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Chapter 1

Introduction

The Lattice Gas model and Lattice Boltzmann model are methods for simulating

fluids flows. The flow of incompressible fliuds can be described by the Navier-Stokes

equation

∂u

∂t
+ (u ·∇)u = −∇P + ν∇2u (1.1)

and the continuity equation

∇ · u = 0 (1.2)

where u is the velocity, P = p/ρ0 the kinematic pressure, p the pressure, ρ0 the constant

mass density and ν = η/ρ0 the kinematic shear viscosity, η the dynamic shear viscosity.

The Lattice Boltzmann model is derived from Lattice Gas model. These two models

are different from models such as finite difference, finite volume, and finite element which

are based on the discretization of partial differential equations (top-down models [1]).

These two models are based on a discrete microscopic model which conserves desired

quantities (such as mass and momentum); then the partial differential equations are

derived by multi-scale analysis (bottom-up models).

First introduced in 1973, by Hardy, de Pazzis and Pomeau (HPP) [2], the HPP

model is a Lattice Gas model. It simulates the microscopic behavior of the fluid utilizing

a square grid. The basic idea is to create a simple Cellular Automaton obeying nothing

but conservation laws at a microscopic level that was able to reproduce the complexity of

real fluid flows. Fluid particles of identical mass are only allowed to travel on the lattice
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at unit speed. All lattice sites, which are the intersections of the lattice, are exclusive.

This means that only one particle is allowed to travel at each of the four directions of

one site. This gives a maximum of 4 particles at each site. Each site can take only a

finite number of states, actually 24 = 16 states. At each time step, collision occurs at

each site, according to a collision rule which conserves the density and the momentum.

Then particles travel along a straight line (free streaming) until they meet some other

particle or the boundary.

This model is friendly to computer, since only a 4-bit variable is needed, and only

logical operations are required. Also, only the information from the four neighbours are

needed at each collision and streaming, this model is easy to parallelize. Although the

calculations that the HPP requires are simple, it leads to a macroscopical anisotropical

Navier-Stokes equation. This defect prevents the HPP from being applied to most fluid

problems. In 1986 Frisch, Hasslacher and Pomeau (FHP) [3] introduced a lattice gas

model based on a hexagonal grid. This grid change made the FHP model exhibit isotropy.

Details of the FHP are discussed and several implementations are presented in the next

chapter.

Similar to the HPP, logical operations made the FHP model easy to implement on

computers. Now the biggest problem of the cellular automata is the noise, since it is based

on a Fermi-Dirac distribution of the equilibrium population because of the exclusion

principle. The Fermi-Dirac distruibution is a distribution that applies to particles called

fermions. Fermions have half-integral values of the quantum mechanical property called

spin and are “antisocial” in the sense that two fermions cannot exist in the same state.

Protons, neutrons, electrons, and many other elementary particles are fermions. As we
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will see in the next chapter, the results of the FHP are very noisy. Ensemble average and

space average should both be used. This may result in a grid size thousand times larger

than the original problem. For example, if the final solution on a 100×100 grid is needed,

averaging on 10×10 cells and ensemble averaging on 10 experiments leads to calculations

10 times the size of a 1000 × 1000 grid! The lack of Galilean invariance is another big

problem of the FHP. The collision rules can be written in a look-up table. For the FHP

model, this table should have a size of 27 × 7. For multi-dimensional simulations, the

huge look-up table associated with the collision rules makes this almost impossible.

The Lattice Boltzmann model overcomes these defects very well. Instead of using

boolean variables at each site, the Lattice Boltzmann model uses real numbers. The first

model, proposed by McNamara and Zanetti [4], replaced the boolean variables with their

ensemble average. The statistical noise is greatly reduced. After that the linear collision

operator [5] came into being and then the enhanced collision rule [6]. The breakthrough

is the single relaxation time approximation, known as the Lattice BGK model, named

after Bhatnagar, Gross, and Krook [7]. This model dramatically reduces computation

and good results are obtained in various applications. In this thesis, we will discuss in

detail the Lattice BGK model. Simulations up to Reynolds number 1000 are presented.
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Chapter 2

The FHP Model

2.1 Basic model

Figure 2.1: The hexagonal grid. One site can occupy a maximum of 7 particles.

The Lattice Gas Cellular Automata simulates molecular collision in a discretized

fashion. Here let us consider a hexagonal grid shown in Figure 2.1. Each site is sur-

rounded by 6 neighbours, connected by unit vectors

ei = (sin(
π

3
(i− 1)), cos(π

3
(i− 1))), i = 1, ..., 6. (2.1)

Exclusion principles allow a maximum of 7 particles at one site, one moving particle

in each of the 6 directions, together with a rest particle in the middle. Here we use

an occupation boolean variable ni(x, t), i = 0, 1, ..., 6 (0 stands for the rest particle) to

indicate particle presence or non-presence at the ith direction of site x at time t. Thus a
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7-bit variable is enough to carry the information at one site. All particles have the same

mass and the same speed.

One time step consists of a collision and a streaming. Collision only occurs at the

sites, while streaming takes place on the connection between each two sites. The collision

rules conserve mass and momentum. Figure 2.2 shows the basic set of collision rules [8].

The left column are the in-states and the right are the out-states. In-state means that

particles are moving towards the center of the site. After the collision follows the out-

state, particles then move away from the center of the site and begin streaming. So a

full time step is:

in-state =⇒ collision =⇒ out-state =⇒ streaming =⇒ in-state.

By rotating, flipping, and combining these 7 rules, one can get a full set of 128 collision

rules. Notice that some in-states will lead to two equivalent out-states. It is not necessary

to pick an out-state randomly at every site. Notice that picking a random number is

very time consuming. Instead, one can pick a single random boolean variable for all the

sites at one time step.

Compared to the original infinite number of traveling directions in the p.d e., the 6

directions model lacks degrees of freedom, yet it can display all the complexities of fliud

phenomema [9]. This is the simplest isotropic model. By limiting the types of collision,

the FHP can be divided into three types. The FHP-I only allows collisions of type (a)

and (b). No rest particle is present. Types of collision other than (a) and (b) are replaced

by simple streamig as if the particles don’t collide at all. FHP-II adds the rest particle,

together with collision type (c), (d), and (e). FHP-III includes all types of collisions.
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Figure 2.2: FHP collision rule
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A no-slip boundary condition can be applied by a bounce back scheme, which means

particles that hit the boundary at any angle should move back in the opposite direction.

Reflection will lead to a slip boundary. The Dirichelet boundary condition can be set as

a random variable on the boundary with a probability distuibution indicating the value

at the boundary, then applying the collision followed by the bounce back scheme.

2.2 Macroscopic quantities

Noise is the biggest problem of the FHP model. Hence both space average and

ensemble average should be used. The space average is achieved by averaging on small

cells, for example, 16× 16 cells. In Figure 2.4 we present an experiment of driven cavity

flow using FHP-III. We used a 200×240 grid. Since the grid is hexagonal, we take space

average on a 10× 12 cell. This is close to a square, which then gives us a 20× 20 square

grid.

The density is given by ρ =
P
i
ni. And ρ0 is the mean density, which is the average

on the whole grid.

Here are some model-dependent quantities derived by Frisch et al. [3] for the three

types of FHP models.

FHP-I FHP-II FHP-III

d ρ0/6 ρ0/7 ρ0/7

cs
1√
2

q
3
7

q
3
7

ν 1
12

1
d(1−d)3 −

1
8

1
28

1
d(1−d)3

1
1−4d/7 −

1
8

1
28

1
d(1−d)

1
1−8d(1−d)/7 −

1
8
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where d is the mean density per link, cs is the speed of sound, and ν is the kinematic

viscosity.

2.3 Implementation

The information above is enough to write a code. Here we talk about the implemen-

tation of the FHP-III model. The model problem is a driven cavity flow. For simplicity,

we use Matlab as programming language.

2.3.1 Data structure

We number the sites of the grid from left to right, and from top to bottom. Notice

the odd rows have one more site than the even rows. A m × n grid is a grid that has

n+ 1 sites on odd rows and n sites on even rows, and a total number of m+ 1 odd and

even rows. Figure 2.3 shows a 4× 3 grid.

Figure 2.3: A 4× 3 grid example.
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As we discussed in the last section, a 7-bit variable is enough to carry all the in-

formation at one site, we need an array that has length of the total number of sites,

and each entry is a 7-bit variable. Let M(n) be this array and n be the site number

corresponding to the position x. In Matlab, you can use an integer from 0 to 127 as a

7-bit variable. (Do not use an array with 7 entries, it is too slow!) Here we set

ni(x, t) = sgn(M(n) & 2i−1), i = 1, .., 6 (2.2)

n0(x, t) = sgn(M(n) & 26)

where & is the logical operation "and", sgn() is the sign function. This means the num-

ber 20, 21, 22, 23, 24, 25, 26 indicate the presence of the 1st, 2nd, 3rd, 4th, 5th, 6th direction

particle and the rest particle, respectively. Most of the times, M(n) is a combination of

the 7 numbers.

2.3.2 Program structure

The main function give all the information, including the size of the grid, and the

characterisic speed for the driven cavity flow. Three subroutines would be created, the

initialization, the collision and the streaming. The collision and the streaming should be

in a loop controlled by a stop criterion specified. Here is the structure:

Initialization

for i = 1 to "ensemble average number"

for j = 1 to "specified number of time steps"

Create a random boolean variable

9



Streaming

Collision

end

end

In the initialization, the collision look-up table and the array M are created. Then

we initialize each site of the grid by creating one particle randomly at each of the 7

positions. In the streaming, most of the work is for the bounce back scheme at the

boundary. For a driven cavity flow, the boundary condition at the top boundary can be

set as a random variable on the boundary with a probability distuibution indicating the

value. For example, suppose the characteristic speed is 0.8 (which is less than 1). Then

M(n) at the top boundary can be reset as M(n) = X, where X is a boolean random

variable satisfying Pr(X = 1) = 0.8. In the collision, just refer to the collision look-up

table [Appendix A] created in the initialization, find out the out-state corresponding to

the in-state for each site, use the one indicated by the random boolean variable created.

2.3.3 Results

Here are some pictures of the driven cavity flow experiment. The Reynolds number

turns out to be 934. The speed on the top is set to be 1. We compare the result with a

Lattice BGK model with the same Reynolds number. Details of the LBM are presented

in the next section. From the picture, the noise is clearly visible.
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Figure 2.4: A driven cavity example for the FHP model. The Reynolds number is 934.
Left column: results of FHP. Middle column: results of FHP with an ensemble average
on 10 experiments. Right column: results of Lattice BGK model for comparison.
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Chapter 3

The Lattice BGK Model

3.1 Basic model

Let us consider again the hexagonal grid. This time, the occupation number is

replaced by its ensemble average value, or, the particle distribution function fi(x, t).

The meaning of the function fi(x, t) is the probability of finding a particle moving in

the ith direction of the site x at time t. The collision rules in FHP are replaced with

a collision operator Ωi, and the particle distribution function should satisfy the Lattice

Boltzmann equation

fi(x+ ei, t+ 1)− fi(x, t) = Ωi. (3.1)

This collision operator has lots of forms. Here we talk about the simplest one, the

BGK single relaxation time model. Introduce the single relaxation parameter τ and the

equilibrium distribution function feqi (x, t). By assuming that the particle distribution

function approaches the equilibrium state at a constant rate, we get

Ωi = −
1

τ
(fi − feqi ). (3.2)

This gives us the equation

fi(x+ ei, t+ 1) = (1− w)fi(x, t) + wfeqi (x, t) (3.3)

12



where the weight w = 1
τ . The equilibrium distribution function has the form

feqi (x, t) = ρ(x, t)

µ
1− z

6
+

D

6c2
(ei · u) +

D(D + 2)

12c4
(ei · u)2 −

Du2

12c2

¶
, i = 1, ..., 6 (3.4)

feq0 (x, t) = ρ(x, t)(z − u2

c2
) (3.5)

where ρ(x, t) =
P
i
fi is the density. Here z is a parameter, we choose z = 1

2 . Also D is

the dimension, where D = 2. c = |ei|, here c = 1. And the speed of sound cs is controlled

by the parameter z by

cs =

r
1− z

2
. (3.6)

A given kinematic viscosity can be achieved by choosing a proper relaxation parameter

τ from the relation

ν =
c2

D + 2

µ
τ − 1

2

¶
. (3.7)

3.2 The Navier-Stokes

3.2.1 The conservation laws

From the definition of the unit vectors ei, one can get the following equations [11].

13



X
i

eiα = 0 (3.8)

X
i

eiαeiβ =
c2b

D
δαβ (3.9)X

i

eiαeiβeiγ = 0 (3.10)

X
i

eiαeiβeiγeiδ =
c4b

D(D + 2)
(δαβδγδ + δαγδβδ + δαδδβγ) (3.11)X

i

eiαeiβeiγeiδei = 0 (3.12)

where eiα stands for the α direction component (one of the i, j directions on the 2

dimentional plane) of the unit vector ei. Using the first two, one can obtain the moments

of the equilibrium distribution function. First sum the equilibrium distribution function

and get conservation of mass and momentum

X
i

feqi = ρ (3.13)

X
i

feqi eiα = ρuα. (3.14)

Also, from the rest of the equations, one gets

X
i

feqi eiαeiβ =
ρ(1− z)c2

D
δαβ + ρuαuβ (3.15)

X
i

feqi eiαeiβeiγ =
ρc2

D + 2
(uαδβγ + uβδαγ + uγδαβ). (3.16)
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3.2.2 The Chapman-Enskog expansion

The distribution funcition can be expanded as follows

fi = f
(0)
i + f

(1)
i + 2f

(2)
i + ... (3.17)

where | | ¿ 1. Here we can use the Knudsen number Kn as . The Knudsen number is

defined as

Kn =
λ

L

where λ is the mean free path, and L is the characteristic length. One can think of this

expansion of the distribution function (f) as an equilibrium distribution function (f (0))

together with some pertubations (f (1), f (2)...) of higher order in . We also expand x

and t as

x =
x1
+ ..., t =

t1
+

t2
2
+ ... (3.18)

where x1 = o( ), t1 = o( ), t2 = o( 2). In this case, one get

∂

∂xα
=

∂

∂x1α
+ ..., (3.19)

∂

∂t
=

∂

∂t1
+ 2 ∂

∂t2
+ ... (3.20)

Now we perform a Taylor expension on the Lattice Boltzmann equation 3.1 in both space

and time, we obtain

"µ
∂

∂t
+ eiα

∂

∂xα

¶
+
1

2

µ
∂

∂t
+ eiα

∂

∂xα

¶2#
fi(x, t) = Ωi. (3.21)

15



Notice that Einstein summation is used. So eiα
∂

∂xα
=

P
α=1,2

eiα
∂

∂xα
. Using the expansions

of f,
∂

∂xα
,
∂

∂t
, together with equation 3.2, we get

"µ
∂

∂t1
+ 2 ∂

∂t2
+ eiα

∂

∂x1α

¶
+
1

2

µ
∂

∂t1
+ 2 ∂

∂t2
+ eiα

∂

∂x1α

¶2#
(3.22)

×
³
f
(0)
i + f

(1)
i + 2f

(2)
i

´
= −1

τ
(f
(0)
i + f

(1)
i + 2f

(2)
i − feqi ).

Set the 0th order approximation f
(0)
i to be the equilibrium distribution function feqi .

The conservation of mass and momentum requires that
P
i
f
(k)
i = 0 and

P
i
f
(k)
i eiα = 0,

k = 1, 2. From these equations to first-order in we get

∂

∂t1
f
(0)
i + eiα

∂

∂x1α
f
(0)
i = −f

(1)
i

τ
. (3.23)

Summing over i and from equation 3.13 and 3.14 we get

∂ρ

∂t1
+

∂

∂x1α
ρuα = 0. (3.24)

Now multiply equation 3.23 by the unit vectors eiβ and again sum over i, using equation

3.15 gives

∂

∂t1
ρuβ +

∂

∂x1α
ρuαuβ −

∂

∂x1α

ρ(1− z)c2

D
δαβ = 0. (3.25)

From equation 3.22 to second-order in and by equation 3.23 we get

∙
∂

∂t2
+
1

2

∂

∂t1

µ
∂

∂t1
+ eiα

∂

∂x1α

¶
+
1

2
eiα

∂

∂x1α

µ
∂

∂t1
+ eiβ

∂

∂x1β

¶¸
f
(0)
i

+

µ
∂

∂t1
+ eiα

∂

∂x1α

¶
f
(1)
i = −1

τ
f
(2)
i . (3.26)
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Summing over i and using equation 3.24, all
∂

∂t1
+ eiα

∂

∂x1α
vanished, and one gets

∂

∂t2
ρ = 0.

Again multiplying the equation by a unit vector eiγ gives the following

∙
∂

∂t2
eiγ +

1

2

∂

∂t1

µ
∂

∂t1
eiγ + eiαeiγ

∂

∂x1α

¶
+
1

2
eiαeiγ

∂

∂x1α

µ
∂

∂t1
+ eiα

∂

∂x1α

¶¸
f
(0)
i (3.27)

+

µ
∂

∂t1
eiγ + eiαeiγ

∂

∂x1α

¶
f
(1)
i = −1

τ
f
(2)
i .

By multiplying equation 3.23 by eiαeiγ
∂

∂x1α
, one can rewrite the second term of f (1)i as

∂

∂x1α
eiαeiγf

(1)
i = −τ

µ
∂

∂t1

∂

∂x1α
eiαeiγf

(0)
i +

∂

∂x1β

∂

∂x1α
eiαeiβeiγf

(0)
i

¶
. (3.28)

Combining this term with the third term of f (0)i , one gets

∙
∂

∂t2
eiγ +

1

2

∂

∂t1

∂

∂t1
eiγ + eiαeiγ

∂

∂x1α
−µ

τ − 1
2

¶µ
∂

∂t1

∂

∂x1α
eiαeiγ +

∂

∂x1β

∂

∂x1α
eiαeiβeiγ

¶¸
f
(0)
i +

∂

∂t1
eiγf

(1)
i

= −1
τ
f
(2)
i .

(3.29)

Summing over i, the right-hand side is 0. The second term of f (0)i is 0 by equation 3.25.

The term of f (1)i is 0 by the conservation of momentum requirement. The third term

of f (0)i can be obtained by equation 3.15 to the order O(u) and then converting time
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derivatives into spatial derivatives using equation 3.24, we get

∂

∂t2
ρuγ =

µ
τ − 1

2

¶ ∙
∂

∂t1

∂

∂x1α

ρ(1− z)c2

D
δαγ

+
∂

∂x1α

∂

∂x1β

ρc2

D + 2
(uαδβγ + uβδαγ + uγδαβ)

¸
=

µ
τ − 1

2

¶ ∙
∂

∂x1α

∂

∂x1α

ρc2

D + 2
uγ

+
∂

∂x1γ

µµ
2c2

D + 2
− (1− z)c2

D

¶
∂

∂x1α
ρuα

¶¸
. (3.30)

By setting the kinematic shear viscosity ν =
¡
τ − 1

2

¢ c2

D + 2
and the kinematic bulk

viscosity ς =
¡
τ − 1

2

¢µ 2c2

D + 2
− (1− z)c2

D

¶
, the above equation becomes

∂

∂t2
ρuγ = ν

∂2

∂x21α
ρuγ +

∂

∂x1γ

µ
ς

∂

∂x1α
ρuα

¶
. (3.31)

Using all these equations (provided above), one can show that the Navier-Stokes equation

∂ρ

∂t
uα +

∂

∂xβ
ρuβuα = −

∂

∂xβ

∙
ρ(1− z)c2

D
δαβ

¸
+ ν

∂2

∂x2β
ρuα +

∂

∂xα

µ
ς

∂

∂xβ
ρuβ

¶
(3.32)

and the continuity equation

∂ρ

∂t
+

∂

∂xα
ρuα = 0 (3.33)

are satisfied. For an incompressible flow, these two equations reduce to equation (1.1)

and (1.2).
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3.3 Boundary and initial conditions

The bounce back scheme is still good for the no-slip boundary condition. Bounce

back boundary conditions only give first-order accuracy. A Dirichlet boundary condition

can be achieved by solving the system of equations at the boundary sites

1

2
f1 + f2 +

1

2
f3 −

1

2
f4 − f5 −

1

2
f6 = ρux (3.34)

√
3

2
(f1 − f3 − f4 + f6) = ρuy

where u = (ux, uy) is the velocity vector. For example, in the simulation of a driven

cavity flow, assume the top boundary has the speed u = (speed, 0). The f1, f6 are from

the inside sites, and we can keep f2, f5 as constants. Only f3, f4 are unknowns. This is

a linear system of equations involving two unknowns. Notice that when u = (0, 0), it is

a bounce back scheme.

The left boundary shown in Figure 3.1 is not smooth in a microscopic view because

of the hexagonal structure of the grid. But it is smooth enough in a macroscopic view.

One can take the macroscopic boundary as the average of this boundary.

For initial conditions, one may use the equilibrium distribution from the given val-

ues of ρ and u. Bad initial distribution, for example, far away from the equilibrium

distribution, will make the model unstable, and eventually lead to blow up.

3.4 Implementation

Let us do a driven cavity flow again. This time, an array of 7 floating-point variable

is needed for the information at one site. So we create a T × 7 matrix M , where T is
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Figure 3.1: Left boundary of a hexagonal grid.

the total number of sites. We number the sites the same way as in FHP. The program

structure is also pretty much the same as in FHP, except in the LBGK model, the

collision and the streaming are combined together by the Lattice Boltzmann equation.

The equilibrium distribution function is a mapping from the given ρ and u to the matrix

M . So first we can use this to initialize M . In the collision, we calculate the ρ and u by

ρ(x, t) =
X
i

M(n, i) (3.35)

ux(x, t) = M(n) · eix

uy(x, t) = M(n) · eiy
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where n is the number of the site corresponding to x, and ei = (sin(
π
3 (i− 1)), cos(

π
3 (i−

1))), which is the link to the 6 neighbour sites. Then apply the weighted equilibrium

distribution function (equation 3.3) with a proper τ .

3.5 Results and data analysis

3.5.1 Driven cavity

Here we present a driven cavity example again. In figures 3.2, 3.3, 3.4, 3.5, and

3.7, we give the velocity vectors (left) and velocity contour (right) at the steady state

for Reynolds number 10, 100, 200, 400 and 800. We give the result of Ghia, Ghia,

and Shin [12] for Reynolds number at 400 for comparison (Their computations were

performed using the time-marching capabilities of WIND to approach the steady-state

flow starting from the freestream conditions). We also give the velocity profiles for u

and v through the geometirc center of the cavity. For comparison, refer to Shuling Hou

and Qisu Zou et al [13].

3.5.2 Poiseuille flow

Here we also consider a Poiseuille flow example. The analytic solution is given by

Ux(y) =
G

2µ
y(d− y)

where the G is a constant pressure gradient which represents a uniform body force in

the direction of the positve x-direction, d is the width of the channel. The grid size is

120× 1000. A uniform flow comes from the left and goes out on the right. The top and
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Figure 3.2: Driven cavity at Re = 10.

Figure 3.3: Driven cavity at Re = 100.
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Figure 3.4: Driven cavity at Re = 200.

Figure 3.5: Driven cavity at Re = 400.
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Figure 3.6: Ghia-Ghia-Shin’s [12] result. The plot of the velocity contour with a Reynolds
number of 400.

Figure 3.7: Driven cavity at Re = 800.
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Figure 3.8: Dimensionless x-velocity profile at the geometry center of the cavity for
Reynolds number 10, 100, 200, 400, 800. Dashed line is the result from Ghia Ghia Shin
[12] at Reynolds number 400.
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Figure 3.9: Dimensionless y-velocity profile at the geometry center of the cavity for
Reynolds number 10, 100, 200, 400, 800. Dashed line is the result from Ghia Ghia Shin
[12] at Reynolds number 400.
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Figure 3.10: An example of a Couette flow. Above: velocity contour. Below: x-velocity
profile at x = 800. Solid line is the simulation, and dashed line is the actual solution.

bottom are no-slip boundaries. We give the x-direction velocity profile at x = 800. From

figure 3.10 one see that it is a parabolic profile.

3.5.3 Flow past a cylinder

This is an example of a uniform flow past a cylinder. This example is done on a

360× 1000 grid. The speed of the uniform flow coming from the left is 0.5. The cylinder

was placed in the center of the left with a diameter 120. The Reynolds number is 400.

The top and bottom are no-slip boundaries. As is well known that with a Reynolds
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Figure 3.11: An example of a uniform flow past a cylinder for Re = 400. Above: velocity
contour. Below: vorticity contour.

number greater than 100, the flow past a cylinder will give a Von Karman vortex street.

Here we give the figures of both velocity contour and vorticity contour at time step 5000.

Both figures show the back half of the cylinder.
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Chapter 4

Conclusions and future works

We can see from the implementations of the Lattice Gas model and Lattice Boltz-

mann model that both of these models can successfully simulate complex fluid flows.

From the structure of the FHP model, we know that it is unconditionally stable, while

it is very noisy. Large scale calculation is required in order to reduce the noise, which

makes it slower than the Lattice BGK model. Other drawbacks are lack of Galilean

invariance, and it is not good for multi-dimensional simulation. The Lattice Boltzmann

model is a better model. It is fast and it gives good simulations. Also, thanks to the

structure of this model, it is very easy to parallelize. One can divide the whole domain

into smaller subdomains; the only information that goes in between those subdomains

are the updating of information on the boundaries of those subdomains, which is a very

small amount compared to the inside part.

So one of the future works is to do a 3-D model and parallelize it. Later I will try

to do MagnetoHydroDynamic (MHD) flow which involves simulating the current using

the Lattice Boltzmann model.
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Appendices

.1 FHP collision look-up table

This is the collision look-up table. It gives the two out-states corresponding to each

of the 128 in-states (right in bracket). Refer to 2.1.1 Data structure to find the meaning

of the number of the in-states and out-states.

0 [0 0]

1 [1 1]

2 [2 2]

3 [3 3]

4 [4 4]

5 [66 66]

6 [6 6]

7 [7 7]

8 [8 8]

9 [36 18]

10 [68 68]

11 [38 69]

12 [12 12]

13 [74 22]

14 [14 14]

15 [15 15]

16 [16 16]

17 [96 96]

18 [9 36]

19 [98 37]

20 [72 72]

21 [42 42]

22 [13 74]

23 [102 75]

24 [24 24]

25 [52 104]

26 [84 44]

27 [45 54]

28 [28 28]

29 [90 108]

30 [30 30]

31 [110 110]

32 [32 32]

33 [33 33]

34 [65 65]

35 [35 35]

36 [18 9]

37 [19 98]

38 [69 11]

39 [39 39]

40 [80 80]

41 [81 50]

42 [21 21]

43 [83 101]

44 [26 84]

45 [54 27]

46 [77 86]

47 [87 87]

48 [48 48]

49 [49 49]

50 [41 81]

51 [51 51]

52 [104 25]

53 [105 114]

54 [27 45]

55 [107 107]

56 [56 56]

57 [57 57]

58 [116 89]

59 [117 117]

60 [60 60]

61 [122 122]

62 [93 93]

63 [63 63]
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64 [64 64]

65 [34 34]

66 [5 5]

67 [67 67]

68 [10 10]

69 [11 38]

70 [70 70]

71 [71 71]

72 [20 20]

73 [100 82]

74 [22 13]

75 [23 102]

76 [76 76]

77 [86 46]

78 [78 78]

79 [79 79]

80 [40 40]

81 [50 41]

82 [73 100]

83 [101 43]

84 [44 26]

85 [106 106]

86 [46 77]

87 [47 47]

88 [88 88]

89 [58 116]

90 [108 29]

91 [109 118]

92 [92 92]

93 [62 62]

94 [94 94]

95 [95 95]

96 [17 17]

97 [97 97]

98 [37 19]

99 [99 99]

100 [82 73]

101 [43 83]

102 [75 23]

103 [103 103]

104 [25 52]

105 [114 53]

106 [85 85]

107 [55 55]

108 [29 90]

109 [118 91]

110 [31 31]

111 [111 111]

112 [112 112]

113 [113 113]

114 [53 105]

115 [115 115]

116 [89 58]

117 [59 59]

118 [91 109]

119 [119 119]

120 [120 120]

121 [121 121]

122 [61 61]

123 [123 123]

124 [124 124]

125 [125 125]

126 [126 126]

127 [127 127]

.2 Partial Matlab code I: FHP streaming of a driven cavity

function StreamingDrivenCavity

global speed;
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global M;

global T;

global n;

global m_odd;

global m_even;

global k;

% Bounce back

% Top

% 1 reflect to 3

temp = bitand(M(1:n+1),1);

M(1:n+1) = M(1:n+1) + temp*(4 - 1);

% 6 reflect to 4

temp = bitand(M(1:n+1),32)/32;

M(1:n+1) = M(1:n+1) + temp*(8 - 32);

% Top-right corner

temp = bitand(M(n+1), 4)/4;

M(n+1) = M(n+1) + temp*(8 - 4);

for i = 1:2*n+1:T

% Left bounce back

temp = bitand(M(i), 32)/32;

M(i) = M(i) + temp*(4 - 32);

temp = bitand(M(i), 16)/16;
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M(i) = M(i) + temp*(2 - 16);

temp = bitand(M(i), 8)/8;

M(i) = M(i) + temp*(1 - 8);

% Right bounce back

temp = bitand(M(i+n), 1);

M(i+n) = M(i+n) + temp*(8 - 1);

temp = bitand(M(i+n), 2)/2;

M(i+n) = M(i+n) + temp*(16 - 2);

temp = bitand(M(i+n), 4)/4;

M(i+n) = M(i+n) + temp*(32 - 4);

end

% Bottom bounce back

temp = bitand(M(T-n:T), 8)/8;

M(T-n:T) = M(T-n:T) + temp*(1 - 8);

temp = bitand(M(T-n:T), 4)/4;

M(T-n:T) = M(T-n:T) + temp*(32 - 4);

% Reset boundary condition on top

%M(1:n+1) = M(1:n+1) - bitand(M(1:n+1),64) + 64;

M(1:n+1) = bitor(M(1:n+1),64);

M(1:n+1) = bitand(M(1:n+1),76);

M(1:speed:n+1) = M(1:speed:n+1) - bitand(M(1:speed:n+1), 64);

M(1:speed:n+1) = M(1:speed:n+1) - bitand(M(1:speed:n+1), 2) + 2;
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% Streaming

% Streaming on direction 3 & 6

temp1 = bitand(M(1:T-n-1), 4)/4; % 3

temp2 = bitand(M(n+2:T), 32)/32; % 6

M(1:T-n-1) = M(1:T-n-1) - temp1*4;

M(n+2:T) = M(n+2:T) - temp2*32;

M(1:T-n-1) = M(1:T-n-1) + temp2*4;

M(n+2:T) = M(n+2:T) + temp1*32;

% Streaming on direction 1 & 4

temp1 = bitand(M(n+2:T-1), 1); % 1

temp2 = bitand(M(2:T-n-1), 8)/8; % 4

M(n+2:T-1) = M(n+2:T-1) - temp1;

M(2:T-n-1) = M(2:T-n-1) - temp2*8;

M(n+2:T-1) = M(n+2:T-1) + temp2;

M(2:T-n-1) = M(2:T-n-1) + temp1*8;

% Streaming on direction 2 & 5

temp1 = bitand(M(n+2:T-n-2), 2)/2; % 2

temp2 = bitand(M(n+3:T-n-1), 16)/16; % 5

M(n+2:T-n-2) = M(n+2:T-n-2) - temp1*2;

M(n+3:T-n-1) = M(n+3:T-n-1) - temp2*16;

M(n+2:T-n-2) = M(n+2:T-n-2) + temp2*2;

M(n+3:T-n-1) = M(n+3:T-n-1) + temp1*16;
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for i = 1:m_even-1

temp1 = bitand(M(i*(2*n+1)), 2)/2;

temp2 = bitand(M(i*(2*n+1)+1), 16)/16;

M(i*(2*n+1)) = M(i*(2*n+1)) - temp1*2;

M(i*(2*n+1)) = M(i*(2*n+1)) + temp2*2;

M(i*(2*n+1)+1) = M(i*(2*n+1)+1) - temp2*16;

M(i*(2*n+1)+1) = M(i*(2*n+1)+1) + temp1*16;

temp1 = bitand(M(i*(2*n+1)+n+1), 2)/2;

temp2 = bitand(M(i*(2*n+1)+n+2), 16)/16;

M(i*(2*n+1)+n+1) = M(i*(2*n+1)+n+1) - temp1*2;

M(i*(2*n+1)+n+1) = M(i*(2*n+1)+n+1) + temp2*2;

M(i*(2*n+1)+n+2) = M(i*(2*n+1)+n+2) - temp2*16;

M(i*(2*n+1)+n+2) = M(i*(2*n+1)+n+2) + temp1*16;

end

% Interchange 14 25 36

temp1 = bitand(M(1:T), 1);

temp2 = bitand(M(1:T), 8)/8;

M(1:T) = M(1:T) - temp1 - temp2*8 + temp1*8 + temp2;

temp1 = bitand(M(n+2:T), 2)/2;

temp2 = bitand(M(n+2:T), 16)/16;

M(n+2:T) = M(n+2:T) - temp1*2 - temp2*16 + temp1*16 + temp2*2;

temp1 = bitand(M(1:T), 4)/4;
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temp2 = bitand(M(1:T), 32)/32;

M(1:T) = M(1:T) - temp1*4 - temp2*32 + temp1*32 + temp2*4;

bigskip

.3 Partial code II: Lattice BGK initialization of a driven cavity

function LBM_InitializeDrivenCavity(m,n)

global speed;

global m_odd;

m_odd = fix(m/2) + 1

global m_even;

m_even = m + 1 - m_odd

global T;

T = m_odd*(n+1) + m_even*n;

global M;

M = zeros(T,7);

global E;

E = M;

global M_temp;

M_temp = M;

global lx;
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global ly;

global e;

global c;

global i_top;

i_top = 2:n;

global i_inside; % The indices of the inside sites

i_inside = [];

for i = 1:m_even-1

i_inside = [i_inside i*(2*n+1)-n+1:i*(2*n+1)];

i_inside = [i_inside i*(2*n+1)+2:i*(2*n+1)+n];

end

i_inside = [i_inside T-2*n:T-n-1];

global i_left1; % The indices of the left boundary, except the two corners.

i_left1 = 2*n+2:2*n+1:T-2*n;

global i_left2;

i_left2 = n+2:2*n+1:T-2*n;

global i_right1; % The indices of the right boundary, except the two corners.

i_right1 = 2*n+2+n:2*n+1:T-n;

global i_right2;

i_right2 = 2*n+1:2*n+1:T-n-1;

global i_25; % The indices of the inside sites for 2 & 5 directions.

i_25 = [];

for i = 1:m_even-1
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i_25 = [i_25 i*(2*n+1)-n+2:i*(2*n+1)-1];

i_25 = [i_25 i*(2*n+1)+2:i*(2*n+1)+n];

end

i_25 = [i_25 T-2*n+1:T-n-2];

global top_eq;

% Calculate equilibrium distribution as the initial condition given by p, u

p(1:T,:) = 1;

u = zeros(T,2);

u(1:n+1,1) = speed;

t = find(p);

u(t,:) = u(t,:)./[p(t) p(t)];

u_square = u(:,1).^2 + u(:,2).^2;

d0 = 1/2;

for i = 1:6

E(:,i) = p.*((1-d0)/6 + 1/3*(e(i,:)*u’)’/c^2 + 2/3*(e(i,:)*u’)’.%

^2/c^4 - 1/6*u_square/c^2);

end

E(:,7) = p.*(d0 - u_square/c^2);

%sum(sum(E)’)/(T-n-1)

%LBM_Visualize(M)

% Do not calculate E on the bottom, left and right

E(T-n:T,:) = 0; % This result in pure streaming from the bottom boundary to
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the inside.

E(i_left1,:) = 0;

E(i_right1,:) = 0;

M = E;

top_eq = M(1:n+1,:);

.4 Partial code III: Lattice BGK collision of a driven cavity

function LBM_CollisionDrivenCavity

global speed;

speed = 0.1;

global n;

global m_odd;

m_odd = fix(m/2) + 1;

global m_even;

m_even = m + 1 - m_odd

global T;

T = m_odd*(n+1) + m_even*n;

global M;

M = zeros(T,7);

global E;
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E = M;

global M_temp;

M_temp = M;

global ly;

ly = sqrt(3)/2;

global D; % Dimension

D = 2;

global b; % # of directions

b = 6;

global d;

d = 1/2;

global c; % Unit speed

global p; % Density

global u; % Speed

global e;

e = [[0.5 ly];[1 0];[0.5 -ly];[-0.5 -ly];[-1 0];[-0.5 ly]];

e = c*e;

global i_inside;

global i_top;

global i_left1;

global i_left2;

global i_right1;

global i_right2;
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global i_25;

global top_eq;

% Calculate equilibrium distribution

p = (sum(M’))’;

u = [0.5*M(:,1)+M(:,2)+0.5*M(:,3)-0.5*M(:,4)-M(:,5)-0.5*M(:,6),

ly*M(:,1)-ly*M(:,3)-ly*M(:,4)+ly*M(:,6)];

t = find(p);

u(t,:) = u(t,:)./[p(t) p(t)];

u = c*u;

u_square = u(:,1).^2 + u(:,2).^2;

d0 = 1/2;

for i = 1:6

E(:,i) = p.*((1-d0)/6 + 1/3*(e(i,:)*u’)’/c^2 + 2/3*(e(i,:)*u’)’.%

^2/c^4 - 1/6*u_square/c^2);

end

E(:,7) = p.*(d0 - u_square/c^2);

E(T-n:T,:) = M(T-n:T,:); % This result in pure streaming from the bottom

boundary to the inside.

E(i_left1,:) = M(i_left1,:);

E(i_right1,:) = M(i_right1,:);

E(1,:) = M(1,:);

E(n+1,:) = M(n+1,:);
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E(1:n+1,:) = M(1:n+1,:);

% Collision operation

M_temp = M;

M(n+2:T,:) = 0;

tao = 1;

w = 1/tao;

% rest particle

M(:,7) = (1-w)*M_temp(:,7) + w*E(:,7);

% 3 direction

M(i_inside,3) = (1-w)*M_temp(i_inside-n-1,3) + w*E(i_inside-n-1,3);

M(i_right1,3) = (1-w)*M_temp(i_right1-n-1,3) + w*E(i_right1-n-1,3);

M(T-n+1:T,3) = (1-w)*M_temp(T-2*n:T-n-1,3) + w*E(T-2*n:T-n-1,3); % Bottom

boundary

% 6 direction

M(i_inside,6) = (1-w)*M_temp(i_inside+n+1,6) + w*E(i_inside+n+1,6);

M(i_left1,6) = (1-w)*M_temp(i_left1+n+1,6) + w*E(i_left1+n+1,6);

M(1:n,6) = (1-w)*M_temp(n+2:2*n+1,6) + w*E(n+2:2*n+1,6); % Top boundary

% 1 direction

M(i_inside,1) = (1-w)*M_temp(i_inside+n,1) + w*E(i_inside+n,1);

M(i_right1,1) = (1-w)*M_temp(i_right1+n,1) + w*E(i_right1+n,1);

M(2:n+1,1) = (1-w)*M_temp(n+2:2*n+1,1) + w*E(n+2:2*n+1,1); % Top boundary

% 4 direction
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M(i_inside,4) = (1-w)*M_temp(i_inside-n,4) + w*E(i_inside-n,4);

M(i_left1,4) = (1-w)*M_temp(i_left1-n,4) + w*E(i_left1-n,4);

M(T-n:T-1,4) = (1-w)*M_temp(T-2*n:T-n-1,4) + w*E(T-2*n:T-n-1,4); % Bottom

boundary

% 2 direction

M(i_25,2) = (1-w)*M_temp(i_25-1,2) + w*E(i_25-1,2);

M(i_right1,2) = (1-w)*M_temp(i_right1-1,2) + w*E(i_right1-1,2);

M(i_right2,2) = (1-w)*M_temp(i_right2-1,2) + w*E(i_right2-1,2);

M(i_left2,2) = (1-w)*M_temp(i_left2,5) + w*E(i_left2,5);

% 5 direction

M(i_25,5) = (1-w)*M_temp(i_25+1,5) + w*E(i_25+1,5);

M(i_left1,5) = (1-w)*M_temp(i_left1+1,5) + w*E(i_left1+1,5);

M(i_left2,5) = (1-w)*M_temp(i_left2+1,5) + w*E(i_left2+1,5);

M(i_right2,5) = (1-w)*M_temp(i_right2,2) + w*E(i_right2,2);

M(1:n+1,3) =

speed*(2*M(1:n+1,1)+M(1:n+1,2)+M(1:n+1,5)+2*M(1:n+1,6)+M(1:n+1,7)) -

M(1:n+1,2) + M(1:n+1,5) + M(1:n+1,6);

M(1:n+1,4) =

-speed*(2*M(1:n+1,1)+M(1:n+1,2)+M(1:n+1,5)+2*M(1:n+1,6)+M(1:n+1,7)) +

M(1:n+1,1) + M(1:n+1,2) - M(1:n+1,5);

% Bottom Boundary layer

M(T-2*n:T-n-1,1) = M(T-n:T-1,4);
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M(T-n:T-1,4) = 0;

M(T-2*n:T-n-1,6) = M(T-n+1:T,3);

M(T-n+1:T,3) = 0;

% Left Boundary

M(i_left1-n,1) = M(i_left1,4);

M(i_left1+1,2) = M(i_left1,5);

M(i_left1+n+1,3) = M(i_left1,6);

M(i_left1,:) = 0;

% Right Boundary

M(i_right1+n,4) = M(i_right1,1);

M(i_right1-1,5) = M(i_right1,2);

M(i_right1-n-1,6) = M(i_right1,3);

M(i_right1,:) = 0;
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