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Abstract 

 Channel catfish (Ictalurus punctatus), tra catfish (Pangasianodon hypophthalmus) and 

walking catfish (Clarias macrocephalus) all belong to order Siluriformes, but I. punctatus does 

not possess an air breathing organ (ABO) and thus cannot breath in air, and P. hypophthalmus 

is a facultative air-breather and uses the swim bladder as its air breathing organ, which can help 

it conduct aerial breathing in the low oxygen conditions. C. macrocephalus have both gills and 

modified gill structures serving as an ABO, allowing them to aerial breathing (AB). C. 

macrocephalus can live in muddy marshes and burrows inside the mudflat during summer 

periods through air-breathing. These three species serve as a great model for studying the 

transition of life from water to terrestrial living, as well as understanding the genes which are 

critical for the functioning of air breathing.  

In this study, seven early developmental stages in I. punctatus were selected for 

transcriptome analysis, 22,635 genes were covered with 590 million high-quality RNA-seq 

reads. Differential expression analysis between neighboring developmental timepoints revealed 

that the most enriched biological categories were associated with growth, development and 

morphogenesis. A gene co-expression network constructed using WGCNA approach identified 

four critical modules. Among some the candidate hub genes, GDF10, FOXA2, HCEA and 

SYCE3 were closely related with head formation, egg development and transverse central 

element of synaptonemal complexes. CK1, OAZ2, DARS1 and UBE2V2 were mainly 

associated with regulation of cell cycle, cell growth, brain development, differentiation and 

proliferation of enterocytes. IFI44L and ZIP10 were considered to regulate immune activity and 

control ion transport. TCK1 and TGFB1 were involved in transferring phosphate and regulating 
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cell proliferation. All these genes play vital roles in studying the early development in channel 

catfish and teleost fish. 

Seven time points in P. hypophthalmus and C. macrocephalus were selected for RNA-Seq 

analysis based on their transition to a stage that could live at 0 ppm oxygen. More than 587 M 

clean reads were ultimately generated in P. hypophthalmus, and 504 M clean reads were retained 

in C. macrocephalus. A total of 21,448 and 25,239 unique genes were detected in P. 

hypophthalmus and C. macrocephalus, respectively. Through comparative genomic analysis with 

I. punctatus, 109 genes were identified to be P. hypophthalmus-specific genes, while 1,458 genes 

were detected to be specific in C. macrocephalus. Gene expression and network analysis were 

performed for these specific genes. Hypoxia challenge and microtomy experiments collectively 

suggested the timepoints for the functioning of air breathing in P. hypophthalmus and C. 

macrocephalus. Fourteen genes were detected to be important to the functioning of air breathing 

in P. hypophthalmus, in which, hrg, grp and cx3cl1 genes were ultimately identified to be most 

related to the formation of air breathing ability in P. hypophthalmus. In addition, twenty-six 

genes were selected to be candidate genes involved in the formation of air-breathing function in 

C. macrocephalus, including mb, ngb, hbae genes. This study provides a large data resource for 

functional genomic studies in air breathing function in P. hypophthalmus and C. macrocephalus, 

and sheds light on the adaption of aquatic organisms to the terrestrial environment. 
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Chapter 1 General introduction 

1.1 Problem statement 

Catfish (order Siluriformes) is one of the most taxonomically diverse orders representing 

over 12% of all fish species (about 33,000 species total) and 6.2% of all vertebrates (around 

64,000 total species of vertebrates) [1], representing 36 families, 478 genera and more than 3,000 

species [2]. Characteristic morphological phenotypes of catfish have a roughly cylindrical, 

muscular body, at least one pair of barbels attached to a large mouth, and dorsal and/or pectoral 

fins with spines [3]. The vast majority of this order are scaleless, except some families armoured 

with bony dermal plates, such as Loricariidae and Callichthyidae [3].  

The catfish farming is the largest aquaculture industry in the United States, peaking at 350 

million kg (kilograms) of catfish produced in 2003 before dramatically declining due to the 

recession, increased costs, inefficiencies and competition from imported products [4]. Farm-

raised catfish was listed sixth in the 2010 "Top 10" fish and seafood consumption in the United 

States, at about 214 million kg of catfish being processed in 2010 [4]. Since then the production 

dropped to 138 million kg in 2011 [5]. Catfish production increased slightly in 2015-2017 and 

reached 150 million kg in 2017 [6], and continued to grow slowly with 158 million kg catfish 

produced in 2019 [5]. Alabama, Arkansas and Mississippi are the top three catfish production 

states in the US [4].  
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The interest in stocking channel catfish (Ictalurus punctatus) began in the United States  

[7]. Channel catfish were native to east of the Rocky Mountains, south of Canada, north of 

Mexico and south of Delaware. Then they were widely introduced to Europe, Russian 

Federation, Cuba and portions of Latin America, Thailand and China [7]. Globally, 432, 931 

metric tons of channel catfish were produced in 2016 [7].  

The culture of tra catfish (Pangasianodon hypophthalmus) accounts for 2/3 of Vietnam's 

overall aquaculture yields [7]. Due to the ideal climate, plenty of rivers and streams, as well as 

the developing technologies [8], the Mekong Delta, Vietnam has become one of the largest 

aquaculture producers with the annual output of tra catfish reaching 1.14 million metric tonnes 

and export income of about 1.4 billion dollars [9].  

The walking catfish is widely distributed in Asia, the Indian subcontinent and Africa. It has 

great economic value as a food fish [10]. The Asian catfish, Clarias batrachus is one of the most 

cultured food fish of India, Bangladesh, Thailand and Philippines [11], Clarias macrocephalus is 

an important freshwater fish distributed throughout Southeast Asia [12]. The main cultured 

species in Thailand is the Clarias, with a current production of about 11,000 metric tons/year [7]. 

The hybrid between Clarias macrocephalus female × Clarias gariepinus male is the most 

preferred species that has been cultured for more than 20 years in Thailand [13]. This species is 

well adapted to a variety of environmental conditions, such as hypoxia [14].  

When comparing the morphological traits of these three species, channel catfish have the 

largest head and a fusiform body, while walking catfish have relatively smaller heads and longer, 
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elongated body shape [15]. Tra catfish have a very small head compared to their body size [16]. 

In addition, the air-breathing capability also varies greatly among these three species: channel 

catfish does not possess an air breathing organ (ABO), and thus, cannot breathe air [17]. Clarias 

macrocephalus, has both gills and modified gill structures that serve as an air breathing organ, 

which allows aerial breathing (AB). Walking catfish can also live in muddy marshes through air-

breathing and can sometimes travel across land, [18, 19]. The tra catfish are facultative air-

breathers and utilize the swim bladder as an air breathing organ, which allows them to breathe air 

in low oxygen environments [20]. The ability of air-breathing is a big advantage for these species 

to combat and survive in the hypoxic environment. 

1.2 Air-breathing in fish 

Physiologists have been interested in the transition from aquatic to aerial gas exchange in 

vertebrates for centuries. Fishes that perform aerial respiration provide critical evidence of 

evolution during the transition from life in the ocean to terrestrial living [21]. The transition of 

water breathing to air breathing was one of the most important events in terms of the evolution of 

vertebrate life. About 350 million years ago, the water oxygen level gradually declined due to 

high temperatures and the decay of dead organic components that consumed the dissolved 

oxygen in swamps, rivers and lakes [22]. Severely reduced oxygen level in water forced certain 

fish ancestors to develop air-breathing organs. Some fish left aquatic environments and 

colonized the land; progeny of others are air-breathing species [23]. Air breathing fishes can 
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conduct gas exchange for respiration directly with the aerial environment rather than being 

limited to respiration through water. Air breathing fish may rise to the surface of the water, gulp 

air, and even crawl onto land and survive for a long time [24]. There are estimated to be more 

than 370 extant air breathing fish species in the world, distributed among 49 families, routinely 

involved in some level of aerial respiration [25]. During the hypoxic period, air breathers can air 

breathe to increase the gill oxygen uptake ability, which may involve removing the O2 from air 

through increasing vascularization of the buccal cavity. However, in some extreme 

circumstances, even when water is enriched with oxygen, air-breathers which are completely 

dependent on aerial respiration may drown without access to the water surface [21]. 

The evolutionary transition from aquatic to aerial breathing involves changes in gas 

transport, ion regulation physiology and nitrogenous waste excretion. The air-breathing ability 

among fish also varies greatly [24]. Oxygen uptake directly from the air above surface water 

requires a radical transformation of their respiratory organs [26]. The air breathing organ (ABO) 

varies from species to species. Gills are typical fish breathing organ. In bony fish, capillary blood 

flow in operculum covered gills if efficient for gas exchange in the water. However, the gill is 

not adapted to non-aquatic air exchange in land environment [27]. In order to breathe oxygen 

from the air, certain fish species became air-breathers by evolving different kinds of air-holding 

chambers. The most common structure for air breathing is the swim bladder. In water breathing 

fish, this chamber is used to balance the hydrostatic pressure as well as navigating sounds. In 

some air-breathing species, it evolved to a fully functional lung [26]. Besides the swim bladder, 
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air-breathing fish utilize a diverse structure to perform the aerial-respiratory function, including 

but not limited to structured gills, modified intestine, muscle, skin, pharyngeal pouches, stomach 

and the skeleton [28] [22].  

1.3 Function of air breathing organ 

For species with modified intestine as an ABO, the air is taken in the mouth with 

unidirectional ventilation of the posterior region of the intestine and continuous exhaust gas from 

the vent [29]. In this region, the mucosa surface is lined with respiratory epithelium as well as 

capillary networks. Respiratory epithelium cells stagger with capillaries, serving as a tiny air-

blood barrier (0.24-3.00 um) for air exchange [30]. Obviously, the intestinal gas exchange and 

digestion in fish are not mutually exclusive processes. The eating and breathing behavior can 

alternate in a very short time in intestine-breathing fish [29]. Apart from the capability of 

respiration, buoyancy regulation and the gas exchange in intestinal fish are supposed to be 

similar to the aerial gas exchange in other facultative air-breathing fish [29]. 

In teleost, gills serve as one of the most important organs. The functions of gills include O2 

and CO2 exchange, acid balance, ionic homeostasis and ammonia excretion [31]. For the species 

that use modified gills as ABO, the efferent branchial arteries of anterior (first and second) gill 

arches serve as the accessory air breathing organ and are also the site for gas exchange. The 

ventral aorta originates from the heart and splits into a ventral branch and a dorsal branch. The 

ventral branch pumps blood to anterior gill arches, flows through the accessory ABO, then the 
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blood returns to the heart. The dorsal branch distributes blood to posterior (third and fourth) gill 

arches and proceeds to the circulatory system, which can help transport oxygen-rich blood to 

other tissues [32]. 

Specifically, Clarias macrocephalus is a continuous, facultative air breather, possessing an 

accessory respiratory organs (ARO) similar to those for Clarias batrachus. The ARO of Clarias 

batrachus are derived from gill tissue and consist of four sections: (1) supra-branchial chamber, 

(2) gill fans, (3) the dendritic organ or the respiratory tree, and (4) respiration epithelium [33]. 

Gill fans from the second and third gill arches extend to the supra-branchial chamber and split it 

into anterior and posterior recess, the dendritic organ from the second gill arch and fourth gill 

arch extends into the anterior recess and the posterior recess, respectively [32]. The respiration 

epithelium lines surround the supra-branchial chamber and maintain the structural characteristics 

as well as arterioarterial vessels similar to those of branchial filaments. Gill and ARO vessels 

align in parallel as integrated parts of the circulation system [32]. Although there are differences 

in the gross features of ABO in Clarias and Heteropneustes fossilis, the vascular organization 

and respiration vessel structure are similar between them, which may indicate that the air-

breathing organ originated in a common Siluridae ancestor [34, 35] 

The modified swim bladder is another form of the air breathing organ. The swim bladder in 

teleost is a large, trabeculated, well vascularized organ, which is widely considered as 

homologous with lung of immemorial Osteichthyes [36, 37]. Swim bladder has been reported as 

the organ involved in aerial respiration, includes Gonorynchiformes [38], Characiformes and 
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some species in Siluriformes, such as suborder Gymnotus and the Pangasianodon hypophthalmus 

(tra catfish) [39, 40]. The swim bladder in Characiformes and P. hypophthalmus is double 

chambered [41]. P. hypophthalmus is a facultative air breather, and the swim bladder of P. 

hypophthalmus extends from the posterior part of the head to the tail beyond the anus. This 

structure is supported by subdivided collagenic fibrous walls. There are two types of epithelium 

on the surfaces of the fibrous walls inside the swim bladder, one is the thin respiration type, 

covering the majority of the surface and highly vascularized with a large amount of red blood 

cells. This feature makes it a major place for gas exchange between air and blood in the swim 

bladder. The second type is thicker with a brush border [42].  

1.4 The timing of the development for air breathing organ in embryos/fry 

Anabas testudineus is an air breathing climbing perch which can survive in swamps 

containing low dissolved oxygen [43]. Aquatic respiration was found to be obligatory for young 

larvae with the young fish hatching from the egg membrane 10 h after fertilization. In the yolk-

sac stages all the gas exchange processes take place in the well vascularized skin, none of gill or 

labyrinthine organs could be seen during this stage, and later the skin alone was not sufficient to 

sustain the growing demand for oxygen. The gill arches and filaments start differentiating at 

about 24 h and become functional at about 40 h after hatching [44]. The secondary lamellae with 

marginal channels were recognizable 60 h after hatching, and well-organized gill system (arches, 
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filaments, lamellae) forms around the same time. The labyrinthine organs differentiated at 51 h, 

but the hatchlings did not aerial breathe until 13-14 days [44, 45]. 

The Indian catfish Heteropneustes fossili, known as the stinging catfish, inhabits ponds, 

swamps and marshes, can survive the high density stocking due to its aerial respiration ability 

and thus is an ideal aquaculture species, especially for the Indian subcontinent and Southeast 

Asian [46]. The embryo differentiation starts about 10 h after fertilization, the gills begin to 

develop at 48 h. However, the air breathing behavior of larvae was not observed until 10 days 

after hatching [47, 48]. African catfish, Clarias gariepinus, is a widely cultured fish in many 

parts of Africa and Asia due to its rapid growth rate as well as tough vitality. Hatching starts at 

17 h after fertilization at 28.5 ± 0.5◦C. The circulatory system was activated at 13 h after 

hatching. The rudimentary operculum was established about 43 h and it was not well developed 

until 59 h after hatching. The buccal and branchial systems are fully vascularized at about 83 h 

after hatching [49, 50]. In the case of Clarias macrocephalus, the gill was observed shortly after 

hatching, the suprabranchial organ begins to develop as the fish size reaches 11 mm, and this was 

also the initiation point of aerial breathing [51].  

Pangasianodon hypophthalmus is a large freshwater catfish native to Thailand and the 

Mekong in Vietnam [52]. It possess a swim bladder for aerial gas exchange, but in contrast to 

most other air breathing species that typically have reduced gills, P. hypophthalmus is endowed 

with fully-developed gills, which makes it an excellent species that can adapt to varied 

environments through both aerial respiration and aquatic respiration [53]. This species can 
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survive in water temperatures from 24°C to a maximum of 32°C [54]. The diameter of P. 

hypophthalmus eggs post fertilization is 1.2-1.8mm, the eggs will hatch within 24 hours after 

fertilization at 26°C and above. At 5 d post fertilization, the yolk sac is totally absorbed and the 

larvae have the capability to swim [55]. The air breathing organ – swim bladder also develops at 

this time [56].  

Pangasius sutchi is a continuous, obligatory air-breather and is an important Asian 

commercial species using the swim bladder as an air-breathing organ [57]. Which is an alveolus 

at the middle of esophagus. The fertilized eggs of P. sutchi are yellow to green-brown in color 

and adhesive. Nine hours after fertilization, the head, tail, and embryonic shield could be 

observed clearly, at 24-30 h post fertilization, the larvae were hatched with a body length of 

about 3 mm, and the heart became functional about 12-14 h post hatching. About 3 days post 

hatched, the yolk sac is fully absorbed [55]. The swim bladder with double chambers appeared at 

8-10 days post hatching. Twelve days post hatching, the lumen of the swim bladder is formed 

and the inner surfaces of alveoli are covered by a network of capillary, conferring aerial 

breathing ability at this stage for P. sutchi. [57, 58]. 

1.5 Functional genomics 

Functional genomics is the study of how genes and intergenic regions of the genome 

contribute to different biological processes [59]. A researcher in this field typically studies genes 

or regions on a “genome-wide” scale with the purpose of narrowing them down to several 
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candidate genes or regions to analyze in more detail [60]. As a new branch of science, functional 

genomics, is trying to better understand the genetics of an organism, such as the linear order of 

the nucleotide bases, the expression of all genes as a dynamic system, how the genes interact and 

influence biological pathways, and the evolutionary role of the organism [61, 62]. Generally, 

there are several specific functional genomics methods: (1) DNA level (genomics and 

epigenomics); (2) RNA level (transcriptomics); (3) protein level (proteomics); and (4) metabolite 

level (metabolomics) [60]. The introduction focus on two of the most widely used techniques: 

transcriptome sequencing (RNA-sequencing) and genome sequencing (DNA-sequencing). 

1.5.1 RNA sequencing  

Unlike the genome, the transcriptome is dynamic with developmental stages, biological 

conditions, and environmental effects at a specific moment of time [63]. RNA-Seq analysis 

contains the expression profile changes of each gene with the development of different stages, as 

well as the transcriptional structure of genes, which is of great value to the annotation of 

functional elements in the genome [64]. Sanger sequencing, also considered as "first-generation 

sequencing" [65], was widely used in screening of cDNA and EST libraries at the beginning of 

sequencing-based transcriptome analysis technologies [66]. However, although it is still widely 

used today to sequence smaller gene regions, identify site directed mutagenesis, verify the results 

of gene editing and others, traditional Sanger sequencing is limited by the discovery of 

substitutions, small insertions and deletions, and it is impossible to use sanger sequencing for 
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large genomic sequencing such as the human genome project [65, 67]. With rapid advances in 

sequencing platforms, sequencing-based technology has reached a new level. The arrival of next-

generation sequencing (NGS) allows an entire genome to be sequenced in less than one day and 

offers generous volumes of data at a much lower cost - in some cases in excess of ten billion 

short reads per run for the Illumina NovaSeq system [65, 68]. Another advantage of NGS is that 

we can verify and quantify transcripts without prior knowledge of particular genes, which is a 

huge advantage compared with microarray approach [69].  

There are three main types of platforms for NGS: Roche/454, Illumina/HiSeq 2000, and 

Life/SOLID [70]. RNA sequencing uses numbers of methods which can be roughly summarized 

as template preparation, library construction and sequencing, and data analysis. The type of data 

generated is different from one platform to another, and it is also different when comparing the 

data quality and cost [65]. Currently, the Illumina NovaSeq 6000 dominates the NGS market. 

Illumina yields longer and more accurate contigs, it also has less average sequencing error in the 

raw reads compared with other two platforms, moreover, Illumina platform is much more 

economical (only 1/4 of the cost of Roche 454 platform) [71]. 

 The regular bioinformatic procedures for downstream RNA-Seq are summarized in Figure 

1. As shown in Figure 1, the next-generation sequencing raw data is stored using the FASTQ 

format. The major steps involved in a basic RNA-seq analysis are transcriptome assembly, 

differential expression analysis, functional annotation and identification of key genes of relevant 

biological function. Sequencing adapters and low-quality bases were removed by trimmomatric 
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version 0.36 [18]. Based on whether a high quality reference genome is available, there are two 

strategies for transcriptome analysis. If a reference genome for the organism of interest is not 

available, de novo assembly is needed to generate a collection of transcript contigs. Several 

software are available for de novo assembly, such as ABySS [72], Trans-ABySS [73], QSRA 

[74], SOAPdenovo and Trinity [75, 76]. Among these de novo assembly software packages, 

Trinity is the most efficient and widely used one [77]. Trinity software includes almost all the 

packages needed for a complete transcriptome analyses without a reference genome, including 

RSEM for transcript abundance estimation, R/Bioconductor packages for differential expression 

analysis and TRANSDECODER for protein-coding gene prediction [76]. If a reference genome 

exists, reference-based assembly is a better choice. There are many software packages for 

reference-based datasets, such as Tophat-Cufflinks-Cuffdiff and their upgraded version Hisat2-

StringTie-Ballgown [78, 79]. STAR-HTseq2-DEseq2 also has good performance for analyzing 

the RNA data with the aid of reference genomes [80-82]. We can choose the combination of 

software based on our research purpose and specific objective. 
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Figure 1. RNA Sequencing workflow 

1.5.2 DNA sequencing  

As the application of RNA sequencing, in recent years, the development of science and 

technologies, especially the high-throughput sequencing ("Next-generation" sequencing 

technology) can also be applied to DNA sequencing, and it has drastically improved genome 

studies, and many genomic resources have been developed [83]. Massive DNA sequencing 

platforms have been constructed in several years, among which, Illumina genome analyzer is the 

most widely used platform. The development of sequencing platforms can promote the 
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biological and biomedical research by enabling the comprehensive analysis of genomes, and it 

also provides a broad range of biological phenomena [84]. There is a list of software provided 

for genome analysis, ABySS [85], SOAPdenovo2 [75], and velvet are used for genome assembly 

[86]; BUSCO and Quast are widely used software to access the completeness of assembled 

genome [87, 88]. As shown in Figure 2, after quality control and the Trimmomatric step to 

remove adaptor and low-quality reads, there are two kinds of genome sequencing: one is whole 

genome sequencing (WGS), and the other is whole genome resequencing (WGRS). Genome 

sequencing investigates the order of DNA nucleotides, or bases, in a genome. Allowing the 

research in gene interaction and their functions in growth, development and maintenance of the 

organism [89, 90]. Whole genome resequencing can be used to examine the differences between 

a specific individual and the reference genome in the DNA sequence. It also performs massively 

parallel sequencing for retrieving enough DNA fragments to cover the whole span of the genome 

of the organism [91, 92]. 
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Figure 2. DNA sequencing workflow 

1.6 The latest developments in DNA technology. 

There has been a rapid development of DNA sequencing technology in the past few decades. 

Sanger sequencing, known as the first-generation sequencing, began in 1970. Throughout the 

1990, next generation sequencing (NGS, also known as second-generation sequencing) nearly 

superseded sanger sequencing [44]. Except for the well-known DNA-seq and RNA-seq, some 

new technologies were rapidly developed based on the NGS technologies in recent years, such as 

BS-seq, ChIP-seq, small RNA-seq, single-cell sequencing and others. Shortly after that, a new 
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sequencing technology-third generation sequencing (TGS) has emerged, which did not require 

PCR amplification and achieved the individual sequencing of each DNA molecule. Over the last 

10 years, Genome Wide Association Studies (GWAS) also presented a powerful tool to link a 

biological trait back to its underlying genetics [93]. Except for the sequencing-based 

technologies, the DNA-editing and DNA transfer technologies also play an essential role in 

recent years, especially the CRISPR/Cas9. 

1.6.1 BS-seq 

DNA methylation refers to the binding of a methyl group to the C5 carbon residue of 

cytosines through DNA methyltransferases [94]. DNA methylation is a critical epigenetic 

mechanism for the eukaryotic genome [95], involving several key physiological processes, such 

as X chromosome inactivation, parental allele-specific imprinting, imprinting disorder and 

cancer [95]. Bisulfite sequencing (BS-seq) relies on bisulfite conversion to detect the 

methylation without routine sequencing. Treatment of DNA with sodium bisulfite can covert 

cytosine into uracil, but leaves 5-methylcytosine residues unmodified. Uracil is identified as 

thymine by DNA polymerase, as amplifying bisulfite-treated DNA by PCR yields products in 

which unmethylated cytosines appear as thymine. By comparing the modified DNA sequence 

with the original sequence, the methylation state of the original DNA sequence can be inferred 

[94, 96] 
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1.6.2 ChIP-seq 

Chromatin immunoprecipitation followed by sequencing (ChIP–seq) is a technique 

combining chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing, 

which can be used to analyze the positions where proteins interact with DNA, histone 

modifications or nucleosomes [97]. With the advantages of relevant low cost, high resolution, 

great coverage and large dynamic range, ChIP-seq thus became a consummate tool for the 

understanding of gene regulation and epigenetic mechanisms [97, 98] 

1.6.3 Single-cell seq 

Single cell sequencing (Single-cell seq) provides an unbiased method for the study of extent, 

basis and function of gene expression variation between seemingly identical cells [99], by deep 

sequencing DNA and RNA from a single cell, cellular functions can be investigated extensively 

[100]. The application of single-cell seq has a great impact on our conceptual understanding of 

various biological processes with broad implications for both basic and clinical research [101]. A 

typical Single-cell seq involves the isolation of a single cell, then implementing whole-genome-

amplification (WGA), sequencing libraries construction and sequencing the DNA using a next-

generation sequencer [101].  
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1.6.4 Third-Generation Sequencing 

About 40 years ago, the emergence of Sanger sequencing was a revolutionary as it made 

genome sequencing possible for the first time. Next-generation sequencing (NGS) is a second 

revolution, which made genome sequencing much cheaper and efficient [102]. But at the same 

time, NGS also have several shortcomings, and short reads are the most notable drawbacks. In 

recent years, the appearance of third-generation sequencing (TGS), also known as long-read 

sequencing or single-molecule sequencing (SMS) technology, makes it possible for dramatically 

reading lengths within a short time [103]. Additionally, this new technology can identify 

epigenetic modifications on native DNA directly [103]. Table 1 compares first-generation 

sequencing, next-generation sequencing and Third-generation sequencing [102, 104, 105]. 

Table 1. Comparison of first-generation sequencing (FGS), next-generation sequencing (NGS) and third-

generation sequencing (TGS) 

 First generation Second generation Third generation 

RNA-

sequencing 

method  cDNA sequencing  cDNA sequencing  

Direct RNA sequencing 

and cDNA sequencing  

Resolution Averaged across many 

copies of the DNA 

Averaged across many 

copies of the DNA 

molecule being sequenced 

Single-molecule 

resolution  
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molecule being 

sequenced  

Current read 

length  Moderate (800–1000 bp)  

Short, generally much 

shorter than Sanger 

sequencing  

Long, 1000 bp and 

longer in commercial 

systems  

Current cost Low cost per run  High cost per run  Low cost per run  

Sample 

preparation  

Moderately complex, 

PCR amplification not 

required  

Complex, PCR 

amplification required  

Ranges from complex 

to very simple 

depending on 

technology  

Data analysis  Routine  

Complex because of large 

data volumes and because 

short reads complicate 

assembly and alignment 

algorithms  

Complex because of 

large data volumes and 

because technologies 

yield new types of 

information and new 

signal processing 

challenges  

Primary 

results  

Base calls with quality 

values  

Base calls with quality 

values  

Base calls with quality 

values, potentially other 
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base information such 

as kinetics  

 

There are now three commercial SMS technologies, the first is the Illumina Tru-seq 

Synthetic Long-Read technology, this method is relatively slow and expensive. The second 

technology is termed "single-molecule real-time" (SMRT) released by Pacific Biosciences 

(PacBio). The third one is Nanopore sequencing introduced by Oxford Nanopore Technology 

(ONT) [104]. With this new third-sequencing technology, genome regions that remained 

ambiguous to date can now be resolved, and the complexity of transcriptomes can be inferred in 

unprecedented detail [102]. Long-read technology have now become a new revolution in 

genomics research.  

1.6.5 CRISPR/Cas9 

Various artificial nuclease systems have been produced for genome editing. Zinc-finger 

nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) were the first two 

widely used engineered nucleases [106, 107]. Recently, genome editing using clustered regularly 

interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) supplied 

an alternative to ZFNs and TALENs, and became the most popular genome editing technology. 

CRISPR/Cas9 is a prokaryotic immune system that can be used to edit genes within organisms 

[108]. In general, CRISPR/Cas9 has three major types: type I, type II and type III, and 12 
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subtypes based on the Cas genes and the proteins they encode [109]. CRISPR/Cas9 consists of a 

nonspecific Cas9 nuclease and a list of programmable sequence-specific CRISPR RNA 

(crRNA), which can be used to guide Cas9 to DNA cleavage and produce double-strand breaks 

at target sites, followed by cellular DNA repair, leading to desired insertions, deletions or 

substitutions at specific sites [110]. The rapid development of CRISPR/Cas9 tools benefit many 

cell and molecular biology studies, and also drives innovative applications from basic biology 

research and medical research on human diseases [108]. The development of gene editing 

technologies offers a more comprehensive model to rationalize the balance between target 

recognition and nuclease activation, thus improving the targeting accuracy of CRISPR-Cas9 

[111]. In addition, the development of multiple engineered sgRNAs with various target 

sequences can guide Cas9 to the corresponding sites within the same cells [112], which has many 

potential applications, such as the mutation of genes which control complex traits, as well as 

multiple members of gene families [113, 114]. 
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Chapter 2 Deep transcriptomic analysis reveals dynamic developmental progression during 

early development of channel catfish (Ictalurus punctatus) 

2.1 Abstract 

The transition from fertilized egg to larva is accompanied with various biological processes 

and gene expression changes. In this study, seven early developmental stages in channel catfish, 

Ictalurus punctatus, were selected for transcriptome analysis, and 22,635 expressed genes were 

covered with 590 million high-quality RNA-seq reads. Differential expression analysis between 

neighboring developmental timepoints revealed that the most enriched biological categories 

were associated with growth, development and morphogenesis, which was most evident at 2 vs. 

5 days post fertilization (dpf) and 5 vs. 6 dpf. A gene co-expression network constructed using 

WGCNA approach identified four critical modules. Among some the candidate hub genes, 

GDF10, FOXA2, HCEA and SYCE3 were closely related with head formation, embryonic 

development, egg development and the transverse central element of synaptonemal complexes. 

CK1, OAZ2, DARS1 and UBE2V2 were mainly associated with regulation of cell cycle, cell 

growth, brain development, differentiation and proliferation of enterocytes. In addition, IFI44L 

and ZIP10 were thought to be critical for the regulation of immune activity and ion transport. 

Similarly, TCK1 and TGFB1 were involved in phosphate transport and regulating cell 

proliferation. All these genes play vital roles in embryogenesis and regulation of early 
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development in channel catfish. Critically, in this project, data resources for functional genomic 

studies were generated. Our work reveals new insights for exploring the underlying 

mechanisms of channel catfish early development. 

2.2 Background 

Catfish (order Siluriformes) is one of the most taxonomically diverse orders, which includes 

over 12% of all teleost species (about 33,000 teleost species) and 6.2% of all vertebrates (64,000 

vertebrates) [1]. Channel catfish (Ictalurus punctatus) and its hybrid from mating with blue 

catfish (I. furcatus), males are the most extensively cultured type of fish in the USA, accounting 

for a farmgate revenue of $185 million in 2015 [2].  

The study of embryogenesis is critical for a comprehensive understanding of the gene 

expression patterns and underlining biological changes during early embryonic developmental 

stages of an organism. There are many studies concerning the early embryonic development in 

model species using RNA-seq, such as mouse (Mus musculus), fruit fry (Drosophila 

melanogaster) and zebrafish (Danio rerio) [3-6]. However, the early development in channel 

catfish has not been studied at the level of transcriptome, which is a large void to further 

comprehend the differentiation and growth mechanisms of this commonly domesticated order. 

Channel catfish is one of the most studied catfish species, with the first genome assembly 

released in 2016 [7], which provides a vast resource for functional genomic studies and 

biological research.  
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Unlike the genome, the transcriptome is dynamic and could be a good reflection of the 

cellular states with developmental stages, biological conditions, and the environment in a 

specific moment [8]. RNA-Seq analysis could provide the gene expression profiles of developing 

embryos at different stages, as well as the transcriptional structures of genes, which is of great 

value to the annotation of functional elements of the genome [9]. Weighted gene co-expression 

network analysis (WGCNA) is a system biological method and usually utilized to correlate 

modules as well as to concatenate external traits, WGCNA is also used for exploring the genes 

within the same modules, which are thought to be highly connective, and the genes inside the 

same module potentially have similar functions [10]. WGCNA analysis can further identify hub 

genes, which is critical for a specific trait or biological process [10]. WGCNA is a powerful 

method to conduct sequencing analysis and has been widely applied in studying many different 

biological contexts, including cancerogenesis, brain imaging, and early development in various 

species [11-13]. 

In this study, we used deep RNA sequencing to investigate the gene expression profiles of 

channel catfish during early development. Seven early developmental stages, including 2 days 

post fertilization (dpf), 5 dpf, 6 dpf, 7 dpf, 8 dpf, 9 dpf and 10 dpf, were selected for 

transcriptome sequencing and analysis. A transcriptome dynamic progression is provided, which 

may serve as a blueprint for future investigation of early development and organogenesis. The 

aim of this study was to verify gene expression in a stage-specific manner and compare the 

expression profiles of seven early developmental stages to identify the differentially expressed 
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genes (DEGs) in each stage. The DEGs were used to conduct Gene Ontology (GO) enrichment 

analysis to study the biological functions and also, they were utilized for WGCNA analysis to 

verify the co-expressed modules. Cytoscape was utilized to identify the candidate hub genes 

within eight stage-specific modules, which may be closely involve in early development in 

channel catfish. 

2.3 Materials and methods 

2.3.1 Ethics statement 

All of the experimental protocols involved in animal care and sample collection were 

approved by the Auburn University Institutional Animal Care and Use Committee. All samples 

were collected after euthanization with buffered MS-222 (200 mg/L). All animal handling 

procedures were performed following the Guide for the Care and Use of Laboratory Animals and 

the Animal Welfare Act in the United States. 

2.3.2 Sampling of channel catfish 

Kansas random strain of channel catfish was raised in earthen ponds at the Genetics Research 

Unit, E.W. Shell Research Center, Auburn University. The Kansas strain was derived from the 

Ninnescah River in Pratt, Kansas in 1911 [14, 15], and is the oldest domestic channel catfish strain 

in the US.  
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After harvesting, females and males were mated and spawned at the genetics facility 

greenhouse. Channel catfish embryos and larvae were obtained by artificially spawning brood 

stock. Fertilized eggs were incubated in a hatching trough at 25 to 26 degrees Celsius, with water 

hardness above 40 ppm and dissolved oxygen was 5 mg/L. If fungal infection occurred, a 15-

minute static treatment of 100 ppm formalin was administered. Treatments ceased 24 hours before 

the expected hatch date. From 7 dpf, swim-up fry were fed to satiation six times per day using a 

powdered 50% protein starter diet from Purina® AquaMax® [15]. Channel catfish samples were 

obtained at 2, 5, 6, 7, 8, 9 and 10 dpf. A total of 20-50 embryos/larvae were collected at each 

sampling, and 200 ppm buffered MS-222 was utilized to euthanize larvae [15]. The samples were 

placed into 1.5 mL centrifuge tubes, flash-frozen in liquid nitrogen, and stored in -80°C for RNA 

extraction.  

2.3.3 Microscopic anatomy 

At each sampling timepoint, another 20-50 embryos/larvae were fixed with 10% phosphate-

buffered formalin in 1.5 mL centrifuge tubes and sealed for microscopic analysis. For 

microscopic anatomical observations, samples were transferred to a 75% ethanol solution. 

Observations were conducted with a MEIJI TECHNO anatomy microscope and images were 

photographed with a Canon DS126311 camera.  
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2.3.4. RNA isolation, library construction and sequencing  

In order to examine changes in expression through out early stages development, at each 

time point, 2, 5, 6, 7, 8, 9 and 10 dpf, eight embryos/larvae were randomly selected and divided 

into two replicate pools (four embryos/larvae each). For each replicate, samples of four 

embryos/larvae were homogenized in liquid nitrogen with a mortar and pestle. RNA extraction 

was conducted using the RNeasy Plus Kit (Qiagen) following the standard protocols. The 

concentration and quality of RNA were measured using RNA NanoDrop spectrophotometer 

(NanoDrop Technologies). Equal amounts of RNA from the two replicates for each sample were 

pooled together for RNA-Seq library construction and Illumina sequencing [16].  

Library construction and sequencing reactions were conducted at GENEWIZ, LLC. (South 

Plainfield, NJ, USA). The RNA integrity was checked with 4200 TapeStation (Agilent 

Technologies, Palo Alto, CA, USA). Ribosomal RNA depletion was conducted using Ribozero 

rRNA Removal Kit (Illumina, San Diego, CA, USA). RNA sequencing library preparation was 

performed using NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA). 

Enriched RNAs were fragmented for 15 minutes at 94 °C. The first strand and second strand 

cDNA were subsequently synthesized. The cDNA fragments were end-repaired and adenylated 

at 3'ends, and a universal adapter was ligated to cDNA fragments, followed by index addition 

and library enrichment with limited cycle PCR. Sequencing libraries were validated using the 

Agilent Tapestation 4200 (Agilent Technologies, Palo Alto, CA, USA) and quantified by using 
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Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA). The samples were sequenced using a 2x150 

Paired-End (PE) configuration. Image analysis and base calling were conducted by the HiSeq 

Control Software (HCS).  

2.3.5. Reads mapping and differential expression 

The channel catfish genome was obtained from the NCBI database 

(https://www.ncbi.nlm.nih.gov) and used as a reference for mapping reads. The channel catfish 

genome assembly included 783 Mb of 9,974 scaffolds with an N50 of 7.73 Mbp [7]. Channel 

catfish transcriptome data (.bcl files) generated from Illumina HiSeq were converted into fastq 

files and de-multiplexed using Illumina's bcl2fastq software (version 2.17). The quality of raw 

reads was controlled by FASTQC [17], reads were filtered by removing low-quality reads, 

adapters, and reads with length shorter than 36 bases using Trimmomatic v0.36 [18]. The 

resulting clean reads were quality-controlled again and aligned to the channel catfish genome by 

STAR software (version 2.7.0) [19], allowing less than a 4-bases mismatch. HTSeq-count [20] 

was conducted to calculate the number of aligned reads of each gene overlapping its exons. To 

perform the differential expression analysis with the embryonic development of channel catfish, 

an R package DESeq2 [21] was employed to calculate the log2-fold change (log2FC), a criterion 

with |log2FC| ≥ 1 and p-value < 0.05 was used as the threshold for evaluating the DEGs. When 

log2FC > 1, DEGs were considered to be up-regulated; while log2FC < -1, DEGs were 

considered to be down-regulated. 
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2.3.6 Enrichment analysis 

For every differential expression comparison, the Gene Ontology (GO) terms of each gene 

were assigned by using zebrafish annotations for the unigene set. Enrichment analysis was also 

performed using the ClusterProfiler R package (version 3.6) [22] to profile their major biological 

processes, molecular functions and cellular components. The threshold of significance criteria 

was set at 0.05 for p-value and q-value cutoffs and the enriched GO terms were ranked by p-

value. 

2.3.7 Gene co-expression network construction                                           

To verify the interesting gene modules and network properties of the gene expression profile 

in the early development of channel catfish, an R package named weighted gene co-expressed 

network analysis (WGCNA) [10] was employed following the standard protocol. Then, the 

intramodular connectivity and gene significance were applied to verify key co-expressed genes 

in the network and correlate the identified modules to external information, development stages. 

A total of 8,504 DEGs from 7 timepoints were used to calculate the correlation between samples. 

These DEGs were used for hierarchical clustering analysis.  

2.3.8 Identification of development-related modules and visualization                     

After the co-expression network was constructed, the developmental stages-responsive 

modules and genes were selected based on the correlation coefficient between the modules and 
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developmental stages. The genes within the same modules are highly connective, and the genes 

inside the same module potentially have similar functions. To verify the biological function of 

the specific modules as well as the correlation between the modules and different development 

stages, genes inside the same modules were selected to perform GO enrichment analysis using 

the R package ClusterProfiler (version 3.6) [22]. Hub genes are defined as genes inside co-

expression modules with high correlation. To further verify the hub genes and their possible 

roles in early development stages, the top 200 ranked genes within each module were extracted 

according to the intra-modular connectivity with module eigengenes, which were used to 

construct a protein-protein network (PPI). The R package Cytoscape (version 3.7.2) [23] was 

employed to identify genes of the highest node degree, which may have a critical function in the 

PPI.             

2.4 Results 

2.4.1 Morphology of the channel catfish embryos/larvae during early development 

At 2 dpf, the embryos, which were developing within the chorion, were approximately 4 mm 

in length and appeared oval with no eyes (Figure 3). At 5 dpf, the average length was 9 mm, and 

tail buds were free from the yolk sac. The larval head was close to the yolk sac, eyes were 

observed, larvae laid on their side in the water, and activity of the tail allowed the fish to move 

slowly. At 6 dpf, the yolk sac was partially absorbed, and the embryo looked more like a larva. 

The larvae were able to swing their tails slowly, propelling them to the surface of the water. 
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Their average length was 9 mm. At 7 dpf, length had increased to 11 mm, the dorsal fin had 

started to develop, and bone could be observed clearly through the translucent body. From days 8 

to 10, and especially at 10 dpf, the yolk sac was almost entirely absorbed. Total length was 

approximately 12-14 mm. The external features such as the, head, fins, musculature, mouth and 

barbels, the adult-like appearance of the larvae progressively developed between 8, 9 and 10 dpf. 

 

 

Figure 3. Channel catfish, Ictalurus punctatus, morphology at different development stages. dpf: days 

post fertilization. 

2.4.2 Global analysis of channel catfish early development transcriptome  

Initially, the transcriptome sequencing resulted in a total of 1,259 million raw reads for all 

samples. After removing low-quality reads with a quality score < 25 and very short reads of < 36 

bases, more than 591 million clean reads were retained for further analysis. The clean reads for 

each sample were aligned to the channel catfish genome (Supplementary Table 1 and 

Supplementary Figure 1). The average number of raw, filtered reads number, GC content, number 

of mapped reads and mapping rate for the samples of each development stage are shown in 
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Supplementary Table 1. From each stage, a total number of 72.26% to 95.06% reads were 

successfully mapped. Pair-end sequencing (2×150 bp) was generated with an average read length 

ranging from 36 to 135 bp. 

To profile channel catfish gene expression, clean reads were mapped to the channel catfish 

genome and normalization was employed using the FPKM (fragments per kilobase of exon 

model per million reads mapped) method. Genes with a FPKM value smaller than 0.1 were 

removed. In total, the expression of 22,635 distinct genes was identified. The highest number of 

expressed genes (22,266) occurred on day 9 post fertilization, while the 2 dpf sample contained 

the lowest number of expressed genes (20,670) (Figure 4a). A total of 19,415 of the same genes 

were expressed on each day (Supplementary Table 2).   

2.4.3 Identification of DEGs among different channel catfish early developmental stages    

   To investigate genes related to the early development of channel catfish, differential gene 

expression analysis was conducted among the seven developmental stages in channel catfish 

using the software package DESeq2. The DEGs were generated by comparing two 

continuous developmental stages in the current study and were annotated. The number of 

DEGs varied from 690 (355 up-regulated, 335 down-regulated), between 10 dpf and 9 dpf, 

to 6,700 (4,298 up-regulated, 2,402 down-regulated) between 5 dpf and 2 dpf 

(Supplementary Table 3). Overall, the number of DEGs decreased over time of development 

(except a slight increase between 10 dpf and 9 dpf) of which 2,370 (1,663 up-regulated, 707 
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down-regulated), 1,146 (710 up-regulated, 436 down-regulated), 875 (504 up-regulated, 371 

down-regulated) and 486 (371 up-regulated, 115 down-regulated). DEGs were distributed 

between 6 dpf and 5 dpf, 7 dpf and 6 dpf, 8 dpf and 7 dpf, 9 dpf and 8 dpf, respectively 

(Figure 4b). When all of the DEGs at various stages were combined, a high percentage 

(91.33%) of DEGs was detected between the first two pair comparisons, i.e., 7,767 (DEGs 

exclusively identified from 5 dpf vs. 2 dpf and 6 dpf vs. 5 dpf) out of 8,504 DEGs (all DEGs 

exclusively identified through development), indicating that great changes occurred in these 

stages. These stages may be the critical stages for the transitions from fertilized embryos to 

larvae in channel catfish, which was consistent with the observations of morphological 

changes. Moreover, MA plot was constructed to identify the transcripts significantly 

changed during the early development in channel catfish (Figure 5). Venn diagram 

(Supplementary Figure 2) indicated that 728 genes were differentially expressed in both 5 

dpf vs. 2 dpf and 6 dpf vs. 5 dpf, 37 genes were differentially expressed in all stages.  
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Figure 4. Gene expression during early development in channel catfish, Ictalurus punctatus. (A) Mean 

number of expressed genes of two replicates identified at each development stage; (B) The number of 

differentially expressed genes (DEGs) for comparison of each stage with the previous stage. 
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Figure 5. M-versus-A (MA) plot of the differentially expressed genes (DEGs) in different 

comparisons during early development in channel catfish, Ictalurus punctatus. Red dots indicate the 

downregulation (negative value) and upregulation (positive value). Black dots represent non-DEGs. 

(A) 5 days post fertilization (dpf) vs. 2 dpf; (B) 6 dpf vs. 5 dpf; (C) 7 dpf vs. 6 dpf; (D) 8 dpf vs. 7 dpf; 

(E) 9 dpf vs. 8 dpf; (F) 10 dpf vs. 9 dpf. 

2.4.4 Gene ontology enrichment analysis of DEGs at different stages  

Enrichment analysis of DEGs at each developmental stage was conducted, and the gene 

ontology (GO) categories that were significantly enriched during channel catfish early 

development are listed in Supplementary Table 3. The top 15 enriched categories for each stage 

1 100 10000

−1
0

−5
0

5
10

DESeq2

mean of normalized counts

lo
g 

fo
ld

 c
ha

ng
e

1 100 10000

−1
0

−5
0

5
10

DESeq2

mean of normalized counts

lo
g 

fo
ld

 c
ha

ng
e

1 100 10000

−1
0

−5
0

5
10

DESeq2

mean of normalized counts

lo
g 

fo
ld

 c
ha

ng
e

1 100 10000

−1
0

−5
0

5
10

DESeq2

mean of normalized counts

lo
g 

fo
ld

 c
ha

ng
e

1 100 10000

−1
0

−5
0

5
10

DESeq2

mean of normalized counts

lo
g 

fo
ld

 c
ha

ng
e

1 100 10000

−1
0

−5
0

5
10

DESeq2

mean of normalized counts

lo
g 

fo
ld

 c
ha

ng
e

(B)

(C)

(E) (F)

(A)

(D)



 47 

are listed here in Figure 6. Functional annotation of DEGs between 5 dpf and 2 dpf contained 

categories mainly associated with development, growth, synaptic signaling and ion transport 

involved in muscle development, regulation of nervous system development, chondrocyte 

development, bone growth, heart contraction, blood coagulation, chemical synaptic transmission 

and potassium ion transport. DEGs between 6 dpf and 5 dpf were mainly enriched in functions 

pertaining to development, morphogenesis and differentiation. These included genes involving 

embryonic skeletal system development, connective tissue development, gland development, 

neuron projection development, immune system development, heart morphogenesis, embryonic 

organ morphogenesis, cardiocyte differentiation and stem cell differentiation. Between 7 dpf and 

6 dpf, enriched categories were most related to development and differentiation that included 

bone development, liver development and myeloid leukocyte differentiation. Between 8 dpf and 

7 dpf, DEGs were enriched in development, organization and homeostasis activity, such as 

cardiac muscle fiber development, extracellular matrix organization, extracellular structure 

organization, sterol homeostasis and lipid homeostasis. Also, DEGs that were enriched from 9 

dpf compared to 8 dpf belong to categories such as synapse activity and ion activity, including 

postsynaptic specialization, calcium ion transmembrane transporter activity, metal ion 

transmembrane transporter activity. Additionally, DEGs from 10 dpf compared to 9 dpf were 

enriched in regulation of some ion transport activity, including dopamine transport, voltage-

gated calcium channel activity and transmitter-gated ion channel activity. It is notable that during 

early developmental stages of channel catfish, especially at 5 and 6 days post fertilization (the 
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transition stage from advanced embryo to larva), the most enriched categories were relevant to 

growth, development, proliferation, and morphogenesis.  
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(E) 9 dpf vs. 8 dpf 
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Figure 6. Gene ontology functional enrichment analysis of differentially expressed genes (DEGs) at 

different development stages in channel catfish, Ictalurus punctatus. (A) 5 days post fertilization (dpf) 

vs. 2 dpf; (B) 6 dpf vs. 5 dpf; (C) 7 dpf vs. 6 dpf; (D) 8 dpf vs. 7 dpf; (E) 9 dpf vs. 8 dpf; (F) 10 dpf 

vs. 9 dpf. The vertical axis indicates the number of DEGs between two sampling datasets, and the 

horizontal axis represents the GO terms significantly enriched by the DEGs.  

2.4.5 Construction of gene co-expression networks 

To obtain a comprehensive understanding of gene co-expression relationships in development 

and to characterize the genes that are highly associated with embryogenesis and organogenesis of 

channel catfish, weighted gene co-expression network analysis (WGCNA) approach was applied 

to the FPKM data resulting from RNA-Seq differential expression analysis. After removing 

redundant genes, there were 8,504 genes retained for further WGCNA analysis. The best soft 

thresholding was determined when the degree of independence was 0.8 (Supplementary Figure 3). 

Then the WGCNA algorithm was used to detect the co-expression modules, co-expression network 

was constructed relying on the assumption that highly cooperating genes were clustered into one 

module and contributing to the corresponding phenotype. In total, 12 distinct modules were 

identified and assigned different module colors (Figure 7). The interaction of these 12 co-

expression modules is shown in Figure 8.  
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Figure 7. Hierarchical clustering dendrogram of channel catfish, Ictalurus punctatus, genes with 

dissimilarity based on topological overlap during early development. Each single leaf in the tree 

represents a single gene, the major tree branches constitute 12 distinct modules and are shown in 

different colors. 
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Figure 8. Heatmap plot of the gene network in channel catfish, Ictalurus punctatus. The heatmap 

shows the Topological Overlap Matrix (TOM) among all genes in the analysis. Light color 

represents low adjacency, and darker color represents high adjacency. The left and top sides indicate 

the gene dendrogram and module assignment. 

2.4.6 Gene co-expression modules correspond to channel catfish early development 

The 12 modules correlated with distinct developmental stages due to stage-specific profiles, 

and module -trait associations are shown in Figure 9. On the basis of those selection criteria (p ≤ 

0.01), eight modules (turquoise, black, blue, pink, green, grey, purple, brown modules) of interest 

were selected. The turquoise module, with 2,227 identified genes, was highly associated with 2 

dpf stage (r = 0.99, p = 1e-10). The black, blue and pink modules were all associated with 2 dpf 

stage and contained 255, 1,916, 142 genes, respectively (black module: r = -0.74, p = 0.002; blue 
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module: r = -0.78, p = 0.001; pink module: r = - 0.68, p = 0.007). The green module, containing 

910 genes, was highly associated with 5 dpf stage (r = 0.77, p = 0.001). The grey module, with 22 

verified genes, was highly associated with 6 dpf stage (r = 0.88, p = 3e-05). The purple module, 

representing 82 genes, was highly associated with 9 dpf stage (r = 0.76, p = 0.002). The brown 

module, containing 1,174 genes, was highly related to 10 dpf stage (r = 0.67, p = 0.009). 

Correlations between the modules and the developmental traits were quantified and listed in Table 

2, and all genes present in those modules are presented in Supplementary Table 4.  
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Figure 9. Module-stage relationships (MSRs) in channel catfish, Ictalurus punctatus. Each row 

corresponds to a module, and each column represents a specific development stage. The right color 

panel represent Pearson’s r correlation coefficient. The MSRs are colored based on the correlation 

coefficient between the module and the developmental stages. The Pearson’s r correlation 

coefficients and associated p-values are given in each cell.  
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2.4.7 Functional enrichment of genes in the eight selected modules 

To investigate the biological functions related to channel catfish in early development, eight 

modules potentially associated with early developmental stages were selected for Gene Ontology 

(GO) enrichment analysis (Supplementary Table 4). Significant Gene Ontology (GO) terms in 

the selected modules were identified using ClusterProfiler R package (version 3.6).  

The turquoise module was most correlated with the 2 dpf stage. The genes in this module 

were mainly enriched in four categories: development (muscle cell development, muscle 

structure development, cell migration involved in heart development, hematopoietic or lymphoid 

organ development), cell cycle process (cell proliferation, DNA replication, mitotic cell cycle 

process, meiotic cell cycle process), reproduction process (cellular process involved in 

reproduction in multicellular organism) and many transport activities (organic acid 

transmembrane transport, carboxylic acid transmembrane transport, amino acid transport, 

organic anion transmembrane transporter activity). 

The genes in black, blue and pink modules were also most strongly correlated with 2 dpf 

stage, but they showed a negative correlation relationship with developmental stages. Genes in 

black module were enriched into proteasomal activity (proteasomal ubiquitin-independent 

protein catabolic process, proteasome complex), endopeptidase complex and endopeptidase 

activity. Genes in blue module were mainly related to synaptic signaling (chemical synaptic 

transmission, anterograde trans-synaptic signaling, regulation of trans-synaptic signaling), ion 
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transport (metal ion transport, cation transmembrane transport, calcium ion transmembrane 

transport), cell and tissue morphogenesis (cell part morphogenesis, cell morphogenesis involved 

in neuron differentiation, muscle tissue morphogenesis), heart process (regulation of heart rate, 

heart contraction, regulation of heart contraction) and nervous system development (regulation of 

nervous system development, nervous system process, positive regulation of nervous system 

development). Genes in pink module were mainly associated with cytosolic processes 

(cytoplasmic vesicle membrane, cytoplasmic vesicle part, cytosolic small ribosomal subunit), 

and vesicle membrane processes (synaptic vesicle membrane, exocytic vesicle membrane, 

transport vesicle membrane). 

The green module genes were most correlated with 5 dpf stage. Genes in this module were 

enriched in processes expected to be very active during development (cartilage development, 

skeletal system development), proliferation (positive regulation of mononuclear cell 

proliferation, positive regulation of T cell proliferation, positive regulation of lymphocyte 

proliferation, positive regulation of leukocyte proliferation) and morphogenesis (bone 

morphogenesis).  

The grey module genes were most correlated with 6 dpf stage. This module mainly included 

Gene Ontology categories of extracellular matrix (extracellular matrix component, collagen-

containing extracellular matrix), binding activity (GTP binding, purine nucleotide binding, 

carbohydrate-binding) and symporter activity (potassium:chloride symporter activity, 

cation:chloride symporter activity, anion:cation symporter activity). 
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The purple module was most correlated with the 9 dpf stage. Genes in this module were 

enriched in the differentiation (regulation of myeloid leukocyte differentiation, regulation of 

myeloid cell differentiation), homeostasis (cellular calcium ion homeostasis, cellular divalent 

inorganic cation homeostasis, ion homeostasis) and some transmembrane activity (urea 

transmembrane transporter activity, water transmembrane transporter activity). 

The brown module was most related to 10 dpf stage. Genes in this module were most 

enriched in neuron development (regulation of neuron projection development, neuron projection 

development, neural crest cell development), morphogenesis of different tissues and organs (cell 

morphogenesis involved in neuron differentiation, cell morphogenesis involved in 

differentiation, sensory organ morphogenesis, dendrite morphogenesis, inner ear 

morphogenesis). 

Notably, the enriched Gene Ontology terms for these eight modules were in agreement with 

our previous GO enrichment analysis and morphology observations, which related the early 

development with many kinds of tissues and organ differentiation, regulation of ion 

transportation, cell proliferation and transmembrane activities. 

2.4.8 Protein-protein interaction network construction and analysis of selected modules  

To further identify the function of the co-expressed genes within each module and 

investigate the hub genes, Cytoscape (version 3.7.2) software was used to construct a co-

expression network of the top 200 ranked genes for eight selected modules (Supplementary 
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Table 5), including the turquoise, green, grey and purple modules. Notably, the pink, grey and 

purple modules only have 142, 22 and 82 genes separately, so all genes in these three modules 

were selected for co-expression network construction. The highest degree genes (hub genes) 

were illustrated with bigger size and specific color (Figure 10). For example, GDF10, FOXA2, 

HCEA and SYCE3 were identified as hub genes in the turquoise module. VGLL3, CELSR2 and 

SCARA3 were identified as hub genes in black module. ASTN1 and GAD2 were identified to be 

key hub genes in blue module. ARF1, NDE1 and RHOA genes were hub genes for pink module. 

CK1, DARS1, UBE2V2 and OAZ2 were identified as hub genes in green module. In grey 

module, IFI44L and ZIP10 were recognized as hub genes. TGFB1 and TCK1 were verified as 

hub genes in purple module. Similarly, KCNT1 and KCNC were identified as hub genes in 

brown module. These hub genes and their descriptions were listed in Table 3. 
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Figure 10. Protein-protein interaction (PPI) network in channel catfish, Ictalurus punctatus, 

predicted by Cytoscape. The node degree of genes was represented using circumference of nodes. 

The genes with red, green, grey, purple color represent the hub genes in (A) turquoise module; (B) 

black module; (C) blue module; (D) pink module; (A) green module; (B) grey module; (C) purple 

module; (D) brown module separately.  

 

Table 2. Correlation of module with development trait in channel catfish (Ictalurus punctatus). Four 

co-expression modules (turquoise, black, blue, pink, green, grey, purple, brown) were identified 

significantly corrected to channel catfish early development status, the number of genes in each 

module are listed here. 

Module color Number of genes Correlation (r) P-velue 

Turquoise 2, 228 0.99 1x10-10 

Black 255 -0.74 0.002 

Blue 1,916 -0.78 0.001 

Pink 142 -0.68 0.007 

Green 910 0.77 1x10-3 

Grey 22 0.88 3x10-5 

Purple 82 0.76 2x10-3 

Brown 1,173 0.67 0.009 
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Table 3. Hub genes of selected co-expression modules in channel catfish, Ictalurus punctatus, 

predicted by Cytoscape. 

Module Gene ID  Gene name Description 

Turquoise 108262421 GDF10 growth/differentiation factor 10-like 

Turquoise 108257557 FOXA2 hepatocyte nuclear factor 3-beta-like 

Turquoise 108259527 HCEA high choriolytic enzyme 1-like 

Turquoise 

 

Black 

Black 

 

Black 

Blue 

Blue 

Pink 

Pink 

Pink 

108268486 

 

108266139 

108281038 

 

108258146 

108267173 

108272908 

108255676 

108277500 

108254710 

SYCE3 

 

VGLL3 

CELSR2 

 

SCARA3 

ASTN1 

GAD2 

ARF1 

NDE1 

RHOA 

synaptonemal complex central element 

protein 3 

vestigial like family member 3 

cadherin EGF LAG seven-pass G-type 

receptor 2-like 

scavenger receptor class A member 3 

astrotactin 1 

glutamate decarboxylase 2 

ADP-ribosylation factor 1-like 

nudE neurodevelopment protein 1 

transforming protein RhoA-like 

Green  108274016 CK1 casein kinase I 

Green 108266474 DARS1 aspartyl-tRNA synthetase 1 

Green 108264029  UBE2V2 ubiquitin conjugating enzyme E2 

variant 2 

Green 108279393 OAZ2 ornithine decarboxylase antizyme 2-like 

Grey 108266103 IFI44L interferon-induced protein 44-like 

Grey 108264165  ZIP10 zinc transporter 10-like 

Purple 108279384  TGFB1 transforming growth factor beta-1-like 

Purple 108262114 TCK1 creatine kinase, testis isozyme-like 
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Brown 

      

    Brown 

108256037 

 

108275314 

KCNT1 

 

KCNC 

potassium channel subfamily T member 

1-like 

potassium voltage-gated channel 

subfamily C member 1 

 

2.5 Discussion 

Gene expression changes are complex during the transition from fertilized eggs to larvae, and 

the transcriptome profiles underlying these events have not been fully studied in teleost fish. The 

main objectives of this study were to utilize a transcriptome sequencing method to analyze the 

expression of seven early developmental stages in channel catfish and to construct a gene co-

expression network involved in embryogenesis. In this study, we investigated a set of DEGs in 

each developmental stage by comparing each of the two continual stages, and found that the most 

numbers of DEGs occurred at 5-7 days post fertilization. The vast differences in transcript 

expression illustrate that these stages are of rapid, critical, expansive development in channel 

catfish, in accordance with morphological change observation. Gene ontology enrichment analysis 

revealed that during early embryogenesis, the most enriched gene ontology categories were related 

to development, growth, differentiation and morphogenesis, especially during 5-7 dpf. These 

stages are critical for the development of muscle, nerves, bone and other tissues, and cell 

differentiation during transformation from fertilized eggs to larvae.  
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Originally, WGCNA was a systems biology method conceived for exploring and describing 

correlation patterns among genes across microarray data [10]. RNA-sequencing (RNA-seq) is a 

relatively novel approach to profile the transcriptome at varieties of conditions, which can obtain 

the complete transcriptomic information and allow for far more extensive analyses when compared 

with microarray techniques [24]. However, for larger datasets, the disadvantage of RNA-seq 

transcriptome analysis are obvious, as grouping gene expression patterns with similar upregulation 

or downregulation pattern are cumbersome; furthermore, exploring gene function and constructing 

gene interaction network is largely dependent on known knowledge of model species from a 

notably accredited database, such as KEGG, which has greatly limited the potential of the 

prediction. WGCNA is a powerful method to identify co-expressed groups of genes from large 

RNA expression data sets [25], and it is widely used to explore the correlation among 

transcriptomic datasets, identify hub gens and find new pathways in both model and non-model 

species [26-28]. WGCNA has proven its superiority over partial correlation method and provided 

a powerful tool in identifying higher-order correlation in complexed traits of interest, by presenting 

simplified network on the integrated function of gene modules [29, 30].  

The power of WGCNA fuels investigation of correlations, hub genes and novel pathways 

among different early developmental stages of channel catfish. However, no study has been done 

for the early development of channel catfish using WGCNA or at the transcriptome level. 

Previous study mainly focused on the physical development and anatomy. The first study related 

to the embryonic development of channel catfish was conducted from 2 days post fertilization 
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(dpf) through 11 dpf with a focus on the organogenesis of pronephors [31, 32]. Later on, a more 

detailed description when sampling was performed at 1-hr intervals after fertilization on 

embryogenesis was documented up to 34 hours, which corresponded to the pectoral fin-buds at 

water temperature from 24.7 to 26.8 ℃ [33]. Specific developmental stages of channel catfish 

embryos were for the first time defined based on the development of vascular system at 26 ℃, 

all the stages were characterized before 5 dpf [34]. Makeeva et al. reported that stage IV (1 dpf) 

is mainly associated with gastrulation, stage V(~1.5 dpf) related to organogenesis, stage VI (~2 

dpf) having formation of gill microstructure, eye lens, auditory vesicles and segmentation of tail, 

and at the end of the second day of development, they observed heartbeat of the embryo, also the 

rotation of embryo within the egg case, due to its tail whipping back and forth. stage VII (~ 3 

dpf) basically associated with development of vascular system, development in the brain and an 

intestinal cavity can also be observed at this stage [34]. Our research in general agreed well with 

those earlier studies, the functional annotation of DEGs between 5 dpf and 2 dpf revealed that 

the enriched terms were most associated with muscle tissue development, bone growth, 

morphogenesis of different organs, chondrocyte development, heart contraction, blood 

coagulation and regulation of blood circulation. However, our morphology observations found 

that the embryo tails cannot be observed until 5 dpf, which is slightly later than previous 

observation in channel catfish embryonic development [34]. Our fertilized eggs were incubated 

at 25 to 26 degrees Celsius (mainly 25 degree Celsius) which is not that much difference than 
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them, maybe the slower development for our channel catfish than them is due to the strain or 

water quality, both could lead to the inconsistencies in development speed [34].  

In this study, for the first time, we used a gene co-expression network to investigate the 

transcripts of the embryos and fry in early different developmental stages of channel catfish. Using 

contrasted biological samples at different developmental stages of channel catfish embryos, four 

distinct modules were identified. The genes within the same intra-module were used to perform 

Gene Ontology enrichment analysis, the genes most associated with 2 dpf, 5 dpf, 6 dpf and 9 dpf 

stages were identified to enriched in development, proliferation, morphogenesis and differentiation 

categories, such as muscle structure development, hematopoietic or lymphoid organ development, 

bone morphogenesis, regulation of myeloid cell differentiation categories. Then the Cytoscape was 

employed to build a PPI network for the four selected modules, and the high degree of genes (hub 

genes) was verified to have an essential role in the co-expression network. 

2.5.1 Turquoise module (hub genes and node genes) 

For the module most associated with the 2 days post-fertilization stage (turquoise module), 

the hub genes were GDF10, FOXA2, HCEA and SYCE3. GDF10 is a growth differential factor 

belonging to the TGC-beta (transforming growth factor beta) superfamily, and functions 

predominantly in bone development [35]. Its pathways are p70S6K signaling and activation of 

cAMP-dependent PKAGDFs [36, 37]. GDF10 is necessary for head formation, skeletal 

morphogenesis, and adipogenesis [38-40].  
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FOXA2 is a transcription factor involved in embryonic development [41], and regulation of 

gene expression in differentiated tissues and development of multiple endoderm-derived organ 

systems, such as liver, gland, pancreas and lungs [42-45]. This gene is related to pathways that 

include heart developmental, Hedgehog signaling events mediated by Gli proteins and cardiac 

progenitor differentiation [36, 37].  

HCEA participates in the breakdown process of the egg envelope, which is derived from the 

egg extracellular matrix [46, 47]. HCEA has a typical neutral zinc metallopeptidase domain that 

is involved in the binding of zinc and proteolysis [48]. 

Another candidate hub gene for the 2 dpf module is SYCE3. It’s associated pathways 

include the cell cycle, mitosis and meiosis [36, 37]. SYCE3 is a significant component of the 

transverse central element of synaptonemal complexes (SCS), formed between homologous 

chromosomes during meiotic prophase. This gene is also required for chromosome loading of the 

central element-specific SCS proteins, and for initiating synapsis between homologous 

chromosomes as well as required for fertility [49, 50]. The 2-dpf stage is a critical time window 

related to tissue differentiation, morphogenesis and different organ development, which requires 

a series of concerted meiosis, mitosis, synapsis activity, and SYCE3 may play an essential role 

regulating early development through these functions. 

The rest of the 2,223 node genes in turquoise module can be found in the supplementary table 

3 with gene name and gene ID; the Zebrafish Information Network (ZFIN) network has assembled 
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and documented function of genes in model species - zebrafish, initial investigation of any of those 

node genes can be retrieved from ZFIN [51].  

2.5.2 Black module 

Black module is most associated with 2 dpf, hub genes in this module included VGLL3, 

CELSR2 and SCARA3. The VGLL proteins are transcriptional co-factors to influence 

myogenesis in skeletal muscle as well as maturity. Figeac et al. reported that VGLL3 could 

contribute to muscle fibre composition in mice, knock out of VGLL3 gene in mice supressed 

myoblast prolifiration, conversely, the overexpression of VGLL3 could highly increase 

myogenic differentiation. This research stated that VGLL3 as a transcriptional co-factor working 

with the Hippo signal transduction to control myogenesis [52]. Also, VGLL3 is verified to be 

linked with age at maturity in Atlantic salmon (Salmo salar). Vgll3 and the interrelated Hippo 

pathway has been reported to be linked to decreased proliferation process in different tissues, and 

might play a negative role on sertoli cell proliferation in testis and thus compressing the growth 

of pubertal testis [53]. 

CELSR 1-3 expression started broadly in the nervous system in early developmental stages, 

also, these genes were found to be expressed in other organs, such as the cochlea, the kidney, and 

the whisker. CELSR2 protein was fould to distributed along intercellular boundaries in the 

whisker and related to neuronal cells [54]. Also, CLESR2 gene was reported to play a role in the 
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regulation of facial motor neurons migration in neuroepithelium during the developing zebrafish 

hindbrain [55].  

SCARA3 belongs to the class A scavenger receptors (SR-As) family, which is identified to 

be functioning with the innate immunity in mammals [56], this gene was also identified to 

potentially contribute to the immunity in rainbow trout (Oncorhynchus mykiss) [56]. Further 

research is needed to see if this gene also functioned as a immunity regulator in all teleost fish.  

2.5.3 Blue module 

For the blue module, which is more correlated with 2 dpf, hub genes in this module 

contained ASTN1 and GAD2. The ASTN1 works as a neuron-glial ligand for CNS glial-guided 

migration [57]. ASTN1 is necessary for normal migration of young postmitotic neuroblasts along 

glial fibers. It also plays an important role for the migration of granule cells during brain 

development [57, 58]. In zebrafish, GAD2 has been identified to play role on the dorsal 

hindbrain development [59]. GAD2 is also involved in the neurotransmitter release cycle and 

beta -alanine metabolism pathway [36].  

2.5.4 Pink module 

For the pink module, which is more correlated with 2 dpf, hub genes in this module are: 

ARF1, NDE1 and RHOA. ARF1 is considered to be coupled with CDC42 to regulate the 

endocytosis in plasma membrane [60]. The association of ARF1 and membrane is regulated by 
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the endosomal PH, which controls the PH-dependent association of endosomal COPs. ARF1 

could influence COP function through endocytic pathway, which may suggest that ARF1 might 

act as the cytosolic component for a transmembrane PH-sensing mechanism. 

NDE1 is reported to play an essential role for centrosome duplication and mitotic spindle 

assembly. The function and orientation of the mitotic spindle is critical for normal cerebral 

cortex development in mammals [61] [62]. RHOA encodes a member of the Rho family of small 

GTPases, which could promote the reorganization of the actin cytoskeleton as well as regulate 

the shape and motility [63]. 

2.5.5 Green module 

For the green module, which is more correlated with 5 dpf, hub genes include CK1, DARS1, 

UBE2V2 and OAZ2. The Casein kinase 1 (CK1) family of protein kinases are serine/threonine-

selective enzymes, which function as key regulatory molecules involved in the cell cycle, DNA 

repair, transcription, translation, the structure of the cytoskeleton, cell-cell adhesion and 

receptor-coupled signal transduction [64, 65]. CK1 is also involved in the Wnt signaling pathway 

[36]. Wnt signaling pathway plays an important role in lung organogenesis, the initial formation 

of the neural plate and many subsequent patterning decisions in the embryonic nervous system 

[66, 67]. Wnt signaling pathway also works with other signaling systems as primary molecular 

mechanisms that control embryonic development, and regulate processes such as cell 

proliferation, survival, or differentiation [68].  
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DARS1 is critical to the processes of tRNA aminoacylation, selenoamino acid metabolism 

as well as gene expression [36, 37]. The DARS1 gene encodes a member of a multienzyme 

complex which catalyzes the attachment of an amino acid (AA) to its connate tRNA in a two-

step reaction. The amino acid is first activated by ATP to form AA-AMP and then transferred to 

the acceptor end of the tRNA [69]. Although DARS1 is considered to be expressed in all organs, 

it has a distinct expression pattern in the brain. Dars - knocked out mice were not viable and 

displayed early developmental arrest and associated with embryonic lethality [70, 71]. Mutations 

of DARS1 and its homolog DARS2 have been reported in patients showing hypomyelination in 

the brainstem, spinal cord and leg spasticity (HBSL), and leukoencephalopathy  brain stem and 

spinal cord involvement and elevated lactate (LBSL), which demonstrates that mutation in tRNA 

causes a similar disease and shares a common mechanism of neurological pathology [72].    

UBE2V2 is thought to be involved in the differentiation of monocytes and enterocytes [73], 

and it may also play a role in progression through the cell cycle, as well as differentiation [50, 

74]. Among its related pathways are DNA double-strand break repair, and class I MHC mediated 

antigen processing and presentation [36, 37].  

OAZ2 plays a role in cell growth and proliferation by regulating intracellular polyamines [50, 

75]. Its related pathways are CDK-mediated phosphorylation, and removal of cdc6 and metabolism 

[36, 37]. 
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2.5.6 Grey module   

Another module of interest was grey module, which was most strongly associated with 6 

dpf. Hub genes in this module included IFI44L and ZIP10. IFI44L is reported to be associated 

with virus infection and immune activity, as well as the formation of microtubular structures [76-

78]. This gene has not been verified to be closely related to early embryonic development; 

however, our analysis predicted from the PPI network indicates that IFI44L plays an essential 

role in this module, illustrating that IFI44L may be related to early immune response and the 

survival of embryos, and thus, contribute to the early development mechanisms.  

The other hub gene in this module is ZIP10, which controls the membrane transport of zinc, 

calcium, manganese and regulates their intracellular and cytoplasmic concentrations [79]. 

Functions of most other node genes, i.e. SLC12A8, MTFR1L, Tatdn2, Agxt, MX2, nd4l and 

nd6, have not been experimentally documented in embryogenesis and somitogenesis of fishes 

[51]. SLC12A8 (solute carrier family 12 member 8) is an important paralog gene of SLA12A2, 

Gene Ontology (GO) annotations assign this gene possible function that includes ATPase 

activity, coupled to transmembrane movement of substances and symporter activity. MTFR1L 

(Mitochondrial Fission Regulator 1 Like) is a paralog of MTFR2, which may play a role in 

mitochondrial aerobic respiration in the testis. It also promotes mitochondrial fission. MX2 (MX 

dynamin like GTPase2) is involved in innate immune system [52].   
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The related pathways of Tatdn2 (TatD DNase Domain Containing 2) are unfolded protein 

response (UPR) and metabolism of proteins. The GO annotations related to this gene include 

deoxyribonuclease activity and endodeoxyribonuclease activity. Agxt (Alanine--Glyoxylate and 

Serine-Pyruvate Aminotransferase) are predicted to have alanine-glyoxylate transaminase activity 

and serine-pyruvate transaminase activity. Both nd4l (ND4L-NADH dehydrogenase, subunit 4L) 

and nd6 are involved in respiratory electron transport, ATP synthesis by chemiosmotic coupling, 

and heat production by uncoupling proteins [53]. 

2.5.7 Purple module                                                                

Purple module is correlated with 9 dpf. This module contains TGFB1 and TCK1. TGFB1 

can regulate cell proliferation, differentiation of various cell types, and function in other 

processes such as normal development, immune function and responses to neurodegeneration 

[50, 80, 81]. Among its related functions are transcription androgen receptor nuclear signaling 

and p70S6K signaling pathway [36, 37].  

TCK1 reversibly catalyzes the transfer of phosphate between ATP and various phosphagens, 

and also plays a crucial role in tissues with a lot of energy requirements, such as in skeletal muscle, 

heart, brain and spermatozoa [50, 82, 83]. 

The other node genes (Supplementary Table 3): AQP7, AQP8, cldn11, MMP9 and clec14a 

may be involved in the somitogenesis and normal function of organs during early development. 

AQP7 (Aquaporin 7) in zebrafish is maternally inherited and detected at the 2-4 cell and morula 
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stages [84]; while other paralogs such as AQP8aa are related to somitogenesis and vascular 

development [85]. Cldn11a (Claudin 11) expression is detected in vascular endothelium, adjacent 

to the optic stalk of embryo in normal retinal embryo [86, 87]; cldn11 expression requires zic2 

function in the differentiating mammalian cerebellar ganglion cells [88]. MMP-2 (Matrix 

Metallopeptidase 2), MMP-9 and MMP-13 are necessary for proper zebrafish craniofacial 

morphogenesis as morpholino knockdown of these genes shows huge alterations in both the 

mandibular and hyoid arches concurrently [89]. By interacting with Etv2 and Vegf signaling, 

Clec14a (C-lectin family 14 Member A) in zebrafish is indispensable for function of vascular 

endothelia cells during vasculogenesis and angiogenesis as knockdown Etv2/Vegf results in an 

inhibition of intersegmental vessel sprouting [90].    

2.5.8 Brown module 

The last module is brown module, which is correlated with 10 dpf. The hub genes in this 

module contain KCNT1 and KCNC. KCNT1 gene belongs to the potassium channel family, which 

is considered to regulate ion flux. It could also interacts with cytoplasmic peoteins related to 

developmental signaling pathways [91]. KCNC gene belongs to a potassium voltage-gated channel 

family, which is critical for the rapid repolarization of fast firing brain neurons [36]. In response 

to the voltage across the membrane, the channel opens and forming a potassium-selective channel, 

potassium ions in accordance with their electrochemical gradient could pass the channel [36, 92]. 
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2.6 Conclusions 

In conclusion, a comprehensive transcriptome analysis was used to explore the dynamic 

changes during channel catfish early development. This study provides genomic data that has great 

promise for improved understanding of channel catfish embryogenesis. A co-expression network 

was constructed using WGCNA method. As a result of that effort, 12 modules were verified, eight 

of them were identified to be closely associated with channel catfish early development. Further 

analysis of these eight selected modules revealed that they were enriched in biological processes 

related to development, morphogenesis, growth and differentiation. Five and 6 days post 

fertilization embryos contained the most strongly differentially expressed genes (DEGs). Gene 

Ontology (GO) analysis revealed that enriched categories at 5 and 6 dpf were most related to 

embryonic development, morphogenesis, differential and formation of different organs. In 

addition, these stages display the most striking changes in morphology. Thus, day 5 and 6 are 

likely to be critical turning point in the progression from fertilized egg to larva in channel catfish. 

Hub genes identified within each module are likely to direct critical roles during the development 

and growth processes in channel catfish. Taken together, our results are a first stage in shedding 

light on the complex biological processes that take place during early development. Our work 

provides a useful genetic resource for future studies on the metabolism, growth and genetic 

enhancement programs of channel catfish. Further research should address gene quantification and 
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genetic behavior. Gene editing technology will be used to confirm the function of these genes in 

WGCNA network. 
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Chapter 3 Comparative transcriptome analysis during the seven developmental stages of 

Channel Catfish (Ictalurus punctatus) and Tra Catfish (Pangasianodon hypophthalmus) 

provides novel insights for the terrestrial adaptation 

3.1 Abstract 

Channel catfish (Ictalurus punctatus) and tra catfish (Pangasianodon hypophthalmus) both 

belong to the order Siluriformes. Channel catfish does not possess an air-breathing organ (ABO), 

and thus cannot breathe in the air, while tra catfish is a facultative air-breather and use the swim 

bladder as its air-breathing organ, which provides for aerial breathing in low oxygen conditions. 

Tra and channel catfish serve as a great comparative model for studying the transition of life 

from water to terrestrial living, as well as for understanding genes that are crucial for 

development of the swim bladder and the function of air breathing in tra catfish. In this study, 

seven developmental stages in tra catfish were selected for RNA-Seq analysis based on their 

transition to a stage that could live at 0 ppm oxygen. More than 587 million sequencing clean 

reads were generated in tra catfish, and a total of 21, 448 unique genes were detected. A 

comparative genomic analysis between channel catfish and tra catfish revealed 109 genes were 

present in tra catfish, but absent from channel catfish. In order to further narrow down the list of 

these candidate genes, gene expression analysis was performed for these tra catfish specific 

genes. Hypoxia challenge and microtomy experiments collectively suggested that there are 
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critical timepoints for the development of the air breathing function and swim bladder 

development stages in tra catfish. Fourteen genes were inferred to be important for air breathing. 

Of these, hry, grp and cx3cl1 genes were identified to be the best candidates of genes related to 

the air breathing ability in tra catfish. This study provides a large data resource for functional 

genomic studies in air breathing function in tra catfish, and sheds light on the adaption of aquatic 

organisms to the terrestrial environment. 

3.2 Background 

Oxygen is indispensable for all aerobic creatures. For animals, breathing is a critical 

biophysical and voluntary process that involves inhaling oxygen and transferring it to the cells. 

The transport and consumption of oxygen involves multiple physiological and biochemical 

processes. For water breathing fish, gills serve as the primary site for gas exchange with the 

environment [1]. In addition to their respiratory function, gills also serve as a pathway for the 

exchange of non-volatile molecules between the blood and environment, and most fish exchange 

gases through gills that are protected under an operculum on both sides of the pharynx [2]. In 

addition to gill-based breathing, there are many fish that can perform aerial respiration [3]. 

Primitive fish were the first vertebrates to breathe air through atmosphere, in addition to 

breathing gases dissolved in the aquatic environment [4]. Air breathing fish are fish that can 

undergo gas exchange respiration directly with the aerial environment, rather than in water. Air 

breathing fish may rise to the surface of water, gulp air, and even crawl onto land and survive for 
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a long time [5]. Although a number of different morphological adaptations for air breathing 

exists, all gas exchangers share basic features such as the barrier between gas and blood is thin, 

pleated structure with a large interface [6]. This structure creates small diffusion distances of 

gases and decreases branchial vascular resistance, and also increases the respiratory surface area. 

It eventually results in the low consumption respiration in air-breathing fish and improves the 

respiratory efficiency, allowing them to survive even being exposed to air deficient with oxygen 

[6].  

It is estimated that there are more than 370 extant air breathing fish species in 49 families 

and their air-breathing organs vary considerably [7]. For the species that use modified gills as 

air-breathing organ (ABO), such as Clarias macrocephalus and C. batrachus, the efferent 

branchial arteries of anterior (first and second) gill arches serve as the accessory air-breathing 

organ and are also the site for gas exchange. The ventral aorta originates from the heart and splits 

into a ventral and dorsal branch. The ventral branch supplies blood to anterior gill arches, which 

then flows through the accessory ABO and, back to the heart. The dorsal branch distributes 

blood to the posterior (third and fourth) gill arches and proceeds to the circulatory system, which 

transports oxygen-rich blood to other tissues [8]. In some species, such as Misgurnus 

anguillicaudatus and Corydoras aeneus, a modified intestine serves as the ABO, the air is taken 

into the mouth with unidirectional ventilation of the posterior region of the intestine and 

continuous exhaust of gas from the vent [9]. In the posterior region of the intestine, the mucosa 

has very smooth surfaces and is lined with respiratory epithelium and capillary networks, and a 
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thin air-blood barrier (0.24-3.00 µm) is produced for air exchange [10]. Intestinal gas exchange 

and digestion in fish are not mutually exclusive processes. In such animals, eating and breathing 

alternates over very short time in fish [9].  

The modified swim bladder is another air-breathing organ. The teleost swim bladder is a 

large, trabeculated, well vascularized organ, and is widely considered as homologous lung of 

immemorial Osteichthyes [11, 12]. The swim bladder can serve as a gas (usually oxygen) 

container, and can function as a hydrostatic organ, allowing the fish to maintain itself in the 

water column without floating up down with the stream. It also serves as a resonating chamber to 

produce or receive sound. Orders of fish using the swim bladder for aerial respiration includes 

Gonorynchiformes [13], Characiformes and some species in Siluriformes, such as suborder 

Gymnotus and the Pangasianodon hypophthalmus (tra catfish) [14, 15]. Tra catfish are 

facultative air breathers. Their swim bladder extends from the posterior of the head to the tail 

beyond the anus. The collagen rich fibrous walls form subdivisions that are support the swim 

bladder. There are two types of epithelial cells on the surface of the collagen-like fibrous wall, 

one is a thin respiration type, which covers the majority of the surface and is highly vascularized, 

making it a major place for gas exchange between air and blood in the swim bladder. The second 

type is thicker with a brush border, which also works to support the structure of swim bladder 

[16]. Phuong et al (2018) also found that the volume and the respiratory surface area of the swim 

bladder in tra catfish is strongly and positively correlated with the body mass [16]. 
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Catfish (Order Siluriformes) is one of the most commonly raise food fish in the United 

States. The channel catfish (Ictalurus punctatus) and its hybrid from the mating with blue catfish 

(I. furcatus) are recognized as the most extensively cultured type of catfish in the USA. The 

culture of tra catfish (Pangasianodon hypophthalmus) accounts for 2/3 of Vietnam's overall 

aquaculture yields [17].  

The Mekong Delta in Vietnam has become one of the world's largest aquaculture producers, 

with an annual output of tra catfish reaching 1.14 million tonnes, with an export income of about 

1.4 billion dollars [18]. The air-breathing capability of tra catfish allows them to live under 

conditions of low aquatic oxygen concentrations and so tra have a substantial advantage over 

channel catfish, which cannot breathe air and so which are confined to high oxygen, aerobic 

environments [19][20].  

In practical catfish production, hypoxia is a frequent and significant problem, resulting in 

enormous economic losses. Aerators are extensively used in the US catfish farming industry, but 

are subject to mechanical failure or human error, and are energy intensive. A better 

understanding of the mechanisms for tolerating hypoxia is critical for continued successful US 

catfish aquaculture productivity, expecially in face of competition from SE Asia. In addition, the 

study of hypoxia tolerance, and the cellular and physiological bases for understanding how this 

has occurred, will better guide our understanding of the evolution of life from the ocean to the 

terrestrial environment. 
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In this study, hypoxia challenge and histology experiments were conducted to reveal the 

development of the swim bladder in tra catfish, and to better understand its air breathing 

function. RNA-Seq analysis of seven critical stages during early development of the tra catfish 

associated with different levels of air breathing ability was conducted to identify the genes and 

pathways leading to the development of swim bladder and functioning of air breathing in tra 

catfish larvae. 

3.3 Materials and Methods 

3.3.1 Ethics statement 

All experimental procedures involving animal care and tissue collection were approved by 

the Auburn University and Can Tho University Institutional Animal Care and Use Committee. 

All animal related procedures were performed following the Guide for the Care and Use of 

Laboratory Animals and the Animal Welfare Act in the United States and in Vietnam. 

3.3.2 Experimental animals and tissue collection 

Tra catfish embryos were produced at Can Tho University, Vietnam. Tra catfish embryos 

were hatched within 1-day post fertilization and samples were collected every 24 hours over a 

30-day period since hatching. A total of 20-50 eggs/embryo/fry were collected at each sampling. 

Two sets of samples were taken at each time point and later used for histological and gene 

expression analysis [21]. At each sampling point, one set of fry was euthanized with 200 ppm 
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buffered MS-222, and then stored in RNA-Later solution (Thermo Fisher Scientific). Samples 

were shipped to the US on dry ice and then stored at -80°C until RNA isolation was carried out. 

The second set of fry was sampled in the same way, placed in 10% neutral buffered formalin and 

sealed with screw top lids [21]. All samples for histology were kept at room temperature. 

3.3.3 Low oxygen (Anoxia) challenge                                          

Anoxia challenge was conducted at Can Tho University, Vietnam, to determine the tolerance 

of tra catfish to anoxia conditions at a temperature of 27 oC. Tra catfish larvae were challenged 

each day from 2-12 days post fertilization. One group of 20 larvae were placed in a two-liter 

container with oxygen supply as a control treatment. The other group was stocked in a second 

two-liter container at first with aeration and then the dissolved oxygen level was lowered by 

bubbling nitrogen gas into the water until a 0 mg/L dissolved oxygen concentration was obtained 

(measured by DO meter). Dissolved oxygen levels, larvae behavior and survival rate were 

measured and recorded every 15 minutes. The experiment was repeated daily until all 20 fish 

survived in the eliminated oxygen container (the fish demonstrated facultative air breathing), 

after 12 days post-fertilization. 

3.3.4 RNA isolation, library construction, and sequencing  

Seven time points, 2, 4, 6, 8, 9, 10, 11 days post fertilization (dpf), were selected based on 

the low oxygen challenge results. At each time point, two replicates were taken for RNA 
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isolation and Illumina sequencing. Samples were moved from the -80°C freezer, and four whole 

fry per replicate were pooled for each time point in order to obtain sufficient nucleic acid for 

analysis. Pooled samples were ground to a fine powder using mortar and pestle in liquid 

nitrogen. RNA extraction was performed using Qiagen RNeasy Plus Kit (Qiagen, Valencia, 

California), following the manufacturer’s directions. RNA concentration and integrity of each 

sample was measured on a NanoDrop 2000 Spectrophotometer (NanoDrop Technologies). For 

each life stage, equal amounts of RNA from the two pooled replicates was used for RNA-seq 

library construction and RNA sequencing.  

Library preparations and sequencing reactions were conducted at GENEWIZ, LLC. (South 

Plainfield, NJ, USA). Ribosomal RNA, which occurs in vast abundance in all samples, was 

reduced so that it would not interfere with analysis of mRNA. The rRNA depletion method 

chosen was via the Ribozero rRNA Removal Kit (Illumina, San Diego, CA, USA). The 

NEBNext Ultra RNA Library Prep Kit was utilized for Illumina RNA sequencing library 

preparation by following standard protocols (NEB, Ipswich, MA, USA). Amplified library yields 

were validated using the Agilent Tapestation 4200 (Agilent Technologies, Palo Alto, CA, USA) 

and quantified by using Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA). Then the sequencing 

libraries were multiplexed with eight samples clustered per lane of a flowcell and loaded on the 

Illumina HiSeq instrument with a 2x150 Paired End (PE) configuration. 
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3.3.5 Reads mapping and differential expression analysis.  

Raw reads quality was evaluated in FastQC (version 0.11.5) [22], and low-quality bases, 

adapter sequences and ambiguous nucleotides were trimmed from the raw sequences using 

Trimmomatic (version 0.36) [23]. The reads were removed if an average slidingwindow Phred 

score over four bases was less than 25, and the reads with length shorter than 36 bases after 

trimming were removed. The remaining high-quality reads were used for subsequent analysis. 

The recently assembled tra catfish genome was used as a reference for reads mapping. The tra 

catfish genome was approximately 700 Mb, assembled into 568 scaffolds, with a scaffold N50 of 

14.29 Mbp [24].  

To profile tra catfish gene expression, tra catfish filtered reads were mapped to their genome 

using STAR alignment software (version 2.7.0) with a max 4% mismatching rate of the mapped 

length allowed and a minimum 90% of the bases mapped to the genome [25]. HTSeq-count [26] 

was conducted to extract and count the read from the mapping files. After counting the number 

of clean reads mapped to each gene, the FPKM (fragments per kilobase of exon model per 

million reads mapped) method was performed for normalization and the genes with a FPKM 

smaller than 0.1 were filtered out of each sample. To account for differences with the 

development in the two each species, differential expression analysis was performed with the R 

package DESeq2 [27]. Differentially expressed genes (DEGs) were defined as having a P-value 

< 0.05 and an |log2 fold change| >1.  
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3.3.6 Gene ontology and enrichment analysis 

The GO terms for each differential expression comparison were obtained by using zebrafish 

database annotations for the unigene set as well as using ClusterProfiler R software (version 3.6) 

[28]. The annotation result was then sorted with respect to biological process, cellular component 

and molecular functions. ClusterProfiler R was also used for a GO functional enrichment 

analysis of certain genes. A criterion of p-value and q-value cutoff of 0.05 was chosen as the 

threshold of significance. 

3.3.7 Comparative genomic analysis of channel catfish and tra catfish 

The protein sequences of channel catfish and tra catfish were obtained from the NCBI 

website to determine chromosome orthology [29, 30]. The orthologs and orthogroups between 

channel catfish and tra catfish were identified using OrthoFinder version 2.2.7 [31]. In order to 

obtain the tra catfish-specific genes, an additional round of protein BLAST (BLASTP) was 

conducted for genes that are not in the orthologue groups. These genes were queried against the 

genes in the orthologue groups within the same species with a maximum e-value threshold of 1e-

10. In the end, reciprocal BLASTP searches were performed to query genes with no hits from 

last steps with a maximal e-value threshold of 1e -5. The remaining genes with no hits to any 

orthologs were identified as species-specific genes for subsequent analysis. 

To further confirm the tra-catfish specific genes from previous steps, the species-specific 

genes in tra catfish were queried with the channel catfish genome using TBLASTN with a 
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maximum e-value threshold of 1e-10. The recognized tra-catfish specific genes were then 

screened based on the percentage of identical matches (pident) and query coverage per subject 

(qcovs). The genes without a TBLASTN hits with channel catfish genome were finally 

recognized as tra-catfish specific genes present in tra catfish, but absent in the channel catfish 

genome. 

3.3.8 Clustering of time series gene expression data 

Clustering is universally used for gene expression data analysis. Mfuzz [32] is one of the 

most commonly implemented soft clustering software. A minimization of weighted square error 

function based on fuzzy c-means algorithm was performed to reveal structures underlying large 

gene expression data sets. Hard clustering approaches are preferable to identify well separated 

clusters, at a cost of excluding biologically relevant genes. To solve this issue, Mfuzz soft 

clustering provides an overall relation between clusters, and it is more robust to noise since 

gene/protein clusters frequently overlap in biological data. 

3.3.9 Histological analysis                                                      

Tra catfish samples for each life stages were removed from 10% formalin and used for 

paraffin processing for embedment and subsequent sectioning. Following dehydration by graded 

ethanol, hyalinization and infiltration by dimethylbenzene with standard protocols, samples were 

embedded in paraffin. Then we conducted transverse sectioning of 7 µm thickness. Sections goes 

through a water-bath at 40°C and then placed on glass slides. The slides were kept in an 
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incubator at 37°C overnight. Following deparaffination by xylene substitution (HEMO-DE), the 

slides were then stained with hematoxylin and eosin (HE) according to standard procedures. 

After HE staining, slides were covered with a cover slip and left for 48 hours at room 

temperature to dry. Slides were observed and imaged with an Olympus® BHS fluorescence 

binocular microscope equipped with a 3.4-megapixel color digital camera (Qimaging® model 

Micropublisher 3.3 RTV). Image Pro Plus 7 software (Media Cybernetics, Bethesda, MD) was 

used to capture the image. 

3.4 Results 

3.4.1 Sequencing and global analysis of tra catfish transcriptome       

A total of 1,303 million raw reads were generated for tra catfish through RNA-Seq analysis. 

As shown in Table 4, after removing low-quality reads (quality score < 25) and trimmed reads 

that are less than 36 bases, approximately 587 million clean reads retained in tra catfish. All 

clean reads were aligned to the tra catfish reference genome using STAR software (v 2.7.0) with 

the mapping rate ranging from 62.44% to 73.77% (Supplementary Figure 4). 

Reads were assigned to transcripts by their overlaps with tra catfish reference gene models. 

FPKM (fragments per kilobase of exon model per million reads mapped) method was performed 

for normalization and an FPKM cutoff for expressed genes was set at >= 0.1. As shown in Figure 

11a, a total of 21,448 gene transcripts were detected in the RNA-Seq data set, the highest number 

of expressed genes (21,004) were detected at 9 dpf and the lowest number of expressed genes 
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(20,516) were verified at 8 dpf. A total of 19,728 genes were discovered to be expressed at every 

sample point (Supplementary Table 6).  

Principal component analysis (PCA) was used to identify the outliers tra catfish 

transcriptomes during different development time points (Figure 12). The clustering results were 

in agreement with the developmental stage groups. In Figure 2, the expression profiles of 

different time points were divided into 7 clusters from left to right, with biological replicates 

within group clustered together. We could observe considerable expression variability across 

different developmental points, accounting for 53% of expression variation. 

Table 4. Summary of the transcriptome sequencing in tra catfish (Pangasianodon hypophthalmus). Pan2-1, 

Pan2-2…Pan11-2 are abbreviations for sampling of tra catfish embryos/fry replicate 1 at 2 days post- 

fertilization (dpf), replicate 2 at 2 dpf, …, replicate 2 at 10 dpf, respectively.   

Days post 

fertilization 

No. of raw reads No. of Clean  

reads 

%GC No. of 

mapped reads  

mapped reads 

(%) 

Pan2-1 91,258,588 34,263,036 48 23,315,024 68.04% 

Pan2-2 99,428,290 45,246,230 48 32,999,524 72.93% 

Pan4-1 84,303,060 35,220,266 49 24,687,004 70.09% 

Pan4-2 94,169,112 35,220,266 49 32,125,804 73.77% 

Pan6-1 101,986,182 50,214,702 48 34,695,330 69.10% 
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Pan6-2 83,463,360 39,952,806 48 27,393,394 68.57% 

Pan8-1 79,577,474 41,618,368 50 26628028 63.98% 

Pan8-2 122,305,060 63,011,586 49 435,083,86 69.05% 

Pan9-1 95,165,314 44,452,736 48 28,410,570 63.91% 

Pan9-2 87,731,496 41,556,154 48 26,434,938 63.61% 

Pan10-1 90,931,716 37,469,612 50 23,738,636 63.35% 

Pan10-2 91,213,504 36,673,982 50 24,093,544 65.7% 

Pan11-1 97,272,818 42,492,728 47 26,532,068 62.44% 

Pan11-2 83,885,030 39,744,530 47 25,736,390 64.75% 
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Figure 11. Gene expression during early embryonic development in tra catfish (Pangasianodon 

hypophthalmus). (A) Number of expressed genes at each development stage averaged for two replicates; (B) 

The number of DEGs (Differentially Expressed Genes) for comparison of each stage with the previous stage. 
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Figure 12. Principal component analysis (PCA) of tra catfish (Pangasianodon hypophthalmus) transcriptome. 

A: 2 dpf; B: 4 dpf; C: 6 dpf; D: 8 dpf; E: 9 dpf; F: 10 dpf; G: 11 dpf. 

3.4.2 Differentially expressed genes during developmental stages of tra catfish                                             

RNA sequencing reads were aligned with the tra catfish genome and gene read counts were 

calculated using HTSeq. DESeq2 software was used to identify the significantly and 

differentially expressed genes (DEGs) with comparison of each stage to the previous stage. In tra 

catfish, the number of DEGs ranged from 3,360 (2,324 up-regulated, 1,036 down-regulated), 

between 4 dpf and 2 dpf, to 338 (213 up-regulated, 125 down-regulated) between 11 dpf and 10 

dpf (Supplementary Table 7). In general, the number of identified DEGs decreased during the 

development stages in tra catfish (Figure 11b). 1,956 (861 up-regulated, 1,095 down-regulated), 

1,108 (661 up-regulated, 447 down-regulated), 380 (209 up-regulated, 171 down-regulated) and 
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and 6 dpf, 9 dpf and 8 dpf, 10 dpf and 9 dpf, respectively. Taken together, 5,419 DEGs were 

detected at different developmental stages. Notably, the greatest number of DEGs was identified 

between the first two timepoints (4 dpf and 2 dpf), which is not surprising since the transition 

from fertilized egg to hatchling is dramatic, and various biological processes would be expected 

to occur between these stages. A Venn diagram showed the intersection between DEGs at 

different stages (Supplementary Figure 5). Only one gene was detected to be differentially 

expressed in all stage comparisons. 

3.4.3 Gene ontology enrichment analysis of differentially expressed genes (DEGs) at 
different stages  

To classify if there was a gene ontology (GO) enrichment category with related functions, 

the GO term enrichment analysis of DEGs was performed for each developmental stage. The GO 

categories that were significantly enriched for different stages of tra catfish are listed in 

Supplementary Table 7; The GO enriched categories at each stage are shown in Figure 13.  

At 4 dpf compared to 2 dpf, the significantly enriched categories for the DEGs were mainly 

related to blood vessel formation, respiratory chain complex assembly, reactive oxygen species 

(ROS) and Wnt signaling pathway, that included vasculogenesis (GO:0001570). Day 4 was also 

associated with respiratory chain complex IV assembly (GO:0008535), regulation of reactive 

oxygen species metabolic process (GO:2000377) and canonical Wnt signaling pathway 

(GO:0060070). Several mitochondrial activity and respiratory chain functions were enriched at 6 

dpf compared to 4 dpf, including respiratory chain complex IV assembly (GO:0008535), 
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mitochondrial inner membrane (GO:0005743), mitochondrial ribosome (GO:0005761) and 

mitochondrial protein complex (GO:0098798).  

At 8 dpf compared to 6 dpf, enriched categories for the DEGs were mainly related to 

morphogenesis of heart and muscle organ, transport and binding of oxygen, some other ion 

transmembrane transport as well as some complex assembly and development, such as heart 

morphogenesis (GO:0003007), muscle organ morphogenesis (GO:0048644), oxygen transport 

(GO:0015671), oxygen carrier activity (GO:0005344), oxygen binding (GO:0019825), calcium 

ion transmembrane transporter activity (GO:0015085), hemoglobin complex (GO:0005833) and 

cardiac myofibril assembly (GO:0055003). At 9 dpf compared to 8 dpf, DEGs were mainly 

enriched in transmembrane transport activity, dendrite and some channel activity. The activities 

included regulation of ion transmembrane transport (GO:0034765), regulation of cation 

transmembrane transport (GO:1904062), transmembrane transporter complex (GO:1902495), 

dendrite membrane (GO:0032590), dendritic tree (GO:0097447), calcium channel complex 

(GO:0034704), potassium channel complex (GO:0034705) and ion gated channel activity 

(GO:0022839).  

At the 10 dpf compared to 9 dpf stage, the DEGs were mainly enriched in metabolic process 

and endopeptidase activity, including glutamine family amino acid metabolic process 

(GO:0009064), aminoglycan metabolic process (GO:0006022), serine-type endopeptidase 

activity (GO:0004252), peptidase regulator activity (GO:0061134) and carboxylic ester 

hydrolase activity (GO:0052689). Additionally, DEGs from 11 dpf compared to 10 dpf were 
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enriched in oxygen and ion transport and ATP activity, including oxygen carrier activity 

(GO:0005344), oxygen binding (GO:0019825), bicarbonate transport (GO:0015701), sulfur 

compound transport (GO:0072348), sodium ion transmembrane transporter activity 

(GO:0015081), anion:anion antiporter activity (GO:0015301), chloride transmembrane 

transporter activity (GO:0015108), ATPase activator activity (GO:0001671) and 

sodium:potassium-exchanging ATPase activity (GO:0005391). 
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Figure 13. Gene ontology enrichment of DEGs at different development stages in tra catfish (Pangasianodon 

hypophthalmus). (A): 4 dpf and 2 dpf; (B) 6 dpf and 4 dpf; (C) 8 dpf and 6 dpf; (D) 9 dpf and 8 dpf; (E) 10 dpf 

and 9 dpf; (F) 11 dpf and 10 dpf. The vertical axis indicates the number of DEGs between two adjacent 

sampling datasets, and the horizontal axis represents the GO terms significantly enriched in the DEGs.  

3.4.4 Comparison of gene contents of tra catfish and channel catfish 

Tra catfish and channel catfish are both Siluriformes and so, are evolutionarily closely 

related to each other, but air breathing ability varies greatly between these two species. The tra 

catfish is a facultative air-breather and utilizes the swim bladder as its air-breathing organ in low 

oxygen environment; while channel catfish does not possess an air-breathing organ and thus 

cannot breathe in the air. At first, we compared the gene contents between tra catfish genome and 

channel catfish genome, and a total of 109 genes were identified to be present in tra catfish that 

were absent from channel catfish (Supplementary Table 8). Many traits differ between tra catfish 

and channel catfish, not only the ability to breathe in the air. But many genes should be involved 

in the formation of swim bladder in tra catfish and the air breathing ability. In this regard, genes 

which contribute to swim bladder development and aerial breathing ability should be 

differentially expressed during tra catfish development, so the genes, which are (1) present in tra 

catfish but absent from channel catfish, and (2) differentially expressed during tra catfish 

development would be considered to be key genes involved in the morphogenesis of swim 

bladder and differences in aerial breathing ability. Taken together, 109 tra catfish-specific genes 
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were compared with the 5,419 genes that were differentially expressed during tra catfish 

development, and 27 genes were present in tra catfish that were absent from channel catfish, that 

were also differentially expressed during tra catfish development (Figure 14, Table 5). All these 

27 genes may be closely related with the formation of air breathing ability in tra catfish. 

 

 

Figure 14. Twenty-seven candidate key genes were identified to be present in tra catfish (Pangasianodon 

hypophthalmus) but absent in channel catfish (Ictalurus punctatus), also, it was differentially expressed during 

tra catfish (Pangasianodon hypophthalmus) development. 

 

Table 5. Genes specific to tra catfish (Pangasianodon hypophthalmus) that were differentially expressed 

during tra catfish development. 

 

Gene ID Name Description 
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113524458 

113524522 

LOC113524458 

LOC113524522 

uncharacterized protein 

uncharacterized protein YBL113C-like 

113524613 HRG histidine-rich glycoprotein-like, partial 

113531560 CUNH3ORF85 uncharacterized protein C3orf85 homolog 

113533778 SHKD dual specificity protein kinase shkD-like isoform X2 

113534207 LOC113534207 uncharacterized protein LOC113534207 

113535709 FAM216A protein FAM216A isoform X1 

113536891 COX7C cytochrome c oxidase subunit 7C, mitochondrial 

113538378 LOC113538378 uncharacterized protein LOC113538378 

113539350 LY6D lymphocyte antigen 6D 

113539654 ZNF862 zinc finger protein 862-like 

113541042 VXN vexin-like 

113535796 GRP gastrin-releasing peptide-like isoform X2 

113541665 LOC113541665 uncharacterized protein LOC113541665 

113542106 LOC113542106 uncharacterized protein LOC113542106 isoform X1 

113542136 LOC113542136 uncharacterized protein LOC113542136 

113543977 LOC113543977 uncharacterized protein LOC113543977 

113544002 LOC113544002 uncharacterized protein YBL113C-like 
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113544546 CLCA3A1 
calcium-activated chloride channel regulator 3A-1-

like 

113544571 CLCA1 calcium-activated chloride channel regulator 1-like 

113544929 LAGE3 L antigen family member 3 

113545006 NCMAP noncompact myelin-associated protein 

113545009 LOC113545009 uncharacterized protein DDB_G0287625-like 

113546726 LOC113546726 uncharacterized protein LOC113546726 

113547415 PET117 PET117 Cytochrome C Oxidase Chaperone 

113547475 SPIDROIN spidroin-2-like isoform X1 

113533685 CX3CL1 
chromo domain-containing protein cec-1-like 

isoform X2 

 

3.4.5 Anoxia Challenge 

A low oxygen challenge experiment were conducted to test the survival ability of tra catfish 

in anoxic conditions (0 ppm dissolved oxygen (DO)) as a function of age (Supplementary Table 

9) [21]. At 2 dpf, tra larval survival dropped to 0% when the oxygen was lowered to 0 ppm (i.e. 

anoxia) (Figure 15). Initially when the aeration was removed from the container, the larvae swam 

as normal. After 15 minutes, when the dissolved oxygen level dropped below 2.1 mg/L, the fish 

again swam rapidly at the surface, a behavior of oxygen stress. After 30 minutes, when the 
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dissolved oxygen level in water dropped to 1.3 mg/L, locomotion was dramatically reduced. 

After 45 minutes, when the dissolved oxygen level reached 0.7 mg/L, fish ceased to swim and 

sank to the bottom of container; all of the fish were dead.  

At 4 dpf, the oxygen concentration fell rapidly from 5 mg/L to 1.5 mg/L 15 minutes after 

removing the aeration, and fish swam slowly. After 30 minutes, the dissolved oxygen level 

dropped to 1.1 mg/L, and the fish swam rapidly at the surface. At 45 minutes, the dissolved 

oxygen levels decreased to 0 mg/L and 50% of the fish dropped to the bottom of the tank, 

although no fish died at this point. After 55 minutes, with the dissolved oxygen concentration 

remaining at 0 mg/L the tra catfish larvae were verified to be dead. 

When the fish were 6 dpf, the challenge began with a dissolved oxygen level of 4.7 mg/L. 

Oxygen concentration dropped to 1.2 mg/L then 0.7 mg/L at 15 and 30 minutes, respectively. 

When the dissolved oxygen level decreased below 1.2 mg/L, the fish were actively swimming on 

the surface. At 45 minutes, the dissolved oxygen concentration reached 0 mg/L, 50% of the fish 

dropped to the bottom. At 60 minutes, all fish were dead. 

At 8 dpf, the dissolved oxygen level started at 4.6 mg/L, and the fish were actively 

swimming within the container. Fifteen minutes and 30 minutes into the challenge, the dissolved 

oxygen level fell to 0.9 mg/L and then 0.6 mg/L, respectively. At 45 minutes the dissolved 

oxygen level decreased to 0 mg/L, and thirty percent of the fish responded by dropping to the 

bottom. At 60 minutes, 70% of the fish were dead and ten minutes later all fish had died. 
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At 9 dpf, the challenge started at a dissolved oxygen reading of 5.4 mg/L. Oxygen level was 

lowered to 1.6 mg/L, 0.8 mg/L and then 0.4 mg/L at 15, 30 and 45 minutes, respectively, and 

fish were actively swimming on the surface during these stages. At 50 minutes, the dissolved 

oxygen concentration decreased to 0 mg/L. After 75 minutes, 27% of the fish died and sank to 

the bottom. The death rate remained the same until 50 minutes later when an additional 13% fish 

died. The challenge concluded at 120 minutes, and there was a 60 % survival rate for tra catfish 

larvae at a dissolved oxygen level of 0 mg/L. 

When the fish were 10 dpf, the challenge began at 4.6 mg/L. At fifteen minutes after 

initiation of the challenge, the dissolved oxygen reading was 0.9 mg/L, and fish were actively 

swimming in the container. Thirty minutes in to the challenge, the dissolved oxygen reading 

decreased to 0.5 mg/L, 50% of the fish were on the surface. At 45 minutes the dissolved oxygen 

level fell to 0 mg/L, and all the fish were at the surface to gulp air. At 55 minutes, 13% of the 

fish died followed ten minutes later with an additional 7% fish dead, equating to 20% mortality. 

The challenge concluded after 120 minutes with the tra catfish larvae having 80% survival in 0 

ppm DO.                                                                      

At 11dpf the challenge began at 4.6 mg/L. The dissolved oxygen concentration decreased to 

1 and then 0.5 mg/L at 15 and 40 minutes, respectively. Fish were actively swimming at the 

bottom of the container. After 50 minutes, the dissolved oxygen level fell to 0 mg/L. At 0 mg/L 

dissolved oxygen, fish were swimming actively in the midwater column, and occasionally fish 
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swam to the surface gulping air. The challenge was concluded after 120 minutes with 100% 

survival of the tra catfish larvae. 

In conclusions, at a temperature of 27 oC , within the first 6 dpf tra catfish larvae showed 

some levels of anoxia behavior when the DO reached below 2 ppm after 15 minutes being 

exposed to the decrease of DO. Their survival ability was 0% when oxygen was reduced to 0 

ppm and maintained at 0 ppm for a while. However, at 4 dpf and 6 dpf, the tra catfish larvae 

already possessed some ability to survive at low dissolved oxygen conditions (0.7- 1.1 mg/L) , 

and sometimes exhibited air gulping behavior, which indicated a portion of the tra catfish larvae 

had reached a point to have initial gas exchange activity through air breathing. At 8 dpf, tra 

catfish larvae had 100% survival rate at 0.6 mg/L water conditions, and could survive for a while 

at a dissolved oxygen level of 0 mg/L (anoxia). The survival rate of tra catfish larvae was 60%, 

80%, 100% in 9, 10, 11 dpf when challenge concluded after 120 minutes, indicating that at 9 and 

10 dpf, the air breathing ability was relatively complete. At 11 dpf, the swim bladder in tra 

catfish was fully developed and tra catfish possessed complete air breathing capability.  
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Figure 15. Dissolved oxygen concentrations (mg/L) and survival curve for tra catfish (Pangasianodon 

hypophthalmus) at 2, 4, 6, 8, 9, 10, 11 days post fertilization (dpf), during a low dissolved oxygen challenge. 

Dissolved oxygen level was reduced by replacing with the oxygen stripping. Catfish were determined 

moribund when the opercular movement ceased. 

3.4.6 Histological analysis  

In Figure 16, at 4 dpf, the vertebrae column, the notochord and vertebral column were 

observed at central location of the front ventral surrounded by skeletal muscle. A small cavity 

formed within the yolk sac that was surrounded with simple gastrointestinal structures.  

At 6 dpf, moderate increase in the dimensions was found in the developing internal organs. 

The yolk sac was absorbed entirely at this point, and tra catfish larvae already possessed the 

ability of free swimming and could regulate their orientation under water. The newly observed 

swim bladder was situated retroperitoneally; i.e. and located ventral to the notochord and dorsal 

to the peritoneal cavity, encompassing a significant portion of the body cavity. At this point, the 

tra larvae already had improved survival ability in hypoxic conditions (0.7 mg/L).  

The swim bladder and other internal organs were further developed at eight days post 

fertilization. The swim bladder increased slightly in size, and t two distinct lobes were present, 

divided by a longitudinal, central septum. The ventral surface of the gas bladder was located 

outside of the visceral cavity and was attached to the parietal peritoneum. During this stage, 
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survival in hypoxic conditions was slightly increased, as they could live in 0.6 mg/L, and could 

survive for a short period of time under anoxia.  

At 9 dpf, the swim bladder was further expanded, the inner layer of the swim bladder 

consisted of cuboidal epithelium and the smooth outer layer consisting of an elastic collagenic 

fibrosa. The tra larvae possessed a long-term, survival rate of 60% at 0 mg/L oxygen conditions. 

At 10 dpf, there were distinct changes to swim bladder morphology. The musculature was 

slightly thicker. The swim bladder had expanded significantly, the inner layers pushed to the 

outer perimeter of the organ. It was extremely dilated and presumably engorged with air. 

Survival rate improved to 80% at 0 mg/L O2. 

Pangasianodon larvae at 11 dpf were similar in morphology to fish at 10 dpf. However, the 

swim bladder expanded significantly in size and reached the outer limits of the body cavity. The 

bi-lobed structure was demarcated by a protuberated central obstruct. Larvae at this stagehad 

100% survival rate during anoxia challenge. From 6 dpf, the tra catfish swim bladder served as 

an air- breathing organ, and aerial breathing ability was fully functional only five days later, at 

11 dof.  
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Figure 16. Transverse section, 7 um thick, from tra catfish (Pangasianodon hypophthalmus) 4 days post 

fertilization (dpf) to 11 dpf showing internal structures, including the vertebrae (V), notochord (NC) and swim 

bladder (SB). The vertebral column (V) was located just dorsal to the notochord (NC) and was surrounded by 

musculature. The developing swim bladder (SB) was distinctly bi-lobed and was located retroperitoneally.  
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3.4.7 Gene expression profiling of tra catfish-specific genes 

To further narrow down the list of the candidate key genes that, may have a key role in the 

developmental of the swim bladder and on the function of aerial breathing, the expression model 

of the 109 tra catfish-specific genes were drawn according to the total FPKM value at each 

development stage, and clear variation was observed (Figure 17). The 109 tra catfish-specific 

genes were categorized into 6 different clusters (Supplementary Table 10). Cluster 1, 2, 5, 

including 19, 12 and 20 genes, respectively, in these clusters showed a peak of expression at 2 or 

4 days-post fertilization, and then decreased. Cluster 3 including 16 genes showed a peak of 

expression values at 9 dpf. Also, there were 20 genes in cluster 4 showing an increasing 

expression profile and 20 genes in cluster 6 for which the expression profile remained unchanged 

during the development of tra catfish. Since the Mfuzz software implemented a soft clustering 

algorithm, each gene could be assigned to more than one cluster, which is a great advantage to 

reduce noise. Therefore, the total number of genes in all clusters was 129, more than our input 

number of 109. Furthermore, from the 0-ppm oxygen challenge and histology experiments, we 

concluded that the swim bladder can be observed in tra catfish larvae from 6 dpf, and the tra fish 

larvae possessed partial aerial breathing ability even before that, however, the fish did not 

possess full air breathing ability until 11 dpf. Thus, for gene expression profiles, the candidate 

key genes, which contributed to swim bladder development and air breathing function would be 

turned on before 6 dpf (maybe at 4 dpf or as early as 2 dpf) or had an increasing expression value 

with the formation of air breathing function over time. In addition, the genes which had an 
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expression value reach peak at 9 dpf may also contribute to the acceleration of the formation of 

ABO and the air breathing ability in late stages. In this regard, we presumed that the genes in 

clusters 1, 3, 4, 5 and 6 have the greatest possibility to play an important role in the swim bladder 

development and function of air breathing. Also, the key genes should be differentially expressed 

across tra catfish development. Based on these criteria, we already identified 27 genes to be tra 

catfish specific genes as well as differentially expressed during tra catfish development (Table 

5). These genes were summarized in groups based on their expression profiles (Table 6). Except 

genes with unknown function, we are left with 14 genes in cluster 1, 3, 4, 5, 6 as the best 

candidates of air breathing function related genes in tra catfish: PET117 Cytochrome C Oxidase 

Chaperone (pet117), spidroin-2-like isoform X1 (spidroin), gastrin-releasing peptide-like 

isoform X2 (grp), chromo domain-containing protein cec-1-like isoform X2 (cx3cl1), 

lymphocyte antigen 6D (ly6d), dual specificity protein kinase shkD-like isoform X2 (shkd), 

noncompact myelin-associated protein (ncmap), calcium-activated chloride channel regulator 

3A-1-like (clca3a1), calcium-activated chloride channel regulator 1-like (clca1), histidine-rich 

glycoprotein-like (hrg), cytochrome c oxidase subunit 7C, mitochondrial (cox7c), zinc finger 

protein 862-like (znf862), L antigen family member 3 (lage3) and protein FAM216A isoform X1 

(fam216a). 
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Figure 17. Time series expression profiles for tra catfish (Pangasianodon hypophthalmus) specific genes. 

These tra catfish specific genes grouped into 6 clusters. dpf- days post fertilization. 

Table 6. Twenty-seven candidate key genes were grouped into 6 clusters based on their expression profiles 

with the development in tra catfish (Pangasianodon hypophthalmus).  

 

Cluster Gene Name Gene ID Gene Description 

Cluster 1 PET117 113547415 PET117 Cytochrome C Oxidase Chaperone 

 SPIDROIN 113547475 spidroin-2-like isoform X1 

Cluster 2 CUNH3ORF85 113531560 uncharacterized C3orf85 homolog 

 VXN 113541042 vexin-like 

 LOC113542136 113542136 uncharacterized protein LOC113542136 
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Cluster 3 GRP 113535796 gastrin-releasing peptide-like isoform X2 

 CL3CL1 113533685 chromo domain-containing protein cec-1-

like isoform X2 

 LY6D 113539350 lymphocyte antigen 6D 

 SHKD 113533778 

 

dual specificity protein kinase shkD-like 

isoform X2 

 NCMAP 113545006 noncompact myelin-associated protein 

 LOC113534207 113534207 uncharacterized protein LOC113534207 

 LOC113524522 113524522 uncharacterized protein YBL113C-like 

Cluster 4 CLCA3A1 

 

113544546 

 

calcium-activated chloride channel 

regulator 3A-1-like 

 CLCA1 

 

113544571 

 

calcium-activated chloride channel 

regulator 1-like 

 LOC113541665 113541665 uncharacterized protein LOC113541665 

 LOC113542106 

 

113542106 

 

uncharacterized protein LOC113542106 

isoform X1 

 LOC113546726 113546726 uncharacterized protein LOC113546726 

Cluster 5 HRG 113524613 histidine-rich glycoprotein-like 
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 COX7C 113536891 

 

cytochrome c oxidase subunit 7C, 

mitochondrial 

 ZNF862 113539654 zinc finger protein 862-like 

 LAGE3 113544929 L antigen family member 3 

 FAM216A 113535709 protein FAM216A isoform X1 

 LOC113538378 113538378 uncharacterized protein LOC113538378 

Cluster 6 LOC113524458 113524458 uncharacterized protein LOC113524458 

 LOC113543977 113543977 uncharacterized protein LOC113543977 

 LOC113544002 113544002 uncharacterized protein YBL113C-like 

 LOC113545009 

 

113545009 

 

uncharacterized protein DDB_G0287625-

like 

 

3.5 Discussion  

Life evolved on an anoxic Earth [33], but aerobic respiration is critical for efficient energy 

metabolism, which is a precondition for the beginning of complex creatures [34]. Various 

respiratory systems have evolved for obtaining oxygen from the environment. For water 

breathing fish, gills are used as the chief gas exchangers, while the decreases of dissolved 

oxygen in water promoted the migration of life from water to land and compelled the evolution 

of water breathers to air breathers [35]. Amphibians, some turtles and mammals have been 
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theorized to have undergone the key evolutionary processes [36-38]. In the intermediary step of 

aquatic to terrestrial breathing, the air-breathing organs have evolved into many different forms 

in different fish, including modified gills, skins, trachea, intestine and swim bladder. The swim 

bladder has long been postulated as a homolog of the lung in terrestrial vertebrates [39]. The 

swim bladder of zebrafish arose from branches of the foregut endoderm, close to liver and 

pancreas, which conforms with mammalian lung [40, 41]. The Wnt signaling pathways were 

found to play a critical role in the development of zebrafish swim bladder as well as in that of 

vertebrates’ lung [42-44]. Moreover, Zheng et al (2011) reported a strong resemblance between  

the zebrafish swim bladder and mammalian lungs by transcriptome comparison [45]. These 

studies suggest that mammalian lungs may have originated from the teleost swim bladder, and 

that the genes contributed to the function of lungs may also be critical for the formation of air 

breathing ability in fish. 

  In this study, for the first time, we sequenced and analyzed the transcriptome from seven 

developmental stages in tra catfish, providing a comprehensive understanding of this species and 

their unique ability in air breathing. A total of 5,419 DEGs were identified during the early 

development of tra catfish. Gene ontology enrichment analysis revealed these genes were mainly 

enriched in blood vessel formation, respiratory chain complex, transportation and binding of 

oxygen, transmembrane activities, and others, which were considered to be air breathing-related 

categories. We then compared the genomic contents of channel catfish and tra catfish, which 

belong to the same order (Siluriformes). One hundred and nine unique genes were identified that 
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were active in tra, but absent from channel catfish, and our studies suggest that they might play 

key roles in the development of the swim bladder and air breathing functions in tra. Low to zero 

oxygen challenge experiments and histology were combined to reveal the development of air 

breathing capabilities in concert with the formation of the swim bladder in tra catfish. Gene 

expression analysis was also performed for tra catfish specific genes, and 14 genes were selected 

and believed to be implicated in the air breathing ability in tra catfish. Luo et. al (2016) 

conducted a similar analysis in 2016 [46]. They conducted Illumina RNA sequencing for the six 

developmental stages (4 dph (days post-hatch), 8 dph, 12 dph, 20 dph, 40 dph and one-year-old) 

for the posterior intestine, the ABO, of dojo loach (M. anguillicaudatus). According to the 

differential expression analysis among different developmental stages and gene expression 

analysis, 25 key genes were detected to be potential target genes involved in the formation of 

intestinal air-breathing function in M. anguillicaudatus. These included: GSN, YES1, CISH, 

RHOA, PRKCE, RAF1, BAD, SOCS3, PIK3CA, AKT1, KDR, EGFR, TP53, JUN, SMAD4, 

PKT2, MAPK14, GRB2, VEGFA, MYC, TNF, DVL2, ROS1, ETV5 and FZD10 [46]. None of 

these genes match the key genes that were identified as key ABO genes in tra, which use the 

swim bladder instead of the intestine for air breathing, in our study. Luo et. al (2016) also 

reported that these genes were seldom mentioned with air-breathing function in fish [46]. They 

are reported to be mainly involved in development, angiogenesis and cytoskeleton, and thus 

considered to contribute to the intestinal aerial breathing function formed process during 

posterior intestine development in dojo loach. The lack of intersection among these 25 genes 
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with the 14 genes we identified to be candidate key genes for the air-breathing function in tra 

catfish, may emphasize that using radically different organs for air breathing, also leads to the 

use of very different genes to accomplish this task. Further studies on the 2 species using 

methods such as in situ hybridization may confirm these apparent differences. The putative 

functional roles and related pathways of the key genes are discussed below. 

PET117 Cytochrome C Oxidase Chaperone (PET117) is a protein coding gene. Diseases 

associated with pet117include Mitochondrial Complex Iv Deficiency and Charcot-Marie-Tooth 

Disease, Type 4K [47]. Human (Homo sapiens) PET117 functions the same way in cytochrome c 

oxidase (cox) biogenesis as that in yeast (Saccharomyces cerevisiae), although further 

experimentation needs to provide conclusive evidence in mammalian systems [48]. Vidoni et. al 

(2017) demonstrated that in the presence of PET100, PET117 interacts with myofibrillogenesis 

regulator 1 (MR-1S) and with some COX subunits. Such interaction proved to assist COX 

biogenesis in higher eukaryotes [49]. 

SPIDROIN-2 is also named Dragline silk fibroin 2 and is known as silk protein. Sequence 

analysis indicates that it belongs to the silk fibroin family, and this is a highly repetitive protein 

characterized by regions of polyalanine and glycine-rich repeating units. In Golden silk 

orbweaver (Nephila clavipes), spiders' major ampullate silk possesses unique characteristics of 

strength and elasticity. Until recently, there has been little evidence of this gene reported in 

teleost fishes, but its specific function in aquatic species needs further investigation [50, 51].  
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Gastrin-releasing peptide (GRP) is a bombesin-like peptide, generated by pulmonary 

neuroendocrine cells (PNEC), Many studies reported this gene to play a key role in pulmonary 

neuroendocrine cells grown and lembryonic lungs branching [45, 52]. As reported by Spindel et 

al (1987), GRP expression was elevated in human embryonic pulmonary during the canalicular 

phase of lung development (16 to 30 wk post fertilization). Through RNA blot and in situ 

hybridization analyses, GRP expression was first detected in fetal lung at 9-10 wk, reaching a 

plateau from 16 to approximately 30 wk, which was 25-fold higher than in mature lungs, and 

then declined to adult level at 34 wk post-partum. By contrast, GRP peptide levels remained 

elevated until several months after birth. The ephemeral high level expression of GRP during 

nearly 12-wk phase of embryonic lung development suggested that the secretion of GRP or its 

COOH-terminal peptides from pulmonary neuroendocrine cells might be closely associated with 

normal lung development in humans [53]. In human early pregnancy, in situ hybridization has 

indicated that GRP had the greatest expression in the proximal lung, and that as the lung 

continued to develop, the intensity of expression increased in the distal lung, suggesting that 

GRP gene was activated in the progression from a proximal to distal development, which was 

consistent with the differentiation and development of respiratory bronchioles. These related 

observations suggest that GRP plays a predominant role in human fetal lung development. The 

activation of the GRP gene is critical for normal lung growth. In addition, GRP gene is necessary 

for inducing the formation of primitive air saccules along respiratory bronchioles as well as the 

continuing extension of airway epithelium [53]. In 1984, Uddman reported that GRP may also 
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possess the function of regulation of local blood flow, glandular secretion and the activity of 

smooth muscle [54]. Martínez et al. (2005) found that the addition of GRP in human cells could 

increase endothelial cell migration, cord formation as well as induce angiogenesis in vitro [55].   

GRP was reported to have similar distribution and function in mouse (Mus musculus) as 

humans. There is evidence that GRP is associated with fetal mouse lung branching during 

morphogenesis [56]. In mice, GRP and GRP receptor genes are expressed in embryonic lung as 

early as embryonic day 12, when the lung begins to branch [56]. In situ hybridization in mouse 

revealed that the GRP receptor reaches its highest level of expression in mesenchymal cells at 

cleft regions of branching airways and blood vessels [56, 57]. 

Fractalkine-like isoform X1 (CX3CL1) is another gene we identified in our developmental 

time series analysis, which is potentially to be important in the development of swim bladder and 

air breathing function. In human pulmonary circulation, the high blood flow and low pressure 

was preserved by distal arterioles with limited smooth muscles [58]. In hypoxia, human lung 

usually increases the air exchange area and capillary length to compensate pulmonary alveolar. 

Also, lung microvascular endothelium produces excessive CX3CL1, in response to hypoxia, 

which could stimulate phenotypic switching, proliferation, and muscle expansion in SMC [58]. 

Though probably related to hypoxia tolerance, little is known about this gene in fish. 

The lymphocyte antigen 6 (LY6) gene family belongs to the superfamily of lymphocyte 

antigen-6 (LY6)/urokinase-type plasminogen activator receptor (uPAR) proteins [59]. This 

superfamily is characterized by a LU domain (60-80 amino acid), which is composed of 6-10 
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cysteines arranged in a specific spacing pattern that allows distinct disulfide bridges which create 

the three-fingered (3F) structural motif [59]. The three-fingered structural motif is an ancient 

motif. Lymphocyte antigen 6D (LY6D or Ly-6D or E48) in humans is involved in cell adhesion, 

lymphocyte differentiation, and response to stilbenoids [60]. It can be used as molecular marker 

to distinguish between B- and T-cell lymphocytes types at the earliest stage. This gene is 

expressed at the outer cell surface of translational epithelia and keratinocytes of stratified 

squamous epithelia, indicating tissue specificity [59]. A few of human orthologs in mouse of 

LY6 include LY6E, LY6K, Lynx1, Slurp1, and Gpihbp1. Knockout of these genes results in 

embryonic lethality, infertility in both sexes, visual cortex, palmoplantar keratoderma with 

metabolic and neuromuscular abnormal phenotype, and hypertriglyceridemia phenotypes. Most 

of the LY6 homologues (i.e. Sca1, Ly6B, Ly6C, Ly6G, Ly6I/Ly6M, and Ly6F) in mice are 

expressed in various immune cells, such as B-cells, T-cells, NK cells, monocytes, and dendritic 

cells, indicating involvement in immune system [61]. Interestingly, LY6K from clinical data 

demonstrated that overexpression of LY6K leads to a few organ cancers, including breast cancer, 

esophageal squamous cancer, gingivobuccal cancers, bladder cancer, and lung cancer [61]. 

Therefore, we speculate that overexpression of LY6 in fish may cause dysfunction of swim 

bladder, gill and other organs. However, in the current study, this transcript contig was too short 

to predict any biological structure. 

Non-compact myelin associated protein (ncmap) has other alternative names, myelin protein 

11 kDa, or C1orf130, or short for MP11, and plays a role in myelin formation [62]. Diseases 
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associated with NCMAP include Dieulafoy Lesion and Gene Ontology (GO) annotations related 

to this gene include structural constituents of the myelin sheath [62]. It is a membrane protein 

that inhibits myelination when either over- or underexpressed. MP11 expression is restricted to 

the placenta and peripheral nervous system, where it is expressed by Schwann cells and localized 

to paranodes and Schmidt-Lanterman incisures (SLIs) of non-compact myelin [63]. 

Calcium-activated chloride channel regulator 1 (CLCA1) and calcium-activated chloride 

channel regulator 3A-1 (CLCA4A1) both belong to part of larger family of CLCA proteins that 

has conserved domain architectures, such as, CLCA domain, VWA domain and transmembrane 

domain. CLCA1 factor has widely been found in many epithelial cells, endothelial cells and 

smooth muscle cells. Its main roles include chloride transport and mucin expression [64]. The 

VWA name comes from von Willebrand factor (vWF) type A domain. The von Willebrand 

factor is a large multimeric glycoprotein found in blood plasma, and mutation of VWA causes 

bleeding disorders [65]. CLCA family members have been reported in different species, 

including human (4 genes from hCLCA1 to hCLCA4), mouse and rat (8 homologues from 

mCLCA1 to mCLCA8), and cow (bCLCA1, bCLCA2 (Lu-ECAM-1), bCLCA3, and bCLCA4) 

[66]. There are five orthologue genes documented in zebrafish, CLCA1, CLCA5.1, CLCA5.2, 

CLCA1-201, CLCA1-203 and CLCA5.1-201 [67]. In our current hypoxia study, two orthologues 

are found, CLCA1 and CLCA3. Recent studies demonstrated that CLCA1 forms non-covalent 

oligomers in colonic mucus and has Mucin 2-processing properties, playing an important role in 

regulating the structural arrangement of the mucus and thereby partly mediating mucus 
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processing [68, 69]. Few reports are available on the functional analysis of CLCA3. However, 

CLCA3 has conserved domains with CLCA1, and share 82% identity to each other using 

MatGATv program (data not shown). In addition, CLCA3 has one specific domain, FN3, 

fibronectin type 3 domain, which is involved in cell adhesion, cell morphology, thrombosis, cell 

migration, and embryonic differentiation [70]. 

Another candidate gene for air breathing in tra was histidine-rich glycoprotein (HRG). Li et 

al (2018) reported that genes related to angiogenesis maybe one of the adaptations for the air- 

breathing organ to retain the high efficiency of gas exchange, and thus are one of the critical 

components for air breathing fish to adapt the low oxygen terrestrial conditions [29]. Histidine-

rich glycoprotein-like (HRG) is mainly present in plasma fluid and is thought to play various 

roles in the human blood, such as angiogenesis, vascularization, coagulation contained and 

immunity [71]. For the function in angiogenesis, HRG can bind to thrombospondin (TSP) and 

TSP-1, which is a powerful inhibitor in angiogenesis. HRG was reported to inhibit the 

antiangiogenic effect of TSP-1 [72, 73]. 

Cytochrome c oxidase (COX) is composed of 13 subunits, three encoded by mitochondrial 

(mt)DNA and 10 encoded by nuclear genes. Cytochrome c oxidase subunit 7C (COX7C) is one 

of the last enzymes in the mitochondrial electron transport chain that drives oxidative 

phosphorylation. This respiratory chain catalyzes the reduction of oxygen to water. COX7C, 

NRF1 and PGC1α itself, in the putative PGC1α axis, showed no increase in mRNA in response 

to AMPK activation, while cold acclimation induced 4.1 fold increase in COX activity relative to 
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warm acclimated goldfish [74]. Low temperature induced mitochondrial biogenesis in many fish 

species. However, Duggan et al (2011) showed that not all of the subunits of COX. COX4-1, 

COX5A1, COX6B1, COX6C and COX7C are cold responsive in dace (Chrosomus eos), 

goldfish (Carassius auratus) and zebrafish (Danio rerio), suggesting coordination of cytochrome 

c oxidase gene expression in the remodeling of fish skeletal muscle [75].   

Zinc Finger Protein 862 (ZNF862) in human functions in transcriptional regulation by 

binding metal ions and nucleic acid, and has protein dimerization activity [76]. Few reports from 

fish could be found. This gene only has a partial cDNA sequence in our RNA-seq data. 

L antigen family member 3 (LAGE3) has a typical transmembrane domain and Pcc1 

domain. Pcc1 family is conserved and can be found in yeast (Saccharomyces cerevisiae), such 

as, EKC/KEOPS complex subunit Pcc1, and also in mammals, EKC/KEOPS complex subunit 

LAGE3, and human cancer/testis antigen (CTAG) 1/2 [77]. Human (Homo sapiens) lage3 is 

homologue to ECK, which in both yeast and human is essential for the universal tRNA 

modification [78, 79]. 

Family with sequence similarity 216 member A (FAM216B) is predicted to have a domain 

FAM216B. Its family members are approximately 150 - 270 amino acids in length. In humans, 

the gene encoding FAM216B protein is located in the position, C13orf30. In Pangasianodon 

hypophthalmus, FAM216A has 180 amino acids in length and shows 43.75% identity to 

zebrafish (data now shown) and 39% to humans (NCBI blast). Function of this gene is not well 

identified. 
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VXN (vexin-like) gene belongs to cluster 2, which was a cluster differentially expressed and 

assumed to be involved in air breathing. However, VXN gene expression does not change over 

time, and likely does not appear to be associated with air-breathing ability. 

The uncharacterized genes are potentially of great importance. Since the functional air 

breathing using the swim bladder is a unique trait and structure, perhaps that is why these genes 

are not characterized in other organisms.  

All of the 14 characterized genes, excluding VXN, are closely related to the formation of air 

breathing ability in tra catfish, in which, HRG, GRP and CX3CL1 are the most important 

candidate genes, as they were reported to be critical for the formation and function of human 

lung and angiogenesis. Further transgenic, overexpression, knock out and in situ hybridization 

experiments will be needed to verify the molecular mechanisms and special distribution 

underlying air breathing functions in vertebrates and tra catfish. 

3.6 Conclusion 

Tra catfish are aquatic, but can use its swim bladder to breathe in air, while channel catfish 

cannot perform air breathing. As such, these two species provide remarkable models to study the 

transition from aquatic to terrestrial living, and the genes that are critical for the development of 

swim bladder, as well as the function of air breathing in tra catfish. Through comparative gene 

contents analysis between tra catfish and channel catfish, 109 genes were initially and uniquely 

identified to be in tra catfish, but absent from channel catfish. Hypoxia challenge and histology 
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experiments revealed the timepoints for the air breathing ability and swim bladder development 

in tra catfish. Further analysis was performed to narrow the list of candidate key genes for air 

breathing. Fourteen genes were ultimately selected to play an important role in the formation of 

air breathing ability in tra catfish. In which, HRG, GRP and CX3CL1 were confirmed to be 

critical in human lung growth, maintenance of function, angiogenesis as well as improving 

respiratory efficiency, suggesting these genes may play an important role in functioning of air 

breathing ability in tra catfish. Further research should include use of in situ hybridization, 

overexpression and gene knock-out methods to confirm the special distribution and functional 

expression of these genes.  
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Chapter 4 De novo transcriptome assembly and gene expression analysis in seven 

developmental stages of Clarias macrocephalus to investigate the evolution innovation of 

air-breathing 

4.1 Abstract 

Walking catfish (Clarias macrocephalus) and channel catfish (Ictalurus punctatus) are 

freshwater fish species of the Siluriformes order. C. macrocephalus has both gills and modified 

gill structures serving as an air breathing organ (ABO) which allows them aerial breathing (AB), 

while I. punctatus does not possess an air-breathing organ (ABO), and thus cannot breathe in air. 

These two species provide an excellent model for studying the molecular basis of accessory air-

breathing organ development in teleost fish. In this study, seven development stages in C. 

macrocephalus were selected for RNA-seq analysis to compare with channel catfish as the time 

when air breathing developed and became functional. More than 504 million clean reads were 

ultimately generated in C. macrocephalus, and a total of 25,239 expressed genes were detected 

and annotated. Subsequently, 8,675 differentially expressed genes (DEGs) were identified 

among different developmental stages. Through comparative genomic analysis between C. 

macrocephalus and I. punctatus, 1,458 genes were identified to be present in C. macrocephalus, 

but absent from I. punctatus. Gene expression analysis and protein-protein intersection (PPI) 

analysis were performed to select the top candidate genes involved in the formation of air-
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breathing function. Finally, 26 genes were selected in C. macrocephalus, including mb, ngb, 

hbae genes, which are mainly associated with oxygen carrier activity, oxygen binding and heme 

binding activities. Hypoxia challenge suggested the timepoints for the functioning and 

development of air breathing ability in C. macrocephalus. 

This study provides a large data resource for exploring the genomic basis of air breathing 

function in C. macrocephalus and offers an insight into the adaption of aquatic organisms to 

hypoxia and high ammonia environment. 

4.2 Background 

Scientists have been long focused on the transition from aquatic to aerial gas exchange in 

vertebrates. Fish that directly breath air, i.e., conduct aerial respiration, provide critical evidence 

for the evolution of life in the ocean to terrestrial living [1]. Approximately 350 million years 

ago, there is a change in the environment, the higher temperature and the decay of dead organic 

components that used up dissolved oxygen in swamps, rivers and lakes, which resulting in a 

gradually decline in dissolved water concentration [2]. Certain fish ancestors start to develop air-

breathing organs as a result of lack of dissolved oxygen in water. Some of them left water 

environments and colonized the land; the progeny of others are air-breathing fish [3]. Air 

breathing fish can perform gas exchange directly with the atmosphere. Some may rise to the 

surface of water to gulp air while others crawl onto land and survive for extended periods of time 

[4]. 
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It is estimated that there are more than 370 air breathing fish species in 49 families [5]. The 

air-breathing organs (ABO) vary considerably among different fishes. C. macrocephalus and C. 

batrachus have the air-breathing organs evolved from the gill. In these fish, the efferent 

branchial arteries of the anterior (first and second) gill arches are sites for gas exchange and so 

act as accessory ABOs [6-8]. Some other species use a modified intestine as an ABO, such as 

Misgurnus anguillicaudatus. In such cases, the posterior region of intestine is highly modified: it 

is well vascularized with intraepithelial capillaries, which provide a suitable place for gas 

exchange [9, 10]. Other fish use their swim bladder as an ABO. These include the 

Gonorynchiformes [11], Characiformes and some species in Siluriformes, such as suborders 

Gymnotus and Pangasianodon hypophthalmus [12, 13]. The swim bladder extends from the 

posterior of the head to the tail beyond the anus and serves as the major place for gas exchange 

in aerial breathing [14].  

Walking catfish (Clarias macrocephalus) belong to the Siluriformes, and are widely 

distributed in Asia, the Indian subcontinent and Africa and has great economic value as a food 

fish [15]. Clarias has both gills and a modified gill structure, which serves as an ABO. Therefore 

Clarias is well adapted to hypoxic conditions in muddy marshes [16]. It burrows into the 

mudflats during summer periods, staying alive through direct air-breathing [17-19]. After a 

heavy rainfall, Clarias can make slither, snake-like, in order to travel across the land; thus it is 

also known as the walking catfish [20, 21]. Its “walking” ability allow Clarias to survive in 

extreme environments, such as hypoxia, desiccation stress and high ammonia, which are not 
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ideal conditions for aquaculture [18]. This capability makes Clarias a perfect model to study the 

evolution of adaptions to air breathing, as well as the mechanisms for hypoxia and ammonia 

tolerance. 

Previous studies have demonstrated the genetic basis for development transcriptome analysis 

of intestinal air-breathing in M. anguillicaudatus, and in adult C. batrachus through 

transcriptome analysis [10, 19]. However, little is known about the underlying mechanisms in the 

formation and function of the ABO in C. macrocephalus during early developmental stages. Our 

research filled this knowledge gap and advance the understanding of the molecular basis of 

accessory ABO organ development in fish, as well as adaptions to terrestrial life. In this study, 

two hypoxia challenges were performed to reveal the development and functioning of the ABO 

in C. macrocephalus, along with RNA-seq analysis of seven early development stages of C. 

macrocephalus to reveal the genomic features that potentially contribute to air breathing and 

terrestrial adaptations.     

4.3 Material and Methods 

4.3.1 Ethics statement 

This study was performed in strict accordance with the recommendations in the Guide for 

the Care and Use of Laboratory Animals and the Animal Welfare Act in the United States and in 

Vietnam. All experimental protocols involving animal care and tissue collection were approved 
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by the Auburn University and Can Tho University Institutional Animal Care and Use 

Committee. 

4.3.2 Experimental animals and tissue collection 

Walking catfish (Clarias macrocephalus) samples were collected from Can Tho University, 

Vietnam in June of 2017. C. macrocephalus fertilized eggs were cultured in a flowing water at 

26.5 ± 2 oC. Twenty to fifty C. macrocephalus embryos or larvae were harvested every 24 hours 

over a 30-day period after hatching. Samples were euthanized with 200 ppm buffered MS-222 

(Finquel, Argent Chemicals) and stored in RNA Later solution (Thermo Fisher Scientific). 

Samples were shipped to the US with dry ice and stored at -80°C until to RNA extraction.  

4.3.3 Oxygen challenge for Clarias macrocephalus 

Two oxygen challenge experiments were conducted at Can Tho University, Vietnam, to 

determine the air breathing ability of C. macrocephalus. Clarias larvae older than three days 

post-fertilization (dpf), which had completely absorbed the yolk sac, were challenged with low 

dissolved oxygen each day from 3 days to 20 dpf. Fifteen to twenty Clarias larvae were placed in 

a two-liter container with oxygen supply as a control treatment. A separate group was stocked in 

a second two-liter container, supplemental oxygen was removed, and the dissolved oxygen level 

was decreased by bubbling nitrogen gas into the water until a 0 mg/L dissolved oxygen 

concentration was obtained (measured by DO meter). Dissolved oxygen levels, larval behavior 
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and survival rate were observed and recorded every 10 minutes, and the results at each time point 

calculated and response to hypoxia represented graphically. 

Moist adult Clarias can leave the water and walk on land and live indefinitely. Therefore, 

another oxygen challenge experiment was conducted in a petri dish test simulate this situation. 

Clarias larvae were exposed directly to air and challenged each day from 3 dpf to 27 dpf. To do 

this, one group of 15-20 larvae were placed in a Petri dish without water and misted to keep them 

wet. This treatment forced the fish to obtain O2 from the air. In a second treatment, fish were 

identically loaded into a aerated two-liter water-filled tank with as a control treatment for each 

experiment. Larval behavior and survival rate were observed and recorded every 10 minutes. 

4.3.4 RNA extraction, library construction and sequencing 

Seven time points: 3, 5, 13, 14, 16, 17, 24 days post-fertilization (dpf), were selected based 

on the low oxygen challenge results. Samples were collected at each time point and stored in the 

-80°C freezer. Two biological replicates were included for timepoint and treatment group. 

Pooled samples of 4 individual fish were homogenized in liquid nitrogen and ground to a fine 

powder using mortar. RNA was extracted using a RNeasy Plus Kit (Qiagen, Valencia, 

California) following the manufacturer’s directions. For each time point, equal amounts of RNA 

from the two pooled replicates were used for library construction and Illumina RNA sequencing.  

Library construction and sequencing were performed by GENEWIZ, LLC. (South Plainfield, 

NJ, USA). RNA integrity of each sample was measured by 4200 TapeStation (Agilent 
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Technologies, Palo Alto, CA, USA). Ribosomal RNA depletion method was carried out using a 

Ribozero rRNA Removal Kit (Illumina, San Diego, CA, USA). Sequencing libraries were 

checked with the Agilent Tapestation 4200 (Agilent Technologies, Palo Alto, CA, USA), and 

quantified by using Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA) as well as by quantitative 

PCR (Applied Biosystems, Carlsbad, CA, USA). The sequencing libraries were multiplexed, 

clustered on three lanes of a flowcell and loaded on the Illumina HiSeq instrument with a 2x150 

Paired End (PE) configuration. Raw sequence data (.bcl files) generated from the HiSeq were 

converted into fastq files and de-multiplexed using Illumina's bcl2fastq 2.17 software. 

4.3.5 De novo assembly and gene annotation 

De novo assembly was performed on C. macrocephalus cleaned reads using Trinity (version 

2.8.5) [22]. Prior to assembly, raw reads quality was evaluated in FastQC (version 0.11.5) [23], 

and raw reads were filtered by removing adaptor sequences and ambiguous nucleotides using 

Trimmomatic (version 0.36) [24]. Reads with quality scores less than 25 and length shorter than 

36 bp were all trimmed. The remaining high-quality reads were used in subsequent assembly. In 

brief, the clean reads of the seven libraries were jointly assembled into unique sequences of 

transcripts in Inchworm via greedy K-mer extension (K-mer 25). After mapping of reads to 

Inchworm contigs, Chrysalis incorporated reads into de Bruijn graphs. Butterfly ultimately 

generated full-length transcripts. The assembled transcriptome was passed to CD-HIT (version 

4.7) to reduce redundancy with 95% identity [25].  
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The non-redundant contigs were annotated against the UniProt database (Swissprot), channel 

catfish (Ictalurus punctatus) database and zebrafish (Danio rerio) database using BLASTX 

program (version 2.6.0) [26]. The cutoff Expected value (E-value) was set at 1e-5, and only the 

top hit result was allocated as the annotation for each contig.  

4.3.6 Identification and analysis of differentially expressed genes 

The merged transcriptome assembly served as the reference transcriptome. The high-quality 

reads from each sample were mapped back to it using the align_and_estimate_abundance.pl 

package in Trinity [22]. The mapped reads number for each transcript was detected using RSEM 

software [27]. Differential expression analysis was performed between two adjacent time points 

using an R package DESeq2 (3 dpf vs. 5 dpf, 5 dpf vs. 13 dpf, 13 dpf vs. 14 dpf, 14 dpf vs. 16 

dpf, 16 dpf vs. 17 dpf, 17 dpf vs. 24 dpf) [28]. Differentially expressed genes (DEGs) were 

detected with a criterion of |log2 fold change| ≥ 1 (log2 fold change) and adjusted P-value < 0.05. 

The distribution of upregulated and downregulated genes was demonstrated in a volcano plot. 

4.3.7 Gene ontology and functional enrichment analysis 

To identify the overrepresented GO terms with in the DEGs, GO terms for each gene were 

assigned by using zebrafish annotations for the Unigenes set. Gene Ontology (GO) analysis and 

enrichment analysis were performed using the ClusterProfiler R package (version 3.6) [29]. The 

final annotation result was categorized in terms of biological process, cellular component and 



 147 

molecular functions. ClusterProfiler was also used for a GO functional enrichment analysis of 

certain genes. P-value and q-value cutoff criteria of 0.05 were used as thresholds of significance. 

4.3.8 Identification of orthologous protein groups 

The protein sequences of I. punctatus and C. macrocephalus were obtained from NCBI 

based on sequence orthology [30], according methods in the literature [19, 31]. Orthologs and 

orthogroups between I. punctatus and C. macrocephalus were detected with OrthoFinder 

software (version 2.2.7) [32]. To identify the Clarias-specific genes, a second round of Protein 

BLAST (BLASTP) was performed for genes with no match in the orthologue groups with a 

criterion of maximum e-value of 1e-10 [33]. Subsequently, a reciprocal BLASTP search was 

carried out to query genes with no hits from previous steps with a maximal e-value of 1e -5. 

These leftover genes are recognized as Clarias-specific gene candidates for subsequent analysis. 

To further define the Clarias-specific genes from the previous step, the species-specific 

genes in Clarias were aligned with the channel catfish genome using TBLASTN with a 

maximum e-value of 1e-10 [33]. The identified Clarias-catfish specific genes were then filtered 

with the percentage of identical matches (pident) and query coverage per subject (qcovs). The 

remaining genes without a TBLASTN hits in channel catfish genome were finally classified as 

the Clarias-specific genes absent from the channel catfish genome. 

Ultimately, the genes that are present in C. macrocephalus but absent from I. punctatus, and 

differentially expressed for at least in one time point over C. macrocephalus development, were 
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recognized to be critical genes involved in the morphogenesis of the ABO and for differences in 

aerial breathing ability. 

4.3.9 Clustering of gene expression and protein-protein (PPI) network analysis of the key 

genes 

GO enrichment analysis of the key genes was performed using ClusterProfiler R package 

(version 3.6) [29], and a q-value < 0.05 were used as the threshold of significance. A soft 

clustering software, Mfuzz, revealed expression patterns of key genes through development stage 

and assigned a general classification based on expression profiles [34]. In addition, the STRING 

database was used to investigate the network properties of the enzymes encoded by the key 

genes, as well as providing both enrichment and experimental information [35]. 

4.4 Results 

4.4.1 Oxygen challenge 

Low oxygen challenge experiments were performed to test the survival of C. macrocephalus 

in 0 ppm dissolved oxygen (DO) (Supplementary Table 11) and in an aerial environment 

(Supplementary Table 12). The survival rate of Clarias larvae at each time point was calculated, 

and statistical graphics were drawn in Figure 18 to show the changes in survival rate over time. 

At 3 dpf, C. macrocephalus larvae had a survival rate of 93.3% when oxygen was decreased to 

0.5 ppm. Initially, when the aeration was removed from the container, the oxygen concentration 
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was at 5.3 mg/L, and the fish were active and swam on the bottom as normal. Then after 5 

minutes, when the dissolved oxygen level dropped below 3.9 mg/L, they had a little slower 

movement and came closer together at the bottom. After 15 minutes, when the dissolved oxygen 

level in water dropped to 1.7 mg/L, the fish moved slower, and were still at the bottom. After 25 

minutes, when the dissolved oxygen level reached 1.2 mg/L, fish were swimming slower and 

some tried to move to the surface. This behavior remained the same until the dissolved oxygen 

concentration decreased to 0.6 mg/L at 75 minutes into the challenge, one fish died at this time, 

and some fish moved to the water surface and then back to the bottom. Then, from 110 minutes 

after the beginning of the challenge, at each time about 7-8 fish tried to move to the water 

surface and then went back to the bottom, but no more fish died. 

For the challenge at 5 dpf, the oxygen concentration fell from 5.5 mg/L to 2.5 mg/L at 20 

minutes after removing the aeration, and fish swam at the bottom. At 25 to 165 minutes, the 

dissolved oxygen level dropped from 2.1 mg/L to 0.5 mg/L, the fish were slowly swimming, and 

some fish up to the surface. At 195 minutes, the dissolved oxygen levels was 0.5 mg/L and all 

fish swam slowly at the surface. After 405 minutes, the dissolved oxygen concentration was of 

0.3 mg/L, the fish remained moving slowly at the surface, and no fish died at this point. 

The dissolved oxygen level started at 5.4 mg/L for the challenge at 13 dpf, and the fish were 

actively swimming within the container. Thirty minutes into the challenge, the dissolved oxygen 

level fell to 0.6 mg/L, and some fish started swimming to the surface and moved slowly. At 75 

minutes the dissolved oxygen level decreased to 0.4 mg/L, and all fish were at the surface 
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moving slowly. There was an 80% survival rate for C. macrocephalus larvae at a dissolved 

oxygen concentration of 0.4 mg/L. 

The challenge at 14 dpf started with a dissolved oxygen reading of 5.8 mg/L. Oxygen level 

was lowered to 1.3 mg/L, then 0.6 mg/L at 15 and 40 minutes into the challenge, respectively, 

and fish slowly swam at the bottom at this time. At 100 minutes, the dissolved oxygen 

concentration decreased to 0.4 mg/L, some fish came to the surface and moved slowly. At 130 

minutes, the dissolved level was 0.4 mg/L, and two fish died. After 250 minutes, all fish swam to 

the surface and moved slowly. The death rate remained the same from 130 minutes into 

challenge, and there was a 90 % survival rate for C. macrocephalus larvae at a dissolved oxygen 

level of 0.4 mg/L. 

When the fish were 16 dpf, the challenge began with a dissolved oxygen level of 5.2 mg/L, 

and fish were swimming normally. Oxygen concentration dropped to 0.9 mg/L at 20 minutes, 

and some fish swam to the surface and moved slowly. Then the dissolved oxygen level decreased 

and stabilized at 0.4 mg/L from 20 to 390 minutes into the challenge, the fish were moving 

slowly, and swam to the surface. No fish died. The survival rate was 100% during this stage. 

At 17 dpf, the challenge began at 5 mg/L. The dissolved oxygen concentration decreased to 

0.4 mg/L at 20 minutes. Some fish were moving slowly and swam to the surface. The dissolved 

oxygen remained at 0.4 mg/L The challenge concluded after 420 minutes with 100% survival 

rate of the C. macrocephalus larvae. 

 



 151 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Dissolved oxygen concentrations (mg/L) and survival curve for Clasias macrocephalus at 3, 5, 13, 

14, 16, 17, 24 days post-fertilization (dpf), during a low dissolved oxygen challenge. Dissolved oxygen level 

was reduced by replacing with the oxygen stripping. Fish were determined moribund when the opercular 

movement ceased. 

In the Petri dish experiments, Clarias larvae were exposed to the air directly and challenged 

each day from 3 dpf to 27 dpf. At 3 dpf, two fish died after 25 minutes, and the survival rate was 

86.7% (Figure 19). At 30 minutes, two additional fish died, the fish were not active and then 

stopped moving. Survival rate was 73.3%. Survival rate decreased to 53.3%, 40% and 26.7% at 
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47, 60 and 75 minutes, respectively, and fish stopped moving during these stages. At 80 minutes, 

all fish died. There was a 0 % survival rate for C. macrocephalus in the aerial environment. 

At 5 dpf, Clarias larvae had a survival rate of 100% at 45 minutes into the challenge, but 

fish were not active and stopped moving at this period. Then at 62 minutes, two fish died, 

survival rate was reduced to 90%, and fish stopped moving. At 70, 80, 95 and 105 minutes, the 

survival rated decreased to 75%, 55%, 20% and 10%, respectively. After 108 minutes, all fish 

had died.    For 13 dpf larvae, fish were not active at 25 minutes and stopped moving. At 65 

minutes, fish stopped moving and a bubble appeared around fish body. Fish had a survival rate of 

100% until exposed to the air for 93 minutes. At 93 minutes into challenge, one fish died, and 

survival rate was 95%. Then the survival rate decreased to 70%, 45%, 20% and 5% at 125 

minutes, 186 minutes, 248 minutes and 365 minutes, respectively. After 382 minutes, all fish had 

died. 

At 14 dpf, all fish survived through air breathing for 105 minutes. From 25 minutes into the 

challenge onward, fish stopped moving, and a bubble appeared around the fish body. At 126 

minutes, two fish died, and survival rate decreased to 90%. Then the survival rated decreased to 

70%, 45% 20% and 5% at 142 minutes, 157 minutes, 191 minutes and 283 minutes, respectively. 

At 291 minutes, all of the fish were dead.                                         

When the fish were 16 dpf, fish stopped moving at 25 minutes after exposure to the air, and 

a bubble started appearing around the body from respiration. No fish died until 145 minutes into 
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the challenge. The survival rate continuously decreased from 90% at 157 minutes to 10% at 321 

minutes. At 327 minutes, all fish had died. 

At 17 dpf, fish stopped moving 25 minutes into the challenge, and a bubble started appearing 

around the fish. All fish survived in the aerial environment for 265 minutes through air 

breathing. At 285 minutes, two fish died, dropping survival rate to 90%. Then the survival rate 

decreased to 70%, 50% and 45% at 317 minutes, 382 minutes and 397 minutes, respectively. 

Then no additional fish died, the survival rate remained the same from 397 minutes onward. Fish 

possessed a final survival rate of 45%. 

Again, fish stopped moving at 25 minutes into the air challenge at 24 dpf, and no fish died 

until 289 minutes into the challenge. Then four fish died after exposure to the air after 316 

minutes, resulting in 95% survival. The survival rate remained the same until 51 minutes later, 

when four additional fish died (80% survival). The challenge concluded at 420 minutes, and 

there was a 60% survival rate for C. macrocephalus in the aerial environment.  

In summary, from 3 dpf, the first day after C. macrocephalus completely absorbed all of the 

yolk sac, the fish already possessed partial aerial breathing ability. At that age, some fish could 

move to the surface and had air gulping behavior. From 3 dpf to 16 dpf, the air breathing ability 

gradually increased with the development of C. macrocephalus. However, no larvae could 

survive in air environment for an indefinite period during these stages. Forty-five percent fish 

could survive through air breathing at 17 dpf, sixty percent at 24 dpf in the aerial environment, as 
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this proportion of these fish could breathe air and possessed fully air breathing ability during this 

stage. 
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Figure 19. Survival curve for Clarias macrocephalus exposed to the aerial environment at 3, 5, 13, 14, 16, 17, 

24 days post-fertilization (dpf). Fish were determined moribund when the opercular movement ceased. 

4.4.2 Transcriptome sequencing and de novo assembly 

A total of 1,331 million raw reads was generated for Clarias through RNA sequencing. 

After trimming the low-quality reads (quality score < 25), very short reads (< 36 bases) and 

adapter sequences, approximately 504 million clean reads were ultimately retained for Clarias 

(Supplementary Table 13). Trinity software was used to assemble the clean reads obtained from 

the seven different transcriptome timepoints and an assembled full-length transcriptome was 

generated. After removing the redundant transcripts using CD-HIT tool at 90% identity, 

approximately 1,841,162 transcripts remained with an average contig length of 829 bp and N50 

size of 1,390 in its assembly (Table 7). The average ORF length was 592 bp, at a GC content of 

42.3%. 

 

     Table 7. The sequencing data output and quality assessment on the RNA-seq results of walking catfish (Clarias 

macrocephalus). 

  Clarias macrocephalus 

Assembly                              

Transcript number                                     

Genes 

             

              1,841,162 

              1,004,981 
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Total assembled bases 

GC% 

Average contig length                                     

Average ORF length 

N50      

N50 longest isoform 

Annotation 

Unigenes      

              1,525,751,722 

              42.3%  

              829 

              592 

              1,390 

              799 

 

              25,239 

 

4.4.3 Gene identification and annotation 

To maximize the information of assembled transcripts, a BLAST-based gene identification 

was carried out to annotate the Clarias transcriptome and inform following differential 

expression analysis. All of the transcript sequences were searched against three databases: 

UniProt protein database (SwissProt), the channel catfish database and zebrafish database, based 

on a criterion of E-value of 1e-5. The best hit contigs were retained, with a total of 25,239 

unigenes identified among these three databases (Table 7). 

4.4.4 Identification and analysis of differentially expressed genes  

Differentially expressed gene analysis was performed to identify the DEGs with comparison 

of each stage with the previous stage. In Clarias, the number of DEGs varied from 5,992 (5,653 
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up-regulated, 339 down-regulated), between 13 dpf to 5dpf, to 449 (206 up-regulated, 243 down-

regulated) between 24 dpf and 17 dpf (Supplementary Table 14). In detail, 5,478 (271 up-

regulated, 5,027 down-regulated),1,906 (1,258 up-regulated, 648 down-regulated), 2,703 (1,152 

up-regulated, 921 down-regulated), 1,718 (1,105 up-regulated, 613 down-regulated). DEGs were 

detected between 5 dpf and 3 dpf, 14 dpf and 13 dpf, 16 dpf and 14 dpf, 17 dpf and 16 dpf, 

respectively. Eight thousand, six hundred fifty seven DEGs were ultimately identified over 

different developmental stages in Clarias. Generally, the number of identified DEGs decreased 

during the developmental stages in Clarias (Figure 20), except for a slight fluctuation between 

13 dpf and 5 dpf, which is not surprising since it is a relatively long interval from 13 to 5 dpf. 

Multiple biological processes would be expected to ‘turn on’ during this time, which would 

result in a large amount of DEGs. A Venn diagram was drawn to show the intersection between 

DEGs in different stages (Supplementary Figure 6). Moreover, a Volcano plot was constructed to 

detect the transcripts significantly changed during the early development in Clarias (Figure 21).  
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Figure 20. Gene expression during early embryonic development in Clarias macrocephalus. The number of 

differentially expressed genes (DEGs) were detected for comparison of each stage with the previous stage. 

Differential expression of genes peaked between 13 dpf and 5 dpf stage. Over time, the number of DEGs 

generally decreased. 
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Figure 21. Volcano plot of the differentially expressed genes (DEGs) in different comparisons during 

development in Clarias macrocephelus. Red dots indicate downregulation (negative value) and 

upregulation (positive value). Black dots represent non-DEGs. (A) 5 days post-fertilization (dpf) vs. 3 

dpf; (B) 13 dpf vs. 5 dpf; (C) 14 dpf vs. 13 dpf; (D) 16 dpf vs. 14 dpf; (E) 17 dpf vs. 16 dpf; (F) 24 

dpf vs. 17 dpf. 

4.4.5 Gene ontology enrichment analysis of differentially expressed genes at different 

stages 

To classify the gene ontology (GO) enrichment category with related functions, the 

enrichment analysis of DEGs at different development stages was conducted, and GO categories 

significantly enriched during Clarias development are listed in Supplementary Table 14. The 

enriched GO terms for each stage are showed in Figure 22.  
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Between days 3 and 5, the DEGs were mainly related to hemopoiesis (GO:0030097), 

response to oxidative stress (GO:0006979), aerobic respiration (GO:0009060), response to 

decreased oxygen levels (GO:0036293), response to hypoxia (GO:0001666), blood vessel 

development (GO:0001568), angiogenesis (GO:0001525), activation of MAPK activity 

(GO:0000187), Ras protein signal transduction (GO:0007265), Wnt signaling (GO:0016055), 

ATP generation from ADP (GO:0006757) and ATP metabolic process (GO:0046034). 

Between days 5 and 13, DEGs were mainly enriched for aerobic respiration (GO:0009060), 

response to oxidative stress (GO:0006979), response to hypoxia (GO:0001666), ATP metabolic 

process (GO:0046034), respiratory electron transport chain (GO:0022904), respiratory chain 

complex (GO:0098803), ATP synthesis coupled electron transport (GO:0042773), ADP 

metabolic process (GO:0046031) and NADH dehydrogenase complex (GO:0030964). 

Between days 13 and 14, enriched categories for the DEGs were mainly related to cardiac 

muscle cell development (GO:0055013), blood coagulation (GO:0007596), myosin complex 

(GO:0016459), myosin filament assembly (GO:0031034), ligase activity, forming carbon-

oxygen bonds (GO:0016875), lipid transporter activity (GO:0005319), steroid binding 

(GO:0005496) and ATPase activity, coupled to movement of substances (GO:0043492). 

For 16 dpf compared 14 dpf stage, the DEGs were mainly enriched for erythrocyte 

homeostasis (GO:0034101), ATP metabolic process (GO:0046034), ATP generation from ADP 

(GO:0006757), ATP hydrolysis coupled transmembrane transport (GO:0090662), ATP 

hydrolysis coupled ion transmembrane transport (GO:0099131), electron transport chain 
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(GO:0022900), energy derivation by oxidation of organic compounds (GO:0015980), aerobic 

electron transport chain (GO:0019646), myosin filament organization (GO:0031033) and NADH 

dehydrogenase complex (GO:0030964). 

Between days 16 and 17, the DEGs were mainly related to blood coagulation (GO:0007596), 

gas transport (GO:0015669), oxygen transport (GO:0015671), mitochondrial respiratory chain 

complex IV (GO:0005751), oxygen binding (GO:0019825), oxygen carrier activity 

(GO:0005344), hemoglobin complex (GO:0005833), response to oxidative stress (GO:0006979), 

morphogenesis of an epithelial sheet (GO:0002011), respiratory chain (GO:0070469), ATP 

metabolic process (GO:0046034), NADP metabolic process (GO:0006739) and NAD metabolic 

process (GO:0019674). 

Additionally, DEGs between 17 and 24 were enriched in gas transport (GO:0015669), 

oxygen transport (GO:0015671), oxygen binding (GO:0019825), oxygen carrier activity 

(GO:0005344), respiratory electron transport chain (GO:0022904), ATP synthesis coupled 

electron transport (GO:0042773), striated muscle contraction (GO:0006941), heart contraction 

(GO:0060047), hemoglobin metabolic process (GO:0020027), hemoglobin complex 

(GO:0005833), myofibril (GO:0030016), myosin complex (GO:0016459), voltage-gated sodium  

channel complex (GO:0001518) and heme binding (GO:0020037). 
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Figure 22. Gene ontology enrichment of differentially expressed genes (DEGs) at different development 

stages in Clarias macrocephalus. (A): 5 dpf vs. 3 dpf; (B) 13 dpf vs. 5 dpf; (C) 14 dpf vs. 13 dpf; (D) 16 dpf 

vs. 14 dpf; (E) 17 dpf vs. 16 dpf; (F) 24 dpf vs. 17 dpf. The vertical axis indicates the number of DEGs 

between two adjacent sampling times, and the horizontal axis represents the GO terms significantly enriched in 

the DEGs.  

4.4.6 Comparison of gene contents of Clarias and channel catfish 

C. macrocephalus and I. punctatus both belong to the Siluriformes order and thus are 

genetically close with each other, but air breathing is a major difference between the two species. 

Initially, we compared the gene contents between C. macrocephalus genome and I. punctatus 

genome, and 1,458 genes were identified to be present in C. macrocephalus, but absent from I. 

punctatus (Supplementary Table 15). C. macrocephalus and I. punctatus phenotypically vary in 

many ways, not only in the ability to breathe in the air. One major difference is the lack of cold 

tolerance in Clarias. Many genes would be expected to contribute to air breathing organ 

structure and function in C. macrocephalus. Genes related to ABO development and air 

breathing ability would be expected to be differentially expressed during C. macrocephalus 

development. In total, 1,458 C. microcephalus - specific genes aligned with the 8,675 DEGs, and 

291 genes were verified to be present in C. macrocephalus while absent from I. punctatus. The 

same genes were also differentially expressed throught the development of C. macrocephalus 
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(Figure 23). These 291 genes may play important roles in ABO morphogenesis and air breathing 

ability. 

 

 

Figure 23. Two hundred and ninety one candidate key genes were identified to be present in Clarias 

macrocephalus but absent in Ictalurus punctatus; they were also differentially expressed during development. 

4.4.7 Dynamic expression profiles of key genes in Clarias macrocephalus 

To obtain the expression patterns of the 291 key genes over different development stages, 

Mfuzz was used to classify genes based on changes in their expression. The 291 genes were 

gathered into 4 clusters. Clear variation was observed (Figure 24). Multiple different genes were 

detected in distinct clusters we named Cluster 1, 2, 3 and 4. The most abundant group was 

Cluster 1, with 169 genes showing a peak of expression at 5 dpf (Supplementary Table 16); after 

that, the expression values decreased. Cluster 2, including 35 genes, showed an unaltered 

expression profile at the first four developmental time points, and peaked at 17 dpf. The 29 genes 

assigned to Cluster 3 showed an expression profile that peaked at 14 dpf. The 29 genes of Cluster 
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4 had flat expression over the seven developmental stages. We do not expect, Cluster 4 genes to 

be involved in the formation of air-breathing function in C. macrocephalus. In addition, the two 

oxygen challenge experiments, indicate that the air-breathing organ in C. macrocephalus can 

partially function even as early as the stage of complete yolk sac absorption (3 dpf); and that full 

air-breathing ability is present at 24 dpf. In this regard, we considered that the genes in clusters 

1-3 have the greatest potential to play a critical role in ABO development and function in C. 

macrocephalus. 

 

Figure 24. Expression profiles and clusters for the 291 key genes in Clarias macrocephalus. These genes 

gathered into 6 significantly different profiles.  

4.4.8 Genes related to the function of air breathing organ in Clarias macrocephalus 

To further understand these 262 gens in C. macrocephalus, and identify their interaction 

informations, we searched through Retrieval of Interacting Genes (STRING). A protein-protein 
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(PPI) network was constructed (Figure 25). A subset of the genes was closely associated with 

hypoxia-related pathways (Table 8). As shown in Table 2, oxygen transport was associated with 

the formation of air-breathing organ in C. macrocephalus and Uniprot analysis detected three genes 

from this category: hemoglobin alpha embryonic-3 (hbae), myoglobin (mb), and neuroglobin 

isoform X1 (ngb). Also, from GO enrichment analysis, mb, ngb genes were considered to be related 

to oxygen carrier activity, oxygen binding and heme binding categories, which likely contribute to 

the air-breathing function. In addition, Reactome pathway analysis revealed that mb and ngb were 

closely related with the intracellular oxygen transport function. Taken together, mb, ngb and hbae 

were highly associated with the formation of air-breathing in C. macrocephalus.  

Subsequent PPI analysis also indicated that mb, ngb and hbae had a high degree of 

connectivity (Figure 25). The genes which are disconnected from other genes were excluded in 

Figure 8. Finally twenty-three more genes were counted as having a high degree of connectivity 

with each node, and thus, considered to be related to the occurrence of air-breathing organ 

function and growth in the development of C. macrocephalus. These enzymes included 

translation initiation factor IF-3 (mtif3), RRP5 homolog isoform X1 (pdcd11), 2-hydroxyacyl-

CoA lyase 1 (hacl1), serine--tRNA ligase (sars2), ubiquitin-conjugating enzyme E2 variant 3 

isoform X3 (uevld), leucine rich repeat and fibronectin type III domain containing 4b (lrfn4b), 

polycomb group protein (pc), protein disulfide-isomerase A4 precursor (pdia4), roundabout 

homolog 1 isoform X4 (robo1), very low-density lipoprotein receptor (vldlr), extracellular 

matrix protein FRAS1 isoform X3 (fras1), microtubule-actin cross-linking factor 1 isoform X19 
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(macf1), mannose-1-phosphate guanyltransferase beta (gmppb), Larval cuticle protein 1 (lcp1), 

plectin isoform X5 (pleca), Epidermal growth factor receptor (egfr), sushi, von Willebrand factor 

type A, EGF and pentraxin domain-containing protein 1 isoform X2 (svep1), neurogenic locus 

notch homolog protein 1 isoform X1 (notch1b), nesprin-1 isoform X1 (syne1b), homeodomain-

interacting protein kinase 2 isoform X3 (hipk2), kinesin-like protein KIF11 isoform X2 (kif11), 

elongation factor-1, delta, a isoform X2 (eef1da) and myomegalin isoform X4 (pde4dip). Further 

knockout, over expression and in situ hybridization experiments will be needed to clarify the 

associations between these genes and the formation of air-breathing organ function in C. 

macrocephalus.  

 

Table 8. Enrichment and pathway analysis for 262 key genes in Clarias macrocephalus. Genes are closely 

related to the air breathing functions (oxygen-binding, oxygen transport) are identified. 

Uniprot key words 

#term ID 

 

term description 

 

observed 

gene 

count 

background 

gene count 

 

false 

discovery 

rate 

(FDR) 

matching genes in 

network (labels) 

 

KW-0009 Actin-binding 6 143 0.0036 lcp, macf1, pleca 

KW-0561 Oxygen transport 3 19 0.0047 hbae, mb, ngb 
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GO enrichment 

GO:0005344 oxygen carrier activity 2 6 0.0415 mb, ngb 

GO:0008144 drug binding 5 214 0.0415 mb, ngb 

GO:0016772 

 

transferase activity, 

transferring phosphorus-

containing groups 

4 

 

129 

 

0.0415 

 

gmppb 

 

GO:0019825 oxygen binding 2 6 0.0415 mb, ngb 

GO:0036094 

 

small molecule binding 

 

7 

 

322 

 

0.0415 

 

gmppb, mb, ngb 

GO:0043167 ion binding 10 832 0.0415 gmppb, lcp1, mb, ngb  

GO:0046872 metal ion binding 9 573 0.0415 lcp1, mb, ngb 

GO:002003 heme binding 2 23 0.0425 mb, ngb 

GO:0000166 

 

nucleotide binding 

 

5 

 

286 

 

0.0475 

 

gmppb 

Reactome pathways 

DRE-8981607 

 

Intracellular oxygen 

transport 

2 

 

3 

 

0.0361 

 

mb, ngb 
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Figure 25. Protein-protein interaction (PPI) network for the key genes in Clarias macrocephalus. Genes with 

no interaction were excluded in this diagram. Only genes with high degree of connectivity were selected. Each 

node represents one gene, and the interactions among these genes were represented with different lines.  



 170 

4.5 Discussion 

For water breathing fish, gills served as the primary gas exchangers for millions of years, and then 

decreasing dissolved oxygen in water forced certain fish ancestors to develop air-breathing organs 

[36]. C. macrocephalus is a descendent of those air-breathing fishes, which can use an accessary 

air-breathing organ to breathe in air, allowing them to survive extreme environments, such as 

hypoxia and high ammonia [37]. Therefore, C. macrocephalus could be a perfect model to explore 

the formative mechanisms of air-breathing function. Experiments were conducted on anoxia. We 

tested larval fish with varying exposure to atmospheric air. These latter tests were used to detect 

the development of air breathing capability as well as the formation of ABO in C. macrocephalus. 

To the best of our knowledge, our work is the first to perform RNA sequencing development in C. 

macrocephalus, including 3 dpf, 5 dpf, 13 dpf, 14 dpf, 16 dpf, 17 dpf, 24 dpf. In total, 8, 675 DEGs 

were detected during the early development of C. microcephalus. The most significantly enriched 

GO categories revealed that these DEGs were mainly enriched in response to oxidative stress, 

decreased oxygen levels, hypoxia, angiogenesis, hemopoiesis, ATP metabolic process, gas 

transport, epithelial sheet morphogenesis and the hemoglobin complex. The genomic contents of 

C. macrocephalus and I. punctatus were compared, and 1,458 unique genes were identified in C. 

microcephalus that are absent from I. punctatus. Two-hundred-nighty-one genes were detected to 

be both Clarias-specific genes and DEGs throught the development of C. macrocephalus, 

indicating that these genes might be closely related to the formation of air-breathing function in C. 
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macrocephalus. Gene expression analysis also conducted for these 291 genes, and STRING 

software was carried out to construct PPT network for further analysis for these genes. Twenty-six 

genes were identified: mb, ngb, hbae3, mtif3, pdcd11, hacl1, sars2, uevld, lrfn4b, pc, pdia4, robo1, 

vldlr, fras1, macf1, gmppb, lcp1, pleca, egfr, svep1, notch1b, syne1b, hipk2, kif11, eef1da and 

cdk5rap2 that have no orthologs between C. macrocephalus and I. punctatus, and the percentage 

of identical matches (pident) and query coverage per subject (qcovs) were less than 70% over these 

two species, indicting these genes to be Clarias-specific. Of these 26 candidate genes, hbae3, pc, 

pleca, ezrb and lrfn4b were found strictly in Clarias. The remaining 21 genes were detected to 

have different isoforms in I. punctatus, however, their similarity and coverage between these two 

species was less than 70%. We expect that all these 26 genes are potentially important for the 

function of ABO in Clarias. 

Ning et. al (2018) also conducted comparative genomics for Ictalurus punctatus and Clarias 

batrachus, but for adult fish. They identified the expansion of mb (myoglobin), ora1 (olfactory 

receptor related to the class A G protein-coupled receptor 1), and sult6b1 (sulfotransferase 6b1) 

genes in the air-breathing C. batrachus genome, with 15, 15, and 12 copies, respectively [19]. In 

addition, a comparative transcriptomic analysis of the gills and air breathing organ revealed that 

there were eight “elastic fiber formation” genes, eight “hemoglobin” genes, and eighteen 

“angiogenesis” genes related to air breathing in C. batrachus [19]. Ning pointed out that ABOs 

are highly committed to oxygen transport and cellular respiration [19]. Their finding is in general 

accordance with ours, as we identified 26 genes potentially contributing to air breathing ability in 



 172 

C. macrocephalus, of which, mb, ngb and hbae3 were strongly associated with the formation of 

ABO function. All belong to the globin family, a family related to the classic respiratory 

pathway. All play an important role in oxygen binding and transport [38, 39]. 

MB has a critical function in the supply of oxygen to muscle tissue, and sustains the 

oxidative metabolism of heart and muscle through facilitating oxygen diffusion to the respiratory 

chain and storing of oxygen [40, 41]. In mammals, mb was observed to be expressed in muscle 

and cardiac muscles in early embryonic stages and the expression value dramatically increases in 

the later developmental stages [42]. In Japanese medaka (Oryzias latipes), a fish which is 

relatively well adapted to tolerate hypoxia, exposure of adult medaka to low oxygen result in 

strong upregulation of myoglobin [43]. In zebrafish (Danio rerio), mb is associated with 

circulatory oxygen transport and supply to muscles. Maternal mb mRNA is present in the early 

stages of development, as early as 22 hours post-fertilization (hpf). In fact it displays 

approximately a 50-fold increase in expression between 18 and 31 hpf. These expression values 

further increase by 10- to 20-fold in later stages such as like 4-5 dpf [38, 40]. The higher mb 

expression level during those stages is consistent with the onset of the blood circulation [38, 40]. 

In addition, our gene expression analysis also revealed that the expression profile of mb genes 

belonged to Cluster 1, and the genes in this cluster had an increasing expression value through 3 

dpf and reached peak expression at 5 dpf, which agrees with the report in zebrafish [38, 40].  

Neuroglobin (ngb) is a recently detected vertebrate globin preferentially expressed in the brain 

and nervous system. It reversibly binds oxygen [44]. In mammals and zebrafish, ngb is reported 
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to be related to oxygen-dependent oxidative metabolism [45, 46]. In zebrafish, ngb expression 

levels are low during early stages. When simple oxygen diffusion is sufficient, in the early stages 

of embryology, ngb expression is low. Its expression increase parallel along with the expression of 

mb at 4-5 dpf when circulation starts [40, 47]. Our expression profile analysis found that ngb gene 

also belonged to Cluster 1, which again peaked at 5 dpf, consistent with mb expression. 

Hemoglobin alpha embryonic-3 (hbae3) and mb are best known for respiratory functions, 

which enable the cellular oxygen supply in support of aerobic metabolism [39]. Hemoglobin 

consists of two α and two β chains, located in the erythrocytes. It dramatically increases the oxygen 

carrying capacity of the blood [46]. Hb can enhance the efficiency of oxygen transport from the 

respiratory surfaces to the interior of the body in lungs, gills and skin [39, 46, 48]. In zebrafish, 

activation of hemoglobin biosynthesis was reported to be associated with hypoxia-protection [49]. 

All of these genes played different roles in the hypoxia response and alternative metabolic 

processes of several fish species coping with O2 deprivation. Further experiments will consider 

using over expression, knock out and in situ hybridization method to characterize their specific 

functions and to provide a comprehensive understanding of their molecular roles in air breathing. 

4.6 Conclusion 

In conclusion, C. macrocephalus is an aquatic species that can utilize its accessory ABO to 

obtain oxygen directly from air, while I. punctatus cannot perform air breathing. Therefore, these 

two species provide an excellent model to reveal the critical genes that contribute to the 
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development of ABO function. Our study is the first report concerning the high throughout 

sequencing for transcriptome studies during the early developmental stages in C. macrocephalus. 

A total of 25, 239 unique genes were generated, and 8,675 DEGs were detected during 

development in C. macrocephalus. Through comparative genomic contents analysis between C. 

macrocephalus and I. punctatus, 1, 458 genes were initially and uniquely identified in C. 

macrocephalus but shown to be absent from I. punctatus. Gene expression profile analysis and PPI 

network was explored, and 26 genes were identified to be potential candidate genes for the 

formation of air-breathing function in C. macrocephalus. Hypoxia challenge experiments revealed 

the timing of expression related to air breathing ability in C. macrocephalus. Future over 

expression, knock-out and in situ hybridization should be performed to further verify the candidate 

key genes for air breathing. 
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