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Abstract

We develop a long-time, large-domain moving window atomistic framework using Molec-

ular Dynamics (MD) to model shock wave propagation through a one-dimensional system. We

implement ideas of control volume on a MD framework where a moving window follows a

propagating shock. This circumvents issues such as boundary reflections and transient effects

typically observed in conventional MD shock simulations. We model shock wave propagation

through a one-dimensional chain of copper atoms using the Lennard-Jones, modified Morse,

and Embedded Atom Model (EAM) interatomic potentials. The domain is divided into purely

atomistic “window” atoms flanked by boundary, or continuum, atoms which incorporate ei-

ther a Nose-Hoover or Langevin thermostat. The propagating shock wave is contained within

the window region, while continuum shock conditions are imposed on the boundary atoms.

The moving window effect is achieved by adding/removing atoms to/from the window and

boundary regions. We perform verification studies to ensure proper implementation of the ther-

mostats, potential functions, and moving window respectively. We then track the propagating

shock and compare the actual shock velocity and average particle velocity to their correspond-

ing input values. From these comparisons, we make corrections to the linear shock Hugoniot

relation for the developed one-dimensional framework. Finally, we perform one-dimensional

moving window simulations of a propagating stable-structured shock up to a few nanoseconds.
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Chapter 1

Introduction

The propagation of shock waves in materials is an important scientific phenomenon that has

been studied extensively for many decades; see, for example, [1, 2] and the references therein.

A shock is defined as a moving wave front or disturbance which suffers discontinuities in

stress, strain, particle velocity, and temperature across the wave boundary. These four parame-

ters along with the shock wave velocity constitute the five primary values necessary to describe

the motion of a shock wave through a material. These parameters can be obtained through

the jump conditions derived from the equations of conservation of mass and momentum, a

thermodynamic relationship derived from the shock Hugoniot/release isentrope, and a consti-

tutive relation, referred to here as an Equation of State (EOS). Typically shock waves occur in

a material under high strain rate loading conditions such as high speed impact.

Shock waves, by their very nature, are a three-dimensional, macro-scale occurrence. Be-

cause of this, much of the research conducted on shock compression/propagation in solids has

focused on the macroscopic level. Refer to [3, 4, 5, 6, 7, 8] for reviews of high-stress shock

compression in solids as well as experimental approaches to the problem of calculating the

stress-compression states behind these shocks. However, the shock response of a material at

any length scale is inextricably linked to its response at lower length scales. At the macroscopic

scale, shock waves can lead to damage, plastic deformation, and fracture of the material. At the

micro- and meso-scale, shock waves can interact with the microstructure resulting in complex

behavior such as scattering, grain rotations, pore collapse, phase transformations, dislocation

and void generation, and grain crushing [9, 10, 11].
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Because of this connection between the different length scales, there has been growing in-

terest in the past several decades in modeling shock propagation at the microscopic scale using

Molecular Dynamics (MD) techniques. One of the first works to do this was [12]. In this paper,

Paskin and Dienes simulated a shock wave moving through a three-dimensional Lennard-Jones

solid using MD techniques. They found that the values for stress and strain calculated from

MD were in agreement with the values derived from the Hugoniot relations. Additionally, they

saw a large temperature increase behind the shock wave which they attributed to kinetic energy

transfer by direct collisions with atoms at the shock wave front. This work established the value

of using MD to model shock waves in high-stress regimes.

Paskin and Dienes then produced a series of papers [13, 14, 15] expanding on their newly-

developed MD framework. Specifically, [15] showed that the average shock temperature de-

rived from the Hugoniot conservation relations and the Mie-Gruneisen EOS was in good agree-

ment with the average shock temperature obtained from MD for face-centered cubic (FCC) and

body-centered cubic (BCC) solids. In [16, 17, 18, 19], Tsai and MacDonald also studied shock

propagation in three-dimensional crystalline latices by means of MD simulations. Hardy built

off these works in [20] by deriving formulas to relate local continuum properties such as mass

density, momentum density, etc. to the masses, positions, and velocities of the particles whose

motion was simulated with MD. These formulas were similar to those presented in [21] but had

forms which could be easily implemented in MD simulations.

More recent research has used these classic works to model the shock response of materi-

als using purely atomsitic methods [22, 23, 24, 25]. These simulations typically involve a large

number of atoms (∼ O(105−109)) subjected to flyer-plate loading scenarios. Such simulations

have been used to study void nucleation, dislocation generation [26], twinning [27] and even

shock induced spallation [10, 25, 28]. However, purely atomistic methods suffer from domain

boundary effects and unwanted wave reflections from boundaries. Additionally, purely atom-

istic shock simulations typically lead to unrealistic strain rates (1010−1012s−1) [1]. Such strain

rates are rare and orders of magnitude higher than those observed in experiments and practical

scenarios (106 − 108s−1). From a purely atomistic perspective, the multiscale shock technique
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(MSST), which has been developed in the past decade [29], performs long-time shock sim-

ulations on a small atomistic domain for a much lower computational cost than conventional

MD simulations. MSST also allows for multiple shock waves. While this technique permits

the shock to be controlled based on prescribed continuum constraints, it does not allow the

information to communicate from atomistic to continuum and back.

Concurrent multiscale methods have been developed in the past few decades where the

domain is divided into a coarse-scaled (continuum) region and a fine-scaled (atomistic) region

[30, 31]. Such concurrent multiscale methods can be classified into two sub-categories: hierar-

chical and domain decomposition. Hierarchical methods use all length scales at every point in

the domain, i.e. the coarse-scale model receives information from the fine-scale model to de-

velop a constitutive law while the fine-scale model receives information from the coarse-scale

model about the boundary conditions [30]. On the other hand, domain decomposition methods

divide the problem into non-overlapping, contiguous domains which evolve concurrently in

time. In most concurrent atomistic/continuum domain decomposition methods, atomsitic do-

mains are employed where nanoscale structures and phenomena are described [32]. The atoms

in these domains are updated using standard atomistic methods such as MD, and the atom-

istic domain is typically the ‘region of interest’ where information from lower length scales is

needed.

[33] first verified an atomistic/continuum multiscale modeling method by creating an

atomistic core with a surrounding continuum region and describing the domain in terms of

non-local elasticity theory. The framework was verified using static and dynamic tests, and it

was applied to crack propagation on cleavage and non-cleavage planes in BCC crystals. Nu-

merous approaches have since been developed to combine the atomistic domain (for describing

short-range dislocation cores) with the continuum domain (for addressing long-range disloca-

tion elastic fields). Over the past 17 years, many reviews have compared the theoretical foun-

dations of these various multiscale methods [34, 35, 36, 37, 38, 39, 40], and [41] implemented

14 atomistic/continuum coupling techniques to simulate a Lomer dislocation dipole. For an in-

depth and comprehensive review of the literature applying ‘atomistic/continuum’ approaches

to MD over the past three decades, refer to [42].
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In developing concurrent multiscale methods, it is imperative to ensure the compatibility

of the interface region between fine-scaled and coarse-scaled regions. Despite tremendous ad-

vances in recent years, issues which are inherent with atomistics, such as uncertainty in the

interatomic potential and high strain rates in MD, remain with concurrent atomistic/continuum

(A/C) methods. Moreover, this approach introduces an additional source of error associated

with the domain interface, across which there is a discrepancy in material description, govern-

ing equations, and numerical resolution. As expounded upon in [42], this discrepancy creates

spurious wave reflections at the domain interface. One reason for these transient effects is the

fact that differences in vibrational properties between the two domains lead to aphysical scat-

tering at the atomistic/continuum interface [43]. Additionally, the continuum domain typically

has a larger characteristic element length and hence a lower numerical resolution. Therefore,

this domain may not receive all of the wave information from the atomistic domain, which

typically has a finer resolution and permits shorter wavelengths.

Recently, much work has been done to improve the absorption of energetic pulses im-

pinging on the A/C interfaces and thus reduce the number of phonon reflections into the atom-

istic domain. For example, [44] developed a time-dependent boundary condition coupling the

atomistic region to linear surroundings while [45] introduced a new class of matching condi-

tions between the two domains. Additionally, [46] inserted a supplementary damping term into

the Langevin equations of motion for atoms in a ‘stadium’ boundary region near the interface.

Also, [47] presented the application of digital filters to selectively damp the kinetic energy of

the atoms in the atomistic domain. Some other existing concurrent schemes such as the quasi-

continuum (QC) method [48, 49, 50, 51] and coupled atomistic discrete dislocation (CADD)

method [52, 53, 54, 55] attempt to remedy the issues associated with the A/C interface by im-

plementing a pad region which acts as a boundary condition for both atomistic and continuum

regions.

While existing concurrent schemes have been very successful in modeling material defects

and their motion, they have not been extended to model shock wave propagation through a

material. To model shock wave propagation using concurrent multiscale schemes, the atomistic

region of interest must move along with the shock. This motion of the atomistic region requires
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simultaneous refinement of the continuum region as well as coarsening of the atomistic region

at the speed at which the shock wave is moving. At the same time, the scattered elastic waves

and resulting microstructural defects must consistently cross the interface to the continuum

region. Additionally, material behavior under shock loading is governed by a highly nonlinear

equation of state adding more complications into the formulation.

In the present work, we use ideas of control volume to develop a long-time, large-domain

moving window atomistic framework to model shock wave propagation through a one-dimensional

chain of copper atoms. The formulation is inspired from [56] and the supplemental material of

[57]. The domain is divided into an inner ‘window’ region containing the shock wave flanked

by a ‘boundary’ region on both sides. The atoms in the boundary region are governed by con-

tinuum shock equations and act as boundary conditions for the window region. The motion

of the window region is achieved by consistently adding and removing atoms to and from the

boundary and window regions. The framework, in its current state, is not a truly concurrent

atomistic/continuum scheme in that it lacks a continuum region with finite element type mesh

points. The scope of this work is therefore limited to ensuring that the formulation can follow

a shock wave for a long time without artificial wave generation and reflection.

In addition to developing the moving window atomistic method for use in shock propaga-

tion modeling, the present paper also utilizes this method to calculate a relation between the

particle velocity and shock wave velocity in one dimension. Much work has been done using

shock propagation to study the dynamic properties of a variety of different materials subject to

compression. For a summary of the data from many of these experiments, see [58]. For many

of the materials included in these studies, a linear relation has been found between the shock

wave velocity and particle velocity over a large range of the data. This linear relation has been

used extensively in the shock literature; see, for example, [59, 60, 61, 62] and their associated

references.

Other experiments have performed theoretical investigations into the origins of the shock

kinetic relation. For example, [63] supplemented the shock EOS with a kinetic relation that re-

lates the shock front’s dissipation rate to the shock velocity. Previously, [64, 65] introduced this

framework in the context of phase transitions, but [63] showed that it also applied in the study
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of shocks. [66] utilized this framework to analyze a plate impact-induced shock wave propaga-

tion through a one-dimensional medium. However, the numerical methods they employed had

limited resolution which became problematic when introducing multiple reflections. Research

is ongoing in the development of computational methods to understand the relation between

the linear shock wave parameters from an atomistic standpoint. The present paper starts with

the experimentally known linear law for copper and performs steady state simulations using

shock speeds obtained from the known kinetic relation. Next, the paper provides corrections to

the linear law for a one-dimensional case to ensure steady shock speed.

The paper is organized as follows. Chapter 2 outlines a classic shock Riemann problem

of a single propgating shock wave with constant states across it. Chapters 3 and 4 describe the

one-dimensional framework and its components, including thermostats, potentials, integration

algorithms, and the moving window. Chapter 5 presents detailed verifications of every compo-

nent of the framework. Finally, Chapter 6 presents results from the moving window atomistic

framework including steady state shock simulations, calculations of a new equation of state in

a one-dimensional setting, and effects of domain size.
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Chapter 2

Governing Equations

We study shock wave propagation through an idealized, one-dimensional chain of copper (Cu)

atoms along the close packed [110] direction. In a three-dimensional sense, this case corre-

sponds to a planar shock propagating along the close packed direction. For the purpose of

simplicity, shock induced plastic effects, defect generation and phase transformations are ig-

nored in this work.

Consider the case of a shock passing through a body Ω. We assume that the boundary of

Figure 2.1: Discontinuous wave propagating through a three-dimensional material.

the shock wave front is contained within the boundary of the material. This creates a partition-

ing Ω = Ω1 ∩ Ω2 of the body into two regions on either side of the discontinuity, where the

displacements are continuous.

2.1 Continuity jump condition

Consider a point s on the discontinuity which moves with the discontinuity in time. Here,

ṡ is the velocity of the discontinuity at the point s. The material neither creates a void nor

7



Figure 2.2: Point s on discontinuity propagating through material with velocity ṡ.

interpenetrates itself, so the displacement is continuous at s(t) for all time:

u1(s, t) = u2(s, t). (2.1)

Taking the total derivative of each side with respect to time and using index notation, we get

the following:

d

dt
u1
i (s(t), t) =

d

dt
u2
i (s(t), t)

∂u1
i

∂sj

dsj
dt

+
∂u1

i

∂t
=
∂u2

i

∂sj

dsj
dt

+
∂u2

i

∂t

ε1ij ṡj + v1
i = ε2ij ṡj + v2

i (2.2)

where ε and v denote strain and particle velocity respectively. We adopt the notation J·K to

denote the change in a quantity across the shock. Then, we can write Eq. (2.2) as

JεKṡ + JvK = 0. (2.3)

2.2 Momentum jump condition

The integral of the total force (t = σn) over the boundary of the body equals the time derivative

of the total momentum of the body,

∫
∂Ω

σ · ndA =
d

dt

∫
Ω

ρvdV. (2.4)
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For the left hand side of the equation, we apply the divergence theorem to the two sub-bodies

on either side of the discontinuity. Using index notation, we get the following:

∫
Ω

σij,jdV =

∫
Ω1

σij,jdV +

∫
Ω2

σij,jdV

=

∫
∂Ω

σijnjdA+

∫
∂Ω1∩∂Ω2

σ1
ij,jn

1
jdA+

∫
∂Ω1∩∂Ω2

σ2
ij,jn

2
jdA

=

∫
∂Ω

σijnjdA+

∫
∂Ω1∩∂Ω2

Jσij,jKnjdA∫
∂Ω

σijnjdA =

∫
Ω

σij,jdV −
∫
∂Ω1∩∂Ω2

Jσij,jKnjdA (2.5)

where σij,j = div(σ). Next, we apply Reynold’s transport theorem to the right-hand side of Eq.

(2.4) to get
d

dt

∫
Ω1

ρvidV =

∫
Ω1

∂

∂t
ρvidV +

∫
∂Ω1

ρviṡjnjdA (2.6)

where ṡ is the boundary velocity. Thus, we can write

d

dt

∫
Ω

ρvidV =

∫
Ω

∂

∂t
ρvidV +

∫
∂Ω1

ρ1v1
i ṡjn

1
jdA+

∫
∂Ω2

ρ2v2
i ṡjn

2
jdA

=

∫
Ω

∂

∂t
ρvidV +

∫
∂Ω1∩∂Ω2

JρviKṡjnjdA. (2.7)

Combining Eqs. (2.5) and (2.7), we get the following:

∫
Ω

σij,jdV −
∫
∂Ω1∩∂Ω2

Jσij,jKnjdA =

∫
Ω

∂

∂t
ρvidV +

∫
∂Ω1∩∂Ω2

JρviKṡjnjdA (2.8)

which we can rewrite as

∫
Ω

[
σij,j −

∂

∂t
ρvi

]
dV =

∫
∂Ω1∩∂Ω2

(Jσij,jK + JρviKṡj)njdA. (2.9)

Eq. (2.9) is true for all subregions of Ω, and it must hold true for all Ω ⊂ (Ω1 ∪ Ω2). This

only occurs if the integrand is zero. Then, the right hand side must hold for all subsets of the
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boundary. By the fundamental lemma, we have the following jump condition:

JσKn + JρvK(ṡ · n) = 0 (2.10)

2.3 One-dimensional formulation

Consider the propagation of a discontinuity in a plane-strain or plane-stress material as shown

in Fig. 2.3. In this case, we let the propagation of the discontinuity ṡ = US be in the x1 direction

Figure 2.3: Discontinuous wave propagating through a one-dimensional material.

only. Substituting this into Eq. (2.3), we get the one-dimensional continuity jump condition in

the Lagrangian frame,

JεKUS + JvK = 0 (2.11)

where ε is the longitudinal strain and v is the particle velocity. Next, substituting into Eq.

(2.10), we get the one-dimensional momentum jump condition in the Lagrangian frame,

JσK + ρUSJvK = 0 (2.12)

where σ is the longitudinal stress. Here, we assume that the wave does not significantly affect

the material properties, so ρ+ = ρ− = ρ.

The shock jump equations are supplemented by an empirically observed linear relation

between shock speed and particle velocity,

Us = C0 + SJvK. (2.13)

Here, S is a dimensionless, empirical parameter (1.49 for Cu [58]) and C0 is the sound velocity

in the material at zero stress (39.4 for Cu [1]). Equation (2.13) was first presented in [3] and

used to fit data for 23 metals. However, [58] tabulated Hugoniot data which offered linear
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fits for many different types of materials. In some cases – for example, materials with phase

transitions, porosity, or molecular bonding – the linear relation can break down [67]. However,

even in those instances, the linear relation is still used, at least for representing the data over part

of the range. Equations (2.11), (2.12), and (2.13) lead to the standard Hugoniot stress-strain

relationship as

σ =
ρC0ε

(1− Sε)2
(2.14)

where compression strain is considered positive. The Hugoniot stress-strain relationship forms

the basis of modern equations of state (EOS). In this work, we use the Hugoniot EOS (2.14)

for sake of simplicity and to quickly compute shocked states.

2.4 Temperature rise

As a shock wave moves through a solid, the material behind the wave front gets compressed,

and thus the temperature rises. We assume the thermodynamic process at the shock front to

be adiabatic and the release from the shock state to the initial state to be isentropic. For solid

materials, the release isentrope and shock Hugoniot are nearly the same. Figure 2.4 [1] shows a

material shocked from an initial state at atmospheric pressure to pressure P1. Points P1 and V1

Figure 2.4: Shock Hugoniot and release isentrope leading to temperatures T1 and T2.

are on the shock Hugoniot, and unloading follows the release isentrope to point 2. It is apparent

11



that T2 is higher than T0, and thus V2 is higher than V0. This irreversibility produces a loss of

energy as shown by the grey area. We can calculate the rise in temperature behind the shock

using the Grüneisen EOS and thermodynamic relationships.

Using the first law of thermodynamics

dE = δQ− δW (2.15)

where

δW = PdV (2.16)

and

δQ = TdS, (2.17)

we obtain the new expression for the first law of thermodynamics:

dE = TdS − PdV. (2.18)

We can use this to calculate a thermodynamic expression for TdS:

S = f(T, V )

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

TdS = T

(
∂S

∂T

)
V

dT + T

(
∂S

∂V

)
T

dV, (2.19)

where we know that

CV =

(
∂E

∂T

)
V

= T

(
∂S

∂T

)
V

(2.20)

is the volumetric specific heat capacity. Then, from the second Maxwell relation

dA = −PdV − SdT,
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we get the following: (
∂P

∂T

)
V

=

(
∂S

∂V

)
T

. (2.21)

Substituting (2.20) and (2.21) into (2.19) gives

TdS = CV dT + T

(
∂P

∂T

)
dV. (2.22)

We now apply the Grüneisen equation

γ

V
=

(
∂P

∂E

)
V

to get the following identity:

(
∂P

∂T

)
V

=

(
∂P

∂E

)
V

(
∂E

∂T

)
V

=
γ

V
CV (2.23)

where γ is the Mie-Grüneisen parameter for the material (2.0 for Cu [1]). Next, we substitute

(2.22) and (2.23) into (2.18),

dE = CV dT + T
γ

V
CV dV − PdV. (2.24)

For a Hugoniot shock process, we know that

∆E = (E1 − E0) =
1

2
(P1 + P0)(V0 − V1). (2.25)

Expressing the change in internal energy with volume along the Hugoniot, we get the following

for Eqs. (2.24) and (2.25):

(
dE

dV

)
H

= CV

(
dT

dV

)
H

+
γT

V
CV − P (2.26)(

dE

dV

)
H

=
1

2

(
dP

dV

)
H

(V0 − V )− P

2
. (2.27)

13



Substituting (2.27) into (2.26), we get an equation for T,

CV

(
dT

dV

)
H

+
γTCV
V

=
1

2

(
dP

dV

)
H

(V0 − V ) +
P

2
(2.28)

which is a differential equation of the form Ay′ + By = F (V ). Writing Eq. (2.28) in terms of

ε and σ, we arrive at our shock heat equation:

CV

(
dT

dε

)
H

− γTCV
1− ε

=
ε

2

(
dσ

dε

)
H

− σ

2
. (2.29)

We can use this equation to solve for the jump in temperature across the shock wave front.

2.5 Problem statement

The state of the material is described by the state variables (v, ε, θ) on either side of the shock.

Given a shock speed Us and state (v−, ε−, θ−) of the unshocked material, equations (2.11),

(2.12), (2.14), and (2.29) can be used to compute the state (v+, ε+, θ+) and stress σ of the

shocked material. In this paper, we present a moving window framework to simulate long-

time, steady state shock wave propagation using atomistics given continuum shock states ahead

of and behind the shock. We study a classic Riemann problem of a single shock wave with

constant states on either side as shown in Fig. 2.5.

Figure 2.5: Riemann problem of a shock wave with constant states ahead of and behind the
shock front.
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Chapter 3

Development of the Atomistic Framework

The one-dimensional framework is implemented using an in-house C++ code. A chain of N

Cu atoms of mass m = 63.55 amu is chosen, with xi denoting the instantaneous position of the

ith atom at time t.

3.1 Geometry and boundary conditions

The atomistic chain is split into three sections as illustrated in Fig. 3.1. The outer atoms (in

blue) are called continuum atoms (CA) while the inner atoms containing the shock wave front

(SWF) are named window atoms (WA). The continuum Reimann states (v, ε, θ) are imposed

on the CA region using standard algorithms for applying strain, mean particle velocity, and

temperature (thermostats) [30]. The WA region is governed by classic MD equations. To en-

sure semi-infinite regions on either side of the shock wave, a semi-periodic boundary condition

method is employed. To achieve this, the continuum atoms at the ends of the chain (x0 and

xF ) are made neighbors with the continuum atoms at the atomistic/continuum (A/C) interfaces

(xWA,0 and xWA,F respectively). The continuum atoms and window atoms near the A/C inter-

faces interact with each other. A two-dimensional representation of the A/C framework can be

seen in Fig. 3.1.
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Figure 3.1: Schematic of the A/C framework.

3.2 Integration algorithm

To integrate the MD equations of motion, we utilize the widely-used velocity Verlet algorithm

[68] as seen below:

xi (t+ δt) = xi (t) + vi (t) δt+
fi (t)

2m
δt2

vi

(
t+

δt

2

)
= vi (t) +

δt

2

fi (t)

m

fi (t+ δt) = fi (xi (t+ δt))

vi (t+ δt) = vi

(
t+

δt

2

)
+
δt

2

fi (t+ δt)

m
(3.1)

where xi, vi, and fi denote the position of the ith particle, its velocity, and the net force acting

on it. The time step used in the integration algorithm is chosen to be δt = 0.001 ps.

3.3 Interatomic potentials

The temporal evolution of a window atom is described by Newton’s 1D equations of motion,

characteristic of the NVT ensemble, namely

m
d2xi
dt2

= −∂VTOT
∂xi

, (3.2)
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where VTOT =
∑N

i=1 Vi is the total potential energy of the entire system. Here, energy of ith

atom is calculated using Vi =
∑

j∈{neighbors} V (xij), where V (xij) is the interatomic potential

which depends on the interatomic separation between atoms i and j: xij = |xi − xj|.

In this work, we utilize three different interatomic potential functions: Lennard-Jones

(LJ), modified Morse, and Embedded Atom Model (EAM). The LJ potential only considers

nearest-neighbor interactions and is represented most commonly as [69, 70]

V (xij) = 4ε

[(
σ

xij

)12

−
(
σ

xij

)6
]

= ε

[(
x0

xij

)12

− 2

(
x0

xij

)6
]

(3.3)

where ε is the depth of the potential well, σ is the finite distance at which the inter-particle

potential is zero, and x0 is the distance at which the potential reaches the minimum. The

parameters for Cu are given by ε = 0.4093 eV and σ = 2.338 Å [71].

Like LJ, the modified Morse potential [72, 73] only considers nearest neighbor interac-

tions. The expression is given by

V (xij) =
D0

2B − 1

[
e−2A

√
B(xij−x0) − 2Be−A(xij−x0)/

√
B
]
. (3.4)

Here, we use the following parameters for Cu: x0 = 2.5471 Å, A = 1.1857 Å−1, D0 =

0.5869 eV , and B = 2.265 [73]. MacDonald and MacDonald [72] modified the standard

Morse potential to improve the agreement with experimental values for the thermal expansion

of copper [73].

Finally, the Embedded Atom Model (EAM) potential [74], is given by the expression

V (xij) = F

(∑
i 6=j

ρ (xij)

)
+

1

2

∑
i 6=j

φ (xij) . (3.5)

In this case, the total energy of a particular atom is a function of all the atoms within a cutoff

radius rc = 5.507 Å. Here, φ is a pair-wise potential function, ρ is the contribution to the

electron charge density from atom j at the location of atom i, and F is an embedding function

that represents the energy required to place atom i into the electron cloud [75]. As shown

in [76], the EAM potential works very well for purely metallic systems with no directional
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bonding and thus provides a robust means of calculating approximate structure and energetics

of materials. In our case, we use the EAM potential file produced by [77].

3.4 Thermostats

The continuum atoms are subjected to continuum states (v+, ε+, θ+) and (v−, ε−, θ−). Temper-

atures θ+ and θ− are imposed using thermostatting algorithms. Two well-known examples of

very distinct thermostats are considered in this paper: the Langevin thermostat [78, 79], and the

Nose-Hoover thermostat [78, 80, 81]. As with many other thermostats, both the Langevin and

Nose-Hoover thermostat are designed to maintain a system at thermal equilibrium for constant

temperature MD simulations.

3.4.1 Langevin thermostat and stadium damping

The Langevin thermostat is a stochastic thermostat which adds a random force to the particle

motion along with a damping term, ζ , which is introduced through fiction. Physically, this

dissipative force term arises from fluctuating forces on a moving particle due to the chaotic

motion of solvent molecules. The random force term is included to account for these fluctuating

forces. The one-dimensional equations of motion of the Langevin thermostat for a particle i are

as follows:

f toti (t) = fi (t)− ζmivi (t) +

√
2kBTζm

δt
h̃i (t)〈

h̃i (t)
〉

= 0〈
h̃i,αh̃i,β (t)

〉
= δαβ (3.6)

where α and β denote Cartesian components, kB is Boltzmann’s Constant, and h̃i is a Gaus-

sian random variable with mean zero and variance one. Note that in Eq. (3.6), the stochastic

term h̃i has a coefficient which contains the friction coefficient ζ . This coefficient term is the

stochastic force f for a target temperature T and a time step δt. Since the target temperature

is specified for each atom, we characterize the Langevin thermostat as local. One downside to
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the Langevin thermostat is a lack of feedback between the target temperature and input tem-

perature. While this is reasonable for equilibrium thermostatting, there is no guarantee that the

target temperature will be achieved far from equilibrium [82].

Having defined the force by Eq. (3.6), we can include it in an implementation of the ve-

locity Verlet algorithm in the C++ code. We perform the discretisation used in the very popular

MD code LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [83]:

vi

(
t+

δt

2

)
= vi(t)−

δt

2

(
∇iV (t)

m
+ ζvi(t)

)
+

√
δtkBTζ

m
h̃i

xi(t+ δt) = xi(t) + vi

(
t+

δt

2

)
δt

vi (t+ δt) = vi

(
t+

δt

2

)
− δt

2

(
∇iV (t+ δt)

m
+ ζvi

(
t+

δt

2

))
+

√
δtkBTζ

m
h̃i (3.7)

where we note that because of the Verlet scheme, the time step in each velocity update is now

δt
2

rather than δt. We generate a different random vector for each particle during each velocity

update.

To ensure force matching across the WA and CA regions, we specify the damping factor,

ζ , to be a function of position relative to the A/C interface for the Langevin thermostat. To

this end, we utilize the equation developed in [46] which linearly ramps the damping in the CA

region as the distance from the A/C interface increases. This equation is given as follows:

ζ = ζ0

[
1− d (x)

ω

]
(3.8)

where ζ0 equals the maximum damping of 1/2 the Debye frequency of Cu and ω is the length

of the CA region. Here, d is the minimum distance from the atom at position x to the end of the

chain (either point x0 or xF ),

d (x) = abs (xi − x0) , abs (xi − xF ) . (3.9)

Hence, for atoms in the CA regions, the damping coefficient varies linearly from zero at the

A/C interface to ζ0 at the ends of the chain. This “stadium” damping allows waves of a variety

19



of wavelengths to enter the CA region and slowly be absorbed as they propagate to the end of

the chain. This reduces spurious wave reflections and artificial waves introduced at the A/C

interface.

3.4.2 Nose-Hoover thermostat

The Nose-Hoover thermostat is a deterministic thermostat that introduces a fictitious dynamical

friction variable, ζ , which either increases or decreases the particle velocity until the desired

temperature is achieved. The Nose-Hoover thermostat is used for many NVT simulations be-

cause of its symplectic, volume-conserving, time-reversible Hamiltonian structure [84]. The

equations of motion in 1D are as follows:

m
d2xi
dt2

= fi − ζmvi (3.10)

dζ (t)

dt
=

1

Q

[
N∑
i=1

m
v2
i

2
− N + 1

2
kBT

]
(3.11)

where Q in Eq. (3.11) determines the relaxation of the dynamics of friction, ζ (t), and T is

the target temperature. This thermostat preserves the average kinetic energy of the particle

ensemble over time and hence is a global thermostat. Unlike the Langevin thermostat, Nose-

Hoover cannot control the temperature distribution within the CA region but rather preserves

the average temperature [85]. This can be advantageous since the temperature is controlled

by a feedback between the calculated and target temperatures, and thus even non-equilibrium

simulations will achieve an average temperature.
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We make a small modification of the velocity Verlet algorithm to implement the equations

of motion of the Nose-Hoover thermostat. The first four steps are as follows:

xi(t+ δt) = xi(t) + vi(t)δt+

(
fi(t)

m
− ζ(t)vi(t)

)
δt2

2

vi

(
t+

δt

2

)
= vi(t) +

δt

2

(
fi(t)

m
− ζ(t)vi(t)

)
fi(t+ δt) = fi(xi(t+ δt))

ζ

(
t+

δt

2

)
= ζ(t) +

δt

2Q

[
N∑
i=1

m
vi(t)

2

2
− N + 1

2
kBT

]
. (3.12)

We note that ζ(t) is first updated at time t+δt/2 to match the two-step character of the velocity

Verlet algorithm. The final steps of the Nose-Hoover-Verlet algorithm are

ζ (t+ δt) = ζ

(
t+

δt

2

)
+

δt

2Q

[
N∑
i=1

m
vi
(
t+ δt

2

)2

2
− N + 1

2
kBT

]

vi(t+ δt) =

[
vi
(
t+ δt

2

)
+ δt

2
fi(t+δt)

m

]
1 + δt

2
ζ(t+ δt)

(3.13)

where in the last equation, the dissipative force over mass term is computed at time t+ δt.
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Chapter 4

Moving Window Formulation

Purely MD simulations of shock wave propagation are limited by small domain sizes and the

resulting reflections from the boundaries. To circumvent these issues, we implement a moving

window formulation inspired from [56] and [57] into the proposed framework. Such a formu-

lation allows for a detailed investigation of the shock wave jump conditions and EOS from an

atomistic scale with minimal influence from spurious wave reflections. The moving window

atomistic method is outlined in Fig. 4.1.

Figure 4.1: Schematic of the moving window mechanism for a shock wave propagating through
a 1D chain of atoms.

The proposed work feeds a constant flux of material with mean unshocked particle veloc-

ity, strain, and temperature of (v−, ε−, θ−) into the simulation window by inserting atoms at

the right boundary (xF ) with a frequency of τ−1 = US/a0, where a0 is the equilibrium spacing

of Cu. In other words, after the shock wave has traveled a distance of one lattice constant,

the program adds a single Cu atom to the right CA region while simultaneously removing a
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single Cu atom from the left CA region. At the same time, the window atom at xWA,0 is added

to the left CA region while the boundary atom at xWA,F is added to the rightmost position

within the WA region. In effect, every atom in the chain shifts to the left by one equilibrium

lattice spacing when τ = N(a0/US), where N increases by one each time the shock travels a

distance of a0. Fig. 4.1 shows a schematic of this process of adding, removing, and shifting

atoms. Local atomic energy fluctuations induced near the right boundary of the chain from the

atom addition are damped by either the Langevin or Nose-Hoover thermostat to establish the

prescribed temperature θ− as described previously. After a stationary shock is established, the

material flux through the system is automatically conserved.

An x − t diagram of the moving window process is presented in Fig. 4.2. An idealized

shock wave with speed US originates at (x, t) = (0, 0) and travels into the initially undisturbed

material. When the simulation begins, the SWF is located at the center of the WA region. We

start the simulation with atoms in the WA regions ahead of and behind the shock initialized with

(v−, ε−) and (v+, ε+) respectively, and in the CA regions ahead of and behind the shock with

(v−, ε−, θ−) and (v+, ε+, θ+) respectively. As the simulation evolves in time, the shock wave

propagates forward through the material. During this time, the moving window process occurs

with a frequency τ−1 = US/a0, and the atomistic domain “follows” the propagating shock.

This ensures that the SWF remains at the center of the WA region. Ordinarily, the shock would

propagate forward towards the A/C interface and eventually travel out of the whole domain,

thus limiting the simulation time. In contrast, the moving window formulation allows us to

perform extremely long-time steady state shock propagation simulations.

Figure 4.2: X-t diagram representation of the moving window formulation.
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Semi-infinite boundary conditions are implemented as stated in Ch. 3.1, and the process

by which the atomistic domain “follows” a propagating shock limits the number of interactions

from transient waves. Many of these transient waves will be absorbed into either of the CA re-

gions and thus damped out of the system. Those that are reflected off the left A/C interface will

have to travel at a speed greater than the insertion frequency of the moving window to eventu-

ally interact with the shock wave. Hence, while this framework does not completely eliminate

effects from spurious wave reflections, the implementation of a moving window within the

atomistic framework drastically limits their influence on the shock. The moving window atom-

istic method differs from standard MD simulations by treating the complex processes behind

the SWF for an indefinite period of time without the total number of atoms continually increas-

ing as the simulation evolves.
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Chapter 5

Verifications

5.1 NVT Ensemble

We perform time integration on Langevin or Nose-Hoover non-Hamiltonian equations of mo-

tion designed to generate positions and velocities sampled from a canonical (NVT) ensemble.

A canonical ensemble represents the possible states of a system in thermal equilibrium with a

heat bath at a given temperature [86]. The system may differ in total energy as such energy may

be exchanged with the heat bath. Hence, our MD simulations should maintain a constant tem-

perature using either the Langevin or Nose-Hoover thermostat which are designed to maintain

a system at thermal equilibrium.

Temperature is a macroscopic quantity, and thus it is less well-defined microscopically due

to the low number of particles. However, if we calculate the kinetic energy, we can compute

the temperature by

KE =
1

2
mv2

i =
dim

2
NkBT. (5.1)

Here, dim = 1, N is the total number of atoms, and KE is the total kinetic energy of the group

of atoms
∑

1
2
mv2

i . We can use Eq. (5.1) to calculate the average temperature of the system as

a function of time.

We perform constant temperature simulations for systems of 10,000 Cu atoms using both

the Langevin and Nose-Hoover thermostats. We test the performance of each of these ther-

mostats using all three potential functions (LJ, modified Morse, and EAM) at temperatures

ranging from 250 K - 1,250 K. Since the melting temperature of Cu is 1,358 K, we do not

perform simulations with higher input temperatures. The total run-time for each simulation is
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3,000 ps (3 ns) with an equilibration time of 5 ps. In this case, standard periodic boundary

conditions are enforced such that the leftmost atom interacts with the rightmost atom in the

chain and vice versa. Therefore, we do not enforce the A/C domain described in Fig. 3.1. The

results from these MD simulations can be seen in Fig. 5.1.

For all three potential functions, the average temperatures oscillate around their corre-

sponding initial input values for the entire run-time of 3,000 ps. However, we notice that for

each thermostat, the variance in the average temperature increases with increasing input tem-

perature. This effect occurs regardless of which potential function is used. Such a phenomenon

makes physical sense because the frequency of oscillation of the particles in a solid increases as

the temperature in the solid is raised. Additionally, we observe that at higher temperatures, the

Nose-Hoover thermostat equilibrates the system to the initial input temperature slightly faster

than the Langevin thermostat. This effect is seen for all three potential functions, and it is most

prominent at an input temperature of 1,250 K. This is understandable as the Langevin thermo-

stat is a local thermostat, and hence there is a lack of feedback between the target temperature

and input temperature. However, the Nose-Hoover thermostat is global and thus preserves the

average temperature over time by providing a feedback between the calculated and target tem-

perature. From these results, it is apparent that we maintain a canonical (NVT) ensemble for a

wide range of input temperatures using both the Langevin and Nose-Hoover thermostats.

5.2 Mechanical properties

Verification of the Lennard-Jones and modified Morse potentials is carried out by computing

the tangent modulus of the system over a range of temperatures, while verification of the EAM

potential is achieved by computing the cohesive energy and bulk modulus of the system at 0 K.

In each case, we compare the simulated mechanical properties to their corresponding literature

values for Cu.

5.2.1 LJ and Morse potentials

To compute the isothermal elastic modulus in 1D (tangent modulus), we utilize the microscopic

elasticity tensor derived in [30]. We note, however, that depending on the loading conditions,
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(a)

(b)

(c)

Figure 5.1: Constant temperature NVT results for the Langevin and Nose-Hoover thermostats
using (a) Lennard Jones, (b) Morse and (c) EAM potentials.
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there are two separate elasticity tensors. If the material is loaded rapidly, there is not enough

time for the material to exchange heat internally or with the surroundings. In this case, the

adiabatic elasticity tensor derived from the internal energy is utilized. However, when the ma-

terial is loaded slowly, it has enough time to reach thermal equilibrium with the surroundings.

In this case, the isothermal elasticity tensor derived from the Helmholtz free energy is utilized.

As shown in [87], the two tensors are equal at T = 0 K, but the discrepancy increases with

temperature. In our case, the microscopic elasticity tensor is derived from the Helmholtz free

energy and is thus isothermal.

The conventional expression for the microscopic elasticity tensor at a temperature T is

given as follows [30]:

cijkl =
1

V

[
2NkBT (δilδjk + δjlδik) +

〈
c0
ijkl

〉
− V 2

kBT
Cov

(
σinstij , σinstkl

)]
(5.2)

where 〈·〉 refers to a phase average, kB is Boltzmann’s Constant, V is the volume, and the

covariance operator is defined by

Cov (A,B) ≡ 〈AB〉 − 〈A〉 〈B〉 . (5.3)

Additionally, c0
ijkl is defined as

c0
ijkl =

1

V

[
1

4

∑
α 6=β

∑
γ 6=δ

καβγδ
rαβi rαβj rγδk r

γδ
l

rαβrγδ
− 1

2

∑
α 6=β

φαβ
rαβi rαβj rαβk rαβl

(rαβ)3

]
(5.4)

where φαβ is the interatomic force depending only on the distance rαβ between the atoms, and

καβγδ is the bond stiffness defined by

καβγδ ≡ ∂φαβ

∂rγδ
=

∂2V int

∂rαβ∂rγδ
. (5.5)

This bond stiffness is interpreted for a simple pairwise potential, where the force on atom α

due to atom β depends only on the distance rαβ . Equation (5.2) can be further simplified by
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splitting the instantaneous stress terms into kinetic and potential parts as seen below:

σK,instij = − 1

V

∑
α

pαi p
α
j

mα

σV,instij =
1

2V

∑
α 6=β

φαβ
rαβi rαβj
rαβ

. (5.6)

Substituting σinst = σK,inst + σV,inst into the third term of Eq. (5.2) and noting that the cross-

terms cancel, 〈
σK,instij σV,instij

〉
=
〈
σK,instij

〉〈
σV,instij

〉
(5.7)

we get the following:

Cov
(
σinstij , σinstkl

)
= Cov

(
σK,instij , σK,instkl

)
+ Cov

(
σV,instij , σV,instkl

)
. (5.8)

Then, as shown in [30], the kinetic terms can be reduced as follows:

Cov
(
σK,instij , σK,instkl

)
= (δikδjl + δilδjk)N (kBT )2 . (5.9)

Substituting Eqs. (5.8) and (5.9) into Eq. (5.2), we get the simpler form of the elasticity tensor:

cijkl =
1

V

[〈
c0
ijkl

〉
− V 2

kBT
Cov

(
σV,instij , σV,instkl

)
+NkBT (δikδjl + δilδjk)

]
. (5.10)

Here, the first term is the elasticity at 0 K, the second term is the instantaneous potential energy,

and the third term is the instantaneous kinetic energy. It is noted that the third term goes to zero

as T → 0 K. Additionally, [88] showed that the fluctuation term disappears as the stress and

potential terms expand. In this case, c = c0, where c0 is given by Eq. (5.4). We note that the

elastic constants associated with shear vanish in the thermodynamic limit, as shown in [89].

However, Eq. (5.10) still allows us to calculate the elastic constants of solids by replacing the

phase averages with time averages.
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The method just described to calculate the spatial elastic modulus is known as the stress

fluctuation method [90, 91, 92]. We use this stress fluctuation method to calculate the micro-

scopic elastic (tangent) modulus of a one-dimensional chain of Cu atoms with constant length

L and constant temperature T. For the 1D case, Eq. (5.10) reduces to the following [73]:

c =
1

L

[
2NkBT + L

〈
c0
〉
− L2

kBT
Cov

(
σV,inst, σV,inst

)]
(5.11)

where L is the chain length, and “Cov” is the covariance operator given by Eq. (5.3). Then, the

c0 Born term in 1D is

c0 =
1

L

N∑
i=1

N∑
j=i+1

[
φ′′(xij)(xij)

2 − φ′(xij)xij
]

(5.12)

where xij = xj − xi. Finally, the potential part of the instantaneous stress in 1D is given as

follows:

σV,inst =
1

L

N∑
i=1

N∑
j=i+1

φ′(xij)xij. (5.13)

We compare the tangent modulus obtained from MD to the tangent modulus obtained

from the Quasi-Harmonic (QH) approximation. The QH approximation for the temperature-

dependent stress-free spatial tangent modulus of a 1D chain of atoms is [30, 73]:

c = a

[
φ′′(a) +

kBT

2

φ(4)(a)φ′′(a)− (φ′′′(a))2

(φ′′(a))2

]
(5.14)

where a = a(T ) is the stress-free equilibrium lattice constant at temperature T. In this case, the

temperature dependence of the equilibrium lattice constant is obtained through the following

equation [30]:

φ′(a) +
kBT

2

φ′′′(a)

φ′′(a)
= 0. (5.15)

This requires calculation of third and fourth derivatives of the potential function φ, making

calculations for EAM cumbersome. We use Eq. (5.14) to obtain the analytic tangent modulus

values for the Lennard-Jones and modified Morse potentials.
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We utilize Eq. (5.11) to calculate the microscopic tangent modulus of a one-dimensional

chain of 10,000 Cu atoms using the Lennard-Jones and modified Morse potential functions. We

test the performance of each of these potentials for both of the thermostats at various temper-

atures. For each of the input temperatures, we calculate the corresponding equilibrium lattice

spacing using Eq. (5.15). Using these temperature-dependent lattice spacings, we can obtain

the tangent modulus from MD simulations with Eq. (5.11) and compare this to the tangent

modulus obtained analytically with Eq. (5.14). Plots showing the MD and analytic tangent

modulus results can be seen in Fig. 5.2.

(a)

(b)

Figure 5.2: Tangent modulus results for the Langevin and Nose-Hoover thermostats using the
(a) Lennard-Jones and (b) Morse potentials.
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Here, we show the analytic tangent modulus values (blue line) for temperatures ranging

from 0 - 900 K, but we limit the MD calculations for LJ and Morse to 400 K and 450 K respec-

tively. As shown in [73], the MD-derived tangent modulus of the system becomes non-physical

for input temperatures above ≈ 450 K. The total run-time for each MD simulation is 3,000 ps

(3 ns) with an equilibration time of 10 ps. As in Ch. 5.1, each atom is treated as a contin-

uum atom, and normal periodic boundary conditions are enforced such that the leftmost atom

interacts with the rightmost atom and vice versa. The MD results for both the Lennard-Jones

and Morse potentials are plotted in increments of 50 K and are seen to be in close agreement

with the values obtained from the QH approximation. This validates the implementation of the

Lennard-Jones and modified Morse potentials in the code.

5.2.2 EAM potential

To verify the EAM potential, we calculate the cohesive energy E0 as well as the bulk modulus

B of the system at 0 K. Again, the cutoff radius for the EAM potential is 5.507 Å, and we

consider a periodic chain of 500 atoms where each atom is treated as a window atom. The

experimental value of the equilibrium lattice spacing of Cu is 3.615 Å, so we vary the lattice

constant from 3.605 Å to 3.625 Å in steps of 0.001 Å. The potential energy per atom as

a function of the cubic lattice spacing is plotted in Fig. 5.3, and the data can be fitted to a

parabola. The minimum of this parabola corresponds to the cube of the equilibrium lattice

Figure 5.3: Potential energy per atom vs. cubic lattice spacing in steps of 0.001 Å. Circles are
data computed from the EAM potential, and the line is a parabola fitted to the data.
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spacing, a0 = 3.615 Å. This matches the experimental data perfectly because a0 is one of

the fitted parameters of the EAM potential. The energy per atom at a0 is the cohesive energy,

Ecoh = −3.540 eV , which is another fitted parameter [77]. Hence, our implementation of the

EAM potential gives an accurate representation of the cohesive energy of Cu.

As discussed in [93], the curvature of the parabola at a0 can be used to calculate the bulk

modulus using

B(V ) = V

(
∂2E

∂V 2

)
T,S

= 4(a0)3(2a) (5.16)

where a is the parabola coefficient, and we multiply by four to account for every atom in the

given lattice volume. Applying this equation to the data in Fig. 5.3, we obtained a bulk modulus

value of B = 135.4 GPa, which is not very accurate when compared to the literature value of

140 GPa [77]. To obtain a more accurate bulk modulus, we compute the E(V ) curve again in

the range of |a− a0| < 10−4 Å. Specifically, we perform the calculations in steps of 0.0008 Å.

This plot can be seen in Fig. 5.4. The curvature of this new parabola at a0 gives a bulk modulus

value of B = 140.6 GPa, which is the fitted bulk modulus of this potential model.

Figure 5.4: Potential energy per atom vs. cubic lattice spacing in steps of 0.0008 Å. Circles are
data computed from the EAM potential, and the line is a parabola fitted to the data.

5.3 Steady State

The moving window framework is verified by confirming that entire A/C domain reaches steady

state after a long period of time. Typically with A/C frameworks, a bi-material interface is
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formed which can lead to numerical errors as shown in [41]. Hence, there exists a need to

smoothly exchange information (e.g. defects, heat, and waves) from specifically the atomistic

to the continuum domain. Since there are more DOFs in atomistics [94], the reverse exchange

(continuum to atomistic domain) is relatively more fluent. For these reasons, we must ensure

that the WA region smoothly transfers information to the CA regions. A lack of smooth in-

formation exchange would introduce non-physical effects into the WA region such as a rise in

particle velocity and associated temperature and/or traveling waves.

To ensure that the WA/CA interfaces are not introducing spurious waves into the WA re-

gion, we prescribe the same continuum states to both CA regions. In other words, the problem

has now moved either to the left of the shock or the right of the shock in Figure 4.2. As the

simulation evolves, there should be no traveling waves after a reasonable interval of time. Such

artifacts would mean that waves are not being smoothly absorbed into the CA regions and

instead impinging off the WA/CA interface, and/or the periodic boundary conditions are im-

properly implemented. Additionally, the average particle velocity of the system should remain

equal to the initial input value with little to no increase in the average amplitude. A change in

the average particle velocity would indicate that the system is not reaching equilibrium, while

a large increase in amplitude would mean that energy is being artificially added to the system.

Figure 5.5: Average particle velocity of different systems vs. time for a range of input veloci-
ties.
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We perform steady state simulations for one-dimensional systems of 10,000 Cu atoms us-

ing all three potential functions and both thermostats. We utilize the moving window atomistic

framework described in Chs. 3 and 4 with 100 atoms in each CA region and 9,800 atoms in the

WA region. Placing 100 atoms in each CA region ensures that waves impinging on the WA/CA

interfaces can fully dissipate into the CA regions. This improves the absorption of energetic

pulses into the CA regions and thus helps reduce the number of wave reflections into the WA

region. We test the implementation of these interfaces for various mean particle velocities:

0, 3, 6, 9, and 12 Å/ps. The results from these simulations can be seen in Fig. 5.5, where we

plot the average particle velocity of the 1D system vs. time. As before, the total run-time for

each simulation is 3,000 ps (3 ns), and we enforce periodic boundary conditions as explained

in Ch. 3.1. It is apparent that regardless of the potential function or thermostat used, the sys-

tem maintains the initial mean particle velocity for the duration of the simulation. From these

results, we conclude that the WA region achieves steady state for long-time simulations.

Finally, we confirm that the average amplitude of the particle velocities remains relatively

constant and no large traveling waves appear throughout the duration of the simulation. Figs.

5.6, 5.7, and 5.8 show six different particle velocity vs. particle number plots for all three

potentials using both thermostats. In each of these graphs, we plot the velocity of each particle

at 0 ps and overlay that with the velocity of each particle at 3, 000 ps for each input velocity

(0, 3, 6, 9, and 12 Å/ps). We overlay these sets of data from the beginning and end of the

simulation to observe how the average amplitude changes over time. We observe that in each

case, the amplitude of the particle velocities does not increase as the simulation evolves. In fact,

the two sets of data overlap each other almost identically indicating that no artificial energy is

being introduced into the WA region. (We also note that no large traveling waves were observed

in the WA region over the entire run-time). These results confirm that any spurious waves

encountering the WA/CA interfaces are traveling smoothly into the CA regions and eventually

dissipating. Additionally, the data establish that the periodic boundary conditions used in the

CA regions are implemented correctly.
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(a) (b)

Figure 5.6: Steady state plots for Lennard-Jones potential with (a) Langevin and (b) Nose-
Hoover thermostat.

(a) (b)

Figure 5.7: Steady state plots for modified Morse potential with (a) Langevin and (b) Nose-
Hoover thermostat.

(a) (b)

Figure 5.8: Steady state plots for EAM potential with (a) Langevin and (b) Nose-Hoover ther-
mostat.
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Chapter 6

Results

6.1 Moving window simulations with original EOS

Having verified different aspects of the framework, we conduct long-time, large-domain shock

simulations for various input shock wave velocities in the [110] close packed direction of a one-

dimensional chain of Cu atoms. As before, we use all three potentials and both thermostats.

In each simulation, the domain contains a total of 10,000 atoms with 100 atoms in each CA

region. Hence, we have a central WA region containing 9,800 atoms and two CA regions

each containing 100 atoms. As stated in [46], the width of the CA region should be at least

the range of the forces, typically around 10 Å. We choose a much larger width of 100 atoms

(≈ 256 Å) to ensure a sufficient distance for any wave traveling from the WA region to the

CA regions to be fully absorbed. Additionally, we perform each of these simulations for 3,000

ps (3 ns) in order to track the motion and evolution of the fully-developed wave. As stated

in the supplemental material of [57], the total time for shock wave formation and propagation

in standard piston simulations is usually limited to ∼ 100 ps or less because the shock wave

will leave the domain. Hence, the number of atoms that have to be included grows as the shock

moves away from the piston face. However, using the moving window atomistic framework, we

can obtain simulation times of ≥ 100 ps which allows us to track the shock wave indefinitely.

We perform a given simulation by choosing the shock wave velocity US and initializing the

unshocked state of v− = 0 Å/ps, ε− = 0, and θ− = 298 K. Then we use the jump equations,

thermodynamic relationship, and linear shock EOS presented in Ch. 2 to compute the state

(v+, ε+, θ+) of the shocked material. In Fig. 6.1, we present simulations for an input shock

37



velocity of US = 50 Å/ps using the EAM potential and incorporating the Langevin thermostat

(the other potentials/thermostats produce similar results). In this case, we overlay the initial

shock wave with its later positions in 100 ps increments, so we see the evolution in time of the

shock over a period of 1,000 ps. We employ the moving window formulation as explained in

Ch. 4 with an atomic replacement frequency of τ−1 = US/a0.

Figure 6.1: Propagation of a shock wave front using the EAM potential with the Langevin
thermostat for an input shock velocity of 50 Å/ps. This simulation was produced using the
linear shock relation parameters from literature [1].

The moving window framework should maintain the SWF at the center of the WA region

throughout the entire simulation. However, in Fig. 6.1, we observe two discrepancies in the

simulated shock wave. First, the SWF continues traveling forward through the chain as the sim-

ulation evolves in time despite the moving window implementation. Additionally, the particle

velocities in the shocked material (v+) oscillate around a mean value which is lower than their

initial mean value. Hence, we observe that the shock parameters US and v+ obtained from MD

are different than their corresponding analytical input values. If we recall the linear relation

between shock velocity and particle velocity,

Us = C0 + SJvK (6.1)
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we deduce that such discrepancies indicate that the empirical parameters for this equation (C0

and S) are not optimized for our one-dimensional framework. This makes intuitive sense be-

cause these empirical parameters are derived through experimental methods assuming a three-

dimensional lattice. It should be emphasized that this does not imply that the EOS parameters

are incorrect in general. It merely means that the the EOS parameters are not applicable to our

one-dimensional framework. In Ch. 6.2, we will obtain the necessary 1D EOS parameters to

obtain a stable and steady shock.

We also present a graph of the SWF position vs. time using the EAM potential and

Langevin thermostat for the following input shock velocities: 47, 50, 54, 58 and 60 Å/ps. From

Fig. 6.2, it can be observed that in each case, the shock wave travels to the right, and the speed

of this forward motion increases with increasing input shock velocity, US . Such a phenomenon

implies that the moving window replacement frequency is essentially “under-predicting” the

shock wave frequency, and thus the WA region is “falling behind” the forward moving shock.

This lack of agreement between the shock wave and moving window becomes more pro-

nounced as the input shock velocity increases. These results again show that the empirical

linear EOS parameters are ill-suited for our 1D framework.

Figure 6.2: Position vs. time of the SWF for various input shock velocities using the EAM
potential and Langevin thermostat. These were produced using the shock EOS parameters
from literature [1].

A final plot showing the discrepancy between the input and MD shock velocity can be

seen in Fig. 6.3. Here, we plot the average momentum of the entire domain vs. time for the
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five different input shock velocities mentioned earlier. We display the average momentum of

the five trials with solid lines up until the point where the shock wave impinges upon the right

WA/CA interface. After this point, the data becomes invalid. We then extrapolate the average

momentum up to 3,000 ps (assuming an infinite domain) using a linear fit which is represented

in the plot by the dotted lines. From this linear fit, we obtain a linear relation between the

average momentum and time for each shock wave trial. We observe that the slopes of the linear

equations are non-zero and increase with increasing shock input velocity. Ideally, these slopes

would be zero because the shock front would remain at the center of the WA region, and thus

the average particle velocity of the domain would remain constant. Since this is not the case,

we conclude that the shocks are propagating forward as the simulation evolves in time. In the

next section, we produce a 1D linear relation between the SWF velocity and particle velocity

to counteract these issues.

Figure 6.3: Average momentum vs. time of the entire domain for various input shock velocities
using the EAM potential and Langevin thermostat. These simulations were produced using the
EOS parameters from literature [1].

6.2 New EOS calculations

To derive new empirical parameters for the linear shock EOS, we analyze moving window

shock simulations using all three potentials and both thermostats for the following input shock
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velocities: 47, 50, 54, 58, and 60 Å/ps. Specifically, we track the position of the SWF as well

as the mean particle velocity behind the SWF until the shock impinges upon the right WA/CA

interface (analysis is invalid after this point). In Fig. 6.4, we observe a snapshot at 35 ps of

a propagating shock with an input velocity of 60 Å/ps. We observe four main components to

this shock plot: the mean particle velocity behind the SWF (v+) derived from Eq. (2.13), the

actual mean particle velocity behind the SWF, the position of the SWF, and the mean particle

velocity input by the user in the un-shocked material (v−). It can be observed that the actual v+

is slightly higher than the analytical v+ which results in the actual ε+ in the shocked material

being higher than the analytical ε+. This phenomenon causes the moving window replacement

frequency to under-predict the shock wave frequency, and this results in a forward propagat-

ing shock wave. Therefore, because of the incorrect linear EOS parameters, the actual shock

parameters (v+, ε+, and US) are different from their corresponding analytical values.

Figure 6.4: Snapshot at 35 ps of a propagating shock with an input shock velocity of 60 Å/ps.

We plot the average shock velocity vs. particle velocity of the five shock wave trials for

each of the potentials and thermostats. These results can be seen in Fig. 6.5. The slope of

each linear fit is the new S value while the y-intercept is the new C0 value. The Langevin

and Nose-Hoover thermostats produce nearly identical results, so we will only analyze the

results obtained using the Langevin thermostat. We observe that the EAM and modified Morse

potentials produce the most accurate values when compared to the original EOS parameters.
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EAM produces C0 and S values of approximately 35.77 Å/ps and 2.84 respectively while

Morse produces values of 43.56 Å/ps and 2.57 respectively. Hence, EAM slightly under-

predicts while Morse slightly over-predicts the original C0 value of 39.4 Å/ps. The S value for

materials is typically between 1 and 2, so we attribute the difference in our calculations to 1D

effects. In contrast to EAM and Morse, the LJ potential produces very inaccurate results, giving

C0 and S values of 55.68 Å/ps and 4.01 respectively. Therefore, we discard the LJ results and

conclude that both the EAM and modified Morse potentials are best suited for this framework.

Moving window shock simulations using the new EOS parameters for the EAM potential and

Langevin thermostat are presented in Ch. 6.3.

(a)

(b)

Figure 6.5: Calculations of the new empirical EOS parameters for all three potentials with (a)
Langevin and (b) Nose-Hoover thermostats. The slope of each equation is the new S value and
the y-intercept is the new C0 value.
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6.3 Moving window simulations with new EOS

In Fig. 6.6, we present still shots for a propagating shock with an input shock velocity of 50

Å/ps. This simulation uses the EAM potential with the Langevin thermostat, and we introduce

the new EOS parameters derived in Ch. 6.2 into Eq. (2.13). We again utilize a 10,000 atom

domain with 100 atoms in each CA region, and we employ periodic boundary conditions as

described in Ch. 3.1. As before, we overlay the initial shock wave with its later positions

at 100 ps increments and thus show the evolution in time of the shock wave over a period of

1,000 ps. With these simulations, we observe much better agreement between the input shock

velocity and simulated shock velocity from the moving window atomistic method. Comparing

Fig. 6.6 with Fig. 6.1, it is apparent that when using the new EOS parameters, the midpoint

of the shock front maintains its position at the center of the WA region for a much longer time

than when using the original EOS parameters. Therefore, the atomistic domain is now properly

“following” the propagating shock.

Figure 6.6: Propagation of a shock wave using the EAM potential with the Langevin thermostat
and incorporating the new EOS parameters (US = 50 Å/ps).

This increased agreement between the moving window atom replacement frequency and

the shock wave frequency can also be represented by plotting the average momentum of the 1D

chain vs. time as seen in Fig. 6.7. As before, the solid lines represent the calculated momenta
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while the dotted lines represent the linear fits. From Fig. 6.7, we observe that each shock wave

initially drifts to the left before either maintaining its position in the center or drifting steadily

to the right. Comparing this plot to Fig. 6.3, it is apparent that the slopes of the linear fits for

all five shock wave trials have decreased significantly, and thus the average particle velocity

of the system is noticeably more constant over time than previously observed. This indicates

that the shocks simulated using the new EOS parameters remain relatively stationary in the

WA region much longer than the shocks presented in Ch. 6.1. Therefore, the empirical EOS

parameters derived in Ch. 6.2 produce shock speeds which closely match their corresponding

input shock speed (US). We are thus able to model steady state shock wave propagation through

the atomistic framework for a protracted amount of time.

Figure 6.7: Average momentum vs. time of the entire domain for various input shock velocities
using the EAM potential and Langevin thermostat. These simulations were produced using the
EOS parameters derived in Ch. 6.2.

For each of these shock wave simulations, we do observe an increase in the shock thickness

over time. This effect is evident in Fig. 6.6. Although the midpoint of the shock front remains

relatively stationary, the shock “spreads out” across the WA region at higher time steps. This is

a consequence of the shock developing a structure as it propagates. A structured shock wave is

a well-established and characterized phenomenon [95]. As such, care must be taken to ensure

that the WA region is sufficiently large to account for the entire structured shock. Otherwise, the

shock wave could potentially ‘leak’ out of the WA region and start impinging on the WA/CA
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interfaces. To understand this phenomenon further, we increase the domain size of the WA

region and perform additional shock simulations with the new EOS parameters. These results

are presented in Ch. 6.4.

6.4 Effect of domain size

As we saw in Ch. 6.3, the shock wave was developing a structure and exhibiting a length scale.

In [95], Chhabildas and Assay calculate an upper limit of 3.0 ns and a lower limit of 0.03 ns

for the shock rise time (RTS) in Cu. Using the new EOS, we perform shock simulations using

the following shock input velocities: 48, 50, 54, 58, and 60 Å/ps. Assuming the upper limit of

3.0 ns for the shock rise time as well as the highest shock wave velocity of 60 Å/ps, we can

obtain a maximum value for the shock thickness (TS) as follows:

TS = US ×RTS = 60Å/ps× 3, 000ps = 180, 000Å (6.2)

Since our previous framework contained only 10,000 atoms with an equilibrium spacing of

2.556 Å between atoms, the domain may not have been large enough to allow the shock to

completely equilibrate. Hence, we increase the domain size to 80,000 atoms (∼ 204, 500 Å)

and perform shock simulations with the new EOS. Results for input shock velocities of 50 and

60 Å/ps respectively can be seen in Fig. 6.8.

(a) (b)

Figure 6.8: Propagation of the SWF using the EAM potential with the Langevin thermostat for
input shock velocities of 50 and 60 Å/ps. The atomistic domain contains 80,000 total atoms.
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For both shock wave trials, we clearly observe the shock wave maintaining its position at

the center of the WA region over time. We can also see the efficacy of the moving window in

Fig. 6.9. Here, we plot the average momentum of the 80,000 atom domain vs. time for the first

2 ns. It can be observed that the average momentum stabilizes within 750 − 1000 ps for all

the shock speeds. This is when the shock is achieving a structure. After the initial stabilization

period, the shock achieves steady state with the moving window adding and removing atoms

at regular intervals. A very slow decline in average momentum is observed after the initial

stabilization period. This damping is attributed to the numerical errors in the algorithm and

second-order errors in the new equation of state. Further corrections to the equation of state

as well as a reduction in the time step for the integration algorithm should reduce this slow

damping.

Figure 6.9: Average momentum vs. time of the entire domain for five different input shock
velocities using the EAM potential and Langevin thermostat. The domain contains 80,000 total
atoms.
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Chapter 7

Conclusion

The propagation of shock waves in homogeneous solids has been extensively studied [2]. Shock

waves typically occur in materials subjected to high strain rate loading conditions, and the

shock response of a material at any length scale is inextricably linked to its response at lower

length scales. Shock response of materials has been modeled since the early 70s using purely

atomistic methods, but such methods suffer from domain boundary effects and unrealistic strain

rates [1]. Concurrent multiscale methods have been developed since the early 90s in which the

domain is divided into a coarse-scaled (continuum) region and a fine-scaled (atomistic) region.

While such schemes have been successful in modeling material defects and their motion, they

have not been extended to model shock propagation through materials. To model shock wave

propagation using concurrent multiscale methods, the atomistic domain must move along with

the shock wave.

In this paper, we developed a one-dimensional moving window atomistic framework to

model long-time steady state shock wave propagation. The framework is composed of a win-

dow region governed by classic MD equations containing the shock wave. This is flanked by

boundary regions governed by continuum shock states. The motion of the window region is

achieved by adding/removing atoms from/to the boundary region to/from the window region.

In Chs. 2 and 3, we introduced the one-dimensional formulation and a classic single wave

Riemann problem as well as implemented two thermostats and three potentials into the frame-

work. We introduced the moving window formulation and presented a detailed explanation of

this scheme in Ch. 4.
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In Ch. 5, we performed three sets of studies to verify the implementation of the ther-

mostats, potential functions, and A/C interfaces respectively. First, in Ch. 5.1, we verified

that the Langevin and Nose-Hoover thermostats preserved the system at a constant tempera-

ture (canonical NVT ensemble). We observed that regardless of the potential function used,

both thermostats maintained the system at the mean input temperature for the entire run-time

of 3,000 ps. Next, in Ch. 5.2, we verified that the three potential functions could accurately

represent mechanical properties of the 1D framework. This was accomplished by computing

the tangent modulus using the LJ and Morse potentials and computing the bulk modulus using

the EAM potential. Both the LJ and Morse potentials produced accurate tangent moduli for

temperatures ranging from 0 - 450 K, and the EAM potential produced an accurate cohesive

energy and bulk modulus at 0 K. Finally, in Ch. 5.3, we verified that there was smooth in-

formation transfer between the outer continuum atoms and inner window atoms. We observed

that regardless of the thermostat used, all three potentials maintained the entire domain at the

mean input particle velocity, and the system did not produce any large traveling waves for the

entire run time of 3,000 ps. From these results, we concluded that our atomistic framework was

properly implemented.

In Ch. 6, we used the moving window framework to study steady state shock wave prop-

agation in copper. The state of the unshocked material was chosen to be unstressed, at rest,

and at room temperature. Using an experimentally observed linear law, jump equations, and

a prescribed shock velocity, the state of the shocked material was obtained. It was observed

that even with the prescribed window speed being equal to the chosen shock speed, the actual

shock contained within the window region nevertheless drifted. Next, we used the framework

to obtain corrections to the linear law in a one-dimensional setting. These corrections were

then used to obtain a new equation of state and new continuum states for the boundary regions.

Finally, large-domain simulations were conducted to ensure that the entire shock width was

contained within the window region. It was observed that the framework was successful in

capturing long-time steady state motion of the shock wave.

It should be emphasized that this work is not truly atomistic/continuum due to the absence

of a classical continuum region with finite element type mesh points. Rather, it serves as a proof
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of concept of a movng window technique that can be extended to a classic concurrent multiscale

scheme in three dimensions. Additionally, it provides evidence for the ability of the moving

window atomistic framework to simulate propagating shock waves. More work is needed to

understand the efficacy of this type of MD shock wave modeling in higher dimensions. Such a

multi-dimensional framework could be used to study shock wave scattering and microstructural

changes upon a shock’s interaction with an interface. Finally, this work also demonstrates the

ability to use such a framework to obtain shock kinetic relations.
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