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Abstract

Decision-makers rely on simulation models to predict and investigate the implications of

their decisions. However, the use of monolithic simulation models based on fixed assumptions

lack the requisite adaptivity needed when the real-world system contains significant uncertainty.

Exploratory modeling is a methodology that involves iterative and incremental exploration of

alternative hypotheses about the underlying assumptions of the real-world system under a broad

range of contextual conditions. Through exploration, decision-makers gain an understanding

of the breadth of the system and pinpoint robust policies. However, exploratory modeling tools

lack mechanisms to generate, evaluate, and learn from the results of simulating an ensemble

of alternative, possibly competing models. Additionally, exploratory modeling over a pop-

ulation of models generates significant amount of data that may obscure fundamental system

mechanics and their interaction with the context. This thesis introduces a modeling architecture

with (1) a feature-oriented generative modeling mechanism for rapid derivation of alternative

causal model structures and (2) a rule-based machine learning strategy in terms of a Learn-

ing Classifier System to produce explanatory models in the form of a population of rules and

its associated visual heat-maps that convey the robustness and resilience of alternative system

designs. The use of both of these mechanisms accelerates the decision-support exercise and

yields more intuitive interpretations of system insights when modeling for decision-making

under deep uncertainty.
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Chapter 1

Introduction

1.1 Decision-making & Uncertainty

Decision-makers use simulation models as predictive surrogates to investigate the implications

of varying assumptions on future events. Real-world applications include fleet management

and market analysis. Models often have explicit and absolute mechanics designed with real-

world knowledge. However, accurate model creation may involve implementing complex ideas

that are inherently difficult to realize computationally [5].

Uncertainties arise when: real-world behavioral data is unavailable, it cannot be depicted

accurately due to necessary simplification, or stochasticity is present [30, 36, 64]. Uncertainty

in decision-making can be defined as the absence of adequate knowledge to inform a decision

for future events [58]. Uncertainties disrupt the science of modeling when one must make

implementation decisions derived from inadequate information. This type of uncertainty often

injects models with assumptions and contingencies, which yield a systematic bias [5].

Structural uncertainty, or deep uncertainty, is a severe condition in which decision-makers

do not know or cannot agree upon the relationship between variables [30, 35, 58]. In principle,

this is ambiguity in the arrangement and composition of underlying structures as well as their

perceived influence. Structural uncertainty should not be confused with parametric uncertainty.

Parametric uncertainty arises when decision-makers can define the dynamics of a system em-

pirically but are unaware of the parameter values associated with such dynamics [58]. The

presence of either type of uncertainty leads to models that vary in utility due to the number of
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plausible alternative hypotheses and candidate policies. Decision-makers aware of this preju-

dice are skeptical of a model’s genuineness [31]. Regardless, effective decisions must still be

made [30, 17, 35].

1.2 Exploratory Modeling

The solution to uncertainty management is to explore plausible scenarios [5]. Exploratory mod-

eling [5] deploys an ensemble of models that describe the system under varying conditions. A

decision-maker searches the ensemble to identify which strategies are resilient [13, 6, 5, 58, 30].

This exercise does not encompass analysis of a single, ground-truth model as in consolidative

modeling [5]. Instead, it is an iterative process where a decision-maker performs a series of

experiments to understand the consequences of alternative hypotheses [6, 5, 30, 36].

Exploration addresses the issue of alternative hypotheses that classical approaches [5] can-

not incorporate [16, 64]. From exploration, decision-makers gain awareness for the breadth of

a system [13, 58, 35], pinpoint policies that perform adequately under a variety of conditions

[58, 36], and divide up scenarios by those that are advantageous and those that are suboptimal

[64]. Consequently, exploratory modeling has shown to be an attractive approach to deal with

uncertainty in decision-making [13, 5, 29, 64, 58, 4, 15].

1.3 Limitations of Exploratory Modeling Practices

Exploratory modeling is achievable with sufficient computational power to evaluate numerous

scenarios [5]. However, more computation does not necessarily decrease uncertainty [58, 56].

The use of multiple models increases the complexity of the methodology and can obscure sys-

tem mechanics from the decision-maker [16]. Analytical approaches like sensitivity analysis,

scenario planning, and prim are not conclusive when decision-makers use a large number of

models. Thus, decision-makers are ill-equipped to generalize and explain the dynamics of the

ensemble as a whole. If we address two inadequacies in current practice: (1) the explanation of

large ensembles and, (2) the maintenance of alternative model structures, exploratory modeling

methodology can mature further into science.
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1.4 Contribution

An analytical tool built for generalization and explanation yields a proper explanation of large

ensembles. It should provide insight into areas of the ensemble not otherwise explicitly eval-

uated and give the decision-maker a better understanding of how it generally behaves with

results transposed into sensible chunks [16]. An explainable analysis of a model can accelerate

decision-support by supplying more intuitive interpretations of experiments.

Furthermore, the maintenance of alternative model structures is advantageous because it

allows decision-makers to ask questions with varying levels of abstraction. Exploratory mod-

eling platforms [29] currently in use do not supply a mechanism for model structure variability.

Therefore, the responsibility to incorporate alternative structures according to hypotheses falls

on modelers to implement them, possibly causing exploration to evaluate structural uncertain-

ties inadequately. Exploratory modeling methodology needs to be flexible and should manage

structural variability subject to composition constraints [64]. Structural variability management

allows for the maintenance of an ensemble that incorporates casual configurations of model

structures to describe all plausible hypotheses [64]. The adoption of structural variability in

exploratory modeling mitigates the burden on modelers and yields results concerning scenarios

of interest more quickly.

In this work, we address and propose how to overcome each of these limitations. This

thesis demonstrates how wrapping exploratory experiments with variability management can

efficiently process hypotheses of varying structural constraints. Additionally, we demonstrate

the use of an explainable analytical tool, namely a rule-based machine learning algorithm,

that can generalize and explain model dynamics over both explored and unexplored portions

of the ensemble. And in conclusion, we demonstrate how adopting both of these solutions

enhance exploratory modeling methodology and solidify the scientific approach to decision-

making under uncertainty.
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1.5 Thesis Layout

The layout of this work is as follows. Chapter 2 describes background information on modeling

for decision-making, exploratory modeling, and explainable machine learning. In Chapter 3,

we propose a methodology that addresses two limitations in contemporary exploratory model-

ing practices. Chapter 4 outlines our implementation of the methodology introduced in Chapter

3. In Chapter 5, we perform validatory and exploratory experiments to form a case study. In

Chapter 6 we summarize findings, and limitations of our work, and propose future research.
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Chapter 2

Background

The genesis of this work lies in the limitations of modeling for decision-making when un-

certainty is present and incorporates existing ideology in decision-making, uncertainty, explo-

ration, and explanation in the context of modeling and simulation. In this chapter, we provide

background information on these topics.

2.1 Decision-Making & Uncertainty

Generally speaking, a policy is a protocol enacted by a decision-maker to guide a system of

interest to a desirable outcome. A bad policy choice by the decision-maker can have social and

economic impacts that lead to amplified, undesirable outcomes. For this work, we must distin-

guish the responsibilities of a decision-maker from the responsibilities of a modeler. Decision-

makers concern themselves with identifying the system scope, the possible outcomes and their

values, and the consequences of their execution. A modeler, on the other hand, is concerned

with realizing the system computationally with sufficient robustness to adequately evaluate

plausible hypotheses. In both roles, fathoming and allowing for uncertainty can improve the

intrinsic value of a modeling exercise.

Walker et al. [57] characterize uncertainty as “any departure from the unachievable ideal

of complete determinism.” In other words, if some event is not 100% likely, then the scenario

inherently contains uncertainty. In Chapter 1, we accounted for two types of uncertainty: para-

metric and structural uncertainty. Here we further expand upon the ideology of uncertainty and

articulate its connotation.
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2.1.1 Calculating Uncertainty

Walker et al. [57] introduce three axes to describe uncertainties: the location of uncertainty,

its severity, and its nature. Measuring uncertainties along these axes allows decision-makers to

assess their consequences and allows modelers to wield them properly.

According to Walker et al. [57], uncertainties can manifest in three locations: in the con-

text of the target system, in its model representation, and its inputs. Contextual uncertainties

arise when decision-makers question the completeness of their definition of the target system.

They attribute to the choice of target system boundaries [30] and the factors that lie inside and

outside of the target system. Model uncertainties question a model’s ability to resemble the

mechanisms at play and can emerge from either the analysis of the target system or the im-

plementation of its surrogate. Input uncertainties question the external forces which influence

change in the system and categorize them as either controllable or uncontrollable. Controllable

inputs are within the decision-maker’s control and concern the impact of their actions. They

also address questions such as: “what is the outcome if we initially have 5% more of X?” Con-

versely, uncontrollable input uncertainties are those not under the control of the decision-maker.

They can, for example, describe the impact force of actions from an adversary. Uncontrollable

input uncertainties are inherently challenging to differentiate, and therefore, it is difficult to

anticipate their influence.

The second axes proposed by Walker et al. [57] addresses the severity of uncertainty.

The analysis allows decision-makers to anticipate the potency of uncertainty, and modelers

should handle them appropriately not to dilute the quality of decision-making. Criteria to assess

the severity of uncertainty may set a range from complete certainty to total ignorance with

several intermittent levels in between. The first level of uncertainty is determinism or complete

certainty. Determinism, where system mechanics are entirely understood, is an extreme that is

unattainable in practice [58, 57]. The next level of uncertainty is statistical uncertainty, and it

arises when system mechanics are reasonably understood and modeled sufficiently accurately,

but the parametric values affecting mechanics are not precisely known and is described with

statistical distributions [58, 57]. An even deeper level of uncertainty is scenario uncertainty,
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and this is a situation where system mechanics are not well understood or agreed upon by

decision-makers. Scenario uncertainty corresponds to the many plausible descriptions of the

relationships between variables and results in sets of plausible scenarios and candidate policies

[58, 57, 30]. Yet another level of uncertainty is called recognized ignorance. Ignorance falls

into this category when familiarity with plausible scenarios is absent because decision-makers

do not know the mechanisms at play or their probabilities. Recognized ignorance appears in

two embodiments: reducible and irreducible. It is reducible if further research can clarify the

uncertainty; if not, it is irreducible [58, 57]. The deepest level of uncertainty is total ignorance.

Here, decision-makers only accept that they do not know what they do not know [58, 57].

The nature of uncertainty is the third axes proposed by Walker et al. [57] and is an exer-

cise to analyze how uncertainty manifests, i.e., understand its root cause. In contrast to analysis

of the location of uncertainty, the analysis of the nature of uncertainty is the study of how it

arises and how to cope with it [57]. The nature of uncertainty comes in two variants: epistemic

uncertainty and variability uncertainty. Epistemic uncertainty stems from imperfect knowl-

edge, which may reduce after additional study of the target system [57]. Variability uncertainty

develops from intrinsic differences of mechanisms within the system. Variability uncertainty

commonly appears when the target system involves natural or human systems and their in-

nate randomness [57]. In this case, such systems may react in unpredictable ways, and further

research may not tame uncertainty.

2.1.2 Parametric & Structural Uncertainty

To decorate our definitions of parametric and structural uncertainty from Chapter 1, we pro-

ject them onto the three axes of uncertainty. Parametric uncertainties located in inputs are

a statistical-level of severity and epistemic. Structural uncertainties located in the context or

model construe a scenario-level of uncertainty and are variable.

2.2 Exploration

Exploration is a practice within modeling methodology that embraces the presence of uncer-

tainty by incorporating a variety of hypotheses about the mechanics of the target system [14, 5].
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For decision-makers, the benefit of exploration is that they: (1) better understand the implica-

tions of various assumptions, and (2) gain a sense of when a policy is most effective [14]. Each

of these characteristics lead decision-makers to a more informed policy choice, and exploration

becomes a viable solution to uncertainty. Exploration is most suitable when systems exhibit ir-

reducible levels of uncertainty and encompass inherent variability [57, 30]. As Davis [13] said,

exploration “can help identify strategies that are flexible, adaptive, and robust.” Interestingly,

exploration exists in real-world applications such as climate prediction [17] and supply chain

management [14]. These applications also highlight how exploration implementation yields a

competitive edge and higher profits for industry [38].

2.2.1 Exploratory Modeling & Analysis

The practice of exploration involves two phases: exploratory modeling and exploratory anal-

ysis. Exploratory modeling conceptualizes, generates, and executes a series of computational

experiments [5] that explore the implications of the hypotheses. Each experiment incorpo-

rates a plausible hypothesis about the target system: a “what if” scenario. The hypothesis may

also encompass multiple model instances with varying structures and parametric values. The

set of model instances that wholly represent all plausible hypotheses is known as the ensem-

ble [58, 14, 29]. Exploratory analysis is the second phase of exploration and is analogical to

decision-support [57, 29]. It synthesizes and interprets the results of multiple experiments that

may contain millions of individual results from model instances. Participants are tasked in the

analysis phase to deliver informative insight into the target system. For exploration to be a use-

ful exercise in decision-making, both phases must adequately explore and inform on plausible

hypotheses of the target system.

Consolidation The counterpart to exploration in modeling methodology is consolidation. In

short, consolidative modeling is the practice of aggregating all known facts into a single pack-

age and using it as a predictive prosthesis [5]. 1 While exploration incorporates numerous

1Banks [5] provides an excellent theory that explains the challenges decision-makers and modelers face when
they implement consolidative models. The Ultimate Combat Model illustrates the issues of inadequate robustness
and scenario variability.
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models, consolidation incorporates just one, and the severity of uncertainties are presumed

negligible. While consolidation appears to be a more unequivocal practice, it is often not ap-

plicable to decision-making for real-world systems [30, 16, 64, 5].

Performing Exploration In exploration practice, a decision-maker first selects a general pol-

icy that conceptualizes the system and then observes the behavior of a subset of the ensemble.

This process should adhere to the chosen policy. The decision-maker performs quantitative

analysis on the observed results to identify the conditions under which the policy performs

suboptimally. Since the policy improves with the new insight, decision-makers repeat this pro-

cess until they reach a satisfactory policy [30, 5]; however, models are not predictive surrogates.

They only provide partial insight into the system, and ideal policies become more apparent with

subsequent experiments.

Robust Decision-Making Robustness is a critical pillar in the evaluation of alternative poli-

cies [35, 50, 39]. A policy is robust if it performs adequately when compared to alternatives in a

large number of hypothetical scenarios [64, 36, 50]. Robust policies should minimize expected

cost or regret [36, 51], but they do not necessarily maximize optimality [58]. When presented

with multiple alternate policies within uncertainty, and to avoid vulnerabilities and undesirable

outcomes, it is prudent for decision-makers to select among the policies which demonstrate

sufficient robustness [36, 34]. Robust Decision-making [58, 64, 36, 35] is a derivative of the

exploratory process but with additional objectives for the decision-maker. In Robust Decision-

making, participants identify robust candidate policies and their vulnerabilities and trade-offs

[36, 35].

2.2.2 Model Variability

Software Product Line Engineering Software Product Line Engineering enables the rapid

development of low-cost, high-quality products by organizing software into reusable artifacts
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[24, 44]. The mission of Software Product Line Engineering is to identify variations and com-

monalities in a product suite and then develop reusable components that meet those speci-

fications [44]. Variability in software is the degree to which components are configurable,

extendable, or exchangeable [10]. Flexible and diverse software products can be created just

by managing variability [10]. Thus, a product can consist of a subset of reusable components

expressed in terms of the features it delivers [24]. A feature is a distinctive functionality or

mechanism in a software product that may encompass additional subfeatures [2, 64].

Features & Feature Models Well-defined software features facilitate a process known as

feature-driven engineering [64, 53]. Feature-driven engineering is an adaptation of the soft-

ware product line where variations and commonalities between components are described with

a feature model [53]. The feature model, in turn, is a conceptual realization of mechanisms in

a domain, and its features are defined with various levels of delivered functionality. Flexibility

and configurability in the software are introduced via the adaptive composition of expansive

features from more fundamental features. Through feature composition, a feature model repre-

sents a hierarchical structure that allows software developers to reuse functionality and reduce

implementation complexity. A feature tree is a feature model where features are explicit and

defined as aggregations. Features in a feature tree express interrelationships that decompose

into mandatory, optional, OR (inclusive disjunction), and XOR (alternative) subfeature con-

straints [43]. Features at deeper levels of the hierarchy are mostly elementary in functionality

so that higher-level features resemble aggregative functionality.

Feature-Driven Engineering in Decision-Making In the context of decision-making, the

target system represents the product suite, and the features in the feature tree represent plausible

mechanisms of the target system. The target system’s mechanics are categorized based on their

interdependencies and then mapped to features in a feature model with suitable constraints.

Plausible mechanisms that intend to describe the same system phenomena neighbor each other

in the feature tree and are described as alternative if they are competing hypotheses or desired

as OR if they are complementary. Mechanisms understood to be within the context of the target
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system are described as mandatory, and mechanisms that are not completely understood to be

within the context of the target system are optional. Through adequate mapping, the feature

tree represents the ensemble of all plausible hypotheses of the target system. Therefore, to

realize a scenario of interest, one must select only the features which pertain to the scenario via

synthesis of a subtree of the feature tree.

2.3 Explanation

An essential facet of exploratory modeling is the explanation of large ensembles [5, 4, 64].

Explanation, as defined by the Oxford English Dictionary, includes a reason or justification

of an action or belief. In the context of decision-making, an explainable choice in policy is

one that achieves the desired outcome and is logical, transparent, and justified in its social and

economic ramifications [14, 39, 18, 12].

As discussed in Section 2.2 Exploration, decision-makers employ exploration to better

understand the assumptions about the target problem [14]. Exploration generates a substantial

amount of data that may obscure essential system mechanics from decision-makers [16]. This

obscurity is caused by the limitations of the human ability to interpret large amounts of data,

especially with time constraints [23]. Decision-makers mitigate with analytical tools such as

sensitivity analysis and scenario planning [14, 29, 35]. These tools analyze experiment results

and transpose them into interpretable facts, which are used as decision-support artifacts [14].

These tools perform adequately when the experiment results sufficiently describe the ensemble;

however, they decrease in utility when experiments run on only a fraction of the hypothesis

space. The tools do not contribute insight into unexplored portions. Deficiencies heighten

when exploration of the entire ensemble is impractical due to time or computational restraints

[14]. There is a need for a more robust explanatory and analytical tool to infer hypotheses

across both explored and unexplored portions of the ensemble. Supplementary tools, such as

machine learning, should help draw inferences from extensive data and extrapolate across the

ensemble with precision.
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2.3.1 Machine Learning

Machine learning is the subfield of computer science and artificial intelligence that focuses

on pattern recognition in large data sets [40, 41, 55]. This class of algorithms generalizes

patterns in observed data so they can be extrapolated and matched to unseen, future data [40,

45]. Through this process, a subset of these algorithms are a predictive apparati [40, 41]. In

the context of exploratory modeling, these tools are used to produce symbolics that are both

descriptive and prescriptive [7]. Machine learning is used to conclude from system phenomena,

and its vital components or assumptions, to reach the desired outcome or avoid a suboptimal

outcome. In this context, the desired algorithms are explanatory tools [18] because they explain

observed mechanics in the target system and predict how unexplored portions of the ensemble

might behave.

2.3.2 Explainable Machine Learning

The explainability of machine learning algorithms is a growing subject of study [18, 1, 52,

12]. Published research acknowledges that machine learning is becoming an integral part of

society, and practitioners are exhorted to concern themselves with the trustworthiness of their

systems [18, 1, 52, 12]. Research proves that there are deficiencies in how existing algorithms

produce confidence in their output. Blind adoption of output occurs when the algorithmic

complexity is unfamiliar [18, 1]. Doran et al. [18] characterizes three levels of machine learning

explainability: (1) systems which are opaque, (2) systems which are interpretable, and (3)

systems that are comprehensible. Opaque systems are black boxes with input-output mapping

mechanisms invisible to end users. A closed-source deployed machine learning model is called

opaque. Systems are interpretable when their mapping mechanism is visible but require a

mathematical and technical understanding. Comprehensible systems output symbolics along

with their predictions. The symbolics allow users to understand why a system made a decision.
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2.3.3 Learning Classifier Systems

One such class of comprehensible algorithms is Learning Classifier Systems [55, 7, 33, 23].

Learning Classifiers build a set of rules that are validated through reinforcement and general-

ized through genetic operations. The rules specify input constraints for an expected amount of

reward or outcome. The Learning Classifier System consists of three fundamental components:

the environment, the reinforcement program, and the classification mechanism [55, 33, 23].

The environment generates new scenarios, and the classification mechanism applies an action

associated with an existing rule to maximize an expected reward. The reinforcement program

then improves on the rule with the observed reward. Learning Classifier Systems iteratively

generate rules which are robust, general, and validated. The rules express conditions where

the outcome is either high or low. Rules are described through plain text or explanatory mod-

els such as heat maps or coordinate plots. In exploratory modeling, the Learning Classifier is

trained and validated on data from explored portions of the ensemble and its results extrapo-

lated to predict how unexplored portions of the ensemble might behave. Thus, the utility in

exploratory modeling is made clear. Learning Classifier Systems are a crucial component of

the solution presented in this thesis. Additional description of Learning Classifier Systems is

available in Chapter 5.
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Chapter 3

Strategy Learning System Framework

The Strategy Learning System framework enables explanation and management of large en-

sembles. It is an extension of exploratory modeling methodology and also solidifies a sci-

entific approach to large ensembles in exploratory modeling for decision-making. In this

chapter, we outline the components of the Strategy Learning System. Chapter 4 discusses

an implementation-specific adoption of the Strategy Learning System, and in Chapter 5 we

illustrate it as a case study.

3.1 Framework Purpose

In exploratory modeling, a decision-maker first identifies the context of the target system, then

analyzes uncertainties to generate plausible hypotheses that resemble the target system. A

decision-maker equips a modeler with specifications, and they implement a surrogate of the

target system to address alternative hypotheses through an ensemble of models. A decision-

maker uses the ensemble to perform a series of computational experiments to understand the

consequences of alternative hypotheses [5, 30]. The proposed framework improves on this

procedure to organize the ensemble and casually generate new structural scenarios without

requiring a modeler to implement them explicitly. Additionally, the framework uses a rule-

based machine learning algorithm to produce explainable models of the ensemble. Figure

3.1 is a diagrammatic representation of the Strategy Learning System framework and shows

information flow.
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Figure 3.1: Strategy Learning System Framework

3.2 Feature Tree

A feature tree is the conceptual representation of the target system, and its features are sym-

bolic aggregations of various levels of delivered functionality. A deep-level feature is the most

basic in functionality, while a high-level feature is more complex and encapsulates lower-level

features with constraints. Mechanisms within the context of the target system are mandatory,

while mechanisms that are not completely understood to be within the context of the target

system are optional. Additionally, plausible mechanisms that describe the same phenomena

neighbor each other in the feature tree and are described as OR if they are complementary, and

as XOR if they are competitive.
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Figure 3.2 is a feature tree of a theoretical equation F. In this example, F is an aggre-

gate feature composed of three subsequent mandatory subfeatures f1, f2, and o. f1 has one

mandatory subfeature and one optional subfeature. o is either + or − but not both. f2 is any

combination of f2,1, f2,2, and f2,3.

a

mandatory

mandatory

mandatory

optional

mandatory

XOR OR

b c d e g h k m

Figure 3.2: Feature Tree of Example Equation F

This feature tree resemble the equation:

F =


f1(·) + f2(·) if o |= +

f1(·)− f2(·) otherwise

where f1 = and
(
f1,1,or(f1,2)

)
and the cardinality of f2 = 23. This example shows that from

seven reusable components F can be configured into 25 unique equations.

3.3 Base Model

The base model is the computational realization of the target system. It is not implemented as

a single fixed artifact, but instead contains all individual features specified by decision-makers.

The features are cohesive and loosely coupled so they are easily exchanged and meet the cri-

teria of the feature tree. The base model’s fundamental functionalities are either in the context

of the target system or are those that contain a negligible amount of uncertainty. Built on top
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are the increasingly more accumulative functionalities which may or may not be understood or

agreed upon by decision-makers. Depending on the application, modelers can achieve greater

functionality with (1) alternative flow controls, (2) inheritance and aggregation, and (3) decora-

tor patterns. However, when the target system is complex, decorators are advantageous because

they allow dynamic adoption of object behavior with no effect on inherited behavior. The im-

plementation of the base model is hierarchical and emergent; it delivers a robust ensemble.

Feature-oriented implementation allows casual automatic realizations of scenario models via a

metaprogram to parse source code.

3.4 Resolution Model

The resolution model is a description of an experiment. It specifies which components from the

base model decision-makers want to incorporate in a set of scenarios to assess the outcome of a

hypothesis. The resolution model is a meta-description of a subset of features from the feature

tree where features are identified, but not described. Scenarios are generated only by including

both mandatory features and features listed in the resolution model. Since the resolution model

can be described with fluctuating levels of abstraction with both high- and deep-level features,

they are included in generated scenarios— as long as their constraints are not violated. Subse-

quent experiments are performed by tweaking or exchanging the resolution model. This allows

decision-makers to assess hypotheses on portions of the ensemble quickly with little overhead.

A possible resolution model for equation F is:

Example Resolution Model for Equation F

include feature(+)

include feature(f2,1)

include feature(f2,3)
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3.5 Model Composer

The model composer generates plausible scenarios for an experiment. The base model, the

feature tree, and the resolution model serve as inputs. It is a metaprogram that examines the

resolution model and feature tree to identify which portions of the base model source code to

include when the composer walks the feature tree. Along a walk, the model composer performs

feature composition and compiles the corresponding source code. For equation F, the model

composer produces the following competing realizations with the above resolution model:

F = f1(f1,1) + f2(f2,1, f2,3)

F = f1(f1,1) + f2(f2,1, f2,2, f2,3)

F = f1(f1,1, f1,2) + f2(f2,1, f2,3)

F = f1(f1,1, f1,2) + f2(f2,1, f2,2, f2,3)

3.6 Exploration

Once the model composer has generated the plausible structural scenarios, the exploration

component samples along parametric uncertainties. Sampling methods such as Monte Carlo

Sampling or Hypercube Sampling are used to generate parametric values for the uncertainties

adequately. This is essential to avoid an exhaustive search, reduce the computational cost, and

maintain an adequate exploration of parametric uncertainties. This produces many model in-

stances. A model instance is a single structural scenario with a set of corresponding parametric

values. The exploration component executes the instances. Here a scenario runs multiple times

with different parametric values and is represented by a series of model instances. If the base

model contains stochasticity, then model instance execution can be repeated. The exploration

component produces a set of inputs and outputs for each scenario called the experimentation

results.
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3.7 Rule Discovery

The analysis of experimentation results yields rule discovery. A rule specifies constraints on

the input where a particular outcome is expected. In this framework, rules are generated by

a Learning Classifier System. This is described in greater detail in Chapter 5. The Learning

Classifier System constructs tentative rules and validates them through reinforcement with the

observed outcome in experimentation results. The rules are then generalized through genetic

operations. The rule creation process in Learning Classifier Systems is iterative, and it produces

rules which are as-general-as-possible while maintaining resemblance to the patterns seen in

experimentation results. The output of the Learning Classifier System is a set of rules which

are easily transposed to plain-text. For the example equation F, a hypothetical rule could be:

IF:

< f1,1.a == LOW,

f2,1.d == HIGH,

f2,3.k == LOW,

f2,3.m == LOW >

WHEN:

< F == f1(f1,1) + f2(f2,1, f2,3) >

THEN:

< outcome → HIGH >

3.8 Explanatory Models

The rules generated by the rule discovery component are compiled into an explanatory model.

In this framework, the explanatory model is a heat map, and the heat map illustrates which

parametric and structural inputs in an experiment lead to an expected outcome. Outcome is

visualized by a range of colors; warmer colors constitute a spectrum of desirable outcomes,

while cooler colors constitute a spectrum of undesirable outcomes. The heat map is organized

into two axes against which uncertainties are mapped. The horizontal axis plots uncertainties
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under the control of a decision-maker. The vertical axis plots uncertainties not under the con-

trol of a decision-maker. In our example equation F, the horizontal axis is composed of the

parametric values, and the vertical axis is composed of the structural compositions of F. The

rules and heat maps allow a decision-maker to infer how the target system behaves under a

hypothesis. The materials generated by the framework are used as decision-support artifacts

and provide partial insight into a decision-making exercise. A decision-maker can construct

subsequent experiments from this insight. The framework then provides an iterative process

where the understanding of target system behavior is gradually improved through a series of

experiments.
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Chapter 4

Strategy Learning System Design & Implementation

In this chapter, we adapt the Strategy Learning System framework to a concrete instantia-

tion. In the implementation we utilize: (1) a Contaminant Plume model as the base model, (2)

the Exploratory Modeling and Analysis Workbench as the exploration component, and (3) an

Accuracy-based Learning Classifier System for the rule discovery mechanism. In Chapter 5 we

illustrate it as a case study.

4.1 Contaminant Plume Model: Overview, Design Concepts, & Details (ODD)

Agent-based models often illustrate behavior that is not easily described by mathematics. The

absence of a mathematical formulation yields ambiguity and can be enigmatic to a model-user

unfamiliar with its specifications. Large or complex models underscore this. Ambiguity in

models leads to marginal reproducibility and expansion. Grimm et al. [22] proposed ODD to

amend this issue.

ODD has three parts: Overview, Design Concepts, and Details. The Overview lists the

model’s purpose, state variables, and metaprocess scheduling. Design Concepts describe the

model’s characteristics. Together, Overview and Design Concepts construct a high-level expla-

nation of the model. The last part is Details, and it describes the initialization process, model

inputs, and low-level behavior of agents.
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4.1.1 Overview

Purpose

In recent years, commercial and governmental use of Unmanned Aerial Vehicles (UAVs) has

added a wide range of applications [9, 42]. The Contaminant Plume model (the model) [47]

simulates a practical managerial application of UAVs. The model is based on previous work

[37, 47], and is a proxy to demonstrate how a collection of UAVs can cooperate for a UAV

Swarm. The intra-swarm cooperation breeds emergent behavior because a single UAV’s de-

cision affects the decisions made by other UAVs. The model incorporates an array of both

mission controllable and uncontrollable parameters (deemed model and environmental param-

eters) as well as structurally distinctive command and control (C2) policies. The model allows

decision-makers to fluctuate both parametric and structural parameters and identify circum-

stances that result in a rapid mapping and decontamination of a contaminant.

State Variables and Scales

The model is written in both NetLogo [25] and Scala [60], where the Scala implementation

is an extension that contains aggregate methods used in the NetLogo implementation. The

benefit of this structure is that we can leverage both Scala’s object-oriented nature and ease of

readability along with NetLogo’s GUI and popular adaptation in Modeling practice. For this

documentation, we reference the model as a single implementation. The model contains a hier-

archy of four entities: Contaminant Plume, UAV, a Swarm—composed of two or more UAVs,

and the Environment. Figure 4.1 is a Conceptual High-level Class Diagram that represents the

entity relationships.

In the following subsections, we describe the state variables of the four entities. It is

important to note that these are not exhaustive lists of all the attributes these entities contain. In

section 3.1 Inputs, we list additional attributes. The distinguishing factor between the attributes

listed in this section and Inputs is that the state variables are detached from user interaction

while the inputs are varied by the user to identify diverse emergent behavior.
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Figure 4.1: Contaminant Plume Model Conceptual Hierarchical High-level Class Diagram

Contaminant Plume A Contaminant Plume mimics an undesirable pollutant, toxin, or syn-

thetic biological weapon that is mapped and decontaminated. In this scenario, the Contaminant

Plumes are circular with a linearly decreasing density that radiates from its center. In this con-

text, it is the role of the UAVs to map and sanitize the Contaminant Plumes. The Contaminant

Plumes are composed of the following state variables:

- Plume spread patches is the radius of the Contaminant Plume in Environment patches

(patches are defined in 1.2.4 Environment).

UAV UAVs are aircraft with no pilot on board. They are either autonomous or controlled

from the ground. UAVs possess an array of sensors that allow them to perceive and react to

their surroundings. In this example scenario, UAVs are autonomous and are composed of the

following state variables:

- Location is the coordinate where the UAV is located in the Environment.

- Heading is the UAV’s trajectory. It is measured in compass headings.

- Velocity is the rate at which a UAV moves in a single time step and is set to 0.5 patches

per step.

- Detection time is the time step when the UAV first detects a Contaminant Plume.

- Sensor reading is the sensor reading which measures the density of a Contaminant Plume

at the UAV’s location.
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- Flockmates is the group of UAVs within their respective vision (vision is described in 3.1

Inputs).

- Nearest neighbor is the flockmate that is physically closest.

- Best neighbor is the flockmate with the highest plume reading.

- Desired heading is the trajectory to which a UAV is maneuvering.

- Random search time is the number of time steps a UAV will continue on its current

heading before turning when the global search policy is random search or symmetric

search (search policies are described in Process Overview).

- Region is the portion of the Environment in which a UAV is responsible for mapping

when the global search policy is symmetric search.

- Symmetric search max region reading is the maximum plume reading a UAV has detected

while mapping its current region when the global search policy is symmetric search.

- Symmetric search region time is the amount of time a UAV will spend in its current region

before it considers moving to another region when the global search policy is symmetric

search.

Swarm A UAV Swarm is a collection of UAVs that are controlled by one or more ground-

based systems. High-level commands sent to the Swarm are distributed and carried out by

individual UAVs. Emergent behavior is exhibited due to intra-Swarm cooperation that would

not appear from examining a single UAV operating companionless [37]. This scenario contains

a single Swarm of homogenous UAVs that have three distinct C2 policies. The C2 policies are

discussed in detail in Submodels. The Swarm is composed of the following state variable:

- Coverage all is a list that contains the real-time and historical coverage sensor readings

of the Swarm. Given coverage data decay (defined Swarm Inputs) denoted as CDD,

coverage all is defined as follows:

{sensor reading(t,UAVi) : t ∈ [tn − CDD, ..., tn],UAVi ∈ Swarm} (4.1)
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Environment The Environment functions as a commandant’s designated area of interest and

is where one or more Contaminant Plumes reside. The Environment is composed of the fol-

lowing state variables:

- Patches are units of area and are set to 5x5 pixels. The Environment is 195x100 patches.

- Ticks are a measurement of time native to NetLogo. A tick can be considered a single

iteration– the model’s entities are updated and performance is logged. Time intervals

have thus far been described as time steps, but they can be considered in terms of ticks.

- The Contaminant Plumes reside in the Environment and there may be one to five Con-

taminant Plumes in an episode.

- The Swarm resides in the Environment and may contain two to 100 individual UAVs.

Figure 4.2 is a Conceptual Class Diagram that illustrates the state variables for the four

entities described above. This Conceptual diagram will evolve as the additional model specifi-

cation is introduced.

UAV

- location: tuple
- heading: float
- velocity: float = 0.5 patches
- detection-time: int
- plume-reading: float
- flockmates: list[UAV]
- nearest-neighbor: UAV
- best-neighbor: UAV
- desired-heading: float
- random-search-time: int
- region: [float, float, float, float]
- symmetric-search-max-region-reading: float
- symmetric-search-region-time: int

Swarm

+ C2 policies

Contaminant Plume

- Plume Spread Radius: float
- Plume Spread Patches: float

Environment

- patches: list[Patch]
- ticks: NetLogo timestamp
- plumes: list[Contaminant Plume]
- swarm: list[UAV]

1
0..5

1

1

1
2..100

Figure 4.2: Contaminant Plume Model Conceptual Detailed Class Diagram for the model enti-
ties

25



Process Overview

C2 policy influence on Swarm collaboration varies. One of these policies is commissioned at

the start of an episode.

Random Search Policy Random search [25] is the simplest of the three C2 policies. It per-

tains to a sense-free policy as the collective Swarm intelligence, and Environmental perception

does not influence a UAV’s behavior. Instead, UAVs make decisions independent of one an-

other and use two random variables that determine how long a UAV will continue on its current

trajectory and its next trajectory.

Flock Search Policy Flock search [37, 46] is a policy influenced by behavior observed in

Animalia, namely in flocks of birds, herds of land animals, and schools of fish [59]. In this

scenario, flocking behavior emerges from UAVs using three BOIDS [59] rules:

- Separation - an Agent steers to avoid overcrowding its flockmates.

- Alignment - an Agent aligns its heading with the average heading of its flockmates.

- Cohesion - an Agent changes its trajectory to move towards the average position of its

flockmates.

UAVs broadcast their plume reading to their flockmates. If a pair of UAVs are too close, they

use separation to veer in opposite directions. Otherwise, once a UAV receives the plume reading

of its flockmates, it uses both alignment and cohesion if the plume reading of its best neighbor

is higher than its own.

Symmetric Search Policy Symmetric search [25] divides the Environment into symmetrical

regions and initially assigns a UAV to each region where it searches for Contaminant Plumes.

UAVs search their assigned region for a random number of ticks, and after that, it may switch

to the region of its best neighbor if the plume reading of its best neighbor is higher than its own.
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4.1.2 Design Concepts

Emergence In both flock and symmetric search policies, swarming phenomena emerges from

individual UAV traits— where a UAV’s location, plume reading, and flockmates dictate its

short-term impermanent actions. These actions are observed as the Swarm converges around

one or more Contaminant Plumes. Conversely, in random search, no system-level phenomena

emerge because UAVs behave stochastically and are desensitized by their surroundings. In all

cases, there are no explicit rules to control the Swarm.

Adaption Adaptation is observed in symmetric search when individual UAVs maneuver to

regions with higher Contaminant Plume densities. Nevertheless, UAVs never change their be-

havioral rules.

Fitness The model is fitness-seeking as UAVs are explicitly tasked with exploring the Envi-

ronment to maximize their plume reading. The model has three performance metrics:

- Coverage std is the standard deviation of coverage all.

- Coverage mean is the average of coverage all.

- Coverage percentage is the number of patches that contain the Contaminant Plume, and

have been visited by a UAV, divided by the number of patches that contain the Contami-

nant Plume. Coverage percentage is defined as follows:

ft ←
∑|patches|

i=1 (plume density(patchi) > 0)× (visited(patchi) = 1)∑|patches|
i=1 (plume density(patchi) > 0)

(4.2)

Sensing UAVs know their location, heading, velocity, vision, plume reading, Environmental

wind heading, and wind speed (vision, wind heading, and wind speed are described in section

3.1 Inputs).

Interaction A UAV can interact with its flockmates, best neighbor, and nearest neighbor.

Additionally, UAVs may decontaminate the Contaminant Plume. Interactions are detailed in

Submodels.
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Stochasticity Stochasticity is prevalent in the model. The Contaminant Plume’s location is

initially randomly assigned as this best model’s uncertainty; the random search policy is wholly

stochastic, and the number of ticks a UAV spends in its region for symmetric search is randomly

assigned with two variables.

Collectives UAVs collectively form the Swarm, and UAVs accredit a subset of the Swarm as

distinct flockmates.

Observation At each tick, all performance measurements are logged. Fitness analysis of the

model is enabled through the fitness metrics.

4.1.3 Details

Inputs

The feature tree [63] in Figure A.1 demonstrates the hierarchy and dependence of all model

features. Elements at the deepest level are the most rudimentary, while elements at the highest

level are the most aggregate. The pivotal criteria to construct the feature model is dependency

and concreteness.

Contaminant Plume Inputs Contaminant Plumes have the following input variables:

- Plume spread radius is the radius of the Contaminant Plume as a percentage of the Envi-

ronment width.

- Plume decay rate is the amount that a Contaminant Plume naturally decreases in size in

a single tick.

- Plume decontamination threshold is a percentage of the Contaminant Plume’s original

size. When the Contaminant Plume reaches this size, the episode terminates.

UAV Inputs UAVs have the following input variables:

- Decontamination strength is the amount a single UAV can decontaminate the Contami-

nant Plume size in a single tick.
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- Vision defines the radius of the circle around the UAV where it can detect other UAVs.

Swarm Inputs The Swarm has the following input variables:

- Population is the total number of UAVs in an episode and the Swarm.

- World edge threshold is the minimum distance allowed between a UAV and the Environ-

ment edge before it must turn.

- Max world edge turn is the maximum angle a UAV can turn away from the Environment

edge after it enters the world edge threshold.

- Coverage data decay is a temporal threshold for calculating the Swarm’s coverage. For

example, given a coverage data decay of two, coverage all contains the sensor reading at

the current tick and the previous tick for each UAV.

- Global search policy is the search policy which the Swarm adheres to in the current

episode.

- Random Search Inputs:

- Random search max heading time is the maximum allowed time for a UAV to con-

tinue on its trajectory before turning when the global search policy is random search.

- Random search max turn is the maximum allowed angle a UAV can turn when the

global search policy is random search.

- Flock Search Inputs:

- Minimum separation is the minimum distance allowed between any two UAVs

within the Swarm.

- Max align turn is modeled after BOIDs flocking [37] and is how UAVs align their

heading with their flockmates.

- Max cohere turn is modeled after BOIDs flocking [37] and is how UAVs steer to-

wards their flockmates.

29



- Max separate turn is modeled after BOIDs flocking [37] and, contrary to alignment,

is how UAVs steer away from their nearest neighbor if they get too close.

- Symmetric Search Inputs:

- Symmetric search max turn is the maximum allowed angle a UAV can turn.

- Symmetric search region threshold is the distance allowed between a UAV and its

region border before it must turn.

- Symmetric search min region time is the minimum allowed amount of time a UAV

must spend in its region before considering moving to another region.

- Symmetric search max region time is the maximum allowed amount of time a UAV

can spend in its region before considering moving to another region.

Environment Inputs The Environment encompasses the following input variables:

- Number plumes is the number of Contaminant Plumes in the current episode.

- Wind Speed is the velocity at which the wind is moving. Wind speed affects the location

of Contaminant Plumes as well as UAV regions.

- Wind heading is the wind’s trajectory.

A complete specification of model inputs can be found in Table A.1. Figure 4.3 is a

complete Conceptual Class Diagram and contains both high-level methods, inputs, and state

attributes of the model.

Initialization

On initialization, the Environment is first setup followed by the Contaminant Plumes then the

UAV Swarm. Once NetLogo’s tick counter and all the entity state variables are reset, the Envi-

ronment is considered initialized. Next, the Environment creates the Contaminant Plumes, and

they are then placed randomly in a central area that makes up one-quarter of the Environment.

Lastly, the Swarm is initialized, and the UAVs are dispersed randomly around the Environment.

Figure 4.4 is a High-level Sequence Diagram depicting the initialization process.
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UAV: Entity

- location
- heading
- velocity = 0.5 patches
- detection-time
- plume-reading
- flockmates
- nearest-neighbor
- best-neighbor
- desired-heading
+ vision
+ decontamination-strength

Swarm: Entity

+ population
+ world-edge-threshold
+ max-world-edge-turn
+ coverage-data-decay
+ global-search-policy

ContaminantPlume: Entity

- plume-spread-radius
- plume-spread-patches
+ plume-spread-radius
+ plume-decay-rate
+ plume-decontamination-threshold

Environment: Entity

- patches
- ticks
- plumes
- swarm
+ number-plumes
+ wind-speed
+ wind-heading

1
0..5

1
1

SearchPolicy

+  name: String

- turn-at-most()
+ setup()
+ update()
+ find-best-neighbor(UAV)
+ find-nearest-neighbor(UAV)
+ turn-towards(location)
+ turn-away()

Flock: SearchPolicy

+ minimum-separation
+ max-align-turn
+ max-cohere-turn
+ max-separate-turn

- seperate()
- align()
- cohere()

1

1

Random : SearchPolicy

+ random-search-max-heading-time
+ random-search-max-turn

Symmetric: SearchPolicy

+ symmetric-search-max-turn
+ symmetric-search-region-threshold
+ symmetric-search-min-region-time
+ symmetric-search-max-region-time

UAVRandom: UAV

- random-search-time

UAVFlock: UAV

UAVSymmetric: UAV

- region
- symmetric-search-max-region-reading
- symmetric-search-region-time

Entitiy

+ setup()
+ update()

1
2..100

Figure 4.3: Contaminant Plume Model Conceptual Detailed Class Diagram for the Extended
Plume Model

Environment UAV

setup

Swarm

initialize()

Contaminant 
Plume

setup
initialize()

setup(policy)
setup

initialize()
go

Loop
search(policy)

update(policy)

Figure 4.4: Contaminant Plume Model High-level Sequence Diagram of Initialization
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Figure 4.5 shows four distinct instances of the model. The upper left figure demonstrates

the appearance of the Environment and the Contaminant Plumes (red area) before the Swarm

is initialized. The remaining three figures illustrate the model after 2,000 ticks with the upper

right being random search policy, the lower left being flock search policy, and the bottom right

being symmetric search policy.

Figure 4.5: Contaminant Plume Model Screenshots

Submodels

The policies make use of helper functions which form universal conduct between policies.

Universal conduct enforces restrictions on where UAVs are allowed to operate and how to

handle transgressions on the restrictions. The helper functions are:

- find-flockmates() sets a UAV’s flockmates to a list of other UAVs within this

UAV’s vision.

- inside-of-world-edge-threshold() returns true if a UAV is within the world

edge threshold.

- move-back-in-world-bounds() sets a UAV’s desired-heading to a random point

within the Environment’s center one-half.
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- turn-uav(turn-allowed) adjusts a UAV’s heading towards its desired-heading

by the amount turn-allowed if a UAV’s desired-heading is not its current heading.

Random Search Policy A UAV first sets its random search time to a random integer between

zero and the input argument random search max heading time. After the number of ticks has

elapsed, a UAV sets its desired heading to a random angle between zero and 360 degrees, then

sets a new random search time. Figure 4.6 is a Detailed Sequence Diagram that describes the

random search policy.

UAV

update(random)

random-search-time := ticks + random(random-search-max-heading-time)

Alternative

  

Alternative

[if inside-of world-edge-threshold()]

desired-heading := random(+/- 360)

[else]

turn-uav(desired-heading)

move-back-in-world-bounds()

[if ticks > random-search-time]      

Figure 4.6: Contaminant Plume Model Random Search Policy Detailed Sequence Diagram

Flock Search Policy A UAV first determines its flockmates. If a UAV has no flockmates, then

it advances on its current trajectory as flock search is entirely collaborative. Otherwise, a UAV

continues to determine both its best neighbor and nearest neighbor. If the distance between a

UAV and its nearest neighbor is less than minimum separation, then the UAV uses the BOIDS

Separation rule to veer in an opposite trajectory. If the plume reading of a UAV’s best neighbor

is higher than its own, then it veers towards the average heading of its flockmates and uses the

BOIDS alignment rule to veer towards the average heading of its flockmates. Figure 4.7 is a

Detailed Sequence Diagram that graphically describes the Flock Search policy.
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UAV

Alternative

[if inside of world edge threshold()]

find-flockmates()

[if flockmates]

find-best-neighbor()

find-nearest-neighbor()

separate()

update(flock)

[if distance to nearest-neighbor < minimum-separation]

[else]
Alternative

[if plume-reading < best-neighbor.plume-reading]

  

align()

cohere()

Alternative

  

Alternative

[else]
move-back-in-world-bounds()

Figure 4.7: Contaminant Plume Model Flock Search Policy Detailed Sequence Diagram

Symmetric Search Policy A UAV first determines if it is within its assigned region and

then checks if symmetric search region time has elapsed. If symmetric search region time

has elapsed, it sets a new symmetric-search-region-time and moves to the region of its best

neighbor, but only if the plume reading of its best neighbor is higher than its own. Alternatively,

if symmetric search region time has elapsed, the UAV checks if its random search time has

elapsed. If random search time has elapsed, the UAV sets its desired heading to a random

angle between zero and 360 degrees, then sets a new random search time. All regions drift
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in the direction of wind heading. Figure 4.8 is a Detailed Sequence Diagram describing the

Symmetric Search policy.

UAV

update(symmetric)

Alternative

[if inside-of-world-edge-threshold()]
Alternative

  

[if inside-of-region()]

set-max-region-reading()

Alternative

  

[if ticks > symmetric-search-region-time]

find-flockmates()

find-best-neighbor()

Alternative

[if plume-reading < best-neighbor.plume-reading]

set-region(best-neighbor.region)

Alternative

  

[if ticks > random-search-time]      

turn-uav(desired-heading)

set-random-search-time()

set-desired-heading(random(360))

set-desired-heading(region.center)
[else]

[else]
move-uav-back-in-world-bounds()

move-region-according-to-weather()

set-symmetric-search-region-time()

Figure 4.8: Contaminant Plume Model Symmetric Search Policy Detailed Sequence Diagram

4.2 EMA: Exploratory Modeling & Analysis Workbench

The Exploratory Modeling and Analysis Workbench [29, 27] is a Python package that sup-

ports robust and multi-objective optimization for exploratory modeling under uncertainty. The

workbench accommodates generation of computational experiments for base models written in
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Vensim, Netlogo, and Excel. Experiments are executed sequentially or in parallel with replica-

tions in either a single computer or cluster environment. The workbench treats the base model

as a function of its parametric and structural uncertainties, and parameters are boolean, inte-

ger, real, or categorical. Parametric values stem from sampling methods such as Monte Carlo

sampling, Latin Hypercube sampling, and Full Factorial sampling. Structural uncertainties are

obtained by policy levelers external to the base model and the workbench. Experiment results

are scalar, array, or time-series outcomes which are stored externally. Additionally, the work-

bench incorporates classification and regression trees, PRIM, sensitivity analysis, and feature

scoring for the analysis of experiment results. A detailed specification for the Exploratory

Modeling and Analysis Workbench can be found in [29, 28].

The Strategy Learning System uses a light-weight fork [32] of the Exploratory Model-

ing and Analysis Workbench. While the Exploratory Modeling and Analysis Workbench is

designed for a wide range of applications, EMA Lite is intended to be only a mechanism to

execute experiments in parallel on a cluster [3] 1 and obtaining raw experiment results. The

Strategy Learning System interfaces with EMA Lite and offers a seamless experimental pro-

cedure. The model composer generates structural variants of the base model that are passed

to EMA Lite and samples paramedic uncertainties and executes the model instances. The raw

experimental results are returned to the Strategy Learning System, then rule discovery is per-

formed.

4.3 XCS: Accuracy-based Learning Classifier System

This section outlines two Accuracy-based Learning Classifier Systems, XCS and XCSR. XCS

is the traditional formulation, while XCSR is modified to allow for real-valued inputs.

XCS

The Accuracy-based Learning Classifier System (XCS) [55, 7, 33, 61, 8, 26] is a Michigan-style

classifier which incorporates both reinforcement learning and genetic algorithms to form a set

of rules that describe an environment or dataset. It is an online supervised learning algorithm

1We acknowledge the Auburn University Hopper Cluster for support of this work.
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which can operate on both single-step and Markovian multistep problems with delayed rewards

[55]. The XCS consists of three fundamental components: the environment, the reinforcement

program, and the classification mechanism. This is depicted in Figure 4.9 which is modeled

after one found in [8].

Reinforcement 
Program

Environment

XCS

Figure 4.9: XCS Components

The environment is a surrogate of the scenario we wish to describe. It can resemble problems

such as a simple boolean operation such as XOR, or more complex problem such as the n-

bit Multiplexer, Woods2 [61, 26], or determining aircraft maneuvers [33]. It is a source of

training where the classification mechanism learns actions to maximize its expected delayed

reward ρ. The reinforcement program behaves as the supervised component of XCS which

informs the classification mechanism on the adequacy of its action selection for the current

state σ. The classification mechanism’s fundamental attribute is a set of rules known as the

population of classifiers [P]. The population is a set of condition-action-prediction tuples (if-

then rules). Classifiers are evolved iteratively and represent the collective knowledge of XCS. A

classifier’s predicate (sometimes referred to as its condition) C specifies the σ values to which

it applies. Predicates are discrete strings, C ∈ {0, 1, #}L, where each predicate attribute Ci

can be assigned only a discrete value: zero, one or a wildcard # that matches both zero and

one.

As in all Michigan-style classifiers, the whole population describes the environment (ver-

sus Pittsburgh-style where a single Classifier describes the environment). A classifier’s action α

specifies the proposed response to σ. A classifier’s predicted payoff p is the learned reward for
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applying α given σ: (σ, α) → p. In addition to C, α and p, classifiers contain other attributes

that describe their proficiency. An exhaustive list of classifier attributes can be found in [8].

Learning Cycle For a given time step t, XCS perceives the environment through σt. XCS
then forms the match set, [M]t, using σt:

[M]t = {cl : cl ∈ [P]t, matches(cl, σt)}, (4.3)

where:
matches(cl, σt) = cl.Ci == σt,i or #, ∀ i ∈ [1, ..., L]. (4.4)

If the number of classifiers in [M]t is less than a threshold or no classifiers in [P] match σt,

then covering occurs. Covering is the process to generate a new classifier that does match and

assign it a random action. Next, action selection is done by computing the expected payoff for

each action present in [M]t and selecting one through a policy. The selected action is used to

form the action set [A]t, which is subset of [M]t where classifier actions are the chosen action:

[A]t = {cl : cl ∈ [M]t, cl.α = chosen action}. (4.5)

The chosen action is applied in the environment where σt+1 is observed. The reinforcement

program provides feedback on the effectiveness of the action through ρt and returns a flag that

signals if the episode has terminated. The classification mechanism then updates the classifier’s

in [A]t using ρt. ρt updates the attributes of classifiers in [A]t to enforce favorable actions and

punishes unfavorable ones. Rule discovery is performed by selecting two parents to gener-

ate an offspring through a genetic algorithm. The offspring is then added to [P]. Lastly, t is

incremented and the process is repeated if the episode has not terminated.

XCS Deficiency XCS is limited in the problems it is applicable to due to the discrete space of

C. The limitation is related to how classifiers evolved in the genetic algorithm and the immense

state-space of continuous values in real-world problems [62]. This adversary causes XCS to

apply only to a definitive number of environments because encoding many environments as

binary strings is intractable. [21, 20, 19, 62, 54, 11] propose several adaptations of XCS for

real-valued inputs (XCSR) where classifier predicates contain real values: Ci ∈ R. For this
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framework, we adopt ideas from varying XCSR concepts which promote building an optimal

population for real-valued environments.

4.3.1 XCSR: XCS for Real-valued Inputs

Recent research into derivatives of XCS allow for real-valued scenarios [21, 20, 19, 62, 54,

11]. We adopt several ideas from proven methods to construct XCSR and contrast them with

methods found in Wilson’s XCS. For the XCSR implementation [49] in the Strategy Learning

System framework, we combine the environment and the reinforcement program to increase

cohesion. The XCSR learning cycle is shown in Figure 4.10, and a Detailed Class Diagram for

XCSR can be found in Figure B.1.

Environment

Covering

Rule Discovery

Update

[P]

cl

[M]

Matching

[A]

Action Set

Action 
Prediction

Figure 4.10: XCSR Learning Cycle

Classifier Predicates Classifier predicates are expanded to accept values in the range [0, 1]. A

classifier predicate is a tuple whereCi[0] andCi[1] are the lower and upper bounds, respectively.

For example, a predicate of length 6 contains 12 learned parameters. We update the matching
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procedure as follows:

matches
′
(cl, σt) = Ci[0] ≤ σt,i ≤ Ci[1], ∀ i ∈ [1, ...L]. (4.6)

Predicate attributes initially set to (0, 1) encourage generalization as this matches any value of

σt and by design replaces the wildcard # found in XCS. Classifier predicates are mutated with

a genetic operation to modify the range of accepted values.

Deletion Procedure In XCS, deletion is performed when the size of [P] has exceeded a

threshold and is roulette-wheel selection. In XCSR, we substitute this with an epsilon-greedy

policy using a beta distribution. Here, classifiers are sorted from worst-to-best accuracy. Clas-

sifiers with low accuracy have a higher chance of deletion while classifiers with high accuracy

have a very low chance of deletion.

Offspring Selection Procedure In XCS, offspring selection is achieved using roulette-wheel

selection. In XCSR, we substitute an epsilon-greedy policy using a beta distribution as we did

for the deletion procedure. Here, we sort classifiers from best-to-worst accuracy so those with

high accuracy have a higher chance of being selected to breed an offspring.

4.4 Strategy Learning System Implementation

The Strategy Learning System is implemented [48] in Python and acts as a mediator between

the components in the architecture. Figure 4.11 is an adaptation to Figure 3.1 that substitutes

(1) the base model for the Contaminant Plume model, (2) the exploration component for the

EMA Lite, and (3) the rule discovery component for XCSR. Figure 4.12 is a High-level Class

Diagram of the Strategy Learning System implementation.

The Contaminant Plume model feature tree is encoded as Strategy Learning System pa-

rameters. This representation of the feature tree is shown in Figure 4.13. Here, features un-

der control of the decision-maker are shown in green while features not in the control of the

decision-maker are shown in red. The Contaminant Plume model performance metrics are

shown in blue.
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Model

Learned Rules

Model 
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XCSR

EMA Lite
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Contaminant Plume Model

ScalaNetLogo

Model Ensemble
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Figure 4.11: Strategy Learning System Implementation Information Flow

XCSR

User Specified

base model

feature tree

resolution 
model(s)

S.L.S.

ModelMediator

Context

model_synthesizer

util

explain

learn

FeatureModel
EMA

Figure 4.12: Strategy Learning System High-level Class Diagram

In the implementation realization of the Strategy Learning System, the resolution model

contains a list of features parsed by the model composer. EMA Lite samples parametric un-

certainties and executes the model insurances. The experiment results from EMA Lite are

processed by the Strategy Learning System. Controllable and uncontrollable feature argument
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├── feature_model [FeatureType.model, Constraint.mandatory]
│ ├── environment [FeatureType.environmental, Constraint.mandatory]
│ │ ├── number-plumes=1 [FeatureType.environmental, Constraint.mandatory]
│ │ ├── territory [FeatureType.model, Constraint.optional]
│ │ │ ├── world-edge-threshold=0 [FeatureType.model, Constraint.optional]
│ │ │ ├── max-world-edge-turn=20 [FeatureType.model, Constraint.optional]
│ │ ├── wind [FeatureType.environmental, Constraint.optional]
│ │ │ ├── wind-speed=0 [FeatureType.environmental, Constraint.mandatory]
│ │ │ ├── wind-heading=0 [FeatureType.environmental, Constraint.mandatory]
│ │ ├── plume-characteristics [FeatureType.environmental, Constraint.mandatory]
│ │ │ ├── plume-spread-radius=0.25 [FeatureType.environmental, Constraint.mandatory]
│ │ │ ├── plume-decay-rate=0 [FeatureType.environmental, Constraint.optional]
│ │ │ ├── plume-decontamination-threshold=0 [FeatureType.environmental, Constraint.optional]
│ ├── swarm [FeatureType.model, Constraint.mandatory]
│ │ ├── uav-capacity [FeatureType.environmental, Constraint.mandatory]
│ │ │ ├── sensor-reading [FeatureType.environmental, Constraint.mandatory]
│ │ │ │ ├── coverage-data-decay=60 [FeatureType.model, Constraint.optional]
│ │ │ │ ├── coverage [FeatureType.outcome, Constraint.optional]
│ │ │ │ │ ├── coverage-percentage [FeatureType.outcome, Constraint.optional]
│ │ │ │ │ ├── coverage-std [FeatureType.outcome, Constraint.optional]
│ │ │ │ │ ├── coverage-mean [FeatureType.outcome, Constraint.optional]
│ │ │ ├── UAV-vision=48 [FeatureType.environmental, Constraint.optional]
│ │ │ ├── UAV-decontamination-strength=0 [FeatureType.environmental, Constraint.optional]
│ │ ├── population=12 [FeatureType.model, Constraint.mandatory]
│ │ ├── global-search-policy="flock-search" [FeatureType.model, Constraint.mandatory]
│ │ │ ├── "flock-search" [FeatureType.model, Constraint.xor]
│ │ │ │ ├── minimum-separation=0.75 [FeatureType.model, Constraint.mandatory]
│ │ │ │ ├── max-align-turn=0.0 [FeatureType.model, Constraint.mandatory]
│ │ │ │ ├── max-cohere-turn=1.9 [FeatureType.model, Constraint.mandatory]
│ │ │ │ ├── max-separate-turn=4.75 [FeatureType.model, Constraint.mandatory]
│ │ │ ├── "random-search" [FeatureType.model, Constraint.xor]
│ │ │ │ ├── random-search-max-heading-time=26 [FeatureType.model, Constraint.mandatory]
│ │ │ │ ├── random-search-max-turn=1.45 [FeatureType.model, Constraint.mandatory]
│ │ │ ├── "symmetric-search" [FeatureType.model, Constraint.xor]
│ │ │ │ ├── symmetric-search-max-turn=4.0 [FeatureType.model, Constraint.mandatory]
│ │ │ │ ├── symmetric-search-region-threshold=-0.5 [FeatureType.model, Constraint.mandatory]
│ │ │ │ ├── symmetric-search-min-region-time=50 [FeatureType.model, Constraint.mandatory]
│ │ │ │ ├── symmetric-search-max-region-time=1800 [FeatureType.model, Constraint.mandatory]

Figure 4.13: Contaminant Plume Model Feature Tree Implementation Realization

values are binned with fuzzy logic to reduce state space complexity. Additionally, in the Con-

taminant Plume model, all outcome metrics are time series data. A time series outcome f is

transformed to a scalar with the Area Under the Curve Trapezoidal Rule:

R(σt, αt)← AUCf (a, b) =
b∑

t=a+1

(ti − ti−1)×
f(ti) + f(ti−1)

2
, (4.7)

where a and b are the lower and upper bounds of the domain of f , respectively. Outcomes are

normalized using min-max normalization. Experiment results are then tuples of uncontrollable

uncertainties, controllable uncertainties, and R(σt, αt).

To interface XCSR with the Strategy Learning System framework, we implement a generic

environment that feeds in experiment results and assesses action selection. The generic envi-

ronment further processes experiment results and splits them into states and actions based on
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which features are under the control of the decision-maker and which are not. XCSR ρt+1 is

determined by:

ρt+1 ← R(σt, αt)−
[
ζR(σt, αt)

||αt − α̂t||2
maxα∈A ||α||2

]
, (4.8)

where ζ is a discount factor, and A is the set of actions in experimental results. This equation

converges to 1 when the distance between αt and α̂t is minimized and the observed reward is

1. It converges to 0 when the distance between the αt and α̂t is large or the observed reward

is low. Multiplying the distance by R(σt, αt) proportionally reduces ρt depending upon the

desirability of αt.
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Chapter 5

Strategy Learning System Validation & Evaluation

In this chapter, we use the Strategy Learning System implementation from Chapter 4 to perform

experiments in two category types. The first type of experiments are validatory and validate the

theoretical tractability of the Strategy Learning System and the correctness of its implementa-

tion. The second type of experiments are exploratory and provide insight into the Contaminant

Plume model’s mechanics. Each experiment begins with a hypothesis that parallels a “what if”

scenario. The hypothesis explains which base model features are included in the experiment’s

resolution model. Hyperparameters for EMA Lite and XCSR are determined by the complexity

of the resolution model. More complex resolution models require a larger portion of the en-

semble to be explored, and subsequently the XCSR requires more iterations to identify accurate

rules.

The experiment hyperparameters for EMA Lite are:

- The number of model instances to execute from the ensemble.

- The number of replications for each model instance.

- The run length of each instance in ticks.

The experiment hyperparameters for XCSR are:

- Episode length determines how many instances we present to XCSR.

- The number of bins determines the granularity of feature arguments. For example, if bins

is set to 3, then feature arguments are converted to low, medium, or high depending on

their value.
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- The maximum number of classifiers in the population [8].

- ζ is the discount factor for equation 4.8.

Additionally, we predict how the model will behave and what the expected insight the

experiment will yield. Once the experiment is performed, we discuss and supply the produced

explanatory heat maps from both EMA Lite exploration results and XCSR learned rules. For

validatory experiments, we supply additional heat maps generated by a Multi-Layer Perceptron

clustering algorithm to further corroborate the observation rule sets. The Multi-Layer Percep-

tron is trained on the exploratory results then extrapolates outcome into the entire experiment

space. A Hierarchical Agglomerative clustering algorithm then builds rules from the extrapo-

lated data.

5.1 Validation Experiments

5.1.1 Validation Experiment 1

Validation Experiment 1 was designed as simply as possible to easily understand both the

exploratory results and the learned rules and to confirm that the Strategy Learning System

behaves as anticipated. Due to the non-complexity of this experiment, it was feasible to do an

exhaustive search of the experiment space; however, the aim of this experiment was to merely

test the capabilities of the Strategy Learning System.

Experiment Hypothesis How is coverage percentage affected when we vary the Swarm pop-

ulation and the number of contaminant plumes?

From our hypothesis, we construct the following resolution model.

Validation Experiment 1 Resolution Model

include feature(population)

include feature(number-plumes)

include outcome(coverage-percentage)

Table 5.1 shows the hyperparameter values for the experiment. The number of model

instances is low due to the small number of possible feature combinations. Through preliminary
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Table 5.1: Validation Experiment 1 Parameters
EMA Lite XCSR

Model Instances Replications Ticks Episodes Bins Classifiers ζ
30 30 1,000 20,000 5 50 0.5

experimentation with the base model, we determined that 1,000 ticks was significant enough to

assess Swarm performance. Setting bins to five allows us a more granular understanding of the

experiment. The episode length, number of classifiers, and ζ were chosen from prior research

results [26] and a lightweight grid-search.

Experiment Predictions Equations 4.2, 4.7, and 4.8 will reward high populations since they

present the opportunity for the Swarm to cover a larger portion of the model environment. Due

to this characteristic, we expect that outcome increases proportionally to population.

Observations & Discussion

population

nu
m

be
r-
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es

Figure 5.1: Validation Experiment 1 EMA Lite Exploration Heat Map
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Figure 5.1 visualizes the EMA Lite exploratory results for Validation Experiment 1. The

column data corresponds to values for population; they increase from left to right. Similarly, the

row data corresponds to the number of contaminant plumes, and they increase from the bottom

to the top. In Figure 5.1, and all subsequent heat maps, darker colored cells correspond to

less desirable outcomes, while lighter colored cells correspond to more desirable outcomes. In

Figure 5.1, cells are gray if model instances that fall in that region were not explicitly explored.

In Figure 5.1, we see that higher populations result in higher outcomes– as predicted. The hot

spot is located on the right where populations are high and the number of contaminant plumes

is relatively low. The dark colors in the lower left region signify that outcome is low because

both the number of contaminant plumes and population is low.

Figure 5.2 is a visualization of the learned rules produced by training XCSR on the ex-

ploratory results for Validation Experiment 1. The rules are visually similar to the results in

Figure 5.1. Figure 5.2 implies that XCSR captured patterns in the exploratory results and gen-

eralized them into the portion of the ensemble not explicitly explored. This generalization can

be seen in the top row of Figure 5.2 where the desirability of outcome coincides with the row

below it and parallels our prediction.

Notably, Figure 5.2 demonstrates generalization errors. For example, in the lower right re-

gion of Figure 5.1, where population is 0 and 1 and number of contaminant plumes is 1, we see

that outcome is undesirable. In Figure 5.2, we see that XCSR incorrectly deemed this area sig-

nificantly more desirable than the adjacent cells. This is due to the formulation of equation 4.8

which solely evaluates the action proposed by XCSR. In other words, the closer the proposed

action is to the expected action, the higher the reward. This encourages generalization over

uncontrollable features while punishing generalization over controllable features. We believe

this improperly evaluates the XCSR and yields contradictory results. Equation 4.8 is discussed

in Chapter 6. There, we highlight its limitations and suggest possible improvements.

The level of outcome throughout Figure 5.2 is lower than outcome in Figure 5.1. This is

because multiple rules overlap. The level of outcome assigned to a cell in Figure 5.2 is based

on an accuracy-weighted average of the expected outcome of all the rules which apply to the

region. Thus, if there are two rules which apply to the same experiment space region, then both
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Figure 5.2: Validation Experiment 1 Learned Rules Heat Map

their outcomes are used to determine cell color. When rules contradict each other, it hampers

the decision-support artifact. A solution to this is discussed in Chapter 6. Alternatively, a

decision-maker can analyze the relative colors within the heat map to determine which regions

are desirable.

Figure 5.3 visualizes the rules produced by the Multi-Layer Perceptron clustering algo-

rithm. Figure 5.3 compliments both the exploratory results and the XCSR learned rules, and

we see the appearance of the same generalized patterns. Figure 5.3 visualizes gradual changes

in outcome desirability and reveals the presence of the more precise rules produced by the

Multi-Layer Perceptron Clustering algorithm– especially when compared to the rules produced

by XCSR. Precise rules lack generalization and may be inapt for decision-support. Instead, we

use Figure 5.3 visualizations as a validatory artifact to confirm the XCSR rules accurately de-

scribe the experiment space. We conclude from Figures 5.1, 5.2, and 5.3 that the Strategy

Learning System correctly captured model behavior of select model instances and generalizes

their desirability over the experiment space, as anticipated.
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Figure 5.3: Validation Experiment 1 Learned MLP HAC Heat Map

5.1.2 Validation Experiment 2

Validation Experiment 2 was designed to be slightly more complex than Validation Experiment

1 but maintain simplicity in hypothesis so observations can be easily understood and compared

to our predictions.

Experiment Hypothesis How is coverage percentage affected when we vary population, cov-

erage data decay, the number of contaminant plumes, and wind speed?

From our hypothesis, we construct the following resolution model:

Validation Experiment 2 Resolution Model

include feature(population)

include feature(coverage-data-decay)

include feature(number-plumes)

include feature(wind-speed)

include outcome(coverage-percentage)
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Table 5.2: Validation Experiment 2 Parameters
EMA Lite XCSR

Model Instances Replications Ticks Episodes Bins Classifiers ζ
62 30 1,000 20,000 3 50 0.25

Table 5.2 is similar to Table X1, however, we double the number of model instances ex-

plored, decrease the number of bins, and decrease ζ for a slightly larger search space.

Experiment Predictions For Validation Experiment 2, we maintain and expand on the pre-

dictions from Validation Experiment 1: outcome increases proportionally to population. Ad-

ditionally, we expect that outcomes are higher when wind speed is low and that coverage data

decay has a marginal impact on coverage percentage.

Observations & Discussion
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Figure 5.4: Validation Experiment 2 EMA Lite Exploration Heat Map

Figure 5.4 visualizes the EMA Lite exploratory results for Validation Experiment 2. In

Figure 5.4, the columns correspond to values for population and coverage data decay. The

50



column values increase from left to right. Similarly, the rows correspond to the number of

contaminant plumes and wind speed, and the values increase from the bottom to the top. Anal-

ysis of the columns in Figure 5.4 indicates that higher populations result in higher outcomes.

Additionally, we see that the desirability of outcome is impacted more by population than by

coverage data decay. Analysis of the rows indicates that when population is low, outcome

is impacted by wind speed more than by the number of contaminant plumes, and when the

population is high, the opposite is true.

In contrast to Figure X1 from Validation Experiment 1, Figure 5.4 shows how larger num-

bers of contaminant plumes lead to higher outcome. This is due to sampling variation, coupled

with the stochasticity of the Contaminant Plume model, and the precision lost by binning.

Higher outcomes align more with the formulation [equation 4.2] because a larger population

yields the opportunity for more substantial mapping. Additionally, we see that the hot spot in

Figure 5.4 is located in the upper right region where population, coverage data decay, wind

speed, and number plumes are all notably high.
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Figure 5.5: Validation Experiment 2 Learned Rules Heat Map

51



Figure 5.5 is a visualization of the learned rules produced by training XCSR on the ex-

ploratory results for Validation Experiment 1. The rules are visually similar to the results in

Figure 5.4. The visualization implies that XCSR captured patterns in the exploratory results

and generalized them into the portion of the ensemble not explicitly explored. In Figure 5.5, we

again see the slight generalization error caused by equation 4.8. And, the amount of outcome

in Figure 5.5 is lower than the amount of outcome in Figure 5.4 for the same reasons discussed

in Validation Experiment 1.

The hot spot in Figure 5.5 is located in the upper right region where feature values are

high. Analysis of the columns in Figure 5.5 reveals that the learned rules capture that change in

population more than coverage data decay. The rows in Similar to Figure 5.4, Figure 5.5 shows

that the learned rules capture that for low population, the wind speed highly impacts cover-

age percentage and for large populations the number of contaminant plumes highly impacts

coverage percentage.

population
coverage-data-decay

nu
m

be
r-

pl
um

es
w

in
d-

sp
ee

d

Figure 5.6: Validation Experiment 2 Learned MLP HAC Heat Map
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Figure 5.6 visualizes the rules produced by the Multi-Layer Perceptron clustering algo-

rithm for Validation Experiment 2. Figure 5.6 compliments both Figure 5.4 and Figure 5.5,

and we see the appearance of the same generalized patterns. In Figure 5.6 columns, the rules

produced by the Multi-Layer Perceptron clustering algorithm highlight that population is the

highest impact feature. The rules underestimate the impact of wind speed and number of con-

taminant plumes. Nonetheless, as a validatory artifact Figure 5.6 aligns with the observed

results in Figure 5.4 and Figure 5.5. This implies that the Strategy Learning System operates

as anticipated.

5.2 Exploratory Experiments

5.2.1 Global Search Policy Experiment

The structural variation in the Contaminant Plume model is described via the three C2 policies.

We constructed our exploratory experiments around the Swarm’s performance and robustness

given these three policies.

Experiment Hypothesis How is coverage percentage affected by both the number of plumes

and wind speed when the UAVs follow each of the three C2 policies?

From our hypothesis, we construct the following resolution model. Here

include children=False informs the Strategy Learning System that we want to explic-

itly experiment with only the three C2 policies. We remove the subfeatures from the explainable

models.
Global Search Policy Experiment Resolution Model

include feature(global-search-policy, include children=False)

include feature(population)

include feature(number-plumes)

include feature(UAV-vision)

include outcome(coverage-percentage)
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Table 5.3: Global Search Policy Experiment Parameters
EMA Lite XCSR

Model Instances Replications Ticks Episodes Bins Classifiers ζ
200 30 1,000 20,000 3 50 0.5

Experiment Predictions For the Global Search Policy Experiment, we expect to see that

for all C2 policies, percent coverage is high when population is high. Furthermore, due to

the abundant stochasticity in the Random Search policy, we expect coverage percentage to be

unrelated to the wind speed and number of contaminant plumes, and be inferior to Flock Search

and Symmetric Search.

Observations & Discussion
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Figure 5.7: Global Search Policy Experiment EMA Lite Exploration Heat Map
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Figure 5.7 visualizes the EMA Lite exploratory results for the Global Search Policy Ex-

periment. In Figure 5.7, the columns correspond to population values and the selected global

search policy. The rows correspond to values for the number of contaminant plumes and wind

speed. As we analyze Figure 5.7 columns, we see that when population is low coverage per-

centage is low, regardless of C2 policy.

For the region of Figure 5.7 that describes flock search, we see that outcome is highest

when population is high and the number of contaminant plumes is low. The desirability of

the outcomes decreases as the number of contaminant plumes increases. For the region of

Figure 5.7 that describes random search, we see that outcome is suboptimal regardless of the

parametric values for uncontrollable features. Outcome increases with population, yet the only

clear advantage to random search is that its performance is invariant. In this sense, random

search is robust, but does not satisfactorily map the contaminant plumes. For the region of

Figure 5.7 that describes symmetric search, we see that outcome is most desirable when both

population and the number of contaminant plumes is high. Comparing all three C2 policies, we

see that outcome is most consistent when the global search policy is symmetric search.

Figure 5.8 is a visualization of the learned rules produced by training XCSR on the ex-

ploratory results from the Global Search Policy Exploratory Experiment. In Figure 5.8, gray

cells indicate that no rules address that region.

The region of Figure 5.8 that describes flock search reveals the policy results as a more de-

sirable outcome when the number of contaminant plumes is low, regardless of the wind speed.

A decision-maker can then conclude that flock search is robust with wind speed, but not with the

number of contaminant plumes, and that it is most applicable when the number of contaminant

plumes is understood to be low. The region of Figure 5.8 that describes random search shows

that outcome is invariant to the parametric values for uncontrollable features. Decision-makers

may deploy random search if they desire to achieve a minimum desirable outcome and care

little for mapping the contaminant plumes optimally. The region of Figure 5.8 that describes

symmetric search shows that outcome increases as the number of contaminant plumes increase.

This makes sense because symmetric search disperses the Swarm throughout the environment,

and more contaminant plumes present the opportunity to map a larger region. When the global
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Figure 5.8: Global Search Policy Experiment Learned Rules Heat Map

search policy is symmetric search, the desirability of outcomes is correlated to the number of

contaminant plumes and population size. Contrary to both flock search and random search,

outcome desirability increases when the parametric values of uncontrollable features are more

extreme. Therefore, symmetric search shows the highest amount of robustness when compared

to the other C2 policies.

When we compare Figure 5.7 and Figure 5.8, a generalization error seems to appear. How-

ever, this is the XCSR pattern capture of the exploratory results. The patterns overpower outlier

noise. A decision-maker can conclude that the Global Search Policy Exploratory Experiment

provides insight into which C2 policy is the most robust against both wind speed and the num-

ber of contaminant plumes. For example, flock search and symmetric search demonstrate a
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higher level of capability than random search. Flock search performs best when the number of

contaminant plumes is low, while symmetric search performs best when the number of contam-

inant plumes is high. Now we can construct a subsequent experiment to analyze the robustness

of symmetric search.

5.2.2 Symmetric Search Policy Experiment

From the insight of the Global Search Policy Experiment, we construct a subsequent experi-

ment into the robustness of symmetric search.

Experiment Hypothesis Hypothesis: How is coverage percentage affected by the number of

contaminant plumes and UAV vision when the Swarm adheres to the symmetric search policy?

From this hypothesis, we construct the following resolution model.

Symmetric Search Policy Experiment Resolution Model

include feature(symmetric-search)

include feature(number-plumes)

include feature(UAV-vision)

include outcome(coverage-percentage)

Table 5.4: Symmetric Search Policy Experiment Parameters
EMA Lite XCSR

Model Instances Replications Ticks Episodes Bins Classifiers ζ
150 30 1,000 20,000 3 50 0.5

Experiment Predictions For the Symmetric Search Policy Experiment, we expect that cov-

erage percentage will be the most desirable when the number of contaminant plumes is high,

as observed in the Global Search Policy Experiment. Additionally, we expect that higher para-

metric values for UAV vision will lead to more desirable outcomes because vision controls the

distance that a UAV can perceive its environment.
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Figure 5.9: Symmetric Search Policy Experiment Exploration Heat Map

Observations & Discussion

Figure 5.9 visualizes the EMA Lite exploratory results for the Symmetric Search Policy Ex-

periment. In Figure 5.9, the columns correspond to the parametric values for symmetric search

which were discussed in Section 4.1. They are: symmetric search max turn, symmetric search

region threshold, symmetric search max region time, and symmetric search max region time.

Additionally, the rows in Figure 5.9 correspond to the number of contaminant plumes and UAV

vision, and increase from the bottom up. An analysis of Figure 5.9 reveals two hot spots. The

first is located in the upper left region, and the second is located in the center left region where

the number of contaminant plumes and UAV vision is medium to high. More desirable out-

comes are achieved when the parametric values for symmetric search are low. The analysis of
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Figure 5.9 reveals that this is credited mostly to symmetric search min region time. Search min

region time dictates how long a UAV must stay in its region before considering a move to a

more desirable region. Symmetric search min region time reduces the desirability of outcomes

when the UAV is required to map a region where there are no contaminant plumes. The mission

is to avoid wasting Swarm resources.
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Figure 5.10: Symmetric Search Policy Experiment Learned Rules Heat Map

Figure 5.10 is a visualization of the learned rules produced by training XCSR on the

exploratory results from the Symmetric Search Policy Experiment. As in Figure 5.8, the gray

cells in Figure 5.10 indicate that no rules address that region. An analysis of Figure 5.10

reveals the same hot spots from Figure 5.9, and that higher parametric values for symmetric

search decreases the desirability of outcomes. The hot spot in the upper left region shows
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that the desirability of outcomes is relatively stable. On the other hand, the hot spot in the

middle left region shows higher levels of outcome desirability than the hot spot in the upper left

region. However, that region is slightly more volatile to symmetric search parametric values.

From Figure 5.9 and Figure 5.10 observations, a decision-maker can conclude that a desirable

outcome is achieved when the parametric values for symmetric search are low. The highest

level of desirability is achieved when the number of contaminant plumes and UAV vision is

medium while containing volatility. We conclude that symmetric search is most robust when

the number of contaminant plumes and UAV vision is high.
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Chapter 6

Conclusions

6.1 Summary

The genesis of this work is the necessity to address structural uncertainties when modeling

real-world systems for decision-making. Structural uncertainties arise when decision-makers

do not entirely understand the relationship between variables and, in real-world systems, this

results in many plausible descriptions of system mechanics. Exploratory modeling method-

ology is the solution to address uncertainty. In an exploratory modeling exercise, a decision-

maker iteratively explores hypotheses about the real-world system to understand better how

the system behaves. Nevertheless, contemporary exploratory modeling tools cannot evaluate

alternative mechanical structures rapidly. Such tools excel with parametric uncertainties but

require a modeler to implement alternative structures manually because they lack a mechanism

to vary model structure. Notably, exploratory modeling produces large data due to multiple

model instance execution, and therefore may obscure fundamental system mechanics from the

decision-maker. This work presents a candidate solution to address both of these exploratory

modeling voids and improves the decision-support exercise.

6.2 Accomplishments

The Strategy Learning System expands exploratory modeling to incorporate feature-driven

variation and machine learning. Feature-driven variation incorporates a systematic approach to

generate alternative model structures from a single base model, and the base model describes
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the behavior of all features in the real-world target system. The features describe either com-

petitive or complementary behaviors. Feature tree mapping delineates a hierarchy of behaviors.

The tree allows a single model to represent alternative hypotheses about a target system. Af-

ter mapping, the feature tree becomes a conceptual representation of the target system, and

its features are symbolic aggressions of various levels of delivered functionality. The feature

tree describes all plausible hypotheses of the target system. By parsing the base model and

walking the feature tree, a model composer can generate scenarios according to a hypothe-

sis. Exploration of each generated scenario is evaluated in terms of its outcome desirability

to understand how the ensemble behaves. The scenario structures and their desirability feed

into a rule-discovery machine learning algorithm that learns patterns and generates a set of

rules that describe how the target system behaves under the hypothesis. The rule set can de-

scribe non-convex relationships and competitive or complementary strategies a decision-maker

should follow to reach a desirable outcome. The rule set generates heat map visual aids that

are easily interpretable. The Strategy Learning System improves the exploratory modeling

decision-support because it (1) allows for the rapid development of new scenarios, and (2) ac-

celerates the question-answer process by employing machine learning to extrapolate observed

ensemble behaviors in the larger unexplored ensemble. Both of these mechanisms allow for a

more robust and rapid decision-support exercise.

In this work, we demonstrated the advantages of the Strategy Learning System through the

Contaminant Plume model case study. The Contaminant Plume model describes a hypothetical

scenario where a Swarm of UAVs are tasked with mapping and decontaminating contaminant

plumes. The model contains various parametric uncertainties, and its structural uncertainty lies

in the C2 policy of the Swarm. The case study consists of two validatory experiments and two

exploratory experiments. The validatory experiments show that the Strategy Learning System

functions as designed, while the exploratory experiments exhibit enhanced insight into the me-

chanics of the model. In the Global Search Policy Experiment, we explored the three alternative

Swarm C2 policies. The goal was to discover which policy was robust in the desirable rapid

mapping of the contaminant plumes. The experiment shows that under some conditions, Flock
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Search performed well but that Symmetric Search was the most robust and, therefore, the most

reliable policy.

6.3 Limitations

The known limitations of the Strategy Learning System implementation are: (1) an inadequate

reward function for the XCSR, and (2) the constraints presented by NetLogo. Equation 4.8

yields the reward function for the XCSR. For convenience, we repeat it here:

ρt+1 ← R(σt, αt)−
[
ζR(σt, αt)

||αt − α̂t||2
maxα∈A ||α||2

]
.

As described in section 4.4, the reward function converges to the observed reward when the

distance is minimized between αt and α̂t. Here, α and α̂ are the expected and proposed ac-

tions, respectively, where actions are the controllable uncertainties. An issue arises when the

rule set condition that α̂t is associated with differs substantially from σt. The effect is that

the function rewards generalizations across the uncontrollable uncertainties while it punishes

generalizations across the controllable uncertainties. This result is visible in Figure 5.8 and

Figure 5.9. Note that the rules span across the vertical axis and not the horizontal axis. We

believe a possible solution is to modify the information the XCSR presents to the generic envi-

ronment. The remedial information should include the uncontrollable uncertainties with which

α̂t is associated. Then, the improved reward function looks at the area in which the XCSR

rule describes and calculates a reward based on observations in that region. The reward allows

ρt+1 to be computed based on the observed reward from both controllable and uncontrollable

uncertainties.

Another limitation of the Strategy Learning System is the NetLogo implementation of

the Contaminant Plume Model. NetLogo lacks inheritance, aggregation, and decorator pat-

terns. When Scala functions are implemented as aggregations, limitations are slightly alle-

viated; however, we experience little flexibility with this. To meet the needs of the Strategy

Learning System, the Contaminant Plume model implements with alternative logic flows. The
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alternative logic flows meet the same objectives, and the implementation is observed to be less

malleable and less tightly coupled.

6.4 Future Work

Adaptability The Strategy Learning System is compatible with NetLogo models. A decision-

maker can use the Strategy Learning System as-is with their model, as long as their implemen-

tation describes features and specifies the feature tree. Moreover, by modifying the model

synthesizer, a decision-maker can use the Strategy Learning System with models written in

languages other than NetLogo.

Technology Development A data percolation study provides analysis into how much ex-

ploratory data is required for the rule discovery algorithm to produce accurate rule sets that

describe the ensemble. The study discovers the minimum number of explorations required, and

therefore can further accelerate the decision-support exercise. Furthermore, the use of addi-

tional machine learning algorithms improves the quality of insight. In this work, we demon-

strated the use of a Learning Classifier System and its capacity to describe complementary and

competitive patterns. With the employment of decision trees or a supervised clustering algo-

rithm that is flexible with the number of clusters, a single instance with which it is associated

an equivalent outcome is learned. Both of these algorithms easily explain predictions. With

other machine learning algorithms consideration it is possible to explain their predictions to

decision-makers who may be unfamiliar with their mathematical basis.
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Table A.1: Contaminant Plume Model Inputs
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Figure B.1: XCSR Detailed Class Diagram
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