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ABSTRACT 

 

 

As the nation’s cost of healthcare continues to escalate, so does the exposure to 

instances of fraud, waste, and abuse.  Multiple approaches to detecting these occurrences 

are in practice today and there are multiple organizations, public and private, which are 

focused on their identification and reduction.  This dissertation investigates symbolic data 

analysis (SDA) and its applicability to detecting anomalistic behavior.  SDA is a growing 

field of study and has implications far beyond what this dissertation will cover.  However, 

driven by the idea that “distributions are the numbers of the future” [1], the core concepts 

of SDA provide a foundation from which to develop an alternative approach to analyzing 

healthcare insurance claims data for the presence of anomalistic events.  The research 

introduces a symbolic method that investigates data at a higher concept level as opposed 

to the traditional line level at which most analyses are performed.  Simulated datasets and 

real-world inspired datasets are studied and results between symbolic and centroidal 

approaches are compared.  Results suggest that symbolic anomaly detection techniques 

perform equally as well as their classical centroidal counterparts when only changes in 

mean distinguish one set of data from another.  When changes are more subtle, particularly 

when means are equal but the underlying shapes of the distributions are different, the 

symbolic approach excels.  Using the foundational principles of SDA, this dissertation 

introduces a novel technique to anomaly detection and provides an alternative way of 

analyzing healthcare insurance claims data for fraud, waste, and abuse. 
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CHAPTER 1  
 

INTRODUCTION 

 

 

In 2018, the United States spent $3.6 trillion on healthcare equaling $11,172 per 

person [2].  The National Healthcare Anti-Fraud Association report that some government 

and law enforcement agencies believe as much as 10% of that spent is due to fraud, waste, 

and abuse (FWA) [3]–[5] .  That amount includes claims for services not needed and not 

performed.  Because most states require claims to be paid within a few weeks after 

submittal, many payers do not have the resources nor technology to discover and 

investigate claim invoicing and payment discrepancies in a timely manner.  As healthcare 

spending has increased, so has the volume, variety, and the near real-time availability of 

the data that describes these payment transactions.  Information is becoming available from 

multiple sources that, if integrated, could provide greater insight into the identification of 

FWA within the claims payment process.  Additionally, the systems that store this data are 

becoming more scalable, cost effective, and reliable.  The confluence of systems 

accessibility and data availability provides an opportunity to deploy advanced analytical 

techniques in order to detect discrepancies in bills submitted by and paid to healthcare 

providers. 

While many systems and methodologies have been deployed to detect anomalies in 

large datasets, this dissertation investigates symbolic data analysis (SDA) and its 

applicability to such challenges.  The premise of SDA analysis is that it summarizes large 

datasets into higher level classes, or concepts, and then allows for the application of 

traditional statistical tools on these new classes.  This is helpful when the unit of interest is 

at the concept level as opposed to individual level.  For example, when comparing billing 
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practices of healthcare providers, the unit of interest is not at the individual claim level, but 

rather the provider level.  Performing analyses at the higher order level creates insight that 

is not apparent at the individual unit level. 

This dissertation is significant because it applies a unique approach to improving 

payment integrity in the healthcare payer environment.  The advent of electronic medical 

records is adding to the vast amount of data available to be analyzed and new approaches 

must be devised to help with the timely and accurate processing of this data.  SDA may 

provide an alternative way of viewing this data particularly as it applies to accurate 

payment processing and could enable an entirely new approach to dealing with the issue of 

detecting instances of FWA. 

The purpose of SDA is to extend data mining techniques and traditional statistics 

to higher level units.  When the units become classes, the application of traditional 

techniques such as clustering, principal component analysis, and regression are still valid 

but must take on different forms.  The following example helps to explain the difference 

between classical data and symbolic data [6].  Table 1.1 shows a standard data table of 

soccer players that includes three numerical and two categorical variables. 
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Table 1.1:  Classical Data Table [6] 

Player Team Age(yr.) Weight(kg.) Height(m.) Nationality 

Fernandez Spain 29 85 1.84 Spanish(Sp.) 

Rodriguez Spain 23 90 1.92 Brazilian(Br.) 

Mballo France 25 82 1.90 Senegalese(Se.) 

Zidane France 27 78 1.85 French(Fr.) 

 

While it may be interesting to examine the makeup of each individual player, it may 

be of greater interest to understand this data from the perspective of the higher order class 

of “Team.”  For example, a metric of interest may be goals scored in World Cup matches, 

which is more relevant at the higher order level.  Table 1.2 is an example of the symbolic 

table that can be constructed. 

 

Table 1.2:  Symbolic Data Table 

Team 

Sample 

Size 

Age 

(yr.) 

Weight 

(kg.) 

Height 

(m.) Nationality 

Goals 

Scored 

Spain 2 [23,29] [85,90] [1.84,1.92] (0.5 Sp.,0.5 Br.) 18 

France 2 [25,27] [78,82] [1.85,1.90] (0.5 Fr.,0.5 Se.) 24 

 

The resulting table describes values within the individual cells that are no longer 

quantitative in nature (age, weight, height) but are instead sets.  The variability of 

nationality is no longer categorical but instead an expression of the frequency of 

nationalities that occur on the team.  SDA is the practice of grouping and summarizing data 

at the unit level of interest and then extending the principles of traditional statistical 
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analysis (e.g., clustering, decision trees, factor analysis, regression) to the higher-order 

data. 

The problem of FWA is a costly one in healthcare.  Many detection approaches 

have been implemented with varying degrees of success and while traditional cluster 

analysis is an obvious choice when it comes to anomaly detection, SDA, and its clustering 

counterpart may provide new insight into this particular challenge. 

1.1 Motivation and Contribution 

Most approaches to anomaly detection focus at the raw data level.  However, many 

times the information of interest does not reside at that granular level.  If that is the case, 

then a better approach of analysis would involve a technique that evaluates information at 

a higher order level, or concept level.  For example, a fraud detection system that intends 

to identify aberrant providers should be looking for outliers at the provider level as opposed 

to a sub-level of that category.  The motivation behind this dissertation is to determine if a 

symbolic data approach to clustering can provide that type of analysis and in turn be a 

viable alternative to detecting FWA in our healthcare system.   

This research presents a new approach to FWA detection using SDA.  Simulated 

datasets are generated to demonstrate the application of SDA and how it compares to 

traditional data analysis.  The approach is then applied to the readily available and 

frequently evaluated Iris flower dataset.  Additional labels and classes are added and 

assessed to determine the efficacy of the SDA approach and its ability to distinguish 

multiple classes within the data.  This concept of group identification is then translated to 

a larger healthcare dataset in order to determine how well it can segregate one class of 
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providers from another, including the determination of anomalous activity from usual 

activity.  The primary contribution of this research is the development of an alternative 

approach to unsupervised anomaly detection and its specific application to a large 

healthcare insurance claims dataset.   

1.2 Research Objectives 

The limitations that could exist through traditional analytic techniques present an 

opportunity to study SDA as a viable alternative.  This dissertation seeks to answer the 

following questions: 

 

• How does an analytic approach using symbolic data compare to centroidal 

methods (arithmetic mean of all points in the sample) in terms of accuracy and 

ease of implementation? 

• What is an appropriate measure that can be used to identify the existence of an 

outlier group when using symbolic data analysis? 

• What are the effects of different binning approaches as they apply to symbolic 

data analysis? 

• How does symbolic data analysis treat multivariate datasets when the input 

variables contain categorical and continuous data? 

• How is symbolic data analysis impacted when label information is applied at 

the concept level and how does it compare to the application of traditional label 

information? 

• Can symbolic data analysis provide a viable alternative for the detection of 

fraud, waste, and abuse in a large healthcare insurance claims dataset? 
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1.3 Research Methods 

The objective of this dissertation is to evaluate the benefits and practicality of 

deploying an SDA approach to detect FWA in a healthcare insurance claims dataset.  The 

dissertation begins by defining the steps taken in applying this approach to all datasets.  

Once described, this same approach is applied to simulated datasets, the publicly available 

Iris flower dataset, and several real-world inspired healthcare datasets to determine the 

method’s efficacy.  Finally, guidelines are developed for the use and interpretation of 

SDA’s application to healthcare datasets. 

The research begins by experimenting with simulated datasets where their 

descriptive nature is known.  The foundation of the approach is established here with 

explanation into how the SDA formulas are derived and how they are applied to the data.  

An evaluation metric is introduced in this section which allows for the comparison between 

an SDA approach and a centroidal approach.  The method for combining categorical and 

continuous data is shown along with the computations that can easily be evaluated in 

spreadsheet form including the construction of distance matrices for both centroidal and 

SDA methods.  A discussion regarding binning techniques is also included.   

The research continues with an introduction to the code that was developed in R 

that will serve as the vehicle for validating the previously mentioned calculations while 

enabling the study of larger, more complex datasets.  The publicly available Iris flower 

dataset is presented along with discussion of the benefits realized when the user applies 

additional labeled data at the group level.  Contrary to most studies of the Iris flower 

dataset, this is not an exercise in unsupervised learning but rather a demonstration of how 
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SDA scores known groups of data and how that effect can be enhanced through 

augmentation of the data that can only be applied at the group level.   

Using the procedures developed for the simulated and Iris flower datasets, the same 

suite of calculations and analyses are applied to several other datasets in order to determine 

its effectiveness in identifying anomalous behavior.  FWA anomalies are simulated based 

on the most common events reported in the literature.  These datasets also include 

continuous and categorical data and involve the construction of the appropriate distance 

matrices.  The SDA algorithm is applied to this data to determine its ability to identify 

anomalous events should they exist.  The developed evaluation metric is applied to the 

results to determine model effectiveness.  Traditional centroidal analysis is also performed 

on the data to serve as a comparison. 

The third phase of this research focuses on the impact that SDA can have in the 

healthcare insurance claims payer environment.  Multiple scenarios are tested and the 

approach’s accuracy is assessed and compared to the classical centroidal method. 

1.4 Limitations of the Research 

This dissertation studies the viability of an alternate approach to anomaly detection 

in healthcare datasets using symbolic datasets.  In practice these datasets are often large in 

scale and are inherent with errors and omissions that add to the complexity of the analysis.  

This research does not include the means and methods required to scrub existing data for 

any of these problems and leaves the necessary data preparation and feature engineering 

required in any study of this type solely up to the discretion of the future adopter of this 

approach. 
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1.5 Organization of the Dissertation 

This dissertation is organized in five chapters.  Chapter 1 includes the background 

and motivation for this dissertation including the objectives to be addressed and the 

approaches taken.  Chapter 2 comprises the literature review.  The current state of FWA in 

the United States healthcare system is reviewed as well as current methods being deployed 

that are intended to discover anomalies in this type of data.  SDA is introduced in this 

section as well as a discussion of clustering analysis and its relevance to the topic.  The 

chapter concludes with a discussion of current applications to healthcare data using SDA.  

The methodology and approach are documented in Chapter 3.  Items discussed in this 

chapter include SDA calculations, a non-parametric evaluation score, multicollinearity, 

scaling and standardization, the introduction of categorical and continuous data, binning 

approaches and their effect on histogram-valued data.  Also described is the R code which 

was developed to verify and validate the methods being proposed and to test more complex 

instances that would be difficult to evaluate in a traditional spreadsheet environment.  

Multiple simulated examples are presented in Chapter 3 that demonstrate the differences 

between centroidal and symbolic approaches to anomaly detection.  Chapter 4 describes 

the application of the methodology developed to healthcare datasets.  Five specific cases 

are reviewed which are intended to mimic scenarios that could exist in real-world 

situations.  Chapter 5 summarizes the dissertation and recommends areas for future 

research. 
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CHAPTER 2  
 

LITERATURE REVIEW 

 

 

In order to fully and completely explore the application of SDA to a healthcare 

insurance claims dataset, literature was selected to be reviewed based on its relevance to 

the following questions: 

 

• What is the current state of fraud, waste, and abuse in today's healthcare 

environment? 

• What are the most prevalent methodologies in use today to detect this behavior 

and how effective are they? 

• What is the history of symbolic data analysis? 

• What is cluster analysis and have techniques been developed that combine 

symbolic data analysis and clustering? 

• Has symbolic data analysis been applied to detect fraud in a healthcare 

insurance claims dataset? 

 

It is the intent of this literature review to highlight previous work in these areas and 

to provide insight into future areas of study. 

2.1 Current State of Fraud, Waste, and Abuse in Healthcare 

The most reliable source of information regarding healthcare expenditures in the 

United States comes from the Centers for Medicare & Medicaid Services (CMS).  In 2018, 

the nation spent $3.6 trillion on healthcare expenditures which accounted for 17.7% of the 

nation's gross domestic product [2].  It is estimated that number will grow at a rate of 5.5% 

per year and reach $6.0 trillion spent annually by 2027 [2].  Additionally, studies suggest 
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that the expenditures in this category do not always go directly to patient care.    In 2009, 

the Institute of Medicine convened a roundtable of experts who concluded that nearly one 

third of the healthcare costs by the end of that year were considered waste  [7].  Figure 2.1 

and Table 2.1 summarize the sources of waste in terms of dollars.  

 

 

Figure 2.1:  Sources of Waste in American Healthcare [7], [8] 
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Table 2.1:  Estimated Sources of Excess Costs in Healthcare [7], [8] 

Category Sources 

Estimate of 

Excess 

Costs 

Unnecessary 

Services 

• Overuse – beyond evidence-established levels 

• Discretionary use beyond benchmarks 

• Unnecessary choice of higher-cost services 

$210 billion 

   

Inefficiently 

Delivered 

Services 

• Mistakes – errors, preventable complications 

• Care fragmentation 

• Unnecessary use of higher-cost providers 

• Operational inefficiencies at care delivery sites 

$130 billion 

   

Excess 

Administrative 

Costs 

• Insurance paperwork costs beyond benchmarks 

• Insurers’ administrative inefficiencies 

• Inefficiencies due to care documentation 

requirements 

$190 billion 

   

Prices That Are 

Too High 

• Service prices beyond competitive benchmarks 

• Product prices beyond competitive benchmarks 
$105 billion 

   

Missed 

Prevention 

Opportunities 

• Primary prevention 

• Secondary prevention 

• Tertiary prevention 

$55 billion 

   

Fraud • All sources – payers, clinicians, patients $75 billion 

 

In their 2013 National Training Program, CMS provided guidance regarding 

Medicare and Medicaid fraud and abuse prevention, detection, recovery, and reporting.  

CMS defines fraud as the intentional falsification of information [9].  Common types of 

fraud committed include billing for services not rendered, charging for more expensive 
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services than services performed (upcoding), performing and charging for services not 

necessary, misrepresenting treatments as covered by insurance, falsifying diagnoses, and 

unbundling procedure codes and billing separately [10]. 

Abuse occurs when sound medical practices are not followed which leads to 

unnecessary costs, improper payment, or services that are not necessary.  Much of the 

excess costs in the system are due to mistakes and inefficiencies that exist within the current 

systems.  Improper billing, improper payment, and errors in processing contribute heavily 

to these costs.  Additionally, in many cases, waste, and abuse do evolve into fraud.  For the 

purpose of brevity in this dissertation, all instances of fraud, waste, and abuse will 

subsequently be labeled as fraudulent. 

Detection of fraudulent claims can be particularly difficult.  Most payers of 

healthcare services receive claims for services electronically and are required to pay claims 

in a timely manner per regulatory guidelines.  Morris [11] suggested this leads payers to 

operate in what is considered a “pay and chase” model where payments are made assuming 

the information represented on the claim is correct.  Standard code edits are applied as 

necessary but very little verification can be done to ensure that the services billed were 

correct and appropriate [11].  Claims are paid as individual entities and it often requires 

post-pay analysis for a payer to determine whether a series of claims analyzed together can 

identify fraudulent billing practices [11]. 

As a deterrent to fraudulent behavior, the federal government has enacted several 

laws which are intended to specify criminal and/or civil remedies that can be imposed upon 

any entity which engages in this behavior [12].  These laws include: 
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• False Claims Act (FCA); 

• Anti-Kickback Statute (AKS); 

• Physician Self-Referral Law (Stark Law); 

• The Exclusion Statute; 

• The Civil Monetary Penalties Law. 

 

The FCA is the government’s primary tool to combat fraud against the government.  

The Act imposes civil liability on any person or entity who knowingly requests 

reimbursement through a claim for services that are known to be false, where “knowing” 

is intended to imply deliberate ignorance and/or reckless disregard [12].  An example of 

this behavior includes submitting a claim for a higher amount than the services that were 

rendered.  Those convicted can be subject to civil penalties that include fines as well as 

criminal prosecution [12]. 

The AKS is a law intended to prevent any business or entity from providing any 

form of reward, payment, or reimbursement in exchange for a recommendation of products 

or services.  It is interesting to note that in some industries, it is acceptable to reward those 

who provide business referrals.  An example of violating the AKS would be a medical 

services provider accepting below market rates for medical office space in return for 

referrals to their facility.  Penalties may be civil and criminal in nature [12]. 

The Physician Self-Referral Act, also known as the Stark Law, prevents physicians 

from referring patients to facilities where that physician may have a financial interest.  An 

example of this may be a physician who has ownership or an investment interest in a 

radiology center referring a patient to that center when other facilities may be better suited 
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to deliver care.  Penalties are civil in nature and could result in exclusion from participation 

in all federal healthcare programs [12], [13]. 

The Exclusion Statute requires those entities convicted of criminal offenses such as 

Medicare fraud, patient abuse, or illegal distribution of controlled substances be banned 

from participation in federal healthcare programs.  The exclusion list is managed by the 

Office of the Inspector General (OIG) [12]. 

The Civil Monetary Penalties Law outlines monetary penalties that are enforced by 

the OIG.  Penalties can be as high as $50,000 per violation and can include presenting a 

claim that is known or should be known as false; presenting a claim that is known or should 

be known that Medicare will not pay; and any violation of the AKS [12]. 

In addition to enacting legislation to deal with fraudulent activities, the federal 

government has instituted several key programs.  The Affordable Care Act (ACA), signed 

into law in 2009, includes new provisions for fighting fraud including: tougher sentencing 

guidelines for those that break the law, enhanced screening for high risk providers and 

suppliers, advanced fraud detection technology (discussed in the next section) deployed by 

the CMS, and increased funding over the next ten years to improve anti-fraud efforts. 

The Department of Justice and the Department of Health and Human Services 

jointly created the Healthcare Fraud Prevention and Enforcement Action Team.   

Strike Force teams focus on “hot spot” locations in the country and identify and apprehend 

healthcare fraudsters.  These teams work with members from the Office of 

Inspector General, Department of Justice, Federal Bureau of Investigation, and local law 

enforcement to convict those guilty of healthcare fraud [14]. 

 



 

15 

 

In 2012, the CMS Program Integrity Command Center was opened which enabled 

clinicians, data analysts, fraud investigators, and policy experts from multiple government 

agencies to work collaboratively in one location to quickly develop and deploy advanced 

fraud detection techniques [15].  The Center’s mission is to protect Medicare and Medicaid 

programs and improve the integrity of the healthcare system through four program areas 

which include prevention, detection, recovery, and transparency and accountability [16].  

The Small Business Jobs Act of 2010 was signed into law to create lending programs that 

would increase the availability of credit to small businesses.  One of the requirements of 

the law was to further develop and deploy predictive modeling capability to identify FWA 

in the healthcare system in order to better protect the American taxpayer.  Subsequently, 

in June of 2011, the CMS launched the Fraud Prevention System (FPS).  The FPS is a 

streaming, national service which directs its efforts toward all Medicare Fee-For-Service 

claims [17].  The system uses predictive models and algorithms to proactively review 

claims for suspect activity – then prioritizes leads for review and investigation.  The result 

of these efforts prevents public funds from being sent to suspect providers and 

suppliers [18].  In one example, the FPS identified a provider that was exhibiting high risk 

billing patterns.  An investigative team was sent to the provider location for an 

unannounced site visit to conduct interviews and review medical records.  It was 

determined that the provider was billing Medicare for services performed by unqualified 

medical aides.  The provider was removed from the Medicare program which prevented 

$700 thousand of inappropriate payments [17].  An overview of the Process for Fraud 

Prevention as defined by CMS is highlighted in Figure 2.2. 
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Figure 2.2:  Overview of the Process for Fraud Prevention [17] 

 

Model Prioritization and Development refers to the process of determining which 

type of model (rule based, anomaly detection, prediction, network) best fits the situation 

and which should be prioritized and deployed.  The FPS is the new approach to monitoring 

activity through the continuous and simultaneous review of relevant data.  Results from 

this approach are used to generate leads and/or highlight potential suspicious activity, 

Model Prioritization
and

Development

Fraud Prevention 

System

Lead

Investigation

Action

Medicare Savings
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which may lead to investigation, recoupment of funds and, ultimately, savings to the 

Medicare Program [17]. 

It is important to note that the tools and technologies used in the detection of fraud 

are intended to serve as aids in a broader investigation.  As indicated in the figure above, 

the detection of these behaviors, regardless of method, tends to inform an investigation but 

are rarely enough to be considered in isolation when looking for suspicious activity.  When 

an investigation validates an offense, savings are realized through one or more of the 

following administrative actions [17]: 

 

• Payment suspension – holds on funds due providers; 

• Law enforcement referrals – cases referred to law enforcement for prosecution; 

• Overpayment recoveries – seeking refunds from providers where payments 

exceeded actual amount owed; 

• Prepayment edits – contractors review claims before payment is made; 

• Auto-denials – computer edits force provider payment denial prior to payment 

processing; 

• Provider revocation – provider’s status precludes them from any form of 

payment. 
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In 2013, the FPS was credited with the identification and investigation of 938 

suspect providers and suppliers who had patterns of inappropriate billing.  The savings 

associated with these identifications totaled $210.7 million as certified by the OIG.  

Planned future enhancements to the FPS tool include [17]: 

 

• Expand and improve models to identify bad actors more quickly and more 

effectively; 

• Expand FPS beyond fraud into waste and abuse; 

• Deny claims that are not supported by Medicare policy; 

• Identify leads for early intervention by the Medicare Administrative 

Contractors; 

• Evaluate the feasibility of expanding predictive analytics to Medicaid; 

• Reduce costs of FPS while applying predictive analytics more effectively and 

efficiently; 

• Share lessons learned and best practices with federal, state, and private partners.  

 

With the enactment of the ACA, seeking efficiencies in the handling of public funds 

is as important as ever.  As noted above, the federal government, through the work of 

several governmental agencies, plans to continue to develop its competency in the area of 

FWA detection and prevention. 

The private sector has active fraud detection as well and often joins forces with 

public entities to create solutions.  The defense contractor, Northrup Grumman along with 

Verizon and WellPoint subsidiary National Government Services, were selected by the 

CMS to develop the FPS previously mentioned.  The platform builds on predictive 

modeling technology used by Verizon to fight fraud.  Link, behavioral, and statistical 



 

19 

 

analysis are used to identify potential fraudulent requests prior to processing [19].  

IBISWorld suggests the major commercial providers of fraud detection software and 

services include ACI Worldwide, FICO and SAS – all of which provide their services 

globally to public and private organizations.  Products include predictive and real-time 

analytics which support the detection of fraudulent behavior across users, accounts, 

products, processes, and channels.  The fraud detection software industry achieves annual 

revenues of $817 million and annual growth of 30.2%.  As of 2014, over two hundred 

businesses were engaged in the work [20].   Many firms work with clients via risk-based 

pricing and are compensated proportionally with the success of their discoveries.  Most 

focus on approaches best suited to their specific businesses and rarely does one firm 

dominate the market.  The healthcare market is lucrative compared to the markets of 

telecommunications and finance.  While the rate of improper payment in those industries 

range from 0.1% to 0.2%, it is estimated that the level of improper Medicare payments 

could be 50-100 times higher [21]. 

Typically, the parties that commit fraud can be broken into three categories: 

providers, subscribers, and carriers.  Providers include doctors, hospitals, medical 

equipment providers, ambulance companies, and laboratories.  They commit fraud through 

activities such as billing for services not performed, unbundling services, upcoding, 

performing medically unnecessary services, and falsification of patient information.  

Subscribers include patients and patients’ employers and they defraud the system by 

falsifying eligibility records, filing false claims or using other persons’ coverage 

information to illegally claim benefits.  Carriers typically refer to insurance companies that 

pay healthcare insurance claims on behalf of the subscriber or patient and they can falsify 
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reimbursements or falsify benefit statements [22].  Li et al. suggest that provider fraud is 

by far the most prevalent and could have the largest impact on the quality and safety of the 

healthcare system.  Li et al. performed a study on the percentage of research papers 

completed which revealed that “Service Providers” was the number one category of 

research [22].  Figure 2.3 shows the results of the study. 

 

 

Figure 2.3:  Categories of Research Regarding Fraud [22] 

 

Thornton et al. performed a study that further clarified the relationship between 

patient and providers in the context of understanding fraud.  Their work presented several 

multidimensional models which focused on the importance of evaluating fraudulent 

activity at levels beyond the individual or claim line level [23]. 
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Figure 2.4 represents a graphic taken from [23] which highlights the critical fields 

that can apply to most healthcare insurance claims. 

 

 

Figure 2.4:  Relevant Levels of Categorization Beyond the Individual Claim [23] 

 

Per the notation above, each claim line (of which there could be many) will contain 

the following singular mandatory fields: patient, provider, diagnosis, service, location, 

type, and health plan.  Multiple dates could be present on each line (e.g., filed, service, 

paid).  Other fields that may exist are singular in nature and may be optional (e.g., headers). 

Concepts put forth by Sparrow suggest that the most effective and more challenging 

fraud detection methods must occur beyond the claim or line level [24].  Sparrow’s 

definitions of these additional levels are cited [23] and displayed in Table 2.2. 
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Table 2.2:  Levels of Healthcare Fraud Control [24] 

Level Focus 

Level 1 Single Claim or Transaction The claim itself and the related provider and 

the patient. 

Level 2 Patient / Provider One patient, one provider and all their claims. 

Level 3 a. Patient One patient and all its claims and related 

providers. 

 b. Provider One provider and all its claims and related 

patients. 

Level 4 a. Insurer Policy / Provider Patients that are covered by the same 

insurance policy and are targeted by one 

provider. 

 b. Patient / Provider Group One patient being targeted by multiple 

providers within a practice. 

Level 5 Insurer Policy / Provider 

Group 

Patients with the same policy being targeted 

by multiple providers within a practice. 

Level 6 a. Defined Patient Group Groups of patients being targeted by providers 

(e.g., patients living in the same location) 

 b. Provider Group Groups of providers targeting their patients.  

Groups can be providers within the same 

practice, clinics, hospitals, or other 

arrangements. 

Level 7 Multiparty, Criminal 

Conspiracies 

Multiparty conspiracies that could involve 

many relationships. 

 

In summary, the existence of FWA in the healthcare system, regardless of public 

or private origin, has the effect of increasing the cost and decreasing the quality of care.  

These inefficiencies in the system artificially drive costs higher which makes affordable 

care less attainable for many who need it most.  New detection techniques, including those 

introduced by this research, is of interest to both public and private entities.  As noted in 
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the literature, most of the focus regarding fraud occurs at the provider level, yet most 

detection systems are directed at the transactional claim level.  An approach that can 

provide an alternate way of grouping data and efficiently determine potential aberrant data 

points is advantageous in combating unnecessary costs.  This research will investigate the 

identification of patterns at a higher level (provider for example) in order to discover 

incidents of FWA. 

2.2 Prevalent Methods of Detecting Anomalies in Large Datasets 

Preventing fraud from occurring can be addressed from two different vantage 

points.  The first and most effective is fraud prevention.  Preventing a defect from occurring 

will always be the strongest method of prevention.  Fraud detection is the second approach 

and is an area of study that is continuously evolving.  This evolution is often by necessity 

as the perpetrators of these offenses quickly become familiar with old prevention 

techniques and begin to seek new tactics with which to attack the system.   

Depending on the situation, there may be multiple approaches to detecting 

fraudulent activity.  These approaches can be used independently or in conjunction with 

each other.  The FPS, as introduced in the previous section, focuses on different model 

types to detect fraud:  Rule Based, Anomaly, Predictive, and Network.  Table 2.3 is adapted 

from a CMS graphic depicting these four types along with examples of each [17]. 
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Table 2.3:  CMS Fraud Detection Model Types [17] 

Model Type Definition Example 

Rule Based Filter fraudulent 

behaviors with rules 

Receive a bill containing an identification 

number that was previously stolen 

Anomaly Detect individual 

abnormal patterns 

versus peer group 

Receive a bill from a provider with more 

services billed in a single day than 99% of 

similar providers of the same service 

Predictive Assess against known 

fraud cases 

Identify a provider that exhibits practices 

similar to other known fraudulent 

providers 

Network Discover knowledge 

through link analysis 

Identify a provider that is linked to known 

fraudulent activity through an address or 

phone number 

 

Rule based models use previously collected information and known patterns to 

identify potentially fraudulent activities.  One of the problems that exists with rule based 

approaches is that they tend to quickly become obsolete as perpetrators develop schemes 

that work around the new “rules.”  Anomaly detection models identify occurrences of 

behavior and compare those incidents to known patterns of activity – then try to determine 

how different a certain data point or patterns of points need be to be considered “unusual” 

and worthy of further investigation.  Predictive models attempt to look at past cases of 

known fraud, identify triggering factors that drove the fraudulent behavior, and then 

attempt to search for similar current conditions which may indicate that fraud would be the 

expected future outcome.  Drawbacks of this method include the limited number of “fraud 

positive” events from which to draw information from.  Social network analysis attempts 

to link perpetrators through their existing network of relationships.  Also referred to as link 

analysis, the technique evaluates the connections between organizations, transactions, and 

people in order to discover unusual events.   
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Palshikar [25] suggests that fraud detection techniques fall into two classes: 

statistical techniques and artificial intelligence.  Statistical techniques include data 

preprocessing, parameter estimation, model building, time series analysis, and clustering 

and classification as statistical techniques.  Artificial intelligence includes applying data 

mining to classify and cluster, pattern recognition, machine learning, and neural 

networks [25]. 

Bolton [26] focuses on fraud associated with credit card transactions and cites 

Brause whose database of credit card transactions reveal a fraud rate between 0.1% and 

0.2% as compared to the previously stated healthcare fraud rate between 3% and 10% [27].  

Bolton and Hand [28] identify two types of statistical fraud detection: supervised and 

unsupervised.  Supervised methods require datasets to be segmented into two classes, 

fraudulent and non-fraudulent.  These require the true knowledge of each of these classes 

and require that there exist enough samples to populate each of the classes – a situation 

which is sometimes problematic in fraud detection because known fraudulent events occur 

infrequently.  Typically, in fraud detection problems, the number of legitimate transactions 

far outweighs the number of fraudulent ones and that can cause misclassification problems.  

Supervised methods include linear discriminant analysis and logistic discriminant analysis.  

Rule based methods are also examples of supervised methods that follow the form “if 

certain conditions exist, then this consequence is enacted.”  Unsupervised methods do not 

require a priori knowledge of the fraudulent labels but instead seek to identify patterns 

dissimilar from normal activity.  Unsupervised methods are employed when no known 

identifiers exist that could label an event as fraudulent [28].   
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The most popular unsupervised method is clustering because a priori knowledge of 

the fraud instance is not required – however this method can perform poorly if improper 

choices are made when determining the distances between observations.  The distance 

between the points is critical when determining clusters.  The most popular distance metric 

is Euclidean distance – however, its weakness is that it treats each attribute equally in the 

calculation.  This can be problematic when different features are measured on different 

scales.  The Mahalanobis distance is a measure that accounts for this variability [29].  

Combining categorical and continuous variables into one good clustering metric can be 

particularly challenging and problematic, resulting in clusters being formed differently on 

some variables than on others [26].  Unsupervised methods have attempted to distinguish 

between local (within group) outliers and overall (global) outliers but it can be difficult to 

initially define the local domain.  Bolton and Hand proposed the concept of Peer Group 

Analysis to identify local category formation using unsupervised data mining techniques 

[26].   Gebski et al. proposed a methodology for grouping categorical anomalies [30].  An 

advantage to using unsupervised methods is that previously undetected types of fraud may 

be detected whereas supervised methods know only how to identify incidents like those 

identified.  This is a critical concept in insurance fraud as perpetrators are always 

attempting to stay ahead of the latest detection technique. 

Traville [31] performed a review of all fraud detection literature and developed the 

information in Table 2.4 to outline various fraud detection types and their definitions. 
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Table 2.4:  Fraud Detection Types [31] 

Type Definition Method Explanation 

Supervised 

Classification 

Techniques 

Use training 

sets with 

prior 

information 

on class 

membership 

to learn 

classification 

patterns 

Linear 

Discrimination 

Regression based on a logistic curve 

Support Vector 

Machines 

A kernel method which selects small 

number of critical boundary instances 

(support vectors) to construct a 

separating hyperplane [32] 

Neural Networks A set of interconnected nodes that 

imitate the functioning of a brain [33] 

Decision Tree 

Learning 

Methods for building a decision tree for 

classification 

Unsupervised 

Data Mining 

Techniques 

Do not 

assume prior 

class labels 

of legitimate 

or fraudulent 

behavior 

Anomaly 

Detection 

Tries to detect outliers that are 

inconsistent with the remainder of that 

dataset [34], [35] 

Cluster Analysis Divide objects into groups (clusters) 

with objects in a group being similar to 

one another but dissimilar to the objects 

in other groups [36] 

Peer Group 

Analysis 

Clusters of similar observations (peer 

groups) are identified and clustered, 

subsequently the individual behavior is 

compared to the cluster’s behavior [37] 

Statistical 

Methods 

Statistical 

methods are 

more model 

and theory 

based than 

data mining 

methods 

Visualization Allowing users to view the complex 

patterns or relationships uncovered in 

the data mining process [38] 

Profiling Process of modeling the characteristic 

aspects of the user [39] 

Benford’s Law The distribution of the first-digit 

number of a lot of natural phenomena 

like size of companies, telephone 

lengths, and invoice amounts will have 

a characteristic non-uniform 

distribution [40], [41] 

Rule Based Model based 

on the 

experience of 

experts 

(Bolton et al. 

2002b) 

Online 

Analytical 

Processing 

Dynamic ad-hoc multidimensional 

analysis [42] 

SQL Queries Queries designed by domain experts 

 

Supervised methods (require prior information to learn classification patterns) 

include linear discrimination, support vector machines, neural networks, and decision trees.  
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Unsupervised methods (do not assume prior labels to be classed as fraudulent or non-

fraudulent behavior) include anomaly detection, cluster analysis, and peer group analysis.  

Statistical methods include visualization, profiling, and the application of Benford’s Law  

(also known as the Law of First Digits, which is the finding that the first digit of a series 

of numbers is more likely to be a lower number and that the distribution of first digits is 

not uniformly distributed) [43].  Rule based methods include online analytical processing 

and structured query language (SQL) queries [31]. 

Real data for testing fraud detection methodologies is often difficult to obtain.  

Actual data may not contain the specific events that are being tested for or may not have 

enough positive occurrences.  Furthermore, due to the nature of these datasets, companies 

may be reluctant to share sensitive customer/patient data.  Synthetic data offers a range of 

options that are available to the tester including a higher degree of freedom during testing 

of the data [44].  The use of synthetic datasets is applicable to both supervised and 

unsupervised methodologies. 

Unsupervised anomaly detection techniques vary but most seek to find instances of 

outliers.  Barnett and Lewis [35] defined an outlier as “an observation (or subset of 

observations) which appears to be inconsistent with the remainder of that set of data.”   That 

is the definition used throughout this dissertation.   
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Chandola [45] provided the following graphic, represented as Figure 2.5, of outliers 

in a two-dimensional dataset. 

 

 

Figure 2.5:  Anomalies in a Two-Dimensional Dataset [45] 

 

In Figure 2.5, the areas denoted by N1 and N2 would be considered part of a 

“normal” region while individual points O1 and O2 and the set of points labeled O3 would 

be considered outliers [45].  The terms anomalies and outliers are often used 

interchangeably and are used interchangeably in this dissertation. 
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Chandola [45] discussed the nature of the input data affecting which anomaly 

detection technique that can be used.  The input is usually a set of data instances or records 

that has corresponding attributes.  These attribute types may be binary, categorical, or 

continuous in nature.  Univariate records are those that have only one associated attribute 

while multivariate records will have more than one attribute – and those attributes can 

include a mix of attribute types.  Most anomaly detection techniques deal with singular 

record or point data, however, data can be categorized based on existing relationships 

among the individual instances themselves [46].  Chandola suggested that anomalies may 

be grouped in the following three categories [45]: 

 

1) Point Anomalies – this is the simplest type of anomaly and describes when an 

individual point can be considered anomalous to the rest of the data. 

2) Collective Anomalies – describes anomalies that are evident when a collection 

of instances together is compared to the entire dataset.  The individual points 

themselves may not be anomalous but when grouped together may be [45].  

Vatanen explored collective anomalies at greater depth in their application to 

high energy particle physics [47].  Collective and point anomalies can be 

transformed to a collective anomaly case through the addition of a context [45]. 

3) Contextual Anomalies – describes data instances that are anomalous within a 

specific context but may not be otherwise.  Contextual anomalies must be 

records that have an attribute field that describes the context.  Many time series 

datasets conform to contextual anomalies, i.e. outside temperature may be 

different depending on the time of year.  A subfreezing day may be normal in 

the winter but would be an anomaly if it occurred in the middle of summer.  The 

contextual attribute in this example would be time of year.  These events are 

also referred to as conditional anomalies [48]. 

 

He [49] introduced the term semantic outlier which is a point that behaves 

differently than other data points in the same class, developed an algorithm to cluster 
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categorical data [50], and introduced a concept called class anomaly detection which is 

applied to the task of tracking of customer loyalty [51]. 

Hodge and Austin [52] provided a comprehensive list of applications that rely on 

outlier detection which includes fraud detection, loan application processing, intrusion 

detection, activity monitoring, fault diagnosis, and medical condition monitoring.  While 

acknowledging that there is no single solution, it is important that the appropriate technique 

is suitable for the data presented which will depend on the data type, the existence of labels 

within the data, the accuracy of the labels, and how outliers are handled once detected [52].  

Anomalies are typically reported by using one of two methods.  Scores can be applied to 

anomalous data instances which indicate the likelihood of the record being an outlier.  

Additionally, labels can be used to assign each instance to a normal or anomalous 

state [45].   

Bolton [28] suggested that “fraud detection is an important area, one in many ways 

ideal for the application of statistical and data analytic tools, and one where statisticians 

can make a very substantial and important contribution.” 

This dissertation will add to the current literature in the area of contextual anomaly 

detection.  As mentioned in the previous section, the context of provider is often the unit 

of interest yet techniques using this approach have been limited.  Due to the nature of the 

problem, an unsupervised anomaly detection technique that can incorporate both 

categorical and numerical data would have many advantages.  SDA allows for both data 

types and is the focus of this dissertation.   
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2.3 History and Application of Symbolic Data Analysis 

Diday and Bock suggested that the origins for SDA was the result of three major 

influences: exploratory data analysis (EDA), the advent of artificial intelligence, and the 

concept of numerical taxonomy  [53].  EDA was pioneered by the American mathematician 

John Tukey – most notably by his development of the boxplot in 1969 [54].  EDA suggests 

a statistical approach that seeks to describe datasets in ways other than the traditional 

methods of hypothesis testing or formal modeling.  His methods ultimately led to advanced 

computing packages that could describe data, often visually, in ways that could allow for 

further investigation.  Boxplots, histograms, run charts, and scatter plots are common 

graphical techniques to support EDA and are often used to visually interpret datasets and 

discover patterns and trends that may not be apparent using classical statistics.  It was in 

this context that Diday suggested the need to extend classical statistical techniques to this 

new form of descriptive information, specifically as it could be grouped and categorized as 

symbolic data [53].  Artificial Intelligence was focused on displaying this graphical 

information in discernable ways but was less focused on being able to explain complex 

data in simple statistical terms.  Diday would go on to develop the Symbolic Official Data 

Analysis System (SODAS) software platform to address this need.  The final influence was 

Numerical Taxonomy which is a classification system used most frequently in biology 

where the unit of interest is often at a conceptual level or a “species” level as opposed to 

the individual unit and uses multiple, equally weighted taxonomic characters (features) to 

classify groups as similar or dissimilar as opposed to the traditional method of using 

evolutionary characteristics.  The development and advancement of SDA has largely been 

attributed to two individuals:  Edwin Diday and Lynne Billard. 



 

33 

 

Edwin Diday first introduced the concept of SDA in 1987 while serving as 

Professor of Computer Science at the University of Paris at Dauphine.  He was conducting 

research into the field of clustering methodologies and realized that by summarizing data 

within clusters, the inherent characteristics of the data within the cluster are lost.  Cluster 

means were retained but their internal variations were not.  This led to the development 

and study of symbolic data and spawned a new group of students and researchers [55].  

Diday has authored or co-authored the three defining texts in this field which include: 

Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information 

from Complex Data [53], Symbolic Data Analysis and the SODAS Software [6], and 

Symbolic Data Analysis: Conceptual Statistics and Data Mining [56].  The most recent 

text, Symbolic Data Analysis: Conceptual Statistics and Data Mining [56], was co-

authored by Lynne Billard.  Billard is a University Professor of Statistics at the 

University of Georgia and is known for her statistical research, leadership, and advocacy 

for women in math and science.  She has served as president of the American Statistical 

Association and the International Biometric Society which are the two largest statistical 

societies in the world.  In 2013, she was selected to receive the Florence Nightingale David 

Award by the Committee of Presidents of Statistical Societies which recognizes female 

statisticians who exemplify excellence in education, science, and public service [57]. 

When analyzing a dataset with classical statistics and traditional multivariate 

analysis, the unit of interest is usually the individual component: an individual entity that 

can be described by other variables which may be numerical or categorical in nature.  

Nearly all the descriptions and subsequent data collection activities revolve around this 

concept.  Examples include a person being described by his age, height, weight, hair color, 
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and eye color.  Customers that frequent a business can be described by their sex, age, 

income amount, educational level, or frequency of trips to the business  [58]. In each case, 

a table can be organized as a data matrix where each cell, (i,j), contains a singular value for 

variable j which describes individual i.  Table 2.5 is taken from Brito and Noirhomme-

Frature [58],  and depicts a matrix that describes four individuals, s1-s4.  Each individual 

is assigned two quantitative and two qualitative variables. 

 

Table 2.5:  Individual Matrix [58] 

Individual # of Children Weight(kg.) Gender Instruction Level 

S1 2 52 M 2 

S2 1 55 M 3 

S3 0 50 M 2 

S4 3 60 F 1 

 

While data is commonly displayed and analyzed in this tabular format, the 

variability and uncertainty that is inherent in the table is often lost when the unit of interest 

is at a higher group or class level.  For example, if the unit of interest above was gender 

and not the individual, then Table 2.6 can be created to express the characteristics of that 

classification. 

 

Table 2.6:  Gender Matrix 

Gender Sample Size 

# of 

Children Weight(kg.) 

Instruction 

Level 

M 3 1 52.3 2.3 

F 1 3 60 1 
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The data could also be presented by the classification of instruction level as shown 

in Table 2.7. 

 

Table 2.7:  Instruction Level Matrix 

Instruction 

Level Sample Size 

# of 

Children Weight(kg.) Gender 

1 1 3 60 F 

2 2 1 51 M 

3 1 1 55 M 

 

The example above accurately and simply explains the need for a symbolic data 

approach to analysis.  At the individual level, Table 2.5 is enough when analyzing the 

dataset at an individual row level.  Table 2.6 and Table 2.7 demonstrate the limitation.  If 

we were interested in evaluating the data from a gender perspective, then we could certainly 

group the data accordingly.  However, in doing so, we lose critical information inherent in 

the original dataset.  Simply choosing the average (or mode, or median) for the variables 

of number of children, weight, and instruction level, we lose information that is relevant to 

the group variable.  Each of those explanatory variables had measures of variability that 

was lost when summarizing the data at the group level.  Table 2.7 illustrates the same 

limitation if the data were to be analyzed by the variable Instruction Level.  A better 

comparison of individuals by instruction level could be made if we retained the information 

that was inherent in the original data.  SDA provides an approach for analyzing data that 

considers this inherent variability in the underlying data without an unacceptable loss of 

information [58]. 



 

36 

 

The literature suggests that this approach is growing in interest in the analysis of 

datasets when the unit of interest is not the individual record (microdata) but at a higher 

concept level.  For example, a study of credit card purchases would reveal results that may 

be more meaningful at a higher-level class, like purchaser, store, or demographic area as 

opposed to the individual purchase itself.  Only if the variability of factors within 

purchaser, store, or demographic area is retained would an analysis comparing each be 

most useful [58].  In a healthcare insurance claims setting, some information may be better 

consumed and interpreted at a provider level as opposed to the individual claim level. 

Variables which consider this level of information as it applies to a group or class 

are called symbolic variables.  Symbolic variables may be represented in a variety of ways.  

Table 2.8 represents the data from above, grouped by instruction level but described using 

symbolic notation. 

 

Table 2.8:  Instruction Level Matrix - Symbolic 

Instruction 

Level 
Sample Size 

# of 

Children 
Weight(kg.) Gender 

1 1 3 60 F 

2 2 [0,2] [50,52] M(100%) 

3 1 1 55 M 
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A general example of the conversion between a classical data table (Table 2.9)  

and a symbolic table (Table 2.10) below where six individuals (I1 – I6) belong to one of 

two categories (C1 or C2) and can be described by two variables (Y1 and Y2) where Y1 = 

a,b,c and Y2 = 1,2,3 [56]. 

 

Table 2.9:  Classical Data Table 

Individual Concepts Y1 Y2 

I1 C1 a 2 

I2 C1 b 1 

I3 C1 c 2 

I4 C2 b 1 

I5 C2 b 3 

I6 C2 a 2 

 

 

Table 2.10:  Symbolic Data Table 

Concept Y1 Y2 

C1 {a, b, c} {1, 2} 

C2 {a, b} {1, 2, 3} 

 

Symbolic data may be numerical or categorical and may take on different values.  

The ontology of symbolic data types was documented by [58] in Figure 2.6 below. 
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Figure 2.6:  Symbolic Data Types [58] 
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Definitions of each data type and examples are included in Table 2.11. 

 

Table 2.11:  Symbolic Data Type Definitions 

Type Description Example 

Numerical Single-Valued weight(patient) = 60 

 Interval-Valued height(patient) = [60,75] 

 Histogram-

Valued 

age(patient) = {[0,15], .15; [15-45], .45; [45-90], .40} 

 Distribution 

Function 

age(patient) = {[<15], .15; [<45], .60; [<∞], 1.0} 

Categorical Single-Valued sex(patient) = {male} 

 Multi-Valued insurance coverage(patient) = {bronze, silver, gold} 

 Modal insurance coverage(patient) = {(bronze, .08; silver, .01; 

gold, .01)} 

 

Another advantage to coding data into its symbolic form is the ability to include 

additional variables at the concept level which may not make sense or may not be known 

at an individual level.  For example, a classical data table may include individual 

homeowners within a city.  When that data is grouped by city, an additional factor such as 

percent commuters could be added to the table and provide information that could help in 

evaluating the concept. 

With a symbolic table established, attention turns toward the analysis of the 

symbolic data table.  Unlike classical data, which comprises techniques and tools that have 

been studied and refined over the past century, SDA statistical analysis is relatively new 

and the number of available methodologies is still small [59].  Research of the literature 
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suggests that while this work is just beginning, there has been progress in several traditional 

areas of statistical analysis including univariate and multivariate descriptive statistics, 

regression, principal component analysis, and clustering with the latter having received the 

most work of any of the multivariate methodologies [58]. 

2.4 Cluster Analysis and Symbolic Data Analysis 

Cluster analysis is a method used to group similar items together into entities called 

clusters where the items in each cluster share characteristics with other items in that cluster 

– and are very dissimilar from items in other clusters.  The first step in cluster analysis is 

to determine which attributes should be included in the analysis.    The second step is to 

determine which clustering approach to apply to the data.  The third step is to determine 

which measure should be used to gauge similarity (dissimilarity).  The fourth step is to 

determine the number of clusters that you wish to discern – which can be difficult because 

it involves balancing reducing the ultimate number of clusters with the forfeiture of 

explanatory information.  The final step is to interpret the results of the analysis to 

determine what each of the resulting groups of clusters mean.  Mooi and Sarstedt [60] 

provide guidance on the previous steps.  Figure 2.7 is graphic taken from their work that 

includes explanations of each step in the clustering process [60]. 
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Figure 2.7:  Steps in the Clustering Process [60] 

 

The choice of which variables to include in the analysis is an important one.  

Finding the right quantity and mix of indicator variables can be difficult.  The inclusion of 

too many variables can reduce the designer’s ability to see differences.  Mooi and Sarstedt 

cite Formann, 1984  [60] where he recommends a sample size of 2𝑚 where m equals the 

number of clustering variables.  The designer must also protect against collinearity – two 

variables representing essentially the same characteristic can lead to that characteristic 

being artificially overrepresented in the final cluster analysis.  Mooi and Sarstedt [60] 

Decide on the clustering variables

Decide on the clustering procedure

Validate and interpret the cluster solution
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suggest that correlations between variables above 0.900 indicate duplicity in the model and 

should be corrected.  It is also recommended that variables of different scales be 

standardized.  Depending on the availability and type of data, the choice may be clear [60]. 

Tan et al. describes three types of clustering techniques [46]. 

 

1) Hierarchical vs. Partitional – nested cluster results that start with a single cluster 

that contains all the instances and flows down to nested partitions. 

2) Exclusive vs. Overlapping vs. Fuzzy – techniques where the designer chooses 

whether instances can reside in only one cluster or can overlap into more than 

one group. 

3) Complete vs. Partial – techniques where some instances are not assigned a 

cluster and possibly represent noise or outliers. 

 

Hierarchical techniques are referred to as agglomerative or divisive clustering 

which has the structure that resembles the following graphic, Figure 2.8, taken from Mooi 

and Sarstedt [60]. 
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Figure 2.8:  Agglomerative Versus Divisive Clustering [60] 

 

The evaluation of the clustering technique depends on the technique employed.  

Most focus on numerical data and utilize a distance measure to minimize the distance 

between like objects and maximize the distance between those classes that are different.  

Distance metrics for categorical data are less common, can be more challenging, and is a 

topic that is addressed later in the dissertation.  The most common method of determining 

similarity is by assessing the length of the line that connects two different instance points 

in the dataset using the Euclidean distance.  The distances between each pair of points in 

the dataset are stored in a distance matrix.  While the Euclidean distance is the one most 

often used, other distance measures exist which include the City-block, Chebychev, 

Angular, Canberra, and Mahalanobis distances.   
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There are several choices regarding which clustering algorithm to deploy.  Some of 

the more popular algorithms include single linkage, complete linkage, average linkage, and 

centroidal linkage.  Knowledge of the underlying data as well as expected cluster results 

can help the designer choose the appropriate linkage method. 

Results of a cluster analysis are often expressed via a chart called a dendrogram.  A 

visual depiction of a dendrogram is in Figure 2.9. 

 

 
Figure 2.9:  Dendrogram 

 

A dendrogram offers a visual tool for being able to determine the number of 

clusters.  Other methods are also available including the variance ratio criterion by Calinski 

and Harabasz, 1974 as cited by Mooi and Sarstedt [60]. 

Cluster analysis is frequently used for anomaly detection – or identifying patterns 

that do not conform to expected behavior.  Several factors make this task difficult. 
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• Defining the region that defines normal is often difficult and the boundary 

between normal and anomalous is often not precise. 

• When anomalies represent fraudulent behavior, the perpetrators are often 

working hard to disguise their activities as normal so that they fall within 

accepted boundaries. 

• In many areas of study, the definition of “normal” is always changing. 

• The characteristics that make an anomaly in one domain are often different 

when applied to a different domain. 

• Data availability for labeled data fields (fraudulent/non-fraudulent) is often an 

issue. 

• The noise in the data frequently masks actual anomalous data. 

 

Because of the many challenges presented by the anomaly detection problem in its 

most general form, most techniques tend to focus on a specific formulation of the problem 

given the type of data, the availability of the data, and the type of anomaly being 

identified [45]. 

Because of its ability to detect anomalies, cluster analysis is a prime candidate for 

use in fraud detection.  A common metric to measure the output delivered from a fraud 

detection algorithm is a suspicion score.  The higher the score, the more likely that an 

anomalous data point indicates that fraud has occurred.  The ranking of these scores will 

help prioritize which events should be recommended for further investigation [28]. 

As previously explained, the aim of clustering is to partition data into homogenous 

groups in a manner that minimizes within cluster variation and maximizes between cluster 

variation.  That task is the same when applied to symbolic data.  Cluster definition and 

proximity within SDA are defined using dissimilarity measures as in the case of classical 
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statistical analysis.  In most cases, the dissimilarity measures presented for SDA are 

extensions of their classical counterparts [56]. 

The literature documents several dissimilarity measures that are frequently applied 

toward symbolic cluster analysis as well as comparisons of their effectiveness [52], [61].  

Billard suggests that two of the most important distance measures are those developed by 

Gowda and Diday in 1991 and the work by Ichino and Yaguchi in 1994 [56], [62], [63].  A 

comparison of several dissimilarity measures was conducted by Esposito et al. in support 

of the ESPRIT Project SODAS [61].  Irpino and Verde recently explored using a 

Wasserstein distance measure for clustering histogram-valued data and a new approach by 

Brito and Ichino that creates clusters using a technique called quantile representation [58].  

The distance matrix and the method of calculating dissimilarity measures determine the 

presence or absence of outliers which is the focus of this dissertation. 

As in classical clustering, symbolic data clustering can be greatly affected by the 

variables’ scale.  De Carvalho et al. suggest several methods to standardize symbolic data 

in order to compare like scales [64].  Regardless of method, some form of standardization 

will always be needed in order to obtain an objective, scale-invariant result [58].  

De Carvalho et al. suggest several approaches to standardization of interval data [64]. 

Mali et al. experimented with different validity indices to determine the optimal 

number of clusters by transforming quantitative validity indices (Normalized Modified 

Hubert, Davies-Bouldin, Dunn) to a symbolic framework and tests were then performed 

on several real-life datasets [65]. 
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2.5 Histogram Binning Methods 

The conversion of a standard dataset to one which is represented symbolically is a 

critical step in the analysis.  When converting continuous variables to histogram-valued 

variables, the resolution and accuracy of the results would seem to depend on how the data 

is represented by the histogram.  A primary feature of histogram construction is deciding 

how the data should be divided into bins.  There are multiple binning approaches.  Several 

of the more common approaches are summarized in Table 2.12 along with the formulas to 

determine the number of bins per histogram as well as the bin width to be used [66].   

 

Table 2.12:  Binning Methods and Formulas 

Method Notes # of bins bin width 

Square 

Root 

square root of 

number of 

data points 
√𝑛 

max(𝑣𝑎𝑙𝑢𝑒𝑠) − min⁡(𝑣𝑎𝑙𝑢𝑒𝑠)

√𝑛
 

Sturges 

best for 

normally 

distributed 

data, used by 

MS Excel 

ceil(𝑙𝑜𝑔2𝑛) + 1 
max(𝑣𝑎𝑙𝑢𝑒𝑠) − min⁡(𝑣𝑎𝑙𝑢𝑒𝑠)

ceil(𝑙𝑜𝑔2𝑛) + 1
 

Rice 

cube root of 

number of 

observations 
2 ∗ √𝑛

3
 

max(𝑣𝑎𝑙𝑢𝑒𝑠) − min⁡(𝑣𝑎𝑙𝑢𝑒𝑠)

2 ∗ √𝑛
3  

Scott 

uses standard 

deviation, 

good for 

normal 

max(𝑣𝑎𝑙𝑢𝑒𝑠) − min⁡(𝑣𝑎𝑙𝑢𝑒𝑠)

3.5 ∗ ⁡
𝑠𝑡𝑑𝑑𝑒𝑣(𝑣𝑎𝑙𝑢𝑒𝑠)

√𝑛
3

 
3.5 ∗ ⁡

𝑠𝑡𝑑𝑑𝑒𝑣(𝑣𝑎𝑙𝑢𝑒𝑠)

√𝑛
3  

Freedman-

Diaconis 

uses 

interquartile 

range (IQR) 

max(𝑣𝑎𝑙𝑢𝑒𝑠) − min⁡(𝑣𝑎𝑙𝑢𝑒𝑠)

2 ∗⁡
𝐼𝑄𝑅(𝑣𝑎𝑙𝑢𝑒𝑠)

√𝑛
3

 
2 ∗ ⁡

𝐼𝑄𝑅(𝑣𝑎𝑙𝑢𝑒𝑠)

√𝑛
3  
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Through the study of different binning techniques, it was observed that many 

statistical packages and functions (including some packaged R functions) included a 

feature called “pretty.”  For example, a modification to the original Sturges formula which 

creates a sequence of n+1 equally spaced round values that are chosen to be 1, 2, or 5 times 

a power of 10 [67].  Since histograms are largely used in practice as a visual tool, this 

cleans up the bins and produces a more visual appealing representation of the data, as in 

Figure 2.10.  In this dissertation, the accuracy of the histogram is more important than the 

visual representation of it.  Therefore, the “pretty” function of histogram construction was 

not used and the true bin start and stop points were used per the formulas in Table 2.12. 

For illustrative purposes, a sample dataset of 5000 records was generated, 

X ~ N(15.0, 1.0).  Table 2.13 depicts the number of bins and bin widths for this random 

sample. 

 

Table 2.13:  Results of Binning Calculations 

Method # of bins bin width 

Square Root 71 0.10 

Sturges 14 0.50 

Rice 34 0.20 

Scott 33 0.20 

Freedman-Diaconis 44 0.20 
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The rule to specifically identify the bins and their contents is left-closed, right-open 

with the final bin being a full closed interval.  For example, where (a,b, …..y, z) are real 

numbers and a < b < y < z, then the binning rules are: 

 

left-closed, right-open: [a,b) = {x | a ≤ x < b} 

full-closed:   [y,z] = {x | y ≤ x ≤ z} 

 

In a dataset of n bins, the first n - 1 bins are left-closed, right open.  The final nth bin 

is full-closed.  This is the default binning method used for the remainder of this dissertation 

and is the method coded into the R program introduced in the next chapter. 

Figure 2.10 depicts a typical histogram using the Sturges binning rule where a 

sample of 5000 records resulted in 14 “pretty” bins. 

 

 

Figure 2.10:  Histogram using Sturges Binning Rule 
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2.6 Practical Application of Symbolic Data Analysis to Large Datasets 

While a review of the literature did produce several examples and case studies 

applying SDA to health related data, there was not an instance discovered that applied this 

methodology to healthcare insurance claims and/or the identification of fraudulent or 

abusive behavior that could be associated with data of this type.  The research discovered 

an article published in 2009 that applied SDA to structural health monitoring [68].  

Although different industry sectors, the approach to discovering departures from normal 

conditions would seem to be very similar to finding anomalous occurrences in a claims 

dataset.  The article was co-authored by Edwin Diday. 

The article explains a symbolic data approach to evaluating structural properties of 

a railway bridge in France.  Monitoring of the physical properties of these structures is 

critical in order to determine their overall condition.  Improper assessment of these 

conditions could lead to safety and or economic problems.  The task is somewhat difficult 

due to the quantity of data that is collected and the ability to effectively and efficiently 

evaluate it making the practical application of monitoring methods mostly insufficient.  The 

study proposes a data mining technique that utilizes two streams of data: one is a raw stream 

of acceleration data directly from sensors on the bridge and the other is a processed set of 

data that provides a set of modal parameters which includes a frequency reading.  SDA is 

then applied to each of the datasets across three phases of bridge condition which includes: 

1) before renovation; 2) during renovation; and 3) after renovation.  If differences in the 

data could be observed, then the results could be used to determine the relative condition 

of the bridge and whether changes were occurring over time that would signal a weakening 

of the structure before failure occurred.  The experimenters first used classical data analysis 
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and demonstrated that identification of all three phases of bridge condition could not be 

achieved.  The data was then transformed to symbolic data and was subjected to different 

clustering techniques.  The optimal number of clusters was determined using three 

evaluation indices as outlined by Milligan and Cooper in their 1985 work [69].  They also 

proposed a methodology for introducing new data to existing clusters in order to determine 

the methodology’s ability to properly class new information.  The results showed that SDA, 

using the processed modal or categorical data, proved to be an efficient and effective 

method of classifying and discriminating modifications of the bridge’s structure.  The 

hierarchy-divisive and dynamic cloud method outperformed the hierarchy-agglomerative 

method and overall, the modal data outperformed the raw data [70]. 
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CHAPTER 3  
 

METHODOLOGY AND APPROACH 

 

 

The purpose of this chapter is to lay out a roadmap that will serve as the foundation 

for all subsequent experimentation.  The basic steps of the analysis are explained, then 

supported through validation experiments with simulated data.  Through these tests, 

centroidal statistics (assessing samples based on their sample means) and symbolic data 

statistics are calculated to illustrate the differences between the two and the value that the 

latter could bring in identifying aberrant data events in healthcare insurance claims data.  

The simulated examples will provide the detail on how the calculations are made and why 

certain approaches appear favorable to others.  Continuous data, and mixed datasets that 

include categorical data, are explored.  The topic of collinearity is explored, and tests are 

performed to understand the effects.  Continuous data, represented as histogram-valued 

data, is studied to understand the best histogram binning approach to apply.  The 

calculations for the construction of distance matrices are explained and a non-parametric 

approach for comparing groups of distance metrics is introduced.   

3.1 Steps of the Approach 

Through the research of the literature and subsequent experimentation, a process 

has been established and can be readily applied to any dataset.  The process steps described 

in this section are uniformly applied to all datasets in this dissertation and are defined as 

follows: 
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1) Assess the underlying raw data (confirm the source of the data and cleanse the 

data if required to prepare it for analysis). 

2) Determine the concept level to be studied (choose the level at which the 

business problem is best understood). 

3) Summarize the raw data into concept groups and convert to a symbolic data 

table. 

a) Convert continuous data to histogram-valued data if applicable. 

i) Determine number of bins using the best binning approach. 

b) Convert categorical data to modal data if applicable. 

4) Construct the distance matrix. 

5) Calculate the average distance measures and threshold value using a 

non-parametric approach. 

6) Evaluate the result. 

 

A simulated dataset is used to demonstrate the approach above and will provide the 

foundation for the real-world applications in the following chapter.  The calculations for a 

centroidal and symbolic approach are explained and demonstrated using a spreadsheet 

process.  This dataset will also be used to explain additional findings regarding the 

introduction of a categorical variable, the development of an outlier detection metric, and 

the selection of the Sturges binning rule when converting continuous data to histogram-

valued data. 

3.2 Simulated Dataset One 

The first dataset is a four column simulated dataset comprised of three continuous 

variables and one concept level variable.  Column 4 contains the concept level variable and 
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is made up of four groups.  Table 3.1 represents a partial view of the dataset.  Table 3.2 

provides information about the variables in each column. 

 

Table 3.1:  Simulated Dataset One 

i V1 V2 V3 Concept 

1 19.87 15.23 13.71 A 

2 18.45 13.01 13.87 A 

3 17.04 13.56 15.32 A 

4 13.21 15.44 15.40 A 

5 11.71 15.74 14.43 A 

∙     

∙     

200 13.71 15.37 14.36 D 

 

 

Table 3.2:  Simulated Dataset One Descriptors 

Description Variable Type Values 

V1, (A) Continuous 50 records per concept group, 

where X ~ N(15.0, 3.0) 

V1, (B-D) 

V2, (A-D) 

V3  (A-D) 

Continuous 50 records per concept group, 

where X ~ N(15.0, 1.0) 

Concept Level 

Variable 

Categorical {A, B, C, D}, 50 records each 
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Each individual cell within each group was randomly generated using the 

distribution above.  A boxplot of the data is shown in Figure 3.1. 

 

 

Figure 3.1:  Boxplot of Simulated Dataset One 

 

For this dataset and all that follow, a concept level variable needs to be selected.  

This should be the category or group that is the focus of study and the level at which the 

researcher intends to observe differences.  This research does not attempt to identify which 

is the appropriate target to study or which records belong to which group.  That is left up 

to the individual researcher and is dependent on the data.  It is acknowledged that each 

dataset can be evaluated using different concept groupings within the data.  As described 

in the example in the introduction, if the experimenter wished to study the difference 
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between teams as opposed to individual players, then the concept level variable would be 

the variable that identified the team every player belonged to so that the higher level 

concept of “teams” could be compared.  In Simulated Dataset One, column 4 was selected 

as the concept level variable, resulting in four groups to be compared. 

Once the concept level variable is selected, the standard data table is converted to 

a symbolic table.  This compresses the table of multiple rows of individual records to 

summarized rows of data without losing the inherent variability of the underlying data.  

This is an important distinction using this approach.  Groups of data may be summarized 

in multiple ways including singular values, intervals, functions, sets, and modal 

representation.  For the purpose of this dissertation and all subsequent examples, 

categorical variables are represented as modal variables and continuous variables are 

represented as histogram-valued data.  Presenting continuous variables as histogram-

valued data preserves the characteristics of the underlying data which is a feature that is 

important when attempting to isolate minor inconsistencies within the data. 

Simulated Dataset One includes only continuous input variables.  Categorical 

variables are added in subsequent examples.  The continuous input variables are converted 

to histogram-valued variables.  In order to construct the histogram, the researcher has 

multiple options available including which binning methodology to use.  For most of the 

examples in this dissertation, the Sturges binning method was used.  A more complete 

review of binning methods is included later in this chapter.  

Simulated Dataset One, with four groups of 50 records each with three continuous 

input variables resulted in bin quantity and width calculations described in Table 3.3. 
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Table 3.3:  Simulated Dataset One Bin Results 

 V1 V2 V3 

n 200 200 200 

max 22.71 17.54 17.81 

min 9.19 12.28 12.17 

bin width 1.50 .58 .63 

# of bins 9 9 9 

 

The number of total rows in the dataset is shown as n = 200 and is the same for all 

three variables, resulting in an equal number of bins based on the Sturges binning method. 

Using the above binning rules, a symbolic data table was created.  Below is the 

resulting four row table based on the number of concepts being evaluated for the 

variable V1.  Each cell in Table 3.4 represents the frequency percentage for the individual 

bin per the rules above. 
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Table 3.4:  Bin Representation for V1 

 
1 2 3 4 5 6 7 8 9 

A 0.06 0.14 0.06 0.26 0.14 0.04 0.16 0.10 0.04 

B 0.00 0.00 0.02 0.50 0.44 0.04 0.00 0.00 0.00 

C 0.00 0.00 0.06 0.46 0.48 0.00 0.00 0.00 0.00 

D 0.00 0.00 0.14 0.54 0.28 0.04 0.00 0.00 0.00 

 

 

For example, the 50 records that comprise input variable V1 for Concept A make 

up a distribution with a 6% representation in the first interval [9.19, 10.69) per the binning 

rules above.  Each group across each input variable will always have a distribution that 

accounts for 100% of its population and that is consistent across all groups across all 

variables.  Similar representations are made for variables V2 and V3 and are represented 

in Table 3.5 and Table 3.6. 
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Table 3.5:  Bin Representation for V2 

 

1 2 3 4 5 6 7 8 9 

A 0.02 0.06 0.10 0.14 0.18 0.28 0.14 0.02 0.06 

B 0.00 0.06 0.04 0.24 0.14 0.26 0.16 0.06 0.04 

C 0.00 0.08 0.16 0.24 0.28 0.10 0.08 0.06 0.00 

D 0.02 0.06 0.10 0.14 0.20 0.18 0.16 0.12 0.02 

 

 

Table 3.6:  Bin Representation for V3 

 
1 2 3 4 5 6 7 8 9 

A 0.00 0.02 0.08 0.16 0.32 0.24 0.12 0.06 0.00 

B 0.00 0.02 0.10 0.22 0.38 0.12 0.10 0.04 0.02 

C 0.04 0.02 0.08 0.22 0.28 0.14 0.14 0.08 0.00 

D 0.02 0.04 0.10 0.20 0.14 0.28 0.16 0.06 0.00 
 

 

The three tables together represent a 4 x 27 symbolic data table that captures all 

variables by group without losing the embedded information related to the distribution of 

the data within concept by input variable. 
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With the symbolic data table complete, a distance matrix can be created that 

represents the Euclidean distance between every individual pair.  Per the literature, there 

are other methods to calculate distance, but this dissertation will use the Euclidean 

calculation for every example.  Experimenting with different distance calculations may 

provide an opportunity for future research. 

The straight-line distances between each pair of data points within the histogram 

bin by variable are calculated by 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑑(𝑝, 𝑞) = 𝑑(𝑞, 𝑝) = √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 +⋯(𝑞𝑛 − 𝑝𝑛)2 

= √∑(𝑞𝑛 − 𝑝𝑛)2
𝑛

𝑖=1

 

 

where  p = (p1, p2, …., pn ) and q = (q1, q2, …., qn ) are two points in Euclidean n-space. 

 

Individual distances between each possible pair of groups within each designated 

bin are calculated.  For example, the distance between groups A and B (AB) within the 

second bin for variable V1 is  

 

AB(V1, Bin2) = [A(V1, Bin2) − B(V1, Bin2)]2 

         = [0.14 – 0.00]2 

          = 0.020 
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Table 3.7 for variable V1 is shown below, followed by Table 3.8 and Table 3.9 for 

variables V2 and V3 respectively.   

 

Table 3.7:  Pairwise Bin Distances for V1 

 

1 2 3 4 5 6 7 8 9 

AB 0.004 0.020 0.002 0.058 0.090 0.000 0.026 0.010 0.002 

AC 0.004 0.020 0.000 0.040 0.116 0.002 0.026 0.010 0.002 

AD 0.004 0.020 0.006 0.078 0.020 0.000 0.026 0.010 0.002 

BC 0.000 0.000 0.002 0.002 0.002 0.002 0.000 0.000 0.000 

BD 0.000 0.000 0.014 0.002 0.026 0.000 0.000 0.000 0.000 

CD 0.000 0.000 0.006 0.006 0.040 0.002 0.000 0.000 0.000 
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Table 3.8:  Pairwise Bin Distances for V2 

 
1 2 3 4 5 6 7 8 9 

AB 0.000 0.000 0.004 0.010 0.002 0.000 0.000 0.002 0.000 

AC 0.000 0.000 0.004 0.010 0.010 0.032 0.004 0.002 0.004 

AD 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.010 0.002 

BC 0.000 0.000 0.014 0.000 0.020 0.026 0.006 0.000 0.002 

BD 0.000 0.000 0.004 0.010 0.004 0.006 0.000 0.004 0.000 

CD 0.000 0.000 0.004 0.010 0.006 0.006 0.006 0.004 0.000 
 

 

Table 3.9:  Pairwise Bin Distances for V3 

 
1 2 3 4 5 6 7 8 9 

AB 0.000 0.000 0.000 0.004 0.004 0.014 0.000 0.000 0.000 

AC 0.002 0.000 0.000 0.004 0.002 0.010 0.000 0.000 0.000 

AD 0.000 0.000 0.000 0.002 0.032 0.002 0.002 0.000 0.000 

BC 0.002 0.000 0.000 0.000 0.010 0.000 0.002 0.002 0.000 

BD 0.000 0.000 0.000 0.000 0.058 0.026 0.004 0.000 0.000 

CD 0.000 0.000 0.000 0.000 0.020 0.020 0.000 0.000 0.000 
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Table 3.10 represents the resulting matrix for all three of the input variables across 

all four concept variables is below.  The matrix, sometimes referred to as a dissimilarity 

matrix, will always be a square n x n symmetric matrix with all elements on the main 

diagonal equaling zero. 

 

Table 3.10:  Dissimilarity Matrix 

 A B C D 

A  0.00       

B 0.50 0.00     

C 0.55 0.30 0.00   

D 0.47 0.40 0.37 0.00 
 

 

Where, 

Distance (AB) = √AB(V1, Bin1 + AB(V1, Bin2) + ⋯+ AB(V3, Bin9) 

= √0.004 + ⁡0.020 + 0.002 +⋯+ ⁡0.000 

= 0.50 

Scaling is required in order to make the comparison between the centroid and 

symbolic approaches, ensuring that the units are consistent across methods.  The scaling 

function is derived by dividing each individual cell by the max value of all cells.   The 

formula for the scaling function is: 

numerator = x 

denominator = max(x) 

scaled value = x / max(x) 
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Using the scaling function above, the scaled distance matrix is in Table 3.11. 

 

Table 3.11:  Scaled Dissimilarity Matrix 

 A B C D 

A 0.00       

B 0.91 0.00     

C 1.00 0.55 0.00   

D 0.87 0.73 0.67 0.00 
 

 

Where, 

Scaled Distance (AB)  = 0.50/0.55⁡= 0.91 

 

Once the distance matrix has been generated, each group within the dataset can be 

evaluated against all other groups using their distance measures.  If all groups look 

relatively the same with respect to mean and variation, then the distances between each of 

those groups should be similar.  Lower numbers represent similarity.  Higher numbers 

represent dissimilarity.  If one or more distance measures are statistically different than the 

rest, they are flagged as potential anomalies. 

In order to assess these differences, an average distance that each group is from the 

rest of the groups can be calculated.  The result is a set of averages that represent the groups 

by their relative distance to each other.  If all groups are similar, then only common cause 

variation is present and the distribution of these averages should be normally distributed.  

However, if one or more groups are different in mean and/or distribution, then the resulting 

distribution of distance measures may not be normal.  Because assumption of normality is 
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not correct in these cases, a non-parametric test was determined to be the best approach to 

use to identify the presence of anomalies or outliers. 

The box and whisker plot is a non-parametric graphical tool that is universally used 

to depict groups of data.  Its most basic construction includes identification of a group’s 

median, first quartile, third quartile and a “whisker” that extends 1.50 x the interquartile 

range (IQR = Q3 – Q1) below the first quartile and above the third quartile.  Points that are 

outside this region are often considered “outliers” or “anomalies.”  For this application, 

only points that extend above Q3 + 1.50*IQR are considered anomalies as their distances 

appear to be greater than the rest.  This is a one-sided test because only greater distances 

are of importance.  Smaller distances or no discernable distance at all suggests similarity 

within the group.  When compared back to a standard normal table, it can be shown that 

the area of this tail is approximately .0035.  Extending the whisker .72*IQR beyond Q3 

results in an alpha value of .05.  Graphical depictions of both are shown in the Figure 3.2 

and Figure 3.3. 
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Figure 3.2:  Alpha using Q3 + 1.50*IQR 

 

 

Figure 3.3:  Alpha using Q3 + 0.72*IQR 
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The decision as to how far to extend the whisker and set the threshold for outlier 

identification is left up to the researcher.  As shown above, an IQR multiplier of 0.72 returns 

an alpha value of 0.05.  An IQR multiplier of 1.50 returns an alpha value of 0.0035.  A 

reduced range multiplier increases the value of alpha and increases the probability of a 

Type I error.  Type I errors are often called false positives.  Type II errors are often called 

false negatives.  In this application, a false positive is identifying an observation as an 

anomaly, or outlier, when it is not.  A false negative is failing to identify an anomaly when 

it exists.  A model that has a high Type I or Type II error rate produces unnecessary costs 

to the system.  Type I error costs may include unnecessary administrative costs associated 

with researching an event that appears as an outlier when it is not.  In the case of fraud 

detection, an inappropriate investigation may also damage the relationship between the 

investigating and suspect companies.  Excessive Type II error costs results in fraudulent 

behavior occurring and going undetected.  Gadi et al. suggests the importance of 

understanding the costs of each and that they may not be equally important [71].  The 

literature offered few examples related to the cost of these types of errors associated with 

healthcare insurance claims fraud which suggests the topic may present an opportunity for 

future research.  Users of the approach developed herein should choose an alpha value (and 

resulting threshold value) by balancing the costs of Type I and Type II errors for their 

particular situation. 

In order to study the effect that alpha has on anomaly detection, different levels of 

alpha were tested using Simulated Dataset One, specifically targeting the anomalous subset 

of data represented by Group A, V1 as previously defined.  As before, the data represented 

by Group A, V1 follows a distribution where X ~ N(15.0, 3.0).  As demonstrated later in 
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the chapter, Group A will be labeled anomalous by the symbolic method because its 

average distance score will exceed the calculated threshold value designed to detect 

anomalies.  Table 3.12 below shows the alpha level, the multiplier used to obtain the stated 

alpha, the average distance measure associated with Group A, the calculated threshold 

value as previously defined, and the difference that Group A’s distance measure is from 

the threshold.  For example, when alpha is 0.0035, the multiplier used will be 1.50.  For 

Simulated Dataset One, Group A has an average distance of 0.93 which exceeds the 

threshold value by 0.04.  As shown in Table 3.12, as alpha increases, the threshold value 

decreases, and vice versa.  In this example, alpha must be approximately 0.0002 or less for 

the model to not signal an anomalous condition.  This is a much lower value than the 

recommended 0.0035 level and much lower than the level of 0.05, which is a commonly 

used standard. 
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Table 3.12:  Alpha Value Sensitivity – Simulated Dataset One (Symbolic) 

Alpha Multiplier AVG DIST (A) Threshold Difference 

0.20000 0.12 0.93 0.80 0.12 

0.10000 0.45 0.93 0.82 0.10 

0.05000 0.72 0.93 0.84 0.09 

0.04000 0.80 0.93 0.84 0.08 

0.03000 0.89 0.93 0.85 0.08 

0.02000 1.02 0.93 0.86 0.07 

0.01000 1.22 0.93 0.87 0.06 

0.00500 1.41 0.93 0.88 0.05 

0.00350 1.50 0.93 0.89 0.04 

0.00250 1.58 0.93 0.89 0.04 

0.00100 1.79 0.93 0.90 0.02 

0.00050 1.94 0.93 0.91 0.01 

0.00020 2.12 0.93 0.92 0.00 

0.00010 2.26 0.93 0.93 -0.01 

0.00001 2.66 0.93 0.96 -0.03 

 

Simulated Dataset One using a centroidal approach will be demonstrated next in 

this chapter.  The behavior of changing alpha values for that approach are depicted in Table 

3.13. 
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Table 3.13:  Alpha Value Sensitivity – Simulated Dataset One (Centroidal) 

Alpha Multiplier AVG DIST (A) Threshold Difference 

0.20000 0.12 0.79 0.74 0.05 

0.10000 0.45 0.79 0.77 0.02 

0.05000 0.72 0.79 0.80 -0.01 

0.04000 0.80 0.79 0.81 -0.02 

0.03000 0.89 0.79 0.82 -0.03 

0.02000 1.02 0.79 0.83 -0.04 

0.01000 1.22 0.79 0.85 -0.06 

0.00500 1.41 0.79 0.87 -0.08 

0.00350 1.50 0.79 0.88 -0.09 

0.00250 1.58 0.79 0.88 -0.09 

0.00100 1.79 0.79 0.90 -0.11 

0.00050 1.94 0.79 0.92 -0.13 

0.00020 2.12 0.79 0.94 -0.15 

0.00010 2.26 0.79 0.95 -0.16 

0.00001 2.66 0.79 0.99 -0.20 

 

Later in this chapter, the results from the symbolic approach and the centroidal 

approach will be compared.  The results will show that the centroidal approach will fail to 

signal an anomaly at the 0.0035 level.  The table above is consistent with that finding and 

shows that alpha would need to be at a level of 0.10 to signal such an event.  The effect of 

changing alpha levels is the same for both approaches.  Higher levels of alpha will reduce 

the threshold and tend to produce a greater number of false positives. 

For the purpose of this dissertation, all tests are set with an IQR range multiplier of 

1.50 (equating to an alpha value of approximately 0.00350).  As previously shown in Figure 

3.2 and Figure 3.3, the values for the multiplier and alpha map back to the properties of the 
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normal curve and can ultimately be adjusted by the researcher to the desired sensitivity.  

Future research is recommended to more completely explore the impact of alpha on the 

symbolic approach to anomaly detection. 

Revisiting the dissimilarity matrix for the Simulated Dataset One, the full matrix 

would appear as in Table 3.14 with the average distances from each group excluding the 

values on the main diagonal. 

 

Table 3.14:  Dissimilarity Matrix with AVG DIST Calculation 

   AVG 

 A B C D  DIST 

A  0.91 1.00 0.87  0.93 

B 0.91  0.55 0.73  0.73 

C 1.00 0.55  0.67  0.74 

D 0.87 0.73 0.67   0.75 
 

 

Where, 

AVG DIST (A) = (0.91 + 1.00 + 0.87) / 3 = 0.93 

Evaluating the average distances that each group is from every other group in the 

dataset, the following table of statistics can be calculated, including the threshold value at 

which to determine the presence of outliers.  Table 3.15 displays the threshold statistics. 

Table 3.15:  Threshold Determination Calculation 

Metric Value 

Median 0.75 

Q1 0.74 

Q3 0.80 

Threshold 0.89 
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In the example above, AVG DIST (A) = 0.93 which exceeds the Threshold of 0.89.  

With the non-parametric alpha value set at .0035, it can be assumed that would occur less 

than 0.35% of the time.  Therefore, Group A would be classified as an anomaly with a 

recommendation to examine it as being different than the other groups.  We know this to 

be true, as V1 of Group A originates from a different distribution. 

Several factors could influence a point exceeding the threshold value, including the 

number of groups being evaluated.  Non-parametric tests are generally less powerful than 

parametric tests and while the test statistic can be calculated with just two groups present, 

the results for comparison are difficult to assess.  Additionally, as with all tests of this 

nature, a false anomaly could still be identified, although that would be 0.35% of the time 

or less.  Again, the sensitivity of the threshold value could be adjusted based on the rate of 

false positives and/or false negatives (Type I and/or Type II errors) tolerated in practice.   

The primary theme of this research is to compare the use of symbolic 

histogram-valued data to that of a centroidal approach when evaluating groups of data for 

outliers.  In this example and those that follow, the symbolic approach is compared to the 

centroidal approach and the results are studied. 

Using the Simulated Dataset One, Table 3.16 is constructed and shows the centroids 

(or means in this case) of each individual group. 

Table 3.16:  Simulated Dataset One – Centroidal Approach 

 V1 V2 V3 

A 15.61 15.00 15.15 

B 15.24 15.11 15.01 

C 15.07 14.73 14.99 

D 14.86 15.10 15.13 
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From this table, Euclidean distances can be calculated as before.  The resulting 

matrix showing the distance between each individual pair is in Table 3.17. 

 

Table 3.17:  Pairwise Distance Table – Centroidal Approach 

 V1 V2 V3 

AB 0.139 0.012 0.019 

AC 0.290 0.072 0.026 

AD 0.555 0.011 0.000 

BC 0.027 0.144 0.001 

BD 0.139 0.000 0.015 

CD 0.043 0.139 0.021 
 

 

As previously described, the data can be scaled for comparison purposes.  This 

forces the maximum distance calculated within every dataset to always be 1.00 with the 

remaining distances expressed in relation to the maximum.  Non-parametric statistics were 

calculated using the scaled data for comparison.  The resulting distance matrix and test 

statistics are in Table 3.18 and Table 3.19. 

 

Table 3.18:  Scaled Dissimilarity Matrix with AVG DIST Calculation - Centroidal 

      AVG 

 A B C D  DIST 

A  0.55 0.83 1.00  0.79 

B 0.55  0.55 0.52  0.54 

C 0.83 0.55  0.60  0.66 

D 1.00 0.52 0.60   0.71 
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Table 3.19:  Threshold Determination Calculation - Centroidal 

Metric Value 

Median 0.68 

Q1 0.63 

Q3 0.73 

Threshold 0.88 

 

The difference using SDA can be observed using this example.  None of the group’s 

AVG DIST values exceed the threshold, suggesting that there is no difference among them.  

While we know that the means are the same, we also know that there is a change in 

variability within V1 of Group A.  In this example, only a change in variability is present 

and the symbolic approach preserves the underlying distributions inherent in the data and 

relies on that information to calculate distances between the groups.  

The treatment of categorical variables in both the centroidal and symbolic approach 

is similar.  In the examples explored in this dissertation, all categorical variables are treated 

as modal variables, meaning that their values are represented as a percentage of the overall 

sample.  As with the continuous histogram-valued variables, the representation of all 

categories within a group must equal 1.00.  The assignment of dummy variables within the 

raw dataset are given values of [0,1].  When the centroids or means of these values are 

computed, the result is a percentage representation of the categorical variable.  Displayed 

below is a depiction of Simulated Dataset One with a categorical CAT1 variable added to 

the end of the V3 variable as described in the previous example.  Therefore, this example 

includes variation introduced by continuous and categorical variables.  Concept A will 

include the value ‘Orange’, Concepts B, C, and D will contain the value ‘Blue’.  For 
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purposes of the experiment, Concept A was assigned 100% ‘Orange’ and 0% ‘Blue’ but 

each concept variable could take on partial representations as well.  Figure 3.4 is a graphical 

depiction of the additional categorical variable. 

 

 

Figure 3.4:  Distribution of Simulated Dataset One – Categorical Variable  

 

Below are examples of the symbolic table (Table 3.20), the Euclidean distance table 

(Table 3.21), the final distance matrix (Table 3.22), and the threshold determination 

calculation (Table 3.23). 

Table 3.20 and Table 3.21 begin with V3, cell five and are only partial 

representation of the full symbolic table.  As expected, when a categorical variable was 

added to this random dataset in a manner that one concept group is different than the others, 

the distance measure exceeded the non-parametric threshold and identified that group as 

an outlier. 
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Table 3.20:  Simulated Dataset One with Categorical Variable Added 

 V3     CAT1 

 5 6 7 8 9 Orange Blue 

A 0.32 0.24 0.12 0.06 0.00 1.00 0.00 

B 0.38 0.12 0.10 0.04 0.02 0.00 1.00 

C 0.28 0.14 0.14 0.08 0.00 0.00 1.00 

D 0.14 0.28 0.16 0.06 0.00 0.00 1.00 
 

 

Table 3.21:  Pairwise Distance Table with Categorical Value Added 

 V3     CAT1 

 5 6 7 8 9 Orange Blue 

AB 0.004 0.014 0.000 0.000 0.000 1.000 1.000 

AC 0.002 0.010 0.000 0.000 0.000 1.000 1.000 

AD 0.032 0.002 0.002 0.000 0.000 1.000 1.000 

BC 0.010 0.000 0.002 0.002 0.000 0.000 0.000 

BD 0.058 0.026 0.004 0.000 0.000 0.000 0.000 

CD 0.020 0.020 0.000 0.000 0.000 0.000 0.000 
 

 

Table 3.22:  Dissimilarity Matrix with Categorical Variable Added 

      AVG 

 A B C D  DIST 

A   0.99 1.00 0.98  0.99 

B 0.99   0.20 0.26  0.48 

C 1.00 0.20   0.24  0.48 

D 0.98 0.26 0.24    0.50 
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Table 3.23:  Threshold Determination Calculation with Categorical Variable Added 

Metric Value 

Median 0.49 

Q1 0.48 

Q3 0.62 

Threshold 0.83 

 

In this example, Concept A is clearly different than the rest and represented as such, 

where AVG DIST (A) = 0.99 exceeds Threshold = 0.83.  Its average distance from the rest 

is great enough to calculate a score greater than the threshold.  In practice, Concept A 

would be singled out for being anomalous and would warrant further investigation.  It 

should also be noted that each variable in the symbolic approach is assigned an equal 

weight, including the categorical variable.  In the Simulated Dataset One example, the three 

continuous variables and one categorical variable each have a contribution of one and sum 

to four.  Scenarios can be anticipated where this could be modified but that is a topic 

recommended for future research. 

For comparison purposes, the above example was repeated using the centroidal 

approach.  Below are examples of the classic data table (Table 3.24), the Euclidean distance 

table (Table 3.25), the final distance matrix (Table 3.26), and the threshold determination 

calculation (Table 3.27). 

 

 



 

78 

 

Table 3.24:  Simulated Dataset One with Categorical Variable Added - Centroidal 

 V1 V2 V3 Orange Blue 

A 15.61 15.00 15.15 1.00 0.00 

B 15.24 15.11 15.01 0.00 1.00 

C 15.07 14.73 14.99 0.00 1.00 

D 14.86 15.10 15.13 0.00 1.00 
 

 

 

Table 3.25:  Pairwise Distance Table with Categorical Value Added - Centroidal 

 V1 V2 V3 Orange Blue 

AB 0.139 0.012 0.019 1.000 1.000 

AC 0.290 0.072 0.026 1.000 1.000 

AD 0.555 0.011 0.000 1.000 1.000 

BC 0.027 0.144 0.001 0.000 0.000 

BD 0.139 0.000 0.015 0.000 0.000 

CD 0.043 0.139 0.021 0.000 0.000 
 

 

 

Table 3.26:  Dissimilarity Matrix with Categorical Variable Added - Centroidal 

      AVG 

 A B C D  DIST 

A   0.92 0.96 1.00  0.96 

B 0.92   0.26 0.24  0.47 

C 0.96 0.26   0.28  0.50 

D 1.00 0.24 0.28    0.51 
 

 

 

Table 3.27:  Threshold Determination Calculation - Centroidal 

Metric Value 

Median 0.50 

Q1 0.49 

Q3 0.62 

Threshold 0.81 
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In this case, like the symbolic approach, Concept A is clearly different than the rest 

and represented as such, where AVG DIST (A) = 0.96 exceeds Threshold = 0.81.  Its 

average distance from the rest is great enough to calculate a score greater than the threshold, 

producing the same result as the symbolic approach. 

3.2.1 Selecting a Histogram Binning Method 

During this research, multiple histogram binning approaches were assessed.  Features 

of several of the more widely used approaches were introduced and defined in Chapter 2.  

When comparing one dataset to another by examining their distributions, the method by 

which those distributions are represented is critical because of the varying bin quantities 

and bin widths that can be used.  As mentioned previously in this chapter, the Sturges 

binning method was chosen as the default method in this dissertation.  In addition to being 

prominently used in most statistical textbooks and mainstream statistical software, its 

applicability for use appeared suitable when comparing datasets. 

As explained earlier in the chapter, Simulated Dataset One is a four group, three 

variable dataset where one variable within one group is altered to have greater variability 

than any of the other group/variable combinations.  To better understand the effects of 

binning and provide a baseline, a separate dataset was generated that contains random noise 

only, where all groups and variables are distributed as X ~ N(15.0, 1.0).  There are no 

anomalies present in the random noise only dataset and there are no distinguishable 

differences among any of the groups. 

Each of the five binning techniques was applied to the random noise only dataset in 

order to establish baseline distance levels for each group within the dataset.  The procedure 
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was repeated with the anomalous Simulated Dataset One and a threshold value was 

calculated based on the differences from the random noise only dataset and Simulated 

Dataset One as shown in Table 3.28.  As expected, across each binning approach, Group A 

was identified as an anomaly.  However, the degree to which this identification was made 

varied depending on the histogram binning approach.   

Table 3.28 shows the effect of each binning technique on Group A.  Each binning 

method was applied to the baseline random noise only case and to Simulated Dataset One.     

 

Table 3.28:  Binning Methods Compared 

Method 

Group A 

Difference from 

Random Noise 

Only 

Calculated 

Threshold 

Value 

Difference 

from Threshold 

Value 

Square Root 0.10 0.02 0.08 

Sturges 0.16 0.08 0.08 

Rice 0.10 0.02 0.08 

Scott 0.09 0.04 0.05 

Freedman 0.05 -0.01 0.06 

 

Based on the results above and from similar tests conducted during the course of this 

research, the Sturges method (without “pretty” breakpoints) was chosen as the default 

method.  The difference from threshold is equal to that of the other binning methods 

suggesting that it could perform reasonably at discerning anomalistic data from that of 

random noise. 

It should be noted, however, that this is an opportunity for future research.  Binning 

approaches are sensitive to changes in the number of data points being measured and the 

variability within the data.  The test results displayed in Table 3.28 are based on variables 
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with a sample size of 200.  Attempting to discern small changes in larger datasets can 

present anomalistic occurrences that the Sturges method may overlook.  This will be further 

explored in the following chapter where just such a situation arises. 

3.2.2 Multicollinearity and the Symbolic Approach 

Multicollinearity exists when two or more explanatory variables used for predicting 

an output are related to each other.  That relationship is often expressed in terms of one 

variable being correlated to another.  Perfect correlation exists when one predictor variable 

can perfectly explain the other.  The correlation coefficient is expressed by the symbol 

ρ and can range from -1.0 to 1.0.  Perfect correlation exists when ρ = -1.0 or ρ = 1.0 – 

although it rarely exists in natural occurring data collection.  Instead, most explanatory 

variables have a degree of measurable correlation.  It is up to the researcher to determine 

what value of ρ constitutes a relationship worth exploring.  Hypothesis testing can be used 

to test the existence of correlation where, 

 

H0: ρxy = 0     versus     Ha: ρxy ≠ 0 
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To test the effect of collinearity on the symbolic data approach, two random 

datasets with five groups and five random variables were generated.  Table 3.29 represents 

the 1,000 row structure for both datasets. 

 

Table 3.29:  Five Group Five Variable Datasets (V and C) 

Group # V1, C1 V2, C1 V3, C3 V4, C4 V5, C5 

A 200 X ~ N(10, 1) X ~ N(20, 1) X ~ N(30, 1) X ~ N(40, 1) X ~ N(50, 1) 

B 200 X ~ N(10, 1) X ~ N(20, 1) X ~ N(30, 1) X ~ N(40, 1) X ~ N(50, 1) 

C 200 X ~ N(10, 1) X ~ N(20, 1) X ~ N(30, 1) X ~ N(40, 1) X ~ N(50, 1) 

D 200 X ~ N(10, 1) X ~ N(20, 1) X ~ N(30, 1) X ~ N(40, 1) X ~ N(50, 1) 

E 200 X ~ N(10, 1) X ~ N(20, 1) X ~ N(30, 1) X ~ N(40, 1) X ~ N(50, 1) 

 

The two, five group, five variable, 1,000 row datasets were identical with respect 

to variables V and C with one exception.  The first dataset consisted of variables V1 – V5 

with no correlation between the variables.  The second dataset, which consisted of variables 

C1 – C5, was generated with a correlation coefficient (ρ) of 0.80 between variables 

C4 and C5. 
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Figure 3.5 is a graphical depiction of the first dataset (V1-V5) without correlation.  

Figure 3.6  is a graphical depiction of the second dataset (C1-C5) with correlation. 

 

 

Figure 3.5:  Five Group Five Variables Without Correlation 

 

 

Figure 3.6:  Five Group Five Variables With Correlation 
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Table 3.30 shows the correlation coefficients of all the variables for both datasets 

where ρ(C4C5) = 0.790.  Note the first number within a cell represents the correlation 

coefficient and the second number indicates the p-value associated with the test for 

correlation. 

 

Table 3.30:  Correlation Tables 

Without Correlation With Correlation 

  

 

It should be noted that ρ(V1V5) = 0.062, which signals a weak linear relationship; 

however, it also appears significant at the .050 level with a measured p-value of .048.  This 

is just an artefact of the random data generation.  This artefact is not likely to be observed 

with larger sample sizes or more stringent p-values than .050. 

In order to test the effect of multicollinearity, the symbolic approach was applied 

to both datasets and the distance matrices were compared.  The distance matrices for each 

group are in Table 3.31 and Table 3.32. 
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Table 3.31:  Symbolic Distance Matrix for Dataset without Correlation 

Group A B C D E 

A 0.00     

B 0.90 0.00    

C 1.00 0.84 0.00   

D 0.87 0.76 0.93 0.00  

E 0.75 0.82 0.93 0.89 0.00 

 

 

Table 3.32:  Symbolic Distance Matrix for Dataset with Correlation 

Group A B C D E 

A 0.00     

B 0.88 0.00    

C 1.00 0.83 0.00   

D 0.83 0.90 0.92 0.00  

E .0.85 0.83 0.99 0.97 0.00 
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In order to make a comparison, the ten individual pairwise distances were evaluated 

using a paired t-test.  Results of the Minitab test are in Figure 3.7. 

 

 

Figure 3.7:  Paired T-Test of Pairwise Distances  

 

The results from the test above suggest no significant difference in distances for the 

presence or the absence of multicollinearity.  In other tests performed during this research, 

similar results were observed which, anecdotally, point to a similar conclusion, that is, the 

performance of the symbolic method is robust to correlations.  As a general rule, 

multicollinearity is a condition which should be guarded against and certainly future 

research is needed to more completely explore its impact, if any, on the symbolic approach 

to anomaly detection. 

3.2.3 Developing the R Code 

Spreadsheet analysis is an excellent way to understand the calculations that drive a 

new methodology but can be difficult to manage when the cases studied involve higher 

volume and higher complexity.  Building on the foundation established earlier in this 

chapter, this section describes a tool that was built through the open-source R programming 

language.  R is a readily available statistical software package used by statisticians and data 
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scientists.  Developed in 1993, its ubiquity among professionals in academia and business 

alike has created a broad user community [72].  Users of R benefit and contribute to this 

platform through the development of “packages” that extend the features and capability 

beyond the base application.   

While this research does not extend completely into symbolic clustering analysis, 

the distance matrices and related calculations that are the foundation of that work are also 

the foundation of this dissertation.  Many of the subroutines and function calls that were 

used in those packages proved helpful with this research, particularly the “RSDA” and 

“symbolicDA” packages available from the CRAN Repository.  Building the R code 

provided an efficient way to evaluate multiple datasets and make comparisons between the 

centroidal and symbolic approaches.  The test code went through several iterations that 

included the investigation and research of established public packages as well as custom 

coding needed to accommodate this dissertation.  Custom source functions were developed 

as separate standalone modules with the ability to be called at multiple times throughout 

the script.  Considered was how the code would handle the previously discussed binning 

rules, as well as nuances associated with handling continuous and categorical data.  The 

datasets were created in Microsoft Excel or Minitab and then processed using the R code.  

Raw data was converted to R data frames and a customized scaling function was coded as 

described in the previous section.  Basic descriptive information regarding each dataset 

was placed in each file and, where applicable, graphical views of the data were generated.  

Histogram-valued variables were given an ‘H’ designation and categorical variables were 

coded as ‘M’ or modal.  Data tables and distance matrices were created using Euclidean 

distance as described in the previous chapter.  The resulting distance matrix was produced 
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along with the average distances each group was to the rest.  The non-parametric threshold 

value was calculated as described in the previous chapter and, if one or more of the 

individual groups exceeded the threshold per the calculations, an anomalous condition was 

signaled.  The display from the R code allowed for the visual assessment of the data and 

the comparison of the distance matrices between the centroidal and symbolic approaches.  

Output data was also written to an external file for more in depth analysis.  A sample 

screenshot of one of the R code results reports is in Figure 3.8. 

 

 

Figure 3.8:  Screenshot of R Code Report Display 
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3.3 Simulated Dataset Two 

Having established an approach to symbolic analysis and with an efficient method 

of experimentation, the next step in the dissertation involved testing other datasets to 

further demonstrate the difference between the two approaches. 

We first evaluated a simple, three cluster set.  Multiple instances and multiple 

distributions were evaluated to demonstrate the effect of mean and variability change.  

Initially, this analysis was performed manually but with the development of the R code, 

larger sample sizes could be assessed.  This example includes simulated data divided into 

three groups with each group containing 1000 observations.  Clusters A and C are 

uniformly distributed with a range of 10 units in xy space while Cluster B is normally 

distributed with a standard deviation of 2.5 units in xy space.  The coordinates of the means 

in xy space were designed to create an equilateral triangle and were modeled as depicted in 

Table 3.33. 

 

Table 3.33:  Cluster Coordinates - Separate 

Cluster Cluster Means 

A {x,y | 𝑥 = 15.00, 𝑦 = 17.01⁡} 

B {x,y | 𝑥 = 30.00, 𝑦 = 42.99⁡} 

C {x,y | 𝑥 = 45.00, 𝑦 = 17.01} 
 

 

Figure 3.9 shows a scatterplot of the clusters. 
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Figure 3.9:  Three Cluster Scatterplot - Separate 

 

The resulting distance matrices using the centroidal and symbolic methods are 

shown in Table 3.34 and Table 3.35. 

 

Table 3.34:  Three Cluster Dissimilarity Matrix - Centroidal 

     AVG 

 A B C  DIST 

A  0.00    1.00 

B 1.00 0.00   1.00 

C 1.00 1.00 0.00  1.00 
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Table 3.35:  Three Cluster Dissimilarity Matrix - Symbolic 

     AVG 

 A B C  DIST 

A  0.00    0.85 

B 1.00 0.00   1.00 

C 0.70 1.00 0.00  0.85 
 

 

The centroidal approach shows no difference among the three groups as expected.  

While the centroids of these clusters are equidistant, the pattern of Cluster B is different 

from the other two.  The symbolic approach correctly shows the greatest difference 

between Cluster A and Cluster B and between Cluster B and Cluster C.  This is not because 

their centroids are different but because their distributions are.  Cluster A and Cluster C 

appear to be more similar – and they are because they both are generated from the same 

uniform distribution type.  The AVG DIST metric confirms Cluster B is different than the 

other two.  

In contrast, the same three clusters with the same distributions were overlaid 

equating the xy means of all three groups.  Table 3.36 shows the scatterplot coordinates. 

 

Table 3.36:  Cluster Coordinates - Overlaid 

Cluster Cluster Means 

A {x,y | 𝑥 = 30.00, 𝑦 = 30.00⁡} 

B {x,y | 𝑥 = 30.00, 𝑦 = 30.00⁡} 

C {x,y | 𝑥 = 30.00, 𝑦 = 30.00⁡} 
 

 

Figure 3.10 is a graph of the clusters depicted in xy space. 
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Figure 3.10:  Three Cluster Scatterplot - Overlaid 

 

The resulting distance matrices for the centroidal and symbolic methods are in 

Table 3.37 and Table 3.38. 

 

Table 3.37:  Three Cluster Overlaid Dissimilarity Matrix - Centroidal 

     AVG 

 A B C  DIST 

A  0.00    0.82 

B 0.79 0.00   0.90 

C 0.85 1.00 0.00  0.93 
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Table 3.38:  Three Cluster Overlaid Dissimilarity Matrix - Symbolic 

     AVG 

 A B C  DIST 

A  0.00    0.61 

B 1.00 0.00   0.97 

C 0.23 0.94 0.00  0.58 
 

 

 

When the three clusters are overlaid, the centroidal approach is forced to discern 

the randomness of the distances between the clusters due to scaling (when really, their 

means are all statistically the same).  The result is that neither of the clusters is of significant 

distance away from the others, as would be expected when looking at the centroids alone.  

The symbolic approach does find a difference through a significantly higher AVG DIST 

for Cluster B than the other two.  This represents an important advantage to using the 

symbolic approach to identify anomalistic behavior. 

3.4 Simulated Dataset Three 

The final simulated dataset contains 5000 records.  It comprises four continuous 

input variables that depict the concept level behavior of 10 distinct groups.  Multiple 

instances of this dataset were assessed with the purpose of comparing the symbolic 

approach to a traditional centroidal approach.  Instances of random noise only versus 

altering one input variable within one group were tested and the results observed.  

Following are the results of five of the run instances that best demonstrate the findings that 

were observed across all test situations.  In each of the cases that follow, the input is 

described, and the R code results are displayed followed by a summary of the findings. 
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The first dataset represents 10 groups of data comprised of four continuous input 

variables where each variable within a group follows a random normal distribution 

X ~ N(15.0, 1.0).  The results of the R code are in Figure 3.11. 

 

 

Figure 3.11:  Ten Groups, Random Only 

 

In the first test, the centroidal and symbolic approach performed comparably.  

Medians and thresholds were calculated for both tests and, with only random variation 

present, no anomalies were identified.  Both methods performed as expected. 
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The second test introduces variation across all four input variables with respect to 

the last two groups, where their distributions are modified to be X ~ N(15.0, 5.0).  The 

results of the R code are in Figure 3.12. 

 

 

Figure 3.12:  Ten Groups with Variability Change Across Two Groups 

 

In this 10-group sample, the centroidal method identifies one of the anomalous 

groups but fails to identify the other.  The symbolic approach finds both and correctly flags 

them as anomalies. 
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The third test injects an increase in variance within one input variable within one 

group.  As before, all input variables are X ~ N(15.0, 1.0) except for Group H, Code 2 

which is X ~ N(15.0, 5.0).  The results of the R code are in Figure 3.13. 

 

 

Figure 3.13:  Ten Groups Introducing Variability Change 

 

With no change in means across this 10-group sample, the centroidal method fails 

to identify any change.  The symbolic approach does find the anomaly within group H and 

flags it accordingly. 

  



 

97 

 

The fourth test directs a shift within one input variable within one group.  As before, 

all input variables are X ~ N(15.0, 1.0) with the exception of Group H, Code 2 which is 

X ~ N(20.0, 1.0).  The results of the R code are in Figure 3.14. 

 

 

Figure 3.14:  Ten Groups Introducing Mean Change 

 

This test seeks to identify only a mean change.  The centroidal method relies solely 

on the mean to determine the distances between the groups which makes it inherently 

sensitive to outliers when they are present in the data.  Per the result above, the centroidal 

and the symbolic methods properly identified the mean change for Group H, Code 2 and 

flagged it accordingly. 
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The fifth test scenario keeps all means across the groups and input variables the 

same but introduces a change in distribution only.  All input variables are X ~ N(15.0, 1.0) 

except for Group H, Code 2 which has a mean of 15.0 but is exponentially distributed and 

is asymmetrical.  The results of the R code are in Figure 3.15. 

 

 

Figure 3.15:  Ten Groups with an Asymmetrical Distribution 

 

Per the results above, the centroidal method fails to find the altered Group H/Code2 

where the symbolic approach correctly makes the identification. 

3.5 The Iris Flower Dataset 

With the calculations understood and the ability to study other datasets more 

efficiently, a more complicated but often studied set of data was selected.  The Iris flower 

dataset is a multivariate dataset first studied by Ronald Fisher in 1936 [70].  It has become 

a classical dataset and test case for those researching statistical classification.  It consists 

of three distinct species of the Iris flower with fifty data points collected of each.  Each 



 

99 

 

sample records four features which are the length and width of the sepals and petals.  The 

set is unique because only two clusters can be identified among the three species if the 

label of species type is unknown.  This research will apply the known labels but compare 

the distance matrices and resolution observed using the centroidal and symbolic approach.  

For reference, Figure 3.16 shows a 3D scatterplot that best depicts the challenge presented 

by the Iris flower dataset. 

 

 

Figure 3.16:  3-D Iris Scatterplot 

 

As with the data from Simulated Dataset One, the Iris flower dataset was assessed 

manually and assessed through the R code with identical results.  Only the results using the 

R code are shown here for discussion.   
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The first test was performed using the four continuous variables only:  

Sepal Length, Sepal Width, Petal Length and Petal Width.  The three species of Iris-Setosa, 

Iris-Versicolor and Iris-Virginica were compared.  Figure 3.17 and Figure 3.18 below show 

the R code result for this test. 

 

 

Figure 3.17:  Iris R Code Centroidal Results 

 

 

Figure 3.18:  Iris R Code Symbolic Results 
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In order to make the comparisons, the above distance matrices show the scaled 

distances among the three species.  In this case, the expectation for the test is not to identify 

an outlier but to evaluate the distance scores associated with each approach.  Visually, 

Versicolor and Virginica appear to be close to the same distance away from Setosa.  That 

result is best represented by the symbolic result over the centroidal approach where 

Versicolor is 1.00 unit away from Setosa while Virginica is 0.98 unit away.  Additionally, 

the challenge of this problem is to find the separation between Versicolor and Virginica.  

Comparing the Versicolor / Virginica distance in both matrices, it can be shown that the 

symbolic approach has created a greater “distance” between the two species.  Greater 

distance suggests greater resolution and separation between the two species which has 

traditionally been difficult to identify. 

An added advantage of studying data symbolically at the concept level is that some 

information only exists at that level.  When that information is available, it is critical to 

include it as part of the source data.  When studying the Iris flower dataset and trying to 

create differences among the three species, it may be helpful to add additional identifying 

information if available.  For example, a researcher may have knowledge of bloom color 

as an additional categorical variable to include.  Figure 3.19 shows a possible distribution 

of colors by species. 
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Figure 3.19:  Distribution of Bloom Color 

 

The new symbolic results with the categorical variable of bloom color included is 

shown in Figure 3.20. 

 

Figure 3.20:  Symbolic Table with Bloom Color Added (Modal, Categorical) 
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From Figure 3.20, it can be shown that greater dissimilarity is measured between 

Iris-versicolor and Iris-virginica, where Distance (Versicolor/Virginica) = 0.77 is greater 

than the previous Distance (Versicolor/Virginica) = 0.67. 

Another benefit of a symbolic table is that information can be added at the concept 

level when specific row information is not available.  Assume that the color of each 

individual flower bloom was not known, but the set of possible colors was known, those 

variables could be added as ‘set’ variables as previously explained in the literature review.  

Table 3.39 shows possible bloom color designations. 

 

Table 3.39:  Bloom Set Color Designations 

Species Bloom Color Set 

Setosa {White, Blue, Purple} 

Versicolor {Blue, Purple} 

Virginica {White, Pink, Blue} 

 

Figure 3.21 shows the symbolic results after adding the modal variable sets. 

 

Figure 3.21:  Symbolic Table with Bloom Color Added (Set, Categorical) 
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Categorizing variables as set variables created greater dissimilarity between the 

Versicolor and Virginica than the previous two examples.  Of interest is the observation 

that the Versicolor / Virginica distance now exceeds Versicolor / Setosa (0.95 > 0.90), 

suggesting that when information is available only at the concept level, its contribution can 

be significant.  In this case, of the five bloom colors that Versicolor and Virginica can take 

on (Blue, Purple, White, Pink), only one color is shared between them (Blue). 

3.6 Verification and Validation 

An important part of the research was providing verification and validation: 

verification that the code was performing correctly and validation that it was providing the 

relevant information.  These two steps were performed by using the code to run the data 

from the Simulated Dataset One file and verifying and validating that the results obtained 

were identical to those calculations made by hand and that the conclusions were the same. 

Centroidal and symbolic results of running the R code with just continuous 

variables V1, V2 and V3 are shown in Figure 3.22 and Figure 3.23.  Figure 3.22 represents 

the centroidal approach where the median of the distances equals 0.68 and the threshold is 

0.88.  Figure 3.23 represents the symbolic approach where the median of the distances 

equals 0.75 and the threshold is 0.89. 
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Figure 3.22:  R Code Centroidal Results 

 

 

Figure 3.23:  R Code Symbolic Results 

 

As observed, the calculations for the dissimilarity matrix, average distance 

calculations and the threshold values match the manual calculations presented earlier in 

this chapter.  Results confirm that the symbolic approach identifies an anomalistic 

condition with Group A while the centroidal approach fails to do so.  The code was 

programmed to signal an “OUTLIERS PRESENT” condition when any of the groups 

exceed the threshold level.  Both distance matrices match the previous section and the 
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results obtained through the calculation of the non-parametric threshold metrics are also 

identical.   

Similarly, Figure 3.24 and Figure 3.25 below are the centroidal and symbolic results 

when adding the additional categorical variable.  The median of the centroidal distances 

equals 0.50 and the threshold is 0.81.  The median of the symbolic distances equals 0.49 

and the threshold is 0.83. 

 

 

Figure 3.24:  R Code Centroidal Results with Categorical Variable 

 

 

Figure 3.25:  R Code Symbolic Results with Categorical Variable 
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As calculated in the previous chapter and verified through the R code, when a 

categorical variable is added and when that is done such that one group (Group A) is 

different than the rest, the calculations for the dissimilarity matrix, the average distance 

calculation, and the threshold values will change.  In the above example, both methods 

signal an outlier when the categorical information is added. 

Matching the R code to the manual spreadsheet calculations performed earlier in 

the chapter provided the verification and validation needed to move forward with 

additional experiments, knowing the underlying code and logic were correct. 

3.7 Chapter Summary and Observations 

The purpose of this chapter was to introduce a new approach to outlier detection, 

specifically using a method defined as SDA.  As opposed to a more conventional approach 

to outlier analysis using the centroids of datasets to calculate shifts in data patterns, 

symbolic data preserves the underlying distribution in the data which allows for greater 

definition and resolution when comparing between groups.  In this chapter, a simulated 

dataset was created to demonstrate the calculations of both methods in order to compare 

them.  The data was randomly generated, and a concept level variable was chosen from 

which groups could be compared.  A traditional flat-file format was converted to a 

symbolic data table.  This process involved converting continuous data into symbolic data 

represented by histograms.  Part of histogram construction involves determining the 

appropriate binning approach.  The Sturges binning method was determined to be the 

method of choice for this dissertation, although others were assessed.  With data in a 

symbolic format, distance tables were constructed using the Euclidean formula although 
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other methods for distance calculations are available and may present an opportunity for 

future research.  After converting a symbolic representation of data to a final distance 

matrix, a non-parametric test was used to determine the presence of outliers.  A final 

iteration of the test was performed to study how categorical variables could be introduced 

to the data and assessed using this method.  The effects of collinearity in variable selection 

was discussed and evaluated with an example.  Also introduced were the tools and 

techniques required to operationalize symbolic anomaly detection at greater scale.  An 

evaluation tool, the R code, was developed to allow for testing on a broader scale.  The 

code was verified to the manual calculations and the results were validated.  The tool was 

then used to evaluate additional simulated datasets as well as the Iris flower dataset.  

Additionally, a sample of the code and the noise only dataset was submitted to 

https://github.com/rickjr1755-coder/SymbolicScript for further analysis and development.  

Notable observations from this chapter included: 

 

• Construction of scaled distance matrices allow for the comparison of centroidal 

and symbolic approaches to anomaly detection. 

• Greater resolution of differences was observed using the symbolic method. 

• Adding categorical data at a concept level can enhance dissimilarity between 

groups when using the symbolic method. 

• Non-parametric anomaly detection metrics, when scaling is applied, allow for 

comparison between methods. 

• Setting alpha = .0035 for anomaly identification is a good default selection but 

ultimately at the discretion of the researcher. 

• Centroidal and symbolic approaches both identify changes in group means 

while changes in variability and distribution were best identified by the 

symbolic approach. 

https://github.com/rickjr1755-coder/SymbolicScript
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• Collinearity of variables does influence test results but, in the studied examples, 

did not change the outcome. 

• Binning method influences test results, although Sturges method is a good 

default selection. 

• R code reproduces manual calculation and delivers an output that allows for 

verification, validation, and comparison of methods. 
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CHAPTER 4  
 

HEALTHCARE DATASET APPLICATION 

 

 

The previous two chapters of this dissertation have focused on developing a unique 

approach to anomaly detection and creating a test environment that can be used to identify 

the presence of unusual behavior.  The main purpose of this research is to develop an 

alternative approach to discovering anomalies and apply this technique to a real-world 

inspired dataset to determine if anomalies in the form of FWA can be detected.  The dataset 

studied was taken from healthcare insurance claims generated from services provided by 

ambulance transport suppliers.  While the data was patterned after payment profiles of real 

healthcare providers, the actual cases were artificially generated and do not represent actual 

events. 

The first section of this chapter provides background for choosing this dataset and 

examines the structure of the data that was studied.  A typical ambulance service claim 

form is presented for reference and relevant data fields that are used throughout this part 

of the study are defined.  A baseline case containing random common cause variability is 

initially presented and studied in order to create a method of comparison for the subsequent 

tests.  With the baseline established, four common situations where errors arise in 

processing ambulance claims are presented and evaluated.  An anomalistic event is 

introduced to each new scenario and is studied and compared to the baseline in order to 

test the suitability of the model and the approach.  All instances are evaluated using a 

centroidal approach and a symbolic approach and are then compared to the baseline.  The 

chapter concludes with a summary of the test results and a discussion regarding the overall 

performance of the model. 
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4.1 Ambulance Claims 

Due to its continuous growth and vulnerability to FWA, ambulance claims data 

presents an opportunity to test new approaches to anomaly detection.  Ambulance transport 

is an industry that has changed over the last half century.  Forty years ago, ambulances 

were staffed by volunteers or city fire departments funded by taxpayers.  The American 

Ambulance Association estimates there are approximately 14,000 ambulance services 

operating in the country.  Today, the industry is dominated by private companies and 

venture capital firms who often have trouble agreeing with insurance companies on how 

much to charge for services.  It is particularly troubling for patients with private insurance, 

but problems are also present for patients that rely on federally funded healthcare plans like 

Medicare and Medicaid [73].  In 2015, the OIG from the Department of Health and Human 

Services conducted a study that concluded Medicare paid over $50 million in improper 

payments to ambulance transport companies based on analyzing 7.3 million transport 

events during the first half of 2012 [74].  The study included analysis of transport 

destinations, transport levels, and mileage traveled, and concluded with multiple 

recommendations that included increasing the monitoring levels of ambulance billing [75].  

The OIG developed specific measures to identify questionable billing events for ambulance 

transports.  Three of the measures are directly applicable to this dissertation and are defined 

in Table 4.1. 
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Table 4.1:  OIG Measures of Questionable Billing [75] 

Measure Description 

Excessive Mileage for 

Urban Transports 

High average mileage for transports for beneficiaries in 

urban areas.  Such transports may indicate billing for more 

miles than suppliers actually drove or transports to facilities 

other than the nearest appropriate facilities.   

Inappropriate or 

Unlikely Transport 

Level 

High percentage of a supplier’s transports with inappropriate 

or unlikely transport levels given the destinations.  Such 

transports may indicate upcoding or transport levels that 

were medically unnecessary.  

High Number of 

Transports per 

Beneficiary 

Among suppliers that provided dialysis-related transports, 

high average per-beneficiary number of transports.  Such 

transports may indicate billing for transports that were 

medically unnecessary.  

 

The OIG report serves as an excellent starting point from which to begin to test 

anomaly detection methods in ambulance transport data.  While there are multiple 

approaches to addressing questionable billing practices of ambulance service providers, the 

following four hypotheses are tested in this dissertation. 

 

• It was hypothesized that a symbolic data approach could identify an ambulance 

service provider that charged for more miles as compared to its peer group of 

providers. 

• It was hypothesized that a symbolic data approach could identify an ambulance 

service provider that more frequently billed for a more expensive level of 

service as compared to its peer group of providers. 

• It was hypothesized that a symbolic data approach could identify an ambulance 

service provider whose average per-beneficiary number of transports were high 

as compared to its peer group of providers. 

• It was hypothesized that a symbolic data approach could identify an ambulance 

service provider that incorrectly coded a charge for one of its services as 

compared to its peer group of providers. 
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The first three hypotheses stated above directly relate to situations as measured by 

the OIG.  The final test represents an anomalistic event that could come from any instance 

of improper coding on a claim.  As demonstrated in the previous section, the symbolic 

approach is uniquely positioned to identify changes in mean and distribution.  It is also able 

to handle changes in categorical variables, specifically changes in categorical distribution.  

The instances and hypotheses presented above represent a test of each of these situations. 

The purpose of this experiment was to evaluate claim information resulting from 

episodes of care that required ambulance services.  An ambulance claim, regardless of its 

origin, is required to have certain fields populated.  These fields capture the detail required 

to render payment for the service and to provide a record of patient care.  Generally, every 

claim captures four broad categories of information: patient data, patient health plan data, 

diagnoses codes, and billing detail.  A sample ambulance claim is provided in Figure 4.1. 
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Figure 4.1:  Ambulance CMS 1500 Claim Form 
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Because of the concise nature of the data on this form, the study of anomalies with 

ambulance billing proved a reasonable testing ground to assess several situations which the 

literature suggests are candidates for FWA.  The fields, while sometimes complex in 

description, are limited in number.  The data used to test these hypotheses was patterned 

from a real-world dataset.  The fields that ultimately remained in the analysis and their 

definitions are in Table 4.2. 

 

Table 4.2:  Ambulance Claims Data Definitions 

Name Description 

Age Patient age 

AutoAcc Is the claim related to an automobile accident (Y/N) 

Destination The destination code for the trip (H) 

Service Codes representing billed charges (A0425, A0427, A0429, A0433) 

ICD Diagnosis code used to identify the nature of a medical condition 

Origin The origin code for the trip (R, S, E, P, N, J, H) 

Sex Patient gender (M/F) 

Charges Dollars charged for service 

Units # units for billed service (actual mileage if mileage charge, 1 for 

all others) 

Provider Provider indicator (20 providers denoted A-T) 
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Service type was limited to four codes.  Table 4.3 depicts the codes and their 

descriptions. 

 

Table 4.3:  Service Code Definitions [76] 

Service Code Description 

A0425 Ground Mileage 

A0427 Advanced Life Support, Level 1 (ALS1) - Includes the provision of 

medically necessary supplies and services and the provision of an ALS 

assessment or at least one ALS intervention.  An ALS assessment is 

performed by an ALS crew as part of an emergency response that is 

necessary because the beneficiary’s reported condition at the time of 

dispatch indicates only an ALS crew is qualified to perform the 

assessment.  An ALS assessment does not necessarily result in a 

determination that the beneficiary requires an ALS level of transport.  

In the case of an appropriately dispatched ALS emergency service, if 

the ALS crew completes an ALS assessment, the services provided by 

the ambulance transportation service provider or supplier are covered 

at the ALS emergency level.  This is regardless of whether the 

beneficiary required ALS intervention services during the transport, 

provided the ambulance transportation itself was medically reasonable 

and necessary and all other coverage requirements are met.  An ALS 

intervention must be performed by an emergency medical technician-

intermediate (EMT-Intermediate) or an EMT-Paramedic in accordance 

with State and local laws.  An ALS1 emergency is an immediate 

emergency response in which you begin as quickly as possible to take 

the steps necessary to respond to the call. 

A0429 Basic Life Support (BLS) - Includes the provision of medically 

necessary supplies and services and BLS ambulance transportation as 

defined by the State where you provide the transport.  An emergency 

response is one that, at the time you are called, you respond 

immediately.  A BLS emergency is an immediate emergency response 

in which you begin as quickly as possible to take the steps necessary to 

respond to the call. 
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A0433 Advanced Life Support, Level 2 (ALS2) - Includes the provision of 

medically necessary supplies and services, involving: 

•At least three separate administrations of one or more 

medications by intravenous push/bolus or by continuous 

infusion (excluding crystalloid fluids) or 

•At least one of these ALS2 procedures: 

–Manual defibrillation/cardioversion 

–Endotracheal intubation 

–Central venous line 

–Cardiac pacing 

–Chest decompression 

–Surgical airway 

–Intraosseous line 

 

Table 4.4:  Destination and Origin Code Definitions 

Destination / Origin Code Description 

R Residence 

S Scene of Accident 

E Custodial Facility 

P Physician’s Office 

N Skilled Nursing Facility 

J Dialysis Facility 

H Hospital 
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Table 4.4 shows the origin and destination codes that are pulled from the modifier 

field on the sample form.  For example, RH implies a transport originating at a residence 

and terminating at a hospital.  Age is derived from the birthdate field. 

4.2 Establishing a Baseline 

Using data from an actual provider database, a sample file was constructed that 

consisted of 20 randomly designed fictitious providers each exhibiting the same 

characteristics but with some inherent variability still present.  While the providers were 

fictitious, the distribution of patient ages, service codes, ambulance routing, and dollars 

paid for services for each of the providers created were based on values that would be 

expected in a real-world scenario.  This patient data was from Medicare recipients only and 

was used because of the availability of the real-world data to study as well as the publicly 

available data, previously cited, that could be used for comparison.  Table 4.5 is a partial 

rendering of the dataset used for the baseline case.  Table 4.6 provides quantitative and 

qualitative information for each of the providers as well as information pertaining to the 

descriptors used for each provider. 
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Table 4.5:  Baseline Data 

i C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

1 49.12 N H A0427 25080 S F 443.91 1.00 A 

2 48.91 N H A0427 78650 P M 464.14 1.00 A 

3 76.25 N H A0425 71946 E F 70.9 10.00 A 

4 60.36 N H A0427 78079 R M 443.91 1.00 A 

5 80.70 N H A0425 7804 R M 63.81 9.00 A 

6 88.80 N H A0427 71945 R F 243.91 1.00 A 

7 71.50 N H A0425 7881 R M 85.08 12.00 A 

8 66.44 N H A0427 78650 R F 243.91 1.00 A 

9 60.85 N H A0433 7991 R M 642.49 1.00 A 

10 86.54 N H A0427 71945 R F 443.91 1.00 A 

∙           

∙           

∙           

 

 

Table 4.6:  Baseline Data Descriptors 

Ci Description Variable Type Values 

C1 Age Continuous [23.2, 106.8] 

C2 AutoAcc Categorical {Y, N} 

C3 Destination Categorical {H} 

C4 Service Categorical {A0425, A0427, A0429, A0433} 

C5 ICD Categorical Multiple 

C6 Origin Categorical {R, S, E, P, N, J, H} 

C7 Sex Categorical {M, F} 

C8 Charges Continuous [7.09, 643.91] 

C9 Units Continuous [1, 53] 

C10 Provider Categorical 20 Values {A - T} 

 

  



 

120 

 

In order to create a true baseline to which other instances could be compared, a 

dataset that contained provider groups with statistically similar characteristics had to be 

created.  Each of the 20 test providers (which comprised of 5,000 cases each) had to exhibit 

the same general characteristics while maintaining underlying common cause variability.  

The process for accomplishing this was to generate one “parent” provider dataset that 

consisted of 100,000 rows.  The parent set was modeled using parameters from a typical 

ambulance service provider.  An initial real-world sample comprised of 2,122 cases from 

a single provider within one specific geographic region was collected.  The cases consisted 

of only Medicare patients with various presenting medical conditions.  The data included 

transports that terminated at a hospital location but could have originated at several 

locations.  The 100,000-row test dataset, 20 providers of 5,000 cases each, was derived 

from this initial 2,122 case set.  The initial set was randomly sampled, with replacement, 

to generate a 5,000-row provider sample.  That process was repeated 20 times using a 

different random seed each time.  The result was a twenty case, 100,000-row “parent” 

dataset from which to begin the testing.  The twenty cases represented fictitious providers 

and were labeled {A, B, C, …, S, T}.  It should be noted that in each of the examples when 

an anomaly was introduced by changing a dataset, that change always occurred within 

‘Provider A’. 

Graphical representations of the descriptor variables of the parent set, and which 

represent the characteristics of each of the 20 providers, are represented in the charts below. 
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Figure 4.2:  Graphical Summary of Age 

 

Figure 4.2 represents a graphical summary of the ages of all Medicare patients.  Key 

statistics from the graphical summary above show 100,000 individual cases with an 

average age of 76.377.  The minimum age is 23.192 and the maximum is 106.784.  The 

typical Medicare beneficiary is over the age of 65, although situations exist for younger 

people to also qualify for benefits such as people with a disability or those diagnosed with 

end stage renal disease (kidney failure).  Approximately 15% of all Medicare beneficiaries 

are under the age of 65 [77]. 

Figure 4.3 and Figure 4.4 reflect characteristics of the 100,000-row sample dataset.  

Figure 4.3 reflects that only 1.3% of all transport cases were related to an automobile 

accident.  Figure 4.4 displays the percentage of male and female patients. 
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Figure 4.3:  Pareto Chart of AutoAcc 

 

 

Figure 4.4:  Pareto Chart of Gender 
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Figure 4.5 refers to the service definitions introduced in Table 4.3.  Because the 

mileage code (A0425) is associated with every transport, it represents the greatest 

representation in the dataset, while code A0427, Advanced Life Support, is the level of 

service billed most frequently when compared to the other two levels. 

 

 

Figure 4.5:  Pareto Chart of Service Code 
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Figure 4.6 reveals that 73.3 percent of all transports originate at the patient’s 

residence per the codes previously defined.  The destination for this dataset was limited 

to ‘H’, or hospital only. 

 

 

Figure 4.6:  Pareto Chart of Origin Code 
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The first step in testing the hypotheses was to measure the Euclidean distances 

between pairs of 20 groups in the baseline dataset where only inherent random variability 

was present.  Using the R code, the data was analyzed using provider as the concept 

variable and Age, AutoAcc, Service, ICD, Origin, Sex, and Units as the input variables.  

Destination code was kept in the dataset but excluded from all analyses because it has a 

singular value of H (Hospital) for all cases.  Additionally, column C8 (Charges) was 

excluded from the initial baseline case.  Because of its correlation with increasing mileage 

and upcoding transport levels, it acts as a dependent variable whose influence is not desired 

when analyzing the underlying causes for change.  The Charges variable was added back 

to the dataset for Case 4 where a price change occurs because it is the only variable to 

reflect this change. 

For all tests in this chapter, the centroidal approach was applied first followed by 

the symbolic approach.  The results were then compared against each other using the 

metrics previously established.  Figure 4.7 is the resulting distance matrix for the baseline 

dataset created when applying the centroidal approach. 
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A B C D E F G H I J K L M N O P Q R S T

A 0.00

B 0.30 0.00

C 0.25 0.09 0.00

D 0.35 0.20 0.16 0.00

E 0.41 0.25 0.21 0.08 0.00

F 0.23 0.12 0.06 0.15 0.21 0.00

G 0.12 0.23 0.16 0.24 0.30 0.13 0.00

H 0.39 0.37 0.31 0.20 0.20 0.28 0.29 0.00

I 0.18 0.42 0.35 0.39 0.43 0.32 0.20 0.32 0.00

J 0.16 0.46 0.40 0.49 0.54 0.38 0.26 0.48 0.18 0.00

K 0.35 0.38 0.31 0.23 0.23 0.28 0.26 0.06 0.27 0.43 0.00

L 0.41 0.26 0.23 0.08 0.06 0.22 0.30 0.18 0.42 0.54 0.22 0.00

M 0.67 0.41 0.43 0.33 0.30 0.44 0.56 0.46 0.71 0.81 0.51 0.30 0.00

N 0.30 0.21 0.15 0.10 0.13 0.14 0.18 0.17 0.31 0.42 0.17 0.14 0.41 0.00

O 0.17 0.16 0.14 0.29 0.34 0.15 0.15 0.40 0.32 0.32 0.38 0.35 0.56 0.26 0.00

P 0.60 0.38 0.38 0.25 0.20 0.38 0.49 0.35 0.62 0.74 0.39 0.20 0.13 0.32 0.51 0.00

Q 0.64 0.37 0.39 0.30 0.27 0.41 0.53 0.44 0.68 0.78 0.48 0.28 0.06 0.38 0.52 0.12 0.00

R 0.27 0.05 0.07 0.20 0.25 0.09 0.19 0.35 0.38 0.42 0.35 0.26 0.43 0.19 0.13 0.39 0.40 0.00

S 0.87 0.64 0.64 0.52 0.46 0.65 0.75 0.57 0.87 1.00 0.62 0.46 0.26 0.58 0.78 0.27 0.29 0.66 0.00

T 0.64 0.42 0.42 0.30 0.25 0.43 0.53 0.39 0.67 0.78 0.44 0.25 0.11 0.37 0.55 0.06 0.11 0.43 0.23 0.00

 

Figure 4.7:  Baseline Case Distance Matrix - Centroidal 

 

Once the distances between each pair was calculated, the average distance between 

each individual provider and the other 19 providers was calculated.  As explained in 

Chapter 3, these are the distances between each individual pair of points in the dataset 

calculated using the Euclidean method.  Table 4.7 represents the final average distance 

calculations for each of the providers using the centroidal approach.  These numbers 

represent the average distance that each individual provider is from every other provider in 

the dataset. 
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Table 4.7:  Baseline Case Distance Measures - Centroidal 

Provider Distance Provider Distance Provider Distance Provider Distance 

A 0.385 F 0.267 K 0.336 P 0.357 

B 0.301 G 0.309 L 0.273 Q 0.393 

C 0.271 H 0.327 M 0.416 R 0.290 

D 0.256 I 0.424 N 0.260 S 0.586 

E 0.269 J 0.505 O 0.341 T 0.388 

 

The same process was then applied using the symbolic approach as previously 

explained.  The next step in establishing the baseline was to apply the symbolic approach 

to the 100,000-row parent dataset.  Figure 4.8 is the resulting distance matrix created when 

applying the symbolic approach. 
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A B C D E F G H I J K L M N O P Q R S T

A 0.00

B 0.70 0.00

C 0.72 0.75 0.00

D 0.67 0.83 0.76 0.00

E 0.74 0.79 0.60 0.80 0.00

F 0.69 0.64 0.76 0.68 0.80 0.00

G 0.68 0.82 0.56 0.76 0.75 0.69 0.00

H 0.89 0.98 0.67 0.83 0.68 0.83 0.57 0.00

I 0.69 0.98 0.82 0.80 0.78 0.77 0.71 0.73 0.00

J 0.70 0.86 0.59 0.79 0.65 0.76 0.55 0.70 0.69 0.00

K 0.78 0.87 0.57 0.76 0.61 0.76 0.59 0.54 0.74 0.67 0.00

L 0.75 1.00 0.80 0.70 0.82 0.82 0.71 0.72 0.71 0.89 0.68 0.00

M 0.80 0.79 0.72 0.72 0.79 0.83 0.70 0.81 0.91 0.73 0.74 0.87 0.00

N 0.99 0.85 0.82 0.86 0.82 0.89 0.80 0.70 0.97 0.93 0.71 0.95 0.80 0.00

O 0.68 0.74 0.60 0.75 0.56 0.67 0.61 0.55 0.70 0.64 0.55 0.73 0.70 0.73 0.00

P 0.74 0.83 0.60 0.65 0.56 0.70 0.63 0.58 0.69 0.61 0.58 0.68 0.73 0.77 0.54 0.00

Q 0.86 0.63 0.82 0.85 0.78 0.67 0.83 0.88 0.94 0.84 0.78 0.96 0.78 0.79 0.70 0.72 0.00

R 0.76 0.59 0.67 0.73 0.71 0.70 0.64 0.76 0.85 0.77 0.73 0.76 0.67 0.68 0.65 0.67 0.65 0.00

S 0.71 0.86 0.61 0.68 0.63 0.76 0.58 0.54 0.75 0.72 0.53 0.57 0.66 0.75 0.53 0.62 0.82 0.68 0.00

T 0.88 0.79 0.72 0.73 0.68 0.69 0.75 0.67 0.87 0.80 0.71 0.85 0.77 0.60 0.61 0.63 0.77 0.63 0.67 0.00

 

Figure 4.8:  Baseline Case Distance Matrix - Symbolic 
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Table 4.8 represents the final distance calculations for each of the providers using 

the symbolic approach. 

 

Table 4.8:  Baseline Case Distance Measures - Symbolic 

Provider Distance Provider Distance Provider Distance Provider Distance 

A 0.759 F 0.743 K 0.680 P 0.659 

B 0.805 G 0.681 L 0.788 Q 0.793 

C 0.691 H 0.718 M 0.765 R 0.700 

D 0.756 I 0.796 N 0.812 S 0.667 

E 0.713 J 0.730 O 0.644 T 0.727 

 

 

The performance measures calculated for both the centroidal and symbolic 

approach for the baseline dataset are in Table 4.9. 

 

Table 4.9:  Performance Metrics for Baseline Dataset 

Metric Centroidal Symbolic 

MED .331 .728 

IQR .117 .082 

Threshold .565 .894 
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Where, MED represents the median value, IQR represents the interquartile range, 

and Threshold represents the calculated non-parametric threshold value of the average 

distances in Table 4.7 and Table 4.8 respectively.   

In the centroidal baseline case alone, Provider S has a value of 0.586 which exceeds 

the calculated threshold value.  The occurrence of a value exceeding the threshold is 

included in this chapter in order to remain consistent with the previous examples.  It is 

important to note, that any identified outlier in the baseline dataset, whether calculated by 

the centroidal or symbolic approach, is simply a reflection of the common cause variability 

in the data. 

The purpose for establishing a baseline case is to have a randomized dataset from 

which subsequent tests can be compared to.  In a truly randomized set of samples, there 

will exist common cause variability within each provider.  Subsequent hypotheses in this 

chapter are tested and compared to this set in order to measure the change from what can 

be assumed to be a normal steady-state scenario.  The performance measures for all 

subsequent tests are calculated for the individual test data as well as for the differences 

from the baseline.  Measurable differences from the established baseline are the ultimate 

measure of model performance. 
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4.3 Case 1 – Excessive Mileage 

In the 2015 OIG Report, it was noted that one of the areas researched for 

questionable billing was the recording of excessive mileage: specifically, excessive 

mileage for urban transports.  The report found that 4% of ambulance service providers 

recorded higher than normal mileage for patients residing in urban areas.  These excesses 

totaled $7.3 million during the first half of 2012.  The average urban transport was 

calculated as 10 miles while the mileage recorded by the questionable providers was more 

than three times that level.  Reasons included not transporting to the nearest appropriate 

facility or simply billing for more miles than were driven [75]. 

The first real-world scenario test was to determine if a symbolic approach could 

identify this type of anomaly and how would its result compare to a more traditional 

centroidal approach.  Mileage is recorded on the CMS-1500 form using service code 

A0425.  In the original 2,122 case sample, there were 773 instances of trips originating at 

a residence and terminating at a hospital.  The average mileage charged for these trips was 

8.3 miles.  This is consistent with the data reported in the OIG Report. 

In order to simulate an excessive mileage event, the 5,000-row simulated 

Provider A data was isolated.  As expected, its statistical characteristics matched the 

summary above.  In this scenario and the ones that follow in this chapter, anomalistic events 

were modeled in the Provider A group for convenience although the event could potentially 

occur in any of the provider groups.  In order to simulate additional rows of miles data as 

accurately as possible, it was necessary to study the underlying distribution of data from 

the real dataset.  The original 773 rows of data containing miles traveled were evaluated.  

Using Minitab, the distribution was compared to several known distributions, checked for 
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goodness of fit, and the parameters recorded.  The 3-parameter Weibull distribution proved 

to have the best fit and best matched the data visually, where shape = 1.26857, 

scale = 8.03881 and threshold = 0.92885.  To simulate the anomalistic event, a similar 

distribution was generated which represented an increase in miles billed as described in the 

OIG Report.  The parameters from the fitted distribution were kept the same except for the 

scale parameter which was increased 400% to match the scenario in the OIG report.  The 

new distribution was a 3-parameter Weibull distribution where shape = 1.26857, scale = 

32.155 and threshold = .92855.  The values were then rounded to the nearest integer.  Figure 

4.9 shows the original mileage data with an average of 8.3799 miles traveled. Figure 4.10 

is a graphical summary of the altered data.  

 

Figure 4.9:  Graphical Summary of Miles Traveled from Residence to Hospital 
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Figure 4.10:  Graphical Summary of Excessive Mileage 

 

The initial 1,791 cells of mileage data (units when accompanied by service code 

A0425) for Provider A were replaced with the altered data represented above.  The 

simulated data retains the same distribution but shifts the mean to 30.310 miles to mimic 

the scenario explained in the OIG report.  The centroidal and symbolic tests were applied 

to the data to determine if the anomalistic event could be identified. 

The process for the analysis is the same throughout this chapter.  Distance matrices 

are created for each approach and the average distance measures are created.  For purposes 

of brevity, the distance matrices will not be displayed for this and the subsequent examples. 
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The final distance measures are displayed, the threshold metrics are calculated, and 

the results are compared to each other and the baseline data.  Also calculated is the 

difference (shown as Δ in the table) between the baseline value and the scenario data.  

Positive difference metrics from the baseline suggest a change in the data behavior in the 

form of greater disparity from the base random case.  Table 4.10 is the results table for 

Case 1: The Excessive Mileage Scenario. 
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Table 4.10:  Results Table – Case 1 

 CENTROIDAL SYMBOLIC 

Provider Baseline Case 1 Δ Baseline Case 1 Δ 

A 0.385 0.988 0.603 0.759 0.965 0.206 

B 0.301 0.076 -0.225 0.805 0.236 -0.569 

C 0.271 0.073 -0.198 0.691 0.211 -0.480 

D 0.256 0.071 -0.185 0.756 0.230 -0.526 

E 0.269 0.072 -0.197 0.713 0.218 -0.495 

F 0.267 0.073 -0.194 0.743 0.215 -0.528 

G 0.309 0.076 -0.232 0.681 0.206 -0.475 

H 0.327 0.076 -0.251 0.718 0.204 -0.514 

I 0.424 0.085 -0.339 0.796 0.240 -0.555 

J 0.505 0.092 -0.413 0.730 0.221 -0.508 

K 0.336 0.077 -0.259 0.680 0.211 -0.469 

L 0.273 0.072 -0.201 0.788 0.236 -0.552 

M 0.416 0.083 -0.333 0.765 0.237 -0.527 

N 0.260 0.072 -0.189 0.812 0.241 -0.571 

O 0.341 0.079 -0.262 0.644 0.200 -0.444 

P 0.357 0.078 -0.279 0.659 0.201 -0.457 

Q 0.393 0.082 -0.311 0.793 0.230 -0.562 

R 0.290 0.075 -0.215 0.700 0.217 -0.483 

S 0.586 0.096 -0.490 0.667 0.203 -0.463 

T 0.388 0.081 -0.308 0.727 0.222 -0.505 
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Table 4.11 summarizes the results table data and computes the threshold value that 

was used to evaluate the test results.  A threshold score was also calculated for the original 

test data and difference from baseline values (Δ). 

 

Table 4.11:  Performance Measures – Case 1 

 
CENTROIDAL SYMBOLIC 

Provider Case 1 Δ Case 1 Δ 

Median 0.077 -0.242 0.220 -0.507 

Q1 0.073 -0.308 0.210 -0.534 

Q3 0.082 -0.198 0.236 -0.473 

IQR 0.009 0.111 0.026 0.061 

Threshold 0.096 -0.031 0.275 -0.382 

 

Case 1 involved introducing a provider with an average change in miles billed.  The 

centroidal method identified the change to Provider A.  As shown above, Provider A, and S 

exceeded the calculated threshold for the test case data.  Additionally, when compared to 

its difference from baseline, the centroidal approach appropriately flagged Provider A as 

exceeding the threshold and identified it as a potential outlier to investigate.  When the 

difference was calculated compared to the baseline, Provider A was the only group to signal 

as an outlier.   
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 Centroidal Provider A (Case 1) > Centroidal Threshold (Case 1) where, 

 .988 > .096 

and 

Centroidal Provider A (Δ) > Centroidal Threshold(Δ) where, 

 .603 > -.031 

Similarly, the symbolic method appropriately picked up the change in Provider A. 

Additionally, when compared to its difference from baseline, the symbolic approach 

appropriately flagged Provider A as exceeding the threshold and identified it as a potential 

outlier to investigate. 

Symbolic Provider A (Case 1) > Symbolic Threshold (Case 1) where, 

 .965 > .275 

and 

Symbolic Provider A (Δ) > Symbolic Threshold(Δ) where, 

 .206 > -.382 

In both cases, when the difference is calculated compared to the baseline, 

Provider A was the only group to signal as an outlier.  The centroidal method and the 

symbolic method performed equally well in this case. 
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In the previous example, mileage was increased approximately 400% to match the 

example stated in the literature.  It is conceivable that changes in mileage would occur 

without such a pronounced change.  Figure 4.11 depicts a 50% increase in mileage. 

 

 

Figure 4.11:  Excessive Mileage with 50% Increase 

 

In the data presented above, the minimum mileage traveled is one mile, the 

maximum traveled is 62 miles, and the average distance traveled is 12.863.  Provider A 

was the altered group with 1,791 mileage data points replaced.  The new distribution used 

was a 3-parameter Weibull where shape = 1.26857, scale = 12.05822 and 

threshold = .92855.  The values were then rounded to the nearest integer.  The change in 

scale from the original distribution reflected a 50% increase in miles traveled.  As before, 
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the centroidal and symbolic tests were applied to the data to determine if the anomalistic 

event could be identified when the difference in miles traveled was not as pronounced. 

The results for the reduced mileage increase were identical to the previous example 

with both the centroidal and symbolic approaches identifying Provider A as an outlier.  

While the conclusion was the same, there were differences in the analysis.  Specifically, 

the calculated difference between the anomalous provider, the baseline and the threshold 

were all reduced suggesting the less exaggerated the difference, the less noticeable the 

outlier.  Table 4.12 and Table 4.13 show the results difference between the 400% and the 

50% change in mileage example. 

 

Table 4.12:  Provider A Statistics with a 400% Increase in Miles 

Metric Centroidal Symbolic 

Actual Distance Value .988 .965 

Baseline Value .385 .759 

Difference .603 .206 

Difference Threshold -.031 -.382 

 

Table 4.13:  Provider A Statistics with a 50% Increase in Miles 

Metric Centroidal Symbolic 

Actual Distance Value .937 .901 

Baseline Value .385 .759 

Difference .552 .142 

Difference Threshold -.009 -.171 
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4.4 Case 2 – Inappropriate Transport Levels 

Another instance of questionable billing in the OIG Report focused on suppliers 

with higher percentages of more expensive transport levels [75].  The second hypothesis 

tested was to determine if a change in service level distribution could be detected.  In the 

standard provider profile, Basic Life Support Services (A0429) accounted for 

approximately 8.4% of all transactions.  Advanced Life Support – Level 1 (A0427) 

accounted for approximately 40.7% of all transactions.  Figure 4.12 is the distribution of 

services present in the baseline dataset for Provider A. 
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Figure 4.12:  Pareto Chart of Service Codes 
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One of the fraudulent activities highlighted in the literature involved the upcoding 

from Basic Life Support to the more expensive Advanced Life Support level.  Provider A 

was altered to increase the percentage of Advanced Life Support – Level 1 cases simulating 

a potential upcode of services.  The data was modified by randomly deleting half of the 

A0429 cases and randomly increasing the A0427 cases by the same amount.  Records were 

modified by row which meant all the accompanying characteristics also changed with a 

change in service.  Figure 4.13 is the distribution of services for the altered dataset. 

 

Count 2496 2245 211 48

Percent 49.9 44.9 4.2 1.0
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Figure 4.13:  Pareto Chart of Service Codes - Modified 
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The altered dataset reduced the amount of the less expensive A0429 Basic Life 

Support cases and increased the number of the more expensive A0427 Advanced Life 

Support cases.  Table 4.14 and Table 4.15 are the results table and performance measure 

table for Case 2: Inappropriate Transport Levels. 

  



 

143 

 

Table 4.14:  Results Table – Case 2 

 CENTROIDAL SYMBOLIC 

Provider Baseline Case 2 Δ Baseline Case 2 Δ 

A 0.385 0.485 0.100 0.759 0.873 0.114 

B 0.301 0.306 0.005 0.805 0.501 -0.304 

C 0.271 0.277 0.006 0.691 0.439 -0.252 

D 0.256 0.262 0.006 0.756 0.477 -0.279 

E 0.269 0.275 0.006 0.713 0.454 -0.259 

F 0.267 0.272 0.006 0.743 0.467 -0.276 

G 0.309 0.315 0.006 0.681 0.429 -0.252 

H 0.327 0.333 0.006 0.718 0.454 -0.263 

I 0.424 0.427 0.003 0.796 0.505 -0.290 

J 0.505 0.503 -0.001 0.730 0.461 -0.268 

K 0.336 0.341 0.005 0.680 0.430 -0.250 

L 0.273 0.279 0.006 0.788 0.496 -0.292 

M 0.416 0.422 0.006 0.765 0.480 -0.285 

N 0.260 0.266 0.006 0.812 0.506 -0.306 

O 0.341 0.346 0.005 0.644 0.412 -0.232 

P 0.357 0.363 0.006 0.659 0.421 -0.237 

Q 0.393 0.398 0.006 0.793 0.493 -0.299 

R 0.290 0.296 0.005 0.700 0.440 -0.260 

S 0.586 0.592 0.006 0.667 0.424 -0.243 

T 0.388 0.394 0.006 0.727 0.462 -0.265 
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Table 4.15:  Performance Measures – Case 2 

 
CENTROIDAL SYMBOLIC 

Provider Case 1 Δ Case 1 Δ 

Median 0.337 0.006 0.462 -0.264 

Q1 0.278 0.005 0.436 -0.286 

Q3 0.404 0.006 0.494 -0.251 

IQR 0.126 0.001 0.057 0.035 

Threshold 0.593 0.007 0.580 -0.199 

 

Case 2 involved introducing a provider who had engaged in billing for 

inappropriate transport levels.  When the mix of these service levels is different than the 

mix of services from similar providers, it could mean a fraudulent event has occurred.   A 

more complex level of service also means a more expensive service.  The centroidal 

method failed to pick up the change in the straight Provider A test data but did correctly 

make the identification when compared to the baseline. 

 Centroidal Provider A (Δ) > Centroidal Threshold(Δ) where, 

  .100 > .007 
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Similarly, the symbolic method appropriately picked up the change in Provider A.  

When the difference is calculated compared to the baseline, Provider A is the only group 

to signal as an outlier.  Specifically,  

 Symbolic Provider A (Case 2) > Symbolic Threshold (Case 2) where, 

 .873 > .580 

and 

Symbolic Provider A (Δ) > Symbolic Threshold(Δ) where, 

 .114 > -.199 

In the previous example, half of the less expensive transport service was moved to 

the more expensive, Advanced Life Support (A0427), service.  Instead of moving 50% of 

that volume, the next experiment tested the result if approximately 10% (40 cases) were 

upcoded.  Figure 4.14 is a graph of the new distribution for Provider A with after this 

change was made. 
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Count 2496 2074 382 48

Percent 49.9 41.5 7.6 1.0

Cum % 49.9 91.4 99.0 100.0
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Figure 4.14:  Ten Percent of Volume Upcoded 

 

The results for a less significant upcoding action matched the previous example 

when compared to the difference from the baseline.  As in Case 1, while the conclusion 

was the same, there were differences in the analysis.  The calculated difference between 

the anomalous provider, the baseline, and the threshold were all reduced suggesting the 

less exaggerated the difference, the less noticeable the outlier.  Table 4.16 and Table 4.17 

show the results difference between the 50% upcode case and the 10% upcode case. 
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Table 4.16:  Provider A Statistics with a 50% Upcode Action 

Metric Centroidal Symbolic 

Actual Distance Value .485 .873 

Baseline Value .385 .759 

Difference .100 .114 

Threshold .007 -.199 

 

 

Table 4.17:  Provider A statistics with a 10% Upcode Action 

Metric Centroidal Symbolic 

Actual Distance Value .398 .791 

Baseline Value .385 .759 

Difference .013 .032 

Threshold .001 -.012 

 

Since this data was scaled, meaningful differences can be compared using the two 

examples above.  When a 50% upcode is present, Provider A exceeds the threshold value 

by .093 when using the centroidal approach while exceeding the threshold value by .313 

using the symbolic method suggesting the difference is more noticeable and measurable 

using the latter.  When the 10% upcode scenario is assessed, the centroidal approach yields 

a .012 difference while the symbolic method yields a .044 difference from threshold.  Both 

methods showed a tightening toward the difference threshold, but the symbolic method 

appeared to be more sensitive to the change when comparing the difference to threshold to 

the baseline value, calculated as 
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Difference from Threshold (Centroidal) / Baseline Value (Centroidal) 

= .012 / .385 = .031 

and 

Difference from Threshold (Symbolic) / Baseline Value (Symbolic) 

= .044 / .759 = .058 

where, 

.058 > .031 

 

4.5 Case 3 – Excessive Number of Transports per Beneficiary 

A third measure established by [75] addressed the high number of transports per 

beneficiary.  The report looked specifically at transport issues associated with dialysis 

patients and found suppliers that may have billed for services that were medically 

unnecessary or for services that did not occur at all.  The study found that most dialysis 

patients received an average of 4 transports during the six-month study period while the 

suspect suppliers provided 21 transports per beneficiary during that same time period.  

Three percent of suppliers in the 2012 study had questionable billing patterns relating to 

this metric totaling $132.5 million in the first half of that year [75]. 

The dataset in this dissertation does not look at dialysis patients specifically but can 

be designed to evaluate the average number of transports per beneficiary and to check for 

anomalies.  While patient data is not directly included in the test dataset, fictitious patient 



 

149 

 

identifiers were randomly generated and added to the data.  The data was filtered to include 

only the A0425 (mileage) code entries to ensure that each row of data represented one 

unique trip event.  Random patient identifiers were generated and applied to the dataset, 

with replacement, which allowed for multiple trips to occur within each provider and across 

providers.  The resulting test dataset was a 36,537-row collection of patients seeking 

transport services across 20 providers.  Provider A, for example, had 1,791 trip events 

utilized by 1,755 beneficiaries resulting in an average of 1.02 trips per beneficiary.  With 

a new variable introduced, a new baseline case was established.  Patient ID was included, 

and Service was excluded (because all were represented by the A0425 mileage code).   

To simulate an increased level of transports per beneficiary, Provider A patient data 

was studied.  The data was sorted by patient age, diagnosis code, and miles traveled.  A 

group of 10 similar entries was discovered that each had unique patient identifiers.  These 

10 cases were assigned the same identifier, simulating one patient within one provider that 

used the same service 10 times as opposed to the group average of 1.02 transports per 

beneficiary.  A snapshot of the anomalous data within Provider A, identified as patient 

P8388 appears in Figure 4.15. 
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Figure 4.15:  Screenshot of Simulated Patient with Multiple Trips 

 

Table 4.18 and Table 4.19 are the results table and performance measure table for 

Case 3: High Number of Transports per Beneficiary.  It includes revised baseline numbers, 

which were also generated. 
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Table 4.18:  Results Table – Case 3 

 CENTROIDAL SYMBOLIC 

Provider Baseline Case 3 Δ Baseline Case 3 Δ 

A 0.337 0.337 3.81E-05 0.843 0.844 4.55E-04 

B 0.280 0.280 1.59E-06 0.797 0.796 -9.01E-04 

C 0.275 0.275 2.14E-06 0.843 0.842 -9.71E-04 

D 0.282 0.282 1.66E-06 0.790 0.789 -9.06E-04 

E 0.283 0.283 4.45E-06 0.841 0.840 -9.74E-04 

F 0.290 0.290 1.56E-06 0.866 0.865 -9.94E-04 

G 0.267 0.267 2.20E-06 0.803 0.802 -9.26E-04 

H 0.538 0.538 7.58E-07 0.804 0.803 -9.23E-04 

I 0.529 0.529 2.10E-06 0.853 0.852 -9.96E-04 

J 0.594 0.594 1.64E-06 0.824 0.823 -9.54E-04 

K 0.345 0.345 2.77E-06 0.800 0.799 -9.21E-04 

L 0.311 0.311 4.93E-06 0.789 0.788 -9.11E-04 

M 0.310 0.310 1.92E-06 0.856 0.855 -1.01E-03 

N 0.305 0.305 1.26E-06 0.863 0.862 -1.02E-03 

O 0.355 0.355 2.44E-06 0.811 0.810 -9.36E-04 

P 0.339 0.339 1.09E-06 0.769 0.768 -8.83E-04 

Q 0.362 0.362 1.04E-06 0.776 0.775 -8.91E-04 

R 0.256 0.256 1.65E-06 0.784 0.783 -9.31E-04 

S 0.254 0.254 1.81E-06 0.767 0.766 -8.76E-04 

T 0.389 0.389 1.12E-06 0.808 0.807 -9.23E-04 
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Table 4.19:  Performance Measures – Case 3 

 
CENTROIDAL SYMBOLIC 

Provider Case 3 Δ Case 3 Δ 

Median 0.311 1.73E-06 0.805 -9.24E-04 

Q1 0.282 1.49E-06 0.789 -9.72E-04 

Q3 0.357 2.26E-06 0.843 -9.05E-04 

IQR 0.075 7.73E-07 0.054 6.72E-05 

Threshold 0.469 3.42E-06 0.923 -8.04E-04 

 

Case 3 was a test to determine if a beneficiary that exceeded the average trips per 

provider could be identified using the symbolic approach.  A new baseline was established, 

and the data was assessed using the centroidal approach and the symbolic approach.  When 

the difference to the baseline was observed, the centroidal approach appropriately 

identified Provider A but also inappropriately flagged two other groups.  The symbolic 

method correctly identified Provider A as being the sole group with an anomaly.  The 

difference was calculated as, 

Symbolic Provider A (Δ) > Symbolic Threshold(Δ) where, 

 4.55E -04 > -8.04E -04 

 

4.6 Case 4 – Incorrect Rate Identification 

The final case evaluated was not inspired by a specific example but was a 

recognition that general administrative errors in billing occur.  Intentional or not, these 
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mistakes contribute to the waste experienced by today’s healthcare system.  They can be 

the result of contract misinterpretation, data entry errors, or the result of system errors.  

This final case used the ambulance transport data to simulate an anomaly of this type. 

The hypothesis tested in this experiment was to determine if the symbolic approach 

could detect an error that was the result of an inappropriate rate.  In the baseline case, code 

A0425 is used for transport mileage.  As previously discussed, the Units variable represents 

the actual mileage billed.  Units are multiplied by a flat mileage rate in order to arrive at 

the final charges.  In the base dataset, $7.09 is the standard mileage rate for all A0425 lines.  

As in the previous cases, a baseline was generated in order to have a means of comparison.  

The continuous variable Charges was included as it is the only variable that reflects a 

pricing error as described.   

Pricing error anomalies were added to Provider A to simulate a change.  In the base 

dataset, Provider A had 172 transport trips that were recorded as eight miles in distance.  

Each of these events were billed at $7.09, totaling $56.72 for each line and $9,755.84 for 

all lines.  The anomalistic pattern was introduced to Provider A by changing the rate billed.  

Half of the 172 lines were modified to reflect a rate of $6.09 and a line total of $48.72.  

Half were modified to reflect a rate of $8.09 and a line total of $64.72.  The total for all 

172 lines remained $9,755.84. 

The symbolic and centroidal tests were run to determine if the change could be 

identified.  Table 4.20 and Table 4.21 are the results table and performance measure table 

for Case 4: Pricing Errors. 
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Table 4.20:  Results Table – Case 4 

 CENTROIDAL SYMBOLIC 

Provider Baseline Case 4 Δ Baseline Case 4 Δ 

A 0.221 0.221 1.90E-14 0.727 0.727 0.000 

B 0.623 0.623 5.70E-14 0.813 0.813 0.000 

C 0.361 0.361 -2.30E-14 0.706 0.706 0.000 

D 0.226 0.226 2.10E-14 0.741 0.741 0.000 

E 0.219 0.219 3.00E-14 0.716 0.716 0.000 

F 0.221 0.221 3.30E-14 0.765 0.765 0.000 

G 0.218 0.218 1.80E-14 0.661 0.661 0.000 

H 0.350 0.350 2.50E-14 0.742 0.742 0.000 

I 0.274 0.274 8.00E-14 0.775 0.775 0.000 

J 0.244 0.244 3.50E-14 0.716 0.716 0.000 

K 0.217 0.217 2.20E-14 0.673 0.673 0.000 

L 0.431 0.431 -5.60E-14 0.767 0.767 0.000 

M 0.254 0.254 4.20E-14 0.741 0.741 0.000 

N 0.334 0.334 4.60E-14 0.785 0.785 0.000 

O 0.221 0.221 1.10E-14 0.657 0.657 0.000 

P 0.260 0.260 3.10E-14 0.654 0.654 0.000 

Q 0.365 0.365 5.10E-14 0.769 0.769 0.000 

R 0.555 0.555 5.91E-14 0.700 0.700 0.000 

S 0.234 0.234 7.99E-15 0.658 0.658 0.000 

T 0.351 0.351 2.20E-14 0.721 0.721 0.000 
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Table 4.21:  Performance Measures – Case 4 

 
CENTROIDAL SYMBOLIC 

Provider Case 4 Δ Case 4 Δ 

Median 0.257 2.75E-14 0.724 0.000 

Q1 0.221 1.87E-14 0.693 0.000 

Q3 0.353 4.30E-14 0.765 0.000 

IQR 0.132 2.43E-14 0.072 0.000 

Threshold 0.552 7.95E-14 0.873 0.000 

 

The initial results for Case 4 were not as expected.  Although the differences from 

the base case were negligible, the centroidal approach incorrectly flagged Provider I as an 

outlier provider.  The symbolic approach failed to find any difference between the base 

case and anomalistic case and did not flag any provider as anomalous.  Differences from 

the base case distances in the symbolic case were all zero. 

4.7 Case 4R - Incorrect Rate Identification Revised 

Upon further study, the results from the symbolic run of Case 4 data provided 

information that prompted another iteration of testing.  A zero result across all distances 

implied that the anomalistic case was being evaluated as equal to the base case even when 

it is known that the datasets are different.  Provider A was modified to contain 172 

individual events of charge data that were different.   

While the treatment of modal variables is similar in both the centroidal and 

symbolic approach, continuous variables are evaluated differently.  The centroidal method 

evaluates groups of data using the mean of the group while the symbolic approach 
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evaluates groups by looking at their distributions.  Histograms of each variable within a 

group are developed and then compared “symbolically” to each other in order to evaluate 

the degree of difference, if any.  In the original analysis of Case 4, the symbolic data results 

suggested that the comparison of histograms revealed no difference across the 20 groups, 

yet Provider A should have appeared as different from the rest.  Upon further review, the 

histogram for Provider A in the baseline case was not different than the anomalistic dataset.  

The simulated pricing errors were masked by the calculated width of the bins when 

preparing the histograms.  The changes that occurred between $6.09 and $8.09 were all 

captured within one bin and therefore were not identified.  In the previous chapters, the 

Sturges binning method was chosen as the optimal approach and has been applied 

consistently in this dissertation.  In this final case, when trying to detect a $2.00 discrepancy 

($8.09 - $6.09) in 172 rows of a 100,000-row dataset where the total dollars charged ranged 

from $6.09 to $375.77, the Sturges binning method was not sensitive enough.  The Scott 

method was another binning technique evaluated in Chapter 3.  It generates nearly four 

times the number of bins as does the Sturges method.  Case 4 was tested again using the 

Scott method as the binning technique.  Table 4.22 and Table 4.23 are the results table and 

performance measure table for Case 4: Pricing Error - Revised. 
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Table 4.22:  Results Table – Case 4R Revised 

 CENTROIDAL SYMBOLIC 

Provider Baseline Case 4R Δ Baseline Case 4R Δ 

A 0.221 0.221 1.90E-14 0.748 0.819 0.071 

B 0.623 0.623 5.70E-14 0.822 0.825 0.003 

C 0.361 0.361 -2.30E-14 0.730 0.730 0.000 

D 0.226 0.226 2.10E-14 0.721 0.726 0.005 

E 0.219 0.219 3.00E-14 0.743 0.747 0.004 

F 0.221 0.221 3.30E-14 0.756 0.761 0.005 

G 0.218 0.218 1.80E-14 0.684 0.688 0.003 

H 0.350 0.350 2.50E-14 0.724 0.729 0.005 

I 0.274 0.274 8.00E-14 0.781 0.785 0.004 

J 0.244 0.244 3.50E-14 0.684 0.687 0.004 

K 0.217 0.217 2.20E-14 0.718 0.722 0.005 

L 0.431 0.431 -5.60E-14 0.783 0.786 0.003 

M 0.254 0.254 4.20E-14 0.731 0.733 0.003 

N 0.334 0.334 4.60E-14 0.781 0.784 0.002 

O 0.221 0.221 1.10E-14 0.652 0.657 0.004 

P 0.260 0.260 3.10E-14 0.697 0.699 0.002 

Q 0.365 0.365 5.10E-14 0.765 0.766 0.001 

R 0.555 0.555 5.91E-14 0.718 0.723 0.005 

S 0.234 0.234 7.99E-15 0.677 0.683 0.006 

T 0.351 0.351 2.20E-14 0.737 0.742 0.005 
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Following is a table that summarizes the performance metrics for the revised test. 

 

Table 4.23:  Performance Measures – Case 4R Revised 

 
CENTROIDAL SYMBOLIC 

Provider Case 4R Δ Case 4R Δ 

Median 0.257 2.75E-14 0.732 0.004 

Q1 0.221 1.87E-14 0.717 0.003 

Q3 0.353 4.30E-14 0.771 0.005 

IQR 0.132 2.43E-14 0.054 0.002 

Threshold 0.552 7.95E-14 0.852 0.008 

 

Employing the Scott binning approach did not change the centroidal calculations 

or Provider I being incorrectly flagged as an outlier.  The increased number of bins did 

provide the resolution needed for the symbolic method to properly identify Provider A as 

the anomalistic event.    Provider A was recognized through the difference calculation 

where, 

Symbolic Provider A (Δ) > Symbolic Threshold(Δ) where, 

 .071 > .008 

 

This final example highlights the need for additional research in to determining the 

appropriate binning technique.  As mentioned in Chapter 3, the Sturges method is a time-

tested binning technique that has been documented in textbooks and coded in to statistical 
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software applications for many years.  While its utility has been proven over time and its 

effectiveness demonstrated through the examples in this dissertation, it may not always be 

the best selection.  When datasets have a large number of observations or when the 

difference attempting to be discerned is small, other approaches may work better.  Table 

4.24 shows the binning parameters for all five studied tests for Case 4R – Incorrect Rate 

Identification Revised.  The variable studied in the case is the dollars charged variable.  

The variable has 100,000 entries across 20 providers.  The minimum charge across all 

service codes, including the mileage code, was $6.09.  The maximum charge was $643.91.  

The difference attempting to be discovered was $2.00. 

 

Table 4.24:  Case 4R Binning Results 

 Sqr Root Sturges Scott Rice Freedman 

Number 

of Bins 
316 18 46 93 40 

Bin 

Width 
2.02 35.40 13.80 6.87 15.80 

 

A second iteration of Case 4R was run using the Sqr. Root binning approach.  Like 

the Scott method, it identified the anomaly as well.  As shown in Table 4.24, when 

attempting to identify a small change, bin widths greater than the change can mask the 

difference.  Even the Scott method could have missed the change as its bin width of $13.80 

far exceeds the $2.00 discrepancy. 

Choosing the right binning approach is critical to the success of the methodology.  

The Sturges method can be appropriately applied in most applications and provides the 

smoothing necessary to properly process inherent noise in data.  If the suspected difference 
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in the data is smaller than the bin width provided by Sturges, then a more discerning 

binning approach may be needed.  The proper binning approach is one that is sensitive 

enough to identify anomalies in the data but not overly sensitive as to identify common 

cause variation and call it special cause.   

4.8 Chapter Summary and Observations 

The purpose of evaluating this dataset was to test different situations that could 

exist in a real-world scenario.  The available fields and their distributions were modeled 

after a real provider.  A baseline dataset was created to mimic a set of providers that were 

all similar with only inherent randomness present.  Anomalous situations were introduced 

to represent aberrant behavior that could reasonably be expected to occur with this type of 

data.  These were incidents of excessive mileage being billed, inappropriate service levels 

being applied, a higher than expected number of transports per beneficiary observed, and 

a change in the rate or price of a basic service. 

The baseline dataset was constructed in this chapter to simulate a steady-state 

operating scenario.  When evaluating real-world situations, common cause variability is 

almost always present.  The baseline case was modeled after a real-world provider but 

randomized in a way to create 20 similar, but not identical, groups.  In some cases, 

particularly when applying the centroidal approach, this randomization technique produced 

groups that looked different than the others.  Therefore, the more important measure for 

real-world application was to look for changes to the baseline steady-state case.  For each 

of the cases presented in this chapter, a baseline case was run in addition to the anomalistic 

case.  This provided an opportunity to calculate the outlier score metric for the differences 
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observed between behavior during steady-state versus behavior when an anomalistic event 

has occurred. 

Case 1 introduced the anomaly of providers billing excessive mileage.  It focused 

on one specific route in the data involving trips from a residence to a hospital.  The real 

data that existed most closely matched the Weibull distribution, therefore, that distribution 

was used to model the aberrant data.  The result was an anomalistic event being placed in 

Provider A where the average miles for these cases was nearly four times greater and the 

variability of the data greatly increased.  Both tests performed well in this case.  The 

centroidal approach ably identified the change in mean.  The symbolic method accurately 

identified this change as well by clearly capturing and measuring the change in mean and 

variation through the mapping and comparison of distributions.   

In the case of a change in transport levels, both models performed well.  In the 

example, a change in service meant a change in all the other variables being used as input 

to the model.  That meant a modification to the categorical variables of AutoAcc, ICD, 

Origin and Sex as well as changes to the continuous variables of Age and Units.  Both 

models picked up the differences assigned to Provider A when compared to the baseline 

and highlighted it as an outlier. 

Case 3 presented a challenge for the centroidal model.  The differences for each 

model were minimal but present.  The only difference between the anomalistic data and 

the baseline was the conversion of 10 cells of unique patient identifiers to 10 cells of 

identical patient identifiers.  In a data model that was evaluating five input variables (Age, 

PatientID, ICD, Sex, Units) there were 500,000 active cells being evaluated (100,000 x 5).  

Only nine cells were modified to match the tenth which resulted in 10 identical records 
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representing the same patient.  The test was to determine if the models could find such a 

slight difference.  The centroidal approach discovered the difference in Provider A but 

falsely identified changes in two other providers.  The symbolic method correctly identified 

only the change to Provider A. 

The final case, Case 4, proved the most interesting.  The variable Charges was 

introduced back to the model and changes to a rate within the model impacted the final 

charges billed by Provider A.  The total and average charges did not change but the 

distribution of the continuous variable Charges did change.  In the first iteration of the 

experiment, the centroidal approach erroneously identified the wrong provider as being an 

anomaly.  The symbolic approach failed to find any difference from the baseline.  A second 

run of the test was done, and the Sturges binning method was replaced with the more 

discriminating binning approaches (Scott and Sqr. Root).  In this run, the centroidal result 

was unchanged, but the symbolic method appropriately identified Provider A as 

anomalous.  While the average of charges across groups had not changed, the distribution 

had and when there were enough bins in the histograms that depicted the range of charges, 

the symbolic method identified the anomalous group as different. 

Overall, the symbolic model performed well when assessed against these four 

instances.  In a sample of 100,000 rows of data it did well in each case, correctly identifying 

the presence of a signal indicating the presence of an anomaly.  Table 4.25 summarizes the 

results of the testing done in this chapter. 
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Table 4.25:  Case Summary Table 

# Case 

Centroidal 

Correct 

Symbolic 

Correct 

1 Excessive Mileage YES YES 

2 Inappropriate Transport Levels YES YES 

3 
Excessive Number of Transports per 

Beneficiary 
NO YES 

4 Incorrect Rate Identification NO NO 

4R Incorrect Rate Identification Revised NO YES 

 

 

  



 

164 

 

CHAPTER 5  
 

CONCLUSIONS AND PROPOSED FUTURE RESEARCH 

 

 

The purpose of this dissertation was to examine an alternative approach to 

identifying fraud, waste, and abuse events in healthcare insurance claims datasets.  

Traditionally, these events are examined at an individual level in search of an outlier or 

some anomalistic occurrence.  This research investigated alternatives to looking at the data 

at a higher “concept” level.  The study of SDA provided the foundation for the methods 

developed in this dissertation.  SDA allows for the analysis of concepts while preserving 

the underlying characteristics of the individual data points.  This research examined two 

approaches, centroidal and symbolic, and compared their effectiveness in identifying 

anomalistic conditions.  Continuous and categorical data were tested, and a performance 

metric was developed in order to compare the two methods.  During the research, code was 

written in R to validate the calculations and to provide a tool that could handle larger 

datasets.  After considering some randomly generated datasets, comparisons of the 

centroidal and symbolic approaches were performed on larger “real-world” inspired 

datasets from the healthcare insurance claims industry to determine how well each 

approach could identify anomalistic conditions that could signal the presence of FWA. 

5.1 Conclusions 

Inspired by the contributions of researchers in the field of SDA, and driven by the 

conviction that “distributions are the numbers of the future” [1], a new approach to anomaly 

detection was investigated and several contributions to the body of knowledge in this field 

were made.  It was discovered that symbolic anomaly detection techniques perform equally 



 

165 

 

as well as their classical centroidal counterparts when only changes in mean or central 

tendency distinguish anomalistic activity from normal steady-state.  When changes are 

more subtle, particularly when means are equal but the underlying shape of the distribution 

changes, the symbolic approach excels.  The improved resolution alone when compared to 

centroidal methods makes this approach particularly suited to discovering unusual patterns 

in the data.  Additionally, the benefit of being able to add information at a “concept” level 

allowed for greater definition and resolution of concepts which helped provide greater 

distance between an anomaly and the steady-state common cause condition. 

A second contribution to this work was the study of multiple histogram binning 

techniques.  While the Sturges binning method remains the most popular technique in 

histogram construction, and the one adopted for much of this research, there are other 

techniques available.  This seems particularly relevant for this research as the ability to 

detect changes in distributions can be significantly impacted by histogram construction.  In 

the final example in this research, an alternative histogram approach (Scott Method) 

demonstrated the value of exploring alternate techniques to driving the resolution required 

to identify anomalies where they exist. 

A third contribution was the customized application of a well-established non-

parametric test to several dissimilarity matrices in order to determine a threshold at which 

to call an event “anomalistic.”  This test was applied to classical centroidal tests as well as 

symbolic tests in order to compare performance. 

A final contribution was the development of R code which allowed for testing of 

complex datasets and application to real-world scenarios, specifically those which involve 
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potential FWA in healthcare insurance claims datasets.  This has been made available 

online in the public domain to further use and research. 

The symbolic approach to anomaly detection appears to have many qualities which 

make it an excellent candidate for more widespread acceptance across multiple disciplines 

and industries.  As introduced in this dissertation, the robustness of the approach and its 

ability to handle multiple data types qualify it as a method which should be considered for 

all types of anomaly detection problems.   

5.2 Proposed Future Research 

The research introduced in this dissertation can serve as a foundation for additional 

work using symbolic data to identify anomalistic behavior and more specifically, its 

application to the identification of FWA.   Specific topics that are candidates for additional 

research include: 

 

• Adjusting the non-parametric score multiplier to optimize Type I and Type II 

errors in practice. 

• Further exploring the impact that multicollinearity could have on the symbolic 

approach. 

• Developing a standard technique to choose the appropriate binning approach 

for histogram construction depending on the type, volume, and industry specific 

nature of the data. 

• Exploring the effects of alternative distance calculation techniques (including 

Euclidean which is used herein) and their effects on anomaly detection. 

• Investigating the relationship between supervised and unsupervised models by 

using the symbolic approach in conjunction with labeled datasets and 

supervised learning techniques.  

• Addressing dimensionality reduction as is relates to symbolic data anomaly 

detection techniques. 
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• Developing a practical guide to determine “steady-state” as it relates to 

establishing a baseline to which future activity is compared and to which 

“anomalistic events” are measured against. 

• Experimenting with changing variable weights and their contribution to 

symbolic anomaly detection (all variables considered of equal importance in 

this dissertation). 
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