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Directed by Daniel W. Mackowski

The coupling of radiation and thermophoresis is hypothesized to result in attrac-

tive forces among soot particles in combustion environments. The effect of radiation

from the soot particles on their thermophoretic motion in the free−molecular regime

is studied by developing a ‘synthetic’ simulation model. A Monte Carlo technique is

used to carry out this study and the models are developed both for the two−particle

system and the aggregate system that mimics cluster−cluster aggregation. The trans-

fer of momentum and energy to and from the soot particles are computed via the

monte carlo method. The thermophoretic force and the coagulation ratios are calcu-

lated for the developed models. The results indicate that thermophoresis would be a

significant mode of soot particle coagulation for larger particle sizes and higher gas

temperatures. The sphere aggregates are compared to single spheres with equivalent

volume, surface area, and radius of gyration and the results show that the aggregate

can be approximated to its volume equivalent sphere in a two−sphere model.
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Chapter 1

Introduction

1.1 Motivation

Combustion plays an important role in automobile industry, industrial burners

and furnaces, gas turbines, etc., as the process involves conversion of chemical energy

in fuels to thermal energy that generates power. In addition to playing a helpful role,

combustion processes also have detrimental affects on the human lives in the form of

harmful emissions such as NOx, and soot. Soot is formed in gas-phase combustion

at high temperature. At the microscopic level, soot forms when hydrocarbons are

heated with insufficient air due to poor mixing. In flames, soot can be observed in

diffusion flames as opposed to premixed flames, where a clean blue flame can be seen.

Keeping in view the importance of soot, its study has been a major area of interest

for quite some time now. In boilers, soot fouling is a big concern as it brings down the

efficiency. Soot is suspended in air and because of its extremely small size, penetrates

deep in to the lungs, thus affecting our respiratory system. In some devices, such as

furnaces, the thermal emission from soot enhances heat transfer process via radiation.

Soot is also an important industrial product that finds application, such as filler in

tires, toner in copiers, etc..

Soot collected from flames consists of chain-like aggregates of spherical units.

These spherical units have a hexagonal structure similar to graphite [1], and the sizes

range between 10 nm and 80 nm. Soot formation is believed to take place in three

steps: [1] Particle inception or Nucleation: this step involves a series of homogenous
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reactions between hydrocarbon species leading to a larger sized particles which can

be seen under an electron microscope as tiny spherical condensed particles [2]. The

rate of particle inception is extremely high, though the particles formed in this step

constitute only a minor fraction of the final soot mass. (2) Surface Growth: in this

step, two processes are believed to occur simultaneously. First, the small spherical

particles formed in step [1] collide and coalesce to form larger spheres. Second, the

hydrocarbon “growth species” in the gas phase react heterogeneously on the soot

surfaces [2]. (3) Aggregation: the spherical particles formed in step-(2) collide and

stick (but they no longer coalesce) to form chains. The soot formed can be controlled

only by Oxidation. It is the sole mechanism of removal of soot emission. In this

process, the soot particles formed are changed back into gas-phase species.

While soot is a major pollutant, it is an important industrial product and is a

major source of radiation from flames. In most of the hydrocarbon fuels combustion,

the dominant part of radiation comes from the soot particles. The fourth power

dependence on temperature also makes radiation a prime mode of heat transfer in

most flames. Radiation allows transfer of energy directly from hot product regions to

cold regions, exerting its effects even at a distance.

Modelling of the formation, growth, and deposition of soot requires an under-

standing of the mechanisms which transport the soot in a gas. These mechanisms

include convection, diffusion, sedimentation, and thermophoresis. A significant trans-

port of soot in flames is by thermophoresis. The term ’thermophoresis’ is given to

the motion of aerosol particles that move, with a constant velocity, towards lower

temperature regions, under the influence of a temperature gradient. Thermophoresis
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occurs because the momentum carried by the hot gas molecules that sink the par-

ticles is greater than that carried by the particles coming from cold region. Studies

have confirmed that thermophoresis results in a larger deposition rate of aerosols than

either of sedimentation or diffusion processes [3].

1.2 Hypothesis

It can be observed, in flames, that when a steel rod which is at room temperature

is introduced, the soot particles get deposited at a quick rate on that rod. This

behavior is observed as a result of thermophoresis. The temperature gradient existing

between the emanating soot particles and the steel rod causes the movement of the

particles towards the rod. It is submitted that a similar effect can occur among the

soot particles themselves. As a result of continuous radiation from the soot particles,

the local temperature of the gas is affected resulting in temperature gradients. These

temperature gradients lead to an attractive thermophoretic motion among the soot

particles. The objective of this thesis is to carry out investigations on the effect of

radiation from soot particles on the thermophoretic motion of the soot particles, and

establish that the coupling of radiation and thermophoresis could result in attractive

forces among soot particles.

1.3 Objectives

The goal of this thesis can be achieved either by investigating the process ex-

perimentally or by building a simulation model. There may be some practicalities,

in studying the process by building an experimental set-up, such as low residence
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Figure 1.1: TEM photograph of a soot aggregate

times. Likewise, building a simulation model of the effect of soot radiation on the

thermophoretic motion of the particles is a complicated one because of the 3-D nature

of the problem. Nevertheless, the complexity can be reduced if we initially build a

simulation model for a simple system. Therefore, the initial step would be to model

a simple system of soot particles, essentially, a two-particle model. Extension of this

model to a more general system of particles could be carried out at a later stage. In

order to get started, even with the simplest of cases, we need to make some basic

assumptions. First among those would be the shape of the soot particles we are sim-

ulating. Transmission Electron Microscopy (TEM) measurements indicate that soot

aggregates consist of nearly spherical primary particles. Figure 1.1 is a TEM image

of a typical soot aggregate found within the annular region of a diffusion flame [15].

The measurements show that the aggregates exhibit mass fractal behavior. The flame

generated soot aggregates exhibit mass fractal-like behavior with a fractal dimension,

Df < 2, even when the number of primary particles in an aggregate is small [4]. The

second assumption would be the size of the particles. The soot particles we consider

would be nearly nano-sized, making them considerably smaller than the mean free

path. This assumption is supported by the gas temperatures we would be dealing
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with (∼ 1500 K). At such high temperatures, the mean free path increases, thus

justifying our assumption of knudsen number, Kn >> 1 (i.e., the mean free path >>

the particle size).

1.4 Thesis Statement

This thesis consists broadly of two parts: the first part discusses the effect of

radiation on the thermophoretic motion between two primary aerosol particles (as-

sumed to be spheres), and the second part discusses the effect of radiation on the

thermophoretic motion between a cluster and a single particle.

This thesis is organized as follows: Chapter 2 gives a more detailed description

of the work done in the area of interest and the existing methodologies (literature

review). Chapter 3 presents details of the proposed methodology and the algorithm

employed. Chapter 4 presents the results of the proposed method and various obser-

vations that can be drawn from those results. Chapter 4 also includes suggestions for

future research.
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Chapter 2

Literature Review

2.1 Experimental Approach

The main aim of the experimental approach is to visually observe the coagula-

tion of soot particles as a result of the proposed hypothesis. Studies were previously

carried to observe this effect using co−flow diffusion burners. As a result of low resi-

dence times, it was difficult to keep the soot particles for sufficient time in the flame

environment. Burner assemblies that offer longer residence times than those possible

in the co−flow diffusion burner assembly were looked in for from the available litera-

ture. A flat counter−flow diffusion burner assembly that offers longer residence time

was then built in the laboratory. A flat counter−flow diffusion flame was established

using methane as the fuel. Nitrogen was the inert gas used. The study with this

assembly was also inconclusive, mainly because of two factors. The first factor was

again the low residence time (we obtained longer residence time than in the case of

co−flow diffusion flame, but not good enough to observe the effect). The order of

residence time we obtained was about 1s. The second factor is that the gelation

process was overpowering all the other effects, making it difficult to observe the in-

tended process. Once the aggregate size reaches a large value, the aggregation of

soot particles is largely because of the gelation effect. The soot cloud forms a sort of

“spider-web,” thereby attracting the soot particles to stick to the cloud. This is the

effect we primarily notice if we run an experiment, thus making the study of effect of

radiation on thermophoretic motion of soot particles inconclusive.
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2.2 Simulation Model

Taking into consideration the practicalities in running an experiment, we opted

for a simulation model. The subsequent sections in this chapter discuss briefly on

soot aggregates and thermophoresis.

2.2.1 Soot Aggregates

Computer simulations were carried out to develop models for random cluster

formation by researchers [5,6] since early 80’s. Sorensen, in his paper discusses about

various aggregation algorithms for simulating aggregates [7] using the power law,

N = K0(Rg/a)Df (2.1)

Where N is the number of monomers in the aggregate, Rg is the radius of gyration, a is

the monomer radius, Df is the fractal dimension, and the proportionality constant K0

is the prefactor. In [7], random aggregates have been computer synthesized using both

Diffusion Limited Aggregation (DLA) and Diffusion Limited Cluster Aggregation

(DLCA).

In DLA, a monomer is chosen from a set of N monomers and placed at the center

of the sphere. The second monomer is now brought near the first and random-walked

until it is attached at a random angular position. Subsequent monomers are then

introduced one-by-one at a random angular position.

In DLCA, two monomers are chosen at random from a set of N ; one of them is

placed at the center and the second one is introduced at a random angular position,
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random-walked around the first one. This cluster is now put back into the set if the

pair of monomers are joined making the set, now, (N -1) long. The process is repeated

to obtain the desired length of cluster.

A plot of log(N)vslog(Rg)will produce a straight line with slope Df and y−intercept

K0.

2.2.2 Thermophoresis

Since its discovery, numerous applications have been recognized where ther-

mophoresis can play either positive or adverse roles [8]. Principle of thermophoresis

has been extensively used in the design of thermal precipitators, and aerosol sampling

methods. Thermophoresis can result in particle deposition on boiler pipes, reducing

the efficiency of heat exchange. The effect of thermophoresis on the transfer of the

radioactive aerosols generated in a nuclear reactor accident has been recognized as an

important factor in reactor safety assessment. The principle of thermophoresis can

be used to enhance chemical vapor deposition process which is a key in fabrication

of optical fibers. It has been used as an effective method for micro-contamination

control in the semiconductor industry [8]. Application areas of effect of thermophore-

sis also include: aerosol instruments and devices, microelectronics, xerography, drug

delivery and pharmaceutical, and atmospheric dispersion.

Let us now see why thermophoresis occurs. At the molecular level, the gas

molecules coming from the hot region carry more momentum than those moving

from the cold region. This imbalance results in a net force from hot region to a cold
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region. It should also be noted that the entire imbalance in momentum transfer is only

because of the incoming flux of molecules. The re−emission of molecules (outward

flux) is assumed to be diffuse because of the perfect accommodation of spheres (soot

particles). Thermophoretic force can be determined by solving momentum transfer

and energy transfer equations using the distribution functions. These distribution

functions are governed by the Boltzman’s equation. In general, the solution for the

Boltzman’s equation is very difficult unless for some limiting cases. These limiting

cases can be identified with the help of Knudsen number. The Knudsen number is

defined as the ratio of the gas mean free path l to a characteristic length scale of the

particle, Kn = l/a. The characteristic length scale is assumed to be the equivalent-

volume radius a of the particle.

2.2.3 Knudsen Number

The Knudsen number can be classified into three regimes: the continuum regime

(Kn << 1), the transition regime (Kn ∼ 1), and the free-molecule regime (Kn >>

1). The Boltzmann equation is an integro-differential equation and solution of this

equation is limited to few cases. The continuum based models are the Navier-Stokes

equations. Euler equations correspond to inviscid continuum limit which shows a

singular limit since the fluid is assumed to be inviscid and non-conducting. Euler

flow corresponds to Kn = 0. The Navier-Stokes equations can be derived from the

Boltzmann equation using the Chapman-Enskog expansion. At Knudsen numbers

larger than 0.1 the Navier-Stokes equations break-down and a higher level of approx-

imation is obtained by carrying second order terms (in Kn) in the Chapman-Enskog
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expansion. A special form of such an equation is called the Burnett equation, for

which the solution requires second-order accurate slip boundary conditions in Kn.

The Burnett equations and consistent second-order slip boundary conditions is sub-

ject to some controversy and a better way of solving high Knudsen number flow is

through molecular based direct simulation techniques such as the Direct Simulation

Monte Carlo method (DSMC) [8].

Continuum Regime

The thermophoresis theory in continuum regime (Kn << 1) can be built upon the

solution of the Navier-Stokes equations combined with the appropriate slip boundary

conditions. The boundary conditions are based on the temperature jump and thermal

creep. This accounts for the fact that the gas cannot be treated as a continuous

medium within a few mean free paths from the particle surface [8].

Transition Regime

In this range of Knudsen number (Kn ∼ 1), the theoretical solutions are the most

difficult to obtain [8]. However, interpolation models were advocated by researchers

[9, 10] for finding results in transition regime. Brock’s near-continuum solution was

a widely used formula for interpolation until more accurate solutions to Boltzmann’s

equation became available [11]. In the limit Kn → ∞, Brock’s near continuum

solution got reduced to a form very similar (differs only by a constant) to the free

molecular solution of Waldmann. Therefore, this formula was used for obtaining

results in the transition regime.
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Free-molecular Regime

In the limit of Kn >> 1 the velocity distribution function of the incoming mole-

cules is not affected by the presence of the particle. To calculate the thermophoretic

force, it is necessary to model the behavior in which the gas molecules are reflected

by the particle surface after collisions with the particle [8].

With the literature presented in the above sections, we can begin with the pro-

posed methodology. Chapter 3 will present details of the proposed methodology and

the algorithm employed. The chapter will be divided broadly into two major sections:

(1) two-particle model, and (2) aggregate model.
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Chapter 3

The Model

3.1 The velocity distribution function

The molecules in a gas posses a velocity distribution function, which characterizes

the speed and direction of molecular travel. Typically the distribution is a function of

6 coordinates: 3 spacial coordinates (x, y, z) and three velocity coordinates (u, v,w).

Together, these 6 coordinates are referred to as phase space.

We can assume for now that the properties of the gas are uniform over space, so

that the distribution function only depends on the three velocity components. For

this case, the distribution, denoted as f, is defined so that

f(u, v, w) du dv dw

is the number of molecules per unit volume that have velocities within du of u,

dv of v, and dw of w. In addition,

n =

∫ ∞

−∞
du

∫ ∞

−∞
dv

∫ ∞

−∞
dw f(u, v, w) (3.1)

in which n is the number density (number of molecules per unit volume, units

of 1/m3). This shows that the distribution function must have units of number

density/velocity3, or s/m6. For an equilibrium gas (stationary and at a uniform tem-

perature), the distribution is given by the Maxwellian formula:

f =
n

π3/2C3
T

exp [−(u2 + v2 + w2)/C2
T ] (3.2)
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in which CT =
√

2RT is the thermal speed of the molecules, with R being the specific

gas constant.

A polar coordinate system is often used to characterize the molecular velocity, with

du dv dw = c2 dc sinθ dθ dφ

in which c is the molecular speed,

c2 = u2 + v2 + w2

and θ and φ are the polar and azimuthal angles of the molecular trajectory;

u = c sinθ cosφ

v = c sinθ sinφ

w = c cosθ

Averages (or moments) of the distribution function are obtained via

〈ψ〉 =
1

n

∫ ∞

c=0

∫ π

θ=0

∫ 2π

φ=0

ψ f c2 dc sinθ dθ dφ (3.3)

in which ψ is some molecular quantity. For example, the average speed is obtained

by setting ψ = c. For the maxwellian distribution, this gives

< c > = 2√
π

CT =
√

8RT
π

and the mean kinetic energy, per unit mass, is obtained from setting ψ = c2/2, or

< c > = 3
4
C2

T = 3
2
RT
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The flux of a molecular quantity ψ refers to the transport of ψ across a surface

(real or imaginary) in the direction normal to the surface and per unit area of the

surface. It would have unit of ψ /m2/s. Say that the normal to the surface points

in the z direction. The formula for the flux is obtained from

jψ =

∫ ∞

u=−∞

∫ ∞

v=−∞

∫ ∞

w=0

ψ f w du dv dw (3.4)

or, in polar coordinates,

jψ =

∫ ∞

c=0

∫ π/2

θ=0

∫ 2π

φ=0

ψ f c cosθ c2 dc sinθ dθ dφ (3.5)

The number flux is obtained by setting ψ = 1, and for the maxwellian distribu-

tion,

jn = 1
2
√

π
nCT

The momentum flux in the z direction is obtained from ψ = mw = mc cosθ (with m

the molecule mass), and

jmom = 1
4

mnC2
T = 1

2
ρRT

in which ρ = mn is the mass density. From the ideal gas law the momentum flux is

equal to P/2 which represents the normal stress on the (imaginary) surface due to

molecules leaving the surface. If we calculated the flux of momentum arriving at the

surface we would also get P/2, and the total stress would be P , as expected.

The net force acting on an object (a particle, for example) would be obtained by

integrating the net momentum flux (incident and reflected) over the surface of the

particle.
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3.2 Sampling of the distribution function

In our work we assume, beforehand, that we know the distribution function(s) of

the molecules incident on the particles (targets) and emitted from the particles (i.e.,

reflected). From this, we can compute the transfer of quantities (momentum, energy)

to and from the targets. However, the targets will possess a geometry which would

make difficult an analytical evaluation of the integrals per the previous formulas.

Consequently, we will numerically compute the transport of momentum and energy

via a monte carlo method.

The MC method is conceptually straightforward. We simulate molecular tra-

jectories and observe (on a computer) how the molecules interact with the target.

By collecting averages over the simulation of a large number of molecules, we can

determine the net rate of momentum and energy transfer to the target.

A required element to implementing the MC method is the sampling of a dis-

tribution function. For example, we may know that the molecules which we are

simulating have a velocity that is described by a given velocity distribution function.

We want to randomly assign values of velocity to individual molecules so that, when

averaged over a large number of molecules, the velocities fall into a distribution that

is consistent with our modelled distribution.

The sampling approach that we follow for this thesis would be cumulative dis-

tribution approach. Say our distribution is a function of one variable, x, and that x

runs from 0 to 1 (x is arbitrary here; it does not have a physical interpretation). The
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cumulative distribution function, denoted g(x), is defined by

g(x) =

∫ x

0
f(t) dt∫ 1

0
f(t) dt

in which t is a dummy variable of integration. The cumulative distribution g(x)

represents the probability of choosing a sample from f that is between 0 and x. If x

= 1 then g = 1, i.e., we are certain that x lies between 0 and 1. On the other hand,

if we set g = 1/2 we would get an equation for xm (referred to as the mode of the

distribution):

1/2 = g(xm) → xm = g−1(1/2)

in which g−1 is the inverse of the cumulative distribution function. The interpretation

of xm is that it is equally likely (50/50 chance) that a sampled x will lie either above

or below xm. This does not imply that xm = 1/2; the value of xm depends on the

form of the distribution function.

To construct a sampling scheme, we first note that all values of g are equally

likely. That is, from a probabilistic point of view, g will be uniformly distributed

between 0 and 1. We can then set g equal to a uniform random number between 0

and 1 to obtain

g(x) = R

in which R is the random number between 0 and 1. The sampled x is obtained from

the inverse function;

x = g−1(R)
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3.3 The two sphere model

A basic starting model for our analysis is as follows. A pair of identical spheres

of radii a are separated by a distance R. The spheres are contained in a gas, and the

mean free path of the gas molecules is significantly larger than the largest geometrical

length. The gas is at temperature T0 and pressure P0. The spheres are at a uniform

temperature TS < T0; this temperature difference is maintained by radiation heat

emission from the spheres. We wish to calculate the following:

1. The rate of radiation heat transfer necessary to maintain the given temperature

difference T0 − TS. In principle, we would know the heat transfer rate from

an analysis of radiation and from this we would calculate TS. However, the

problem will be somewhat simplified if we assume that TS is given.

2. The net force acting between the two spheres as a result of differences in the

molecular momentum flux on the sphere surfaces.

Assumptions we will make are

1. The spheres are stationary: they are held in place by some invisible means.

This is a contrived problem, but we need to start somewhere.

2. The gas is stationary: no bulk motion.

3. The surfaces of the spheres have perfect momentum and energy accommodation.

All previous history of the molecular trajectory is lost upon collision with the

surface. Re-emission of the molecules is diffuse.
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Figure 3.1: Two−sphere model showing the ray trace of a molecule

4. Free molecular limit conditions: Kn À 1. There are no molecule-molecule colli-

sions. The soot particles we consider would be nearly nano-sized, making them

considerably smaller than the mean free path. This assumption is supported

by the gas temperatures we would be dealing with (∼ 1500 K). At such high

temperatures, the mean free path increases, thus justifying our assumption of

Kn >> 1 (i.e., the mean free path >> the particle size). Typically, the soot

particles are 0.01 µm in size, whereas the mean free path at STP is of the order

0.065 µm. At around a temperature of 2000 K, it is of the order of 0.3 µm.

5. The incoming molecules from the background gas are characterized by a maxwellian

velocity distribution at temperature T0 and number density n0.

6. The re-emitted molecules (i.e., reflected molecules) are characterized by a maxwellian

distribution at TS and number density nS.
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3.3.1 Energy transport

Label the spheres 1 and 2 (because of the symmetry of the problem, condi-

tions/transfer rates will be identical for both spheres, but we will distinguish between

the spheres anyway). The net rate of molecular kinetic energy transfer to sphere 1,

due to molecular collisions, is

Q̇m,1 =

∫

A

∫

Ω

∫ ∞

c=0

(fin − fS)
1

2
m c2 n̂.c c2 dc dΩ dA (3.6)

in which m is the molecular mass, n̂ the outward normal, c the molecular velocity

vector, A the surface area of the sphere, and dΩ = sinθ dθ dφ is a differential solid

angle. The velocity distribution functions fin and fS describe the incoming and

emitted (reflected) molecules, respectively.

The integrals in 3.6 cannot be trivially performed analytically because fin will be

a function of incoming direction and surface position. For positions on the hemisphere

facing the opposite sphere, part of the incoming molecules will originate from the

opposite sphere, and the remainder will originate from the background gas.

When the incoming direction points towards the opposite sphere the incoming

distribution will be fin = fS; this is because we assume that the temperatures of both

spheres are identical. Consequently, the integrand in 3.6 will vanish for directions Ω

pointed towards the opposite sphere. For direction pointed towards the background

gas we will have fin = f0, and 3.6 becomes

Q̇m,1 =

∫

A

∫

Ω0

∫ ∞

c=0

(f0 − fS)
1

2
m c2 n̂.c c2 dc dΩ dA (3.7)

19



in which Ω0 denotes the directions which point towards the background gas; this will

be a function of position on the sphere.

The distribution functions are given by

fS =
nS

π3/2C3
T,S

exp (−c2/C2
T,S) (3.8)

f0 =
n0

π3/2C3
T,0

exp (−c2/C2
T,0) (3.9)

with CT,S =
√

2RTS and likewise for CT,0.

The integral over speed c can be performed analytically in 3.7, and the remaining

integrals over direction and position will define a configuration factor F1−0 so that

Q̇m,1 =
m

2π1/2
(n0C

3
T,0 − nSC3

T,S) 4πa2 F1−0 (3.10)

in which

4πa2 F1−0 =
1

π

∫

A

∫

Ω0

n̂.s dΩ dA (3.11)

with s being a unit vector which points in all directions except towards the opposite

sphere. The quantity F1−0 is identical to the radiation configuration factor which is

used in radiation exchange problems; it represents the fraction of all emitted molecules

from 1 which travel to the background gas. By summation we have F1−0 + F1−2 = 1,

i.e., the emitted molecules either end up in the background gas or on sphere 2. F1−0

is a function only of the distance between the centers of the two spheres.
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Equation 3.10 contains the unknown quantity nS, which can be determined by

application of mass transfer principles. The net molecular flux at any point on the

surface must be zero, i.e., the incoming flux must balance the outgoing flux. This

leads to

Jn = 0 =

∫

Ω

∫ ∞

c=0

(fS − fin) n̂.c c2 dc dΩ (3.12)

Again, the incoming distribution depends on the position on the sphere. As before, the

integral over direction Ω can be split into a fraction ΩS which includes all directions

which point to the neighboring sphere, and Ω0 which encompasses all directions which

point towards the background gas. For the former case the incoming distribution

function will be fS and for the latter the distribution will be f0. The integral is then

Jn = 0 =

∫

Ω0

∫ ∞

c=0

(fS − f0) n̂.c c2 dc dΩ (3.13)

Since this result must hold at every point on the surface - and since Ω0 is a function

of surface position - it follows that

∫ ∞

c=0

(fS − f0) c c2 dc = 0 (3.14)

The integrals can be computed analytically, which gives

nSCT,S = n0CT,0 (3.15)

which provides a relation between the number densities and temperatures of the

incoming and emitted molecules.
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By putting the above into 3.10, we get

Q̇m,1 =
ρ0CT,0

2π1/2
(C2

T,0 − C2
T,S) 4πa2 F1−0 (3.16)

=
ρ0RCT,0

π1/2
(T0 − TS) 4πa2 F1−0 (3.17)

3.3.2 Momentum transfer

The force applied to the sphere due to the emitted molecules will be zero, due

to the fact that the emitted molecules are emitted isotropically (uniform in all direc-

tions). The net force is therefore due to the nonuniformity in the incoming molecules,

and will be given by

F1 =

∫

A

∫

Ω

∫ ∞

c=0

fin mc (n̂.c) c2 dc dΩ dA (3.18)

As before, the integral over direction Ω can be split into ΩS and Ω0 and fin will have

the corresponding value of fS or f0. We can then use

∫

A

∫

Ω0

∫ ∞

c=0

f0 mc (n̂.c) c2 dc dΩ dA = (

∫

A

∫

Ω

∫ ∞

c=0

f0 mc (n̂.c) c2 dc dΩ dA

−
∫

A

∫

ΩS

∫ ∞

c=0

f0 mc (n̂.c) c2 dc dΩ dA)

= −
∫

A

∫

ΩS

∫ ∞

c=0

f0 mc (n̂.c) c2 dc dΩ dA
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The integral over all directions Ω in the above is zero because the momentum

flux for this part is isotropic. We then get

F1 =

∫

A

∫

ΩS

∫ ∞

c=0

(fS − f0) mc (n̂.c) c2 dc dΩ dA (3.19)

with the integral over direction limited to directions which point from 1 to 2.

The integrals over speed can be performed analytically, to give

F1 =
3m

8π
(nSC2

T,S − n0C
2
T,0) 4πa2 G1−2 (3.20)

in which G1−2 is a vector which depends only on the geometry. For a pair of spheres,

components will be aligned with axis of symmetry.

4πa2 G1−2 =
1

π

∫

A

∫

ΩS

s (n̂.s) dΩ dA (3.21)

Using 3.15 in 3.20 gives

F1 =
3ρCT,0

8π
(CT,S − CT,0) 4πa2 G1−2 (3.22)

3.3.3 Soot radiation heat source function

This section presents a simplified derivation of the rate of thermal emission from

a carbonaceous soot particle. The derivation begins with correlations from [12] on

the absorption properties of a soot cloud, and backs out the rate at which a single

particle will emit radiation.
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The rate of emission from a particle cloud, per unit volume of the cloud, will be

q
′′′
e = 4 κp eb, W/m3 (3.23)

where κp is the Planck mean absorption coefficient, defined by

κp =

∫ ∞

0

κλ ebλ dλ (3.24)

where λ is wavelength and

ebλ =
C1

λ5 (exp (C2/λT )− 1)
, eb =

∫ ∞

0

ebλ dλ = σT 4

where σ = 5.67 × 10−8 W/(m2.K4), are the spectral and total blackbody emissive

power functions.

The spectral absorption coefficient κλ for carbon soot can be approximated as

κλ ≈
7f

λ
, µm−1

where f is the soot volume fraction (volume of the solid particle per unit volume of

medium; a dimensionless quantity). Replacing this into 3.24 and integrating gives

κp = 1.86 × 103 f T, m−1
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Using the above formulas, the emissive sink for the soot cloud will be

q
′′′
e = 4 κp eb = Ck f T 5

where Ck = 4.23× 10−4 W/m3K5.

Assuming all particles are identical, the rate of emission per unit cloud volume

would be related to the cloud number density by

q
′′′
e = Qen

in which n is the number density of the particles and Qe is the rate of emission from

a single particle. Likewise, the volume fraction of the cloud would be given by

f = V n

with V being the particle volume. Using these relations results in

Qe = Ck V T 5

with V given in m3. If we assume that the particles are spherical with radius a, we

get

Qe =
4π

3
Ck a3 T 5 (3.25)
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From 3.16 the rate of molecular energy transfer to the particle was

Q̇m,1 =
ρ0CT,0

2π1/2
(C2

T,0 − C2
T,S) 4πa2 F1−0 (3.26)

≈
ρ0C

2
T,0

π1/2
(CT,0 − CT,S) 4πa2 F1−0 (3.27)

the last line using a first order approximation for small CT,0 − CT,S . It should be

noted here that the rationale for assuming CT,0 − CT,S is that TS has a value of

around 1499.54 K when T0 = 1500 K at a = 15nm. Hence the perturbation on the

spheres can be assumed to be negligible. By setting Qm,1 = −Qe, we get

CT,S − CT,0 =

√
π Qe

ρ0C2
T,04πa2F1−0

(3.28)

The force acting between a pair of spheres was

F1 =
3ρCT,0

8π
(CT,S − CT,0) 4πa2 G1−2

or, using the previous equation, 3.28,

F1 =
3Qe

8
√

πCT,0

G1−2

F1−0

(3.29)

Using the formula for Qe, 3.25, the above result shows that 1) the force will scale

with a3 (i.e., proportional to the particle volume), and 2) the force will scale with

T 4.5
0 , and G1−2 will scale (asymptotically) as (a/r1−2)

2.
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3.3.4 Thermophoretric force analysis

The thermophoretic force analysis can be borrowed from thoroughly-investigated

phenomenon of coagulation between electrically charged particles [12] as discussed

by [13]. The force existing between the electrically charged particles follows an

inverse-square law and is an instantaneous force. However, the case of effective

thermophoretic force is not precisely equivalent to the instantaneous force in elec-

trostatics [13]. This is because the interaction of the thermophoretic force takes place

through the carrier gas and an inverse-square relationship would hold good only when

the characteristic time of gas heat transfer propagation is considerably smaller than

the characteristic time of the particle motion [13]. In the present analysis, however,

an inverse-square relationship can be approximated taking into account that we are

dealing with µm− sized particles, the ratio of gas to particle characteristic times for

which is of the order of 0.1 - good enough for the above mentioned approximation [13].

From the electrical analogy, the ratio of coagulation rate constants between the

two particles with thermophoresis to that due to Brownian motion alone, is expressed

[12] as

Z =
y

ey − 1

where

y =
F12 r12

KB Tg

where r12 is the separation distance at contact, KB = 1.3805 × 10−23 J/K is Boltz-

mann’s constant, Tg is the temperature of the gas, and F12 is the force at contact
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between the spheres given [12] by

F12 = νµ
e2

r2
12

(3.30)

where ν and µ are the number of the elementary electrical charges (electron charges),

e. In the above equation

Comparing 3.29 and 3.30, i.e., replacing electrostatic force (F12)with thermophoretic

force (F1), we have for y:

y = 2× 3Qe

8
√

πCT,0

G1−2

F1−0

r12

KB Tg

(3.31)

with G1−2 and F1−0 evaluated at contact, i.e., at r12 = 2a. Using the expression

for Qe from 3.25 in 3.31 and 3.29 and substituting the values of all constants, we get

y = −(4.5212× 1018) a4 T 3.5
g (

G1−2

F1−0

) (3.32)

and

FT = 2× F1 = (3.1208× 10−5) a3 T 4.5
g (

G1−2

F1−0

) (3.33)

respectively. F1 is multiplied by a factor 2 to get FT because F1 is the force acting

on a single sphere and FT is the total thermophoretic force between the two spheres.

The units of a and FT in the above equation are m and N respectively.
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3.3.5 Monte Carlo method

The computational study of this thesis is done in MATLAB 6.5 version. The basic

outline of the algorithm we are going to implement using a monte carlo technique is

1. to release computational gas molecules from random points on the surface of

sphere 1 in random directions

2. track the molecule, determine where it ends up

3. repeat the code several times

4. compute F1−0 and G1−2 and

5. hence compute y and FT .

Sampling the position on sphere surface

To start with the monte carlo technique, we first sample the position on the

surface of sphere 1 from which molecules are released. The pseudo-random number

generator of MATLAB is used for all random sampling purposes in this thesis.

The polar and azimuth angles of the position on the surface are sampled from

the cumulative distribution functions represented by

R1 =

∫ cosθ

0

d(cosθ)

R2 =
1

2π

∫ φ

0

dφ
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where R is the random number generator between 0 and 1. Upon inversion, we have

cosθ1 = R1 (3.34)

φ1 = 2πR2 (3.35)

We have sampled cosθ1 from 0 to 1, and not -1 to 1 because, the molecules

released from the hemisphere of sphere 1 not facing the second sphere do not end up

on it anyway.

Sampling the direction of molecules

The polar and azimuth angles of the direction of the molecule released from the

sphere surface are represented by

R3 = 2

∫ cosθ

0

cosθ d(cosθ)

R4 =
1

2π

∫ φ

0

dφ

Upon inversion, we have

cosθ2 =
√

R3 (3.36)

φ2 = 2πR4 (3.37)
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Determination of collision point

The method followed to determine the collision point (or, for that matter, if the

molecule collides with the sphere 2 or not) by [14] is employed here.

The distance of the molecule starting point (x0, y0, z0) to the center of sphere 2

(xs, ys, zs) is

rs0 = ((xs − x0)
2 + (ys − y0)

2 + (zs − z0)
2)1/2 (3.38)

If rms is the distance between the molecule, at any point in its trajectory, and

the center of sphere 2, then the minimum value of rms will occur when rms.ĉ = 0 [14].

⇒ rms = rs0 sinα (3.39)

where α is the angle between the molecular trajectory and the position vector of the

center of sphere 2 relative to the starting point, i.e.,

cosα =
1

rs0

[(xs − x0) û + (ys − y0) v̂ + (zs − z0) ŵ] (3.40)

where (û, v̂, ŵ), the trajectory of the molecule is given by [14]

û = cosφ1(sinθ2cosφ2cosθ1 + cosθ2sinθ1)− sinφ1sinθ2sinφ2 (3.41)

v̂ = sinφ1(sinθ2cosφ2cosθ1 + cosθ2sinθ1)− cosφ1sinθ2sinφ2 (3.42)

ŵ = cosθ2cosθ1 − sinθ2cosφ2sinθ1 (3.43)
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If rms ≤ a, then the molecule has collided with the sphere 2 [14].

The molecules are released one−by−one and the above process is repeated several

number of times. Finally, the configuration factor, F1−2, is obtained by dividing the

number of molecules that collided with the sphere 2 by the total number of molecules

released. The subsequent calculations of y and FT are carried out by using equations

3.32 and 3.33.

3.4 Aggregate model

In this case, we consider the interaction between a sphere and a cluster of spheres

(of identical radii).The cluster is synthesized based on the power-law, 2.1. The algo-

rithm used for this synthesis is the one used in [14]. The program is run and a cluster

of 25 spheres is generated.

Sampling of the distribution function for the aggregate model is the same as

that done for the two−sphere model. The equations for energy transport, momen-

tum transfer, the soot radiation heat source function, and the thermophoretic force

analysis remain the same with the two−sphere model directly extended to multiple

sphere, i.e., with G1−2 −→ G1−i.

The only modification for the aggregate model would appear in the monte carlo code

written for the two−sphere model.

3.4.1 Modified Monte Carlo method

The algorithm of the modified monte carlo technique would be
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Figure 3.2: Soot aggregate generated using the power law

1. release of computational gas molecules from random points on the surface of

sphere 1 in random directions

2. track the molecule, determine if it ends up on the cluster

3. calculate the overall configuration factor, F1−cluster by repeating the code several

times. The overall configuration factor is calculated as F1−cluster =
∑N

i=1 F1−i.

4. compute G1−cluster and

5. hence compute ycluster and FTcluster
.

Sampling the position on sphere surface and sampling the direction of molecules

are done in the same fashion as that for the two−sphere model. The determination

of the collision point (figure 3.3) on the cluster is also done in a more advanced
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Figure 3.3: Aggregate−model showing the ray trace of a molecule

fashion, noting the complex geometry that is involved in this case. The procedure

is as follows: When a molecule is released from sphere 1, its trajectory is followed

and the perpendicular distances from the individual spheres in the cluster to this

trajectory are determined. All the distances that are less than the sphere radius,

a are noted. Now, using the law of cosines the distance the molecule has travelled

at the collision point, sc is determined for all spheres that met the above condition.

Among the obtained values the one which has the minimum sc is identified to be the

sphere with which the molecule has collided.
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Chapter 4

Results and Conclusions

4.1 Results

The monte carlo code for both the two−sphere model and the aggregate model

was written in MatLab 6.5. The program was run on a PC with Intel Pentium 4

processor, 1.4 GHz and 512 MB of RAM.

4.1.1 The two sphere model

The two spheres under consideration had the same radius (= 0.01 µm). The tem-

perature of the gas was taken to be 1500 K. The monte carlo code for the two−sphere

model comprised of release of 250,000 computational molecules from sphere 1. The

program took around 4 minutes to give the output, i.e., the force between the spheres,

the coagulation ratio, and the plot between the force and the distance between the

two spheres.

Plotted in fig. 4.1 is the thermophoretic force, in N , between the two spheres

versus the distance, in m, between them.As it can be seen from the figure, the force

between the two spheres follows an inverse−squared variation with the distance.

The plot in fig. 4.2 represents the plot shown in fig. 4.1 on a log−log scale.

The plot has a slope of −2. The distortion of the plot towards the larger values of

distance is the ‘noise’. This should be expected because for higher values of distance

between the spheres, the configuration factor, F1−2, identically approaches zero and

the monte carlo technique in such a case would fail.
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Figure 4.1: Two sphere model − Force vs Distance

The coagulation ratio, Z, for this model was observed to be around 1.0002, for

a sphere radius of 0.01 µm and a gas temperature of 1500 K.

4.1.2 Aggregate model

The main task here would be to decide on the number of computational molecules

to be released from sphere 1 on to the cluster. For this, we first collect samples

comprising of, say, 100 molecules. The configuration factor from sphere 1 to the

cluster (F1−cluster) is determined for each such sample. Every time, a group of 10

such samples is taken and the ratio of standard deviation to the mean of that group

is calculated. The first group would consist of samples 1 through 10, the next one

consists of samples 2 through 11, and so on. The algorithm is written in such a
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Figure 4.2: Log−Log scale of Fig.4.1

way that the release of molecules will be terminated when the above mentioned ratio

becomes less than or equal to 0.0005. This means that we are allowing 99.95% of

accuracy.

Fig. 4.3 shows the plot of the configuration factor, F1−cluster versus the number of

samples of the computational molecules, Nsamp, released. In the monte carlo code, we

have set the total number of molecules to be released as 100000, but the computation

stops when the total number of molecules reach a value of around 53000 because the

desired accuracy level is reached by this number, thus saving the computation time.

A cluster consisting of 25 spheres was generated, all with same radii as that of

the sphere 1 (= 0.01 µm). The temperature of the gas was taken to be 1500 K. The

accuracy for (F1−cluster) was set to 99.9% and 100,000 computational molecules from
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Figure 4.3: F1−cluster vs Nsamp

sphere 1 were released. The position of sphere 1 relative to the cluster is randomly

chosen around the cluster. The program took around 25 minutes to give the output,

i.e., the force between the spheres, the coagulation ratio, and the plot between the

force and the distance between the two spheres.

Fig. 4.4 shows the variation of the thermophoretic force in N between sphere 1

and the cluster with the distance in m between sphere 1 and the center of mass of

the cluster. As was the case with the two sphere model, the force in the aggregate

model bears an inverse−squared relationship with the distance. The magnitudes of

the force in the two cases are, however, different.

The plot in fig. 4.5 represents the plot shown in fig. 4.4 on a log−log scale. The

trend is same as that found in the case of a two−sphere model.
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Figure 4.4: Aggregate model − Force vs Distance

Since y depends on r12, the separation between the cluster and the sphere 1 at

contact, we first define this quantity for the aggregate model. r12 = (the distance

between the center of mass of the aggregate and the center of the farthest sphere in

the aggregate + the radius of the farthest sphere + the radius of sphere 1). It should

be noted that sphere 1 in the simulation need not necessarily be in contact with the

farthest sphere when r12 is calculated because its position is chosen at random. The

coagulation ratio, Z, calculated for the aggregate model was observed to be around

1.0010, for a 25 sphere cluster with an individual sphere radius of 0.01 µm and a gas

temperature of 1500 K.
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4.1.3 Two−sphere equivalent of aggregate model

Table 4.1: Comparison of thermophoretic force magnitudes

r F1−cluster Eq.Volume Eq.Surface area Eq.Radius
8.0487 0.3406 0.4802 1.485 3.633
10.0487 0.2397 0.2917 0.916 1.986
12.0487 0.1784 0.2070 0.610 1.321
14.0487 0.1388 0.1521 0.456 0.930
16.0487 0.0994 0.1184 0.346 0.710
18.0487 0.0929 0.0946 0.271 0.557
20.0487 0.0757 0.0753 0.214 0.450
22.0487 0.0559 0.0649 0.180 0.364
24.0487 0.0469 0.0502 0.145 0.303
26.0487 0.0442 0.0421 0.133 0.255
28.0487 0.0369 0.0397 0.118 0.220
30.0487 0.0326 0.0318 0.091 0.186
32.0487 0.0305 0.0290 0.080 0.166
34.0487 0.0272 0.0272 0.073 0.151
36.0487 0.0275 0.0250 0.068 0.142

Table 4.1 shows the comparison of the thermophoretic force,F1−cluster, in the

aggregate model to the thermophoretic force in the two−sphere model when the

sphere 2 is replaced with a sphere having (1) equivalent volume, (2) equivalent surface

area, and (3) equivalent radius (radius of gyration) as that of the cluster in the

aggregate model. The first column (r) of the table corresponds to the increasing

distance between the centers of the cluster and sphere 1, multiplied by a factor of

10−8m. All values shown in the figure are multiplied by a factor of 10−15N .
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4.1.4 Coagulation ratio

Let us first look at the variation of y, found in the expression for Z, with a, T ,

and N (in the case of aggregates):

y ∝ N V T 3.5 r12 (
G1−2

F1−0

)

(
G1−2

F1−0

) ∝ (
a2

r2
12

) and V ∝ a3

⇒ y ∝ (
N a5 T 3.5

r12

)

where N is the number of spheres in the aggregate, V is the volume of a single

sphere, T is the temperature, and r12 is the separation between the centers at contact.

In the case of two−sphere model, N = 1 and r12 = 2a. Therefore,

y ∝ a4 T 3.5

In the case of the aggregates,

r12 ∝ Rg ∝ N
( 1

Df
)

⇒ y ∝ N
(1− 1

Df
)
a4 T 3.5

Coagulation ratio, Z, signifies how prominent the thermophoretic force between

the particles is, when compared to the Brownian motion alone. It would be an
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interesting quantity to look observe at various particle sizes and gas temperatures as

in the combustion environments deal a wide range of these parameters.

Table 4.2: Coagulation ratios for various a and T

a→
T↓ 0.01 0.02 0.03

1500 1.0002 1.0032 1.0163
1800 1.0004 1.00360 1.0304
2000 1.0006 1.0089 1.0461

Shown in Table 4.2 are the coagulation ratios obtained from the two−sphere

model for various values of particle sizes (µm) and gas temperatures (K).

Table 4.3: Coagulation ratios for various a and T

a→
T↓ 0.01 0.02 0.03

1500 1.0008 1.0116 1.0665
1800 1.0013 1.0229 1.1179
2000 1.0021 1.0327 1.1722

Shown in Table 4.3 are the coagulation ratios obtained from the aggregate model

for various values of particle sizes (µm) and gas temperatures (K).

4.2 Conclusions

A synthetic simulation model has been developed to generate soot targets, and

computational molecules and a monte carlo method has been used to calculate (1)

the thermophoretic force between cluster−sphere and sphere−sphere configurations,

and (2) coagulation ratios. Our results indicate that, at a = 0.01 µm and T =

1500 K, the coagulation ratio in the two−sphere model is very negligible. However,
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the coagulation ratios in the case of an aggregate model could be significant with

increasing size of the aggregates (recalling the parameter−y dependency on N). It

could also be observed, by looking at Table 4.3, that the coagulation ratios for the

aggregate model have significantly large magnitudes at larger particle sizes and higher

gas temperatures.

Noting the order of increase in magnitude of the coagulation ratios from the

two−sphere model to the aggregate model, it could be extrapolated that the effect

of radiation on thermophoretic motion of the soot particles would be even more

prominent in the case of a cluster−cluster interaction.

The results also show that the sphere aggregates can be approximated by their

volume equivalent spheres. We can support the above statement, primarily, by noting

that the force scales as the volume of the spheres. However, the magnitude of the

force (and hence the comparison to the volume equivalent spheres) in the aggregate

model largely depends on the position of sphere 1 relative to the cluster. A lot of

work is yet to be done in this aspect to reach to any concluding remarks.

4.3 Suggestions for future research

The future research in the lines of the work presented could involve the dynamic

motion of the soot aggregates in the simulation model.

A quasi−random number generator could be used in the monte carlo method

implemented instead of the pseudo−random number generator used.
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The interaction between a cluster and another cluster could also be an interesting

study to carry out taking into account the results presented in the current work for

the coagulation ratios of larger−sized particles.
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Appendix A

Monte Carlo code for the two-sphere model

clearall;

l = 1 ∗ power(10,−8);

matrix = [2 ∗ l, 4 ∗ l, 6 ∗ l, 8 ∗ l, 10 ∗ l, 12 ∗ l, 14 ∗ l, 16 ∗ l, 18 ∗ l, 20 ∗ l, 22 ∗ l, 24 ∗ l, 26 ∗

l, 28 ∗ l, 30 ∗ l];

for initial = 1 : 15,

a = 1 ∗ power(10,−8);

t = 1500;

c = matrix(initial);

theta = acos(2 ∗ rand− 1);

phi = 2 ∗ pi ∗ rand;

xs = 0;

ys = 0;

zs = c;

ni = 0; fx = 0; fy = 0; fz = 0;

n = 50000;

for i = 1 : n,

theta1 = acos(2 ∗ rand− 1);

phi1 = 2 ∗ pi ∗ rand;

theta2 = acos(sqrt(rand));

phi2 = 2 ∗ pi ∗ rand;
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x0 = a ∗ sin(theta1) ∗ cos(phi1);

y0 = a ∗ sin(theta1) ∗ sin(phi1);

z0 = a ∗ cos(theta1);

rs0 = sqrt(abs((xs− x0)).2 + abs((ys− y0)).2 + abs((zs− z0)).2);

u = cos(phi1) ∗ (sin(theta2) ∗ cos(phi2) ∗ cos(theta1) + cos(theta2) ∗ sin(theta1))−

(sin(phi1) ∗ sin(theta2) ∗ sin(phi2));

v = sin(phi1) ∗ (sin(theta2) ∗ cos(phi2) ∗ cos(theta1) + cos(theta2) ∗ sin(theta1)) +

(cos(phi1) ∗ sin(theta2) ∗ sin(phi2));

w = cos(theta2) ∗ cos(theta1)− (sin(theta2) ∗ cos(phi2) ∗ sin(theta1));

alpha = acos(((xs− x0) ∗ u + (ys− y0) ∗ v + (zs− z0) ∗ w)./rs0);

rs = rs0. ∗ sqrt(1− (cos(alpha)).2);

if cos(alpha) >= 0

if rs <= a

ni = ni + 1;

fx = fx + u;

fy = fy + v;

fz = fz + w;

end

end

end

f12 = ni/n;

fxnet = fx/n;

fynet = fy/n;
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fznet = fz/n;

f = 1− f12;

gbyf(initial) = abs(fznet/(f));

end

y = −2 ∗ 1.1303 ∗ power(10, 18) ∗ a.3 ∗ t.(3.5) ∗ gbyf(1). ∗ a

z = (y)./(exp(y)− 1)

force = 2 ∗ 1.5604 ∗ power(10,−5) ∗ a.3 ∗ t.(4.5) ∗ gbyf

plot(log(matrix), log(force))

figure

plot(matrix, force)
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Appendix B

Monte Carlo code for the aggregate model

clearall;

a = 1 ∗ power(10,−8);

t = 1500;

no = 20000;

data = xlsread(′test4.xls′);

nspheres = length(data);

for n = 1 : nspheres,

xs = data(:, 1);

ys = data(:, 2);

zs = data(:, 3);

end

max = 0; kmax = 0;

for k = 1 : nspheres,

r = sqrt(abs(xs(k)).2 + abs(ys(k)).2 + abs(zs(k)).2);

if max == 0

max = r;

kmax = k;

else

if r > max

max = r;
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kmax = k;

end

end

end

for j = 1 : 15,

fall(j) = 0; fxall(j) = 0; fyall(j) = 0; fzall(j) = 0;

end

ctheta = 2 ∗ rand− 1;

stheta = sqrt(1− ctheta.2);

phi = 2 ∗ pi ∗ rand;

x11 = stheta ∗ cos(phi);

y11 = stheta ∗ sin(phi);

z11 = ctheta;

for e = 1 : 15,

rmax(e) = max + 2 ∗ e;

x1 = rmax(e) ∗ x11;

y1 = y11 ∗ rmax(e);

z1 = z11 ∗ rmax(e);

y = 1; isamp = 1; err = 1; eps = 0.0005; i = 1;

global mmin;

for m = 1 : nspheres,

f(m) = 0; fx(m) = 0; fy(m) = 0; fz(m) = 0;

end

53



i = 1;

isamp = 1; y = 1; err = 1; eps = 0.001;

while i <= no and err > eps,

ctheta1 = (rand);

stheta1 = sqrt(1− ctheta1.2);

phi1 = 2 ∗ pi ∗ rand;

ctheta2 = (sqrt(rand));

stheta2 = sqrt(1− ctheta2.2);

phi2 = 2 ∗ pi ∗ rand;

x0 = x1 + stheta1 ∗ cos(phi1);

y0 = y1 + stheta1 ∗ sin(phi1);

z0 = z1 + ctheta1;

min = 0; mmin = 0;

for m = 1 : nspheres,

rs0 = sqrt(abs((xs(m)− x0)).2 + abs((ys(m)− y0)).2 + abs((zs(m)− z0)).2);

u = cos(phi1) ∗ (stheta2 ∗ cos(phi2) ∗ ctheta1 + ctheta2 ∗ stheta1) − (sin(phi1) ∗

stheta2 ∗ sin(phi2));

v = sin(phi1)∗(stheta2∗cos(phi2)∗ctheta1+ctheta2∗stheta1)+(cos(phi1)∗stheta2∗

sin(phi2));

w = ctheta2 ∗ ctheta1− (stheta2 ∗ cos(phi2) ∗ stheta1);

calpha = (((xs(m)− x0). ∗ u + (ys(m)− y0). ∗ v + (zs(m)− z0). ∗ w)./rs0);

salpha = sqrt(1− calpha.2);

rms = rs0 ∗ sqrt(1− (calpha).2);
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if calpha >= 0

if rms <= 1

sc = rs0. ∗ calpha− (1− rs0.2. ∗ salpha.2).(1/2);

if min == 0

min = sc;

mmin = m;

umin = u;

vmin = v;

wmin = w;

else

if sc < min

min = sc;

mmin = m;

umin = u;

vmin = v;

wmin = w;

end

end

end

end

end

if (mmin = 0)

f(mmin) = f(mmin) + 1;
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fall(e) = fall(e) + 1;

fx(mmin) = fx(mmin) + umin;

fy(mmin) = fy(mmin) + vmin;

fz(mmin) = fz(mmin) + wmin;

fxall(e) = fxall(e) + umin;

fyall(e) = fyall(e) + vmin;

fzall(e) = fzall(e) + wmin;

end

if (mod(i, 100) == 0)

samp(y) = fall(e)./i;

y = y + 1;

holdon;

end

if (floor(i/100)) >= 10 and mod(i, 100) == 0,

fsamp = samp(isamp : (isamp + 9));

isamp = isamp + 1;

if mean(fsamp) = 0

err = std(fsamp)./mean(fsamp);

actual = i;

end

end

i = i + 1;

end
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f = f./actual;

fall(e) = fall(e)./actual;

fxnet = fx./actual;

fynet = fy./actual;

fznet = fz./actual; fxnetall(e) = fxall(e)./actual;

fynetall(e) = fyall(e)./actual;

fznetall(e) = fzall(e)./actual;

fnet = sqrt(fxnet.2 + fynet.2 + fznet.2);

fnetall(e) = sqrt(fxnetall(e).2 + fynetall(e).2 + fznetall(e).2);

gbyf = abs(fnet/(1− f));

gbyfall(e) = abs(fnetall(e)/(1− fall(e)));

c = sqrt(abs(x1− xs).2 + abs(y1− ys).2 + abs(z1− zs).2) ∗ power(10,−8);

yc = −2 ∗ 1.1303 ∗ power(10, 18) ∗ a.3 ∗ t.(3.5) ∗ gbyf. ∗ c;

ycall = −2 ∗ 1.1303 ∗ power(10, 18) ∗ a.3 ∗ t.(3.5) ∗ gbyfall(1). ∗ rmax(1) ∗ a;

z = (yc)./(exp(yc)− 1);

zall = (ycall)./(exp(ycall)− 1)

force = 2 ∗ 1.5604 ∗ power(10,−5) ∗ a.3 ∗ t.(4.5) ∗ gbyf ;

forceall(e) = 2 ∗ 1.5604 ∗ power(10,−5) ∗ a.3 ∗ t.(4.5) ∗ gbyfall(e)

end

plot(rmax, forceall)

figure

plot(log(rmax), log(forceall))
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