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Abstract

This dissertation is composed of two parts. The first part studies stabilities of the solution
of stochastic differential equation (SDE) driven by time-changed Lévy noise in probability,
moment, and path sense. This provides more flexibility in modeling schemes in application
areas including physics, biology, engineering, finance and hydrology. Necessary conditions for
solution of time-changed SDE to be stable in different senses will be established. Connection
between stability of solution to time-changed SDE and that to corresponding original SDE will
be disclosed.

The second part studies a time-changed stochastic control problem, where the underlying
stochastic process is a Lévy noise time-changed by an inverse subordinator. We establish a
maximum principle theory for the time-changed stochastic control problem. We also prove
the existence and uniqueness of the corresponding time-changed backward stochastic differ-
ential equation involved in the stochastic control problem. Some examples are provided for

illustration.
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Chapter 1

Introduction

1.1 Time-Changed Stochastic Differential Equations

Study of stochastic differential equations (SDE) is a mature field of research. Numerous types
of SDEs have been used to model different phenomena in various areas, such as unstable stock
prices in finance [24], dynamics of biological systems [12], and Kalman filter in navigation
control. Lyapunov [19] introduced the concept of stability of a dynamical system. Since then,
the concept of stability have been studied widely in different senses, including stochastical
stability, almost sure stability, exponential stability, etc. In [21], Mao investigated various

types of stabilities for the following SDE
AX(t) = F(X(8)dt + g(X(1))dB(), ¢ >0, (1.1)

with X (0) = zo, where B is the standard Brownian motion.

Siakalli [30] extended Mao’s results to SDEs driven by Lévy noise

dX(t):f(X(t—))dt+g(X(t—)dB(t)+/ h(X(t—),y)N(dt,dy), t >0,  (1.2)

lyl<c

with X (0) = x(, where N is the compensated Poisson measure. This type of SDEs provide
as a tool of modeling the price of financial assets with continuous change. However, we also
observe such special behavior in financial market that prices are on the same level during a

period of time, see Figure 1.1. But this phenomena can be modeled by the time-changed SDEs,
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Figure 1.1: Log price of the Kalev stock [11]
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which allow more flexibility in modelling and thus become popular among researchers, see
[29] and [32].

Kobayashi [15] introduced the duality theorem between time-changed SDEs

dX(t) = f(Ey, X(t—))dE; + g(Ey, X (t—))dBg,,

13

X(O) = X,

and the corresponding non-time-changed SDEs

AY (1) = F(tY(t-))dt + g(t, Y (t—))dB,,

14

Y(O) = Xy,

where E, is the inverse of a strictly increasing subordinator D(t): if a process Y () satisfies
SDE (1.4), then X (t) := Y (E) satisfies the time-changed SDE (1.3); if a process X () satisfies
the time-changed SDE (1.3), then Y (¢) := X (D(t)) satisfies SDE (1.4).



In light of time-changed Itd6 formula, recent paper [32] analyzes the SDE driven by time-

changed Brownian motion

dX(t) = f(t, By, X(t—))dt + k(t, By, X (t—))dE, + g(t, By, X (t—))dBg,, S
(1.5)
X(O) = Xy,

where E; is specified as an inverse of a stable subordinator of index 3 in (0, 1), and discusses
the stability of solution to above SDE in probability sense, including stochastically stable,
stochastically asymptotically stable and globally stochastically asymptotically stable.

In this paper, we focus on the following time-changed SDE

AX (1) = f(t, By, X (t=))dt + k(t, By, X (t—))dE; + g(t, By, X (t—))dBp,

) (1.6)
+ / h(t, B, X (t—), y)N(dE,, dy),
ly|<c

with X (t9) = zo , where Ej is the inverse of a strictly increasing subordinator, and discuss
stability of its solution in probability, moment and path senses, including stochastically sta-
bility, stochastically asymptotic stability, global stochastic asymptotic stability, pth moment
exponential stability, pth moment asymptotic stability, almost surely exponentially path stable,
and almost surely path stable. We also extend our analysis regarding path stabilities of (1.6) to

linear large jumps

dX(t) = f(t, By, X(t—))dt + k(t, By, X (t—))dE; + g(t, By, X (t—))dBg,

s [ X ENEE) + [ HEXE-)N ),
lyl<c

ly|>c

(1.7)

with X(to) = 2.

1.2 Time-Changed Stochastic Control Problem

Uncertainty is inherent in the real world and changes over time, putting people’s decisions at
risk. A decision maker wants to select the best choice among all possible ones. The stochastic

control theory serves as a tool to such dynamic optimization problem. The world has witnessed

SDE

aimfinal



many applications of stochastic control theory in various fields such as biology [31], economics
[8], and finance [28].

A well known approach to stochastic control problem is based on the maximum principle
method. Such method for Itd diffusion case is first studied by Kushner [17], Bismut [6] and
further developed by Bensoussan [4], Peng [27], and others. The jump diffusion case is formu-
lated by Framstad, @ksendal and Sulem [9]. The idea of the maximum principle approach is to
formulate a Hamiltonian function and derive the adjoint equations, which involve the backward
stochastic differential equation. Under sufficient conditions, the optimal control is the solution
of a coupled system of forward and backward stochastic differential equations.

As time-changed stochastic processes have been adopted in more and more areas, the tra-
ditional stochastic control problem framework needs updates to fit the time-changed cases. For
example, a mutual fund manager, whose investment portfolios consist of stocks whose prices
follow time-changed Brownian motions as shown in Figure 1.1, will find the time-changed
stochastic control a better tool to manager the portfolio than the traditional stochastic control.
A biologist, who investigates how outside interferences affect the movements of insects, may
find the time-changed stochastic control problem better describe the experiment since some
insects sometimes move and sometimes stay still. Because the time-changed stochastic process
better describe many phenomena and people seek the optimal choice based on them, we believe
it is necessary to study the stochastic control problem based on the time-changed stochastic
process, which will build up a framework to solve potential optimization problems.

We investigate the time-changed stochastic control problem using the maximum principle
method. Specifically, we consider the time-changed stochastic process (1.6) and the corre-

sponding performance function

J(u) = E[/OT U (t, By, X (8), u(t))dE, + UQ(X(T))], we A, (1.8)



where u(t) = u(t,w) is the control and A denotes the set of admissible controls. A maximum

principle theory for the stochastic control problem is established to find u* € A such that

J(u*) = sup J(u). (1.9)
ucA

In (1.8), the performance function can be utility function, energy consumption function that
we care about. For example, the performance function in Example 4.2.3 is the utility function
exp(—dt)u(t)?, where u(t) is the consumption rate. Given the wealth level described by the
time-changed process X (t), we seek the optimal consumption rate u*(¢), as indicated in (4.3) ,
that maximize the overall utility performance J(u) = E [ N exp(—ét)u(t)%lt] :

In the remaining parts of this paper, further needed concepts and related background will
be given in Chapter 2. In Chapter 3, the conditions for the solution to our target time-changed
SDEs to be stable in various senses will be given. In Chapter 4, we reveal the maximum

principle method for time-changed stochastic control problems. Examples are provided.



Chapter 2

Preliminaries

Let (Q, F, (F;), P) be a filtered probability space satisfying usual hypotheses of completeness
and right continuity. Assume that F;-adapted Poisson random measure NV on R} x (R—{0}) is
independent of the drift and the standard Brownian motion, define its compensator N (dt,dy) =
N (dt, dy) — v(dy)dt, where v is a Lévy measure satisfying [, ., (ly[* A 1)v(dy) < oc.

Let {D(t),t > 0} be a right continuous with left limits (RCLL) increasing Lévy process

that is called subordinator starting from O with Laplace transform

Ee AP0 = =) 2.1)
where Laplace exponent ¢)(\) = [( 0 e )y (dx). Define its inverse
E, :=inf{r >0: D(r) > t}. (2.2)

The concept of regular variation is needed to introduce the mixed stable subordinator.
A measurable function R is regularly varying at infinity with exponent v € R, denoted by
R € RV.(v), if R is eventually positive and R(ct)/R(t) — ¢ ast — oo, for any ¢ > 0.
Similarly, a measurable function R is regularly varying at zero with exponent v € R, denoted
by R € RVj(v), if R is positive in some neighborhood of zero and R(ct)/R(t) — cyast — 0,
for any ¢ > 0.

Given a measurable function p : (0,1) — R, such that p € RVy(~y — 1) for some vy > 0,

let L(u) = C [, u*p(a)do and O~ fo a)da. Without loss of generality, let C' = 1, then

inverse-E
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p is a probability density of Lévy measure of the a-stable subordinators. Let {D(t)};>¢ be a
subordinator such that D(1) has Lévy-Khinchin representation [0, 0, ¢| and the Lévy measure
¢ is defined as ¢(u,00) = L(u), then {D(t) };>0 is the so called “mixed” stable subordinator.

In this case the Laplace exponent is given by
1
v = [ T pVp(3)as @3)
0
By Theorem 3.9 in [22], there exists a function L. € RV,,(0) such that
E[E(t)] ~ (logt)"L(logt)™* ast — oo. (2.4)

We require f,k, g, h, H in (1.6) and (1.7) to be real-valued functions and satisfy the fol-
lowing Lipschitz condition in Assumption 2.0.1, growth condition in Assumption 2.0.2 and
Assumption 2.0.3. Under these assumptions, by Lemma 4.1 in [15], both of the equations (1.6)

and (1.7) have unique G; = Fp,-adapted solution processes X (t).

Assumption 2.0.1 (Lipschitz condition) There exists a positive constant K, such that

2

9 9
‘f(tlat%x) — f(ti,t2,y)| + ‘k(t1,t27$) — k(t1,t2,y)| + ‘g(tl,t2,x) —g(t1,t2,9)

“f
|z]<e

forallt,,to € Ry and x,y € R.

2 (2.5)
h<t17t27x7 Z) - h(tlat%y?'z)‘ V(dZ) S K1|$ - y|27

Assumption 2.0.2 (Growth condition) There exists a positive constant Ko such that, for all

ti1,t9 € R+ and v € R,

If(tl,tz,x)|2+Ik<t1,t2,az)l2+|g(t1,t2,x)l2+/ h(tr, ta, z,y)Pv(dy) < Ka(1 + |z]?).

lyl<e

(2.6)

Assumption 2.0.3 [f X (t) is right continuous with left limits (rcll) and a Gi-adapted process,
then

f(t, By, X()), k(t, By, X(t)), g(t, By, X(t)), h(t, By, X (t),y) € L(Gy), 2.7

7

laplace-e



where L(G;) denotes the class of left continuous with right limits and G;-adapted processes.
Next, we define different types of stability.

Definition 2.0.4 (1) The trivial solution of the time-changed SDE (1.6) is said to be stochas-
tically stable or stable in probability if for every pair of € € (0,1) and r > 0, there exists a

d = d(e, ) > 0 such that
P{IX(t,x0)| <7 forallt >0} >1—c¢ (2.8)

whenever |zq| < 0.

(2) The trivial solution of the time-changed SDE (1.6) is said to be stochastically asymp-

totically stable if for every € € (0,1), there exists a 6y = do(€) > 0 such that
P{tlim X(t,xg) =0} >1—¢ (2.9
— 00

whenever |xq| < 0.

(3) The trivial solution of the time-changed SDE (1.6) is said to be globally stochastically
asymptotically stable or stochastically asymptotically stable in the large if it is stochastically
stable and for all xy € R

P{lim X(t,z) =0} = 1. (2.10)

t—o00

Definition 2.0.5 (1) The trivial solution of the time-changed SDE (1.6) is said to be pth moment

exponentially stable if there are positive constants \ and C such that
E[IX ()] < ClxolP exp(—At), ¥Vt >0, Vzo € R, p > 0. (2.11)

(2) The trivial solution of the time-changed SDE (1.6) is said to be pth moment asymp-

totically stable if there is a function v(t) : [0, +00) — [0, 00) decaying to 0 as t — oo and a



positive constant C such that
E[|X(#)]P] < ClzolPu(t), Vt >0, Vg € R, p > 0. (2.12)

Definition 2.0.6 (Definition 3.1 in [21]) (1) The trivial solution of the time-changed SDE (1.6)

is said to be almost surely exponentially path stable if

1
lim sup . log | X (t;t9, )| <0 a.s. (2.13)

t—00

forall xy € R.

(2)The trivial solution of the time-changed SDE (1.6) is said to be almost surely path stable

if there exists a function v(t) : [0,00) — [0, 00) such that

lim v(t) = oo, (2.14)
t—»00
and
1
limsup —— log | X (¢; to, )| < 0 a.s. (2.15)
t—o0 V(t)

forall xy € R.



Chapter 3

Stability of Time-Changed Stochastic Differential Equations

In this chapter, we discuss stability of the solution to SDE (1.6) in probability, moment and path
senses, including stochastically stability, stochastically asymptotic stability, global stochastic
asymptotic stability, pth moment exponential stability, pth moment asymptotic stability, almost
surely exponentially path stable, and almost surely path stable. In particular, we discover the
conditions under which the solutions of time-changed SDEs are stable in various senses. We
also provide examples to illustrate our theories.

The It6 formula is heavily used in our proofs. We derive the following Itd formula for

time-changed Lévy noise and will utilize it frequently in the remaining sections.

Lemma 3.0.1 (116 formula for time-changed Lévy noise) Let D(t) be a RCLL subordinator
and E its inverse process as (2.2). Define a filtration {G, }1>0 by G; = Fg,. Let X be a process

defined as following:

X(t) =z + /tf(t, E,, X(t—))dt + /tk(t,Et,X(t—))dEt + /tg(t, E;, X(t—))dBpg,

t
0 Jlyl<e
3.1)

where f,k,qg, h are measurable functions such that all integrals are defined. Here c is the

maximum allowable jump size.

10



Then, forall F : R, x Ry x R — Rin CY12(R, x R, x R, R), with probability one,

F(t, E,X(t)) — F(0,0,x0) = /t LiF(s, B, X(s—))ds + /t LyF (s, By, X (s—))dE,
+/0 /|< |:F(S7ES’X(S_) +h(S7E57X(S_>7y)) - F(87E87X(S_)) N(dES,dy)

v (s, Eu X(5-)g(s, B X(5-))dBs,

32)

where

LlF(tlut%x) = Ftl (t17t27$) + Ff(t17t2>x)f(t17t27$)7
1
LQF(t17t27 l’) - th(tla t2,$) + Fm(tth; I>k(t17t27 l’) + 592(t17 t27 m)sz(tl,tQ,x)

+/ |:F(t1, t27$ + h(t17t2>$a y)) - F(tlatQa IL’) - Fx(tbt%z)h(tl;t%xa y)} V(dy)
lyl<e

33

Proof: This proof is a direct application of multidimensional Itd formula, which is estab-

lished in Corollary 3.4 in [15], to F'(t, E;, X (¢)) in CP4(R, x Ry x R, R).

F(t,E, X(t)) — F(0,0,z0) = /t F, (s, Es, X(s—))ds + /t F,, (s, Es, X(s—))dE;

+/0 Fw(s,ES,X(s—))[f(s,ES,X(s—))derk(s,ES,X(s—))dES

+ (s, B X(s-)dBg, | + % /Ot Fou(s, Ba X (5=))g(s, B, X (5—))dE,

—i—/o /|y|<c [F(S,ES,X(S—) + h(s, Es, X(s—),y)) — F<3>E35X(5_))]N(dEs,dy)
! (3.4)
+/0 /y|<c [F(s, Eo, X(5—) + h(s, Es, X(5—),y)) — F(s, Es, X(5—))

— Ey(s, By, X (s—))h(s, Es, X (s—), y)} v(dy)dE,
_ /t LIF(S,ES,X(S—))der/t LoF(s, Es, X (s—))dE,
+/0 /y|<c [F(S,ES,X(S—) 4 h(s, By, X(s—),y)) — F(s,ES,X(s_))}N(dES,dy)

N /0 Fy(s, Bo, X (5—))g(s, B, X (5—))dB,.

11
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Lemma 3.0.2 Let D(t) be a RCLL subordinator and E; be its inverse process as in (2.2). De-
fine a filtration {G;}>0 by G = Fp,. Let N be a compensated Poisson measure defined on
R, x (R — {0}) with intensity measure v, where v is a Lévy measure such that N(dt,dy) =
N(dt,dy) —v(dy)dt and [, (ly|* AN1)v(dy) < oo. Then, for any A € B(R —{0}) bounded

below, the time-changed process N (Ey, A) is a martingale.

Proof: Let 7, = inf{t > 0;|N(t, A)| > n}, it is obvious that 7,, — co as n — co. Then
IN(7, At,A)| <n+1,forallt € Ry, thus N(7, At, A) is a bounded martingale.

By optional stopping theorem, for any 0 < s < ¢,
E|N(m A B, A)|G,] = N(7 A By, A). (3.5)

The right hand side N (Tn A\ Es, A) converges to N (Es, A), as n — oo. For the left hand
side, we have

IN (7, A Ei, A)| < sup [N(E,, A), (3.6)

o<u<t

thus, by Holder’s inequality, Doob’s martingale inequality,

]EHN(Tn A Et,A)H < E[

sup |N(E,, A)H = E[

0<u<t

sup |N(u, A)H

OSUSEt

- /O | sup (N, )7 = B fo, ()i

< /OOOE[ s |N(U,A)\2 =) e ()i

< /Ooo 2E| || (r, A)\2 r=E] ey 7
=2 [y fulriar

— 2u(A)PE[E}).

1

< w(A):E[E]z,



tml

where the last inequality follows from Jensen’s inequality.

For any ¢ > 0 and x > 0, by Markov’s inequality, we have

P(E, > s) < P(D(s) < t) = P(e P > ¢72t) < " R[e*PE)] = ¢ole=0®), (3.8)

it follows that

°° 1
E[E :/ P(E, > s)ds = e"'—— < 0. 3.9)
BI= ), P =
Then, by dominated convergence theorem, we have
E[N(r A B, A)G,| — E[N(E,, 4)|6,], (3.10)
as n — 00. So
E|N (B, A)[G,] = N(E,, A). (3.11)
Also,
B[N (B, 4)]] <E[ sup [N(£,, 4)]] < oo, (3.12)
0<u<t

thus N (E;, A) is a martingale.

3.1 Stability in Probability

Let /C denote the family of all nondecreasing functions x : Ry — R, such that p(z) > 0 for

all z > 0.

Theorem 3.1.1 Assume that there exists a function V (ty,ty,x) € CY2(R. x Ry x Sy, R)

with h > 2c and o € K such that for all (t1,t9,x) € Ry X Ry X Sy,

13



1. V(t1,t2,0) =0,
2. u(|z)) < V(ty,ta, x),

(3.13)
3. L1V(t1,t2,l') S 0,

4. LQV(tl,tQ,fL‘) < 0,

then the trivial solution of the time-changed SDE (1.6) is stochastically stable or stable in

probability.

roofoftml

Proof: Lete € (0,1) and r € (0, h) be arbitrary. By continuity of V'(¢,t2,z) and the fact
V (t1,t2,0) = 0, we can find a & = (¢, 7,0) > 0 such that

1
—sup V(0,0,z) < pu(r). (3.14)

€ 2eS;

By (3.14) and condition (2), 6 < r. Fix initial value xo € Sy arbitrarily and define the

stopping time
7. =1inf{t > 0: | X(t,20)| >}, (3.15)

where r < %, and

Tr A\t
U =k N inf{t > 0; / Vi(s, Es, X(s—))g(s, Es, X(s—))dBg,| > k},
0

Tr At
Wi =k A inf{t > 0: / / [ws, E, X (s—) + H(s, E,. X(s—), y))
0 ly|<c

V(s ES,X<s—>>] N(dE,, dy)| > k},

(3.16) |stoptime2

14



for k=1,2,.... It is easy to see that U, — oo and W), — oo as k — oo. Apply Itd formula (3.2)

to V' (t1, t9, x) associated with SDE (1.6), then for any ¢ > 0,

V(t A Tr A\ Uk N Wk, Et/\Tr/\Uk/\Wk7X<t A\ Tr A Uk AN Wk)> — V(0,0,l‘g)

t/\7'7/\Uk/\Wk tATr AU AW
/ Vs, By, X (5—))ds + / LV (s, Ey, X (s—))dE,
0 0

t/\’rr/\Uk/\Wk
/ (5, Boy X (5—))g(5, By, X (5—))dB, (3.17)

+

tATr AU AW
N / / [V(S,ES,X(S—) + H(s, By, X(s—).1))
0 lyl<e

—V (s, Ey, X(s=)) | N(dE,, dy).
By [20] and [16], both
tATr AU AW
/ Vi(s, Es, X (s—))g(s, Es, X(s—))dBg, (3.18)
0

and

tATRAUL AW -
/ [ vty 4 s B x50 = Vs, B X ) | S ai)
0 lyl<c
(3.19)
are mean zero martingales.

Taking expectations on both sides, we have
E[V(t N Tr VAN Uk VAN Wk, Et/\Tr/\Uk/\Wk’ X(t VAN Tr A Uk A Wk))] S V(O, 0, [Bo).
Letting k — oo,

E[V(t AT, Eipr, X(EAT))] < V(0,0,20).

15



Now, | X (t A7.)| < rfort < 7. Forallw € {7, < oo}, | X(7.)(w)| < r+ ¢ < h. Since

V(ty,t9,2) > p(|z|) for all x € Sy, we have for all w € {7, < oo}

V(7 Br, X (1) (w)) 2 p(|X (1) (w) ) = pa(r)- (3.20)

Also,

V(0,0,20) > E[V(tAT, Einr,, X(AAT)) Lir ] = Elp(r) L <y] = p(r)P(r, < t), (3.21)

thus, combined with (3.14),

Pl < 1) < 0020 enl) (3.22)

p(r) ()

Then, letting ¢ — co, we have

P(1, < 00) <, (3.23)

equivalently,
P(|X(t,xo)| <7 forallt >0)>1—¢, (3.24)
so X (t, xo) is stochastically stable. d

Theorem 3.1.2 Assume that there exists a function V (t1,t2,x) € CPPAR, x Ry x Sp, R)

with h > 2c and p € K such that for all (t1,ts,x) € Ry x Ry x S,

1. V(t1, ts,0) = 0,
2. u(|z|) < V(ty, tg, x),
3. LiV(ty,to,2) < =y (@) a.s. and LoV (t1,t9,x) < —ye(a) a.s., for any a € (0, h),

where y1(a) > 0 and vy2(a) > 0 but not equal to zero at the same time, x € Sy, — Sa,
(3.25)

then the trivial solution of the time-changed SDE (1.6) is stochastically asymptotically stable.
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Proof: By Theorem 3.1.1, trivial solution of (1.6) is stochastically stable. For any fixed € €

(0, 1), there exists 6 = d(€) > 0 such that
P(IX(t,x0)| < h) >1— g (3.26)

when zy € Ss. Fix xy € Ssandlet 0 < a < 8 < |zo| arbitrarily. Define the following stopping

times

7, = inf{t > 0; | X (¢, x0)| > h}

To = inf{t > 0; | X (t,7)| < a}

tATH ATa
U, = k AN inf{t > 0; / Vi(s, Es, X(s—))g(s, Es, X(s—))dBg,| > k},
0

Wy =k Ainf{t > 0;

IANTR AT
/ Vs, Eay X(5—) + (s, Ee, X(5—),3))
0 ly|<c

— Vi(s, By, X(5=)) | N(dE,, dy)| > k}.

(3.27)

By It6’s formula (3.2), we have
0 <E[V({EATHATa AU AW, Etpry nrantignwis X (EA T Ao AU AWy))]
tATRATQ AU AW
=V(0,0,z0) + E/ LV (s, Es, X (s—))ds
0

tATR AT AU AW
+ E/ LyV (s, Eg, X (s—))dE;
0

< V(0,0,20) — v1(@)E[t A1 A 7o A U A Wy] — v2(@)E[Eipry, nro AU AW, -

(3.28)
Letting k — oo and ¢ — oo, we have
Y (Q)E[1, A 7] + Y2 (@) E[E,, A ] < V (0,0, 20), (3.29)
By condition (3) and £ — oo a.s. as t — 00, see proof of Theorem 3.2.1, we have
P(h ATy < 00) = 1. (3.30)
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Since P(7, = 00) > 1 — £, it follows that P(7;, < oo) < £, thus

1=P(mtph ANTo <00) < P(1, < 00) + P14 < 00) < P14 < 00) + g, (3.31)

that’s,
P(ry < o0) > 1— g (3.32)

Choose @ sufficiently large for

2
Plra<6)>1- 36 (3.33)

Then

P(to < ANO) > P({1e <0} N {1, = 0}) = P(14, < 0) — P({1a < 0} N {1, < 20})

2 3
zP(Ta<e)—P(Th<oo)z1—§—§: —g
(3.34)
Now define some stopping times
Tay, f Ta <Th A0
o= (3.35)
o0, otherwise
7p = nf{t > o3[ X (¢, 20)| = B},
TNt
S; = inf{t > o3 | / Vi(s, Es, X(s=))g(s, Es, X (s—))dBg,| > i},
’ (3.36)

T; = inf{t > o;

/Tﬂ /|< [V(S, Ey, X (s—) + h(s, Es, X(5—),y))

—V (s, By, X (s—))| N(dE, dy)| > i}.
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Again, by 1t6’s formula,

E|:V(t VAN T8 A SZ VAN E,Et/\TB/\Si/\Ti,X(t A\ T8 VAN SZ VAN ﬂ)):|

t/\TB AS;NT;

<E [v(t A0, Eing, X (t A aA))} + E{/t

VAYoZA

LV (s, E, X(s—))ds]

tATEASIAT; (3.37)
+E{/ LQV(S,ES,X(S—))CZES]
tATN
<E {V(t Ao, Eipng, X(t A J))] :
Letting 7 — oo,
E {V(a Aty Egne, X (0 A t))} > E |:V(7'/3 At Ergnt, X(ms A1), (3.38)
that is,
E |:V(O‘ ANt, Egnt, X(U VAN t))[]l{g<oo} + ﬂ{gzoo}]:|
(3.39)
>E |:V(’7'ﬁ N, ETB/\t, X(T/g A t))[]l{g<oo} + ﬂ{gzoo}] .
For w € {1, > 7, A 0}, we have 0 = oo, then 75 = o0, thus
V(o Aty Egne, X(0 A t)) =V (t, By, X (1)) (3.40)
and
V(tg A t, Ernt, X(mg At)) =V(t, Ey, X(1)) (3.41)

Thus,

E(V (o At, Esn, X(o A t))]l{0<oo}} > E {V(Tﬁ N, ETB/\t? X(Tg N t))]l{a<oo} . (3.42) [a]
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Now, focus on the right hand side of (3.42), by definition of 73, 73 > 0, thus

Tio<oo} 2 I{rz<oo}» then
E [V(Tﬁ At, Erype, X (15 A t))]l{a<oo}} > E[V(m At Erjpe, X (15 A t))]l{w@o}} . (343) [p]
Combining (3.42) and (3.43), we have
E {V(a At Egne, X (0 A t))ll{a@o}} >E [V(rﬁ At Eryni, X (15 A t))IL{Tﬂ@o}}. (3.44)

Since P(o0 < o0) = P(7, < 7 A @) and P(15 < 00) > P({m3 < oo} N {m, = o0}), it

follows that
E [V(Tﬁa E‘I‘g? X<T,B))]1{Tg<oo}ﬂ{rh:oo}] < E [V<Tou ETQ ) X(Ta>>]1{ra<7—h/\9}} . (345)

By condition (2)

for all (t1,2,2) € Ry x Ry x R, and | X (75)| > 5 > 0.
Then, for the left hand side of (3.45), we have

E[V (75, Ery, X (78)) L {rg<o0infm=cc}] = E[p(IX (78))1 s <o0}nfry=oc}]

> K [M(B) ]1{7’5<oo}ﬂ{7'h:oo}]

(3.47) [4d]
= M(ﬁ)E[H{T@<oo}ﬁ{Th:oo}:|
= pu(B)P({rs < oo} N {m, = o0}).
Let
B, = sup V(ty,ts, ), (3.48)

t1 xtoxxER L XR 4 X Sy

then B, — 0 as a — 0, that’s, % < £ for some ov.
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For the right hand side of (3.45),

E [V(Taa ETay X(Ta)):ﬂ-{fa<7'h/\9}] S E [Boz]]-{‘ra<7'h/\9}}
= BuE[1rs <] (349 [2]

= B,P (1o < N0).

Combining (3.47) and (3.49), we have

P({rms < oo} N{m = oo})u(f) < BaP(Te <1 A 0), (3.50)
thus
P({ms < oo} N{m =00}) < M?;)P(Ta <1 ANO) < g (3.51)
Also,
P({rs < 00} N {m = 00}) > P75 < 00) — P(7, < 00) > P(75 < 00) — g (3.52)
S0,
2€
P(15 < 00) < - (3.53)
Next
P({o < oo} N{rg =00}) > P(o < o00) — P(15 < 00)
> P(7, <Th/\9)—%
3 9 (3.54)
>l—-—-—
5) )
=1—c¢
Hence,
P{w;limsup | X (t,z)| < B} > 1 — . (3.55)
t—o00
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Since [ is arbitrary, we have
P{w;limsup | X (¢, z9)| =0} > 1 —¢, (3.56)
t—o00

as desired.

g

Theorem 3.1.3 Assume that there exists a function V (1,1, 2) € CHM2(Ry x Ry x R, R) and

w € K such that for all (t1,ts,2) € Ry x Ry X R

1. V(t1,t2,0) =0,

2. pffx]) < V(ty, b2, ),

3. LiV(t1,ta, ) < —y1(2) a.s. and LoV (ty,ty, ) < —yo(x) a.s., (3.57)
where v1(x) > 0 and y2(z) > 0 but not equal to zero at the same time,

4. lim inf V(ty,te,2) = o0,

|z| =00 t1,t22>0
then the trivial solution of the time-changed SDE (1.6) is globally stochastically asymptotically

stable.

Proof: This proof has similar idea as Theorem 4.2.4 in [21], so we omit the details here. [J

Example 3.1.4 Consider the following SDE driven by time-changed Lévy noise

AX (t) =f(t, E)X (t)dt + k(t, E)X (t)dE,

~ 359
1 g(t, E)X (1)dBg, + / h(t, v, y) X (t)dN (AE,, dy)

lyl<c

with X (0) = xo, where k, f, g, h are G;-measurable real-valued functions satisfying Lipschitz

condition 2.0.1, growth condition 2.0.2 and assumption 2.0.3. Define Lyapunov function

V(tl,tg,l') = |£E|a (359)
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onR, x R, x R for some o € (0,1). Then
L1V(t1,t2,l’> = Ozf(tl,tg)ll‘|a (360)

and

ala—1) ,

LQV(tl, tQ, .’L‘) = |:Oé]{?(t1, tQ) + 5 g (tl, tg)

+/ [|1 + h(t1,t2,y)|* — 1 — ah(ty, t2,y)] V(dy)] ||
lyl<e

(3.61)
Thus, if
af(t,E) <0 a.s. (3.62)
and
a(a — 1) 2 o
ak(t, Ey) + —5 Y (t, Ey) + [|1 + h(t, By, y)|* — 1 — ah(t, By, y) |v(dy) <0 a.s.
ly|<e

(3.63)
forallt, £y, € R, the trivial solution of SDE (3.188) is stochastically stable, by Theorem 3.1.1.
Let o = 05, c=1and f(tl,tg) = —1, k(tl,tg) = 025, g(tl,tz) = 1, h(tl,tg,y) =y

forallti, 15 € Ry, then

L1V(t1,t2,$) == —@ S 0 (364)
and
1 1
LoV (ty,te, ) = / [\1 +ylz —1— —y] v(dy) < 0. (3.65)
vl <1 2

Therefore, by Theorem 3.1.3, trivial solution of SDE

dX(t) = —X(t)dt + 0.25X (t)dE, + X (t)dBg, + / yX (t)dN (ds, dy) (3.66)

lyl<1

with X (0) = xq is globally stochastically asymptotically stable.

Remark 3.1.5 Note that V (t1,ty, ) = |x|* with a € (0, 1) is not a C? function with respect to

x in R, but it is sufficient in this case since X (t) # 0 if X(0) # 0 fort > 0, see the following
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for details. That is, V (t1,t2, x) = |x|* is a C? function with respect to x in the domain of X (t)
fort > 0.

By It6 formula for time-changed Lévy noise, we have, for xq # 0,

In(| X (t)]) = In(|zol|) / X6 (s, Es)X ds+/ X0 g(s, Es)X (s—)dBg,

—i—/o [mk(s Eg)X(s—) + ;g(s E,)?X(s—)? X(s—)2
+ [ D) s B )X (52} = (X))
1

Ty B )X ()] wldy)

/ [ [X () b, B )X (5)]) = X ()] N )
|.CI?0‘ / f S, ES d8+/ (S,Es)dBES
/ /| ln (|11 + h(s Es,y)|)}N(dEs,dy)

+/0 [k(s,Es) %+/|< [ln(|1+h(s,E5,y)|)—h(s,ES,y)]V(dy)]dEs.
(3.67)

Let

:/0 f(s,ES)der/U g(s,Es)dBEs—l—/O /y|<c[1n(|1+h(S,ES,y)HN(dES,dy)

+ [ [kt B9 = ot B+ /| [ A B = A Bov) ),
(3.68)

then | X (t)| = |xo| exp(M(t)) > 0 forall t > 0.

Similar argument applies to Example 3.2.2.

3.2 Stability in Moment

Theorem 3.2.1 Let p, oy, o, a3 be positive constants. If V € C?*(R, x R, x R; R, ) satisfies

1. V(tl,tg,()) = O, 2. Oél|ZL’|p S V(tl,tg,l’) S 042|$’p,
(3.69)

3. LQV(tl,tQ, J]) S O, 4. L1V(t1, tQ, l‘) S —043V(t1, tQ,ZE),
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V(ti,ta,x) € Ry X Ry X R, then the trivial solution of the time-changed SDE (1.6) is pth

moment exponentially stable with
E|X (t, 20)]” < 22 |20|? exp(—ast). (3.70)
g
roofoftm4
Proof: Define a function Z : R, x R, x R — R, by

Z(tl,tQ,CL’) = exp(ozgtl)V(tl,t2,x). (371)

, define

Fix any zy # 0 in R. For each n > |z
T, = inf{t > 0:|X(¢)| > n},
and

T\t
Ur =k N inf{t > 0; / Vi(s, Es, X (s—))g(s, Es, X (s—))dBg,| > k},
0

T/t
Wi =k Ainf{t > 0; / / {V(s,ES,X(s—) + h(s, Es, X(s—),y))
0 lyl<c

V(s B X ()| W (s, )| = 1,

(3.72) |stoptime2

for k=1,2,.... It is easy to see that U, — oo and W, — oo as k — oc.
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Apply It6 formula (3.2) to Z(7,, A Up A Wiy, Eo o avaws s X (T A U A Wy)), then we have

t/\ Tn A Uk A Wk7Et/\Tn/\Uk/\Wk7X(t A Tn A Uk A Wk)> — Z(0,0,LE())

tATR AU AW
/ exp(ass) [asV (s, Es, X(s—)) + Vi(s, Eg, X (s—)|ds

tATR AU AW

/ exp(ass) Ve, (s, Es, X (s—))dE;
tATR AU AW
/ exp(ass)Va (s, s, X(5=)) [f(s,ES,X(s—))dt
+ k(s, By, X (s—))dE; + g(s, Es, X(S—))dBEt]
/ e exp(ass) Ve (s, Es, X (5—))g%(s, By, X (5—))dE,
AT AU AW,
/ /||< exp(ass) {V(s, Ey, X(s—) + h(s, Es, X(5—),y))
V(s B X (5-) | WaE

Tn AU AW, /|’|< exp(ass) [V(S,ES,X(S—) + h(s, Es, X(s—),y)) — V (s, Es, X (s—))

- %(57 E87 X(S_))h’<s7 ES; X(S_)7 y) I/<dy)dEs
(3.73)
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AT AUR AW,
:/0 exp(ass) |:Q3V(S, Eq, X (s—)) + Vi(s, Es, X (s—))
+ Vi(s, Es, X (s—)) f(s, Es, X(s—))} ds

tATR AU AW,
—l—/ exp(aszs) | Ve, (s, Es, X (s—)) + Vi(s, Es, X (s—))k(s, Es, X(s—))

0

1 2
+ 5 Vaals, Bs, X(57))g%(s, Es, X(s-)) + /|

[ws, o, X(s—) + h(s, Ba, X (s—), 1))

(s, By, X(5=)) = Va(s, sy X (s=))hs, ES,X<s—>,y>} v(dy) | dE.

tATR AU AW,
+ / explass)g(s, Ea, X(5—))Va(s, Ev, X (5—))dBr,
0
tATR AU AW
v [ exlas) [ws,Es,X(s—) T h(s, By X(5=),9)
0 lyl<e

V(s . X(s—»] N (dBs, dy)

tATR AU AW
:/ exp(ass) [@3V(S, Eqg, X(s—))+ L1V (s, Es, X(s—)] ds
tATR AU AW,
+ / exp(ags)LaV (s, Eg, X (s—))dE;
tATR AU AW
+f exp(a38)g(s, Ey, X (s=))Va (s, By, X (s=))dBp,
0
tATR AU AW
+ / / exp(ass) {V(s, Es, X(s—)+ h(s, Es, X(s—),v))
0 lyl<c
- V(Sa Esa X(S_)) N(dEsa dy)

By similar ideas as in the proof of (3.1), we have that

tATR AU AW
/ exp(ass)g(s, Ea, X (s—))Va(s, Ev, X (s—))dBp,
0
and

tATRL AU AW,
/ / exp(ags) {V(s, By, X(s—)+h(s, B, X(5—),9))
0 ly|<e (3.74)
- V<S7 E87 X(S_)) N(dES’ dy)
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are mean zero martingales. Taking expectations on both sides, we have

Elexp(as(t A 1y AU AWV (EA T AU A Wi, Expronvaaws s X (EA T AU A W))]
tATR AU AW
SE/ exp(ass) asV (s, Es, X (s—)) + L1V (s, Eg, X (s—)|ds + V (0,0, zo)
0

SV(Oa 07 3:0)'
(3.75)

Letting k — oo and n — oo, Elexp(ast)V (t, Ey, X (t))] < V(0,0, zo). By condition (2),
a| X ()P < V(t, By, X(1)), (3.76)

then
a1 E(exp(ast)| X (1)) < E(exp(ass)V(t, B, X(t))) < V(0,0,20) < as|zol?, (3.77)

that’s
«
E(IX(D)]") < —= exp(—ast)|zol”, (3.78)
1

as desired. O

Example 3.2.2 Consider the following SDE driven by time-changed Lévy noise

dX(t) = =X (t)dt + X (t)E}dBg, + /

ly|<1

[X(t)gf — X(t)|N@E,, dy) (3.79)

with X (0) = x¢ and v is a Lévy measure. Let V (t1,t2, x) = |x|, then

L1V(t1,t2,$> = —|ZL'| (380)
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and

1 1
L2V<t1,t2,$) = §$2t3( - ;) ‘I‘/

e+ av? —al = lal = sgnia@)(ay? = 0)|v(d)

t4
—-2+ [ [ el o) <o
ly[<1
(3.81)
By Theorem 3.2.1, X(t) is first moment exponentially stable, that is,
E| X (t, )| < |xo|exp(—t),Vt > 0. (3.82)

3.3 Duality Property

Next, we reduce SDE (1.6) by setting f (¢, Ey, X(t—)) =0,

lyl<c

with X (0) = .

Kobayashi [15] mentioned duality related to (3.83) and the following SDE

ay (t) = k(t,Y(t—))dt + g(t,Y (t—))dB; + / h(t,Y (t=),y)N(dt,dy),Y (0) = x,
e (3.84) [zeaspEsin
with Y (0) = z, stating that
1. If a process Y () satisfies SDE (3.84), then X (¢) := Y (F)) satisfies the time-changed SDE
(3.83);
2. If a process X (t) satisfies the time-changed SDE (3.83), then Y (t) := X (D(t)) satisfies
SDE (3.84).

Corollary 3.3.1 Let Y (t) be a stochastically stable (stochastically asymptotically stable, glob-
ally stochastically asymptotically stable) process satisfying SDE (3.84), then the trivial solu-
tion X (t) of SDE (3.83) is a stochastically stable (stochastically asymptotically stable, globally

stochastically asymptotically stable) process, respectively.
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Proof: This proof has similar idea as Corollary 3.1 in[32], thus we omit details.
Though the conclusion of Corollary 3.1 in[32] is correct, there is a minor problem in the

proof. We correct it as following

{Ett O§t<oo} (385)

— P{|Y(t,x0)| < bVt > o}
=1—e.

Here, we use the fact that the image of [0, co) under E; process is almost surely equal to [0, 00).

g

Corollary 3.3.2 Let Y (t) be a pth moment exponentially stable process satisfying SDE (3.84),

the X (t) is a pth moment asymptotically stable satisfying SDE (3.83).

Proof: If Y (t) satisfies SDE (3.84), by Theorem 4.2 in [15], X (¢) = Y (E,) satisfies (3.83).
Since Y (t) is pth moment exponentially stable, there exist two positive constants A and C such

that

E[| X (#)[P] < Clzol? exp(—At), Vt > 0, Vg € R, p > 0, (3.86)

then

E[lY ($)["] = E[| X (E)["]

o0

E[| X (s)[” exp(As) exp(—=As)|E; = s]fE,(s)ds

o0

E[| X (s)[? exp(As)|E; = s] exp(—As) fg, (s)ds (3.87)

I
S—

0
< Claol” exp(=As) fe,(s)ds
0

= Clao|PE[exp(—AE;)].

30



Since F is nondecreasing and E, = 0, by definition of E;, we claim that lim; .., F; = 0o a.s..
Assume to the contrary that there exists B > 0 such that £y < B for all ¢ > 0 with positive
probability, then D(B) > ¢ for all ¢ > 0 with positive probability. However, by Lemma 12.1 of
[5], D(B) is bounded, which results in a contradiction. Consequently, E[exp(—AE};)] — 0 as

t — 00, as desired. O

Remark 3.3.3 Existence of pth moment stability of the solution of SDE (3.84) has been proved
by Theorem 4.1 in [2].

Remark 3.3.4 Our results can not be easily extended to time-changed stochastic differential
equation with large jumps, this is because that stochastic integral against Poisson process is not
automatically to be local martingale. Thus, the normal method to prove stability of solutions of
time-changed stochastic differential equation as used in this paper does not work. It is possible
to apply stricter conditions to derive similar results for time-changed stochastic differential

equation with large jumps, but the strength of the results has to be compromised.

Remark 3.3.5 The Lyapunov functions V' in our main results above vary from case to case,
but under certain conditions it is possible to construct Lyapunov function by a general formula,

see [3] as an example.

3.4 Stability in Path

To perform future analysis regarding path stability, we need some conditions under which the

solutions of (1.6) can not reach the origin after certain time ¢, given that X () # 0.

Assumption 3.4.1 For any 0 > 0 there exists Ky > 0, such that

v(dy) < Ky|x|

(3.88) |preassfor

|h(t1at27$7y)|(|x|+|h(t17t2’x’y)|)
k(ty, to, )| + |g(ty, ta, +2/
k(1 t2, 2)| + [g(t1, ta, @) i< |z + h(ty,t2,2,y)|

and

|f(t1,te,2)] < Kgl|z|?*, for 0 < |z| < O andt,t; € Ry, (3.89) |preassfor
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Lemma 3.4.2 Given that the assumption (3.4.1) holds, the solution of (1.6) satisfies

P(X(t) #0 forallt > ty) =1, (3.90) |preassfor

if To # 0.

Proof: We follow the idea in the proof of Lemma 3.4.4 in [30] and prove this result by con-
tradiction. Suppose that (3.90) is not true, that is, there exists initial condition z, # 0 and

stopping time 7 with P(7 < oo) > 0 where
T =1inf{t > ¢, : | X(¢)| = 0}. (3.91)

Since the paths of X (¢) are right continuous with left limit (rcll), there exist 7" > 0 and

0 > 1 sufficiently large such that P(B) > 0, where
B={weQ:7(w) <Tand |X(t)(w)| <0—1 forallty <t <7(w)}. (3.92)
Next, define another stopping time
Te = nf{t >t : | X(t)] < eor |X(t)| > 6} (3.93)

foreach 0 < e < | X (to)].
Let A = 2Ky + K7 be a constant and define Z(t) = e | X (¢)|7!. Since F(t;,ts, ) =
e 2|z~ is in CM12 (R, x Ry x (R\0)), and by definition of 7., X (¢) will not reach 0 for

to <t < 7. AT, so Itd formula can be applied to e *Erent) | X (7. A T)| 71,
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By (3.88) and (3.89),

e—k(EmT)p((TE A T)|‘1 _ |I0|—1

TenT AE, C X(s)f(s,Es, X(s-)) is AT e"\Esg(S’ES’X(S_))2dE
. | XOF +/to XEOF 5

TeNT _1
+/ e M — I\ X (s=)|2dE; + k(s, E;, X (s—)) X (s—)dE,
: Soop ) (5, By X (s)) X (5-)

+ g(s, By, X (5=))X (s=)dBg,|
/T AT e—AES[ 1 - 1 ]
w Do X HFREEXG) )] X))

+

+

/7— /\T/ 6—>\Es [ 1 _ 1
o Jlyl<e [X(s=) + h(s, Es, X(s=),9)| [ X(s—)]
X(s—)h(s, Es, X (s—

)’y)]wdy)dEs

B B X(s-P
<[ [ o 2 B XX

[ e B e B

i /| o= h(s,lEs,X<s—>,y>| - |X<i—>r

| X B X6,
L e e e Ve

shore At / e e + e [>(| s

[ ol B X6 )X () 1,

TeNT L . | )
—i—/to /y|<C€ A [|X(3—)+h(S,ES,X(S—),y)| - |X(S_)|]N(dEs,dy)

T —g(s, By, X(s—)) X (5-)
<K9T+/ e X (s )\ o

] e e e Ve @

(3.94)
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The penultimate inequality is derived from lemma 3.4.2 on page 54 of [30], which states

that —— |x+y| \xl + o < ﬁ,l‘]é‘ (‘fﬁfyﬁ') for z,y,x +y # 0, thus
1 1 X(S_)h(stsaX(S_)ay)
/|l,|<c[|x<s—>+h<s,Es,X< Il IXEo T X )P V{dy)
2I(X (5. By 3-).9) [ B, Eu X(3-). )| + X (5]
%Kc X6OF LT, B X(5—)y) - X5 1)
1 2|h(stsaX(S ) )|(|h( aE57X<S_)’y)|+|X(S_)|> (dy)
“IXGOR Jyee A5, Bu X(5—).9) + X (5]
Kol X(s—)| Ky

T X)X ()]
(3.95)

Observe that the last two terms in the last line of the inequality (3.94) are martingales.

Then by taking expectations of both sides, we derive that
E [e*METeAT)\X(Te AT)[] < Jao|™ + KT (3.96)

If w € B, then 7.(w) < T and | X (7.(w))| < ¢, then

_/\ETE/\T _/\ETE/\T

e

-1

E|e e 5] <E| <E|

X)) 2 <

Recall the reverse Holder’s inequality: for all p > 1

E(|XY|) > (E|X |V (E(Y| Y E-D))~F-1),

AE

We use the reverse Holder’s inequality with p = 2, X = 1g and Y = e ""*=AT_ Since

X1/2 = X, this gives

-1
[P(B))? E(e’\ETEAT)] < E[e_’\ETEATILB} < e(|wo| ™t + KoT), foralle>0
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Since the inverse subordinator has finite exponential moment, £(e*E7AT) is finite for any
fixed time 7', see Lemma 8 in [14]. Then, letting ¢ — 0, we obtain P(B) = 0, which contradicts

the assumption, thus the desired result is correct. U

Remark 3.4.3 When the Laplace exponent of the subordinator is given by (2.3), an alternative
method to show that the expectation E(e*E7rT) is finite is to use the moments of E;. Since
{E,t > 0} is nonnegative and nondecreasing, we have . N'T < T. Because A > 0, e* is a
strictly positive and increasing function, E(e’erert) < E(ePr). Thus, it is sufficient to show
that E(e*P7) is finite. By Theorem 3.9 in [22], there exists a function L € RV,.(0) such that

for any n > 0,y > 0 and sufficiently large t,
E[E}] ~ (logt)"™ L(logt)™". (3.98)

By Taylor expansion and Fubini theorem,

Z\"E" AE| E - logt WL (logt)™
Elexp(AE,)] = E[) | nlf | = Z L Z
n=0 ’ n=0 =0 ’ (3 99)

(A(log t)Vi!(log H_)" = exp(A(logt)"L(logt)™).

3
Il
=)

Hence, for fixed large t, Elexp(AE;)] ~ exp(A(logt)? L(logt)™!) is finite.

A similar method applies when the Laplace exponent of the subordinator D(t) is given by

k
U(s) = as™, (3.100)

i=1
where Zle ¢i=1and 0 < By < fs < ... < By < 1. Then the Laplace transform of the n — th
moment of E; is L(E(E}))(s) = W see Lemma 8 in [14]. Using the Karamata
Tauberian Theorem (see [7], Theorem 1 and Lemma on pp. 443-446) we can deduce that for

large t, E(E") =~ C,t"

Lemma 3.4.4 (Time-Changed Exponential Martingale Inequality) Let D(t) be a rcll subor-

dinator and its inverse process Ey := inf{r > 0 : D(7) > t}. Let T, \, k be any positive
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numbers, B, = {y € R : |y| < c}. Assume g : Rt — Rand h : RT x B. — R satisfy

fo lg(t)|*dFE,] < oo and E| fo Jiyj<e IRt y) P (dy)dEy] < oo, then

P[Sup {/ dBES——/]g )2dE, +// h(s,y)N(dE,, dy)
0<t<T lyl<c

L (.101) [expnaring
- /0 /| el -1 Nh(s, )| /(dy)dE. } > k] < exp(—An)
y|<c

Proof: Define a sequence of stopping times (7,,,n > 1) as below

t
Tn :inf{t >0: / s)dBpg,| + / lg(s)|*dE, + (s,y) dES,dy)‘
0 |y\<C
exp(Ah(s,y)) — 1 — Ah(s, y)} v(dy)dEg| > n}, forn > 1.
ly|<e
(3.102)
Note that 7,, — 0o as n — oo a.s.
Define the following Itd process
t
X(0) = [ 960 0m (9182~ 5 [ 1) b0y ).
+)\/ / h(s,y)Lj0.r(s s)N(dE., dy) (3.103)
ly|<c

_/o / . [ePOAE ) —1 = Ni(s,9) | Lo (5)0(dy)

with X,,(0) =0 foralln > 0. Thenforall0 <t < T

X0t |<)\‘/ Ljo7)(5)dBu, | +

[ e aE )
+5 [ ot @ar. | [ [ [exp(nt) =1 )] 1o i)
<An

(3.104)
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Let Z(t) = exp(X,(t)), by the time-changed Ito’s formula (3.2),
exp(X, (1))~ exp(a)
= [ eeatsn [ - o) 1s)
= [ T (s,90) = 1= Mo )] T ()l
[ LexpOa.0) = L= M) B (o)) + o) o (9]0,
+ [ | [explXa(s) + Mo, = expXa5)] Lo ()N (4B )

o\ / exp(X,(5))g(5) Lo (5)dBr,

/ /| [exp(X,,(s) + Ah(s,y)) — exp(Xn(s))}l[o,fn](s)N(dEs,dy)
y|<c
3 [ OG5 L (51dBs,
0
(3.105)
thus {exp(X,,(t)),0 <t < T} is a local martingale. Since we have
sup exp(X,(t)) < exp(An) a.s. (3.106)

te[0,7]

there exists a sequence of stopping times (75,,, m € N) with (7,,, — c0)(a.s.) as n — oo such

thatforall 0 < s <t <T
Elexp(Xn(t A T))|Fs] = exp(Xn(s A Ty)) < exp(An) a.s. (3.107)
By Dominated Convergence Theorem, we have

Elexp(X,.(t))|Fs] = hm Elexp(Xn(t A Tw))|Fs] = nll_rgo exp(Xn(s ATy)) = exp(Xn(s)),
(3.108)

that is, Z(t) = exp(X,,(t)) is a martingale for all 0 < ¢ < T with E[exp(X,,(¢))] = 1.
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Apply Doob’s martingale inequality

IP[ sup exp(X,(t)) > exp(Ar)| < exp(—Ak)Elexp(X,(T))] = exp(—Ak),  (3.109)

0<t<T

equivalently,

X,(t
P| sup ®)

> k| < exp(—Ak), (3.110)
0<t<T A

writing exp (X, (t)) explicitly, we have

P[ sup {/ ( ) [OTn] dBEs__/ |g OTn] ) Es
0<t<T

t
T / / h(s,y) Loy (s) N (dE,, dy)
0 Jlyl<c

_ %/t/ [eXP(/\h<S, y)) — 1 — Ah(s, y)] 1[07T,L](S)l/(dy)dEs} > /i} < exp(—Ak)
o 3.111)

Define

An:{weﬂ sup {/tg(s) 0 (5 )dBEs——/ 19(5) 2101, (5)dE,

0<t<T

/ AKC $,9)Ljo 7, (5) N (dEs, dy)
_ X/o /|y|<C exp(Mh(s,y)) — 1 — )\h(s,y)] ll[o,rn](s)u(dy)dEs} > R}’

(3.112)

then P(A,) < exp(—Ak).

Since
Plliminf A,] <liminf P(4,) < limsupP(4,) < P[limsup 4,] (3.113)
n—0o0 n—00 n—00 n—00
and
limsup P(4,) < exp(—Ak), (3.114)
n—oo
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also

limsup A,, = liminf A,, = A,

n—00 n—00

where

(3.115)

t )\ t t 5
A= {we Q: sup {/0 g(s)dBg, —5/0 ]g(s)|2dEs+/0 /| h(s,y)N(dE;s, dy)
y|<c

0<t<T

- %/Ot/w<C [exp(/\h(s,y)) —-1- )\h(s,y)] V(dy)dEs} > H};

thus

P(A) = Plliminf A4, < limsup P(A4,,) < limsupexp(—Ax) = exp(—Ak).

n—00 n—o00 n—o00

(3.116)

(3.117)

[] The next result can be considered as a strong law of large numbers for the inverse

subordinator.

Lemma 3.4.5 Let {E,};>¢ be the inverse of the mixed stable subordinator D(t) with laplace

exponent given in (2.3) as defined in (2.2), then

. t
lim — =0, a.s.
t—o0

Proof: Fix ¢ > 0 and define

E
An:{ sup Tt‘>e},

2n<g<2ntl

then, by Markov’s inequality and equation (2.4), as n — oo, for some v > 0,

n+1 n+1)1v n+1\)—1
p(a) <E[ s [ <E[/Z22)] ~ [log(2™+1)]" L(log(2"+))
oncicon+t | 1 2n on
_ (n+1)7(log2)"L(log(2""))"  C(n+1)

By the ratio test, > - P(A,) < co. Applying Borel-Cantelli lemma, we have

. t
lim — =0, a.s.
t—oo t
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i

Remark 3.4.6 Lemma 3.4.5 can also be proved for discrete case with the help of Laplace
transform. Let E, be an inverse of the subordinator with Laplace exponent 1)(s) = Zle c;s™,
where Zle ¢i=1land 0 < ; < By < ... < By < 1. Then the Laplace transform of the nth
moment of E; is L(E(E}))(s) = m

By a Karamata Tauberian theorem (see [7], Theorem I and Lemma on pp. 443-446),

since L(E(Ey))(s) ~ cs~ 4P a5 s — 0 then B(ET) ~ Ct%'. Utilizing this result, eP(A,) <

Eyn+1
2'”

E|

} ~ (2";)[3_1 = 202-0=BIn thys S P(A,) < oc. Applying Borel-Cantelli

. E‘ _
lemma, we have lim;_,, =t = 0, a.s.

3.4.1 Path Stability with Small Jumps

In this subsection, we will analyze conditions for almost sure exponential path stability and

almost sure path stability for the SDEs in equations (1.6) , followed by some examples.

Theorem 3.4.7 Suppose that Assumption 3.4.1 holds. Let V € C*(R; R") and letp > 0,¢; >

0,c0 € R,c5 € R, cq > 0,c5 > 0 such that for all xq # 0 and t1,t, € RT,

(D)er|zP < Vi(x), (i)L1V(x) < eV(x), (iii)LV(z) < sV (z),

(0)|(0:V (2))g(tr ta, 2)* > ea(V(2))?,

V($+h(t17t2,$,y)) V(l’—f—h(thtg,l’,y)) —V(l')
(v) log - v(dy) < —cs.
l<e [ < V(z) ) V(z) i
(3.122)
Then when f # 0 and lim;_ % =0a.s.,
) 1 Co
limsup - log | X ()] < = a.s. (3.123)
tsoo T P

and if co < 0, the trivial solution of (1.6) is almost surely exponentially path stable; when

f =0 (i.e. no time drift in the SDE),

1 1 1
lim sup - log | X (1)) < %<cg ~5e1— 05) a.s., (3.124)
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and if cg < %c4 + cs, the trivial solution of (1.6) is almost surely path stable.

Proof: Define Z(t) = log |V (X (t))| and apply time-changed It6 formula (3.2) to it, then for

all ¢ Z to,

log [V/(X(1))]

=log |V ()] —l—/t M

wf(s,ES,X(s—))ds +/

o VX o B

LV(X(5—)(5, B X(5-)) 1 (BV(X(5-))g(s, By, X(5-)))’
2 V(X(s—)) 2 V(X (s—))?
3/ 1B V(X (5= + s, By X(5), ) — log(V(X(5-)
_ G V(X(s—))

(o) Mo B X (5). ) wldy) B,

T / / [os(V (X (5=) + (s, By, X(s-).))) — log(V (X (s-))| N (dE, . dy)

lyl<
t axV(X(S_)) _
+ Oy e B X )b,

(3.125)
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o]V (an)| + [ BTSN,

X(s—))
PO V(X (s=))k(s, By, X(s=)) 02V (X(s—)g?(s, Es, X (5—)))
) V(X(:0) + VX))
V(X(s—) + h(s, By, X(5—),9))
S VX(s—) !
9, V(X (s—))
B V(X(S—)) h( E X( —>, )}V(dy)dE
/t/|< log(V(X (s—) + (s, Es, X (s—),y))) — log(V(X(s—))
9.V (X(s—))
o V(X(S—)) h(s E X( —), )}V(dy)dE
// +hsE X))
to Jyl<c S—))
9V (X(s—))
oty M B X (). w)|v(dy)d
(0:V(X(s—))g(s, Es, X(s—)))
/ V(X(5)? s
/t/|< log(V(X(s—) + h(s, By, X(s—), )))—log(V(X(s—))}N(dEs,dy)

o Hg( X(s-)dBs,
:10g|V($0)|+/ths+/tthE8

W VX(0) V(X))
+/ %«i ))))g( A=), _§/t0(a e (VE¥EEL€;;X<S_>>>2dES
//| s (CE ] )+ st .
where
0= [ [, Lo (RS )
V(X(s—) + h(s, 5()){(((8_))) ))—V(X(s—)>]y<dy()ji)
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Define

me) = [ D (s, b x (s,

VX ()
) 4 h(s, B X(s—) )\ <
/m /|| V(X(s) ﬂN(dEz;df;)

then, applying conditions (ii) and (iii),

log [V(X(1))| < log [V (wo)| + ca(t —to) + cs(Er — Eyy) + M(t) + Ly(1)
)

L[ OV (X (s—))gls, v X (5-)))?
‘ﬁ/m V(X(50)) A

(3.129)
By exponential martingale inequality (3.101), for 7" = n, A = €, kK = en where € € (0, 1)

and n € IN. Then for every integer n > t,, we find that

LAV (X (s-))g(s, By, X(s—)))?
P[ o <icn {M<t> a 5/ V(X(s—))2 dEs
V(X (s=)+ h(s, Es, X(s—),y))\¢
/to /|y<c exp log X ) ) 1 (3.130)
X(s=) + h(s, Es, X(s—),y)

—elog ( ))} V(dy)dEs} > en} < exp(—€°n)

V(X(s—))

Since > 7 | exp(—€®n) < oo, by Borel-Cantelli lemma , we have

P[limsupl [tosign {M(t) € /tt (OV(X(s—))g(s, ES,X(S—)))szS

oo T 2 V(X (s—))?
h(s, By, X(s—), €
/to [ Lo (1ox MM B X6y
eIOg< V(X(s )Jxr/(h)((s(i))X( )’y))ﬂV(dy)dEnge]:l

Hence for almost all w € € there exists an integer /N such that foralln > N, t; <t <mn,

(OV(X(s ))9(8 By, X(s—)))”
M (t) <—/ V(X(50)? dEs + en

L[ o (g (MO A BXOD ) Ly

V(X(5) + s, B X(52),0)
VIXGo) )iz,

+elog<
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Thus,

log [V(X(¢))] <log|V(zo)| + ca(t —to) + c3(Ey — Ey,) + L2(1)

1 OV(X ()l B X(s-)))?
; / T(X(0))? s

e [ (VX (s=))g(s, B, X(52)))?
- / (X(s >>2

/ /|y<c eXp<1Og ;(h)(;(f),)}(( )y)))f) 4
V(X(s— +(h(s( Es),)X( —); y)))]y(dy)dEs

<log |V (x)| + c2(t — to) + c3(Ey — Ey,) + La(t) — ca(Ey — Ey) +en
V(X(S—)+h(8,Es,X(S—),y)) ‘
. J, Lo (o V(X(s-) )) -1

V(X(s=) + h(s, Es, X(5—),v))
V(X (5—)) )]ty

dE, + en

<

—|—elog< V(X

1—c¢

+ elog <
(3.133)

forn > N, to <t <n.

Letting e — 0, we have

1
log [V(X(t))| <log|V(xo)| + co(t — to) + c3(Er — Ey) — 504(Et — Ey) + L(t) (3.134)

The details can be found in Theorem 3.4.8 in Siakalli’s [30] with certain simple modifica-

tions. By condition (v), I5(t) < —c5(E; — Ey, ), thus applying condition (i)

g (1) < 1 g2

1 1
| < ]—j[log [V (o) |~ log(er) +ea(t—to)+(es—5ea—cs) (Bi— i) |
(3.135)

When f # 0, then ¢y # 0, thus, for almostallw € Q,n — 1<t <n,n> N,

)

1 17l —1 t—t — 1 —c5) (B — E
Hog [V(x (1] < ;[ Coll Zlosler) | el 2 fu) oo pee m R B

(3.136)
then by Lemma 3.4.5
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1
limsup - log [V (X (1)) < 2 a.s. (3.137)
p

t—o00 t B

When f = 0, then ¢, = 0, thus
1 V(X (t 1 1
log | X (t)] < 1—?log|%| < 5[10g |V(m0)|—log(cl)+(03—504—05)(Et—Et0) , (3.138)
1

consequently,

1 1 1
lim sup — log | X (1) < —p<c3 e c5) @.s.. (3.139)

t—o0 t 2 2

g

Remark 3.4.8 From the proof of the previous theorem, when f = 0, we can deduce the follow-

ing. en lim;_,, =t = 0 a.s., the following estimation is also true.
g. When'1 B—0 the following estimat Iso t

1
limsup —log [ X (¢)] <0 a.s.. (3.140)

t—o0 t

Example 3.4.9 Consider the following stochastic differential equation

dX(t) = —X(t=)2dE; + X (t—)dBg, + X(t=)2N(dE,, dy), (3.141)

ly|<1

with X (0) = 1, v is uniform distribution [0, 1].
Choose the Lyapunov function as V (x) = x% which satisfies the conditions (i) and (ii) in

Theorem 3.4.7. Furthermore,

3 3
LoV (x) = =% + Zas + [/ [(1+y%)2 —1-
2 8 ly|<1

(3.142)
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The last inequality is derived by the following argument, Let f(y) = (1 + y2)% —1- %yQ,

then f'(y) > 0for0 <y < land f'(y) < 0for —1 < y < 0. Thus f(y) < f(1) =
f(=1) = .33, for —1 < y < 1. Since v is assumed to be the standard normal distribution,
f\y|<1[(1 +y2)% —1- %yQ]IJ(dy) = f‘y|<1 fy)v (dy ) < 33f <1V v(dy) < .33. Thus, 5 § +
Syl +y )z —1- %yQ]v(dy)} <a3[2+.33) <z =V(2).

|

W(2)g(@)?| = [3a2al = %V(I) and

/y|§1 [lOg ((I +xxy2))3 (r+ay CE;% _ 3]1/((13/)

3 3
=/|<1 [§log(1+y2) — (14 y%)2
(AR

In addition,

(3.143)

+

v(dy) < —.018.

Similar as above, the last inequality can be proved as following. Let f(y) = % log(1 + y?) —

(1+y2)% + 1, then f'(y) < 0for0 <y <1land f'(y) > 0for —1 <y <0. Thus

/ log +9y°)— (1+y )% 1] v(dy) = fy)v(dy)

ly|<1

v(dy) =2 vidy) <2 Dv(d
/5 L ot = / _ Jtn) < / __ Jow -

2/ —0620(dy) = —.124/ V(dy) = —124[®(1) — B(.5)]

IN

A

= — .124(.8413 — .6915) < —.018

The constants of Theorem 3.4.7 are c3 = 1, ¢y = 2.25, c5 = .018, then 2%(03 — %c4 —
2
05) = —.0477 < 0, thus the trivial solution of stochastic differential equation (3.141) is almost
surely path stable. A simulation of a path of SDE in equation (3.141) is given in Figure 3.1, it
log(X (t))

can be observed that === is strictly below 0 when t is large, which illustrates our analysis

above.

Remark 3.4.10 Note that f(z) = z2 fails to be a Lipschitz function and does not have linear

growth condition. However, existence of unique solution to (3.141) is guaranteed by Theorem

3.5 on page 58 of Mao [21].
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Figure 3.1: log(X (t))/E; of SDE (3.141)

logXit))t
0

T T
0 500 1000 1500 2000
Et A )
fig:figur

Remark 3.4.11 In the figures of all examples, we assume that E(t) is the inverse of stable

subordinator with parameter o = .8.

3.4.2 Path Stability with Large Jumps

In this section, we will analyze conditions for almost sure exponential path stability and
almost sure path stability for the SDEs in equations (1.7), followed by some examples. First,
let us discuss exponential stability of the following time-changed SDE with noise that has only

small linear jump

dX(t) = f(t, By, X (t—))dt + k(t, By, X (t—))dE: + g(t, By, X (t—))dBg,

+ /| )X (=) N, ),

(3.145)
with X (¢y9) = x¢, which is a special case of (1.6) when h(tq,ts, x,y) = h(x)y. Then we extend

(3.145) to (1.7) by adding large jumps |,

lyl>c
sumption3| Assumption 3.4.12

H(y) X (t—)N(dE;, dy) .

Ze= [ (I I Pywta) < o (3.146)
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forall ti,t, € RT.

Theorem 3.4.13 Given Assumptions 3.4.1 and 3.4.12, suppose that there exist & > 0,7 >

0,0 > 0, K1, Ky € R such that the following conditions

(Wlef < lgttr o) < €laf, 2) [ hly)wdy) =
lyl<e (3.147)

(3)f(t1, to, 2)w < Ki|z|?, (4)k(t1, ts, 7))z < Ky|z|?

are satisfied for all v € R and t{,ty € RY. Then when [ # 0 and lim;_, o, % = 0 a.s., we have

lim sup — log\X( )| < K as. (3.148)

t—o00

for any xy # 0, the trivial solution of (3.145) is almost surely exponential path stable if K1 < 0;

when f = 0, we have

lim sup Eilog | X (t)] < —(7 — K, — s _ /| log(1 + |h(y)|)v(dy) + 5) a.s. (3.149)
y|<c

t—o00 t 2

for any xq # 0, the trivial solution of (3.145) is almost surely path stable if v > Ky + % +

Jiyielog(L + [h(y) v (dy) — 6.

Proof: [Proof of Theorem 3.4.13] Fix xy # 0, then by Itd formula for time-changed SDE,

see Lemma 3.1 in [25], we have

log(lX(t)lz)=10g(|£vo|2)+/t Lllog(lX(S—)IQ)dSﬂL/ Ly log(|X (s—)|*)dE;

to

+/t/y|<c log(’X<S_)+X<S_)h($7Es,y)!2)—log(!X(s )| )]N(dEs,dy)

/ / | L log(|X (=) P)g(s, Bu, X (s-))dBy,
<c
! (3.150)

where
2X (s—)

L2 log(1X (5-)P) = 57,y

s, By, X(s—)) < 2K, (3.151)
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lg(s, By, X(s—))I?
[ X (s=)I?

+/|< [1og(!X(s—>+h(y)X(s_)\2)—1og(yX(s—)12)—M(y)}v(dy).

Lylog(|X (s—)|*)dE, = 2 k(s, Es, X(s—)) —

(3.152)

Applying condition (2) and Assumption 3.4.12 to (3.152),

| Brtos(xX (s, = [ [‘i()iii_)ﬁQk(s,Es,X(s—)) _ |g<s,|f;7;(,i<)s|2—>>l Jaz,

+/t0 [/y|<c [log(|X (s—) + h(y) X (s—)?) — log(|X (s—)|*) — zh(yﬂywy)}d&

< [ RS+ e ams [ [ [ frost+ il utay) - 2]z,

t
< / 2B, + 2(E; — Ey) /
to |

yl<e

[ og((1 + [h(y)])) | (dy)

— (27 +20 — & (E, — Ey,)

<(E, —Eto)[Q/

yl<c

log(1+ h(y) )w(dy) + 20, + € — 29— 20|
(3.153)

Note that both

// —log 1 X (s—)|*)g(s, Es, X (s—))dBg, (3.154)
to Iy\<c

and

:/tt/ll [10g(|X(5—)+X(5_)h(y)|2)—log(|X(5_)‘2) N(dE,.dy)  (3.155)

are martingales.

Now,

log(|X (t)[*) <log(|zol*) + 2K1(t — to) + Mu(t) + Ma(t)

4 (B, — Et0)<2/

yl<e

(3.156)
log(1 + |h(y)|)v(dy) + 2K5 + & — 27y — 25).
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Define corresponding non-time-changed stochastic process {z; }+> by

2(to) /fsz dt+/( ))dB(t //|

with z(ty) = xo. By the duality theorem 4.2 in [15], X (t) = z(E;) for t > t,.

By the result on page 282 in Mao [21],

)0 =2 [ F2sgls,260)) g )y

Exg |2(s=)[?
[P s s
‘4/% B

<4{(Er — Eyy).

t d(My)(s)

(ds dy),
(3.157)

(3.158)

Define pys, (t) = [, (15,2 then
Poods  —Ag B 1 1
<4 =4 —
P (! g/ =4 g, (1+5)? 1+3Et0 g[1+Et0 1+Et]’
(3.159)
then
lim pM()< hrn 4¢[ CHER ) € 4¢ < 0. (3.160)
By Theorem 10 of Chapter 2 in [?],
My (t
lim M) _ 0, a.s.. (3.161)
t—o0 t
Similarly,
—) +2(=)hy) 1
log(~ )] v (dy)ds
/Et /y|<c Z(S_>|2
< / los((1+ [h(y)])?)v (dy)ds
lyl<e (3.162)

<4 / ()2 (dy)ds
Ey, ly|<e
<4

<4Z.(E; — Ey,),
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SO
lim

t—o00

As a result,

In the end, since

b dE
t) < lim 4Z7, —
pMz( ) — ti}g) /to (1+Es)

My(t
lim 2()

t—o00 t

=0, a.s..

. t
lim — =0, a.s.,
t—oo t

5 < o0 a.s..

and
log | X (1)| _ (£t~ Eig)(Jiyj<c log (1 + [h(y) v (dy) + Ks + §
t - t
t t 2F; t 2F, t
thus,
log | X (t
lims.upM < Kja.s..
t—o0
When f =0,
log | X (1)] _ (£~ Eig)(fiyj<cl0g(1 + [n(y) v (dy) + Kz +§ — 7 =)
E; N E;
log ro] _ M(1) | Maf)
E, 2F, 2F,
thus,
log | X (t
lim sup log | X ()] < / log(1 + |h(y)|)v(dy) + K2 + §_ v—0a.s..
t—o0 Et ‘y|<c 2

(3.163)

(3.164)

(3.165)

(3.166)

(3.167)

(3.168)

(3.169)

g

Other than the direct proof above, the following is an alternative proof utilizing Theorem

3.4.7.

Proof: [ Alternate Proof of Theorem 3.4.13]

Let V(x) = |z
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2, then V € C?*(R,R") and condition (i) in Theorem 3.4.7 is satisfied.



Next, by applying the time-changed It6 formula to V(X (t)), L1V (z) = f(t1,t2, )22 <

2K,V (z), thus condition (ii) in Theorem 3.4.7 is satisfied;

LoV (z) = k(ty, ta, x)2x + |g(t1, ta, ) ? +/

lyl<c

2+ h(y)af? = [« = h(y)a2e | v(dy)

< 2Uo[al + |g(ts, o, 2) + /

lyl<c

22 (14 h(y))* = 1 = 21(y) | v(ay)

< [2K2+§+/

ly|<c

[h(y) Pr(dy) | 2] < oo,
(3.170)

thus, condition (iii) in Theorem 3.4.7 is satisfied by Assumption 3.4.12 and setting c3 = 2/, +
£+ o () PAdy).

Condition (iv) is satisfied since
10,V (2))g(t1, ta, ) |* = |22g(t1, ta, x)|* > dy|z|t. (3.171)

For the last condition (v), by denoting c5 = — f|y|<c [log(l +|h(y)]) —|h(y) |2} v(dy) — 20

e hae Vit b))y Ve +hgs) - V()
r r+ hy)r T+ hly)r) — Vix
log — v(dy)
/|y<c L ( V(z) ) V(z) ]
i [z +h(yzl\ o+ bz — |2
:/ lOg ( ) ) - B :|V(dy)
jyl<e ¢ || 2] (3.172)
r 2zh(y)z + |h(y)x|? )
< [ [ros + ny)) - 2RO g
lyl<e = ||
< /|  [1ostr+ 1w = 1)) — 25 <0
y|i<c -
Since all five conditions in Theorem 3.4.7 are satisfied, we have that when f # 0,
) 1
11msup¥log|X(t)| < K a.s,; (3.173)
t—00
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and that when f = 0,

1
lim sup i log | X (¢)]

t—o00 t

<g(rere= [ mlvia) 5~ [ a1+ ) — Int)]ta) )

lyl<c 2

= (K-S /| _ [roatr-+ 0] +5)
(3.174)

as desired.

Example 3.4.14 Consider the following stochastic differential equation

X(t— -
dX(t) = —sin(X(t—)) X (t—)dE; + E'(—l— idBEt —I—/ 16X (t—)y*N(dEy, dy), (3.175) [example00
t ly|<1

with X (0) = 1, v is uniform distribution |0, 1].

Applying Theorem 3.4.13, 0 < |g(x, t1,t2)?| < |z

2’ f|y‘§1 h(y)l/(dy) > 13_6 and

k(ty, to, x)x < |z|? thus v =0, £ =1, § = 13—6, Ky =1

. 1
limsup - log IX(0)] < —(v~ Ko = 5= [ log(1+ hlw)lwldy) +9)
t—o00 Et 2 |y‘<c

. 6 (3.176)
=—(0—-1- 5 log(17) + 3) <0a.s..

Hence, stochastic differential equation (3.175) is almost surely path stable. The simulated
path of SDE (3.175) is given in Figure 3.2. The ratio of w is strictly below 0 for large

time t, this is consistent with above analysis.

Next, we analyze the following time-changed stochastic differential equation involving

large jumps,

AX(0)= [ H(y)X(-)N(dE,, dy). (3177

lyl>c
with X (t9) = zo € Rand H : R — R is a measurable function.

Before stating the next theorem, we need another assumption, see [30].
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Figure 3.2: log(X (t))/E; of SDE (3.175)
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sumptionE| Assumption 3.4.15 Assume that

/| ) <o (3.178)
ylze

and that H(y) # —1 for |y| > .

By above assumption, the function H(y)x satisfies Lipschitz and growth conditions, as-
suring the existence and uniqueness of solution to equation (3.177). In addition, H(y) # —1
implies that P(X (¢) # 0 for all t > ty) = 1, this is an application of interlacing technique in

[1], details can be found in Lemma 4.3.2 in [30] with simple modification.

Theorem 3.4.16 If

sup /|> [log(|:v + H(y)z]) — log(|x|)]1/(dy) < -K, (3.179)

z€R—-0

for some K > 0, then the sample Lyapunov exponent of solution of (3.177) exists and satisfies

1
lim supElog | X(t)] < —2K a.s., (3.180)

t—o00 t

for any xy # 0, that is, the trivial solution of (3.177) is almost surely path stable.

Proof: Fix o # 0, apply 1t formula (3.2) to log(| X (¢)|?), then for any ¢ > 0,
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finalthm

(X)) =log(e) + [ [ [10s(1X(5) + H@X ()~ os(1X ()| (a8, )
=togad) + [ [ [loaX() + H@)XF) 101X ()] N(B. dy

+/t /> [10g(1X () + H(y)X (5)%) — 1og(| X (s)|*) | v(dy)dE..
o (3.181)

Let M(t) = [ [, o [1og(\x<s) +H)X(5)]2) — log(|X (s) 12)} N(dE,, dy), similar ideas
as in the proof of the corresponding inequality for Ms(t) in the proof of Theorem (3.4.13), we

have
M t

t—00 t

=0, a.s., (3.182)

thus

_ |X(5)+H ()X (5)[)
log(|X(1)[*) _log(xt) +<Et Eto)supogsétﬁyec[log( log([X (s)° }’/(dy)

Ey - E b,
= s [ [los(1X(0) + HO)X()) — los(X () Jvie) < 2K,

0<s<t

ast — oo.
(3.183)

O
Next, by similar ideas as the proof of Theorem 4.6.1 in [30], it is not difficult to derive the

following theorem for the following time-changed SDE

AX (1) = f(t, By, X(t=))dt + k(t, By, X (t—))dE; + g(t, By, X (t—))dBp,

+/| h(y)X(t—)N(dEt,dy)Jr/ H(y)X (t—)N(dE,, dy).

ly|>c

(3.184)

with X(to) = Xp.

Theorem 3.4.17 Given assumptions 3.4.1, 3.4.12 and 3.4.15, suppose that there exist & >

0,v> 0,0 >0, Ky, Ky € R such that the following conditions
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(Wlel? < lgtt ta ) < €laf's @) [ Wlyhldy) =3
lyl<e (3.185)
(3)f(t1,t2,x)x S K1’$‘2, (4)]€(t1,t2,$)$ S KQ’Q?‘Z

are satisfied for all v € R and t{,t, € RY. Then when [ # 0 and lim;_, o, % = 0 a.s., we have

1
limsup —log | X (t)| < K a.s., (3.186)

t—o00 t

for any xy # 0, the trivial solution of (1.7) is almost surely exponentially path stable if K1 < 0;

when f = 0, we have

limsup%log|a:(t)| < —(7—K2—§—/|| log(H—]h(y)|)y(dy)+5—M(c)> a.s., (3.187)
y|<c

t—o00 t 2

where M (c) = sup,cr_ (o} fly\Zc [log(\x + H(y)z|) — log(|z]) |v(dy) < oo, for any x¢ # 0,

and the trivial solution of (1.7) is almost surely path stable if v > Ko + % + f‘y|<c log(1 +
[h(y)v(dy) = 6+ M(c).
Proof: Application of Theorem 3.4.7 and Theorem 3.4.16. U

Remark 3.4.18 The Theorems 3.4.7 and 3.4.17 show that the coefficient of " dt” (i.e. the drift
term) plays the dominating role in determining the almost sure exponential path stabilities. In
absence the of ”dt” part, almost sure path stability is the result of the coefficients of the other

components.
Next, we list some examples to illustrate the results of above theorems.

Example 3.4.19 Consider the following two stochastic differential equations

dX(t) = X (t—)dt + X (t—)dBg, + /t X(t=)y*N(dE,, dy)
0 Jlyl<1

t
4 / X(t— )y N(dE;, dy)
0 Jly[>1

3189

with X (0) = .1 and v is standard normal distribution,
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Figure 3.3: log(X (¢))/t of SDE (3.188)
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Figure 3.4: log(X(t))/t of SDE (4.2.3)
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and

dX(t) = —X (t—)dt+X (t—)dBg,

t
+ 2/ X(t=)y*N(dE,, dy) + 2/ X (t—)y*N(dE;, dy)
lyl<1

ly[>1
@159

with X (0) = .1 and v is standard normal distribution.

Figure 3.3 illustrates that stochastic differential equation (3.188) is not almost surely

exponentially path stable, this is because ”dt” component exists in the linear stochastic system,
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such component plays dominant role in determining almost sure exponential path stability and
has positive scalar 1, thus limsup,_, 1log|z(t)] < 1, this is not enough for almost sure
exponential path stability.

In contrast, as illustrated in the Figure 3.4, (also verified by Theorem 3.4.17) stochastic
differential equation (4.2.3) is almost surely exponentially stable. This is because that co-
efficient for dt in (4.2.3) is -1, thus limsup,_,, 1 log|z(t)| < —1, this implies almost sure

exponential path stability.

Example 3.4.20 Consider following two stochastic differential equations

dX(t) = =X (t—)dE,+X (t—)dBg,

t
/ Xt N@Edy) + [ XNy
ly|<1 ly|>1

3190

with X (0) = —3, and

dX(t) = —X (t—)dE,+2X (t—)dBp,

t
/ Xy NEdy) + [ XNy
ly|<1 ly|>1

@191

with X (0) = —3.

Figure 3.5: log(X (t))/E; of SDE (3.190)
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Figure 3.6: log(X (t))/E; of SDE (3.191)
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In both of the equations (3.190) and (3.191), " dt” component is missing, thus almost sure
exponential path stability is no longer possible. However, almost sure path stability is possible,
depending on the scalars of time-changed drift, Brownian motion, and Possion jump.

In stochastic differential equations (3.190), the corresponding parameters are Ky = £ =

y=1,0=.2hy)=H(y) =y*and 0 <5 < f‘y|<1 y*v(dy) < 1, by Theorem 3.4.17

1
lim SUp - log | X (¢)]

t—o0 t

1
< —(1 —1—=- / log(1 + y*)v(dy) + .2 — sup / log(1 + y2)u(dy))
2 lyl<1 zeRI—0 J|y|<1
< / log(1 + y*)v(dy) +.3 a.s.,
lyl<1
(3.192)
which is not enough to conclude the almost sure path stability of stochastic differential equa-

tions (3.190).
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However, in stochastic differential equations (3.191) corresponding parameters are Ko =

1,6=2vy=¢6=4h(y)=H(y) =y*and 0 < § < f|y|<1 y*v(dy) < 1, by Theorem 3.4.17

1
lim SUp 7 log | X (¢)]

t—o00 t

< —(4 12— /y|<1 log(1+y*)v(dy) + 2 — sup /y|<1 log(1 + yz)l/<dy))

2zERI—0

< -8+ 2/ log(1 + 3?)v(dy) < —.8 + 2/ yu(dy) <0 a.s.,
lyl<1

lyl<1

(3.193)

thus the solution of stochastic differential equation (3.191) is almost surely path stable.
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Chapter 4

Time-Changed Stochastic Control Problem

In this paper, we investigate the time-changed stochastic control problem using the maximum
principle method. Specifically, we consider the following time-changed stochastic process, see
[14, 25]:

dX(t) =b(t, By, X(t—),u(t))dE, + o(t, By, X(t—),u(t))dBeg,

+/| v(t, By, X(t=),u(t), y)N(dE;, dy),

@

with X (0) = z¢ # 0 and the corresponding performance function

J(u) = E[/OTg(t, B, X (1), u(t))dE, + h(X(T))], we A, 4.2)

where u(t) = u(t,w) € U C R is the control and .A denotes the set of admissible controls.
We establish a maximum principle theory for the stochastic control problem to find u* € A

such that

J(u*) = sup J(u). (4.3)

ucA
The process u(t) = u(t,w) € U C R is the control. Assume that u is adapted and RCLL,
and that the corresponding equation (4.1) has a unique strong solution X (¢), ¢ € [0, T]. Such

controls are called admissible. The set of admissible controls is denoted by A.
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Then we extend such result to a more general time-changed stochastic process involving

time drift term dt:

AX (1) = p(t, By, X (1), u(t))dt + b(t, By, X (t—), u(t)dE; + o(t, By, X (t—), u(t))dBg,

T / (b, Eey X(t=), ult), y) N (dE,, dy),
e (4.4)

with X (0) = 2 # 0, and the corresponding performance function

J(u) = E[/OT F(t, Ee, X (8), u(t))dt + /OT 9(t, By, X (1), u(t))dE, + h(X(T))|, u € A.
4.5)

Lemma 4.0.1 (Existence and Uniqueness of BSDE)

Consider the following time-changed Backward stochastic differential equation

dX(t):—,u(t,Et,X(t—),u(t))dEt+u(t)dBEt+/ h(t,z)N(dEy, dz), (4.6)
R\{0}

with X(T) = X, where p € L*(R,,R.,R,R),h € L*(R,R). If there exists a positive

)

constant L, > 0 such that |j(ty, ta, 1, ur) — pu(ty, to, 2, uz)| < L“<|x1 — To| + |up — ug

then there exists a unique solution (X (t), u(t)) of (4.6).

Proof: To prove the uniqueness, suppose (X1 (t),u1(t)) and (X2(t), us(t)) are two solutions

to (4.6) in L*(Q x R, ) x L?(Q x R,). By Itd formula,

(1) - XQ(T)‘Q - %) - X0 ‘L /tT 1y (5) — 1ua(5) 2,

+/t 2(X1(5)—X2(5))[—(u(s,Es,Xl(s),ul(s))—u(s,Es,Xg(s),UQ(s))>dEs 4.7)

+ (uals) — u2(s))dBEs]
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Thus,

‘Xl(t) — Xg(t)‘2 + /tT lui(s) — ug(s)PdE, + /tT 2(X1(s) — XQ(S))(Ul(S) — UQ(S))dBES
:/tT 2(Xi(s) — Xz(s))(ﬂ(sa Es, X1(s), u1(s)) — p(s, EsaX2(3)v“2(5)>>dEs
< [ 2805009 = XN (15065) = Xl + bl a5,

< [ 2[00 = Xl + F1Xi(5) — Xalo) + 31 (s) — wa(s)JdE.

T T
=(2L, + Li) / |X1(5) — Xo(s)[PdE, + / lui(s) — ug(s)PdE,.
t t
(4.8)

Take expectations on both sides,

T

2
] < (2LH+Li)]E[/ 1X1(s) — Xa(s)|2dE,|. 4.9)
t

E|

Xi(t) — Xo(t)

Note that we apply Martingale property to derive inequality (4.9) and lay some details

below.

[ 5106) = Xa(e)) (11(5) — a(s)) B
:/000 1{t < s <THX(s) — Xo(s)) (ui(s) — ua(s))dBe, (4.10)

— [ Lcpren (Xu(D(s)) = Xa(D(s=) (ur(D(5-)) = ua(D(s))) B,
since (X (t),u1(t)) and (Xo(t), us(t)) are in L2(2 x R,),

<)
0

<E /0 7| 2(D(s-)) = X D)) (11(D(5=) = 1a(D(s-))

‘ 2

Lit<n(s—)<r}(X1(D(5-)) — Xa(D(s-))) (us(D(s—)) — uz(D(s—)))| ds

(4.11)

2
ds < 00,
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we have

E [ (X6~ X)) (1(5) — wa(s)) B,
— ]E/OOo Li<p(sy<ry(X1(D(s=)) — Xo(D(s=))) (ur(D(s—)) — ua(D(s—)))dB, (4.12)
= 0.

Next we apply time-changed Gronwall’s method by Lemma 3.1 in [33]. Define F'(t) =
[ X1(s) — Xa(s)|*dE,, then F(T) = 0 and

—d(F(t) exp(kEt)> — —exp(kE)AF(t) — kexp(kE)F(t)dE,

) T
_k/
t

= eXp(kEt)(

X1 (t) — Xo(t) 2dES> dE,,

(4.13)

Xl(S) — X2(S)

thus

—F(T)exp(kEr) + F(t) exp(kE})

:/tT [exp() ([ Xa(s) —Xg(s)r—k/f X (u) —Xg(u)‘QdEuﬂdES.

(4.14)

Taking expectations and letting k = 2L, + Li imply that

E[F(t) exp(kEy)|
_E :/tTexp<kEs>( Xi(s) - Xa(s)| - k/sT
_E :E[/tT exp(k‘Es)(

=E :/tTexp(kEs)EQXl(s) - X2(S)‘2 - k/sT

X1 (1) — Xo(u) ‘QdEu> dEs}

Xi(s) — Xg(s)‘2 k& /T X1 (u) — Xg(U)’QdEu> dEs}

o{Es,s € (t, T)}}

2
X1 (u) — Xg(u)) dEu)dES

0By s € (t.T)}]
(4.15)
It follows that

E[F(t)} < E[F(t) exp(kE,)| <0, (4.16)
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s0 Xi(s) = Xa(s) a.s. for Vs € (t,T). By (4.7), since X;(s) = Xy(s) a.s. forVs € (¢,T), we

have ftT lu1(s) — us(s)|?dE, = 0, thus uy(s) = us(s) a.s. for Vs € (¢, T). The uniqueness is

proved.

To prove the existence, let uy(t) = 0, {(X,(t),un(t));0 < ¢t < T},>; be a sequence

defined recursively by

X, =X, 1(t)
T
+/ u(s,ES,Xn_l(s),un_l(s))dEs—/ Un—1(s)dBg, — / / (s,2) dEs,dz)
t t R\{0}
(4.17)
Then

dX(t) = —palt, Bp, X1 (1), tn 1 (8))AE; + wn 1 ()d B, + [ 10y 1t 2) N(dEy, d2),
dXp i1 (t) = —p(t, Bp, X (1), un(8))dE; + un()dBr, + [o oy h(t, 2)N(dEy, dz),

Xo(T) = X1 (T) = X.

\

(4.18)

By It6 formula in Lemma 3.0.1, there exists k£ > 0 such that

T

T
a0 = X + [ (0ns) = w0a(6)2aB 42 [ (Xua () = Xo(5))a(s) = s () B
T
=2 [ (X (6) = X(6) (s B X030, 0(5) = s B Ko (5), 101 ())) P,
T
<21, [ 1% (5) = Xal)](1X0(5) = Xamt (9] + fn(5) = i (3)]) B,

T T
_k[/t ]Xn+1(s)—Xn(s)2dEs+/t [X0(s) = X1 (s)PdE / [t (s) = 1 (5) 2dE.
(4.19)

Taking expectation on both sides implies

E| X (1) — Xa(0)|

17 )
+ §E [tun(8) — up_1(s)|*dFE;
t

T T
<kE| / Xe1(s) — Xo(s)PdEs + / X,() — X ().
t t (4.20)
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T
t

2
Define F),(t) = dE for all n > 1, then F,,(T") = 0 and

Xo(s) = Xona(s)

—d(FnH(t) exp(kEt)) = — exp(kE)dFp1 (1) — k exp(kE,) Fpy1 (H)dE,

= exp(kE) | X, (1) — X, (0]~ b / ' | Xoia(s) = Xa(s)| dE.) B,

(4.21)

By a similar argument for uniqueness and using (4.20),

E[Fn+1(t) eXP(k’Et)}

T
=E / exp(kEs) || Xnt1(s ‘ —k‘/
' T
—E E[/ exp(kEq) || Xps1(s) — ‘ —k/
t

=E / exp(kEs)E || Xpt1( ’ —k/

T
<E / exp(kE,) / X, (1 1(l)|2dEl}dEs
t

X (l ,,L(Z)‘szl} dEs}

Xpia(l) - Xn<l>\2dEl]dEs]

(B, s € (t,T))}]

2
Xoi1(l) = Xa(D)| 4B dE,

(Bss € (1,7)))]

(Bus € (1.1))}]

:E_/t kexp(kEs)E Fn(S)} dEs|{o(Es, s € (t7T))}}

T
=k / kexp(kEs)Fn(S)dEs}a
L/, 4.22)

letting t = 0,

T nF
EF,,,(0) <E / ket B B, (s)dE, < EKekET) 1(())} 50, asn— oo, (4.23)

0 n!

Thus, {X,,} is a Cauchy sequence in L*(Q2 x R, ). Taking (4.20) into consideration, {u,} is

also a Cauchy sequence in L?*(2 x R, ). Thus, the existence of solution to (4.6) is proved. [

4.1 Maximum Principle Method

In this section, we solve the time-changed stochastic control problem through the maximum
principle method. An example is provided to illustrate how our method works for a particular

time-changed stochastic problem.
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We consider a performance criterion .JJ = J(u) of the form

J(u) = E[ /0 g(t, By, X (8), u(t))dE, + h(X(T))], uE A, (4.24) [performan

where g : [0,7] x R, x R x U — R is continuous, h : R — Ris C1, T < oo is a fixed

deterministic time and
T
E[/ g(t, By, X (1), u(t))dE, + h(X(T))] < o0, Vu € A (4.25)
0

The stochastic control problem is to find the optimal control u* € A such that
J(u*) = sup J(u). (4.26)
ucA

Since FE; is right continuous and nondecreasing, % exists fort > 0 a.e.

Define the Hamiltonian H : [0,T] x Ry x R x U xR x R x R by

H(tthax)uup? q, T) :g<t1,t2,$,u> +pb(t17t27l‘7u) + qg(tl,t27$,U)

+ [ ot tamu, 2t 2vlds),
R

(4.27)

or

H{(t, By, X(t), ult), p(t),q(t),r(t, 2)) = g(t, By, X(2), u(t) + p(t)b(t, £y, X (1), u(t))

gt (t, By X (1), u(t)) + / ot By X (8), ult), 2)r(Ep, 2)0(d2),
B (4.28)

where R is the set of functions 7 : R, X R — R such that the integrals in (4.27) exists.
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Define the adjoint equation in the unknown processes p(t) € R, ¢(t) € R,and r(t,2) € R

in the backward stochastic differential equations

dp(t) = — Ho(t, By, X (1), u(t), p(t), q(t), (¢, -))dEy

r(Ey, 2)N(dE,, dz),t <T (4.29)

(t)dBp, +

%\

Theorem 4.1.1 (Time-Changed Maximum Principle Theorem) Let i € A with correspond-
ing solution X = X® of (4.1) and suppose there exists a solution (p(t), §(t), 7(t, z)) of the

corresponding adjoint equation (4.29) satisfying

E[ /0 T(X(t) _X<u>(t))2(42(t) + /R fQ(Et,z)z/(dz)>dEt] < 00 (4.30)

and

E| / R (o2(t. B X (0), u(t))+ / (0 B X (1), u(t), 2)u(dz) JdE] < o0, u € A
4.31)

Moreover, suppose that

H(tv Ey, X(t)7 ﬂ(t)7ﬁ(t)7 d(t>’ f’(tv )) = sup H(tv Ey, X(t)7 U7ﬁ(t)7 é(t)7 f<t7 )) (4.32)

vel

for all t, that h(x) in (4.24) is a concave function of x and that

A

H(z) == max H(ty, ta, z, v, p(t), 4(1), 7 (¢, -)) (4.33)

velU

exists and is a concave function of x for all t € [0, T|. Then @ is an optimal control of stochastic

control problem (4.26).
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Proof: Letu € Abe an admissible control with corresponding state process X (t) = X (¢).

We would like to show that

~ A

J(@)-J(u) =E| /0 g(t, By X(1), (1)) = g(t, By, X(2), u(t) di+h(X (1) ~h(X(T))| = 0.

Since g is concave, using Itd6 formula (3.2),

~

E[h(X(T)) — h(X(T))] = Elh, (X (T))(X(T) — X(T))] = E[(X(T) — X(T))P(T)]

)—h
B[ [ (X0 =X + [ podctn - Xw)+ [ apodcte - x)
B[ [ (X0 =X + [ podcEn - x()

+/O Q) (ot B, X (1), 4(t)) — o(t, By, X (1), u(t)) ) dE,

+/OT/Rf(t,z)(’y(t,Et,X(t),ﬁ(t)) —’y(t,Et,X(t),u(t))>y(dz)dEt].
(4.35)

Among above terms,

~

B[ a0tk - X)) =E[ [ 50) (o0, B 50, 000) ~ o0, B 0,00 ) 5
(4.36)

/0 (b(t, Ey, X(t),a(t)) — b(t, B, X (1), U(t))>dEt
+ /OT q(t) (‘7(@ Ey, X(1),a(t)) = o(t, Et,X(t),u(t)))dEt

[ #00:2) (300 B X0, 0)) = 20, B2 X0, u0) ) (=)
. (4.37) |equationl
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In addition,

H(t, By, X (8), (), (1), 4(), 7(6)) — H (¢, By, X (), u(t), 5(¢), (1), 7 (1))
=(g(t, B, X(8), a(t)) — g(t, i, X (8),u(t)) ) + p(t) (blt, B, X (1), a(t)) - b(t, By, X (1), u(t)))
+a(t) (ot B, X (), a(t)) = o(t, B, X (), u(t) )

/f (t, 2) (7(t, By, X (£), 0(t)) —y(t,Et,X(t),u(t)))y(dz),

and by (4.29) we have

I
—~
~
S~—
| —
|
=
—~
\.Pi-
=
ja
~
SN—
g3
~—~
~
:_/
=
—~
~
SN—
2
—
~
N—
—~
SN—
S~—
SH
&=
_|_
=)
—~
SN—
SN
oS
=
%\
—
SN—
=
—~
QL
S
ISH
I}
S~—
—_

= — (X(t) — X(t))H,(t, B, X(8),a(t), p(t), 4(t), 7(t, ) )dE,

+(X(t) = X(1)(§(t)dBg, + /R #(t, 2)N(dE,, dz)).
(4.39) |equation3

Then, since H is concave in z, putting equations (4.38) and (4.39) into (4.37) and follow-

ing the proof in [9], we get

Remark 4.1.2 The maximum principle suggests that the optimal control can be solved using
Hamiltonian framework, which is a boundary value problem and a maximum condition of a
function called the Hamiltonian. The application of the maximum principle lies in that maxi-

mizing the Hamiltonian is easier and more feasible than directly solving the original stochastic
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control problem. This leads to the closed form solutions for certain classes of optimal control

problems.

Example 4.1.3 (The Time-Changed Stochastic Linear Regulator Problem)
The Linear Regulator Problem aims to reduce the amount of work or energy consumed by the
control system to optimize the controller. In this example, we consider the following time-

changed stochastic linear regulator problem:

T X2 2
D(x0) = infE[/ MdEtJr/\XQ(T) , (4.41)
ucA 0 2
where
dX(t) = u(t)dE; + 0dBg, + / 2N(dE,,dz), X(0) = xo. (4.42)
R

Construct the Hamiltonian:

% + u?

H(ty,to,x,u,p,q,7) = +pu+oq+ / yzv(dz). (4.43)

R

The adjoint equations are

dp(t) = =X (t)dE, + q(t)dBg, + [y 7(E:, 2)N(dE,, d2),

@4

p(T) = 22X (T).

The first and second order condition implies that Hamiltonian : H (ty,ts, x,u, p, q,r) achieves
the minimum at u*(t) = —p(t).

To find an explicit solution of u*(t), suppose p(t) = h(E;)X(t), where h : R, — R,.
Then u*(t) = —h(FE;) X (t) and

dp(t) = h(E)dX (t) + I (E) X (t)dE;

= h(E;) (u(t)dEt + 0dBg, + / zN(dE:, dz)) + W(E) X (t)dE, (4.45)

R

= X(t)(—hX(E,) + W(E,))dE, + h(E,)odBg, + h(E,) / *N(dE,, dz).
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Compare (4.44) and (4.45), —h*(E;) + W(E;) = —1 and h(Er) = 2\. The general

solution to this ordinary differential equation gives

2\ — 14 (2\ + 1) Ei=Er)
2X — 1 — (2X + 1)e2(B—Er)’

hE,) = (4.46)

Thus, we have the explicit formula for the optimal control u*(t) = —h(FE;) X (t). Similarly,
q(t) = h(Ey)o and r(E;, z) = h(E;)z. A simulation of the optimal control uw*(t) with A =
—5,0 = 1,29 = —.01, standard normal distribution v, and inverse stable subordinator E(t)
having o = .9 is displayed in Figure 4.1.

Keeping all others parts the same as in the figure 4.1, we also simulate the optimal control
u*(t) for « = .7 and o = .5 in Figure 4.2 and 4.3, respectively. Overall, replacing t by E,
would only insert some constant periods into the original process. As « gets closer to 1, the

constant periods vanish gradually.

Figure 4.1: Simulation of u*(¢) for Example 1, o = .9

0 50 100 120 200

fig:EXAMPLE1_9

Remark 4.1.4 To demonstrate above example in an intuitive way, we simplify the specification

by letting A\ = %, o =1, and z = 0. The example problem becomes seeking the optimal control
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Figure 4.2: Simulation of u*(¢) for Example 1, o = .7
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fig:EXAMPLE1_7

Figure 4.3: Simulation of u*(¢) for Example 1, o« = .5
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|fig:EXAMPLE1_5

of the energy consumption system:

T 2 2 2
®(wo) = int B[ / Md]ﬂ# X 2<T) ] (4.47)
uw 0
where
dX(t) = u(t)dE; + dBg,, X(0) = xo. (4.48)

In this case, h(E;) = 1 and u*(t) = — X (t). Thus, the optimal control is du*(t) = —u*(t)dE,—

dBp,, which means that the optimal control keeps the energy consumption constant over time.
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4.2 A More General Time-changed Stochastic Control Problem

Now we extend the time-changed SDE (4.1) to a more general case by adding a time drift term

as below,

dX () =p(t, By, X (t—),u(t))dt + b(t, By, X (t—), u(t))dE, + o(t, By, X (t—),u(t))dBg,
[ B X (), ) ) N B dy),
lyl<c
(4.49)
with X (0) = z¢ # 0, where p, b, 0,y are real-valued functions satisfying the Lipschitz condi-
tion 2.0.1 and assumption 2.0.3.

Suppose the performance function is given by

T T
I =E[ [ B X0 a0+ [ gt B X (0, ul®)E + HXT)], ue A
0 0
(4.50)
where the function f, g : [0,7] x R, x R x U — R are continuous, h : R — Ris C', T < oo

is a fixed deterministic time and

E[/T F(t, By X (1), ult))dt + /Tg(t, By, X (), u(t))dE, + h(X(T))| < 00, Yu € A.
(4.51)

The stochastic control problem is to find the optimal control v* € A such that

J(u*) = sup J(u). (4.52)
ueA

Remark 4.2.1 Performance functions (4.24) and (4.50) are slightly different in terms of their

integral kernels. This difference results in different Hamiltonians and adjoint equations.

Define the Hamiltonian H : [0,T] x Ry x Rx U xR xR x R — R by
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H(tl,tg,.’L’,U,p,q,T) :<pu(t17t27$’u) + f(tl,tg,l','LL))

dt
+ <pb(t1;t27 l’,U) + qo-(tht%xa U) + g(tla t27xa U,)>—2

dt,
* / At ta, 2w, 2)r(t, 2)(dz) 22,
= dt

(4.53)

or

H(t, By, X (8)0(8), p(1), a(8), (1, 2)) = (p(0)alt, B, X(2), u(t)) + f(t, B X(2), u(t)))

+ (p(t)b(t X (), u(t)) +q(t)o(t, B, X (1), u(t)) + g(t, By, X (1), u(t))> %
+ [ 20 B X0, ), 2, 2lan)
: (4.54)

Define the adjoint equation

dp(t) = — Ha(t, By, X (1), u(t), p(t), q(t), 7 (¢, -))dt

(t)dBg, + / r(t,z)N(dE,,dz),t <T (4.55)
R

Theorem 4.2.2 (Time-Changed Maximum Principle Theorem) Let i, € A with corresponding
solution X = X and suppose there exists a solution (p(t),q(t),7(t, 2)) of the corresponding

adjoint equation (4.29) satisfying

]E[ /0 T(X(t) —X<“>(t))2(q2(t) + /]R P2(t, z)y(dz))dEt} < (4.56)

and

E[ / ' (1) (02(t,Et,X(“)(t),u(t))+ /R 72(t,Et,X(“)(t),u(t),z)y(dz))dEt] < 00, Vu € A.
(4.57)
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Moreover, suppose that

H(t, B, X (), (), 50, d(0), #(t,)) = sup H(t, By, X (1), 0,5(8), 4(8), 7 () (4.58)

vel

forallt > 0, that h(x) in (4.50) is a concave function of x and that

A

H(x) := max H(ty, b, ,0,p(1), 4(1), (1, -)) (4.59)

exists and is a concave function of x for all t € [0, T]. Then G is an optimal control of stochastic

control problem (4.52).

Proof: Let u € A be an admissible control with the corresponding state process X (t) =

X®(t). We would like to show that

/ftEt, ) a(t)) — F(t, B, X (1), ult))dt
(4.60)

n / g(t, B X (1), a(t)) — g(t, B X (8), u(t))dE, + h(X(T)) — h(X(T))] > 0.

Since h is concave, using It6 formula (3.2),

it >(a<t B X (), a(t) — o(t, By X (1 >,u<t>>)q<t>dEt

+/OT/Rf(t,z) (40t B (1), a(t)) = At By X (8), (b)) ) (d=)d B
4.61)
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Among above terms,

5[ [ B - X ()] —E

| i ((w, B X(0),(0)) — plt, B X(1),u(t)) ) de

+ (b(t, By X (1), a(1)) — b(t, By, X (1), u(t)))dEt
(4.62)

J(8) - J(u) =E / (X(t) — X(0)dp(t) + / Ft, B X(8), () — £(t, B, X(8), u(t))dt

+ /OTg(t, By, X (1), a(t)) — g(t, By, X (), u(t))dE;
[ o0 (n X 0,000 ~ i, X0, 1) )
+ (bt B X (1), 6(1) = b, B, X (0), (1)) ) dE
+ /OT Q) (o (t, B, X (1), (1)) = o(t, By, X (1), u(t)) ) dE;

+/OT/Rf(t,Z)(V(t,Et,f((t),ﬂ(t))_7(75,Et,X(t),u(t))>y(dz)dEt]'

(4.63)
In addition,
(H(t, By, X (0), (), 5(8), 4(8), 7(£)) = H(t, Ey, X (£), u(t), 5(2), 4(t), #(¢)))dt
= [POn(t. B X (1), a(t) — pO)u(t, B X (8),u(t))
+ f(t, By, X (1), 0(t) — f(t, By, X(t),u(t))| dt
+ (gt B X(1), 0(t)) — g(t, B, X(8),u(t)) ) dE, (4.64)

+ (B(b(E, B, X(8),0(0)) + () (1, B, X (1), a(t)) ) dE,
— (OB, B X0 0(0) + d(0)o (. v X (1), u(t)) ) dE,

~

+ /]Rf(t, Z) (7(t7 Et7 X(t)’ ﬂ(t)) - 7(t7 Eta X(t)7 u(t))> V(dz)dEtu

77



A~

(X () — X(t))dp(t) = X (t)dp(t) — X (t)dp(t)

=X (0)] = Halt, B X (0, 600,50, (0) 70, + (008, +

r(t, z)N(dE,, dz)}

= X ()| = Halt, B X (0,600,500, d(0). (0. )dt + (0B, +

r(t, 2)N(dE, dz)}

~ A

== (X(t> - X<t))Hz(tu Ey, X(t)v ﬁ(t)vﬁ(t)v qA(t)v 72<t7 ))dt

A

+(X(0) - X(0) (a(t)aB, + /R it 2)N(dE,. dz)).
(4.65)

Then, by concavity of H and following the proof in [9],

~

@) = Ju) = B[ [ (00 = XOML (¢ B X(0), 600,500, 0). 70, )

A~

+ [ H(t By X(),a(t),p(1), ¢(t), 7(, ) — H(E, By, X(8), u(t), pt), 4(1), 7(t, ) )dt

(4.66)
U

Example 4.2.3 (Income and Consumption Optimization) Consider the stochastic control prob-

lem
O (xg) = 21613E[/0T exp(—dt)u(t)*dt|, (4.67)
where
7= inf{t > 0; X () < 0} (4.68)
and

dX (1) = —u(t)dt + X (1) (det + 0dBp, + 0 / 2N (dz, dEt)>, X(0) =10 >0, (469
R

02462 [ 22v(dz)

where § > 0, 0, and 0 are constants and b = — 5 )
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We can interpret u(t) as the consumption rate, X (t) as the corresponding wealth, and T
as the bankruptcy time. Then ® represents the maximal expected total quadratic utility of the
consumption up to bankruptcy time.

Define the Hamziltonian H :

H(t) = —p(t)u(t) + exp(—dt)u(t)® + X () <p(t)b +q(t)o + /R Ozr(t, z)l/(dz)> %, (4.70)
and the adjoint equation
dp(t) = — (p(t)b +q(t)o + /Rezr(t, z)u(dz))dEt
+ q(t)dBg, + / r(t, z)N(dEy,dz),t < T, 4.71)

p(T) =0.

Let 21 = (—p(t) + 2u(t) exp(—dt)) = 0, we have u*(t) = ’%exp(ét). Suppose that

p(t) = h(t) X (t), then u*(t) = "OXW oxp(5t), thus

dp(t) = X (t)h(t)'dt + h(t)dX (1)

= X(Oh(t)dt + (—u()h(t))dt + h(t)X (1) (det + 0dBp, + 0 /

2N (dz, dEt)>
R

= X(t) (h(t)’ — @ exp(ét))dt + h(t)X(t) (det + odBg, + 9/ zN(dZ, dEt)>

4.72)
Comparing (4.71) and (4.72), we derive that I (t) = @e‘st, equivalently,
h(t) = exp(55€°), thus
1 X
u(t)" = exp(2—565t + 6t)T(t). (4.73)
Moreover,
h(t) X (t)o = q(t),
(4.74)
h(t) X (t)0z = r(t, z).
Some algebra implies that
q(t) = 2exp(—dt)u(t)o,
4.75)

r(t, z) = 2exp(—dt)u(t)0z.
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Figure 4.4: Simulation of u*(¢) for Example 2

5 s |
o T T T T T
0 50 100 150 200
t
A simulation of the optimal control u*(t) with 6 = —.001,0 = 1,0 = 1,29 = 1, standard
normal distribution v, and inverse stable subordinator E(t) having o = .9 is displayed in

Figure 4.4.

Because of the existence of dt term in the underlying process X (t), the simulated process
u*(t) has no periods of constant value. Compared with dE, terms, dt term plays the dominating
role in the evolution of corresponding wealth X (t), see [26] for a detailed discussion. More
specifically, the increasing trend bX (t)dE; is dominated by the consumption rate —u(t)dt.

Consequently, the optional consumption rate declines as the wealth shrinks in the long term.
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