at both study sites 

for both years, except for Autaugaville 2018, were every band displayed a moderate relationship. 

It is suspected that this is also caused by the suboptimal recording of reflectance values at the time 

of imagery capture. These faulty recordings highlight the importance of clear and well-timed 

imagery for soil fertility mapping.  

 

Sentinel 2a and Soil K: 
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 At the Autaugaville study site, in 2018, soil K displayed a moderate negative relationship 

with Sentinel band 2 (blue) and a moderate positive relationship with bands 6 (VRE2), 7 (VRE3), 

and 8 (NIR). Despite their correlations, these bands did not show similarity to the spatial range of 

soil K. For the 2019 soil K samples, only Sentinel band 2 (blue) returned a moderate negative 

correlation. This band also failed to mimic the spatial range established by soil K distribution. 

 At the Samson study site, in 2018, soil K displayed a strong negative relationship with 

bands 11 (SWIR1) and 12 (SWIR2). This relationship is confirmed by the similar spatial range of 

band 12 (76 m) to soil K (74 m). Similar results are observed in 2019 with strong negative 

correlations for bands 11 (SWIR1) and 12 (SWIR2) followed by bands 2 (blue) and 3 (green). 

These repeated relationships and similarities in range suggest that the spectrum captured by 

Sentinel bands 11 and 12, supplemented by blue reflectance, and could be used for the prediction 

of soil K variability.  

 

Sentinel 2a and Soil P: 
  No strong relationships were observed between data collected by Sentinel sensors and 

Autaugaville soil P. A moderate positive relationship was detected from band 11 (SWIR1) in 2018 

and band 2 (blue) in 2019. Due to the inconsistency across years and the lack of similarity in spatial 

ranges, it is unlikely that the Sentinel imagery captured the spatial distribution of soil P. 

 At the Samson study site, moderate positive relationships were displayed by bands 11 

(SWIR1) and 12 (SWIR2) in 2018, which also displayed strong positive relationships in 2019. 

Additionally, the range calculated for soil P in 2018 was 86 m, and the range of band 12 that same 

year was 76 m. This indicates that the same bands which likely capture the distribution of soil K 

also capture soil P, though the relationships are inversed. 
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Sentinel 2a and Soil pH: 
 All Sentinel bands failed to result in anything greater than a weak relationship with the 

exception of bands 2 (blue) and 3 (green) at the Samson study site in 2018. Due to the general lack 

of correlation across both study sites and both years, it is impossible to confidently declare any 

remote data from Sentinel 2a fit for soil pH distribution prediction. 

 

Soil EC and Soil K: 
 At the Autaugaville study site in 2018, Shallow soil EC displayed a moderate negative 

relationship to soil K. In 2019, Shallow soil EC once again outperformed Deep soil EC and 

returned a strong negative correlation. Interestingly, these results were reversed for the Samson 

study site, where both shallow and deep soil EC displayed strong positive correlations. Heiniger 

et al. (2003) reported that, “If we assume that salinity is not a major factor in most productive 

agricultural fields, it follows that in nonsaturated conditions, changes in soil nutrient levels will 

most likely influence ECa by changing ECs through differences in the type and number of cations 

held by the soil particles.”  It is therefore possible that the inverse relationships observed at the 

two study sites is caused by a difference in field conditions at the time of EC sampling.  

As previously noted, the Autaugaville study site is located along a river and experiences 

frequent flooding conditions. Approximately 44% of the field is composed of McQueen series soil, 

which is described as slow permeability with a water table perched at a depth of 4 to 6 feet during 

winter and spring of most years (NRCS, 1998). An additional 32% of the field contains soil from 

the Roanoke series which is classified as “poorly drained” with slow to very slow permeability 

(NRCS, 2006). It is possible that saturated field conditions have impaired the detection of soil K 
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by reporting highly conductive results in areas with low K. This theory is supported by the relative 

lack of similarity between soil K and soil EC ranges at the Autaugaville site. On the other hand, 

the ranges for soil K (244 m) and shallow soil EC (258 m) were very similar for Samson 2019. 

This, along with a strong correlative relationship, suggests that soil EC may be used as an effective 

variable for the detection of soil K variability in non-saturated fields. 

 

Soil EC and Soil P: 
 Shallow soil EC returned only moderate negative relationships with soil P for both years 

at the Autaugaville site. These variables were not found to display a similar spatial range to that 

calculated for soil P in either year. At the Samson study site, strong correlations were detected for 

both shallow and deep soil EC in both years, with shallow soil EC displaying a slightly stronger 

relationship. The spatial ranges for deep soil EC (189 m) and soil P (145 m) were relatively similar 

and imply potential predictive power. 

 

Soil EC and Soil pH: 
 Both shallow and deep soil EC returned only weak negative correlation with soil pH at the 

Autaugaville study site for both 2018 and 2019. These results were very similar to those attained 

by soil K and likely suffer from the same issue of saturation masking. Also similar to soil K was 

the strong positive relationships observed for deep and shallow soil EC in 2018 at Samson followed 

by moderate positive relationships in 2019. The spatial range of deep soil EC (626 m) and soil pH 

(563 m) may imply a vague similarity of spatial distribution but fails to identify a primary 

candidate for soil pH distribution prediction. 
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Ancillary Data Combinations: 
 By using spatial bi-correlation analysis and semi-variogram analysis to determine those 

ancillary data which accurately display the distribution of soil fertility variables, combinations can 

be created to further increase the accuracy and certainty of distribution prediction. The condensing 

of overlapping bands helps to clarify the specific wavelengths that are shown to most accurately 

portray soil variables. For K, the wavelengths 730 – 900 nm, 1540 – 1680 nm, and 2080 – 2300 

nm tend to best relate soil spatial distribution. Soil P is better represented by 450 – 590 nm, 1540 

– 1680 nm, and 2080 – 2300 nm. Lastly, soil pH is distributed similarly to 450 – 580 nm and 740 

– 880 nm. 

 

CONCLUSION 

Correlation indicates that remotely sensed multispectral imagery can serve as ancillary data for the 

prediction of soil fertility spatial ranges. While moderate relationships were detected across the 

board, especially among wavelengths in the near-infrared and shortwave-infrared ranges, it is 

difficult to find consistent correlation patterns across the two study sites and two years included in 

this study. In general, the Samson site displayed stronger relationships, especially for soil P and 

soil K. The cropping system used at the Samson site involves the use of traditional tillage and early 

spraying of winter cover crops. This practice allows for a greater window in which satellite can be 

captured of bare soil reflectance. It is likely that the decreased strength of relationships detected at 

the Autaugaville site are the result of erroneous reflectance values caused by crop residue, natural 

field weed conditions, and lack of soil disturbance at the time of imagery capture. This change in 

relationship strength indicates that the use of multispectral imagery at any given field could be 

limited by the tillage and cover practices implemented. Fortunately, soil EC detection is not 

dependent on cover practices. Additionally, the semi-permanence of soil EC, as a pseudo-sampling 
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of soil texture values, makes it a more universal resource for the detection of soil fertility spatial 

ranges.  

 It can be concluded that the combination of remotely sensed multispectral imagery and soil 

EC may serve as an effective form of ancillary data for the creation of soil sampling strategies. 

This can be accomplished by the creation of soil nutrient predications, an analysis of prediction 

accuracy, and the resulting minimum number of samples which could be collected to improve the 

accuracy of spatial predictions. For future research, it is recommended that these data sources 

continue to be analyzed as a set of independent data for soil nutrient prediction. Possible 

methodologies include spatial regression, cokriging, or unsupervised classification to create 

accurate nutrient prescription maps from relatively sparse sampling data. In the next chapter, we 

will explore the use of principal component analysis as a method of data dimension reduction to 

allow for the use of K-means classification as a prediction of soil fertility zones.   



 

53 
 

 
TABLES 

Table 2. Study Site Soil Series 

 
Samson Soils   

Soil Series % of AOI Taxonomic Class 
Alpin Sand 20.6 Thermic, coated Lamellic Quartzipsamments 
Eunola Sandy Loam 69.7 Fine-loamy, siliceous, semiactive, thermic Aquic 

Hapludults 
Leaf-Lenoir Complex 9.7 Fine, mixed, semiactive, theric Aeric Paleaquults 

 
Autaugaville Soils   

Soil Series % of AOI Taxonomic Class 
Altavista Loam 9.9 Fine-loamy, mixed, semiactive, thermic Aquic 

Hapludults 
Blanton Loamy Sand 1.7 Loamy, siliceous, semiactive, thermic Grossarenic 

Paleudults 
Lakeland Loamy Sand 10.3 Thermic, coated Typic Quartzipsamments 
McQueen Silt Loam 43.7 Fine, mixed, semiactive, thermic Typic Hapludults 
Roanoke Complex 32.0 Fine, mixed, semiactive, thermic Typic Endoaquults 
Wickham Fine Sandy 
Loam 

2.3 Fine-loamy, mixed, semiactive, thermic Typic 
Hapludults 
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Table 3. Description of Remote Data Wavelengths 

Satellite Band # Description Spectral range (nm) 

Landsat 7 Band 01 Blue 450-520 
 Band 02 Green 520-600 
 Band 03 Red 630-690 
 Band 04 Near Infrared 770–900 
 Band 05 Shortwave Infrared 1 1550-1750 
 Band 06 Thermal Infrared 10400-12500 
 Band 07 Shortwave Infrared 2 2090-2350 

Landsat 8 Band 01 Ultra-Blue 435-451 
 Band 02 Blue 452–512 
 Band 03 Green 533–590 
 Band 04 Red 636-673 
 Band 05 Near Infrared 851–879 
 Band 06 Shortwave Infrared 1 1566–1651 
 Band 07 Shortwave Infrared 2 2107–2294 

Sentinel 2A Band 01 Coastal Aerosol 430.4-45734 
 Band 02 Blue 447.6–545.6 
 Band 03 Green 537.5–582.5 
 Band 04 Red 647.5-681.5 
 Band 05 Vegetation Red Edge 694.4-713.4 
 Band 06 Vegetation Red Edge 731.2–749.2 
 Band 07 Vegetation Red Edge 768.5–796.5 
 Band 08 Near Infrared 762.6–907.6 
 Band 09 Narrow Near Infrared 932-958 
 Band 10 Shortwave Infrared Cirrus 1336-1411 
 Band 11 Shortwave Infrared 1 1542.2–1685.2 
 Band 12 Shortwave Infrared 2 2081.4–2323.4 
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Table 4. Remote Sensing Data Collection Dates 

Site Year Satellite Collection Date 

Autaugaville 2018 Landsat 7 Monday, February 19, 2018 
  Landsat 8 Wednesday, March 7, 2018 
  Sentinel 2a Saturday, March 31, 2018 
 2019 Landsat 7 Friday, January 11, 2019 
  Landsat 8 Tuesday, December 18, 2018 
  Sentinel 2a Friday, March 29, 2019 

Samson 2018 Landsat 7 Wednesday, January 17, 2018 
  Landsat 8 Thursday, January 25, 2018 
  Sentinel 2a Monday, February 19, 2018 
 2019 Landsat 7 Friday, January 11, 2019 
  Landsat 8 Monday, January 28, 2019 
  Sentinel 2a Thursday, March 21, 2019 

 
  



 

56 
 

Table 5. Descriptive statistics of soil fertility samples collected in 2018 and 2019 

All samples composited by bulk sampling at a 6” depth and extracted with Mehlich III 
extractant. All results are given in lb/acre. 

Variable  Descriptive Statistics (K/P results given in lb./acre) 

  Mean Min - Max S.D Variance Kurtosis Skewness 

Autaugaville        
2018        

 K 152.14 58 - 293 41.70 1739.00 0.74 0.63 
 P 20.93 4 - 135 9.37 87.80 24.45 1.13 
 pH 5.95 4.7 - 7.7 0.43 0.19 1.50 0.42 

2019      
 

 
 K 163.05 62 - 408 53.46 2858.00 2.08 0.65 
 P 34.71 6 - 124 25.09 629.46 3.09 1.86 
 pH 6.47 4.8 - 7.9 0.51 0.26 0.43 -0.11 

Samson      
 

 
2018      

 
 

 K 179.50 47 - 370 65.27 4260.00 -0.26 0.23 
 P 61.65 9 - 130 31.21 974.17 -1.09 -0.06 
 pH 6.23 5.2 - 7.6 0.45 0.20 0.27 0.24 

2019      
 

 
 K 181.48 52 - 357 69.28 4800.00 -0.68 0.09 
 P 65.83 13 - 144 32.52 1057.00 -0.58 0.46 
 pH 5.83 5.1 - 7.6 0.42 0.17 2.06 0.90 

 
Table 6. Soil fertility samples correlation matrices 

Autaugaville 2018  Autaugaville 2019 

 K P    K P  
pH -0.05 0.11   pH 0.29* 0.49**  

Samson 2018  Samson 2019 

 K P    K P  
pH 0.30* -0.05   pH 0.33* 0.33  

*, significant for P < 0.01; ** significant for P < 0.0001, all other correlation coefficients are 
not significant. 
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Table 7. Correlations between soil fertility and ancillary variables. Autaugaville 2018 

Ancillary Data Band K P pH Description 

Landsat 7 1 -0.317** -0.126** 0.084** Blue 
 2 -0.258** 0.447** -0.005 Green 
 3 -0.317** 0.366** 0.022 Red 
 4 0.538** -0.160** -0.194** Near Infrared 
 5 0.060** -0.118** -0.021 Shortwave Infrared 1 
 7 -0.029 0.411** 0.039* Shortwave Infrared 2 

Landsat 8 2 -0.097** 0.024 0.346** Blue 
 3 -0.092** 0.045* 0.331** Green 
 4 -0.101** 0.048* 0.342** Red 
 5 -0.120** 0.081** 0.381** Near Infrared 
 6 -0.127** 0.098** 0.368** Shortwave Infrared 1 
 7 -0.150** 0.048* 0.359** Shortwave Infrared 2 

Sentinel 2a 2 -0.277** -0.249** 0.061** Blue 
 3 -0.038 -0.106** 0.047* Green 
 4 -0.199** -0.225** -0.007 Red 
 5 0.125** 0.016 0.058* Vegetation Red Edge 
 6 0.385** 0.155** 0.046* Vegetation Red Edge 
 7 0.409** 0.181** 0.027* Vegetation Red Edge 
 8 0.349** 0.182** -0.004 Near Infrared 
 11 0.119** 0.309** 0.020 Shortwave Infrared 1 
 12 0.018 0.286** 0.072** Shortwave Infrared 2 

EC Deep -0.126** -0.202** -0.083** EC Deep 
 Shallow -0.319** -0.471** -0.069** EC Shallow 

*, significant for P < 0.01; ** significant for P < 0.0001, all other correlation 
coefficients are not significant. Moderate-to-Strong relationship in Bold. 
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Table 8. Correlations between soil fertility and ancillary variables. Autaugaville 2019 

Ancillary Data Band K P pH Description 

Landsat 7 1 -0.338** -0.375** -0.124** Blue 
 2 -0.215** -0.265** -0.120** Green 
 3 -0.336** -0.263** -0.101** Red 
 4 0.430** 0.148** 0.086** Near Infrared 
 5 0.057** 0.062** 0.062** Shortwave Infrared 1 
 7 -0.154** -0.018 0.058* Shortwave Infrared 2 

Landsat 8 2 0.188** 0.181** 0.136** Blue 
 3 0.139** 0.035 0.022 Green 
 4 -0.035 -0.053* -0.012 Red 
 5 0.472** 0.278** 0.176** Near Infrared 
 6 0.441** 0.381** 0.244** Shortwave Infrared 1 
 7 0.408** 0.378** 0.252** Shortwave Infrared 2 

Sentinel 2a 2 -0.403** -0.352** -0.126** Blue 
 3 -0.250** -0.244** -0.101** Green 
 4 -0.055** -0.150** -0.139** Red 
 5 -0.099** -0.142** -0.039* Vegetation Red Edge 
 6 -0.034 0.035 0.162** Vegetation Red Edge 
 7 0.027 0.083** 0.190** Vegetation Red Edge 
 8 0.023 0.084** 0.164** Near Infrared 
 11 0.151** 0.093** -0.083** Shortwave Infrared 1 
 12 0.117** 0.084** -0.086** Shortwave Infrared 2 

EC Deep -0.337** -0.195** -0.062** EC Deep 
 Shallow -0.567** -0.420** -0.201** EC Shallow 

*, significant for P < 0.01; ** significant for P < 0.0001, all other correlation 
coefficients are not significant. Moderate-to-Strong relationship in Bold. 
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Table 9. Correlations between soil fertility and ancillary variables. Samson 2018  

Ancillary Data Band K P pH Description 

Landsat 8 2 -0.493** 0.219** -0.008 Blue 
 3 -0.405** 0.145** 0.081 Green 
 4 -0.423** 0.201** 0.127** Red 
 5 -0.017 -0.144** -0.163** Near Infrared 
 6 -0.644** 0.394** -0.154** Shortwave Infrared 1 
 7 -0.633** 0.392** -0.093** Shortwave Infrared 2 

Sentinel 2a 2 0.114** -0.143** 0.369** Blue 
 3 0.004** -0.091** 0.312** Green 
 4 -0.182** 0.051** 0.202** Red 
 5 -0.192** 0.037** 0.184** Vegetation Red Edge 
 6 0.091** -0.180** 0.295** Vegetation Red Edge 
 7 0.126** -0.210** 0.289** Vegetation Red Edge 
 8 0.073** -0.158** 0.251** Near Infrared 
 11 -0.519** 0.346** -0.069** Shortwave Infrared 1 
 12 -0.548** 0.387** -0.095** Shortwave Infrared 2 

EC Deep 0.680** -0.561** 0.528** EC Deep 
 Shallow 0.675** -0.579** 0.538** EC Shallow 

*, significant for P < 0.01; ** significant for P < 0.0001, all other correlation coefficients are not 
significant. Moderate-to-Strong relationship in Bold. 
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Table 10. Correlations between soil fertility and ancillary variables. Samson 2019  

Ancillary Data Band K P pH Description 

Landsat 7 1 -0.580** 0.533** -0.083* Blue 
 2 -0.478** 0.507** 0.003 Green 
 3 -0.522** 0.527** -0.001 Red 
 4 0.180 -0.042** 0.103** Near Infrared 
 5 -0.589** 0.565** -0.101** Shortwave Infrared 1 
 7 -0.591** 0.576** -0.058* Shortwave Infrared 2 

Landsat 8 2 -0.559** 0.602** 0.061* Blue 
 3 -0.530** 0.553** 0.059* Green 
 4 -0.581** 0.574** 0.041 Red 
 5 0.221** -0.148** 0.026 Near Infrared 
 6 -0.686** 0.626** -0.102** Shortwave Infrared 1 
 7 -0.678** 0.625** -0.072* Shortwave Infrared 2 

Sentinel 2a 2 -0.616** 0.497** -0.257** Blue 
 3 -0.517** 0.439** -0.185** Green 
 4 -0.349** 0.294** -0.153** Red 
 5 -0.268** 0.242** -0.135** Vegetation Red Edge 
 6 -0.277** 0.264** -0.144** Vegetation Red Edge 
 7 -0.254** 0.244** -0.163** Vegetation Red Edge 
 8 -0.261** 0.245** -0.176** Near Infrared 
 11 -0.644** 0.546** -0.267** Shortwave Infrared 1 
 12 -0.685** 0.588** -0.235** Shortwave Infrared 2 

EC Deep 0.751** -0.507** 0.480** EC Deep 
 Shallow 0.725** -0.568** 0.458** EC Shallow 

*, significant for P < 0.01; ** significant for P < 0.0001, all other correlation 
coefficients are not significant. Moderate-to-Strong relationship in Bold. 
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Table 11. Parameters of fitted variogram models for Autaugaville 2018 

Variable Nugget Sill 1 Sill 2 Range 1 Range 2 Nugget:Sill MSS 
P 140.29 33.46 957.01 60 2411 12% 0.01 
K 1082.79 760.39  234  59% 0.02 

Soil pH 0.17 0.02 0.04 852 853 73% 0.01 
EC_Shallow 4.93 5.16  279  49% 0.01 

EC_Deep 1.32 42.81 23.06 72 1252 2% 0.00 
L7_B01 770.15 816.30 2019.96 133 456 21% 0.02 
L7_B02 1357.87 1154.02 2160.19 168 482 29% 0.02 
L7_B03 2875.21 9843.82  386  23% 0.01 
L7_B04 2838.97 15599.17 26680.42 86 814 6% 0.01 
L7_B05 67.15 23775.71 186491.40 102 2361 0% 0.01 
L7_B07 9748.36 3265.90 97966.61 633 2344 9% 0.01 
L8_B02 782.02 1154632.10 257063.17 356 456 0% 0.04 
L8_B03 0.12 1201568.94 321555.84 352 458 0% 0.04 
L8_B04 0.02 1364325.20 328085.68 349 462 0% 0.04 
L8_B05 2.00 1308488.40 250940.49 340 446 0% 0.06 
L8_B06 0.08 1585038.06  333  0% 0.06 
L8_B07 1.08 1534677.52  332  0% 0.06 
S2_B02 1701.83 860.12 1140.33 184 499 46% 0.00 
S2_B03 1844.16 2943.01 532.38 178 586 35% 0.00 
S2_B04 8112.98 3476.82 5454.68 197 498 48% 0.00 
S2_B05 4071.34 9683.14 5176.74 204 2795 22% 0.00 
S2_B06 8485.11 10323.09 60014.58 161 2762 11% 0.00 
S2_B07 12414.76 10716.53 86043.96 134 2762 11% 0.00 
S2_B08 23350.75 15149.98 39616.79 147 2836 30% 0.01 
S2_B11 8865.05 29095.90 94286.77 130 2803 7% 0.00 
S2_B12 7828.41 13638.03 126225.97 100 2579 5% 0.00 

Ranges given in meters.  
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Table 12. Parameters of fitted variogram models for Autaugaville 2019 

Variable Nugget Sill 1 Sill 2 Range 1 Range 2 Nugget:Sill MSS 
P 257.61 185.78 2570.83 79 739 9% 0.01 
K 2160.57 1598.58  240  57% 0.01 

Soil pH 0.00 0.19 0.68 77 1019 0% 0.01 
EC_Shallow 4.64 3.36 2.13 146 470 46%  

EC_Deep 30.13 15.25 47.34 149 1827 32%  
L7_B01 746.63 2503.60  170  23% 0.01 
L7_B02 279.37 5218.54 18280.90 176 2691 1% 0.03 
L7_B03 121.50 12121.66  170  1% 0.01 
L7_B04 10213.69 28159.77 134905.20 98 778 6% 0.01 
L7_B05 17379.49 27223.63  235  39% 0.01 
L7_B07 82.22 23707.62  146  0% 0.02 
L8_B02 665.22 1279.87 6667.79 138 2809 8% 0.01 
L8_B03 954.52 3603.81 32799.89 118 2407 3% 0.01 
L8_B04 1085.01 10533.39 45168.01 126 2777 2% 0.01 
L8_B05 0.35 48280.47 74474.19 84 792 0% 0.01 
L8_B06 12.19 62010.57 25266.10 113 536 0% 0.01 
L8_B07 3410.05 26097.92 74107.59 148 2808 3% 0.01 
S2_B02 848.98 2210.07 595.47 156 2318 23% 0.02 
S2_B03 916.04 4001.50 699.48 176 2009 16% 0.03 
S2_B04 308.98 9938.48 27213.81 239 2854 1% 0.00 
S2_B05 1255.73 10517.82  204  11% 0.01 
S2_B06 3952.64 11806.42  170  25% 0.08 
S2_B07 3122.11 16567.17  148  16% 0.09 
S2_B08 6901.75 16560.78  149  29% 0.10 
S2_B11 2732.91 46611.39  436  6% 0.00 
S2_B12 659.24 3028.65 22980.63 86 468 2% 0.00 

Ranges given in meters. 
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Table 13. Parameters of fitted variogram models for Samson 2018 

Source Nugget Sill 1 Sill 2 Range 1 Range 2 Nugget:Sill MSS 
P 161.41 669.12 483.96 89 544 12% 0.00 
K 0.02 2357.39 2969.97 60 330 0% 0.01 

Soil pH 0.10 0.04 0.08 30 425 44% 0.00 
EC_Shallow 13.24 5.54 102.53 108 2067 11% 0.00 

EC_Deep 37.46 52.57 482.84 93 2115 7% 0.02 
L8_B02 755.67 755.67 37856.65 110 284 2% 0.01 
L8_B03 6306.11 54821.72 50474.58 113 300 6% 0.00 
L8_B04 9561.67 97385.20 190425.85 116 268 3% 0.01 
L8_B05 0.13 372216.24  103  0% 0.02 
L8_B06 6.91 182938.59 1554868.25 98 261 0% 0.01 
L8_B07 25609.73 336328.95 1608441.22 164 254 1% 0.01 
S2_B02 925.00 3009.29 10935.04 82 296 6% 0.00 
S2_B03 1776.63 6800.98 17592.46 88 293 7% 0.00 
S2_B04 1132.97 23981.59 48125.54 114 274 2% 0.00 
S2_B05 2786.46 10843.44 45228.80 78 270 5% 0.00 
S2_B06 5905.82 24656.34 13903.58 87 544 13% 0.00 
S2_B07 7851.98 32302.77 27878.68 91 1124 12% 0.00 
S2_B08 1346.73 45365.26 110942.09 91 1588 1% 0.00 
S2_B11 8491.74 55456.92 293189.70 106 299 2% 0.00 
S2_B12 12047.52 57790.91 291291.64 79 288 3% 0.00 

Ranges given in meters. 
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Table 14. Parameters of fitted variogram models for Samson 2019 

Variable Nugget Sill 1 Sill 2 Range 1 Range 2 Nugget:Sill MSS 
P 441.31 141.47 1351.68 145 564 23% 0.00 
K 2189.98 1686.68 2537.14 244 466 34% 0.01 

Soil pH 0.01 0.11 0.07 56 415 7% 0.01 
EC_Shallow        

EC_Deep        
L7_B01 291.65 2983.20 14628.29 129 258 2% 0.00 
L7_B02 0.10 10446.85 26875.80 108 260 0% 0.00 
L7_B03 2274.22 29562.55 73578.34 88 326 2% 0.00 
L7_B04 2324.89 75043.89 162660.72 111 552 1% 0.00 
L7_B05 7251.99 117756.01 322569.05 91 299 2% 0.00 
L7_B07 11379.82 116042.52 342489.67 94 311 2% 0.00 
L8_B02 47.54 14135.94 13204.78 234 284 0% 0.01 
L8_B03 1032.41 10137.25 26945.56 94 299 3% 0.00 
L8_B04 6293.62 19458.14 80808.73 119 307 6% 0.00 
L8_B05 7931.29 87477.60 100100.31 74 448 4% 0.00 
L8_B06 22431.74 88732.98 277905.08 112 307 6% 0.00 
L8_B07 2152.08 173869.69 193422.84 237 288 1% 0.00 
S2_B02 2310.92 2958.79 8699.83 86 275 17% 0.00 
S2_B03 5219.63 7706.65 14990.91 61 265 19% 0.00 
S2_B04 16473.73 30263.84 16504.36 72 338 26% 0.00 
S2_B05 2.87 21669.88 31216.08 50 283 0% 0.00 
S2_B06 5653.08 31659.77 15831.81 60 324 11% 0.00 
S2_B07 5336.09 38201.72 17242.46 57 300 9% 0.00 
S2_B08 14031.83 40054.85 16661.45 79 275 20% 0.00 
S2_B11 0.01 298167.83  214  0% 0.01 
S2_B12 28.03 286977.21 58951.89 222 271 0% 0.01 

Ranges given in meters. 
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FIGURES 

Figure 1. Study Site Locations 

  Autaugaville, AL 102.7 Acres 

Samson, AL 46.0 Acres 
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Figure 2. Study Site Soil Series (SSURGO 
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Figure 3. Soil Sampling Schemes (50 m Grid) and Interpolation Polygon (10 m Grid) 
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Figure 4. Shallow (1 ft) and Deep (3 ft) Soil EC (Autaugaville and Samson) 
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Figure 5. Autaugaville Soil Fertility Distributions 
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Figure 6. Samson Soil Fertility Distributions 
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Figure 7. Remotely Sensed Data Band Relationships 

Allows for the comparison of bands from the three satellites (Landsat 7, Landsat 8, and Sentinel 2) by plotting them according to their 

spectrum in nm. 

From https://landsat.usgs.gov 
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CHAPTER III: UNSUPERVISED CLUSTERING ANALYSIS FOR SOIL FERTILITY 
MAPPING USING ANCILLARY DATA 

 

ABSTRACT 

As site-specific nutrient management has grown in popularity the need for accurate soil 

fertility data has increased. Unfortunately, the cost of detailed soil sampling prohibits many 

farmers and consultants from collecting samples at the necessary resolution. It is necessary to 

develop techniques using easy-to-access ancillary data to guide the creation of soil sampling 

schemes. Data acquired from three sources Landsat 8, Sentinel 2a, and Soil Electrical Conductivity 

was used to analyze the predictive power of legacy data to create sampling schemes for commonly 

amended soil fertility variables, phosphorus (P), potassium (K), and soil pH. First, data was divided 

into a training set (2018 data) and a testing set (2019 data). Principal component analysis was 

performed on training data before clustering by K-means was used to assign classes to individual 

observations. By using the component loadings as a linear combination with testing data to create 

testing component scores, prediction by clustering analysis is made possible. This technique 

resulted in an average class accuracy of 67% (K), 78% (P), and 46% (pH). Changes in accuracy 

are possibly caused by unfavorable field conditions, poor ancillary data quality, or a weak 

relationship between a soil property and ancillary data. Despite these restrictions, results indicated 

that classification by clustering may be used to delineate modern soil fertility distributions to guide 

the creation of soil sampling schemes. 

 

INTRODUCTION 

 The high costs associated with intensive soil sampling often prevent farmers and 

consultants from collecting soil fertility samples appropriate for site-specific nutrient management. 
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The lack of quality data can result in suboptimal seeding rates, improper variable rate irrigation, 

and insufficient soil amendments for precision agriculture (Ferguson and Hergert, 2000; Godwin 

and Miller, 2003). It is essential that the chosen sampling scheme accurately captures the spatial 

variation of soil fertility variables to allow for accurate kriging and prescriptions (Kerry and Oliver, 

2008; Lopez-Granados et al., 2002).  

The progress of soil nutrient extraction has been well documented since the first published 

acid-fluoride reagent extraction of phosphorus in the 1940’s (Bray and Kurtz, 1945). Since this 

time, the Mehlich-1 and -3 processes have been adopted as standards of nutrient extraction for 

their ability to predict nutrient availability across a wide range of soil types (Mehlich, 1953; 

Mehlich, 1984). It is only within recent decades that spectrometry technology has provided 

multispectral sensors capable of accurately measuring color, near-infrared (NIR), and short-wave-

infrared (SWIR) reflectance. The introduction of these technologies into soil fertility management 

has taken many forms. The in-lab spectral recording of soil samples has become a common practice 

and has been shown relate with soil fertility, cation exchange capacity, and organic matter (Ben-

Dor and Banin, 1995; Qiao and Zhang, 2012). These relationships can be used to guide the 

detection and prediction of soil properties. Unfortunately, this method is limited in application as 

it requires the in-field collection of soil samples and specialized laboratory equipment to record 

calibrated soil reflectance results. Alternatively, analysis of multispectral data collected via aircraft 

and satellites (remotely sensed) provides opportunities for the non-invasive large-scale analysis of 

soil properties.  

Due to the methods by which multispectral imagery is captured, autocorrelation and 

multicollinearity are often present among similar bands. Principle component analysis (PCA) can 

be used as a dimension reduction technique to mitigate multicollinearity and identify the ancillary 
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variables which are contributing the most variance (Agarwal et al., 2007; Boettinger et al., 2008; 

Demšar et al., 2103). In addition to this, principle components, as linear combinations of ancillary 

data, enable data with high-dimensionality to be plotted in two-dimensional space.  The projection 

of data then allows for unsupervised classification by iterative clustering (K-means clustering). 

The classification of spectral imagery has been shown to be effective in prediction of soil OM and 

CEC (Fox and Metla, 2005; Uno et al., 2005), soil carbon (Ladoni et al., 2010), and for the 

delineation of management zones (Xin-Zhong et al., 2009). This study seeks to use dimension 

reduction (PCA) and unsupervised classification (K-means clustering) to aid in the detection and 

mapping of soil fertility variables (potassium, phosphorus, and pH) and to guide the creation of 

soil sampling schemes for precision agriculture.  

 

MATERIALS 

Description of Study Sites: 
 Two study sites were used for assessment of spatial variability of soil fertility using 

ancillary data classification. Both sites are currently used in field-crop production with corn being 

the primary crop. The first site, hereby called ‘Samson’ is an 18.62-hectare field located at 

31.115815, -86.093371, in Geneva County, Alabama near the city of Samson. The second site, 

hereby called ‘Autaugaville’ is a 41.56-hectare field located at 32.391148, -86.605381, in Autauga 

County, Alabama near the town of Autaugaville. Table 2 records the soil series present at each site 

as well as the percentage of area. The location the study sites is presented in Figure 8. The maps 

of soil series for both sites are presented in Figure 9. 

 

Soil Sampling: 
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 For both the 2018 and 2019 growing seasons, samples were collected from the Samson and 

Autaugaville study sites before soil amendments were applied. These samples were collected on a 

50 m grid and were analyzed for Mehlcih-1 extractable  P, K, and soil pH. Soil P and K were 

selected due to their impact on crop growth, health, and yield (Prajapati, 2012; Ryan et al., 2012; 

Wang et al., 2013); and in consideration that they are the only two soil macronutrients to have 

standardized laboratory extraction methods and recommendations. Additionally, soil pH is studied 

due to the large influence it has over nutrient interactions, nutrient absorption, and plant health 

(Haynes and Naidu, 1998). 

Samples were collected by bulk sampling within a 3 m radius of each grid center, with a 

collection depth of six inches. One hundred fifty-six soil samples were collected in Autaugaville 

in 2018 and 124 samples were collected in 2019. Sample size and study area was decreased in 

2019 due to flood conditions in the Northeastern portion of the study site. The full sample size for 

2018 data was used for spatial interpolation as this data contributed to the spatial dependence of 

soil variables. The Autaugaville AOI was restricted to the area sampled in the 2019 season to 

provide comparable spatial results between the two years. At the Samson study site, 101 samples 

were collected for both 2018 and 2019. Additionally, a second grid was sampled at the Samson 

site, at the 100 m resolution, to increase the sample count and to ensure that changes across both 

short and long distances were captured. Maps of the sampling strategy at both Samson and 

Autaugaville are shown in Figure 10. Soil fertility distribution maps are also presented in Figures 

12 (Autaugaville) and 13 (Samson). 

 

Ancillary Data: 
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 Remotely sensed imagery was sourced using USGS Earth Explorer. Satellite data was used 

from USGS’ and NASA’s Landsat Program (Landsat 7 and 8) as well as the ESA’s Copernicus 

Program (Sentinel 2a). Theses satellites use multispectral sensors to record multiple bands of 

surface reflectance values which are corrected and calibrated by their respective space agency. 

Imagery was selected by two primary criteria. First, imagery captured near to the date of soil 

sampling was given preference. As the purpose of this study is to detect the significance of 

remotely sensed data on the creation of soil sampling schemes, using imagery that was taken soon 

before soil sampling is important as it will more accurately represent the current soil conditions 

that will be collected by soil sampling. Secondly, imagery was selected based on the lack of 

obstructions (cloud cover, vegetation, etc.) that may inhibit a clear recording of soil reflectance 

values.  

 In addition to remotely sensed data, spatial correlation results were also analyzed between 

soil sampling results and another commonly recorded parameters, Soil EC. Soil EC was collected 

at both Samson and Autaugaville in 2016 using a Veris 3100 equipped with a real-time kinematic 

global positioning system (RTK GPS) to record Shallow EC (approximately 1 ft), Deep EC 

(approximately 3 ft), and elevation values. Soil EC data is mapped for Autaugaville and Samson 

in Figure 11. 

 

METHODS 

Data Preprocessing: 
 Before analysis, all geospatial data were converted to the Universal Transverse Mercator 

(UTM) coordinate system in the North American Datum of 1983 (NAD83), which uses meters as 

the standard unit of measurement. As both sites are located in Alabama, UTM zone 16N was used. 
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Study sites are relatively close to the standard meridian of the projection zone; therefore, the spatial 

data is assumed to contain minimal scale distortion and can be accurately used for spatial analysis. 

Geographic transformations, tabular analysis, and spatial data creation were completed using 

ESRI’s ArcGIS 10.4.1 for Desktop. Data clipping and organization were completed using GDAL 

2.3.2 from the Open Source Geospatial Foundation. 

 

Spatial Interpolation: 
To achieve a uniform spatial distribution of both soil fertility data and ancillary data, an 

overlay grid was created for each study site with a polygon size of 10 m x 10 m. The 10 m grids 

for both Autaugaville and Samson sites can be seen in Figure 10. Values for P, K, soil pH, soil EC 

(shallow and deep), Landsat 8 bands 2 – 7, and Sentinel 2a bands 2 – 8, 11-12 were estimated for 

each grid polygon by ordinary kriging interpolation. Landsat 8 band 1 and Sentinel 2a bands 1, 9, 

and 10 were omitted from this study as they have been designed to capture atmospheric reflectance 

values rather than surface reflectance. The interpolation process effectively resamples each 

variable into the 10 m spatial scale, resulting in a standard sample size for all variables. The 

polygon count was 4,387 for Autaugaville and 2,000 for Samson.  

Spatial interpolation by kriging is done by assigning weights to observed values based on 

their distance from the location that is to be interpolated. All interpolation processes were 

completed using SpaceStat 4.0.21 software published by BioMedware Inc 

(https://www.biomedware.com/software/spacestat/). Ordinary kriging is different from other 

spatial interpolation methods, such as Inverse Distance Weighted (IDW), in that it will not use 

observed locations beyond a threshold of spatial significance, called the range, to interpolate data 

at unobserved locations. The range is determined by calculating the empirical semi-variogram, 
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which plots the Euclidean distances of observed data pairs against the observed difference between 

data pairs. The empirical semi-variogram is typically sorted into bins by selecting a lag size by 

which data pairs are arranged. A model is then fit to best capture the spatially dependent variation 

of the dataset which minimize residuals and prediction error. If the spatial variability of the 

property under study occurs at two different spatial scales, the fit of the model can be improved by 

the addition of a second model, allowing for each model to better fit part of the data (short and 

long spatial ranges), on a nested variogram model. This fitted model is then expected to accurately 

estimate data at unobserved locations within the spatial scale of the data. 

 

Principal Component Analysis: 
 The Principal Component Analysis (PCA) is a method of dimension reduction used to 

reduce the variable count of large data sets, commonly performed to allow for multidimensional 

cluster analysis. This is done by transforming the original variables into components, which are 

linear combinations of the original observations. Each component is created so that it captures as 

much of the variability in the original data as possible, with each new component being orthogonal 

to its preceding counterparts. The result is a new set of uncorrelated variables which capture 

decreasing amounts of variation from the original data. As principal component analysis is 

typically conducted using data with a mean of zero and a standard deviation of 1, ancillary data 

was first centered and scaled. Principal components were then created using kriged data of 

remotely sensed imagery and soil EC, including a total of 17 original variables.   

 To calculate testing component scores, testing datasets were also centered and scaled. Next, 

each observation was assigned a score for both PC1 and PC2 by using the sum of testing values 

multiplied by training component loadings. If variance is distributed similarly among variables 
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between both training and testing datasets, it is expected that the plotting of component scores will 

display a similar shape and comparable classifications.  

 

K-means Clustering Analysis: 
 Unsupervised classification describes a group of algorithms designed to make inferences, 

and predictions, from data without referring to labelled outcomes. The final classes into which data 

is sorted are designed entirely by the algorithm without external guidance. These methods first 

became popular during the early days of machine learning and continue to provide quick and 

computationally easy classification results. The K-means method is a type of unsupervised 

classification that begins with a group of randomly scattered centroids plotted among two variables 

representing the X and Y axes. At both the Autaugaville and Samson study sites, their respective 

first two principle components were used as the X and Y axes. These components were chosen 

because they explain the majority of the variability present in the original data set. These randomly 

selected centroids serve as the beginning points for every cluster. Iterative calculations then 

optimize the positions of the centroids until they have been stabilized. When a centroid is 

stabilized, it has been plotted in a position which minimizes the sum of squares for those data 

observations nearest to the cluster. The resulting stabilized centroids can then be used to classify 

new data by determining the smallest Euclidean distance from a centroid for each observation 

introduced, thus predicting a classification for the new observations. This capability of K-means 

clustering will be used to predict the classification of soil fertility by the clustering of correlated 

ancillary data. 

 Two classes were defined for each of the soil fertility variables of interest. Soil K 

classification was defined as “sufficient” (≥160 lb./acre) and “insufficient” (<160 lb./acre). Soil P 
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classification was defined as “sufficient” (≥50 lb./acre) and “insufficient” (<50 lb./acre). Lastly, 

soil pH classification was defined as “high” (≥6.0) and “low” (<6.0). 

It should be noted that K-means clustering begins by randomly assigning centroid locations 

before iterating to convergence. Because of the random component, repeated clustering results 

may differ slightly, even when conducted with identical source data. Despite these possible 

differences, it is expected that centroid convergence will always produce a similar result. For each 

dataset that K-means clustering was conducted upon, 1,000 repetitions of the clustering were 

performed, and accuracy of prediction results were averaged. K means clustering was also 

completed using R Statistical Computing Platform. 

 

Training and Testing Data: 
 In order to assess unsupervised techniques, data is first divided into a training and testing 

dataset. While the training data is left unaltered, the testing dataset is given class labels and then 

sorted into classes which the algorithm learned from the training data. This allows the measuring 

of categorical accuracy on previously unseen, and unlearned, data.  

In order to test the effectiveness of unsupervised classification, three repetitions were 

conducted to predict zones of “sufficiency” and “insufficiency”. The first two repetitions were 

conducted using 2018 as training data, meaning this data was used to create the first two principal 

components and record their loadings. Data from 2019 was then transformed, using these same 

loadings, and assessed for the accuracy of classification. The use of prediction components created 

by this process were restricted to use only at their respective study sites; meaning components 

created from Autaugaville 2018 training data were not tested as predictors for Samson 2019. 

Results from these repetitions will be referred to as “Autaugaville” and “Samson” results. The last 
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repetition was conducted using combined data from both Autaugaville and Samson, for both 2018 

and 2019, which was randomly split into a training dataset (80%) and testing dataset (20%). This 

final repetition of PC classification will be referred to as the “Total Random” data. 

 

RESULTS AND DISCUSSION 

Training Data PCA: 
 Principal component loadings for PC1 and PC2 is given in Table 16 for the Autaugaville, 

Samson, and Total Random training subsets. On average, these two components explain 

approximately 76.2% of the variation present in ancillary dataset. Variable loadings represent the 

correlation between the component’s linear combination and ancillary data observations. These 

loadings can be thought of as the variable’s weight upon a linear combination forming PC1 and 

PC2. The larger the loading value, the greater the effect of the variable upon final component 

scores.  

For each of the three data subsets, principal components were created using only ancillary 

data (Landsat 8, Sentinel 2a, and Soil EC). Soil fertility data was withheld from the creation of 

these principal components as its inclusion would make it impossible to test the predictive power 

of ancillary data. For the first principal component, both the Autaugaville data and the Total 

Random data assigned the largest loading values to bands from the Landsat 8 satellite, indicating 

that this data includes the majority of the variance present in both datasets. Contrastingly, the 

Samson PCA assigned the greatest loading values to the Sentinel 2a imagery. For each of the three 

datasets (Autaugaville, Samson, Total Random), EC shallow and EC deep were both assigned 

relatively weak PC loadings, which can be interpreted as a lack of correlation with remotely sensed 

data and therefore a lack of contribution to PC1. The wavelengths of Sentinel 2a were included in 
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PC2 and had most of the remaining variance from all three datasets. The domination of PC1 by 

Landsat 8 data and PC2 by Sentinel 2a data indicates that the use of the first two principle 

components will capture the majority of the variance present among all remotely sensed band with 

only two variables. In fact, total variance captured in Autaugaville was 40.1% for PC1 and 28.7% 

for PC2, a total of 68.8%. Total variance captured in Samson was 64.6% for PC1 and 15.6% for 

PC2, a total of 80.2%. Lastly, total variance captured in the Total Random data (Random subset 

from both sites during both years) was 56.6% for PC1 and 23.0% for PC2, a total of 79.6%.  

Training data PCA scores, plotted by PC1 and PC2, are given by dataset. Autaugaville data 

is presented in Figure 14, Samson data is presented in Figure 15, and Total Random data is 

presented in Figure 16. Thresholds of sufficiency were set at 50 lb./acre for Phosphorus and 160 

lb./acre for Potassium. The threshold for pH was set at 6.0. Visual analysis of the component score 

plots allows for the detection of clusters of sufficiency/insufficiency, with the exception of 

Autaugaville 2018 phosphorus in which nearly every sample was recorded to have sufficient 

values. K-means will be used to locate the centroid of these clusters which will then be used for 

prediction of sufficiency levels in the testing datasets. 

 

Testing Data PCA Scores: 
 Testing data principal component scores created by the linear combinations created from 

training data are given by dataset. Autaugaville data is presented in Figure 14, Samson data is 

presented in Figure 15, and Total Random data is presented in Figure 16.  It should be noted that 

in the central portion of each testing scores plot, the distribution had a similar shape to the 

corresponding training dataset plot. This similarity indicates that clusters from training data which 

correspond with this center region can be used to predict cluster properties testing datasets. A 



 

86 
 

glance at the scale of each axis will also reveal that testing distributions exhibit a dramatic increase 

in spread across the plane. These extreme scores are expected as testing data was not used to create 

component loadings. Clusters outside of the scale of training data may indicate a difference in 

distribution of variance or observations with relatively extreme values. It is from this difference of 

scale that the majority of prediction errors are expected to originate as unique clusters in this region 

will be ignored and will be classified by the nearest training centroid. 

 

K-means Clustering: 
 While each iteration of K-means classification may give a slightly different result, due to 

random placement of original centroids, it is expected that every repetition will yield similar 

results; therefore, the results and figures given here will be averages attained over 1,000 repetitions 

of clustering. The number of target clusters desired is determined by observing the decrease in 

variance with increasing cluster count and looking for a sharp curve in the plotted variance called 

the ‘elbow point’. This point marks the number of clusters at which variance begins to stabilize, 

indicating diminishing returns. The within-group sum of squares revealed a cluster count of nine 

optimized the reduction of variance at both Autaugaville and Samson.  The elbow plots tracking 

variance reduction are shown in Figure 22. It was determined that nine clusters would be 

appropriate for classification of component scores in all three datasets. Figures 17 through 19 

display the principal component scores for Autaugaville 2018, Samson 2018, and Total Random 

Training data sets. The nine clusters, determined by K-Means, is plotted at the top of each figure, 

followed by the classification of each dataset. The classifications for each cluster were determined 

by the class majority within the cluster. 
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It should be noted that for Autaugaville potassium and phosphorus, and Samson pH, each 

cluster received the same classification, although observations within each cluster were not 

homogenous. This is a result of thorough “mixing” of soil fertility observations among PC1 and 

PC2. During prediction, these datasets will be represented as a uniform surface with only the 

majority classification being assigned. In these instances, K-means classification of the first two 

principal components is not a suitable methodology, as it yields predictions that are only as 

accurate as an assumption of within-field uniformity.  

 Fortunately for Autaugaville pH, Samson potassium and phosphorus, and every Total 

Random dataset variable, the classification assignments are visually similar to the observed values 

from training datasets (as can be seen through comparison distribution shapes in Figures 14, 15, 

and 16). In addition to the similar “shape” of training and testing component scores, this visual 

similarity further indicates that principal component clustering may be used to predict 

sufficient/insufficient areas of soil fertility variables.  

 

Clustering Accuracy Results: 
 Results for using K-means classification as a means of categorical prediction in soil fertility 

variables is given in Table 17. Maps of predicted observation classes are presented in Figure 20 

(Autaugaville) and 21 (Samson). These results were attained by first calculating that majority class 

of each centroid fitted on training data, meaning that if the majority of the observation associated 

with a centroid were classified as “sufficient”, then the centroid itself was classified as “sufficient”. 

These centroids, which originated from the principal components of training data, were then 

plotted upon the PC1 and PC2 from the testing data. A Euclidean distance from each centroid to 

every observation was calculated, and observations were classified as sufficient/insufficient 
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according to the class of their nearest centroid. Accuracy results are given as a percentage of 

observations in the test datasets which were correctly classified as sufficient or insufficient.  

 On average, soil potassium (67% accuracy) and soil phosphorus (78% accuracy) 

outperformed the predication of soil pH (46% accuracy). This is also unsurprising, considering the 

relatively weak correlation coefficients observed between soil pH and remotely sensed ancillary 

data in Chapter II. As a whole, unsupervised classification of aerial imagery is best fitted for use 

in predicting zones of sufficiency in soil phosphorus, with limited applications in soil potassium. 

It should be noted that the Total Random dataset has the most consistent accuracy which is to be 

expected as is it only 1/4th the size of its corresponding training dataset, compared to data from 

Autaugaville and Samson in which training and testing sets were of equal size.  

 

CONCLUSION 

 By using K-means unsupervised classification it is possible to predict, with approximately 

84% accuracy, zones of sufficient and insufficient soil phosphorus with nothing more than last 

year’s soil sampling results and modern satellite imagery. Similarly, potassium shows great 

potential with a possible 82% accuracy in prediction of sufficiency. Yet this same method may 

result in relatively poor predictors, with accuracy ranging from 52% - 65%, barely better than 

randomly selected guesses. What is it that contributes to the variation in accuracy results? 

  One factor worth considering is that of image collection, namely capture date and lack of 

obstructions. While careful care was taken in this study to select imagery which provided the 

clearest view of bare soil close to the time of spring soil sampling, it is impossible to ensure that 

high-quality and unobstructed imagery will be available near the desired dates. It has been noted 

that the Samson study site employed a regular practice of tilling and spraying winter cover crops, 
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providing an opportune time for image capture before spring planting. On the other hand, the 

Autaugaville study site did not employ these same practices and included crop residue and 

vegetative cover all winter, through the spring planting date. This clearer and more accurate 

imagery likely contributed to the stronger accuracy results achieved at the Samson study site, as 

erroneous readings from obstructions will alter the principal component’s ability to capture 

variance and detect patterns in soil reflectance. This is likely to limit the usefulness of remote 

sensing and classification techniques in modern cropping systems which encourage the use of 

cover crops and no-till methods.  

 Additionally, classification by clustering was affected largely by the distribution of the 

training data. When the soil fertility was relatively uniform, such as Autaugaville 2018 P and K 

and Samson 2018 pH, it was predicted that testing data clusters also shared this uniformity. This, 

in effect, masked all variation present in testing predictions limiting the use of this methodology 

in fields that experience extreme temporal variation of soil fertility variables. On the other hand, 

fields that maintain a similar soil distribution over time displayed the potential for prediction by 

unsupervised clustering. This prediction has the potential to delineate zones of sufficiency or 

insufficiency. These can be used to guide the creation of soil sampling schemes by reducing the 

number of samples taken in “sufficient” zones which will require fewer soil amendments. 

 Remote sensing classification of soil fertility variables remains an area of interest for future 

research. The methods used here, in particular PCA, are well suited for wide datasets. The use of 

hyperspectral imagery (anywhere from 100-2000 distinct bands) with this methodology could 

make greater use of data reduction to enable classification with only the most correlated of 

reflectance wavelengths. The introduction of similar training data is also likely to increase the 

efficiency and accuracy of this procedure. The use of multiple years of historical data have 
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potential to drastically increase the prediction power for an individual study site. Lastly, the 

collection of many datasets from one geographic region with similar soil types is also likely to 

enable the creation of more detailed models with greater region-specific accuracy.    
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TABLES 

Table 15. Study Site Soil Series 

 
Samson Soils   

Soil Series % of AOI Taxonomic Class 
Alpin Sand 20.6 Thermic, coated Lamellic Quartzipsamments 
Eunola Sandy Loam 69.7 Fine-loamy, siliceous, semiactive, thermic Aquic 

Hapludults 
Leaf-Lenoir Complex 9.7 Fine, mixed, semiactive, theric Aeric Paleaquults 

 
Autaugaville Soils   

Soil Series % of AOI Taxonomic Class 
Altavista Loam 9.9 Fine-loamy, mixed, semiactive, thermic Aquic 

Hapludults 
Blanton Loamy Sand 1.7 Loamy, siliceous, semiactive, thermic Grossarenic 

Paleudults 
Lakeland Loamy Sand 10.3 Thermic, coated Typic Quartzipsamments 
McQueen Silt Loam 43.7 Fine, mixed, semiactive, thermic Typic Hapludults 
Roanoke Complex 32.0 Fine, mixed, semiactive, thermic Typic Endoaquults 
Wickham Fine Sandy 
Loam 

2.3 Fine-loamy, mixed, semiactive, thermic Typic 
Hapludults 
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Table 16. Principal Component Loadings 

Each loading represents the weight of the individual variable upon the total score for each 
observation. The linear combination of these loadings and the original observations results in the 
Principal Component Score. 
 

Autaugaville 2018 Samson 2018 Total Random 
 PC1 PC2  PC1 PC2  PC1 PC2 
L8B02 -0.355 -0.113 L8B02 0.248 0.247 L8B02 0.301 0.116 
L8B03 -0.358 -0.113 L8B03 0.246 0.216 L8B03 0.300 0.124 
L8B04 -0.357 -0.114 L8B04 0.251 0.261 L8B04 0.298 0.129 
L8B05 -0.355 -0.122 L8B05 0.055 -0.358 L8B05 0.294 0.143 
L8B06 -0.351 -0.116 L8B06 0.276 0.192 L8B06 0.291 0.145 
L8B07 -0.353 -0.106 L8B07 0.273 0.229 L8B07 0.291 0.148 
SB02 0.229 -0.211 SB02 0.285 0.061 SB02 -0.261 0.108 
SB03 0.187 -0.334 SB03 0.287 0.022 SB03 -0.277 0.183 
SB04 0.221 -0.260 SB04 0.276 0.070 SB04 -0.178 0.366 
SB05 0.133 -0.401 SB05 0.283 -0.064 SB05 -0.247 0.284 
SB06 -0.045 -0.351 SB06 0.211 -0.387 SB06 -0.270 -0.028 
SB07 -0.062 -0.329 SB07 0.196 -0.421 SB07 -0.267 -0.053 
SB08 -0.025 -0.357 SB08 0.187 -0.398 SB08 -0.271 -0.003 
SB11 0.130 -0.314 SB11 0.278 0.026 SB11 -0.107 0.441 
SB12 0.145 -0.272 SB12 0.276 0.051 SB12 -0.060 0.473 
ECs 0.151 0.074 ECs -0.179 0.260 ECs -0.028 -0.301 
ECd 0.153 0.019 ECd -0.194 0.193 ECd -0.062 -0.346 

 
 
 
Table 17. Classification Prediction Accuracy – Proportion of Cells classified correctly 

Autaugaville  
Potassium Phosphorus pH 

52.06% 84.70% 33.54% 
   

Samson   
Potassium Phosphorus pH 

82.41% 65.89% 28.28% 
   

Total Random  
Potassium Phosphorus pH 

66.46% 83.19% 77.05% 
  



 

93 
 

FIGURES 
Figure 8. Study Site Locations 

  Autaugaville, AL 102.7 Acres 

Samson, AL 46.0 Acres 
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Figure 9. Study Site Soil Series (SSURGO) 
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Figure 10. Soil Sampling Schemes  

Both sites were sampled at a 50 m resolution. Samson study site was also sampled with an additional 100 m grid to increase sample 

size and better capture spatial variability of soil characteristics. 
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Figure 11. Shallow (1 ft) and Deep (3 ft) Soil EC (Autaugaville and Samson) 
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Figure 12. Autaugaville Soil Fertility Distributions 
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Figure 13. Samson Soil Fertility Distributions 
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Figure 14. Autaugaville Principal Components Plots 

Row 1 displays the 2018 observations plotted by PC1 and PC2. Row 2 displays the 2019 observations plotted by PC1 and PC2. 
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Figure 15. Samson Principal Component Plots 

Row 1 displays the 2018 observations plotted by PC1 and PC2. Row 2 displays the 2019 observations plotted by PC1 and PC2. 
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Figure 16. Total Random Data Principal Component Plots 

Row 1 displays the 2018 observations plotted by PC1 and PC2. Row 2 displays the 2019 observations plotted by PC1 and PC2. 
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Figure 17. Autaugaville Training data (2018) clusters, and classes as assigned by class majority within cluster. 
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Figure 18. Samson Training data (2018) clusters, and classes as assigned by class majority within cluster. 
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Figure 19. Total Random training data clusters, and classes as assigned by class majority within cluster. 
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Figure 20. Autaugaville 2019 Soil Fertility Ground Truths and Unsupervised Predictions 

Assuming K Sufficiency at 160 lb/acre, P sufficiency at 50 lb/acre, and pH threshold at 6.0. 
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Figure 21. Samson 2019 Soil Fertility ground Truths and Unsupervised Predictions 

Assuming K Sufficiency at 160 lb/acre, P sufficiency at 50 lb/acre, and pH threshold at 6.0. 
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Figure 22. K-means elbow plots to determine cluster quantity 
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