
A Practical Quaternary FPGA Architecture Using Floating Gate Memories

by

Ayokunle Fadamiro

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 2, 2020

Keywords: FPGA, LUT, multi-valued logic, floating gates, MVL memory element, FinFET

Copyright 2020 by Ayokunle Fadamiro

Approved by

Spencer Millican, Chair, Assistant Professor of Electrical and Computer Engineering
Christopher Harris Co-Chair, Assistant Professor of Electrical and Computer Engineering

Adit Singh, James B. Davis Professor of Electrical and Computer Engineering

Abstract

A new quaternary FPGA (QFPGA) architecture based on floating-gate memory ele-

ments is presented and analyzed. While technology scaling has delivered substantial FPGA

performance, consumer demands grow beyond what binary circuits can deliver. FPGAs

implementing multi-valued logic (MVL) have been explored, but previously proposed archi-

tectures rely on non-standard fabrication techniques and optimistic performance analysis.

Results show the proposed QFPGA implementation based on floating-gate memories has

competitive delay and power performance compared to equivalent binary implementations

and previous QFPGA architectures from literature when simulated in FinFET technology.

ii

Acknowledgments

I take this opportunity to express sincere thanks and heartfelt appreciation to my aca-

demic supervisors. Dr. Spencer Millican, Dr. Christopher Harris, and Dr. Adit Singh have

been a continual source of support, guidance, and encouragement throughout my graduate

program. It has been a great privilege to work with these dedicated academics and innova-

tive engineers. I especially appreciate Dr. Millican for his patience; his impact on my growth

as a researcher cannot be overstated. I acknowledge with much gratitude the financial and

career support of Dr. Jason Clark who really cares and gave me the opportunity to begin

this exciting research journey.

My uncle Dr. Henry Fadamiro has always been a pillar of support in all aspects of my

life and I would not have considered completing a Masters program at this time if not for his

timely advice and encouragement. For his unending guidance especially in tough emotional

times, I will always be grateful.

I appreciate all the unique love and care from my immediate family. My dear wife and

daughter are my biggest support, anchor, and inspiration. All the special love they shower on

me makes everything worth it. With their prayers, words, and ever so optimistic perspective,

my mum and dad give me wings, grace to become anything I dream of. I continue to benefit

from their continuous investment in my emotional, educational well being. My dear brother

and sister always found a way to remind me that they have my back. I continue to strive to

be the best I can be to inspire the best from them.

To conclude, I wish to extend my thanks to my class instructors, department professor,

my colleagues in the Samuel Ginn College of Engineering, and many friends through this

journey; for the hours of education, play, insight, and everyday learning. God bless you all.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vi

List of Tables . viii

1 Introduction . 1

2 Motivation . 3

2.1 Multi-Valued Logic (MVL) and Performance Benefits 4

2.2 Field-Programmable Gate Arrays (FPGAs) 7

2.3 Conventional FPGA Architectures . 8

2.3.1 Routing Interconnections . 8

2.3.2 Input and Output (I/O) Blocks . 9

2.3.3 Configurable Logic Blocks (CLBs) & Basic Logic Elements (BLEs) . 10

2.4 Look-Up Table (LUT) Performance . 11

3 FPGA Architectures From Literature . 13

3.1 QFPGA Architecture from Literature . 13

3.1.1 Quaternary Multiplexer (QMUX) . 14

3.1.2 Binary-to-quaternary (B2Q) Converter 15

3.1.3 Quaternary Repeater Circuit (QRC) 15

3.1.4 Quaternary Flip Flop (QFF) . 16

3.2 Practical Quaternary Multiplexer . 18

3.3 Binary FPGA Architecture . 19

4 A New Quaternary FPGA Cell With Floating-gate Memory Elements 22

4.1 Floating-gate Transistors . 22

iv

4.1.1 Programming Floating-gate Transistors 23

4.1.2 Floating-gate Transistor Modelling 24

4.2 MVL Memory Element and Drain Control Circuit 26

4.3 Proposed QFPGA Architecture . 27

5 Simulation And Evaluation of Architectures . 30

5.1 Simulation and Design Process Using Cadence Tools 30

5.1.1 Simulating the Floating-gate Transistor Model 32

5.1.2 Simulating the MVL Memory Element 32

5.1.3 Simulating Architectures . 34

5.2 Evaluation of the Architectures . 35

5.2.1 Delay Analysis . 36

5.2.2 Power Analysis . 36

5.2.3 Power Density Analysis . 36

5.2.4 Area Measurements via Layout . 36

6 Evaluation Results . 38

6.1 Previous QFPGA Architecture [1] Single BLE Evaluation 38

6.2 Proposed QFPGA Single BLE Evaluation 38

6.3 Projecting Architectures with Arithmetic Benchmarks 39

7 Conclusions and Future Work . 42

Bibliography . 43

v

List of Figures

2.1 FPGA architecture overview described in [2]. 9

2.2 Configurable Logic Element (CLB) with N BLEs, I inputs and O outputs. . . . 10

2.3 Basic Logic Element (BLE) . 11

2.4 Look-Up Table with K inputs and one output. 12

3.1 QMUX circuit from [1] . 15

3.2 B2Q Converter circuit from [1] . 16

3.3 Overview of 2-input QFPGA architecture from [1] 17

3.4 QDecoder logic structure (from [3]). Unlike typical inverters, comparators CP

and CN do not invert their binary output until the required quaternary input

voltage is observed. 18

3.5 The quaternary comparators CN and CN (from [3]) function like inverters, ex-

cept an additional diode shifts the triggering voltage of the inverters. 20

3.6 Overview of the 4-input binary FPGA architecture used for this study. 21

4.1 Cross section of a floating-gate transistor. 23

4.2 Basic schematic of a CM model [4] with a Floating-gate transistor. 25

4.3 An adapted SPICE-compatible model (from [5]) of a floating gate modifies gate

voltage of a transistor with programmed voltages. 26

vi

4.4 MVL memory element made of two connected floating gates (from Figure 4.3)

with gate controls. 27

4.5 Implementation of Proposed QFPGA. 29

5.1 Overview of the Design Process. 31

5.2 Simulation of Floating-gate Transistor Model. 33

5.3 Simulation Results of the Proposed QFPGA BLE. 35

6.1 Plots of benchmark implementations reveal a trend of area gains for the pro-

posed QFPGA BLE-based benchmarks compared with binary and [1] QFPGA

implementations. 41

vii

List of Tables

2.1 Average power calculations for transitions in binary and quaternary logic . . . 6

3.1 Identification of quaternary level groups with DLCs 14

3.2 Qdecoder Function . 19

5.1 Programmed floating node voltages for quaternary outputs. 33

6.1 Single BLE Delay, Power, Area, & Power Density 38

6.2 Area calculations for configurable logic blocks 39

6.3 Area Evaluation of Arithmetic benchmarks . 40

viii

Chapter 1

Introduction

Growing technology demands in novel computing architectures, like multi-valued logic

(MVL), necessitate programmable quaternary MVL architectures compatible with mod-

ern circuit fabrication technology. MVL designs reduce circuit area and interconnection

lengths in integrated circuits (ICs) and therefore reduces power dissipation and circuit de-

lay. When applied to FPGAs, MVL can reduce the number of interconnects by transferring

more information compared to traditional binary logic, which decreases the delay and area of

FPGA [6–8]. Additionally, MVL allows more complex circuits to be implemented with faster

speeds and less power, thus MVL becomes more relevant as transistor scaling continues.

Numerous studies proposed MVL implementations, [9–12] such as ternary (3-value

logic) [13, 14] and quaternary (4-value logic), with the latter receiving more focus [1, 3, 15].

These designs improve performance and reduce power consumption. Previous studies im-

plemented programmable quaternary logic [1, 16] (or presumed quaternary logic was pro-

grammed from another source [3]) to create a “quaternary LUT” (QLUT): when imple-

mented in a quaternary FPGA (QFPGA), these QLUTs can be controlled with quaternary

inputs and can output/store quaternary values.

While the aforementioned designs are sound in theory, their analysis and practicality

are questionable. Previous designs made use of transistors with different threshold voltages

and require numerous voltage supply rails [1] and thus pose manufacturability challenges.

Additionally, some designs did not consider the source of quaternary values in memory [3],

and optimistic timing and power simulations were used [1, 3].

1

This thesis proposes a new QFPGA BLE architecture based on practical fabrication

techniques (i.e., floating-gate transistors) and compares its performance against contempo-

raries from literature [1, 3]. To avoid favoritism to any architecture, simulatable circuit

schematics and circuit layouts for all compared FPGA architectures (the proposed archi-

tecture, the architecture from [1], and an equivalent binary) are implemented in the same

technology [17]. Comparisons consider maximum transition delays, dynamic and static power

consumption, and power density with respect to circuit areas. Unlike previous studies on

QFPGA BLE performance [1], this study considers the manufacturability of FPGA archi-

tectures by implementing circuit layouts and pessimistically simulating circuit performance.

The specific contributions of this thesis are as follows:

• A discussion of the motivation for MVL and FPGA architectures in digital/analog

circuit designs.

• A description of a unique MVL memory element based on floating-gate transistors

which is compatible with modern FinFET fabrication technology.

• A description of a QFPGA basic logic element (BLE) which can be implemented with

modern FinFET fabrication technology.

• A fair analysis of binary and quaternary FPGA architectures and a demonstration of

the utility of quaternary logic for increasing FPGA performance.

The remainder of this thesis is organized as follows: Chapter 2 motivates the need for

superior quaternary architectures while Chapter 3 discusses previous FPGA architectures. A

practical QFPGA architecture using a unique MVL memory element is presented in Chapter

4. Chapter 5 describes how the proposed architecture and quaternary/binary equivalents are

fairly simulated and evaluated. Chapter 6 presents detailed results and analysis, and this

thesis concludes with Chapter 7.

2

Chapter 2

Motivation

It is widely believed that without new design techniques, the explosive performance

benefits of Moore’s law in sub-micron process technology nodes cannot be sustained. For the

past six decades, Moore’s law has been the driving force behind fabrication technology node

scaling. Moore’s law predicted the doubling of chip transistor density (i.e., the number of

transistors in a single chip) every 18 months as a direct effect of the continuous shortening of

transistor gate lengths. Very large scale integrated circuit (VLSI) fabrication enables packing

up to billions of transistors in a single chip and accelerating performance of digital circuits in

an unprecedented manner. These shrunk transistors have reduced node capacitance and can

employ lower supply voltages to save power consumption while packing more functionality

in the same chip.

However, as transistors shrink into smaller technology nodes, fabrication companies

like Intel struggle to resolve transistor gate fabrication challenges, thus leading to increased

power consumption in sub-micron technologies that is magnified by increased gate leakage

current. At the 45nm process technology node, Intel hit the limit for transistor gate length

that was possible for normal transistor operation [18]. Subsequent shrinkage of transistor

dimensions did not include the gate length and power consumption remained high [19].

When Intel introduced FinFET (in the 22nm node), a type of transistor with better gate

control, gate leakage current was driven down while the gate length remained more or less

constant. Additionally, with massive and complex transistors circuits jammed into a chip,

power consumption due to interconnections (as a result of routing wire capacitance) exceeded

that of the transistors and became a major challenge.

3

Modern VLSI technology increasingly leans towards creative digital circuit techniques

as alternative means of decreasing power dissipation in a chip. From a circuit design per-

spective, the major factors influencing power and speed performance are transistor supply

voltage, circuit capacitance, and the number of active transistors required for a given circuit

operation. Since transistor supply voltage is dictated by process technology and is inversely

proportional to static energy consumption: (i.e., a reduction in supply voltage increases leak-

age current), the potential for energy efficient designs lies in the other two factors. A new

circuit design that reduces transistor count and capacitance due to interconnection between

transistors would achieve the desired reduction in power dissipation and pave the way for

more complex circuits while allowing more transistors to be packed on a single chip. Addi-

tionally, reducing wiring complexity means less circuit delay and faster speed performance.

2.1 Multi-Valued Logic (MVL) and Performance Benefits

Multi-valued logic (MVL) also called many-valued logic, is a digital logic paradigm

that extends the scope of classical logic by considering more than two values [20]. Classical

logic is based on the principle of bivalence: that there can be only two truth values, “true”

and “false” (also known as binary logic). MVL, like binary logic, accepts the use of truth

functionality to define states of a system, but deviates from the principle of bivalence to allow

more than two truth degrees [21]. These truth values define the radix of the system: the

radix is the number of unique digits used to represent the total number of truth values. In

digital logic design, MVL provides a broadened use of voltage or current differences between

circuit nodes. When implemented with voltages, for example, binary logic with logic levels 0

and 1 represented by the ground voltage level of 0 V and VDD respectively, can be extended

to N logic levels that exist between 0 V and VDD.

There are proven arithmetic advantages of MVL systems [22, 23] and physical benefits

relating to dynamic energy consumption [24]. [22] showed that the use of a small swing voltage

in MVL allows circuit operations to be performed at on-average lower voltages. Because

4

voltages representing MVL values are closer together compared to binary equivalents, the

average energy consumption for MVL transitions is less than binary circuits [1]. An MVL

circuit with transistors that use voltage levels closer to one another will also have faster

transistor switching and therefore better transition speeds.

Related to routing complexity, [22] showed significant savings in hardware when MVL

circuits are implemented. These savings are related to a reduction in the routing complexity

in MVL because less logic elements are required for the same circuit implementation. In

VLSI, interconnections occupy the majority of a chip. The number of interconnections

required for a N − valued logic can be reduced to 1/(logb N) (the interconnection equation)

[25], which expresses the reduction of interconnections when a b − valued logic system is

implemented as a N − valued logic system. When applied to a two dimensional silicon chip

with b as 2 (for binary logic), it gives a reduction ratio of 1/(log2 N)2. This clearly shows

potential for substantial interconnection area reduction for (K > 2)-valued logic.

Delays in digital circuits can also be reduced by considering less interconnections. The

complexity, length, and area of interconnections introduce additional resistance and capac-

itance and limit the scaling of digital circuits in VLSI. Delay induced by interconnection

resistance and capacitance are related by t α (R · C · L2) (from [26]) where L is the intercon-

nection length, R and C are the resistance and capacitance per unit length respectively. With

MVL, there is less interconnection numbers and length required for digital implementations,

thus faster circuits can be designed. With shorter interconnection lengths, there is smaller

capacitance between wires and this leads to reductions in dynamic power dissipation [27]

and cross talk noise.

Quaternary logic is a MVL of radix four that is proven to be more efficient than a

radix logic of five, six, etc., and is preferred for its easy transition between the two classical

(binary) states by adding two intermediate states between the low and high binary states. It

has been shown that quaternary logic only requires small changes in fabrication technology

to modify standard process voltage levels [25]. While quaternary logic inherits the benefits

5

of MVL, [25] mentions specific performance advantages of quaternary logic over binary logic.

The benefit of quaternary logic implementation in a case where b is 2 (binary logic) and

N is 4 for quaternary logic, using the aforementioned interconnection equation becomes

1/(log4 2) = 2 and demonstrates that quaternary logic would require at least half as many

components than binary logic for building the same digital system.

Quaternary logic will have less average dynamic power consumption compared to binary

logic due to the distance between respective voltage transitions. This can be shown with

a quick comparison of sample logic case considerations. Dynamic power consumption is

related to the node capacitance C and power supply voltage VDD. Consider binary logic

levels represented by 0 V and VDD (as 0 and 1) while 0 · VDD, 1/3 · VDD, 2/3 · VDD, and

VDD correspond to 0, 1, 2, and 3 quaternary logic representations, respectively. Dynamic

switching power (Pd) for transistors using either logic can be simplified as Pd = C · VDD
2

where C and VDD are the same for both quaternary and binary logic cases and ti→j represents

transition from level i to j. In Table 2.1 below, calculations for average power consumption

in both cases shows quaternary logic having about 31% less (0.38 · Pd) average power

consumption to binary logic’s (0.5 · Pd).

Table 2.1: Average power calculations for transitions in binary and quaternary logic

Binary logic Quaternary logic

Transitions Power (W) Transitions Power (W)

t0→0, t1→1 0 t0→0, t1→1, t2→2, t3→3 0
t0→1, t1→0 C ·VDD

2 t0→1, t1→2, t2→3, t3→3,t2→1, t1→0 C · (1/3 · VDD)2

- - t0→2, t2→0, t1→3, t3→1 C · (2/3 · VDD)2

- - t0→3, t3→0 C ·VDD
2

Avg. power - 0.5 · C · VDD
2 - 0.39 · C · VDD

2

While the MVL benefits discussed have been known in literature for while, the require-

ment of non-standard CMOS techniques for implementing proposed MVL architectures have

slowed its path to practicality and competitiveness. To experience MVL’s benefits in real-

world applications, MVL designs that are compatible with current manufacture technologies

6

are needed. Research has shown that digital logic systems such as FPGAs can achieve

significant performance improvements with MVL [3].

2.2 Field-Programmable Gate Arrays (FPGAs)

Since their commercial introduction in 1985 by Xilinx co-founders Ross Freeman and

Bernard Vonderschmitt [28], FPGAs have grown to become one of the most widely used de-

vices for digital applications. Propelled by advancements in process technology, FPGAs are

currently applied in every major industrial, automotive, consumer application, and even in

sensitive applications such as in high end data centers [29–31]. FPGAs are collections of many

programmable logic elements without defined interconnections. Unlike application specific

integrated circuits (ASICs) with defined interconnections and logic gates fabricated on sili-

con, interconnections and memory values in FPGAs can be re-programmed post-fabrication

to model any digital circuit.

The programming technology used in a FPGA determines its how many times it can be

programmed. Antifuse-based FPGAs have open switches in their interconnection structure:

when these switches are blown, a permanent connection is made. Since this process cannot

be reversed, this type of FPGA can only be programmed once. SRAM-based FPGAs store

configuration data (as voltage) for the interconnections in the two cross-coupled inverters

and can be re-programmed infinite number of times. However, SRAM memories are volatile,

and the configuration data must applied every time the FPGA is turned on. Although

SRAM-based FPGAs consume more power than antifuse-based FPGAs, they are preferred

for their ability to be re-programmed more than once.

With FPGAs, faster verification of hardware designs can be achieved by reprogramming

configuration bits: FPGAs do not incur the high manufacturing cost associated with proto-

typing ASICs. This advantage makes FPGAs the preferred choice for low volume prototyping

of digital systems. Initially, FPGAs were solely used to prototype digital implementations

intended for ASICs [32], but future FPGAs provided very short time-to-market, and low

7

non-recurring costs compared to ASIC implementations. With recent process technology

developments, the speed of FPGAs has increased, power consumption reduced, and prices

decreased. Additionally, FPGA computer aided design (CAD) tools that are cheaper than

full fabrication CAD tools for ASIC implementations have been introduced. To an extent,

FPGAs have become more competitive compared to ASICs because of these improvements.

However, complex FPGA implementations are larger and slower than comparable ASIC

versions and high volume production of FPGAs is expensive. This is due to the reconfig-

urability cost: FPGAs have predefined layouts that contain multiple routing paths which

aid flexibility but hamper optimization. The programmable blocks in FPGAs and the in-

terconnections between them use more layout area. This introduces larger delays in FPGAs

since FPGAs cannot be optimized to reduce interconnection delays like ASICs can. This

also increases the cost of layout material required to implement a comparably larger FPGA

system.

For FPGAs to remain competitive, FPGA architecture performance and logic density

must improve. This paper proposes such improvements to FPGA architectures using MVL.

2.3 Conventional FPGA Architectures

A conventional FPGA architecture, developed by Betz et. al. [2], is the basis of many

research studies and tools on FPGA architectures. The structure of this architecture (Figure

2.1) consists of two-dimensional matrix of configurable logic blocks (CLBs) organized in rows

and columns.

2.3.1 Routing Interconnections

Two categories of routing interconnections, routing within each CLBs and routing con-

necting CLBs together, consume most of a FPGA’s chip area. Figure 2.1 shows rows of

CLBs connected with horizontal routing interconnections and columns of CLBs with ver-

tical routing interconnections. Switch boxes at the intersection of horizontal and vertical

8

Figure 2.1: FPGA architecture overview described in [2].

interconnections allow programmable connectivity between the interconnections. In practi-

cal CLB implementations, 2-to-1, 4-to-1 multiplexers route logic among external resources

and within the blocks. Circuit delay from FPGA routing architecture dominates delay and

determines the logic density in the chip. With more advanced technology processes, the im-

pact of the interconnections become more crucial [33]. For instance, interconnection power

losses have a greater effect on FPGAs where 60% of the chip area is dedicated to routing

resources [34].

2.3.2 Input and Output (I/O) Blocks

I/O blocks are included at the borders of the architecture to allow sending and receiving

signals between the FPGA structure and external systems. The I/O block also controls

programmable drivability and allows impedance matching to different I/O standards. There

are as many as 40 different I/O standards that can be supported using dedicated transceiver

9

circuits [35]. Characteristics of these I/O standards range from analog to digital conversion

and support of a variety of supply voltages.

2.3.3 Configurable Logic Blocks (CLBs) & Basic Logic Elements (BLEs)

The logic used for digital processing operations in a FPGA architecture is contained in

CLBs. CLBs are responsible for implementing the stored logic to achieve a desired function.

A CLB consists of a set of inputs, a set of outputs, and several connected basic logic elements

(BLEs) with an input crossbar interconnecting all BLEs within the CLB. The input crossbar

Figure 2.2: Configurable Logic Element (CLB) with N BLEs, I inputs and O outputs.

is made of 2-to-1 multiplexers or more complex multiplexers. The size of the input crossbar

is determined by the number of CLB inputs to be selected from (by each multiplexer) and

the number of BLEs. The multiplexers select from all possible CLB inputs to multiple BLE

inputs and are controlled by programmable logic. Figure 2.2 shows a basic CLB structure

with I inputs, O outputs, and N BLEs. Feedback from the BLE outputs to the input crossbar

allows execution of more complex functions. For this thesis, a simple CLB with 8 BLEs is

10

selected for compatibility with 4-input and 2-input BLEs. Within the input crossbar, 8-to-1

multiplexers select from 8 inputs to the BLEs.

The focus and contribution of this thesis is the basic BLE (selected for simplicity) with

details shown in Figure 2.3, which consists of a LUT connected to a simple 2-to-1 multiplexer:

this multiplexer selects the FPGA output, which is either from the LUT or from a flip-flop

driven by the LUT (with clock input).

Figure 2.3: Basic Logic Element (BLE)

2.4 Look-Up Table (LUT) Performance

Besides FPGA BLE interconnections, LUT complexity significantly impacts the perfor-

mance characteristics of FPGAs. LUTs are memory elements which store and implement

the logic functions programmed in an FPGA. A LUT contains an array of memory elements

which store programmed values and a selected memory element is driven to the LUT output.

Figure 2.4 illustrates a LUT with K inputs and one output where K is a specified parameter

of the LUT architecture. A programmed LUT controls a selection system using a number of

K-inputs to choose from a set of memory elements to the output. The number of functions a

LUT can implement is given by the LUT equation: |F | = b(n·b
k) (from [3]) where n represents

the number of outputs and can be discarded since only single output LUTs are considered for

simplicity. K is the number of LUT inputs and b represents the number of logic levels (e.g.

11

2 for binary logic). Using the aforementioned equation, the number of different functions

that can be implemented by a 4-input BLUT is |F | = 2(1·24) = 65, 536, and for a 2-input

QLUT (using quaternary logic) is |F | = 4(1·42) ≈ 4.3 × 109. A single QLUT (with half the

Figure 2.4: Look-Up Table with K inputs and one output.

number of inputs of a binary LUT) is functionally equivalently to two BLUTs because with

each of the two QLUT quaternary (0, 1, 2, and 3) inputs represent two binary bits (i.e., 00,

01, 10, and 11), therefore a quaternary logic system holds twice as much information (pre-

suming the same number of logic entries). When comparing FPGA BLEs, this study uses

functionally-equivalent 4-input binary LUTs and 2-input QLUTs, both with single outputs.

Because the memory elements in a LUT hold the implementation of logic as discrete

voltage values, their impact in the design of a QLUT is crucial. Binary LUTs use standard

static random access memories (SRAMs) to store binary values (or bits) that dictate the

function of the LUT block (and in turn the function of the FPGA BLE). To fully harness

the benefits of quaternary logic, a QLUT requires an alternative circuit design to serve as

memory elements. This alternative circuit design should be able to store quaternary logic as

discrete voltage values or convert between quaternary logic and binary logic. The proposal of

a unique quaternary logic-based memory element circuit for a QLUT is one of the important

contributions of this thesis.

12

Chapter 3

FPGA Architectures From Literature

Quaternary architectures have been proposed in literature: some use current-based val-

ues [11,36,37] while others use voltage-based values [1,3], but voltage-based values are more

prominent due to significantly reduced power consumption [38]. In current-based circuits,

logic levels are defined by multiples of a reference current value. While current-based MVL

circuits show better performance compared to corresponding binary circuits, better power

performance is achievable in voltage-based MVL circuits (compared to binary equivalent

circuits) that use multiples of a reference voltage (VDD). The use of smaller voltage swings

in a MVL circuit has a favorable impact on power dissipation compared to current swings,

and this makes voltage-mode quaternary architectures more suitable for saving power con-

sumption in a digital implementation.

This chapter studies one binary and two quaternary architectures from literature. Sec-

tion 3.1 examines a complete 2-input QFPGA architecture and Section 3.2 focuses on the

function of a Qdecoder circuit used in a QLUT architecture. The binary architecture used

for comparison with the quaternary architectures is briefly detailed in Section 3.3. While

this chapter discusses the relevant aspects of these architectures, Chapter 5 discusses the

simulation of complete binary and quaternary BLEs required for performance analysis.

3.1 QFPGA Architecture from Literature

Of all literature on QFPGA architectures, a recent study [1] provides the most com-

plete QFPGA BLE description. This architecture will be used as a comparison against the

proposed architecture.

13

[1] implemented QLUTs using transistors with one of several threshold voltages. The

study presumed the threshold voltage of transistors can be controlled by applying a voltage to

the body terminal of transistors in forward body bias and reverse body bias configurations.

Pairs of transistors (in a CMOS inverter configuration) with modified threshold voltages,

called down literal converters (DLCs), function as the basic elements for translating between

binary and quaternary logic. Three DLCs that are each able to categorize varying groups of

quaternary logic levels are used. Table 3.1 shows the output values of the three DLCs where

DLC0 identifies level {0} from levels {1,2,3}, DLC1 recognizes between two quaternary levels

{0,1} and {2,3}, while DLC2 identifies level {3} from {0,1,2}.

Table 3.1: Identification of quaternary level groups with DLCs
Quaternary input DLC0 DLC1 DLC2

0q 3q 3q 3q

1q 0q 3q 3q

2q 0q 0q 3q

3q 0q 0q 0q

Combinations of the DLCs created a quaternary repeater circuit (QRC) (analogous to

a binary buffer), a quaternary multiplexer (QMUX), and a quaternary flip-flop (QFF) made

with QMUXs, all of which rely heavily on a diverse set of transistors with individual threshold

voltages and multiple voltage rails. Sections 3.1.1 and 3.1.2 briefly details the nuances of

some components of this architecture.

3.1.1 Quaternary Multiplexer (QMUX)

The QMUX is made with the three DLCs expressed in Table 3.1 and inverters in the

configuration as shown in Figure 3.1. Separate V DD and V SS supplies for the inverter-like

DLCs are depicted. Four quaternary inputs IN0, IN1, IN2, and IN3 representing four

quaternary inputs are connected to the output by transmission gates. A quaternary Select

input supplies the three DLCs while the transmission gates are controlled by voltages from

the output of the DLCs and inverters. Depending on the voltage value of the Select input, a

14

corresponding input from IN0, IN1, IN2, and IN3 is conducted to the output by enabling

the relevant transmission gate (while the rest are disabled).

Figure 3.1: QMUX circuit from [1]

3.1.2 Binary-to-quaternary (B2Q) Converter

Four pairs of transistors and two inverters make up the B2Q converter. Figure 3.2

shows the B2Q circuit with two binary inputs S0 and S1 and respective inverted values S0

and S1 (from inverters) that control the gates of the transistors. Four quaternary voltages

inputs V DD0, V DD1, V DD2, and V DD3 serve as supplies for the four transistor pairs.

Depending on the combination of inputs S0 and S1, a transistor pair is activated when

transmitting a corresponding quaternary voltage input to the Output.

3.1.3 Quaternary Repeater Circuit (QRC)

The QRC was made from six pairs of different DLCs connected as inverters to achieve

a buffer-like operation for quaternary voltage inputs. The input of the QRC supplies three

15

Figure 3.2: B2Q Converter circuit from [1]

inner DLC inverters whose outputs separately feed three outer DLC inverters. One of the

outer DLC inverters supplies the QRC output and has its inverter drain and source voltages

fed from outputs of the other two outer DLC inverters. These configuration allows the nodes

of the QRC circuit modify the drain and source voltages of the outer DLC inverter to produce

a QRC output similar to the input.

3.1.4 Quaternary Flip Flop (QFF)

The QFF is made of two parts connected in a master and slave configuration. In the

master circuit, a QMUX is connected to a QRC which acts as a buffer. For the input master

QMUX; two of its inputs are connected as feedback from its QRC, one input is grounded,

and the last input acts as the active input. The slave circuit is similar to the master’s; two

inputs of its QMUX are connected as as feedback from its QRC, one input is ground and

the last input is connected to the master QMUX’s output. The QMUXs for the master and

slave circuits have additional clock and reset inputs but the clock input of the slave QMUX

is an inversion of the master QMUX.

16

Figure 3.3 shows the complete 2-input QFPGA BLE with two QLUT inputs: Input1

and Input2, a clock input (Clk) for the QFF, a Select input for the quaternary-based

selector. [1] used binary SRAMs as LUT memory elements (i.e., two binary SRAMs per

quaternary memory element) which were converted into quaternary voltage values using

binary-to-quaternary (B2Q) converters. QLUT entries were selected with two layers of 4-

to-1 QMUXs: this created a 16-entry (0 → 15) QLUT selected with the two quaternary

inputs.

Figure 3.3: Overview of 2-input QFPGA architecture from [1]

To the authors’ knowledge, [1] is the most recent full QFPGA BLE, but its conclusion on

the BLE outperforming binary equivalent is questionable given the technology requirements

to fabricate it. These requirements include body biasing connections which are incompatible

with current manufacture techniques [39]. Additionally, the multiple voltage rails needed

17

to distribute four discrete voltage values in components such as those described in Sections

3.1.1 to 3.1.4 may be problematic. Whether the claims of the original study hold true with

custom layouts and accurate SPICE simulations will be found in Chapter 6.

3.2 Practical Quaternary Multiplexer

[3] took advantage of voltage-adjusted comparators to create a transmission-gate mul-

tiplexer with quaternary selection signals as a QLUT. These comparators (a unique contri-

bution of [3]) were used to create a Qdecoder circuit. Binary signals from a Qdecoder output

select appropriate transmission gates which allow logic values from a quaternary memory

to propagate to the LUT output. Unlike the method from [1], this architecture does not

consider the memory element of the QLUT, nor does it propose a method of capturing qua-

ternary values in an FPGA BLE. For these reasons, this study does not implement this

architecture for comparison but will reuse the Qdecoder structure for the proposed QFPGA

BLE architecture.

Figure 3.4: QDecoder logic structure (from [3]). Unlike typical inverters, comparators CP
and CN do not invert their binary output until the required quaternary input voltage is
observed.

It is noteworthy that the Qdecoder and multiplexer structure from [3] avoids manufac-

turability challenges observed in [1] since does not use individual threshold voltage manipula-

tion techniques. The Qdecoder structure is made of standard NAND gates, NOR gates, and

18

Table 3.2: Qdecoder Function
Q Q0 Q1 Q2 Q3

0q 1b 0b 0b 0b

1q 0b 1b 0b 0b

2q 0b 0b 1b 0b

3q 0b 0b 0b 1b

inverter-like comparators, as is illustrated in Figure 3.4. An inverter compares the voltage

applied at its input with its internal threshold voltages, and it outputs a binary value that

represents an inversion of the applied input voltage. Applying this principle, the function

of a comparator is like an inverter, except the input voltage which triggers the output is

shifted by inserting suitable diode transistors, as shown in Figure 3.5(a) (for CP) and (b)

(for CN). Using diode transistors avoids large capacitance cost that would be incurred if

transistors with unbalanced widths are used to achieve the same effect [40]. In these circuits,

the reference voltage is shifted to 1/6 VDD or 5/6 VDD (see Figure 3.5(c)). Using these CP

and CN comparators, the function from Table 3.2 is made with the circuit in Figure 3.4

without the penalty of individual transistor threshold modification. Table 3.2 shows how the

Qdecoder translates quaternary input logic 0q, 1q, 2q, & 3q to binary output logic values Q0,

Q1, Q2, Q3.

The Qdecoder is directly adapted from [3] for the proposed architecture: this is not

an original contribution of this thesis’s architecture, but its use in the proposed QFPGA is

substantial enough to warrant a detailed explanation of its function.

3.3 Binary FPGA Architecture

A 4-input binary FPGA made with a LUT structure from [3] as shown in Figure 3.6,

is used to compare with the quaternary architectures. A binary FPGA can consist of any

selection structure capable of selecting from multiple memory entries. This selection system

can be decoder-based or transmission gate-based but a transmission gate selection system is

19

Figure 3.5: The quaternary comparators CN and CN (from [3]) function like inverters,
except an additional diode shifts the triggering voltage of the inverters.

preferred for its efficiency over a decoder-based system. For the selected binary implemen-

tation, a tree of transmission gates serves as the LUT selection system while SRAMs are the

memory elements. The four-stage selection system is controlled by the four LUT inputs (X0,

X1, X2, X3) and respective inversions. A single SRAM memory is selected and transmitted

over transmission gates to the output.

20

Figure 3.6: Overview of the 4-input binary FPGA architecture used for this study.

21

Chapter 4

A New Quaternary FPGA Cell With Floating-gate Memory Elements

This chapter covers the design of components employed in the proposed QFPGA ar-

chitecture. Elements which make up the QLUT structure are detailed, including circuit

descriptions of the multi-level memory element, followed by miscellaneous parts which make

up the rest of the QFPGA BLE.

4.1 Floating-gate Transistors

The QLUT of the proposed QFPGA BLE uses floating-gate (FG) transistors to con-

struct a MVL memory. The proposed QLUT will use FG transistors to store quaternary

values by programming a floating gate with a desired charge. Simulation of a floating gate

is covered in Chapter 5 while power and delay performance of implementing a quaternary

values using a voltage divider will be explored in Chapter 6.

First presented in 1967 by Kahng and Sze [41], FG transistors have been used for

various non-volatile memories in digital domain applications such as EPROMs, EEPROMS,

flash memories, as well as in programmable and adaptive analog circuits [42, 43]. A FG

transistor is a standard MOS transistors with an extra electrically-isolated floating gate

between the transistor gate and channel. Unlike regular transistors, the floating gate is

made of polysilicon surrounded by a SiO2 insulator which enables long-term charge storage.

The cross section of a FG transistor (Figure 4.1) has the floating gate and a control (regular)

gate separated by a gate oxide layer which isolates charge (electrons) forced into it. The

charges trapped in the gate oxide layer cannot leave without the application of an external

force or potential. The amount of trapped charges modify the FG transistor’s threshold

22

Figure 4.1: Cross section of a floating-gate transistor.

voltage. A FG transistor’s properties can therefore be harnessed using its charge-storing

capabilities and its I-V relationship to design and implement digital and analog circuits.

The effect of charges trapped on the floating gate is different when the FG transistor is

made from a NMOS versus a PMOS transistor. A NMOS-based FG transistor with charges

on its floating gate has an increased threshold voltage and would require more control gate

voltage to activate the FG transistor. With a PMOS-based FG transistor, increasing the

charge on its floating gate decreases its threshold voltage requiring a more negative voltage

to switch on the FG transistor. In essence, programming a floating-gate transistor involves

adding and removing charges on it. When a NMOS-based or PMOS-based FG transistor

has a maximum charge trapped in it, it is said to be fully programmed. In this state, no

amount of control gate voltage will switch on the FG transistor.

4.1.1 Programming Floating-gate Transistors

Charge addition/removal operations determine the specific I-V characteristics of a floating-

gate transistor. Charges are added into a floating-gate transistor using hot-carrier injection

techniques. Hot-carrier injection involves energizing carriers in the silicon with enough energy

23

to enter the gate oxide’s conduction region (Figure 4.1) typically using UV light exposure or

drain avalanche hot-carrier (DAHC) method [44]. Using the principle of hot-carrier injection,

a high gate and drain potential relative to the source draws minority carriers from the source

towards the drain. However, energy absorbed by the carriers is so high that they overcome

the tunnel oxide barrier and get trapped in the floating gate’s conduction band instead. The

DAHC process is slightly different: high energy causes minority carriers to move from source

to drain which in turn impact minority carriers in the drain (like an avalanche effect) and

with suitable high field conditions enter into the floating gate.

Removing electrons from a floating-gate transistor using electron tunneling requires a

MOS capacitor, as this is more reliable than a polysilicon-polysilicon capacitor. A tunneling

junction exists between the floating gate and the substrate. Electrons can tunnel through

this junction when the barrier is thin enough. Additional optimal tunneling conditions are

created by an electric field between the tunnel voltage (V tun) and floating gate voltage (V

fg) (due to voltage difference) [45]. Equation 4.1 represents the classical electron tunneling

current (Itun) model where tox is the gate oxide thickness ε0 is a dive parameter of around

25.6 /nm [46]. Both input voltage and charge on the floating gate determine the tunneling

rate.

Itun = Io · exp

(
− tox · ε0
V tun− V fg

)
(4.1)

4.1.2 Floating-gate Transistor Modelling

The isolated floating gate of a floating-gate transistor poses circuit simulation challenges

that compact models (CMs) of floating-gate devices seek to resolve. These CMs, such as [4],

attempt to accurately simulate the effects and interactions of floating-gate operations in a

circuit. In circuit design, floating gates require a node with a capacitive connection and

no direct current (DC) path. [4] resolves this atypical circuit condition by using a floating-

gate node (FGn) to both isolate the control gate potential from the other terminals, and

24

to calculate the floating gate potential. Figure 4.2 shows the cross section of the [4] model

applied to a floating-gate transistor. The Cfg capacitor isolates the gate node from other

nodes. The floating-gate node potential is a sum of potentials from all contributing nodes of

the floating-gate transistor. With this arrangement from Figure 4.2, charge adding/removing

operations can be modelled with suitable voltage generators between the transistor terminals.

Figure 4.2: Basic schematic of a CM model [4] with a Floating-gate transistor.

A SPICE-compatible model [5] is selected among other models [4, 47, 48] to model the

function of the floating-gate transistor because it considers floating-gate capacitive coupling

and is suitable for DC and transient simulations. The model is adaptable to various hot-

carrier injection and electron tunneling models for programming a floating-gate transistor.

For this thesis, the model from [5] is adapted and using VCVSs makes it easy to program

the floating-node voltage. As depicted in Figure 4.3, the transistor’s “effective” gate voltage

(the “effective-node” voltage) is a function of the applied control-gate voltage (“control gate-

node”) and the voltage programmed into the floating gate (“floating gate-node”). In effect,

the charge programmed in the floating gate-node changes how much control-gate voltage is

needed to turn on the floating-gate transistor (i.e. it alters the transistor’s threshold).

25

Figure 4.3: An adapted SPICE-compatible model (from [5]) of a floating gate modifies gate
voltage of a transistor with programmed voltages.

Charge addition on the floating gate is modeled by voltage-controlled voltage source

(VCVS) elements. The floating-gate transistor control is the input VIN(c) which controls

VCVS1, while the floating gate-node voltage is the input VIN(f) which controls VCVS2. The

output voltage for VCVS1 is A · VIN(c) and for VCVS2 is B · VIN(f) where A and B are

constant values representing programmed charges. The effective-node voltage VOUT (e) is a

summation of both VCVS outputs, as illustrated in Figure 4.3.

4.2 MVL Memory Element and Drain Control Circuit

The MVL memory element (the lower part) and its control circuit (the upper part) are

depicted in Figure 4.4. The MVL memory element is made of two floating-gate transistors

connected together as a voltage division circuit: the right-hand floating-gate transistor is

made with an NMOS base (FGN), and the other with a PMOS base (FGP). The gate inputs

for both floating-gate transistors, VIN(c1) and VIN(c2), require a higher gate voltage than VDD

for programming the floating-gate transistor. VIN(f1) and VIN(f2) represent the respective

26

programmed floating-gate floating node voltages. To regulate the drain voltages for the

floating-gate transistors, a control circuit consisting of a PMOS transistor for FGP and

NMOS transistor for FGN is used. Vd,1 is VSS and Vd,2 is VDD during normal device operation.

The switching of the control transistors is handled by control signal c and its inverse c.

When the MVL memory element is provided with VIN(c1), VIN(c2) voltages, programmed with

specific VIN(f1) and VIN(f2) voltages, and the drain control transistors are both switched on

to supply Vd,1 and Vd,2, the voltage division circuit gives a quaternary voltage as Vout.

Figure 4.4: MVL memory element made of two connected floating gates (from Figure 4.3)
with gate controls.

4.3 Proposed QFPGA Architecture

The proposed QLUT consists of 16 MVL memory elements, their respective gate con-

trols, a selection structure (made with 3-input NAND gates and inverters), and two Qde-

coders (from Section 3.2). To combine memory elements into a QLUT, control signals C0

to C15 and respective inversions C0 to C15 activate memory elements M0 to M15. 3-input

NAND gates and inverters, as illustrated in Figure 4.5, supply these control signals and

inversions based on the output of the two Qdecoders. The third input for the NAND gates

27

is an enable signal EN which can be used for auxiliary purposes (e.g., programming a BLE).

When EN and the two inputs to a NAND gate are active, a single memory element and

its output transmission gate are activated and connected to the QLUT output, W . Trans-

mission gates at the output of each memory element disconnect deselected memories and

reduce output capacitance. The use of a transmission tree structure from [3] was explored

(and controlled with the existing Qdecoder outputs), but performance (delay and power)

compared to using single transmission gates was worse.

An additional transmission-gate based 2-to-1 multiplexer and a QFF (made with a

Qdecoder-based latches and 2-to-1 multiplexer) make up the proposed QFPGA BLE. The

architecture of the QFF in the proposed BLE differs from the compared architecture [1] in

that the multiplexers are two-to-one transmission-gate multiplexers as opposed to the original

four-to-one multiplexers. However, replacing the original multiplexers did not significantly

impact delay, power, or area results.

28

Figure 4.5: Implementation of Proposed QFPGA.

29

Chapter 5

Simulation And Evaluation of Architectures

5.1 Simulation and Design Process Using Cadence Tools

Simulation in this thesis refers to circuit-level simulations using SPICE simulators to

model and capture the behaviour of a circuit described in terms of transistors, wires, resis-

tors, capacitors, and their respective connections to one another. Schematic capture provides

a means of placing circuit components in hierarchical arrangements and defining connection

nodes among the components. This circuit models include wire resistance, changing voltage

potentials, geometric properties of transistor models, etc. The aim of this circuit-level sim-

ulation is to provide detailed analog waveforms that accurately describes how the designed

circuit would operate in the real world. In a circuit-level simulation, the first stage called

node-extraction performs a static analysis of the circuit description. The next stage combines

the information generated in the node-extraction stage with device models that mathemat-

ically describe the behaviour of circuit devices. A circuit simulator then solves a system of

differential linear equations, or non-linear first-order algebraic equations, derived from all

the circuit information to accurately model the circuit’s operation. The complete process is

complex, detailed, intensive, and utilizes several reliable numerical integration methods [49],

and therefore circuit-level simulations can generate very accurate results for smaller designs

such as those in this thesis, but these simulations can be slow with larger designs due to

computation intensity.

The Cadence Virtuoso analog design environment (ADE) is a circuit simulator designed

for use on Unix operating systems and contains the necessary tools for accurate simulation of

complex circuits. It is built on a design framework environment that can be integrated with

third-party tools and supports features such detailed annotation, interactive simulation, and

30

Figure 5.1: Overview of the Design Process.

simple to advanced output analysis. These features make it a good selection for interactive

schematic editing and performing parametric analysis under several circuit conditions. With

Virtuoso ADE’s integration with third party tools, it can select HSpice as a simulator: this

important feature allow the use of the FreePDK15 library HSpice transistors models.

FreePDK15 is an open-source predictive process design kit (PDK) library for the 15nm

technology node [17]. The library specifies a VDD supply voltage of 0.8 V. Binary logic levels

are represented by 0 V and VDD while 0 · VDD, 1/3 · VDD, 2/3 · VDD, and VDD correspond to

31

0, 1, 2, and 3 quaternary logic representations, respectively. The FreePDK15 library models

FinFET technology, but this can still be used to model quaternary logic since floating gates

can be implemented using FinFETs [5]. FinFETs operate faster with reduced leakage cur-

rent [50] compared to planar MOSFET transistors, and resolve MOSFET transistor scaling

challenges [51, 52]. Cadence Virtuoso Calibre DRC, LVS tools were utilized for creating

layouts for the architectures.

The process of creating and generating circuit schematics and layout results is shown by

Figure 5.1, which summarizes the steps that permit easy identification of design bottlenecks

and troubleshooting.

5.1.1 Simulating the Floating-gate Transistor Model

The floating-gate transistor model from Figure 4.3 is simulated using the following test

bench parameters: control gate voltages of 0 V and 3 V, and floating-gate node voltages

between 0 V to 2 V. Simulation results of the parametric dc analysis for a floating-gate

transistor (PMOS in this case) is shown in Figure 5.2 where the y-axis is the drain current

and x-axis is control gate voltage. The drain current remains zero when the floating-gate

node voltage is zero (equivalent to a stored charge of zero) regardless of the control gate

voltage applied. As the floating-gate node voltage is swept for VIN(f): 0 V to 2 V and

control gate voltage swept for VIN(c): 0 V to 3 V, the the drain current increases accordingly

to the impact of both voltage sources (through the VCVSs) on the effective-node voltage.

This simulation approach is similarly applied to a floating-gate NMOS transistor.

5.1.2 Simulating the MVL Memory Element

The MVL memory element from Section 4.2 is simulated using a test bench with appro-

priately programmed voltages for the floating nodes (VIN(f1), VIN(f2)). The initial condition

feature in Cadence Virtuoso ADE allows easy programming of the floating-gate floating

nodes using a simulation file with specified node voltages for all 16 MVL elements at once.

32

Figure 5.2: Simulation of Floating-gate Transistor Model.

A transient test bench simulation supplies control signals to operate one MVL element per

specified transient time. Table 5.1 shows the set of floating-gate node voltages programmed

to obtain the required quaternary levels with control node voltages VIN(c1) = VIN(c2) = 2.5

V, Vd,1 = 0 V, and Vd,1 = 0.8 V.

Table 5.1: Programmed floating node voltages for quaternary outputs.
VIN(f1) (V) VIN(f2) (V) output voltage (V)

0 0 0
1.2 0.25 0.27
0.87 0 0.53
0.44 1.11 0.8

33

5.1.3 Simulating Architectures

This thesis simulated the architecture from [1] using an openly available FinFET technol-

ogy library [17], but the author is convinced body biasing individual transistors is impractical

because multiple body biasing voltage rails would be required in fabrication [53], therefore

threshold voltages are modified by changing individual transistor work-functions. This tech-

nique can model either individual body biasing (which is optimistic given the required body

bias control routing) or individual transistor doping [54,55].

Functional verification of the binary BLE and QFPGA BLE from [1] performed as

expected. The test bench for the binary BLE selected from the 16 SRAM memories with

random binary voltages programmed used the initial condition feature of the simulator.

For the [1] QFPGA test bench, a memory unit (SRAM and B2Q) is selected per transient

simulation period to obtain a quaternary output pattern similar to that in Figure 5.3. This

output pattern is the same for the proposed QFPGA and allows the observation of all possible

quaternary transition sets.

Simulation waveforms for the proposed QFPGA BLE is represented in Figure 5.3: the

enable EN input to the 3-input NAND gates (Figure 4.5) is active throughout the simulation

(not shown) while the different Qi inputs (as other inputs) to the 3-input NAND gates

activate MVL memories programmed with quaternary logic. The output pattern (OUT

signal in Figure 5.3) covers all possible transitions between the quaternary logic levels.

Spikes observed at certain points in the simulation waveform results above can be at-

tributed to the unstable interactions of the mathematical descriptions of circuit components

during simulation time steps. Since the interactions attempts to model real conditions, it

provides reliable information on the stability of the circuits.

34

Figure 5.3: Simulation Results of the Proposed QFPGA BLE.

5.2 Evaluation of the Architectures

Test benches for the three architectures observe worst-case timing (from the QLUT

inputs through the FPGA BLE multiplexer) and average/maximum circuit power. Appro-

priate VDD, VSS, programmed memory values, and other inputs select a single memory entry

per clock cycle.

35

5.2.1 Delay Analysis

Propagation delays between LUT inputs and FPGA BLE outputs (by bypassing the

(Q)FF) for all transitions were collected. Delay was measured as the time to reach 90% of

the final target voltage.

5.2.2 Power Analysis

Total power consumption is given as energy consumed by a BLE over simulation time,

divided by that time given by the relation

(∫ t

0

I · VDD · dt
)
/t (5.1)

where I is the current, VDD is the drain voltage, and t is simulation time. To observe the

maximum performance of the BLEs, transient simulations are run at the highest clock cycle

possible without degrading the outputs to unusable levels.

5.2.3 Power Density Analysis

Power density gives the relation of power consumption and BLE area as an effective

measurement parameter and it is calculated as total power consumed over area.

5.2.4 Area Measurements via Layout

Area measurements for both binary and quaternary architectures were extracted by

layout measurements. Binary and quaternary BLE layouts used the same technology library

and the same binary digital BLEs for a fair comparison. Unlike other studies which perform

layout automation, elements of the proposed (especially the novel MVL memories) and

previous QFPGA architectures used a custom layout process. All BLEs were manually made

to minimize area as much as possible with adjustments to address layout design-rule nuances.

Floating-gate transistors which are not distributed as part of FreePDK15 are implemented as

36

black boxes: based on FinFET floating-gate transistor studies [56], floating-gate transistor

widths were modelled as 40% wider than equivalent traditional transistors widths.

37

Chapter 6

Evaluation Results

6.1 Previous QFPGA Architecture [1] Single BLE Evaluation

Table 6.1 shows the performance of a single binary FPGA BLE and a quaternary FPGA

BLE from literature [1], both of which are implemented using the evaluation process detailed

in Section 5.

Table 6.1: Single BLE Delay, Power, Area, & Power Density
Binary FPGA [1] QFPGA Proposed QFPGA

% Difference of proposed
to binary

% Difference of proposed
to [1] QFPGA

Delay (ps) 128 129 177 38.28% 37.21%
Power (W) 4.82E-05 9.90E-04 1.50E-04 210.77% -84.87%
Area (mm2) 3.49E-05 1.88E-04 8.47E-05 142.49% -54.89%
Power Density (W/mm2) 1.38 5.27 1.77 28.16% -66.47%

The single QFPGA BLE from [1] shows practically identical delay performance com-

pared to the binary BLE, but its power density is four times more the binary BLE. Unlike

the original article [1] which modelled design nuances optimistically (e.g., multiple voltage

rails, the effect of body biasing, etc.), this study models these nuances more accurately using

full-custom HSpice simulations.

6.2 Proposed QFPGA Single BLE Evaluation

The propagation delay, power, and power density measurements for the proposed QFPGA

cell are shown in Table 6.1. The binary BLE has better delay performance compared to the

proposed QFPGA BLE (38.28% more delay), but this is acceptable given substantially fewer

BLEs will be needed to implement a full circuit. The binary BLE also performs better in

power density since the proposed QFPGA is a larger BLE (has more logic elements), but

this is acceptable given substantially fewer BLEs will be needed to implement a full circuit.

38

When the area and power density of proposed BLE is compared against the equivalent

previous architecture [1], the utility of the proposed architecture is revealed. The area

required to implement the previous architecture is significantly larger (2.2 times), and the

power density of the previous architecture is substantially larger (3 times).

6.3 Projecting Architectures with Arithmetic Benchmarks

Using analysis done on single BLEs, FPGA benchmark performance can be projected

using the comparative QFPGA’s synthesized results [1] on configurable logic block (CLB)

performance. [1] presumed multiple BLEs connected to a reconfigurable multiplexer struc-

ture from [57] was used for sizing input crossbars. This input crossbar’s size is based on the

number of concatenated 8-to-1 multiplexers required to connect the BLEs (as discussed in

Section 2.3.3). This study will presume the proposed and the cooperative QFPGA archi-

tecture use the same input crossbar structure of the same size. The configuration of these

CLBs is given in Table 6.2, and the size of the CLBs’ can be re-calculated. Original size

calculations [1] were estimated as minimum width transistor area (MWTA) [58], but this

measurement for BLE size is unnecessary given LUT areas were created using custom lay-

outs. The size of LUTs in the CLBs are larger for benchmark evaluation (5-input vs. 4-input

for binary and 3-input vs 2-input for quaternary), so layouts were expanded appropriately to

calculate LUT areas. The required crossbar for binary and quaternary circuits is also made

with a custom layout to minimize circuit area.

Table 6.2: Area calculations for configurable logic blocks
Binary [1] QFPGA Proposed QFPGA

Parameter Value
Area
(mm2)

Value
Area
(mm2)

Value
Area
(mm2)

LUT Input
Size

5 5.35E-5 3 1.76E-4 3 1.32E-4

No. of BLEs 10 5.35E-4 10 1.76E-3 10 1.32E-3
Input crossbar 50 1.75E-4 30 1.05E-4 30 1.05E-4
Total - 7.10E-4 - 1.86E-3 - 1.43E-3

39

Table 6.3: Area Evaluation of Arithmetic benchmarks
Binary [1] QFPGA Proposed QFPGA

Area (m2) Area (m2) Area (m2)
Difference of proposed

to binary
Difference of proposed

to [1] QFPGA
Benchmarks Routing Logic Total Routing Logic Total Routing Logic Total (%) (%)

Adder32 3.6E-09 4.2E-09 7.8E-09 2.27E-09 8.43E-09 1.1E-08 2.3E-09 6.7E-09 8.9E-09 15.1 -16.3
Adder64 1.1E-08 9.5E-09 2.1E-08 5.94E-09 1.90E-08 2.5E-08 5.9E-09 1.5E-08 2.1E-08 0.0 -15.8
Mult32 4.5E-08 1.3E-07 1.7E-07 1.8E-08 1.3E-07 1.5E-07 1.8E-08 1.1E-07 1.2E-07 -27.6 -18.3
Mult64 1.6E-07 5.1E-07 6.7E-07 5.7E-08 4.7E-07 5.3E-07 5.7E-08 3.8E-07 4.3E-07 -35.2 -18.5
Mult128 7.8E-07 1.8E-06 2.6E-06 2.4E-07 1.8E-06 2.0E-06 2.4E-07 1.4E-06 1.6E-06 -35.7 -18.3

Using the projected sizes of 5-input binary and 3-input quaternary CLBs from Table

6.2, the projected performance of arithmetic benchmarks from [1] is given in Table 6.3.

The logic area is found by multiplying the number of required CLBs (given in [1]) by the

respective CLB sizes. The routing area from the original study is kept for this study (with

the proposed and comparative QFPGA pessimistically having the same routing area), except

MWTA units are translated to physical silicon area.

These projected benchmarks show the proposed QFPGA architecture substantially re-

duces the area needed to implement the benchmark, with area reductions up to 18% (-18.3

%). This can be attributed to both smaller logic and BLE routing areas for the proposed

QFPGA implementations while the same number of QFPGA BLEs are needed. The only

exception is the smallest of benchmarks (Adder32) where binary circuits are more efficient.

The quality of the proposed benchmark is accentuated by a plot of benchmark areas, given

in Fig. 6.1. Considering the plot trend in Fig. 6.1, it is predicted that this study’s QFPGA

BLE can achieve more competitive area gains with more complex benchmark implementa-

tions. More area gains are further expected when actual routing areas are considered for the

proposed benchmarks (as opposed to the pessimistic identical routing areas), since smaller

CLB areas will translate to less routing area.

40

Figure 6.1: Plots of benchmark implementations reveal a trend of area gains for the proposed
QFPGA BLE-based benchmarks compared with binary and [1] QFPGA implementations.

41

Chapter 7

Conclusions and Future Work

Unique MVL memories were implemented with floating-gate transistors and were used

in a novel QFPGA architecture that is a competitive, viable alternative to an equivalent

binary FPGA and previously proposed QFPGA architectures [1], both in terms of single-

BLE delay and power density as well as benchmark-level area. The proposed QFPGA BLE

architecture is compatible with modern FinFET logic technology and can be fabricated in

processes allowing floating gates and digital logic.

Future work will investigate modelling interconnects as overhead delays to incorporate

its impact on the performance of logic implementations (using binary and quaternary BLEs).

Such a study will further validate the proposed quaternary BLE’s performance.

Another area which will be addressed in future studies is novel architectures required to

efficiently program the MVL memory elements. Although this work presumed that floating-

gate transistors can be initialized in the circuit simulator, a more accurate model that can

be verified and applied in hardware is required.

Furthermore, future research work should also focus on the challenges of implementing

non-binary structures in a binary world. Given that we live in a binary world, there are

currently no functional MVL or quaternary-logic synthesis tools or compilers. This presents

a critical hurdle to validating MVL designs for use in real-world applications.

42

Bibliography

[1] S. Chaudhuri, “Beyond Bits: A Quaternary FPGA Architecture Using Multi-Vt Multi-
Vdd FDSOI Devices,” in IEEE 48th International Symposium on Multiple-Valued Logic
(ISMVL), Linz, Austria, May 2018, pp. 38–43.

[2] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs.
Kluwer Academic Publishers, 1999.

[3] C. Lazzari, J. Fernandes, P. Flores, and J. Monteiro, “An Efficient Low Power Multiple-
Value Look-up Table Targeting Quaternary FPGAs,” in Proceedings of the 20th Inter-
national Conference on Integrated Circuit and System Design: Power and Timing Mod-
eling, Optimization and Simulation, ser. PATMOS’10. Berlin, Heidelberg: Springer-
Verlag, pp. 84–93.

[4] P. Pavan, L. Larcher, and A. Marmiroli, “Floating Gate Devices: Operation and Com-
pact Modeling,” NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech,
vol. 2, Jan. 2004.

[5] S. J. Rapp, K. R. Mcmillan, and D. W. Graham, “SPICE-compatible modelling tech-
nique for simulating floating-gate transistors,” Electronics Letters, vol. 47, no. 8, pp.
483 –485, April 2011.

[6] X. Chen and Y. Ha, “The Optimization of Interconnection Networks in FPGAs,” in
Dynamically Reconfigurable Architectures, ser. Dagstuhl Seminar Proceedings, P. M.
Athanas, J. Becker, J. Teich, and I. Verbauwhede, Eds., no. 10281, Dagstuhl, Germany,
2010.

[7] Z. Marrakchi, H. Mrabet, U. Farooq, and H. Mehrez, “FPGA Interconnect Topologies
Exploration,” International Journal of Reconfigurable Computing, vol. 1, no. Article 6,
pp. 1687–7195, 2009.

[8] A. DeHon, “Balancing Interconnect and Computation in a Reconfigurable Computing
Array (or, Why You Don’t Really Want 100% LUT Utilization),” in Proceedings of
ACM/SIGDA Seventh International Symposium on Field Programmable Gate Arrays.
Association for Computing Machinery, 1999, pp. 69–78.

[9] Smith, K.C., “The Prospects for Multivalued Logic: A Technology and Applications
View,” IEEE Transactions on Computers, vol. C-30, no. 9, pp. 619–634, Sep. 1981.

[10] E. Dubrova, “Multiple-Valued Logic in VLSI: Challenges and Opportunities,” Proceed-
ings of NORCHIP’99, Nov. 1999.

43

[11] A. Sheikholeslami, R. Yoshimura, and P. G. Gulak, “Look-up tables (LUTs) for
multiple-valued, combinational logic,” in 28th IEEE International Symposium on
Multiple-Valued Logic. USA: IEEE Computer Society, May 1998, pp. 264–269.

[12] P. M. Kelly, T. M. McGinnity, L. P. Maguire, and L. McDaid, “Exploiting binary
functionality in quaternary look-up tables for increased functional density in multiple-
valued logic FPGAs,” Electronics Letters, vol. 41, no. 6, pp. 300–302, March 2005.

[13] P. Beckett, “Towards a balanced ternary FPGA,” in International Conference on Field-
Programmable Technology, Sydney, Australia, Dec. 2009, pp. 46–53.

[14] T. Felicijan and S. B. Furber, “An asynchronous ternary logic signaling system,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 6, pp. 1114–
1119, Dec. 2003.

[15] H. Shirahama and T. Hanyu, “Design of High-Performance Quaternary Adders Based
on Output-Generator Sharing,” in 38th International Symposium on Multiple Valued
Logic. USA: IEEE Computer Society, May 2008, pp. 8–13.

[16] R. Cunha, H. Boudinov, and L. Carro, “Quaternary Look-Up Tables Using Voltage-
Mode CMOS Logic Design,” in 37th International Symposium on Multiple-Valued Logic.
USA: IEEE Computer Society, May 2007, p. 56.

[17] NCSU Electronic Design Automation (EDA). (2017) FreePDK15 wiki page. [Online].
Available: https://www.eda.ncsu.edu/wiki/FreePDK15:Contents

[18] H. . Lee, S. Rami, S. Ravikumar, V. Neeli, K. Phoa, B. Sell, and Y. Zhang, “Intel 22nm
FinFET (22FFL) Process Technology for RF and mm Wave Applications and Circuit
Design Optimization for FinFET Technology,” in IEEE International Electron Devices
Meeting (IEDM), San Francisco, USA, 2018.

[19] C. Auth, “45nm high-k + metal gate strain-enhanced CMOS transistors,” in IEEE
Custom Integrated Circuits Conference, California, USA, Oct. 2008, pp. 379–386.

[20] G. Panti, “MULTI-VALUED LOGICS,” Quantified Representation of Uncertainty and
Imprecision, vol. 1, pp. 25–26, 2013.

[21] S. Gottwald, “A Treatise on Many-Valued Logics.” England: Research Studies Press,
Jan. 2001, pp. 3–5.

[22] T. Hanyu and M. Kameyama, “A 200 MHz pipelined multiplier using 1.5 V-supply
multiple-valued MOS current-mode circuits with dual-rail source-coupled logic,” IEEE
Journal of Solid-State Circuits, vol. 30, no. 11, pp. 1239–1245, Nov. 1995.

[23] D. Brito, T. Rabuske, J. Fernandes, P. Flores, and J. Monteiro, “Quaternary Logic
Lookup Table in Standard CMOS,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 2, pp. 306–316, Jan. 2014.

44

[24] E. Ozer, R. Sendag, and D. Gregg, “Multiple-valued logic buses for reducing bus energy
in low-power systems,” IEEE Proceedings - Computers and Digital Techniques, vol. 153,
no. 4, pp. 270–282, July 2006.

[25] A. N. Gupte and A. K. Goel, “Study of quaternary logic versus binary logic,” in First
Great Lakes Symposium on VLSI. Los Alamitos, CA, USA: IEEE Computer Society,
March 1991, pp. 336–337.

[26] V. P. K.S. and K. S. Gurumurthy, “Quaternary CMOS Combinational Logic Circuits,”
in International Conference on Information and Multimedia Technology. USA: IEEE
Computer Society, Dec. 2009, pp. 538–542.

[27] D. Etiemble and M. Israël, “Comparison of Binary and Multivalued ICs According to
VLSI Criteria,” Computer, vol. 21, no. 4, pp. 28—-42, Apr. 1988.

[28] R. H. Freeman, “Configurable Electrical Circuit Having Configurable Logic Elements
And Configurable Interconnects,” Granted Patent US 4 870 302 A, Sept., 1989.

[29] J. Rodriguez-Andina, M. Valdés, and M. Moure, “Advanced Features and Industrial
Applications of FPGAs - A Review,” IEEE Transactions on Industrial Informatics,
vol. 11, no. 4, pp. 853–864, Sept. 2015.

[30] E. Monmasson and M. Cirstea, “FPGA Design Methodology for Industrial Control
Systems—A Review,” Industrial Electronics, IEEE Transactions on, vol. 54, no. 4, pp.
1824–1842, Sept. 2007.

[31] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-Attached FPGAs for
Data Center Applications,” in International Conference on Field-Programmable Tech-
nology (FPT), Dec. 2016, pp. 36–43.

[32] U. R. Khan, H. L. Owen, and J. L. A. Hughes, “FPGA architectures for ASIC hard-
ware emulators,” in Sixth Annual IEEE International ASIC Conference and Exhibit,
Newyork, USA, Sep. 1993, pp. 336–340.

[33] J. Rose and D. Hill, “Architectural and Physical Design Challenges for One-Million
Gate FPGAs and Beyond,” in Proceedings of the ACM Fifth International Symposium
on Field-Programmable Gate Arrays. New York, NY, USA: Association for Computing
Machinery, 1997, pp. 129–132.

[34] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic Power Consumption in VirtexTM-
II FPGA Family,” in Proceedings of ACM/SIGDA Tenth International Symposium on
Field-Programmable Gate Arrays. New York, NY, USA: Association for Computing
Machinery, 2002, pp. 157–164.

[35] N. Zhang, X. Wang, H. Tang, A. Wang, Z. Wang, and B. Chi, “Low-voltage and high-
speed FPGA I/O cell design in 90nm CMOS,” in IEEE 8th International Conference
on ASIC, Changsha, China, Oct. 2009, pp. 533–536.

45

[36] Z. Zilic and Z. G. Vranesic, “Multiple-valued logic in FPGAs,” in 36th Midwest Sym-
posium on Circuits and Systems, Detroit, MI, USA, Aug. 1993, pp. 1553–1556 vol.2.

[37] K. W. Current, “Current-mode CMOS multiple-valued logic circuits,” IEEE Journal of
Solid-State Circuits, vol. 29, no. 2, pp. 95–107, Feb. 1994.

[38] R. Silva, C. Lazzari, H. Boudinov, and L. Carro, “CMOS voltage-mode quaternary look-
up tables for multi-valued FPGAs,” Microelectronics Journal, vol. 40, pp. 1466–1470,
Oct. 2009.

[39] X. Guo, V. Verma, P. Gonzalez, S. Mosanu, and M. Stan, “Back to the Future: Digital
Circuit Design in the FinFET Era,” Journal of Low Power Electronics, vol. 13, pp.
338–355, Sept. 2017.

[40] D. Brito, T. Rabuske, J. Fernandes, P. Flores, and J. Monteiro, “Quaternary Logic
Lookup Table in Standard CMOS,” vol. 23, no. 2. Los Alamitos, CA, USA: IEEE
Computer Society, Feb. 2015.

[41] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” The
Bell System Technical Journal, vol. 46, no. 6, pp. 1288–1295, July 1967.

[42] Y. Fujisaki, “Review of Emerging New Solid-State Non-Volatile Memories,” Japanese
Journal of Applied Physics, vol. 52, pp. 040 001–040 002, Apr. 2013.

[43] S. Lai, “Flash memories: where we were and where we are going,” in International
Electron Devices Meeting Technical Digest (Cat. No.98CH36217), Dec. 1998, pp. 971–
973.

[44] E. Takeda, A. Shimizu, and T. Hagiwara, “Role of hot-hole injection in hot-carrier
effects and the small degraded channel region in MOSFET’s,” IEEE Electron Device
Letters, vol. 4, no. 9, pp. 329–331, Sep. 1983.

[45] P. Hasler, B. A. Minch, and C. Diorio, “Adaptive circuits using pFET floating-gate
devices,” in Proceedings of the 20th Anniversary Conference on Advanced Research in
VLSI. USA: IEEE Computer Society, Mar. 1999, pp. 215–229.

[46] C. A. Mead, “Scaling of MOS Technology to Submicrometer Feature Sizes,” in Feynman
and Computation: Exploring the Limits of Computers. USA: Perseus Books, 1999, pp.
93–115.

[47] K. Rahimi, C. Diorio, C. Hernandez, and M. D. Brockhausen, “A simulation model for
floating-gate MOS synapse transistors,” in IEEE International Symposium on Circuits
and Systems. Proceedings (Cat. No.02CH37353), vol. 2, May 2002, pp. II–II.

[48] J. L. Gray, R. Robucci, and P. Hasler, “The design and simulation model of an analog
floating-gate computational element for use in large-scale analog reconfigurable sys-
tems,” in 51st Midwest Symposium on Circuits and Systems, Aug. 2008, pp. 253–256.

46

[49] K. G. Nichols, T. J. Kazmierski, M. Zwolinski, and A. D. Brown, “Overview of SPICE-
like circuit simulation algorithms,” IEEE Proceedings - Circuits, Devices and Systems,
vol. 141, no. 4, pp. 242–250, Aug. 1994.

[50] B. Swahn and S. Hassoun, “Gate sizing: FinFETs vs 32nm bulk MOSFETs,” in Pro-
ceedings of the 43rd ACM/IEEE Design Automation Conference. San Francisco, CA,
USA: Association for Computing Machinery, July 2006, pp. 528–531.

[51] W. P. Maszara and M. Lin, “FinFETs - Technology and circuit design challenges,” in
Proceedings of the European Solid-State Device Research Conference, Bucharest, Roma-
nia, Sep. 2013, pp. 3–8.

[52] P. Mishra, A. Muttreja, and N. Jha, “FinFET circuit design,” in Nanoelectronic Circuit
Design. United States: Springer New York, Dec. 2011, pp. 23–54.

[53] V. Kursun and E. Friedman, “Supply and Threshold Voltage Scaling Techniques,” in
Multi-Voltage CMOS Circuit Design. John Wiley Sons, Ltd, 2006, pp. 45–84.

[54] M. Mustafa, “Threshold Voltage Sensitivity to Metal Gate Work-Function Based Perfor-
mance Evaluation of Double-Gate n-FinFET Structures for LSTP Technology,” World
Journal of Nano Science and Engineering, vol. 3, pp. 17–22, Jan. 2013.

[55] M. Rostami and K. Mohanram, “Novel dual-Vth independent-gate FinFET circuits,”
in Proceedings of the Asia and South Pacific Design Automation Conference. Taipei,
Taiwan: IEEE Press, 2010, pp. 867–872.

[56] Y. Liu, T. Kamei, T. Matsukawa, K. Endo, S. O’uchi, J. Tsukada, H. Yamauchi,
Y. Ishikawa, T. Hayashida, K. Sakamoto, A. Ogura, and M. Masahara, “FinFET flash
memory technology,” in ECS Transactions, vol. 45, Apr. 2012, pp. 289–310.

[57] S. Young, P. Alfke, C. Fewer, S. McMillan, B. Blodget, and D. Levi, “A high I/O
reconfigurable crossbar switch,” in Proceedings of the 11th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, Napa, CA, USA, April 2003, pp.
3–10.

[58] F. F. Khan and A. Ye, “Measuring the Accuracy of Minimum Width Transistor Area in
Estimating FPGA Layout Area,” in Proceedings of the IEEE 23rd Annual International
Symposium on Field-Programmable Custom Computing Machines, Vancouver, British
Columbia, Canada, May 2015, pp. 223–226.

47

