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Abstract

Generative Adversarial Networks (GANs) have been under the spotlight in the machine

learning field for a few years. Especially, the power that learns a data distribution in an un-

supervised fashion leads GANs to be applied to various applications such as page generation,

image style transformation, image attribution manipulation, and similar domains in computer

vision. Despite the huge success of GANs, the difficult and unstable training process still limits

the applications of GANs in the real world. Mode collapse is a well-known byproduct of the

unstable GAN training. We propose to improve the sample diversity of a pre-trained class-

conditional generator by modifying its class embeddings in the direction of maximizing the log

probability outputs of a classifier pre-trained on the same dataset. We improved the sample

diversity of state-of-the-art ImageNet BigGANs at both 128× 128 and 256× 256 resolutions.

By replacing the embeddings, We can also synthesize plausible images for Places365 using a

BigGAN pre-trained on ImageNet.
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Chapter 1

Introduction

Generative adversarial networks (GANs) have been a hot research topic and attracted growing

interests from different background researchers. Yann LeCun said that “GANs are the most

interesting idea in the last 10 years in machine learning.” GANs have been applied to great

effect to a variety of applications such as computer vision, natural language processing, time

series synthesis, semantic segmentation, etc. GANs have the advantages that handling sharp

estimated functions, generating realistic and diverse samples and eliminating deterministic bias

and compatibility with the internal neural networks [2].

The GAN framework usually consists of two parts: a generator, which is learning to trans-

form a simple distribution to a high-dimensional distribution (i.e., the natural images ) and a

discriminator that tells whether the input distribution is a true distribution or a synthesized one

by the generator. These two parts are typically implemented by neural networks, but they can

be implemented with any form of differentiable system that maps data from one space to the

other. The training of GANs is a minimax optimization problem. The solution to the optimiza-

tion problem is the Nash equilibrium where neither generator nor discriminator can improve

unilaterally. Then, the generator can be thought to have captured the real distribution of true

examples.

Generative adversarial networks have been confused with the concept of ”adversarial ex-

amples” [3]. Adversarial examples are the inputs to a neural network that intentionally designed

to cause the network to make a mistake i.e., misclassification, but are visually indistinguishable

to some inputs cause correct outputs with the same neural network. I also contributed to [4]

that introduces a novel method to generate adversarial examples.

1



1.1 Generative Adversarial Network

Fig. 1.1 shows a typical training process of GAN. During the training process, the generator

(G) learns to make real-like data from a random noise, typically a simple distribution, and

the discriminator (D) is trained to distinguish between the real data and generated data. To

learn the generator’s distribution pg over data x, we define a prior on a input noise varialbels

pz(z) and G(z) as the samples from the distribution pg. D(x) represents the probability that x

came from the pdata rather than pg. The goal of a GAN is to learn the generator’s distribution

pg that approximates the real data distribution pdata. This adversarial learning process can be

formulated to a joint loss function V for D and G as shown in Equation 1.1.

min
G

max
D

V (D,G) = Ex∼pdata(x) [ log D(x)] + Ez∼pz(z) [ log (1−D(G(z)))] (1.1)

1.2 GAN Variants

There is a GAN boom after the original GAN released. The researchers work on different loss

functions and the architectures of the generator and discriminator to improve the performance

and stability of GAN. Several techniques such as batch normalization, stacked architecture,

and multiple generators and discriminators are applied to GANs. We list out some remarkable

benchmark GANs (see the comparison Fig. 1.2) here to show how the GANs developed in

recent years.

1.2.1 Conditional GAN

GANs can be extended to a conditional version if both generator and discriminator are condi-

tioned on class information y. The objective function of conditional GANs [5] is as shown in

Equation 1.2.

min
G

max
D

V (D,G) = Ex∼pdata(x) [ log D(x | y)] + Ez∼pz(z) [ log (1−D(G(z | y)))] (1.2)

2



Figure 1.1: The training process of the GAN. Figure from [1]

Conditional GAN shows the potential of conditional adversarial nets and give promise for in-

teresting and useful applications. It inspires some latest GANs to utilize the class information

to make GANs generate high quality and diverse images.

1.2.2 DCGAN

Deep convolutional generative adversarial network (DCGAN) [6] provides a significant im-

provement in performance and stability since the generator and discriminator are defined by

deep convolutional neural networks (DCNNs). Most current GANs are at least loosely based

on the DCGANs architecture (see Fig. 1.3). The architecture of DCGAN is mostly based on

the convolutional net without pooling and upsampling layers. When Gneeds to increase the

dimensionality of representations, it uses transposed convolution (deconvolution). The batch

normalization is used for most layers of G and D.

3



Figure 1.2: Timeline of some benchmark GANs. the orange part shows the architecture variants
and techniques used in the GANs, the blue part shows the sample quality and diversity from
the generators.

1.2.3 ProgressiveGAN

A new training strategy for GAN is proposed by Progressive GAN (PGGAN) [7]. The structure

of PGGAN is based on progressive neural networks that is first proposed by Andrei A et al.

[8] in 2016. The key idea (see Fig. 1.4) of PGGAN is to add layers to both the generator

and discriminator progressively: starting from a low resolution, adding new layers that model

increasingly fine details as training progresses.

1.2.4 SAGAN

Self-Attention Generative Adversarial Network (SAGAN) [9] is proposed to allow attention-

driven (see Fig. 1.5), long-range dependency modeling for image generation tasks. Spectral

normalization technique is used to the discriminator in SNGAN [10] firstly. SAGAN applied

4



Figure 1.3: A series of four fractionally-strided convolutions then convert this high level rep-
resentation into a 64 × 64 pixel image. No fully connected or pooling layers are used. Figure
from [6]

spectral normalization for both generator and discriminator, and it improves training dynamics.

They also confirmed that the two time-scale update rule (TTUR) is effective in SAGAN.

1.2.5 BigGAN

BigGANs [11] is a large scale TPU implementation of GANs, which has a similar architecture

to SAGAN but scaled up greatly. BigGANs can generate realistic images with high resolution

up to 512× 512 pixels. The architecture of BigGAN shows in Fig. 1.6. Lucic et al. [12] show

that BigGANs can be trained to perform homogeneously with fewer labels. BigBiGAN [13],

based on BigGANs, extends it to representation learning by adding an encoder and modifying

the discriminator. All of the variants of BigGAN show the state-of-the-art performance of

generative models.

1.3 GAN Challenges

While GANs have achieved an unprecedented performance for generative tasks, they are also

notoriously difficult to train. We will explore some common problems during the training of

GAN framework.
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Figure 1.4: Adding layers to G and D incrementally during the training process to increase the
spatial resolution of the generated images. This allows stable synthesis in high resolutions and
also speeds up training considerably. Figure from [7]

1.3.1 Oscillating Loss

Typically, there is some small perturbation of the loss between batches during the training of

deep neural network, but the loss should become stable or gradually increases or decreases,

rather than fluctuating in long term, to ensure your GAN converges and improves over time.

During the training of GAN, the loss of the discriminator and generator can oscillate wildly,

rather than exhibiting long-term stability. Fig. 1.7 illustrate the changing of loss of the discrim-

inator and generator during the training has started to be out of control, at around batch 1,300.

It is difficult to establish if or when this might occur as vanilla GANs are prone to this kind of

instability.

1.3.2 Hyperparameters

There are a large number of hyperparameters to tune even with simple GANs. Based on dif-

ferent architectures of GANs, the hyperparameters such as batch size, the number of epoch,

learning rete, the batch normalization, dropout, activation layers, convolutional filters, kernel

6



Figure 1.5: The proposed self-attention module for the SAGAN. The ⊗ denotes matrix multi-
plication. The softmax operation is performed on each row. Figure from [9]

Figure 1.6: (a) A typical architectural layout for BigGAN’sG. (b) A Residual Block (ResBlock
up) in BigGAN’s G. (c) A Residual Block (ResBlock down) in BigGAN’s D. Figure from [11]

size, etc should be considered. GANs are also very sensitive to some slight changes in all of

these parameters. To find a group of parameters that works well is often a process of empirical

trial and error, rather than following an established set of guidelines.

1.3.3 Mode collapse

Mode collapse occurs when the generator finds a small number of samples that fool the dis-

criminator and therefore isn’t able to produce any examples other than this limited set. Suppose

we train the generator over several batches without updating the discriminator in between. The

generator would be inclined to find a single observation (also known as a mode) that always

7



Figure 1.7: Oscillating loss. Figure from [1]

fools the discriminator and would start to map every point in the latent input space to this ob-

servation. This means that the gradient of the loss function collapses to near 0. Even if we

then try to retrain the discriminator to stop it being fooled by this one point, the generator will

simply find another mode that fools the discriminator, since it has already become numb to its

input and therefore has no incentive to diversify its output. [1]

In this work, we focus on the mode collapse problem of GANs and try to tackle this

problem of the state-of-the-art GAN from a new perspective. This work is still under peer

review at a machine learning conference and most of the content is similar to [14].

8



Chapter 2

Improve the diversity of the generated images of GANs

2.1 Problem statement

Generative Adversarial Networks (GANs) [2] have achieved great success in generating high-

fidelity images [7] and enabled a wide range of image synthesis applications [15]. However,

they have a known problem of mode collapse i.e., the generated distribution does not capture

all modes of the true distribution [16]. Therefore, synthesizing images to match the 1000-

class ImageNet dataset [17] has been a grand challenge to GANs whose samples were often

far less diverse than the real data. The recent class-conditional BigGAN [11] has reached an

unprecedented state-of-the-art image quality and diversity on ImageNet by using large networks

and batch sizes. However, interestingly, we observed that BigGAN samples from a set of ∼50

classes exhibit substantially lower diversity than samples from other classes. For example,

generated images for daisy mostly show white flowers on green grass, but the training data

includes images of daisies with a variety of colors and backgrounds (Fig. 2.1). Furthermore,

samples for window screen not only have low diversity but also poor realism (see Fig. 4.5 for

more low-diversity BigGAN samples). This phenomenon is intriguing given that BigGAN

synthesizes photo-realistic images for many classes [11] i.e., the generator is already capable

of painting a wide variety of images.

Why do we observe this stark contrast in BigGAN sample diversity for window screen or

daisy vs. the other classes? Due to the notorious GAN training instability [16], BigGAN authors

trained the generator until its performance collapsed and took the previous best snapshot as the

final model. Therefore, the inferior sample diversity for a class yc (e.g., window screen) may

9



be because as BigGAN training collapsed, the generator’s parameters were corrupted in a way

that degraded the capability of synthesizing the visual features needed for class yc.

As it remains a mystery how the synthesis capability degraded, improving the sample

diversity for a mode-collapse class is non-trivial. First, re-training BigGANs requires expensive

computation—the original 256 × 256 model took 48 hours of training on 256 Google Cloud

TPUs. On more modest hardware of 8× V100 GPUs [18], the training is estimated to take 3–5

weeks and has not been found to match the results in [11]. Second, re-training or finetuning

is likely to still cause a set of classes to collapse as we observed in the BigGAN-deep model

released by [11].

2.2 Our appoach to Improve the diversity of the generated images of GANs

In this work1, we found that, for many classes, mode collapse can be substantially ameliorated

(Fig. 2.1) by only modifying the class embeddings (i.e., keeping the generator unchanged).

We improved the diversity by iteratively searching for an embedding input to a pre-trained

BigGAN generator that yields random samples that maximize the probability scores by a pre-

trained image classifier (Fig. 2.2).

Let P be a pre-trained ImageNet classifier [19] that maps an image x ∈ R256×256×3 onto a

softmax probability distribution over 1,000 output classes.

Let G be a class-conditional generator, here a BigGAN pre-trained by [11], that takes

a class embedding c ∈ R128 and a latent vector z ∈ R140 as inputs and outputs an image

G(c, z) ∈ R256×256×3. The embedding matrix was learned during GAN training. In this study,

we test improving sample diversity by only changing the embeddings.

Diversity regularization Intuitively, we search for an input class embedding c for the

generator G such that the set of output images {G(c, zi)} is diverse with random latent vectors

zi ∼ N (0, I). Specifically, we encourage small changes in the latent variable to cause large

changes in the output image [20] by maximizing:

1All code and data will be available on https://github.com/qilimk/biggan-am

10



(a) ImageNet images (b) BigGAN [11] (c) AM (ours)

LPIPS: 0.73 LPIPS: 0.59 LPIPS: 0.66

Figure 2.1: 256×256 BigGAN samples for some classes, here, daisy (b) are far less diverse than
the real data (a). By changing only the class embeddings of BigGAN while keeping the latent
vectors constant, our AM method (c) substantially improved the diversity, here reducing the
LPIPS diversity gap by 50%. This result interestingly shows that the BigGAN generator itself
was already capable of synthesizing such diverse images but the originally learned embeddings
limited the diversity. See more comparison figures in Figs. 4.12—4.16.

max
c

LD(c) = Ezi,zj∼N (0,I)

‖φ(G(c, zi))− φ(G(c, zj))‖
‖zi − zj‖

(2.1)

where φ(.) is a feature extractor. In [20], φ(.) is an identity function to encourage pixel-

wise diversity. We also tested with φ(.) being outputs of the conv5 layer and the output softmax

layer of AlexNet.

Via hyperparameter tuning, we found maximizing the above objective via 10 unique pairs

of (zi, zj) selected from Z to be effective (full hyperparameter details are in Sec. 3.3).

Activation maximization When a class embedding changes, it is important to keep the

generated samples still realistic and in the given class. To do that, we also move the class

embedding c of the generator G such that the output image G(c, z) for any random z ∼

N (0, I) would cause the classifier P to output a high probability for a target class y (Fig. 2.2).

Formally, we maximize the following objective given a pre-defined class yc:

max
c

LAM(c) = Ez∼N (0,I) log P (y = yc | G(c, z)) (2.2)

We try to solve the above Activation Maximization (AM) problem [21] via mini-batch

gradient descent. That is, we iteratively backpropagate through both the classifier P and the

11
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Figure 2.2: To improve the samples for a given target class represented by a one-hot vector y,
we iteratively take steps to find an embedding c (i.e., a row in the embedding matrix W ) such
that all the generated images {G(c, zi)}, for different random noise vectors z∼N (0, I), are (1)
classified as the target class y; and (2) diverse i.e., yielding different softmax probability dis-
tributions. We backpropagate through both the frozen, pre-trained classifier P and generator G
and perform gradient descent to maximize the target-class probability of the generated samples
over a batch of random latent vectors {zi}.

generator G and change the embedding c to maximize the expectation of the log probabilities

over a set Z of random latent vectors.

In sum, we encouraged the samples to be diverse but still remain in a target class y via the

full objective function below:

max
c

LAM-D(c) = LAM + λLD (2.3)

where λ is a hyperparameter to be tuned.

2.3 Datasets

While the generators and classifiers were pre-trained on the full 1000-class ImageNet 2012

dataset, we evaluated our methods on a subset of 50 classes (hereafter, ImageNet-50) where we

qualitatively found BigGAN samples exhibit the lowest diversity. The selection of 50 classes

was informed by two diversity metrics (see below) but decided by humans before the study.
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2.4 Evaluation metrics

Because there is currently no single metric that captures the multi-dimensional characteristics

of an image set [22], we chose a broad range of common metrics to measure the diversity and

realism of samples separately.

Diversity We measured the intra-class diversity by randomly sampling 200 image pairs

from an image set and computing the MS-SSIM [23] and LPIPS [24] scores for each pair. For

each method, we computed a mean score across the 50 classes × 200 image pairs.

Realism To measure sample realism, we used the Inception Score (IS) with 10 splits [25],

the Fréchet Inception Distance (FID) [26], and the Inception Accuracy (IA) [23]. These three

metrics were computed for every set of 50,000 images = 50 classes × 1000 images.

2.5 Networks

Classifiers Our default image classifier is AlexNet [19] pre-trained on the 1000-class ImageNet

2012 dataset. Note that other ImageNet classifiers can also be used as shown in Sec. 3.3.

Generators We used two pre-trained ImageNet BigGAN generators [11], a 256×256 and

a 128 × 128 model, released by the authors in PyTorch. For the purpose of studying diversity,

all generated images in this paper were sampled from the full, non-truncated prior distribution

[11].
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Chapter 3

Experiments and Results

3.1 Semantically meaningful BigGAN class embeddings

We observed via t-SNE visualizations [27] that the class embeddings learned by BigGAN ac-

curately reflect the semantics of ImageNet classes. That is, we projected 1000 class embed-

dings ci ∈ R128 onto a 2-D t-SNE space. Interestingly, the embeddings for the low-diversity

ImageNet-50 classes are far from random, i.e., they were located in the neighborhoods of re-

lated concepts (Fig. 4.18; the daisy embedding is near other flowers and plants). The semanti-

cally meaningful t-SNE arrangements of the BigGAN class embeddings motivated us to search

in the neighborhood of the original embeddings to find a new vector that yields more diverse

images (see the following sections).

3.2 Adding noise to or finetuning the class embeddings did not improve diversity

Adding noise A naive approach to improving sample diversity is adding small random noise

to the embedding vector of a low-diversity class. Across 50 classes, we found that adding small

noise ∼ N (0, 0.1) had negligible effects on image quality and diversity (Fig. 3.1; Noise-S)

while adding larger noise ∼ N (0, 0.3) degraded the samples on both criteria (Fig. 3.1; Noise-

L). For example, daisy samples gradually turned into human-unrecognizable rubbish images as

we increased the noise (Fig. 4.4).
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Finetuning Another strategy to improve sample diversity is to finetune BigGANs. How-

ever, how to finetune a BigGAN to improve its sample diversity is an open question. As re-

ported in [11], the BigGAN pre-trained model would start to degrade if one continued training

it using the original hyperparameters.

To minimize the GAN training instability and compare with other approaches in this paper,

we only finetuned one embedding at a time, keeping the other embeddings and all parameters

in the generator and discriminator frozen.

Because [11] only released the discriminator for their 128× 128 generator but not for the

256 × 256 model, we only finetuned the 128 × 128 model. For each class, we added a small

amount of noise ∼ N (0, 0.1) to the associated embedding vector and finetuned it using the

original BigGAN training objective for 10 iterations until the training collapsed. Across 50

classes × 5 trials, quantitatively, finetuning did not improve the sample diversity but lowered

the realism (Fig. 3.2; purple ∆ vs. green �).

3.3 Activation Maximization was effective in improving 256× 256 sample diversity

The previous results show that modifying the embeddings following random directions (i.e.,

adding noise) or the gradients from BigGAN discriminators (i.e., finetuning) failed to improve

sample diversity. Here, we propose to update an embedding using the gradient from an image

classifier to maximize its log probabilities (Fig. 2.2).

We found two strategies to be effective: (1) searching within a small region around the

original embeddings (AM-S); (2) searching within a large region around the mean embedding

(AM-L).

Hyperparameters For AM-S, we randomly initialized the embedding within a Gaussian

ball of radius 0.1 around the original embedding. we used a learning rate of 0.01. For AM-L,

we randomly initialized the embedding around the mean of all 1,000 embeddings and used a

larger learning rate of 0.1. For both settings, we maximized Eq. 2.2 using the Adam optimizer

and its default hyperparameters for 200 steps. We re-sampled a set Z = {zi}20 every 20 steps.

Every step, we kept the embeddings within [−0.59, 0.61] by clipping. To evaluate each trial, we

used the embedding from the last step and sampled 1,000 images per class. We ran 5 trials per
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class with different random initializations. We used 2 to 4× V100 GPUs for each optimization

trial.

Classifiers In the preliminary experiments, We tested four ImageNet classifiers: AlexNet,

Inception-v3 [28], ResNet-50 [29], and a ResNet-50 [30] that is robust to pixel-wise noise. By

default, we resized the BigGAN output images to the appropriate input resolution of each

classifier. With Inception-v3, we achieved an FID score that is (a) substantially better than

those for the other three classifiers (Table 4.1; 30.24 vs. 48.74), and (b) similar to that of

the original BigGAN (30.24 vs. 31.36). The same trends were observed with the Inception

Accuracy metrics (Table 4.1). However, we did not find any substantial qualitative differences

among the samples of the four treatments. Therefore, we chose AlexNet because of its fastest

run time.

Results Across 50 classes × 5 trials, we found that both AM-S and AM-L produced

samples of higher diversity than the original BigGAN samples. For both MS-SSIM and LPIPS,

on average, our AM methods reduced the gap between the original BigGAN and the real data

by ∼50% (Fig. 3.1a; AM-S and AM-L vs. BigGAN). For all 50 classes, we always found at

least 1 out of 10 trials (i.e., from both methods combined) that yielded samples that match the

real data in MS-SSIM or LPIPS scores (Fig. 3.1a; AM-max vs. ImageNet-50). The statistics

also align with our qualitative observations that AM samples often contain more diverse object

poses, object shapes, and backgrounds than the BigGAN samples (see Figs. 4.9–4.11).

In terms of IA and FID scores, AM samples have lower realism than BigGAN samples

(Table 3.1). Given the known inflation issues with IS scores [31], our IS scores (Fig. 3.1b)

suggest that AM did not improve the BigGAN sample realism. However, for some classes

e.g., window screen, AM was able to turn the original rubbish images into a diverse set of

recognizable samples (Fig. 4.10c).

3.4 Explicitly encouraging diversity yielded worse sample realism

Inspired by [20], here, we attempted to improve the sample diversity further by incorporating

a diversity regularizer into the previous two AM-S and AM-L methods (Sec. 2.2) producing

two new variants, AM-D-S and AM-D-L. We tested encouraging diversity in the (1) image
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space; (2) conv5 feature space; and (3) softmax outputs of AlexNet, and found they can bias

the optimization towards different interesting spaces of diversity.

While the addition of the regularizer quantitatively improved sample diversity, sample

quality was considerably lower (Fig. 3.1b AM-S vs. AM-D-S and AM-L vs. AM-D-L). Sim-

ilarly, the IA scores of the AM-D methods were consistently lower than those of the original

AM methods (Table 3.1).

We also found that in ∼2% of the AM-S and AM-L trials, the optimization converged at

a class embedding that yields similar images for different random latent vectors. Here, we try

to improve the sample diversity further by incorporating a specific regularization term into the

AM formulation (as described in Sec. 2.2).

Experiments In the preliminary experiments, we tested encouraging diversity in the (1)

image space; (2) conv5 feature space; and (3) softmax outputs of AlexNet. We observed that

the pixel-wise regularizer can improve the diversity of background colors (Fig. 4.1) and tends

to increase the image contrast upon a high λ multiplier (Fig. 4.1c). In contrast, the impact of

the conv5 diversity regularizer is less noticeable (Fig. 4.2). Encouraging diversity in the soft-

max output distribution can yield novel scenes e.g., growing more flowers in monarch butterfly

images (Fig. 4.3c).

While each level of diversity has its own benefits for specific applications, here, we chose

to perform more tests with the softmax diversity to encourage samples to be more diverse

semantically. That is, we re-ran the AM-S and AM-L experiments with an additional softmax

diversity term (Eq. 2.3) and a coefficient λ = 2 (see Fig. 4.3). We call these two AM methods

with the diversity term AM-D-S and AM-D-L.

Results We found that the addition of the regularizer did not improve the diversity sub-

stantially but lowered the sample quality (Fig. 3.1b AM-S vs. AM-D-S and AM-L vs. AM-

D-L). Similarly, the IA scores of the AM-D methods were consistently lower than those of the

original AM methods (Table 3.1).
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Method IS (10 splits) FID Inception Accuracy MS-SSIM LPIPS
(higher=better) (lower=better) (higher=better) (lower=better) (higher=better)

1. ImageNet-50 (real) 6.49 ± 0.63 N/A 0.90 0.43 ± 0.04 0.70 ± 0.08
2. BigGAN 6.03 ± 0.87 24.34 0.87 0.46 ± 0.05 0.61 ± 0.09
3. Noise-S 6.53 ± 0.86 28.75 0.82 0.46 ± 0.05 0.61 ± 0.09
4. Noise-L 7.67 ± 0.95 84.61 0.36 0.46 ± 0.05 0.49 ± 0.04
5. AM-S

a. Best LPIPS trial 7.33 ± 0.73 40.82 0.72 0.44 ± 0.05 0.64 ± 0.08
b. Average 7.03 ± 0.71 38.39 0.74 0.44 ± 0.05 0.63 ± 0.08

6. AM-L
a. Best LPIPS trial 7.49 ± 0.81 47.25 0.64 0.44 ± 0.04 0.65 ± 0.08
b. Average 7.22 ± 0.79 46.86 0.68 0.44 ± 0.05 0.63 ± 0.08

7. AM-D-S
a. Best LPIPS trial 7.62 ± 0.90 45.61 0.66 0.44 ± 0.04 0.65 ± 0.08
b. Average 7.32 ± 0.80 43.78 0.68 0.44 ± 0.05 0.64 ± 0.08

8. AM-D-L
a. Best LPIPS trial 7.58 ± 0.84 50.94 0.64 0.44 ± 0.04 0.65 ± 0.08
b. Average 7.43 ± 0.85 52.68 0.61 0.44 ± 0.05 0.64 ± 0.08

Table 3.1: We compared Activation Maximization (AM) samples with the BigGAN samples
and the real ImageNet-50 images on two diversity metrics (MS-SSIM and LPIPS) and three re-
alism metrics, Inception Score (IS), Fréchet Inception Distance (FID), and Inception Accuracy
(IA). ImageNet-50 is a subset of ImageNet that contains 50 classes where BigGAN samples
exhibit limited diversity (see Sec. 2.3). For each AM method, we ran 50 classes × 5 trials
and reported here (a) the trial with the best LPIPS score and (b) the average across 5 runs. In
MS-SSIM and LPIPS, all AM trials consistently produced more diverse samples than the Big-
GAN samples. However, FID and IA scores indicated that AM samples are worse in realism
compared to the original BigGAN samples. See Fig. 3.1 for some graphical plots of this table.

3.5 Humans rated AM samples more diverse and similarly realistic

Because quantitative image evaluation metrics are imperfect [22], we ran a human study to

compare the AM vs. original BigGAN samples. For each class, across all 20 embeddings from

5 trials × 4 methods (AM-S, AM-L, AM-D-S, and AM-D-L), we manually chose one embed-

ding that qualitatively balanced between diversity and realism to sample images to represent

our AM method in this study. As a reference, this set of AM images was more diverse and less

realistic than BigGAN samples according to the quantitative metrics (Fig. 3.1; AM-human vs.

BigGAN).

Experiments We created two separate online surveys for diversity and realism, respec-

tively (see Figs. 3.3–3.6. a panel of 8 × 8 BigGAN images and asked participants to rate the

panel that was more diverse on a scale of 1–5. A 1 or 5 indicates the left or right panel is clearly

more diverse, respectively, while a 3 indicates both sets are similarly diverse. For each class,
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the AM and BigGAN panels were randomly positioned on the left or right. The realism survey

was a duplicate of the diversity survey except that each panel only showed 3 × 3 images so

participants could focus more on the details.

Results For both tests, we had 52 participants who were mostly university students and do

not work with machine learning or GANs. On average, AM samples were rated more diverse

and similarly realistic compared to BigGAN samples. That is, AM images were given better

than the neutral score of 3, i.e., 2.24 ± 0.85 in diversity and 2.94 ± 1.15 in realism. Also, AM

samples were rated more diverse in 42/50 classes and more realistic in 22/50 classes. Example

comparisons can be found in Figs. 4.9–4.11.

3.6 AM embeddings still capture semantics and enable realistic interpolations

While the embeddings found by our AM methods changed the generated samples entirely for

many classes e.g., window screen, we observed that interpolating in the latent or embedding

spaces still yields realistic intermediate samples (Fig. 3.7). See Figs. 4.22– 4.24 for more

interpolation examples between z pairs and between c pairs (i.e., classes).

In addition, when projected onto a 2-D t-SNE space, the 50 embeddings found by AM

still reflect class semantics like the original BigGAN embeddings (see Fig. 4.21 for side-by-

side comparisons).

3.7 Generalization to a 128× 128 BigGAN

To test whether our method generalizes to a different GAN at a lower resolution, we applied

our AM-S method (see Sec. 3.3) to a pre-trained 128 × 128 BigGAN released by [18]. As in

previous experiments, we ran 50 classes × 5 trials in total. To evaluate each trial, we used the

last-step embedding to sample 1000 images per class.

Consistent with the results for the 256×256 resolution, here, AM-S improved the diversity

over the pre-trained model on both MS-SSIM and LPIPS (Fig. 3.2a; 138k). In terms of quality,

FID and IS showed a mixed result of whether AM-S sample realism is lower or higher. See

Fig. 4.17 for random side-by-side image comparisons.
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3.8 Generalization to different training snapshots of 128× 128 BigGAN

We have shown that BigGAN sample diversity can be substantially improved by only changing

the embeddings (Sec. 3.3) which indicates that the generator was actually capable of synthe-

sizing those diverse images. Here, we test how much sample diversity and quality can be

improved by AM as the BigGAN training gradually collapses, which might impair not only the

embeddings but also the generator’s parameters.

Experiments We took the pre-trained 128 × 128 BigGAN model (saved at the 138k-th

iteration) and continued training it for an additional 9000 iterations using the same hyperpa-

rameters as in [18]. We applied the AM-S method using the same hyperparameters as in Sec. 3.7

to four BigGAN snapshots captured at the 140k, 142, 144k, and 146k iteration, respectively.

Results AM-S consistently improved the sample diversity of all snapshots. For some

classes, AM qualitatively improved both sample diversity and quality (Figs. 3.8 and 4.6–4.8).

However, the diversity and realism of both AM-S and the original BigGAN samples gradually

dropped together (Fig. 3.2; AM-S vs. BigGAN). The result suggests that, as the GAN train-

ing gradually collapsed, the generator weights might have converged to a local minimum that

changing the class embeddings alone is not sufficient to significantly improve the samples.

3.9 BigGAN trained on ImageNet can synthesize scene images for Places365

Our previous experiments show that the BigGAN generator pre-trained on ImageNet is able to

synthesize a wider variety of images than one might expect. Here, we test whether the same

ImageNet generator can synthesize images for an entirely different target dataset of Places365

[32], which contains 365 classes of scene images. For evaluation, we randomly chose 50 out

of 365 classes in Places365 (hereafter, Places-50).

Mean initialization We ran the AM-L algorithm for 5 trials per class using the same

hyperparameters as in Sec. 3.3 but with a ResNet-18 classifier [29] pre-trained on Places365.

Top-5 initialization We also tested initializing from the top-5 embeddings, i.e., five class

embeddings whose 10 randomly generated samples were given the highest average accuracy

scores by the Places365 classifier. For example, for the hotel room class from Places365, the
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embedding for quilt (from ImageNet) generates images with the highest accuracy (Fig. 3.9).

We ran 5 AM-L trials where each trial was initialized with a unique embedding from the top-5.

Baseline As a baseline, we used samples generated from the unmodified BigGAN con-

ditioned on the top-1 ImageNet class embedding found from the top-5 initialization procedure

described above.

Results AM-L found many class embeddings that produced plausible images for Places365

scene classes using the same ImageNet BigGAN generator. For example, to match the hotel room

class which does not exist in ImageNet, AM-L synthesized bedroom scenes with lights and win-

dows whereas the top-1 class (quilt) samples mostly consist of beds with blankets (Fig. 3.9).

See Figs. 4.25, 4.26, 4.27, 4.28 for more image comparisons.

Compared to the baseline, AM-L samples have substantially higher realism in FID (41.25

vs. 53.15) and ResNet-18 accuracy scores (0.49 vs. 0.17). In terms of diversity, AM-L and the

baseline performed similarly, and both were slightly worse than the real images in MS-SSIM

(0.42 vs. 0.43) and LPIPS (0.65 vs. 0.70). See Table 4.2 for more detailed quantitative results.
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(a) Diversity comparison in MS-SSIM and LPIPS metrics.
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(b) Realism comparison in IS and FID metrics.

Figure 3.1: Each point in the four plots is a mean score across 50 classes from one AM opti-
mization trial or one BigGAN model. The ultimate goal here is to close the gap between the
BigGAN samples (- - - -) and the ImageNet-50 distribution (- - - -) in all four metrics. Naively
adding noise degraded the embeddings in both diversity (MS-SSIM and LPIPS) and quality (IS
and FID) scores i.e., the black and gray ∇ actually moved away from the red lines. Our opti-
mization trials, on average, closed the diversity gap by ∼50%, i.e., the AM circles are halfway
between the green and red dashed lines (a). However, there was a trade-off between diversity
vs. quality i.e., on the IS and FID metrics, the AM circles went further away from the red line
(b).
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(a) Diversity comparison in MS-SSIM and LPIPS metrics.

(b) Realism comparison in IS and FID metrics.

Figure 3.2: Each point in the four plots is a mean score across 50 classes and five AM-S
trials or one 128 × 128 BigGAN model. Finetuning the 138k snapshot neither improved the
sample diversity nor realism (purple ∆ vs. green �). Optimizing the embeddings via AM-
S consistently improved the diversity in both MS-SSIM and LPIPS (a). IS and FID metrics
disagree on whether AM-S (cyan ◦) sample quality is better or worse than that of the BigGAN
samples. See Fig. 3.8 for a side-by-side comparison of the samples from these five snapshots.
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Figure 3.3: The instruction of online survey for diversity comparison.
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Figure 3.4: The example of online survey for diversity comparison.
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Figure 3.5: The instruction of online survey for quality comparison.
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Figure 3.6: The example of online survey for quality comparison.
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Figure 3.7: Interpolation between a z pair in the window screen class using the original Big-
GAN embedding (top) yields similar and unrealistic samples. The same interpolation with
the embedding found by AM (bottom) produced realistic intermediate samples between two
window screen images.
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A
M

(o
ur

s)
B

ig
G

A
N

Figure 3.8: For the parachute class, the original 128×128 BigGAN samples (top panel) mostly
contained tiny parachutes in the sky (b) and gradually degraded into images of only blue sky (c–
f). AM (bottom panel) instead exhibited a more diverse set of close-up and far-away parachutes
(b) and managed to paint the parachutes for nearly-collapsed models (e–f). The samples in this
figure correspond to the five snapshots (138k—146k) reported in the quantitative comparison
in Fig. 3.2. See Figs. 4.6, 4.7, 4.8 for more qualitative comparisons.
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(a) Places365 images (b) Top-1 baseline (BigGAN) (c) AM-L (ours)

plaza parking meter plaza

hotel room quilt hotel room

Figure 3.9: AM-L generated plausible images for two Places365 classes, plaza (top) and
hotel room (bottom), which do not exist in the ImageNet training set of the BigGAN generator.
For example, AM-L synthesizes images of squares with buildings and people in the background
for the plaza class (c) while the samples from the top-1 ImageNet class, here, parking meter,
shows parking meters on the street (b). Similarly, AM-L samples for the hotel room class have
unique lighting, lamps, and windows (c) that do not exist in the BigGAN samples generated us-
ing the quilt class embedding (b). The latent vectors are held constant for corresponding images
in (b) and (c). See Figs. 4.25, 4.26, 4.27, and 4.28 for more side-by-side image comparisons.
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Chapter 4

Discussion & Conclusion

4.1 Discussion

We showed that the low sample diversity of pre-trained GAN generators can be improved by

simply changing the class embeddings without modifying the generator. Note that one could

“recover” the missing modes using our AM methods and improve the sample quality further

by sampling from a truncated prior distribution [11]. Compared to finetuning or re-training

BigGANs from scratch, our method is more tractable even when considering the five 200-step

optimization trials necessary to find a desired class embedding. There are some other researches

related to our work.

4.1.1 Latent space traversal

Searching in the latent space of a GAN generator network to synthesize images is known to

be effective for many tasks including (1) in-painting [33]; (2) image editing [34]; (3) creating

natural adversarial examples [35]; and (4) feature visualization [36]. While all prior work in

this line of research optimized the latent variable z, instead optimize the class embeddings c of

a class-conditional generator over a set of random z vectors.

Our approach might be most related to Plug & Play Generative Networks (PPGN) [37]

in that both methods sample from the joint distribution pG(x,y) defined by a generator and a

pre-trained classifier. While [37] trained an unconditional generator that inverts the features of

an ImageNet classifier, our method is generally applicable to any pre-trained class-conditional
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generator. Importantly, our goal is novel—to improve the sample diversity of any pre-trained

class-conditional generator (here, BigGANs) by changing its class embeddings.

4.1.2 Improving sample quality

Two methods, MH-GAN [38] and DRS [39], have recently been proposed to improve the sam-

ples of a pre-trained GAN by harnessing the discriminator to reject low-probability generated

samples. However, these methods are only able to improve sample quality, not diversity. In

addition, they assume that the discriminator is (a) available, which may not always be the case,

e.g., in the official BigGAN releases [11]; and (b) optimally trained for their samplers to re-

cover exactly the true distribution. Similar to MH-GAN and PPGN, our method is similar to a

Markov chain Monte Carlo (MCMC) sampler that has no rejection steps. A major difference

is that we only perform the iterative optimization once to update the class embedding. After a

desired embedding is found, subsequent sampling of images is fast following standard GANs.

In contrast, MH-GAN, DRS, and PPGN samplers often require many rejection or update steps

to produce a single image.

4.1.3 Improving sample diversity

Many GAN regularization tricks have been introduced to encourage the samples to be diverse

(see [40] for a survey). However, all prior methods require re-training GANs from scratch,

which can be computationally expensive e.g., in the BigGAN’s case. Fine-tuning GANs may be

a more efficient approach [41]. However, finetuning (1) requires both the pre-trained generator

and discriminator, which is not always available in practice, and (2) is subject to the known

training instability issues (as in Sec. 3.2). Our method is not subject to the above issues and can

be viewed as finetuning only the embedding layer but using a maximum likelihood objective

instead of a GAN objective.
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4.1.4 Generalization

Understanding the image synthesis capability of a trained GAN generator is an active research

area. Recent findings have shown that GANs trained on a dataset of scene images contain neu-

rons that can paint common objects such as “trees” or “doors” [42]. [43] found that BigGAN

is able to perform some general image transformations such as zoom, rotate, or brightness ad-

justment, up to a certain limit. However, these methods optimize only the latent variable [43]

or both the latent and the generator parameters [42], but not the class embeddings as we do.

4.2 Conclusion

In this work, we explore a popular and outperforming generative model which is the generative

adversarial networks known as GANs. By using this framework, the researchers have devel-

oped a lot of variant versions and make GANs become the state-of-the-art generative models

currently. By leveraging the power of learning data distribution implicitly, GANs can generate

realistic and diverse images. However, there are some challenges such as oscillating loss, mul-

tiple hyperparameters and mode collapse during the training process of GANs. They limit the

real-world applications of GANs. It would be another boom for GANs if we could tackle these

problems. We find that the BigGAN class embeddings qualitatively capture class semantics

(Sec. 3.1) by the observations of t-SNE for the class embedding. For example, bird classes are

nearby in t-SNE visualizations (Fig. 4.18). We show that simply changing class embedding can

fix the mode collapse of BigGAN and improve sample diversity for some classes. By using

our framework, we make the same ImageNet generator to synthesize images for an entirely

different target dataset of Places365 [32], which contains 365 classes of scene images. Here

are the contributions of this work:

1. Changing only the embeddings via our method was sufficient to match the diversity (via

MS-SSIM and LPIPS metrics) of the real data while keeping the BigGAN generator

frozen (Sec. 3.3). A human study found that our method produced more diverse (and

similarly realistic) images compared to BigGAN (Sec. 3.5).
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2. Our approach improved the sample diversity for two BigGANs released by the authors at

both 256 × 256 and 128 × 128 resolutions (Sec. 3.7) and some mode-collapse BigGAN

snapshots (Sec. 3.8).

3. By updating only the embedding matrix, we can harness a BigGAN pre-trained on Ima-

geNet to generate images matching the Places365 scene categories (Sec. 3.9).

Method IS (10 splits) FID Inception Accuracy MS-SSIM LPIPS
(higher=better) (lower=better) (higher=better) (lower=better) (higher=better)

1. ImageNet-30 (Real) 4.18 ± 0.61 n/a 0.92 0.42 ± 0.04 0.70 ± 0.08
2. BigGAN 3.71 ± 0.74 31.36 0.91 0.45 ± 0.05 0.61 ± 0.09
3. AM-L Random

a. AlexNet 5.06 ± 0.97 46.85 0.71 0.43 ± 0.04 0.66 ± 0.08
b. Inception-v3 4.29 ± 0.56 31.62 0.87 0.44 ± 0.04 0.65 ± 0.08
c. ResNet-50 5.36 ± 0.75 47.23 0.70 0.44 ± 0.04 0.68 ± 0.09
d. Robust ResNet-50 4.59 ± 0.69 43.65 0.76 0.43 ± 0.05 0.63 ± 0.08

4. AM-D-S
a. AlexNet 5.31 ± 0.60 48.74 0.69 0.43 ± 0.04 0.66 ± 0.08
b. Inception-v3 4.23 ± 0.51 30.24 0.88 0.44 ± 0.04 0.65 ± 0.08
c. ResNet-50 5.78 ± 1.00 52.01 0.66 0.43 ± 0.04 0.68 ± 0.08
d. Robust ResNet-50 4.51 ± 0.79 41.74 0.78 0.44 ± 0.04 0.63 ± 0.09

Table 4.1: A comparison of four different classifiers (a–d) across two preliminary AM set-
tings across 30 random classes from the ImageNet-50 low-diversity dataset (see Sec. 2.3). The
ImageNet-30 statistics here were computed from 30,000 images = 30 classes × 1000 images.
Similarly, for BigGAN (Row 2) and AM-L and AM-D-S methods (Row 3–4), we generated
1000 256 × 256 samples per class. We computed the statistics for each initialization method
from 5 trials, each with a different random seed. With AM-L (Sec. 3.3), we maximized the log
probabilities and used a large learning rate of 0.1. With AM-D-S (Sec. 3.4), we maximized both
the log probabilities and a softmax diversity regularization term, and used a small learning rate
of 0.01. In sum, across both settings, AM consistently obtained the highest FID and Inception
Accuracy (IA) scores with the Inception-v3 classifier (b). That is, it is possible to maximize the
FID and IA scores when using Inception-v3 as the classifier in the AM formulation. However,
qualitatively, we did not find the AM samples with Inception-v3 to be substantially different
from the others.
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Method IS (10 splits) FID ResNet-18 Accuracy MS-SSIM LPIPS
(higher=better) (lower=better) (higher=better) (lower=better) (higher=better)

1. Places-50 (real) 12.17 ± 1.01 N/A 0.57 0.42 ± 0.04 0.70 ± 0.06
2. BigGAN 8.19 ± 0.9 53.15 0.17 0.42 ± 0.05 0.66 ± 0.07
3. AM-L with Mean Initialization

Trial 1 8.32 ± 0.89 42.38 0.51 0.43 ± 0.05 0.64 ± 0.07
Trial 2 8.39 ± 0.83 44.11 0.48 0.43 ± 0.05 0.64 ± 0.07
Trial 3 8.45 ± 0.84 42.98 0.46 0.43 ± 0.05 0.65 ± 0.07
Trial 4 7.03 ± 0.71 38.39 0.49 0.43 ± 0.05 0.64 ± 0.07
Trial 5 7.03 ± 0.71 38.39 0.49 0.43 ± 0.04 0.65 ± 0.07

Average 7.03 ± 0.51 41.25 0.49 0.43 ± 0.05 0.65 ± 0.07
4. AM-L with Top-5 Initialization

Trial 1 8.60 ± 0.88 46.92 0.47 0.43 ± 0.05 0.65 ± 0.07
Trial 2 8.45 ± 0.81 41.09 0.52 0.43 ± 0.05 0.65 ± 0.07
Trial 3 8.13 ± 0.71 40.35 0.48 0.43 ± 0.05 0.65 ± 0.07
Trial 4 8.20 ± 0.79 43.56 0.47 0.43 ± 0.05 0.65 ± 0.07
Trial 5 8.37 ± 0.75 39.49 0.50 0.43 ± 0.05 0.65 ± 0.07

Average 8.35 ± 0.79 42.28 0.49 0.43 ± 0.05 0.65 ± 0.07

Table 4.2: A comparison of Places-50, BigGAN and AM images. We randomly chose 50
classes in Places365 (i.e., Places-50) to be the evaluation dataset for the experiments in Sec. 3.9.
The Places-50 statistics here were computed from 50,000 images = 50 classes × 1000 images
that were randomly selected from the training set of Places365. For BigGAN (Sec. 3.9), we
chose the class embedding whose 10 random samples yielded the highest accuracy score for
each target Places-50 class and generated 1000 samples per class. With AM-L mean initializa-
tion and AM-L top-5 initialization (Sec. 3.9), we maximized the log probabilities and used a
large learning rate of 0.1. We found that samples from AM (Row 3-4) are of similar diversity
but better quality than BigGAN samples.
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(a) AM alone without the diversity term (i.e., λ = 0 in Eq. 2.3).

(b) AM with the pixel-wise diversity term (i.e., λ = 0.01 in Eq. 2.3).

(c) AM with the pixel-wise diversity term (i.e., λ = 0.1 in Eq. 2.3).

(d) AM with the pixel-wise diversity term (i.e., λ = 1.0 in Eq. 2.3).

Figure 4.1: The monarch butterfly class (323) samples generated by Activation Maximization
(AM) methods when increasing the multiplier λ of a pixel-wise diversity regularization term in
Eq. 2.3.
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(a) AM alone without the diversity term (i.e., λ = 0 in Eq. 2.3).

(b) AM with a feature diversity term (i.e., λ = 0.01 in Eq. 2.3).

(c) AM with a feature diversity term (i.e., λ = 0.1 in Eq. 2.3).

(d) AM with a feature diversity term (i.e., λ = 1.0 in Eq. 2.3).

Figure 4.2: The monarch butterfly class (323) samples generated by Activation Maximization
(AM) methods when increasing the multiplier λ of a conv5 feature diversity regularization term
in Eq. 2.3.

36



(a) AM alone without the diversity term (i.e., λ = 0 in Eq. 2.3).

(b) AM with a softmax diversity term (i.e., λ = 2 in Eq. 2.3).

(c) AM with a softmax diversity term (i.e., λ = 10 in Eq. 2.3).

(d) AM with a softmax diversity term (i.e., λ = 100 in Eq. 2.3).

Figure 4.3: The monarch butterfly class (323) samples generated by Activation Maximization
(AM) methods when increasing the multiplier λ of a softmax probability diversity regulariza-
tion term in Eq. 2.3.
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(a) BigGAN samples generated with the original daisy class embedding (no noise).

(b) BigGAN samples generated with the daisy class embedding c′ = c+ ε where noise ε ∼ N (0, 0.1).

(c) BigGAN samples generated with the daisy class embedding c′ = c+ ε where noise ε ∼ N (0, 0.3).

(d) BigGAN samples generated with the daisy class embedding c′ = c+ ε where noise ε ∼ N (0, 0.5).

Figure 4.4: BigGAN samples when increasing the amount of noise added to the original daisy
class embedding vector. That is, four panels (a–d) are generated using the same set of 30 latent
vectors {zi}30 but with a different class embedding c′.
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(a) ImageNet images (b) BigGAN samples [11]

(a) Samples from the window screen class (904).

(b) Samples from the manhole cover class (640).

(c) Samples from the greenhouse class (580).

(d) Samples from the cardoon class (946).

Figure 4.5: Example mode-collapse classes from the ImageNet-50 subset where BigGAN sam-
ples (right) exhibit substantially lower diversity compared to the real data (left).
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(a) ImageNet samples from the parachute class.

(b) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 138k snapshot.

(c) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 140k snapshot.

(d) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 142k snapshot.

(e) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 144k snapshot.

(f) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 146k snapshot.

Figure 4.6: Applying our AM method to 5 different 128× 128 BigGAN training snapshots (b–
f) yielded samples (right) that qualitatively are more diverse and recognizable to be from the
parachute class compared to the original BigGAN samples (left). While the original BigGAN
samples are almost showing only the blue sky (d–f), AM samples show large and colorful
parachutes.
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(a) ImageNet samples from the pickelhaube class.

(b) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 138k snapshot.

(c) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 140k snapshot.

(d) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 142k snapshot.

(e) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 144k snapshot.

(f) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 146k snapshot.

Figure 4.7: The same figure as Fig. 4.6 but for the pickelhaube class (715).
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(a) ImageNet samples from the digital clock class.

(b) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 138k snapshot.

(c) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 140k snapshot.

(d) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 142k snapshot.

(e) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 144k snapshot.

(f) BigGAN samples (left) and AM samples (right), both generated using the BigGAN 146k snapshot.

Figure 4.8: The same figure as Fig. 4.6 but for the digital clock class (530).
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(a) ImageNet (b) BigGAN [11] (c) AM (ours)

(a) Samples from the flatworm class (110).

(b) Samples from the nematode class (111).

(c) Samples from the brass class (458).

(d) Samples from the greenhouse class (580).

Figure 4.9: A comparison between the 256 × 256 samples from the ImageNet training set (a),
the original BigGAN model (b), and our AM method (c) for four ImageNet-50 low-diversity
classes.AM samples (c) are of similar quality but higher diversity than the original BigGAN
samples (b).
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(a) ImageNet (b) BigGAN [11] (c) AM (ours)

(a) Samples from the manhole cover class (640).

(b) Samples from the spider web class (815).

(c) Samples from the window screen class (904).

(d) Samples from the cardoon class (946).

Figure 4.10: A comparison between the 256× 256 samples from the ImageNet training set (a),
the original BigGAN model (b), and our AM method (c) for four ImageNet-50 low-diversity
classes.AM samples (c) are of similar quality but higher diversity than the original BigGAN
samples (b).
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(a) ImageNet (b) BigGAN [11] (c) AM (ours)

(a) Samples from the pineapple class (953).

(b) Samples from the custard apple class (956).

(c) Samples from the carbonara class (959).

(d) Samples from the pizza class (963).

Figure 4.11: A comparison between the 256× 256 samples from the ImageNet training set (a),
the original BigGAN model (b), and our AM method (c) for four ImageNet-50 low-diversity
classes. AM samples (c) are of similar quality but higher diversity than the original BigGAN
samples (b).
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(a) Samples from BigGAN.

(b) Samples from AM.

Figure 4.12: A comparison between the 256 × 256 samples from the original BigGAN model
(a), and our AM method (b) for the nematode class (111). AM samples (b) are of similar
quality but higher diversity than the original BigGAN samples (a).
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(a) Samples from BigGAN.

(b) Samples from AM.

Figure 4.13: A comparison between the 256 × 256 samples from the original BigGAN model
(a), and our AM method (b) for the brass class (458). AM samples (b) are of similar quality but
higher diversity than the original BigGAN samples (a).
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(a) Samples from BigGAN.

(b) Samples from AM.

Figure 4.14: A comparison between the 256 × 256 samples from the original BigGAN model
(a), and our AM method (b) for the greenhouse class (580). AM samples (b) are of similar
quality but higher diversity than the original BigGAN samples (a).
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(a) Samples from BigGAN.

(b) Samples from AM.

Figure 4.15: A comparison between the 256 × 256 samples from the original BigGAN model
(a), and our AM method (b) for the window screen class (904). AM samples (b) are both of
higher quality and higher diversity than the original BigGAN samples (a).
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(a) Samples from BigGAN.

(b) Samples from AM.

Figure 4.16: A comparison between the 256 × 256 samples from the original BigGAN model
(a), and our AM method (b) for the daisy class (985). AM samples (b) are of similar quality but
higher diversity than the original BigGAN samples (a).
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(a) ImageNet (b) BigGAN [11] (c) AM (ours)

(a) Samples from the anemone fish class (393).

(b) Samples from the odometer class (685).

(c) Samples from the flowerpot class (738).

(d) Samples from the consomme class (925).

Figure 4.17: A comparison between the 128× 128 samples from the ImageNet training set (a),
the original BigGAN model (b), and our AM method (c) for four ImageNet-50 low-diversity
classes. AM samples (c) are of similar quality but higher diversity than the original BigGAN
samples (b).
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(a) Most dogs are located nearby.

(b) Most of birds are located nearby.

(c) Man-made tools are located nearby.

Figure 4.18: Three zoom-in panels cropped out from the t-SNE visualization of 1000 original
BigGAN class embeddings in Fig. 4.19. The BigGAN class embeddings are arranged semanti-
cally meaningful in the 2-D t-SNE visualization.
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Figure 4.19: A 25 × 40 t-SNE 2-D visualization for 1000 original BigGAN
class embeddings. At each t-SNE grid, we show a random BigGAN sam-
ple for the corresponding class. See https://drive.google.com/open?id=
1Jm1sUs1k45xmP71y2o4yYSNzhID8qadB for the high-resolution version of this figure.
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Figure 4.20: The same figure as Fig. 4.19 except that here we replace the 50 original
BigGAN embeddings for the ImageNet-50 classes with the 50 embeddings found by AM
(the highlighted cells). See https://drive.google.com/open?id=1i77bItzL_
tM9S8nZ7E58EAUtTb1DFSLL for a high-resolution version of this figure.
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(a) Original BigGAN embeddings. (b) Embeddings found by AM.

Figure 4.21: After modifying the 50 embeddings via AM, wre-plotted the t-SNE visualization
for the entire 1000 classes. W color-code each class here with a unique border color. The ar-
rangement of the original embeddings (left) are similar to that of the AM embeddings (right).
For example, the daisy and spider web were nearby before (left) and also after AM modifica-
tions (right). In total, there are 21 classes that appear in both panels here. For each class, here,
we show a random image i.e., the original BigGAN samples for the left panel and the samples
generated by the AM embeddings. The left (a) and right panels (b) are crops from the Figs. 4.19
and 4.20, respectively.
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(a) Interpolation in the embedding space between seaurchin (leftmost) and German shepherd (right-
most).

(b) Interpolation in the embedding space between honeycomb (leftmost) and junco bird (rightmost).

(c) Interpolation in the embedding space between hot pot (leftmost) and cheeseburger (rightmost).

Figure 4.22: The interpolation samples between c class-embedding pairs with latent vectors
z held constant. In each panel, the top row shows the interpolation between two original
256 × 256 BigGAN embeddings while the bottom row shows the interpolation between an
embedding found by AM (leftmost) and the original BigGAN embedding (right). In sum, the
interpolation samples with the AM embeddings (bottom panels) appear to be similarly plausible
as the original BigGAN interpolation samples (top panels).
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(a) Interpolation in the embedding space between window screen (leftmost) and water tower (rightmost).

(b) Interpolation in the embedding space between espresso (leftmost) and pop bottle (rightmost).

(c) Interpolation in the embedding space between agaric (leftmost) and bolete (rightmost).

Figure 4.23: The interpolation samples between c class-embedding pairs (from related Ima-
geNet classes e.g., agaric and bolete are both mushrooms) with latent vectors z held constant.
In each panel, the top row shows the interpolation between two original 256 × 256 BigGAN
embeddings while the bottom row shows the interpolation between an embedding found by AM
(leftmost) and the original BigGAN embedding (right). In sum, the interpolation samples with
the AM embeddings (bottom panels) appear to be similarly plausible as the original BigGAN
interpolation samples (top panels).
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(a) Interpolation in the latent space between two z vectors with the same greenhouse class embedding.

(b) Interpolation in the latent space between two z vectors with the same window screen class embed-
ding.

(c) Interpolation in the latent space between two z vectors with the same espresso class embedding.

(d) Interpolation in the latent space between two z vectors with the same daisy flower class embedding.

Figure 4.24: The interpolation samples between z latent-vector pairs with the same class em-
beddings. The z-interpolation samples with the AM embeddings (bottom panels) appear to
be similarly plausible as the original BigGAN interpolation samples (top panels). For the
window screen class (b), AM recovered the human-unrecognizable BigGAN samples into a
plausible interpolation between two scenes of windows.
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(a) Places365 (b) BigGAN on ImageNet (c) AM (ours)

alcove vault alcove

beach house lakeshore beach house

boathouse boathouse boathouse

coast promontory coast

Figure 4.25: A comparison between the 256× 256 samples from the Places365 training set (a),
the BigGAN samples generated for the ImageNet class whose 10 random samples were given
the highest accuracy for the target class in Places365 (b), and our AM samples (c). AM samples
(c) are of similar diversity but better quality than the original BigGAN samples (b).
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(a) Places365 (b) BigGAN on ImageNet (c) AM (ours)

hotel room quilt hotel room

ice skating rink outdoor dogsled ice skating rink outdoor

inn outdoor mobile home inn outdoor

jacuzzi indoor axolotl jacuzzi indoor

Figure 4.26: The same figure as Fig. 4.25 but for four different classes. While the ImageNet
axolotl class samples were given the highest accuracy (bottom panel), they are qualitatively
more different from the real jacuzzi images compared to the AM samples which shows the
bathtubs.
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(a) Places365 (b) BigGAN on ImageNet (c) AM (ours)

lock chamber gondola lock chamber

pagoda stupa pagoda

picnic area patio picnic area

pier dock pier

Figure 4.27: The same figure as Fig. 4.25 but for four different classes. In the bottom panel,
while the BigGAN samples are dock images that contain mostly ships whereas AM samples
show more bridges that resemble the real pier samples in Places365.
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(a) Places365 (b) BigGAN on ImageNet (c) AM (ours)

plaza parking meter plaza

railroad track electric locomotive railroad track

baseball stadium scoreboard baseball stadium

synagogue outdoor bell cote synagogue outdoor

Figure 4.28: The same figure as Fig. 4.25 but for four different classes. For the
baseball stadium, the top-1 ImageNet class is scoreboard (b), an object commonly found in
stadiums. However, the AM samples are more similar to the images from Places365, which
often do not contain scoreboards (a vs. c).
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