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Abstract

This thesis explores the comparisons and contrasts of different statistical method ap-

proaches to a missile system classification which is sufficiently rapid to be suitable for use

during engagement. It is meant to extend the work published by Eckert et al. [9] by using

simulated noise from common radar equations and running the dataset through an α-β fil-

ter. Additionally, this work expands on their work with the inclusion of another supervised

learning technique, the support vector machine. The ultimate goal of this series of work

is the rapid quantitative and statistically defensible descriptions of unknown missiles using

the simulated telemetry data scheme during flight. The primary two supervised statistical

learning methods explored in this thesis are Artificial Neural Networks (ANN) and Support

Vector Machines (SVM) . Of these two different statistical learning techniques, SVM classi-

fiers were found to be the optimal classification technique in the context of this framework;

SVMs were able to correctly identify 100% of the testing dataset and guarantee a global

optima.
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Chapter 1

Introduction

1.1 Missile Geometry

Classifying missile trajectories can be categorized as a sub-goal of the object detection

schema - a common theme among machine learning researchers. Object detection uses an

object’s set of motions to predict their next steps given a different set of conditions. The

application of object detection in aerospace for the prediction of missile trajectories is a

rapidly expanding field.

In this area of research, prior studies have proven that a missile can be classified during

ascent phase [1] and classification of ballistic missiles can be achieved through the use of

neural networks [2]. This paper attempts to improve on the literature by incorporating a full

6 degrees of freedom (DoF) simulation for a missile geometry more consistent with “truth

data” as it includes noise from radar detection. Since ballistic missiles are usually neutralized

during mid-phase and terminal phases, the timing focal point for our detection scheme will

be during the launch phase. Thus, being able to classify the missiles in the shortest amount

of time after detection to allow for deployment of proper neutralization techniques during

later phases. In addition, this paper will serve as a way to compare and contrast different

optimizing methods for neural networks and introduce support vector machines for missile

classification.

The paper uses a selection of twelve different ballistic intermediate range solid motor-

powered missile classes with a maximum range of approximately 350 nm . For each of these

missile class variations, approximately 1,500 6-DoF fly-outs were developed using a 7th - 8th
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order Runge-Kutta integrator for the equations of motion as formulate in Etkin [4]. The

solid motor burn out follows the technical approach outline in Hartfield, et. al [5]. The

aerodynamic loads are calculated using an in-house fast predictor tool similar to MISSILE-

DATCOM. For the purposes of this paper, the missiles considered included a right circular

perforated solid motor star grain as seen in Figure 1.1 with a profile geometry shape and

structure similar to Figure 1.2.

Figure 1.1: Cross Section of Star Grain with 7 Points

Figure 1.2: Nominal Missile Geometry Example

The geometric data for the nominal missile is summarized in Table 1. The combinations

of values in bold are what make up the 12 cases generated for this paper. This configuration

includes tail fins for stability during atmospheric flight, but no canards. Variations included
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increasing and decreasing the body diameter by 6.7% and changing fineness ration and throat

diameter by similar amounts. The case of each missile is steel, and the solid propellant is

PVC/AP/AL. The 7 pointed star grain is regressive initially for a boost-sustain profile.

PARAMETERS AVERAGE

Nose Radius Ratio, Rn/Rb .4
Nose Length Ratio Ln/D 2

(rp+ f)/Rb 0.557
Star Inner Ratio, ri/rp 0.15667
Number of Star Points 7.2

Fillet Radius Ratio, f/rp 0.084
Epsilon, (π ∗ ε)/N 0.88138

Star Point Half Angle 10.03149◦

Throat Diameter Ratio, Dt/D 0.2943, 0.30902
Fineness Ratio, L/D 14.33367, 15.76704

Missile Body Diameter (D) 0.7, 0.75, 0.8
Tail Semi-Span Ratio, (bt/2)/D 1.4
Tail Root Chord Ratio, Crt/D 1.132

Tail Taper Ratio 0.66
Tail LE Sweep Angle 10◦

Tail Axial, TE/D 0.992
Fuel Type PVC/AP/AL

Table 1.1: Key Parameters for the Nominal Missile Class

1.2 Noise Addition

The simulation will be taken as “truth” data; to this data, noise will be added to the

signal to mimic a real-life missile firing. Afterward, an α−β filter will be applied to smooth

the noisy data. Again, to mimic a real-life scenario.

The noise is added by simulating the power received by the antenna after a signal is sent

and returned. To calculate this power, MSIC has provided radar polarization data from live
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fires which creates a view of the radar cross-section. The equation for the radar cross-section

follows:

RCS =
√
V V (REAL)2 + V V (IMAGINARY )2 ft2. (1.1)

From the radar cross section, the power received comes from rearranging the original

radar equation found in Skolnik [3]:

PR =
PT ∗G ∗RCS ∗ A

(4π)2R
. (1.2)

Noise for the polar coordinates (R, θ, φ) can then be generated by multiplying the power

received by some Gaussian noise which ultimately is selected in a range that helps control

error. The α− β filter is responsible for the conversion of these polar coordinates to Carte-

sian coordinates. The simulated noise matched MSIC’s a priori knowledge of real-life fire

scenarios.

1.3 Data Description

Provided are the simulated fly-outs using Table 1 results and noise within each class

in this section. A total of 18,000 flights were simulated - 1,500 per each of the 12 classes.

Figures 1.3 - 1.5 show a graphical representation for a randomly selected sample of 50 fly-

outs truncated to the beginning of the launch phase, which is around 40 seconds of flight

time. These graphics represent the 12 cases’ range over time, their altitudes over time,

and finally altitudes versus their ranges during the 40 seconds, respectively. Results from

all 18,000 cases for their full duration of flight are displayed in Appendix A. Figures 1.3-

1.5 are a good indications of how separable the data is. If the 12 different geometries show

flight patterns that are too separated, the problem is not realistic and becomes uninteresting.
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Figure 1.3: 40 Second Interval of Range versus Time Profiles for 50 Randomly Selected
Missiles

Looking at the 40-second interval profile from Figures 1.3 - 1.5 we see that there is

hardly any separability at this beginning stages. In fact, many of the classes now almost

perfectly overlap. Thus, the simulation mimics what we would expect to find using live fire

data, and creates a unique, interesting problem.

It’s worth noting that most of the classes begin separation during the later stages of

flight; this concern will not play a factor during modeling as we are only focused on the

beginning seconds of the missile’s flight trajectory. The hope moving forward, therefore, is

that the statistical learning techniques will be able to determine one pattern’s variance from

other patterns and make accurate classifications of this noisy data. It is important to note

that the visualizations presented in the Appendix figures dictate the telemetry of the rockets

from the simulated launch to landing. One of the explicit goals of the paper was to achieve

classification as quickly as possible after radar detection for neutralization.
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Figure 1.4: 40 Second Interval of Altitude versus Time Profiles for 50 Randomly Selected
Missiles

Ergo, the Appendix figures encompass more data than is expected to be used in the

modeling. After verifying that the simulation is a success, the next step is processing the

shape of the dataframe before modeling. Many statistical learning methods process the entire

data vector at once [6], manipulating the vector can help us achieve a better classification

accuracy. Currently, the data is a vector containing the following: an ordinal, categorical

ID for a missile’s case, a point in 3-dimensional space where the rocket is at detection time,

and the detection time itself. The vector at time t, would look like: [Case#, (Xt, Yt, Zt), t].

In an effort to increase the input basis (the benefits of doing so are further explored in the

next chapter), the data is vectorized so that the new input vector has the same case ID as

before, but now includes points Xt, Yt, and Zt that have accumulated up to time, t.
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Figure 1.5: 40 Second Interval of Altitude versus Range Profiles for 50 Randomly Selected
Missiles

Thus, for any time such that t > 1, the input vector becomes [Case#, X1, . . . , Xt, Y1, . . . , Yt,

Z1, . . . , Zt]. It is important to note here that X1, Y1, and Z1 do not represent the position

at launch but rather after 10 seconds of flight time. In reality, radar detection will be vari-

able, which is why such an extreme amount of time was truncated. Extremely conservative

estimates will assume that it takes 10 seconds or less for radar detection. This accounts for

any delayed detection time by the radar and keeps the vectors’ lengths fixed for analysis.

Time was not measured in even intervals. After processing the data, 30 seconds of flight

data had a time value of t = 50. In this way, the simulated radar detection times match

the real life radar detection by not having an consistent, evenly measured interval. The corre-

sponding input vector for a single 30 seconds of flight data is: [Case#, X1, . . . , X50, Y1, . . . , Y50,
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Z1, . . . , Z50]. There exists a balance between accuracy and time of detection, as the time of

detection increases, so does the accuracy but it also cuts into potential time for neutraliza-

tion. 30 seconds of data seems to be a “sweet spot” in terms of this trade off, and was used

in the initial analysis of the problem [9]. The process of vectorizing the dataframe to the

new form was done using a macro in popular statistics software, SAS.

The data processing steps defined above do achieve the goal of increasing the input

basis possibilities, but have the drawback of losing the time element the previous input

vector possessed. The original pre-vectorized flight telemetry can be modeled as a function

of time, i.e. say the flight telemetry before processing can be described by function f(t).

Then the following equation for velocity can be trivially shown to be:

v(t) = f ′(t). (1.3)

Since the first 10 seconds are being truncated and we are only using a maximum of 30

seconds of flight data the function v(t) is defined and exists for for all points in this interval

being modeled. The input basis can be expanded, with marginally little effort, to include

these velocities in the X, Y, and Z directions: [V1x, . . . , Vtx, V1y, . . . , Vty, V1z, . . . , Vtz] Since

velocity is a function of time, the inclusion of the velocities to the input vector allows the

models to “recapture” some of the time element lost by the vectorizing process and as an

added benefit further increases the size of the input basis.

Initially, there was a discussion to also add acceleration since the second derivative of

the initial telemetry flight data could also be defined in our window of modeling. However,

under consultation it became clear that the acceleration data would be too chaotic and noisy

to capture when using radar in the field. Since the goal of this paper is to develop these
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methodologies for use during engagement, and acceleration would not be available during

such a time, it was left out in the modeling process. This speaks to the limitations of using

radar.
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Chapter 2

Neural Networks

2.1 Introduction to Neural Networks

Every neural network is composed of three elements - an input layer, atleast one hidden

layer, and an output layer. The central idea of a neural network is to use a nonlinear function

on inputs to model a response [7]. The underlying goal is to find an equation based on input

data that can offer an accurate prediction on new, realistic data.

Figure 2.1: Graphical Representation of an Example Neural Network

Suppose we have a p-component vector of inputs X = [x1...xp]
′. A large class of models

can be formed by nonlinear functions using these combinations as inputs to make up a

mathematical basis. As a direct result, models have the flexibility to be generalized for any
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function in Rp [7]. Equation (2.1) shows how the dot products of x1 and x2 can be expanded

to a 2nd order degree polynomial very simply [11]:

(x1·x2) =
[(x1 + x2)

2 − (x1 − x2)2]
4

(2.1)

Each layer is composed of units called neurons or nodes (in Figure 1, a node is rep-

resented by one of the colored circles). Each neuron outputs a real number which is then

passed along to the next layer. Passing it from layer to layer forms a repeated application of

a simple, chosen nonlinear function called the “activation function” (denoted as σ(x)) [11].

As the number of hidden layers increases, the network is termed as having more “depth.”

Hence the colloquial term, “deep learning”. Choosing the correct activation function is an

important aspect of the accuracy of the network since incorrect choices can lead to poor

testing results. Increases in the depth and complexity of the network cause activation at

each layer to become computationally more expensive.

The application of the activation function on the weighted combination of the previous

layers’ values needs to be done in component-wise fashion; so that for every x εRm, σ :

Rm → Rm the following always holds:

(σ(x))i = σ(xi) (2.2)

where m is the size of the basis represented by m = 1, 2, ...,M p-vectors of inputs [8].

The next step in the network involves the previous weighted combinations of inputs (αi)

and a bias term (α0) being fed into the current layer’s activation function. The results from

each of the previous layer’s activations are gathered and then used in a “two-stage” regression.

Once the initial basis goes through all the hidden layers a final transformation is completed

by the output function to get the results of a single forward pass [8]. Mathematically, this
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process is represented by Equations (2.3)-(2.5):

Zm = σ(α0m + αmX); m = 1, ...,M (2.3)

Tk = β0k + βTk Z; k = 1, ..., K (2.4)

gk(T ) = Yk; k = 1, ..., K (2.5)

where Z = (Z1, ..., Zm), T = (T1, ..., Tk), and the subscript k are dependent on the network

modeling a regression or classification problem. For regression, K = 1 is used in the output

layer to get a single numerical value; otherwise, it would denote the kth class of a K-sized

classification problem; m has been defined earlier [7]. For the purpose of our classification

networks K = 12.

Colloquially, these “hidden layers” get their name from the fact that each Zm is indi-

rectly observed [7]. Ultimately, Zm acts the same as the basis expansion discussed earlier in

the section of original inputs X. Another way to increase the networks’ complexities is to

add neurons in each layer because additional neurons expand the potential basis that is fed

to the next layer.

Mathematically, if we collect a vector of all the previous real numbers produced by the

neurons in one layer (denote this vector as V ) then we can show that the vector of inputs

for the next layer has the form:

Zm = σ(α0m +
∑

αmV )⇒ Z = σ(b+WV ) (2.6)

where W is a matrix representing the weights (
∑
αm) and introduced biases (b) for the

current hidden layer. The dimensions of W are q × p where q is the number of neurons in

the current layer and p is the number of neurons from previous layer. The bias vector is the
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size of the number of neurons on the current layer that are adding their own unique biases [8].

Assume, as an example, there is a neural network with two hidden layers with the size

of the layers being 2 and 3, respectively. The first iteration of the activation function’s

application occurs on the original Xi’s from the input layer [7]:

Z1 = σ(b[1] +W [1]X). (2.7)

The output is then fed into layer two, which then has an output of the form [7]:

Z2 = σ(b[2] +W [2]Z1)⇒

σ(b[2] +W [2]σ(b[1] +W [1]X)) εR2. (2.8)

Afterwards, the 3 neurons in the next layer receive the output from each of the second

layer neurons, Z2. The output of Z2 is in R2 meaning W [3] is a matrix of size (3, 2) and

W [3] εR3 with a corresponding bias vector that is also b[3] εR3. The output from this second

hidden layer would be iterative:

Z3 = σ(b[3] +W [3]Z2)⇒

σ(b[3] +W [3]σ(b[2] +W [2]σ(b[1] +W [1]X)) εR3. (2.9)

These outputs become the inputs into a regression for Tk to find the corresponding βk

weights [8].

The output function, gk(T ), is the final transformation of the previous functions’ out-

puts. For a regression problem, this is just the identity function, gk(T ) = Tk. At the time of
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this writing, classification problems commonly use the softmax function [7]:

gk(T ) =
eTk∑K
l=1 e

Tl
. (2.10)

The function acts the same way a multinomial logit link would, creating a probability

for each of the K classes that in turn the final linear combination classifies in a specific kth

class. Ultimately, gk(T ) is a mapping from the dimension of the input space to the output

space where RM → RK . This “forward pass” creates a preliminary prediction for the net-

work.

To recap so far, neural networks have the following primary characteristics [10]:

1. At any stage during the forward pass of a neural network, there exists an activation

function value for each neuron.

2. Each neuron is connected to each other neuron and these connections are what deter-

mine the input for the next neuron. Each of these connections is weighted.

3. At a neuron, an activation function is applied to all the incoming inputs to generate a

new input for neurons in subsequent hidden layers or the output layer.

At this point the machine has a preliminary prediction; it is important to assess how

“well” it did modeling. The network evaluates where mistakes were made and uses a corrected

weight matrix W on subsequent passes, learning from its past mistakes - which is where

the nomenclature “statistical learning” is derived from. This leads to the last primary

characteristic:

4. A learning algorithm is used to adjust the weights between neurons when given an

input–output pairing.
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The learning process is referred to as “backpropagation.” Any backpropagation algo-

rithm updates the weights one layer at a time going from right to left. Given enough time

any neural network will completely learn the patterns from all the data fed into it, overfitting

the model to the specified data. Typically modeling is broken into two steps to avoid such

overfitting - a training step and a testing step. The data is split such that a portion will

be used specifically for training and another portion will be used only for testing. “Epochs”

are an arbitrarily defined hyperparameter representing a time to cutoff training. The epoch

hyperparameter is often chosen before training, but it can be set to stop during training after

certain criteria are met. An epoch is generally seen as “one pass over the entire dataset”.

The network will formulate a model during the training step, and afterward, all the weights

and thresholds will be optimized to reduce the error defined by the difference between the

output guessed during network training and the correct output provided [13]. The model is

then tested on the fresh holdout data as a way to measure potential overfitting that might

have occurred.

If we think of all the unknown weight parameters as a vector θ then we can define a

risk function, R(θ). The risk function is dependent on whether the model is a regression or

classification model. Objectively, the goal is to minimize R(θ) as accurately and efficiently

as possible. The next few sections show effective ways of minimizing R(θ). The network

learns tasks from examples over the span of many epochs. As each epoch finishes, the after-

most weights are updated, which, in turn, recursively updates the previous weights. The

optimization will continue to learn as the number of epochs increases, trying to converge to

a global minima of the objective risk function.

2.2 Optimization Algorithms for Neural Networks

As discussed in the previous section, the neural network functions as a sort of mapping

from the inputs to either the classes of a classification or a numerical value for regression.
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Simply put, the network “function”, h(∗, w), acts as a sort of “black-box” machine turning

inputs into outputs [11]:

xn εRd0 → h(xn, w)→ y εRdy . (2.11)

Define an arbitrary network with J layers. Then for each layer j = 1, . . . , J the weights

and biases for the jth layer become:

wj εRdj×dj−1 (2.12)

bj εRdj (2.13)

and as we advance through the layers, the number of total parameters that become necessary

for estimation during the training step increases.

Each layer takes in the weights and biases of the previous layer as an input, meaning

the total number of parameters necessary to be updated is a cumulative sum of the previous

layers up to the output layer. For layer i ε {1, . . . , J}, the total number of parameters is

represented by Equation (2.14):

di =
i∑

j=1

(djdj−1 + dj). (2.14)

The loss function, l(∗), gives information for any example input-output pair for the

network. If there exists no difference between the guessed and correct output, then the loss

is zero. If the difference exists, then measurement error exists as well. With the choice of a

loss function we can set up our optimization problem minimizing the average loss across all

examples [11], done below:

min
w ε Rd

R(w) = min
w ε Rd

[
1

n

n∑
i=1

(l(h(xi, w), yi)] (2.15)
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Using the “machine” analogy in Equation (2.11) the goal for optimization of neural

networks is to generate a sequence of points (h(xi, w), yi) that converge to the minimization

of our objective risk function, R(w), as the number of iterations of the neural network, de-

noted k increases (k → ∞) [14]. If the objective function is convex, the optimization will

produce a global minima; however, most objective loss functions in the application of neural

networks are not strictly convex - if they are convex at all. Optimization can therefore lead

to answers that are not the true global minima if the function is not strictly convex. If

our objective function R(w) is continually differentiable then the optimization problem is a

smooth optimization problem.

2.2.1 Stochastic Gradient Descent

Approximate solutions to the optimization problem have been approached using gradi-

ent descent. The gradient of the average loss is computed using chain rule differentiation;

however, the computation of the gradient is expensive. If using the method of “steepest

descent”, we initialize a matrix, w0, to determine an optimal αk, and update the weight

matrix at the kth iteration using the gradient:

wk+1 = wk − αk∇R(wk) (2.16)

where αk is the “step-size” for the optimization process. If αk satisfies the Wolfe conditions,

||∇R(wk)|| → 0; k →∞ (2.17)

⇒ wk+1 = wk; k →∞
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then computing ∇R(wk) at each step of optimization the steepest descent converges geo-

metrically to Equation (2.18). As ρ→ 1 convergence speed increases [11]:

||wk+1 − w∗||
||wk − w∗||

≤ ρ⇒

||wk − w∗|| ≤ cρk ⇒

O(ρk). (2.18)

Proving that optimizing ∇R(w) using the entire dataframe is exhaustive computation-

ally. Instead of using the whole gradient at once, stochastic gradient descent use n-discrete

optimizations by approximating Rn(w) from the n-sums of the averages of the objective

function f(w, ξi) where ξi represents a batch of observations from the truth distribution. In

true stochastic gradient descent methods, this ξi value would be a single observations, not a

batch. Using a “mini-batch” approach creates a compromise between the full gradient and

single point approaches in both accuracy and time complexity. Since this random variable

only will be used to generate the stochastic direction [11], the following analysis will hold

for batch approaches.

Analysis of Stochastic Gradient Methods

The complexity of selected objective functions for neural network tends to create quasi-

convex to nonconvex optimization problems. Therefore, this analysis will be based primarily

on the use of a general objective function F instead of using one that is strictly convex. The

algorithm for the stochastic gradient method follows the iterative process [11]:
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Algorithm 1 SGD Algorithm:

1: Initialization Choose a starting value for w1

2: for k = 1, 2, . . . , K do {K represents the number of iterations until convergence}

3: Generate a realization of the random variable ξk

4: Compute the stochastic vector gradient {The gradient will be expressed as g(wk, ξk)}

5: Choose a step-size αk > 0

6: wk+1 ← wk − αkg(wk, ξk)

7: end for

In order for convergence to happen, two fundamental assumptions must be made. This

assumptions will be addressed and derived from the fundamental Lemma 2.1 and Lemma

2.2 [11]:

Lemma 2.1 (Lipschitz-continuous objective gradients): The objective function is con-

tinuously differentiable and the gradient function (∇F : Rd → Rd), is Lipschitz continuous

with the Lipschitz constant L > 0 such that

||∇F (w)−∇F (w̄)||2 ≤ L||w − w̄||2 for all {w, w̄} ⊂ Rd. (2.19)

The assumption in Lemma 2.1 is that the gradient of F is not an exploding gradient,

meaning it will not rapidly change. If the gradient is exploding, we could create an upper

bound to the gradient such that it will no longer be exploding. This assumption is crucial

for convergence analysis. The second fundamental lemma is:

Lemma 2.2: If the gradient is Lipschitz continuous and does not rapidly change, then the

iterates of SGD Algorithm satisfy the inequality for all k εRp
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E[F (wk+1)|ξk]− F (wk) ≤ −αk∇F (wk)
TE[g(wk, ξk)|ξk] +

1

2
α2
kLE[||g(wk, ξk)||22|ξk]. (2.20)

Lemma 2.2 bounds above the expected decrease in the objective function for the kth

step. The convergence is guaranteed as long this bound is a deterministic quantity that

asymptotically ensures descent in F. To ensure that this bound is deterministic, we have

further assumptions covered in the following [11]:

Lemma 2.3 (First and Second Moment Limits): The objective function and SGD

Algorithm satisfy:

a.) The sequence of iterates {wk} is contained in an open set over which F is bounded

below by a scalar.

b.) there exists a scalar such that µG ≥ µ > 0 such that for all k εRp,

∇F (wk)
TEξk [g(wk, ξk)] ≥ µ||∇F (wk)||22 (2.21)

and

||Eξk [g(wk, ξk)]||2 ≤ µG||∇F (wk)||22. (2.22)

c.) Lastly, we will assume there exists scalars M ≥ 0 and MV ≥ 0 such that,

Vξk [g(wk, ξk)] ≤M +MV ||∇F (wk)||22 (2.23)

Lemma 2.3.b shows that in expectation, the negative of the gradient vector is a di-

rection of sufficient descent for F from wk. The norm is comparable to the norm of the

gradient. By bounding the variance of the gradient in Lemma 2.3.c, it will allow the vari-

ance to always be nonzero at any point for F where the descent might become stationary.
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The combination of the Lemma 2.1 and Lemma 2.3 proves that no matter how wk is

iterated, the optimization process is Markovian. Meaning the current iteration does not

depending on any past iterates beyond the previous step [11].

Since our step-size hyperparameter will be fixed before training, I will focus primarily

on the analysis of using a fixed step-size (ᾱ) for general objective stochastic gradient descent,

i.e. αk = ᾱ for all k that satisfy:

0 < ᾱ <
µ

LMG

. (2.24)

Under the stated assumptions, the expected sum-of-squares and average-squared gradi-

ents of F corresponding to the SG iterates satisfy:

E[
1

K

K∑
k=1

||∇F (wk)||22] ≤
ᾱLM

µ
+

2(F (w1)− Finf )
Kµᾱ

. (2.25)

This is easily shown by taking the expectation of the total optimality gap under the

new fixed step-size value, ᾱ.

E[F (wk+1)]− E[F (wk)] ≤ −
1

2
µᾱE[||∇F (wk)||22] +

1

2
ᾱ2LM. (2.26)

After summing both sides of the inequality for k ε {1, . . . , K} and recalling Lemma

2.3.a, we can define Finf as the bounding scalar and the equation becomes:

Finf − F (w1) ≤ E[F (wk+1)]− F (w1) ≤ −
1

2
µᾱ

K∑
k=1

E[||∇F (wk)||22] +
1

2
Kᾱ2LM. (2.27)
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Rearranging and dividing by K, yields the desired results:

E[
1

K

K∑
k=1

||∇F (wk)||22] ≤
ᾱLM

µ
+

2(F (w1)− Finf )
Kµᾱ

(2.28)

therefore proving that the average-squared gradients of F corresponding to the stochastic

gradient iterates satisfies the above inequality. When M = 0, then no noise is present and

the strictly convex case is recovered [11].

The stochastic gradient method will end up spending more time in regions were the

objective has a small gradient as a result of K being in the denominator of Equation (2.25).

As K →∞, the new bounding equation becomes:

E[
1

K

K∑
k=1

||∇F (wk)||22] ≤
ᾱLM

µ
. (2.29)

By reducing the fixed step-size, the average norm of the gradients can be bound to be

arbitrarily small. However, doing so increases the time complexity [11].

2.2.2 Adam

Adam optimization is an improvement to the stochastic gradient descent optimization

method. The foundations of the Adam optimizer comes from its efficient stochastic optimiza-

tion relying on the first order gradients. However, instead of using just the gradient Adam

incorporates adaptive moment estimation from estimates of the gradient to the objective

function’s first and second moments [17]. In the context of neural network the gradient of

the cost function is stochastically optimized; this gradient is a random variable under this

optimization scheme.
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Adam is an adaptive learning rate method, meaning that the algorithm will produce

individual learning rates for the parameters for a bounded step-size. These parameter up-

dates are invariant to the rescaling of the gradient [17].

In the following algorithm g2k represents the element-wise square gk
⊙

gk. All operations

in Algorithm 4 are element-wise, and βti represents βi raised to the power t.

Algorithm 2 Adam

Require: α (step-size)

Require: β1, β2 ε [0, 1) (Exponential decay rates for moment estimates

Require: Rn(w); w0; m0 = 0 (1st moment vector); v0 = 0 (2nd moment vector); k = 0

1: while wk not converged do

2: k ← k + 1

3: gk ← ∇Rn(wk−1)

4: mk ← β1·mk−1 + (1− β1)gk

5: vk ← β2· vk−1 + (1− β2)g2k

6: m̂k ←
mk

1− βk1
(Bias-corrected first moment estimate)

7: v̂k ←
vk

1− βk2
(Bias-corrected second moment estimate)

8: wk ← wk−1 − α
m̂k√
v̂k + ε

9: end while

Looking at lines, 4 and 5 of the algorithm, we calculate the moving averages mk and vk

respectively where the βi hyperparameter control the exponential decay rates of these two

moving averages. Ideally, these moving averages will be unbiased estimators for our first and
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second moments. For m1, m2, m3 the following calculations are true:

m1 = (1− β1)g1 (2.30)

m2 = β1(1− β1)g1 + (1− β1)g2 (2.31)

m3 = β2
1(1− β1)g1 + β1(1− β1)g2 + (1− β1)g3. (2.32)

By following this pattern, there exists a formula for the moving averages. The expectation

of m can be found at any value of t:

E[mt] = E[(1− β1)Σk
i=1β

k−i
1 gi]

E[mt] = E[gi](1− β1)Σβt−ii + ξ

E[mt] = E[gi](1− βk1 ) + ξ. (2.33)

Equation (2.33) uses gi as an approximation of gt leading to the error term ξ where ξ = 0 if

the moment is stationary. Optimal tuning of the β1 hyperparameter keeps this error small,

assigning lower weights to past gradients. Through simulation, the algorithm is shown to

have O(
√
T ) [17]. Similar calculations can be done for vt.

This bias tends to have not much effect after a long period of training. But, it should

be noted that these estimates are biased towards zero during the beginning due to the ini-

tialization. Lines 6 and 7 of the algorithm are added to correct the bias for the first/second

moment estimates.

While step-size is a tune-able hyperparameter, Adam’s update creates an effective step-

size bounded by α that establishes a “trust region” around the current parameter [17].

Current gradient estimates beyond this region do not provide sufficient information and are

thus ignored in the update. The effective step-size bounded such by α is:

24



∆k =
α· m̂k√
v̂k

(2.34)

with the boundary for ∆k:

|∆k| ≤
α· m̂k√
v̂k

. (2.35)

In most common scenarios, the effective step-size will not reach the specified tuned

hyperparameter as
m̂k
√
v̂k
≈ ±1 since

E[g]√
E[g2]

≤ 1⇒ |∆k| < α [17].
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Chapter 3

Support Vector Machines

3.1 Introduction to Support Vector Machines

Support vectors have become a defacto “Swiss-army-knife” in statistical learning for

solving multidimensional function classification problems, and for good reason. Support

vector machines “have proved to be more accurate predictors in classification and regression

then neural nets. . . ” [22]. SVMs had a strong theoretical foundation before their construc-

tion for application purposes. This is reversed from neural networks, which found their uses

in applications only to have the theory behind their workings filled in later. [21]

3.2 Support Vector Classifier

Before I begin in earnest with the discussion of support vector machines, it is necessary

to understand support vector classifiers. Discussions about the two-dimensional support

vector classifier generalize easily to higher dimensions.

Consider the simple case classifying a series of inputs into one of two separable classes

(this will be generalized to many classes later). That is consider x εRp and y ε [−1, 1]

with no overlap in the yi. We can define a set of N training observations then such that

(x1, y1) . . . (xN , yN). The idea behind a support vector classifier is to define a p − 1 dimen-

sional hyperplane [20]:

{x : f(x) ≡ xTβ + β0 = 0}. (3.1)
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The hyperplane divides the p-dimensional input space into two halves. For our feature

space, the hyperplane will be a line that separates the two classes {1,−1}. We can use this

to construct our basic classification rule [7], denoted G(x).

Class A:{x : f(x) = xTβ + β0 < 0} (3.2)

Class B:{x : f(x) = xTβ + β0 > 0} (3.3)

⇒ G(x) = sign[xTβ + β0]. (3.4)

If this hyperplane that is able to perfectly separate the two classes exists then it is called a

“separating hyperplane.”

Figure 3.1: Example of Potential Separating Hyperplanes for Simple Case [24]

Thus, for some input vector (x∗), we can plug it into our classification rule G(x∗). That

vector belongs to either Group A or B depending on if G(x∗) is positive or negative. De-

pending on the chosen x∗ a large class of potential separating hyperplanes can exist, and

therefore can be used as classifiers. See Figure 3.1 for the graphical example of the potential
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separating hyperplanes of the simple case.

From the geometric definition of a hyperplane, Equation (3.1) gives a distance from

some point x to the defined hyperplane f(x). The assumed separability of the classes means

that a margin function

f(x) = xTβ + β0 exists with yif(xi) > 0 ∀ i. (3.5)

Equation (3.5) will be used for determining the optimal hyperplane. Since the separability

of the classes is assumed, the optimization problem is defined:

max
β,β0,||β||=1

M subject to (3.6)

yi(x
T
i β + β0) ≥M, i = 1, . . . , N

where M creates a band that is M units away from hyperplane on either side. 2M is labeled

as the margin [7]. Using M = 1
||β|| where M > 0, the optimization is rewritten in terms of β

as:

max
β,β0
||β|| subject to (3.7)

yif(xTi β + β0) ≥ 1, i = 1, . . . , N.

The margin is a measure of distance from each training observation perpendicular to

the separating hyperplane. The optimal classifying hyperplane will be the one that has the

maximum margin defined by the above optimization problem; that is the hyperplane that

has the farthest minimum distance to the training observations [18]. This is a convex prob-

lem with a linear inequality constraint.
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When the data is perfectly linearly separable, there will always be points that lie on

the margin’s boundary. There exist vectors from these points to the optimal separating

hyperplane that are known as “support vectors” as they are “supporting” the hyperplane.

Figure 3.2: Graphical Representation of Support Vectors [19]

Moving these vectors slightly would directly result in a slight change the hyperplane. The

name “support vector classifier” is a result of optimizing the support vectors to get the

optimal separating hyperplane. By selecting support vectors, support vector classifiers and

by extension support vector machines are able to choose their model sizes [23].

Adding new input vectors can create a new optimal separating hyperplane [18]. Looking

at vector f(x∗) and seeing if x∗ lies far away from our hyperplane a decision can be made in

confidence since the magnitude of the testing set vector is far away from our decision bound-

ary. Only the support vectors and observations close to the hyperplane decision boundary

will be used in selecting the optimal. However, these new observation changes can be drastic

if a new point is added closer to observations from the other class than the observation’s own

class. For something like k-nearest-neighbors, the decision boundary would just bend, but
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hyperplanes are usually linear in nature, and would just rotate or shift while maintaining its

linearity.

Relaxing the assumption that the classes must be separable allows for overlap between

the two classes. To generalize previous results, an additional variable will be introduced.

Slack (ξi) represents the distance measure for the misclassifications on the wrong side of the

margins. A penalty function defined by Vapnik [20]:

Fσ(ξi) =
N∑
i=1

ξσi (3.8)

allows for the modification of the constraints depending on the half-margins. The mod-

ification can take two forms, measuring the overlap in actual distance from the margin in

Equation (3.9), or measuring the relative distances of overlap in Equation (3.10) (this mea-

sure changes with the width of the margin M in). The two optimizations lead to different

solutions.

yi(x
T
i β + β0) ≥M − ξi (3.9)

or

yi(x
T
i β + β0) ≥M(1− ξ), (3.10)

∀ i, ξi > 0, Fσ(ξi) ≤ K

where K is some constant. The first problem will not be discussed in this paper. Optimizing

the overlap in relative distance instead of actual distance creates the convex problem with

linear constraints [7]. All support vector classifiers in this paper will be optimized henceforth
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under Equation (3.10).

By forcing a bound on
∑

i(ξi) the total proportional amount by which the prediction

f(xi) falls on the wrong side of the margin is bounded to K. The new optimization equation

under this operation becomes [18]:

min ||β|| subject to

 yi(x
T
i β + β0) ≥ 1− ξi ∀ i

ξi ≥ 0, Σξi ≤ K
(3.11)

The points that will have the most impact on minimizing ||β|| subject to the restraints

are the ones that are not too far within the class boundary. This allows every point to

contribute, but not all contributions will be equally significant.

3.2.1 Optimization of Support Vector Classifier

Solving the optimization problem is equivalent to finding the vector β that solves the

following functional [20]:

Φ(β, ξ) = min
β,β0

1

2
||β||2 + C

N∑
i=1

ξi subject to (3.12)

ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi ∀i (3.13)

where C will become a cost tuning parameter replacing K. It is typical that C will be set

before training based off the expected noise of the dataset. Some machine learning meth-

ods, however, will go through and train several SVM models at different C value and then

compare their performances [18]. Cross-validation of different support vector classifiers can

also be used to find optimal hyperparameter values for C.
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Optimizing the convex problem over linear constraints is a Lagrangian problem. The

solution is given by the saddle points of the Lagrangian primal function with multipliers α, µ

[18, 7, 20].

Φ(β, ξ, α, µ) =
1

2
||β||2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(x
Tβ + β0)− 1 + ξi]−

N∑
i=1

µiξi (3.14)

which are minimized for all β, β0, and ξi, while simultaneously maximizing αi. The primal

function is differentiated with respect to the correct parameter and set equal to zero:

β =
N∑
i=1

αiyixi (3.15)

0 =
N∑
i=1

αiyi (3.16)

αi = C − µi,∀ i (3.17)

with the following constraints: αi, µi, ξi ≥ 0.

The Wolfe (Lagrangian) dual objective function is the substitution of the optimal values

for Equations (3.15)-(3.17) into Equation (3.14) and it gives the lower bound to the objective

function we are attempting to optimize. It also has the additional bonus of being easier to

solve than the primal function as instead of minimizing over the gradient subject to linear

constraints the dual problem takes the maximization over the single dual variable α [18]

max
α
{LD} = max

α
{
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj} (3.18)
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subject two constraints, Equations (3.19) and (3.20), as well as the Karush-Kuhn-Tucker

conditions (3.21)-(3.23):

0 ≤ αi ≤ C (3.19)

N∑
i=1

αiyi = 0 (3.20)

αi[yi(x
T
i + β + β0)− (1− ξi)] = 0 (3.21)

µiξi = 0 (3.22)

yi(x
T
i β + β0)− (1− ξi) ≥ 0. (3.23)

Due to the extent of the characterization of the solution to both the dual and primal

optimizations, we can see some of the properties of β.

β̂ =
N∑
i=1

α̂iyixi (3.24)

Equation (3.24) is the solution, where nonzero coefficients α̂i. β̂ are represented solely

in terms of the support vectors due to the constrains in Equation (3.23) being exactly met

in Equation (3.21). For the support vectors that lie on the edge of the margin, and hence

ξ̂i = 0, the constraint in Equation (3.18) holds with strict equalities with the remaining slack

having α̂i = C.

Any such margin points solve for β0. For stability of the solution,

β̄0 = −1

2
β̂· [xi + xj] (3.25)

where xi and xj are any support vectors on the margin [18]. Once solutions are derived for

β̂ and β̂0, the final hard decision boundary can be written as:
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ˆG(x) = sgn[ ˆf(x)]

= sgn[xT β̂ + β̂0]. (3.26)

3.3 Support Vector Machines

Up to this point we assumed that y ε [1,−1]. Support vector machines act as a function-

fitting problem using regularization to map into the dimensions of an enlarged space. This

expansion allows for two things: better class separation in higher dimensions improving the

overall classification accuracies, and forming nonlinear boundaries in lower dimensions.

The steps are similar to the previously discussed cases. First, the feature space is

enlarged using basis expansion, hm(x),m = 1, . . . ,M . All M basis functions are then ap-

plied to all the input features at each ith observation [7]. Fitting the support vector classi-

fier using input features so that h(xi) = (h1(xi), . . . , hM(xi)) produces an often nonlinear

f(xi) = h(xi)
Tβ + β0. We still arrive at the same classifier G(x) [7].

3.3.1 Computing Support Vector Machines using Kernels

The change in the optimization function and its solution involves inner products of input

features. Since we transformed the feature vectors using basis expansion function h(xi), the

Wolfe-Lagrangian dual function becomes

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈h(xi),h(xj)〉. (3.27)

Inner products are able to provide some form of similarity; the geometry of the vectors

can be used in the interpretation of these models [19]. A final solution function f(x) can
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be written in terms of this inner product, which if specified correctly is computed cheaply

[7]. Because the actual transformation of h(x) is not used just the inner product of the

transformation. A new function that computes the inner product in the transformed space

can be defined. This kernel function:

K(xi, x
T
i ) = 〈h(xi),h(xi)

T 〉 (3.28)

means that specifying the initial basis transformations h(xi) is unnecessary. K should be a

symmetric, positive semi-definite function.

The two kernels tested for our application of support vector machines were:

Radial Kernel: K(x, xT ) = exp(−γ||x− xT ||2) (3.29)

Linear Kernel: K(x, xT ) = (1 + 〈x, xT 〉). (3.30)

It is worth noting, an input space can be mapped into a feature space that mimics the

hidden layers in ANN models, resulting in a nonlinear classifier for cases where the separating

hyperplane might not exist [21]. The kernel function for neural network approximations is:

Neural Networks: K(x, xT ) = tanh(κ1〈x, xT 〉+ κ2). (3.31)

Solving the prior optimization problem under the new conditions, we have the solution

function ˆf(x):

ˆf(x) =
N∑
i=1

α̂iyiK(xi, x
T ) + β̂0. (3.32)

In enlarged dimension spaces, the separation of the classes is often clearer. Large values

of the cost parameter C will discourage any positive slack, overfitting a wiggly boundary in
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the original dimension space [7]. Having smaller C values smooths the boundary decision as

||β|| is decreased. Again, cross-validation methods exist for choosing C to achieve a good

testing error.

The decision boundary can also account for any bias within the kernel. So for a non-

separable, higher dimension problem, the decision function becomes simply:

ˆG(x) = sgn[
N∑
i=1

α̂iK(xi, x
T
i )]. (3.33)
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Chapter 4

Results

4.1 Neural Network Results

The results presented are a comparison to the methods used in Eckert et al. [9]. The

confusion matrices and accuracies are reported under their corresponding datasets in side-

by-side comparisons. Afterwards, support vector machines were fit to the dataset that was

simulated using radar equation noise

Learning for all statistical learning methods was done on a 75/25% split where 75% of

the data is used to train the model and 25% is used for testing. By using this split we can

train the model on a set of data and then present it with “new” data to evaluate it. This

method is utilized as a way to avoid overfitting to the original dataset. An additional note,

the paper for Eckert et al. does not include results from their runs using SGD optimizers;

however, the optimal combination of layers and units was still found to be a 4 layer, 120 unit

per layer network, even though it was not reported.

4.1.1 Stochastic Gradient Descent

For the dataset which was simulated with Gaussian noise that was applied to Cartesian

coordinates for the radar noise, the optimal unit and layer combination for SGD optimizers

in Keras was found to be the 4 layer, 120 units combination. A small change was made to the

optimization algorithm discussed in Chapter 2; the ξi random variable no longer represents a

single point, but a collection of a few points called a “batch.” This mini-batch optimization

is a compromise of the speed of SGD and the accuracy of using the entire gradient. All the

37



results discussed in Chapter 2 still generalize to mini-batch stochastic gradient optimization

[11]. The chosen network ended up being a complex, deep network because of the deficits of

using regular SGD algorithms on the dataframe. Despite this complexity, the result was still

underwhelming. On the original dataset with simulated Gaussian noise, the SGD optimizer

was only ever was able to score an accuracy around 67.07%. The confusion matrix for the

chosen SGD optimized neural network is listed in Table 4.1:

Cases 1 2 3 4 5 6 7 8 9 10 11 12

1 331 21 1 6 57 0 0 0 0 0 0 0
2 12 263 0 0 5 37 0 0 0 0 0 0
3 1 0 285 26 13 0 54 0 15 0 1 0
4 3 0 6 217 38 7 2 36 20 1 0 0
5 41 7 8 30 152 21 0 0 17 2 0 0
6 1 54 0 22 9 253 0 2 8 53 0 0
7 0 0 58 8 0 0 249 16 9 1 46 0
8 0 0 0 24 0 0 5 211 8 14 5 24
9 0 0 8 60 78 28 10 73 274 46 0 2
10 0 0 1 0 0 37 0 3 8 272 0 0
11 0 0 0 1 0 0 55 14 0 0 311 17
12 0 0 0 0 0 0 0 44 5 0 21 316

Table 4.1: Confusion Matrix of SGD Optimizer for Dataset with Gaussian-Distributed Noise

The SGD optimization algorithm is unable to overcome local minima when optimizing

the objective function. In the basic SGD framework there is not a mechanism to help the

optimizer out of situations when it gets stuck in local minima. Under the Gaussian noise

framework, it is likely that the objective function is only locally convex.

The SGD optimizer on the dataset with noise simulated by the radar equation framework

faired much worse than it’s counterpart as we can see by the confusion matrix in Table 4.2.

Under the same hyperparameters as before, the SGD optimizer model was only able to

achieve a categorical accuracy of approximately 35.87%. This severe decrease in accuracy

can be explained by the fact that the noise from the radar equation has comparatively greater
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noise. As a direct result, this dataset is harder to classify. The added noise is changes the

shape of the objective function as well.

Cases 1 2 3 4 5 6 7 8 9 10 11 12

1 99 61 4 7 26 26 0 0 4 5 0 1
2 151 235 1 6 47 117 0 0 1 9 0 0
3 8 1 89 30 2 0 24 14 3 1 7 1
4 12 4 63 153 22 4 3 22 17 12 0 0
5 36 19 4 24 52 28 0 1 8 19 0 0
6 6 3 0 1 3 0 0 0 1 0 0 0
7 0 0 72 10 1 0 105 56 1 0 50 43
8 0 0 98 74 7 0 54 181 63 5 6 41
9 3 1 11 38 28 6 3 34 145 38 0 7
10 54 58 3 25 176 205 1 6 128 272 1 1
11 0 0 5 1 0 0 95 13 0 0 255 102
12 0 0 11 1 0 0 93 66 8 0 66 176

Table 4.2: Confusion Matrix of SGD Optimizer for Dataset with Noise Simulated by the
Radar Equation

4.1.2 Adam

Eckert et al. [9] under their specific data framework, a 4 layer neural network with 50

units per layer would produce the best results. Their optimal model was able to produce a

91.24% categorical accuracy. The confusion matrix for their model is provided in Table 4.3.

Looking at the same neural network structures and hyperparameters under the dataset

with noise simulated by the radar equation, the Adam optimizing neural network had a

categorical accuracy of 88.64%, for which the confusion matrix is recorded in Table 4.4.

Again, this decrease in categorical accuracies is to expected as a result of the added com-

plexities that the radar equation noise framework brings to the dataset. Marginal accuracy

increases could probably be made if the network was expanded to have more depth, and/or

had different tuning of hyperparameters.
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Cases 1 2 3 4 5 6 7 8 9 10 11 12

1 360 4 4 4 19 0 0 0 0 0 0 0
2 17 374 0 2 2 23 0 0 0 0 0 0
3 0 0 349 4 3 0 21 0 0 0 0 0
4 2 2 7 355 5 1 2 38 0 0 0 0
5 8 0 3 0 336 1 2 1 16 0 0 0
6 0 15 0 0 3 321 0 2 1 14 0 0
7 0 0 11 1 2 0 350 5 1 0 10 0
8 0 0 0 5 0 1 8 309 2 2 3 21
9 0 0 0 0 11 0 1 1 322 1 0 2
10 0 0 0 0 0 10 0 0 12 352 0 0
11 0 0 0 0 0 0 13 1 1 0 336 3
12 0 0 0 0 0 0 0 9 3 1 8 361

Table 4.3: Confusion Matrix of Adam Optimizer for Dataset with Gaussian-Distributed
Noise

Cases 1 2 3 4 5 6 7 8 9 10 11 12

1 380 8 6 12 6 1 0 0 0 0 0 0
2 14 360 0 0 28 10 0 0 0 0 0 0
3 1 0 372 5 0 0 9 0 0 0 0 0
4 11 0 5 292 19 0 10 3 0 0 0 0
5 3 20 0 21 299 4 0 7 7 0 0 0
6 1 4 1 0 1 320 0 0 25 9 0 0
7 0 0 8 23 2 0 315 2 0 0 9 0
8 0 0 0 5 8 0 2 285 15 0 13 6
9 0 1 0 0 3 9 0 24 282 2 0 15
10 0 0 0 1 0 28 0 0 7 370 0 4
11 0 0 0 0 0 0 16 25 2 0 350 7
12 0 0 0 0 0 0 0 9 9 1 4 364

Table 4.4: Confusion Matrix of Adam Optimizer for Dataset with Noise Simulated by the
Radar Equation

40



4.2 Support Vector Machine Results

4.2.1 Linear Kernel

Support vector machines using the linear kernel equation were fit in R to the dataset

with radar equation noise to compete against the two SGD-variant neural networks. 10-fold

cross-validation techniques were applied. In this technique, the data was separated into 10

equal sized segments. The first segment would be removed and training and testing would

be done across the other 9 segments with the results recorded. The model would then add

back the removed segment and repeat this process by removing the second segment, and so

on. This allows for a robust estimate of the accuracies, and an optimal cost hyperparameter

value can be selected from these results. Figure 4.1 Shows the accuracies of different 10

different cost values C ε [0, 1
4
, 1
2
, 1, 2, 4, 16, 32, 64, 128]:

Figure 4.1: Linear Kernel Cost Cross-Validation
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All of the cross-validated cost functions’ values recorded values at 100% accuracy with

one exception. When C = 1, the cost value’s cross-validation accuracy was below 100%,

but still above 99.99%. Since almost all of the potential cost parameters had an equal

performance, the selection of an “optimal” cost comes down to preference. A confusion

matrix of the results using a support vector machine with an arbitrarily chosen C value of

C = 10 is shown below.

Cases 1 2 3 4 5 6 7 8 9 10 11 12

0 394 0 0 0 0 0 0 0 0 0 0 0
1 0 372 0 0 0 0 0 0 0 0 0 0
2 0 0 373 0 0 0 0 0 0 0 0 0
3 0 0 0 348 0 0 0 0 0 0 0 0
4 0 0 0 0 374 0 0 0 0 0 0 0
5 0 0 0 0 0 403 0 0 0 0 0 0
6 0 0 0 0 0 0 378 0 0 0 0 0
7 0 0 0 0 0 0 0 368 0 0 0 0
8 0 0 0 0 0 0 0 0 389 0 0 0
9 0 0 0 0 0 0 0 0 0 381 0 0
10 0 0 0 0 0 0 0 0 0 0 350 0
11 0 0 0 0 0 0 0 0 0 0 0 370

Table 4.5: Confusion Matrix of Predicted versus Actual Values for Linear Kernel

4.2.2 Radial Kernel

Support vector machines using radial kernel were fit to the dataset. Again the same

10-fold cross-validation techniques were applied as in the linear kernel. The selected cost

values were the same as those tested in the linear kernel, C ε [0, 1
4
, 1
2
, 1, 2, 4, 16, 32, 64, 128].

Typically, linear kernels do well with linearly separable data whereas the radial kernel works

well on nonparametric data. Upon completion of initialization, the cross-validation accura-

cies were recorded in Figure 4.2.
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Figure 4.2: Radial Kernel Cost Cross-Validation

Again, the cross-validation provided excellent results that are robust. All cost function

hyperparameter values scored 100% accuracies. The radial kernel, regardless of cost hyper-

parameter value, 100% correctly identified the testing observations for every 10-fold cross

validation. Because the chosen C value has no bearings on the model’s accuracy, the same

C = 10 value for the hyperparameter was chosen based on preference, not performance.

Table 4.6 is the confusion matrix for this support vector machine.
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Cases 1 2 3 4 5 6 7 8 9 10 11 12

0 394 0 0 0 0 0 0 0 0 0 0 0
1 0 372 0 0 0 0 0 0 0 0 0 0
2 0 0 373 0 0 0 0 0 0 0 0 0
3 0 0 0 348 0 0 0 0 0 0 0 0
4 0 0 0 0 374 0 0 0 0 0 0 0
5 0 0 0 0 0 403 0 0 0 0 0 0
6 0 0 0 0 0 0 378 0 0 0 0 0
7 0 0 0 0 0 0 0 368 0 0 0 0
8 0 0 0 0 0 0 0 0 389 0 0 0
9 0 0 0 0 0 0 0 0 0 381 0 0
10 0 0 0 0 0 0 0 0 0 0 350 0
11 0 0 0 0 0 0 0 0 0 0 0 370

Table 4.6: Confusion Matrix of Predicted versus Actual Values for Radial Kernel SVM

4.3 Discussion of Results

Of these results, the best performance was done by the radial kernel support vector

machine, which is able to 100% correctly classify the training set. These discussed results go

on to highlight a major problem with neural networks. All neural networks are susceptible

to becoming trapped in local minima. SVMs offer a better option for the classification of

intermediate range missiles during launch over neural networks, regardless of any of the dif-

ferent optimizers discussed and used in this paper, because they guarantee a global minima.

Ultimately, the decision to choose radial kernel SVMs as the best option is highlighted

by these factors:

• The radial kernel support vector machine guaranteed 100% accuracy on the testing

set regardless of the kernel and cross-validated hyperparameter cost value. Adam

optimized neural networks were only able to achieve ∼89% accuracy.

• Support vector machines’ optimization does not get stuck in local minima. Since all

neural network optimizers are susceptible to local minima, all neural networks required
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multiple iterations to guarantee results that would be more than random guessing. This

was hard coded into a for loop and added substantial computational time and power

outside of the necessary O(· ) as a result for each of the SGD-variant optimizers. On a

side note, there are other SGD-variant optimizers - like RMSprop and Adagrad - that

have built in momentum tools so that they might overcome local minima. However,

using these different optimizers still does not guarantee a global convergence.

• Computationally, support vector machines were quicker, more efficient, and cost less

to run than neural networks. The required optimal layer and unit combinations for

SGD and Adam were quite large. On average, a single iteration of a neural network

(on either optimizer) was slower than a single iteration of the support vector machine.

This effect naturally compounds as the density of the neural networks grows.
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Chapter 5

Conclusion

5.1 Conclusion

This paper serves as an expansion to Eckert et al. [9] wherein they address the classifi-

cation of intermediate range missiles during launch using radar telemetry. This paper looks

at classifying more realistic data that had simulated noise from radar detection through

the radar equation and filtering it using the common α − β filer. This paper applies the

same neural network optimizers used in Eckert et al. and further adds two different support

vector machines, one with linear and one with a radial kernel, to compare the categorical

classification accuracies of both statistical learning methods. All data was trained on a 75%

split with 25% being used for testing the models.

Comparisons of the neural networks with the same optimization methods and complex-

ities were fit for the two dataset frameworks. The networks for both optimizers had lower

accuracies on the dataset simulated with radar equation noise compared to the Gaussian

noisy one. Most likely, this is a byproduct of the data simulated using the radar equation

noise producing more realistic, and therefore harder-to-classify noise when compared to the

Gaussian noise.

Cross-validation of two different kernel support vector machines compared against the

neural networks showed that the radial kernel support vector machine was able to outper-

form the neural networks and achieve a perfect classification accuracy on all the test cases.

While the linear kernel did not achieve a perfect classification accuracy across all cost hy-

perparameter values (99.994% at C = 1), it still performed better compared to the neural
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networks and remains a viable option for the classification of intermediate range missiles

during launch. Overall, support vector machines are a better option for this classification.

The support vector machines always achieved a unique, global optimum that guaranteed

high accuracies. They also did not require repeated initializations by user intervention to

achieve these results and SVMs were able to run computationally faster than their neural

network counterparts.

5.2 Future Research

The biggest extension of this work will be finding a way to overcome the limitations of

radar. Acceleration could not be used in the input vector because of such limitations. Ad-

ditionally, the simulated telemetries operate under the assumption of a fixed radar hitting

the rocket cleanly and returning a signal back each time. Additional noise, such as false

positives, could be added to test the model’s capability of finding the difference between

these 12 telemetry cases and some flying object, like an aircraft.

Even further, using satellite images to make the classifications under a convolutional

neural network could introduce a more realistic approach to the data simulations. Compar-

isons to support vector machines and such networks could also be done.
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Appendix A

Exploratory Graphics

Figure A.1: Range versus Time Profiles for 50 Randomly Selected Missiles
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Figure A.2: Altitude versus Time Profiles for 50 Randomly Selected Missiles
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Figure A.3: Altitude versus Range Profiles for 50 Randomly Selected Missiles
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Figure A.4: 20 Second Interval of Range versus Time Velocity Profiles for 50 Randomly
Selected Missiles

54



Figure A.5: 20 Second Interval of Altitude versus Time Velocity Profiles for 50 Randomly
Selected Missiles
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Figure A.6: 20 Second Interval of Altitude versus Range Velocity Profiles for 50 Randomly
Selected Missiles
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Appendix B

Proof of Lemma 2.2

Proof. By Lemma 2.1, the iterates generated by the SGD Algorithm satisfy [11]:

F (wk+1)− F (wk) ≤ ∇F (wk)
T (wk+1 − wk) +

1

2
L||wk+1 − wk||22 (B.1)

≤ −αk∇F (wK)Tg(wk, ξk) +
1

2
α2
kL||g(wk, ξk)||22. (B.2)

After taking the expectations of both sides to the inequalities conditioned on ξk, it will

be shown that only wk+1 depends on ξk.
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Appendix C

Proof of Lemma 2.4

Proof. By Lemma 2.2 and Equation (2.21), it follows that:

E[F (wk+1)|ξk]− F (wk) ≤ −αk∇F (wk)
TE[g(wk, ξk)|ξk] +

1

2
α2
kLExik [||g(wk, ξk)||22] (C.1)

≤ −µαk||∇F (wk)||22 +
1

2
α2
kLEξk [||g(wk, ξk)||22], (C.2)

which is Equation Equation (2.24). Assumption 4.3 gives:

Eξk [||g(wk, ξk)||22] ≤M +MG||∇F (wk)|| with MG := MV + µ2
G ≥ µ ≥ 0

which yields Equation (2.25)
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Appendix D

Using SAS and the L-BFGS Optimization

The primary results for this thesis were computed in statistical program R. For robust-

ness measures, these results were compared against the results from statistical software SAS.

This proprietary software differs from R in several aspects. The first aspect is the choice

in the optimizer. Instead of using traditional stochastic gradient methods, SAS uses quasi-

Newton optimization. The second aspect is in training. SAS has built-in criteria to stop

a current training session if the validation accuracy has not increased in some set number

of consecutive epochs. The algorithm then picks another point on the objective function to

start and begins optimizing again and this iteration will not be used in reporting accuracies.

SAS always, as a result, report a better accuracy when compared to a single iteration of the

Keras code in R as it will avoid running entirely into local minima.

There are two reasons I decided that these result’s inclusion in the main text is unneces-

sary. The first is, these neural networks were run by a different software than the other two,

and as such cannot be fairly compared. The second is, that this was still a neural network

and while the method was able to achieve better accuracy than traditional SGD and the

Adam variant, it was worse than SVMs and did not guarantee the global optima.

D.1 Newtonian Versus Quasi-Newton Methods

The discussion of the L-BFGS optimization algorithm is strengthened when discussed

in the context of Newton versus quasi-Newton optimization methods. Therefore, a brief

introduction of the two method types will be explained before a discussion of the inner

mechanisms of the L-BFGS algorithm.
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D.1.1 Newtonian Methods

Under generic gradient descent methods of optimization, the direction of movement

(defined as the vector −∇Rn(w)) and the step length (defined as the scalar αk) provide the

next iterate through an updating function after both are calculated respectively. While SGD

optimization follows iterative updating, it is important to note that the algorithm computes

the direction of movement before the step-size. There is a flexibility of SGD to extend to

Newton methods that reside in the fact that computing the search direction first is a re-

quirement for the steps of Newton’s methods.

In Newton’s methods, the area around wk is assumed to be quadratic and can be well

approximated by a quadratic in terms of the search distance, which is calculated first by

finding the minimum of the quadratic [14]. For ease of notation the search direction will be

referred to as Dk = −∇Rn(wk):

Rn(wk +Dk) ≈ Rn(wk) + (Dk)
T∇Rn(wk) +

1

2
(Dk)

T∇2Rn(wk)Dk (D.1)

and by setting Equation (B.1) equal to 0 and solving for Dk the minimizer is obtained:

Dk = −[∇2Rn(wk)]
−1∇Rn(wk). (D.2)

Under the assumption that the Hessian (∇2Rn(wk)) is positive definite, Equation (B.2)

is how Newton optimizers “step” when going through gradient descent. For any objective

function, once the iterates come sufficiently close to the minima, it is easy to show that

the convergence is quadratic [15]. The rate of convergence for Newtonian methods is O(p3)

meaning that the rate of convergence is quite costly when the number of variables is large.
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D.1.2 Quasi-Newton Methods

A major drawback to Newton methods is the requirement that the Hessian is calculated

at every iteration. The standard replacement then is to define [14]:

Dk = −Ck∇Rn(wk) (D.3)

where Ck is updated by a formula involving the inverse of the true Hessian known as the

“quasi-Newton” updating formula. We will assume that Ck is a symmetric, positive defi-

nite matrix where (−Ck∇Rn(wk))
T∇Rn(wk) < 0. Equation (B.2) and Equation (B.3) have

equality when Ck = (∇2Rn(wk))
−1.

If we allow Bk := C−1k , Sk = wk+1−wk, and Yk = ∇Rn(wk+1)−∇Rn(wk), then imposing

the well known secant equation to update the matrix:

Bk+1(αkDk) = ∇Rn(wk+1)−∇Rn(wk) (D.4)

we get the matrix norm that creates the the best update:

Ck+1 = arg min
C
||C − Ck||. (D.5)

That is, the closest Ck+1 matrix to Ck among all potential symmetric, positive definite

matrices satisfying the secant equation will be the update [14]. Each matrix norm choice cre-

ates a different update formula, meaning the algorithm only needs to remember the previous

iterates update, not the entire Hessian.

D.2 BFGS Algorithm

Since the L-BFGS algorithm is a natural extension to the BFGS algorithm, it’s worth

taking some time to discuss the foundations of the BFGS algorithm. The BFGS algorithm
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works by using:

Ck+1 = (I − ρkSk(Yk)T )Ck(I − ρkYk(Sk)T + ρkSk(Sk)
T (D.6)

as the update formula where ρ = ((Yk)
TSk)

−1.

Algorithm 3 BFGS Algorithm:

1: Initialize: w0, convergence tolerance: δ, C0

2: k ← 0

3: while ||∇Rn(wk)|| ≥ δ do

4: Dk ← −Ck∇Rn(wk)

5: αk ← Γ(wk,∇Rn(wk))

6: wk+1 = wk − αkDk

7: Sk = wk+1 − wk, Yk = ∇Rn(wk+1)−∇Rn(wk)

8: Calculate Ck+1 by means of Equation (2.36)

9: k ← k + 1

10: end while

Output: wk, Rn(wk), ∇Rn(wk)

where the gamma function represents a line search algorithm that satisfies the Wolfe Con-

ditions. These conditions are for some 0 < β′ < 1
2

and β′ < β < 1 [16]:

Rn(wk − αk∇Rn(wk)) ≤ ∇Rn(wk) + β′αK(∇Rn(wk))
TDk (D.7)

and

∇Rn(wk + αkDk)
TDk ≥ β(∇Rn(wk))

TDk. (D.8)
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The algorithm has a strong self-correcting property that makes it desirable for neural

network optimization depending on selecting the right line search method. The success of

the method, then, depends on the approximation of Ck to the inverse of the true Hessian

and achieves superlinear convergence when close to the minimizer.

While BFGS algorithms are among the most popular updating formula for Ck+1 it

still has a computational cost of O(p2) (plus any gradient/function calculation costs) as

Ck(I−ρkYk(Sk)T ) = Ck−ρk(CkYk)(Sk)T [14]. The computation cost of this quasi-Newtonian

method is lower because it’s a simple matrix-vector multiplication, not solving a linear sys-

tem. The cost can be quite expensive, nonetheless, when a lot of variables are used in the

input and the multiplication becomes large.

D.3 L-BFGS Algorithm

The L-BFGS algorithm was developed for a less computationally extensive method for a

large input basis. The algorithm is quasi-Newton, but instead of storing the entire Ck matrix

as is the case in the BFGS, the algorithm only stores information of the most recent iterates

that represent the approximations implicitly [15]. As the iterations progresses, the current

information of the Hessian becomes less and less dependent on the earlier prior iterates. The

curvature information from only the most recent iterations is used in the L-BFGS instead of

the dense k × k matrix approximations store by BFGS which creates an almost linear rate

of convergence.

The difference in the L-BFGS algorithm to the BFGS algorithm is the storing of Ck is

done using a modified Ck implicitly for m previous iterations. After a new iterate is com-

puted, the oldest vector pair of iterates is replaced by the newly calculated pair. A double
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loop in the algorithm makes these updates.

Begin by choosing an initial Hessian approximate Ck that can vary from iteration to

iteration. Repeated application of Equation (2.36) leads to an update for Ck by calculating

Ck∇Rn(wk) [15].

Algorithm 4 L-BFGS Algorithm:

1: q ← ζk∇Rn(wk) where ζk = ((sk−1)
TYk−1)((Yk−1)

TYk−1)
−1

2: for i = k − 1, k − 2, . . . , k −m do

3: αi ← ρi(si)
T q

4: q ← q − αiYi

5: end for

6: for i = k −m, k −m+ 1, . . . , k − 1 do

7: β ← ρi(Yi)
T r

8: r ← r + si(αi − β)

9: end for

Output: Dk = −r

The past m iterations implicitly do the operations required by the inverse Hessian for

computing the next search direction [14]. Note the line search is set first to the unit step

length and is only changed if it does not satisfy the Wolfe conditions. The updating is done

in 4mp multiplications bringing computational costs down to O(mp).

There are very few cases where m > p is required to converge. When the objective

function is locally Lipschitz continuous, then the probability that that an optimization al-

gorithm that is initialized randomly will encounter a point where the objective function is

not differentiable equals zero by Rademacher’s Theorem. The L-BFGS is such an algorithm,

meaning that it’s application on nonsmooth optimization is just as effective as in the smooth
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case. [14, 16].

One potential downside to the L-BFGS is the inability to account for the nonconvex case.

The properties of global optimization for L-BFGS on nonconvex problems has not been fully

researched - however there exists a way around the problem. By picking a sufficiently large

amount of different initial starting points on the function and then running the optimization

algorithm you can compare the locations of the minima. If on a particular iteration of the

algorithm it seems to not be converging to the priori minima of the loss function, then the

iteration can be terminated and restart from a different location. The probability that one

of these starting points will contain the true minima approaches 1 as the number of points

selected approach infinity.

D.4 Results of L-BFGS

Full results containing the confusion matrix are not shown, as this was just to verify

that the accuracies received during testing for the neural networks in R were robust. The

selected unit and layer pairwise combination under the Gaussian noise dataset in Eckert et

al. [9] was a 2 layer, 20 unit network. It is unsurprising that the required network depth was

drastically cut compared to the results in the main text as the L-BFGS optimizer is better

than both variants of SGD discussed and is biased under SAS’s framework. The accuracy

under this method reported 98% categorical accuracy.

Under the radar equation dataset, again a 2 layer, 20 unit neural network was tested.

The accuracy was decreased, following the pattern seen in the main text, but not nearly

as drastically. Instead, the accuracy ended up being around 95%. While these results are

certainly more impressive than the other two SGD variants, it still fails short of the SVM

results and does not change the conclusions drawn in the main text.
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