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Abstract 

 

 

 In the latest years, multiple types of computational models have been used extensively in 

drug development, with a massive growth of uses of physiologically-based pharmacokinetic 

(PBPK) modeling in fields associated with drugs and natural chemicals. PBPK models are used 

for systemic and tissue exposure. Combined with the pharmacodynamic models (PD), PBPK 

models can predict drug-effect over time in many disease states and populations. To attain a 

mechanistic description of the effect of a drug in biological systems, PBPK models correlated 

drug-specific data with the biology and physiology at the organism level, permitting a deductive 

simulation of drug concentration–time profiles. In this dissertation, we studied the effect of 

transporters and metabolism on the pharmacokinetics (PK) and PD of 2 drugs: caffeine 

(specifically in pregnant populations), and granisetron using PBPK modeling. 

About 80% of pregnant women consume caffeine orally on a daily basis. Many reports 

indicated that consumption of >200 mg caffeine during pregnancy could increase the likelihood 

of miscarriage. Thus, we developed and validated a pregnancy PBPK/PD model for caffeine to 

examine the association between maternal caffeine consumption during pregnancy, and caffeine 

plasma levels at doses between 70 mg and 300 mg. The developed model was used to predict 

changes in caffeine concentrations across the 3 trimesters, and to predict associated changes in 

caffeine PD parameters. The model successfully predicted the effect of decreased cytochrome 

P450 (CYP1A2) activity on caffeine plasma levels and predicted the increased levels of caffeine 

in the fetoplacental compartment (FPC). Increased caffeine levels in maternal blood were 

accompanied by greater inhibition of phosphodiesterase enzyme, higher cyclic adenosine 

monophosphate, and a greater increase of epinephrine levels, which could increase the risk of 

pregnancy loss. The application of the developed PBPK model to predict PD effect could 

provide a useful tool to help define potential cut-offs for caffeine intake in various stages of 
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pregnancy. Our future directions for this project are to use this project to correlate the amount of 

caffeine intake during pregnancy to the percent of miscarriage on pregnant subject. 

Chemotherapy-induced nausea and vomiting (CINV) is one of the most devastating side 

effects that affect a patient’s quality of life. Granisetron is effective in many cases; however, 

about 20-30% of patients remain to show unsatisfactory responses, which could be due to the 

development of drug resistance caused by anti-cancer drugs. The purpose of this project is to 

explain the observed variability in granisetron efficacy. We started by identifying the effect of P-

glycoprotein (P-gp) and lysosomal entrapment on granisetron permeability and plasma profiles 

following oral dosing. Our predicted results, assessed by in vitro experiments, demonstrated that 

changes in P-gp function, as well as lysosomal pH, alters granisetron permeability and plasma 

concentrations. Granisetron is cleared mainly by hepatic metabolism, with less than 20% 

excreted unchanged in the urine. Granisetron is metabolized primarily by CYP 1A1 and CYP 

3A5. Thus, in the second part of the study, we developed a PKPD model to validate and predict 

the effect of genetic variations in CYP1A1 and CYP3A5 on granisetron levels in plasma and 

brain and predict the effect of these genetic variations on the occupancy of 5-hydroxytryptamine 

(5-HT3) receptors. Our results showed that granisetron is a P-gp substrate and is usually effluxed 

out of the cells, thus limiting its absorption. Also, due to its physicochemical properties, 

granisetron gets entrapped inside the lysosomes, limiting its passage through cell lines. 

Furthermore, genetic polymorphism plays an important role in receptor occupancy, where we 

concluded that subjects with CYP1A1 single nucleotide polymorphism (SNP) (and extensive 

metabolizer) would lower plasma and brain levels thus decreasing receptor occupancy, while 

subjects with the CYP3A5 SNP (a poor metabolizer), would have an increase in granisetron 

levels, thus increasing receptor occupancy for better CINV control. 
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In conclusion, PBPK models can be invaluable support in drug development. Predicting 

potential drug effects in several populations is some of the major topics where PBPK approaches 

have presented significant advances in recent years. Our future directions will be to use PBPK 

modeling to build models and predict drug effect and doses in several other important 

populations like the pediatric population, where drug dosing is problematic. Another important 

direction is the utilization of PBPK modeling in simulating several drug-drug interactions (DDI), 

especially in geriatric population where most of the patients are on polypharmacy and the 

possibility of DDI is high.  
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Chapter 1 

Introduction 

 

Brief Introduction about PBPK Models 

Physiologically based pharmacokinetics (PBPK) was first introduced in 1937 by Teorell 

(Paalzow, 2010), the father of pharmacokinetics (PK), where he presented his objective that is to 

derive “general mathematical relations from which it is possible, in any case for practical 

purposes, to describe the kinetics of distribution of substances in the body” (Paalzow, 2010). 

Increasing access to literature data has made it easier to build and refine PBPK models. To 

predict drug exposure, dose-response, and time-course of pharmacokinetic profiles, kinetic 

models have been used for different dosage schedules and in several species, disease state, and 

population. Based on the model’s preclinical Absorption, Distribution, Metabolism and excretion 

(ADME) data, the pharmacokinetic profile of a compound can be predicted, and it can be used to 

assess drug exposure in a desired organ, taking into account the metabolism within that organ, if 

applicable. To achieve a desired effect of a certain drug dosage, one should predict the 

pharmacokinetics (PK) as well as the resultant pharmacodynamic (PD) of that drug. When the 

PK of a compound is predicted, in combination with the PD model, the effect-time profiles can 

be estimated, and together with the dosage of the drug can be used to achieve the desired 

exposure in-vivo (Jones, 2013). 

Different PK profiles can be predicted in diverse populations of several age and disease 

states based on PK data from one population. A series  of mechanistic equations are used to build 

PBPK models that usually have certain specifications and restrictions to include different 

physiological and biological variables through which ADME of many drugs can be defined  

(Rodgers and Rowland, 2007). Due to the need for several input parameters and the 
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mathematical difficulty of PBPK models, there is a limitation in the application of PBPK in the 

pharmaceutical industry (Center for Drug Evaluation and Research (CDER), 2018). As a 

consequence to that there is a growing availability of several softwares, for instance, GastroPlus 

(SimulationsPlus, Lancaster, CA) (http://www.simulations-plus.com/), Simcyp Population-Based 

Simulator (Sheffield, UK) (http://www.simcyp.com/), and PKSIM (Bayer Technology Services, 

Germany) (http://www.systems-biology.com/products/pk-sim.html) and many others, 

pharmaceutical companies have shown interest in PBPK modeling applications (Huang et al., 

2013). 

Regulatory agencies have been requesting pharmaceutical companies to include PBPK 

model methods when submitting pharmaceutical records (Center for Drug Evaluation and 

Research (CDER), 2018). The Food and Drug Administration (FDA) has received 33 cases 

involving PBPK in the years between 2008 and 2012 (FDA, 2017). Lately, both the FDA and the 

European Medicines Agency (EMA) updated guidance documents on the evaluation of drug–

drug interaction (DDI) possibility where the use of PBPK modeling was encouraged by both 

agencies (FDA, 2017; EMA, 2018). 

 

PBPK Model Methodology and Components 

PBPK models are scientific models that incorporate drug-specific information and 

information on target physiology, to predict drug levels and effect (PK and PD) in both plasma 

and different tissues (Jones, 2013). PBPK models represent different compartments 

corresponding body organs, every organ with its blood supply, blood flow, organ volume (or 

weight), and organ intrinsic clearance (CLint); each of these parameters is specific for a species of 

interest. Classically, these compartments include the major organs of the body, specifically, 

adipose, bone, brain, gut, heart, kidney, liver, lung, muscle, skin, and spleen (Rodgers and 

http://www.simulations-plus.com/
http://www.simcyp.com/
http://www.systems-biology.com/products/pk-sim.html
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Rowland, 2007). Each tissue is expressed with assumptions of either perfusion-rate-limited or 

permeability-rate-limited. When drug permeability is high, the extent of drug partitioning into 

the tissue is limited by the blood flow through the tissue (i.e., perfusion limited). Perfusion-rate- 

limited kinetics assumes a well-stirred model with clearance taking place only by the liver and/or 

kidneys. Lipophilic compounds tend to follow the perfusion-rate-limited kinetics where the 

limiting rate for absorption is the tissue blood flow. The partition coefficient (Kp) is used to 

calculate how much drug is in the tissue, where immediate partitioning is assumed (Holt et al., 

2019). 

 

Scheme 1. Schematic view of Perfusion–limited tissues. 

Where:  

Cbi, Cbo: Blood concentration entering/leaving the tissue. 

Rbp: Blood/plasma drug concentration ratios. 

Vp,Vt: Plasma and tissue volumes (weight). 

Cp, Ct: Plasma and tissue drug concentrations. 

Kp: Tissue-plasma partition coefficient. 

Fup, fut: Fractions unbound is plasma and tissues. 

CLint: tissue intrinsic clearance (if applicable). 
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Perfusion-limited tissue has no role in drug clearance. The change in drug concentration 

in the tissue is equivalent to the product of blood flow and the difference between the blood 

concentrations entering tissue and the ratio of tissue concentration corrected for red blood cell 

binding divided by Kp as shown in equation 1 (Holt et al., 2019). 

𝑉𝑡
𝑑𝐶𝑡

𝑑𝑡
= 𝑄(𝐶𝑏𝑖 −

𝐶𝑡 𝑥 𝑅𝑏𝑝

𝐾𝑝
)                                                       Equation 1. 

 

For tissues that play a role in drug clearance, intrinsic clearance must be included in the 

equation (Equation 2) (Holt et al., 2019). 

𝑉𝑡
𝑑𝐶𝑡

𝑑𝑡
= (𝑄 𝑥 𝐶𝑏𝑖 −

𝑄 𝑥 𝐶𝑡 𝑥 𝑅𝑏𝑝

𝐾𝑝
− 𝐶𝐿𝑖𝑛𝑡 (

 𝐶𝑡 𝑥 𝑓𝑢𝑝

𝐾𝑝
))                            Equation 2. 

The product of intrinsic clearance times the unbound concentration in tissue divided by 

Kp forms the clearance term. The CLint in the tissue affects only unbound drug. CLint check can 

be calculated from the summation of all enzymes entered for the tissue with their respective 

Vmax and Km values (Equation 3). 

CL  𝑖𝑛𝑡 = ∑ (
Vmax

𝐾𝑚+𝐶𝑡
)

𝑛𝐸𝑛𝑧

𝑖=1
                                                         Equation 3. 

Hydrophilic and larger molecules tend to follow permeability- limited kinetics, where the 

limiting rate process for absorption is the permeability across the surface area of a membrane. 

Drug transfer rate into and out of the tissue is calculated by multiplying the surface area of the 

membrane with the permeability as well as the saturable transport mechanisms for both influx 

and efflux. Tissue fraction unbound is in equilibrium with the extracellular space (Holt et l., 

2019).  
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Scheme 2. Schematic view of Permeability – limited tissues. 

  

(𝑉𝑒 + 𝑉𝑡
𝑅𝑏𝑝

𝐾𝑝
)

𝑑𝐶𝑒

𝑑𝑡
= 𝑄(𝐶𝑏𝑖 −

 𝐶𝑒 𝑥 𝑅𝑏𝑝

𝐾𝑝
) − 𝑝𝑒𝑟𝑚)                                            Equation 4. 

𝑝𝑒𝑟𝑚 = 𝑃𝑆𝑡(𝐶𝑒 − 𝐶𝑡) + 𝑉𝑖𝑛𝑓𝑙𝑢𝑥(𝐶𝑒) − 𝑉𝑒𝑓𝑓𝑙𝑢𝑥(𝐶𝑡)                                Equation 5. 

𝑉𝑡
𝑑𝐶𝑡

𝑑𝑡
= 𝑝𝑒𝑟𝑚 − 𝑉𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑠𝑚 (𝐶𝑡) − 𝐶𝑙𝑖𝑛𝑡 (𝐶𝑡)                                        Equation 6. 

Where:  

Ce: unbound drug concentration in the extracellular tissue. 

Vmetabolism: metabolism rate in the tissue. 

Vefflux: efflux transport rate from tissue. 

Vinflux: influx transport rate into tissue. 

Other parameters are described under perfusion-limited tissues. 

 

Drug transport to the extracellular space is controlled similar to the perfusion-limited 

model above, with the addition of a permeability term (perm) that directs passive entry and exit 

as well as active influx and efflux to and from the tissue. Tissue concentration change with 
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respect to time is the total of the passive and carrier-mediated permeability, saturable 

metabolism, and intrinsic clearance (Chu, 2013). 

 

Key Points in PBPK Model Construction 

 

System-Specific Input Parameters 

System-specific parameters (e.g., tissue weight, percent of microsomal protein/ 

hepatocytes per gram of liver, plasma protein levels and transporter abundance, blood flow, and 

glomerular filtration rate (GFR)) have been integrated into PBPK models for many species and 

available by many commercially available software, such as rat, dog, mouse, and human. 

System-specific parameters to support such models have been utilized widely and are available 

in the literature (Brown et al., 1997; Jones et al., 2006, 2011, 2013). It is possible to integrate 

systemic and physiological characteristics to predict different PK parameters and dose in various 

disease states and population groups (Jones et al., 2013). To predict PK parameters in different 

populations, we can integrate changes in CYP enzyme expression as well as hepatic blood flow 

(Q), hematocrit, and liver/renal function (Edginton and Willmann, 2008; Johnson et al., 2010; 

Yeo and Aarabi, 2011). Many publications supported modeling in different populations such as 

modeling in geriatrics (Taylor et al., 2009; Chetty et al., 2018), infants and adolescents (Rioux 

and Waters, 2016; Michelet, 2017; Templeton et al., 2018), pregnancy, fetus and milk transfer 

(Anderson, 2016; Pfister and Eissing, 2018), obesity (C. Ghobadi, et al, 2011), and 

environmental factors such as smoking (Plowchalk and Yeo, 2012). 
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Drug-Specific Input Parameters 

Drug-specific parameters include drug physicochemical properties such as pKa, basic or 

acidic, LogP, molecular weight and solubility, and permeability, plasma protein binding (fup), 

blood plasma partitioning [B:P], Kp values and metabolism by hepatic enzymes (Bi et al., 2006; 

Jones et al., 2012). 

Of the important parameters of drug-specific parameters are the Kp values, which are 

defined as the partition of a drug to the tissue, represented by the movement of the drug into 

different tissues in the body with the consideration of protein binding and lysosomal trapping 

(Zhitomirsky and Assaraf, 2015).  Kp ratios are usually expressed as the value of the 

concentration of a drug in a specific tissue to the plasma concentration of the drug at a steady-

state (Jones et al., 2006). Many approaches have been used in the literature to define Kp values. 

Poulin and Rodgers have developed equations to calculate Kp; they assumed that a drug moves 

and distributes instantaneously and homogenously from plasma to tissue by passive diffusion. 

The equations to calculate Kp takes into account drug ionization as well as nonspecific drug 

binding to lipids in the cell membrane and proteins in both plasma and tissues (Berezhkovskiy, 

2004; Rodgers and Rowland, 2007; Plowchalk and Yeo, 2012). Poulin and Rogers equations 

estimates the degree of drug distribution based on the drug’s in-vitro binding characteristics to 

lipids and proteins and its physiochemical properties. Equation 7 represents the volume of 

distribution at steady state (Vss): 

𝑉𝑠𝑠 = ∑(Vt x Kpt) + Vp                                                                               Equation 7.     

Where: 

Vt: tissue volume. 

Kpt: tissue partition coefficient. 

Vp: plasma volume. 
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LogP (o:w) is another input parameter commonly determined for drugs. Compared to 

LogD that considers both the nonionized and ionized molecules in the aqueous phase, LogP 

considers only the nonionized species (Poulin and Theil, 2002). The following equation 

expresses the linear regression analysis from experimental data on LogD and LogP of several 

organic chemicals (acids, bases, neutrals) (Poulin and Theil, 2002): 

 

𝐿𝑜𝑔𝐷 = 1.115 𝑥 𝐿𝑜𝑔𝑃 − 1.35                                                                 Equation 8. 

 

Other parameters that are as important are the effective permeability (Peff) and the 

relative in-vivo solubility at a certain pH. Caco2 cell lines are usually preferred for permeability 

measurements. To use the data from Caco2 permeability studies, we need to scale the in-vitro 

data to in-vivo data (e.g., human effective permeability) (Hans Lennernas, 1998). However, 

measurements of Caco2 (A to B) permeability may under-predict absorption for compounds with 

high efflux ratios because drug concentrations used in the assay could be lower than the in-vivo 

concentrations, where complete or partial saturation of efflux transporters is probable (Nestorov, 

2003). Drug- specific pKa and the pH-partition parameters are usually used to predict the relative 

solubility of a drug at a certain pH. Drugs that are highly soluble, in-vivo data can be used to 

predict dissolution rate accurately. Unlike drugs that are poorly soluble, where using the in-vivo 

data can under-predict the dissolution rate. Thus, solubility studies in fasted state media 

simulating the intestinal fluid have been proposed (Jantratid et al., 2008). 

Other parameters that can be incorporated into PBPK models include transport-mediated 

processes. Transporters can be integrated in several tissues if input parameters are available and 

applicable. These parameters can be obtained from in-vitro Caco2 efflux and uptake experiments 
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in case of intestinal transporters; these parameters can then be spanned to in-vivo state by 

adjusting for surface area (Jantratid et al., 2008). 

 

Routes of Administration 

Various routes of administration can be used in the model. The most common dosage 

routes used are intravenous (IV) and oral (PO). Other routes are sublingual, buccal, subcutaneous 

(SC), ocular (IO), inhaled, topical, etc. When choosing a route of administration (except for IV), 

drug dissociation, release, absorption, and distribution from the site of administration should be 

taken into consideration in the model. Typically, when comparing the built model to data 

literature, the administration route applied in the model should be the same as the one used in the 

study (Kuepfer et al., 2016). 

 

PBPK Model Workflow 

PBPK models are generated by combining multiple parameters, including the system-

specific parameters, drug-specific parameters, and for some cases, drug formulation properties. 

System-specific parameters, as mentioned above, are related to tissue composition, weight, blood 

flow, enzymes, and transporters expression levels. These parameters differ depending on the 

species used or the population of interest. When choosing a particular population, system 

properties take into account anatomical and physiological changes in that population in relation 

to the healthy adult reference population. Drug- specific parameters are all parameters related to 

the drug under study. These parameters are the physicochemical parameters, as mentioned 

above. By combining the drug-specific parameters and system parameters, a concentration-time 

profile, and different PK parameters can be predicted (Kuepfer et al., 2016). 
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After gathering all drug-related parameters, ADME properties and all the system related 

parameters are adjusted according to the study design and population was chosen, the method for 

calculation of Kp for different organs are chosen to define the drug distribution behavior. 

Parameters for clearance can be predicted from plasma concentration-time profiles from in-vivo 

studies. Active transport can be integrated into the model according to the testable hypothesis. 

Hence, IV data are important in giving us distribution and clearance data regardless of absorption 

profiles (Center for Drug Evaluation and Research (CDER), 1977). 

If reference data are missing or unacceptable, appropriate measures should be taken into 

account to find existing data in search of a certain physiological data set. If a certain population 

is being studied, anatomical, biological, and physiological changes in that population group 

should be used because if not included, it could affect prediction accuracy (Ke et al., 2018a).  

Another example is to take into consideration environmental factors; for example, it has been 

studied that stress resulting from handling animals affects animals' heart rate, thus increasing 

cardiac output, eventually leading to variations in resultant PK parameters (Bukowski et al., 

1995). In these cases, such an effect should be included in PBPK models. Therefore, 

physiological parameters exist in connection with model parameters and should be accounted for 

in PBPK models (Bukowski et al., 1995). In these conditions, allometric scaling (i.e., applied to 

predict pharmacokinetic parameters such as clearance, volume of distribution, and half-life in 

pediatrics right from age to age or species to species) can be used to calculate values of 

physiological parameters that are not available in other sources (Frayer, et al; 2005). 

 Model evaluation should deal with how well the model (predictions) fits the observed 

data and the hypothesis. In general, a model is evaluated visually by comparing predicted versus 

observed concentration–time profiles. Furthermore, the general shape of the PK profile, plasma 

highest concentration (Cmax) and the area under the curve (AUC) should be considered, as well 
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as the determination of fold change in these parameters (Thiel et al., 2014) (Schwen et al., 2014; 

Thiel et al., 2014). In addition, other PK parameters like the time to reach the maximum 

concentration (Tmax), the volume of distribution (VD), drug clearance (Cl), and the drug half-life 

(t1/2) can be compared between simulated and observed models (Kuepfer et al., 2016). 

Another important check for consistency in the model created is model validity over 

different doses (Jones et al., 2013).  If the developed model is for a special population (for 

example, pregnant women), and if PK parameters are available for that population (pregnant 

women), the model should be evaluated using these data after changing the specific parameters 

for that population (for example, pregnant women).  

 

Pharmacodynamic Modeling 

Pharmacodynamics (PD) is the study of the effects of drugs and the mechanism of their 

action on the body. Pharmacodynamic models associate the observed PD “effect” with the 

plasma concentration or the dose. PD effects can be either therapeutic or toxic. Two types of PD 

models are available; direct and indirect response models. In the direct response models, the PD 

response is directly proportional to the plasma concentration of the drug or the unbound fraction 

in a tissue (fut) In the indirect response models, the drug effect will happen after the drug 

redistributes from the central compartment to the “effect” compartment, the true site of the 

pharmacological effect, which is linked to the central compartment (Wright et al., 2011). 

 

PBPK Modeling and Simulation in Drug Research and Development 

Throughout drug discovery and development, data from a drug candidate such as ADME 

properties or data from in-vitro and in-vivo experiments are used to predict different PK 

parameters in various populations and in DDI, which will assist in choosing the best drug 
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candidate. Recently, pharmaceutical companies have increased funding for drug metabolism and 

pharmacokinetics (DMPK) studies at nearly every stage of the drug discovery process 

(Metabolism et al., 2000; Kwon et al., 2004). Though, enhancements in models and predictions 

of drug distribution, hepatic clearance and several more have granted PBPK models to be 

accomplished without the need for any in-vivo data. PBPK models provide an exceptional 

structure to integrate all of the accessible data for drugs and to assure more accurate predictions 

of the numerous outcomes under exploration in a human physiological context. The knowledge 

obtained from PBPK simulations can be used to lead drug development, and drive to enhanced 

efficiency and reduced costs. Such enhancements are suitable when one or more of the PK-

determining parameters is in the ‘blind spot’ (i.e., in the range of values for a parameter in which 

no clear conclusions can be drawn regarding their impact in-vivo) (Lipscomb et al., 1998). 

 

Applications of PBPK Modeling 

There are many applications to PBPK modeling, including drug simulation in healthy 

subjects as well as different populations. PBPK modeling can also be used for preclinical 

simulation, to predict DDI and to predict the effect of changes in absorption, formulation, and 

food on drug exposure.  Because there is a variety of PBPK applications, the affiliation of 

experts from a range of backgrounds, including formulation scientists, pharmacometricians, 

clinical pharmacologists, clinicians, and statisticians, is important to ensure a fulfilled 

implementation and application of PBPK modeling and simulation in drug discovery and 

development.  
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Drug-Drug Interactions 

Patients with concurrent diseases are usually exposed to polypharmacy. Drug co-

administration increases the risk of drug-drug interactions (DDI). Drug interactions can alter PK 

parameters and ADME properties of a drug due to co-administration of another drug, which is 

frequently due to induction or inhibition of enzyme and/or a transporter (Varma et al., 2015). 

Drug interactions can lead to adverse effects, toxicity, or it may affect drug efficacy (Zhang et 

al., 2009). Consequently, models have been developed to predict several DDI and changes in PK 

parameters with drug co-administration (Boulenc and Barberan, 2011). 

Several methods are used to define DDI; the first approach is called the [I]/Ki approach; 

this model describes the alteration in drug exposure in the presence of an inhibitor. It is usually 

expressed as: 

𝐴𝑈𝐶𝑖
𝐴𝑈𝐶 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

⁄ = 1+ [I]/Ki                                                               Equation 9 

Where: 

AUC: is the area under the curve in the presence (i) and in the absence (control) of the inhibitor 

drug. 

[I]: is the in-vivo inhibitor concentration. 

Ki: the inhibition constant. 

Assumptions are made in this method, where this model assumes the drug cleared mainly 

via one metabolic pathway that is primarily affected by the inhibitor. It also assumes that the 

drug is not metabolized in the intestine at all (Einolf, 2007). 

The second approach is called the mechanistic static model (MSM) where the substrate is 

presumed to be metabolized in both the liver and the intestines so the net effect of the inhibition 

or induction is all incorporated in the model and the fraction metabolized (fm) of the substrate 

drug is considered. The limitation of this model is that it takes into consideration the inhibitor 
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concentration; therefore, the magnitude of AUC change is based on the inhibitor concentration 

(Fahmi et al., 2008). 

The latter approach is the mechanistic dynamic models (MDM), which describes the 

time- variable concentrations of the inhibitor. It takes into account factors such as CYP 

expression, genetic polymorphisms, intestinal metabolism, etc., and the ability to consider 

hepatic uptake (Nordmark et al., 2014). 

 

Modeling in Infants and Pediatrics 

Drug studies in this population are limited for many reasons including only children who 

will benefit from the study can participate, blood collections are harder in infants than adults, and 

liquid drug formulation should be offered or a smaller pill size (Verscheijden et al., 2019). One 

important feature to consider is physiological differences between adults, children, and infants 

(organ size, weight, blood flow, and enzyme and transporter abundance), thus, making dose 

prediction hard in this population.  

Generally, dosing in the pediatric population has always been developed based on adult 

dosing schedule (after adjustments for weight or body surface area (BSA)) or by using allometric 

scaling  (Mahmood, 2014). However, many variances have been recognized between adults, 

pediatrics, and infants. Some of these differences are: variations at the absorption level, drugs are 

typically absorbed at a slower rate in infants than in adults, resulting in longer Tmax. In addition, 

stomach acidity is lower in younger children, and that will result in faster absorption of weakly 

acidic drugs (Templeton et al., 2018). At the distribution level, plasma proteins exist at a much 

lower concentration in pediatrics than adults, which results in the higher free fraction of drug in 

pediatrics (especially for highly protein-bound drugs) (Mcnamara and Alcorn, 2002). 

Intracellular and extracellular water levels are higher in infants compared to adults. Therefore, 
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water-soluble drugs will possess a larger volume of distribution in pediatrics than adults 

(Templeton et al., 2018). Enzymatic activity is higher in adults than pediatrics (30–70 % of that 

in adults), resulting in a slower elimination rate in pediatrics (Verscheijden et al., 2019). Besides 

hepatic metabolism, pediatrics GFR is about 60% of adult values, and because of an increase in 

renal blood flow, GFR increases rapidly in the first 2 weeks of life, until adults values are 

reached at the age of 12 months of age (Mahmood, 2014; Loebstein and Koren, 2016). 

 

Modeling in Geriatric Population 

Even though it is the largest population to receive medications, they are not usually 

involved in clinical trials due to organ function variability and the existence of polypharmacy. 

Many of the system-specific parameters are affected with age; height and weight are also likely 

to decrease with age (Schlender et al., 2016). A decrease in cardiac output results in decreased 

organ blood flow (Bolomey et al., 1949). No significant change in plasma protein concentrations 

have been noticed with age (Campion, 1990a, b). Several studies have investigated changes in 

CYP enzymes with age, but no age-related changes in activity have been published except with 

CYPs 1A2, 2D6, and 2E1, which is shown to decrease with age, with more than 25% (Parkinson 

et al., 2004). PBPK modeling will be useful in geriatrics where it could predict DDI where 

patients are usually on polypharmacy.  

 

Modeling in the brain and the central nervous system (CNS) 

Drug penetration into the brain is primarily limited by the blood-brain barrier (BBB), due 

to the existence of tight junctions as well as active efflux and uptake transporters at this barrier. 

The prediction of brain concentrations is regulated by a) the tight BBB and blood-CSF barrier 

(BCSFB), which controls the passage of drugs from the systemic circulation to the brain (Lange, 
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2013). These barriers are associated with limited passive diffusion; and b) physiological flows, 

including the microvascular blood flow that facilitates central nervous system (CNS) drug 

concentrations (Liu et al., 2005). 

Several PBPK models for BBB drug distribution have been published, yet we do not have 

any model that predicted drug concentrations in the human CNS (Liu et al., 2005; Badhan et al., 

2014; Dedrick, 2019). Testing a drug's brain concentration is nearly impossible. Therefore, the 

importance of brain PBPK models being used. However, it is still limited as CSF sampling of 

drug concentration is unlikely to be feasible or ethical, and sometimes, CSF drug levels do not 

represent brain levels. Several physicochemical properties could determine a drug’s ability to 

cross the BBB, including molecular weight, lipophilicity, ionization constant, fraction unbound 

in plasma, partitioning to the brain, and whether it is a transporter substrate or not. A mixture of 

drug-specific properties such as permeability properties, transmembrane transport of drugs as 

well as the surface areas of the BBB control the transport of drug through the BBB. Transport 

proteins such as P-glycoprotein (P-gp), multidrug resistance-associated protein (MRPs), organic 

anion transporters (OATs), and organic anion transporting polypeptides (OATPs) could also 

mediate the active transport of drugs (Westerhout et al., 2011). 

 

Modeling in pregnancy and fetus exposure 

Pregnant women define a distinctive population when it comes to drug administration. 

Although drug use in the pregnant population is common and rising, pregnant subjects are 

usually banned from joining clinical trials due to legal, ethical, and practical causes. This results 

in limited PK information in the pregnant population. Major physiological and anatomical 

changes occur during pregnancy, including weight, organ blood flow, GFR, and changes in the 

activity of metabolizing enzymes, which could alter PK of drugs. Conversely, due to the lack of 
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PK data in pregnant women, data are usually obtained by extrapolation from non- pregnant to 

pregnant subjects, risking either sub-therapeutic drug levels or toxic levels on the mother and the 

fetus. 

Because it is challenging to acquire PK data for drugs from in-vivo studies, pregnancy 

PBPK models are considered a favorable method to create vital understandings into the PK of 

drugs, and this can consequently be used to explain and lead clinical studies in pregnant women, 

especially with respect to suitable dosing. 

 

Caffeine  

Caffeine (1,3,7-trimethylxanthine) is an alkaloid with a chemical composition of 

C8H10N4O2 and a molecular weight of 194.19. Besides its biological existence in some foods, 

caffeine is added to food and used as a drug or a constituent of many pharmaceutical 

formulations. Caffeine is water soluble (solubility of 13.92 mg/ml) but it is lipophilic enough to 

passively cross membranes (LogP -0.15); it is also a weak base with a pKa of 2.24, which makes 

it more in the unionized form at the intestinal absorption layer, thus it is easily absorbed. It is the 

most commonly used psychostimulant or CNS stimulant in the world (Insler, 2014). It has 

multiple pharmacological and physiological effects, including cardiovascular, renal, respiratory, 

and smooth muscle effects, in addition to effects on mood, memory, alertness, and physical and 

cognitive performance (Tang-Liu et al., 1983). 

Due to the fact that caffeine metabolism rate is low in the fetus due to low levels of 

metabolizing enzymes mainly CYP1A2, caffeine clearance is prolonged in pregnant women. In 

addition, Caffeine may also influence cell function through increasing cyclic adenosine 

monophosphate (cAMP) concentrations and it causes and increase in the circulating 

catecholamines (mainly epinephrine). Therefore, higher caffeine doses could lead to miscarriage. 
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The study of PK of a drug in pregnant women is unethical and unfeasible, so using PBPK 

modeling help us understand how a drug acts in pregnant women, where all the anatomical and 

physiological changes happen. 

 

5-HT3 receptor antagonists 

There are varieties of highly selective and effective compounds that antagonize 5-HT3 

receptors. The 5-Hydroxytryptamine 3 (5-HT3) receptor is a ligand-gated ion channel, and it is 

anatomically and mechanically distinctive from the other 5-HT receptors who present their effect 

through G-proteins. 5-HT3is able to facilitate fast excitatory neurotransmission in the CNS and 

peripheral nervous system (PNS) (Sugita et al., 1992). 5-HT3 receptors are distributed in many 

brain regions, with the highest levels of distribution in the brainstem, especially in regions 

associated with the control vomiting and reflux, such as the area postrema (AP). The existence of 

5-HT3-binding sites in the CNS was first recognized using a radiolabeled 5-HT3 receptor 

antagonist ([3H]GR65630) (Kilpatrick et al., 1987; Tecott et al., 1993). 5-HT3 receptors also 

control gut motility, secretion, and peristalsis (Galligan, 2002; Engel et al., 2013). 5-HT3 

receptor antagonists share a basic amine, a rigid aromatic or hetero-aromatic ring system, and a 

carbonyl group, and there are marginally longer distances between the aromatic and amine group 

when compared to the agonist pharmacophore (Schmidt and Peroutka, 1989). Additional work 

has revealed that 5-HT3 receptor can only handle minor substituents on the charged amine such 

as a methyl group (Schmidt and Peroutka, 1989). To be a potent antagonists for the 5-HT3 

receptors, a compound should have 6, 5 heterocyclic rings, where the presence of the 6 

membered aromatic ring gives it the highest potency (Schmidt and Peroutka, 1989). 

Many studies characterized the 5HT3 receptor using the nonselective compounds 

morphine and cocaine (GADDUM and PICARELLI, 1957; Kilpatrick, 1990). Using serotonin as 
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the source, bemesetron and tropisetron were formulated. Nowadays, many 5- HT3 receptor 

antagonists are in clinical use, which includes tropisetron, ondansetron, granisetron, dolasetron, 

palonasetron and zacopride (the latter,  acting at nanomolar concentrations) (Lummis, 2012). 

These drugs have been extensively used for the treatment of chemotherapy-induced nausea and 

vomiting in cancer patients (CINV) or nausea and vomiting from radiation therapy (Lovinger, 

1991). 

 

Granisetron  

Granisetron is an azabicyclic compound, a selective 5-hydroxytryptamine (5-HT3) 

receptor antagonist, which does not act on 5-HTIA-D, 5-HT2, 5-HT4, dopamine Dl or D2, 

histamine HI, benzodiazepine or l, 2 or adrenergic receptor binding sites. Because of its 

antiemetic and anti nauseant effects, granisetron is widely used to treat CINV (Plosker and Goa, 

1991; Yarker et al., 1994). Granisetron is a basic compound with a pKa of 9.21 which makes it 

mainly ionized at the absorption site. It has a LogP of 2.2 which makes it lipophilic with a 

relatively good solubility of 17 mg/ml. 

Granisetron most likely employs its actions on acute emesis (i.e., episodes arising within 

24 hours of cytotoxic therapy) by acting at both peripheral vagal nerve and central vomiting 

sites. In the periphery, it prevents serotonin-induced stimulation of vagal afferent nerves in the 

gastrointestinal tract; centrally, it prevents the stimulation of 5-HT3 receptors in the 

chemoreceptor trigger zone (CTZ) in the brain stem, which activates the vomiting reflex (Nayak 

et al., 1999). 

The pharmacokinetic profile of granisetron has been evaluated in healthy volunteers. 

Granisetron poses a large volume of distribution (Vd) of nearly 250L in healthy subjects (Roche, 

2013). Since the pharmacokinetics of granisetron is linear, peak plasma concentrations (Cmax) 
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and the area under the plasma concentration-time curve (AUC) increase proportionally with 

dose, while elimination half-life (t1/2) and total plasma clearance (Cl) persist unaffected. The t1/2 

has been calculated to be around 3 to 4 hours, and the Cl is between 33 and 51 L/h (R., 1994; 

Roche, 2013). 

Granisetron is cleared mainly by hepatic metabolism, with less than 20% of the dose eliminated 

unchanged in the urine. Granisetron is metabolized mainly by the cytochrome P450 1A2 

subfamily, established by ketoconazole inhibition studies in-vitro in liver microsomal studies 

(Roche, 2013). The predominant form of this enzyme subfamily is 3A4 (Baldwin et al., 1999), 

and, unlike CYP2D6, polymorphisms of the CYP3A subfamily have not been demonstrated 

(Davis and Homsi, 2001). CYP450 inducers or inhibitors may affect the clearance and, hence, 

the half-life of granisetron. 

The pharmacodynamic effects of 5-HT3 receptor antagonists differ among drugs. 

Granisetron poses the highest selectivity and superior affinity, as studied in-vitro (Nayak et al., 

1999). Granisetron has shown to be effective in controlling CINV. However, some patients still 

suffer from nausea and vomiting following chemotherapy. We aimed to study the reason for this 

variability in the granisetron effect. In order to study that, we applied PBPK models to predict 

the effect of transporter (P-gp) and lysosomes on granisetron permeability. We also used PBPK 

models to predict the effect of genetic variations in CYP enzymes on granisetron plasma and 

brain levels.



1 

Study objectives 

In my work, I used PBPK modeling using GastroPlus™ software to evaluate the effect of 

changes in drug-metabolizing enzymes and transport proteins on drugs PK and PD in different 

populations and physiological conditions as follows. 

 

Chapter 2 objectives (Caffeine):  

1- To assess the relationship in changes in caffeine PK parameters on PD parameters related to 

miscarriage 

2- To verify and extend previously developed PBPK models for caffeine in the pregnant 

population to predict changes in caffeine PD parameters associated with miscarriage risk. 

 

Chapter 3 objectives (Granisetron):  

1- To identify the effect of P-gp and lysosomal entrapment on granisetron intestinal 

permeability and plasma profiles following oral dosing.  

2- To develop a PKPD model to validate and predict the effect of genetic variations in CYP1A1 

and CYP3A5 on granisetron levels in plasma and brain, and predict the effect of these 

genetic variations on the occupancy of 5-HT3 receptors. 



1 

Chapter 2 

Physiologically Based Pharmacokinetic/ Pharmacodynamic Model for Caffeine Disposition in 

Pregnancy  

 

***This paper has been published in Molecular Pharmaceutics 2019; 16(3):1340-1349.  

DOI: 10.1021/acs.molpharmaceut.8b01276 
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Abstract 

 Caffeine is the most consumed active stimulant and about 80% of pregnant women 

consume caffeine orally on a daily basis. Many reports indicate consumption of >200 mg per day 

caffeine during pregnancy could increase the likelihood of miscarriage. In this paper, we 

developed a physiological based pharmacokinetic/pharmacodynamic (PBPK/PD) model for 

caffeine in pregnancy to examine the association between maternal caffeine consumption and 

caffeine plasma levels at doses lower and higher than 200 mg, the goal of this effect is to predict 

changes in caffeine concentrations across the 3 trimesters, and to predict associated changes in 

caffeine PD parameters. Two models were successfully developed using GastroPlus™ software, a 

non-pregnant model for validation purposes, and a pregnant model for validation and prediction 

of maternal caffeine plasma concentrations following single and multiple dosing. Using observed 

and predicted data, we were able to validate and simulate PK changes of caffeine in non-

pregnant women and the PD effect of caffeine on certain enzymes and catecholamines associated 

with caffeine intake. Furthermore, the pregnancy PBPK model successfully predicted changes in 

caffeine PK across the three trimesters. Caffeine increased exposure during pregnancy was 

related to reduced activity of caffeine metabolizing enzyme CYP1A2. The model also predicted 

increased levels of caffeine in the fetoplacental compartment (FPC) due to increased maternal 

caffeine plasma concentrations. Increased caffeine levels in maternal blood was accompanied 

with greater inhibition of phosphodiesterase enzyme, higher cyclic adenosine monophosphate 

and a greater increase of epinephrine levels, which could increase the risk of pregnancy loss. The 

application of the developed PBPK model to predict PD effect could provide a useful tool to help 

define potential cut-offs for caffeine intake in various stages of pregnancy. 
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Introduction 

Caffeine is one of the most ingested substances in the world. It is found in many 

beverages such as coffee, tea, soft drinks, and chocolate at different concentrations (Knight et al., 

2004). Caffeine consumption is generally associated with a large number of diseases and health 

alterations. In humans, caffeine may affect the heart by increasing blood pressure, central 

nervous system by increasing anxiety, and the respiratory system by affecting the regulation of 

breaths, which are mainly caused by caffeine effect on adenosine receptor A1 (Rieg et al., 2005; 

Umemura et al., 2006; Echeverri et al., 2010). 

Caffeine is extensively metabolized by the enzyme CYP1A2 to 1, 7-dimethylxanthine by 

N-3 demethylation; it also generates other metabolites like theobromine and theophylline with 

only 3% of the dose excreted unchanged in the urine (Tang-Liu et al., 1983). Caffeine is rapidly 

absorbed from the digestive tract with a bioavailability of almost 100% (Blanchard, 

1983)(Blanchard, 1983) . It distributes throughout all tissues, freely crosses the placenta to the 

fetus, and has been detected in the amniotic fluid and umbilical cord (Avram Goldsten, 1961).  It 

is estimated that 70-80% of pregnant women utilize some caffeine daily (Li et al., 2015a). The 

average daily consumption of caffeine from caffeine sources was estimated at around 106-170 

mg per day for adults and 58 mg per day for pregnant women (Aldridge, et al, 2005).   The half-

life of caffeine in non-pregnant subjects is between 1.5 and 10 hours (Knutti et al., 2014), 

whereas in pregnant women, it increases up to 18 hours in the third trimester (Knutti et al., 

2014). The effect of caffeine on the outcome of pregnancy have been reported in many studies ( 

Aldridge, et al, 2005; ‘Theophylline, 2001.; John R.Giudicessi, BA.Michael J.Ackerman., 2008; 

Gaohua et al., 2012; Isoherranen and Thummel, 2013; Ke et al., 2014; Knutti et al., 2014). Drug 

pharmacokinetics (PK) are often altered during pregnancy (Ke et al., 2014; De Sousa Mendes et 
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al., 2015; Colbers et al., 2016; Jogiraju et al., 2017), which makes it necessary to modify the 

usual doses of drugs for pregnant women. In pregnancy, CYP1A2 activity is decreased 

throughout pregnancy by 32.8% in the first trimester (T1), 48.1% in the second trimester (T2) 

and 65.2% in the third trimester (T3) (Tracy et al., 2005), suggesting caffeine clearance is 

prolonged in pregnant women. In addition, caffeine metabolism rate is low in the fetus due to 

low levels of metabolizing enzymes (Infante-Rivard et al., 1993). Caffeine may also influence 

cell function through increasing cellular cyclic adenosine monophosphate (cAMP) 

concentrations (Echeverri et al., 2010; Montoya et al., 2014), and decreases intervillous placental 

blood flow via increasing circulating catecholamines mainly epinephrine (Kirkinen et al., 

1983a). Therefore, caffeine could have an adverse effect on fetal development  (Li et al., 2015a). 

Caffeine intake has been reported to increase the risk of miscarriage (Claire, 1993; 

Pollack et al., 2010, Li et al., 2015b; Okubo et al., 2015; Rhee et al., 2015). Thus, maternal 

caffeine intake during pregnancy has attracted significant attention with regard to its possible 

effects on birth outcomes and miscarriages. Findings from epidemiological studies in pregnant 

women suggested caffeine intake in pregnancy of more than 300 mg per day could increase the 

risk of spontaneous abortion (COT Statement, 2001; Okubo et al., 2015). In addition, both the 

World Health Organization (WHO) and the European Food Safety Authority reported caffeine 

consumption up to 300 mg/day and 400 mg/day, respectively, does  not give  rise  to  safety  

concerns  for  non-pregnant  adults, and caffeine consumption up to 300 or 200 mg per day, 

respectively, by pregnant women does not give rise to safety concerns for the fetus (EFSA, 2015; 

WHO, 2016). Pregnant women whose caffeine intake is more than 200 mg/day have a much 

greater risk of miscarriage compared to those who consume less than that (Rhee et al., 2015). 

Higher caffeine consumption was associated with a higher risk for both early and late 
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miscarriage; however, the association appeared to be more for later than earlier miscarriage 

(Rhee et al., 2015).  

Interest in applying physiologically based pharmacokinetic/pharmacodynamic 

(PBPK/PD) modeling in pregnancy is growing. Several reports have been published describing 

PBPK/PD models’ development to simulate and predict dosing regimens and drugs disposition in 

pregnant women (Tracy et al., 2005; Gaohua et al., 2012; Xia et al., 2013; Alqahtani and 

Kaddoumi, 2015; De Sousa Mendes et al., 2015; Colbers et al., 2016; Jogiraju et al., 2017, Ke et 

al., 2018a). In addition, several studies reported the development of PBPK models to evaluate 

the effect of pregnancy-associated changes in CYP1A2 activity on caffeine kinetics in pregnant 

women using different software including Simcyp, PK-Sim and MoBi (Gaohua et al., 2012; 

Partosch et al., 2015; Dallmann et al., 2018). However, studies to simulate or predict the effect 

of increased levels of caffeine, due to reduced levels of CYP1A2, on caffeine PD in pregnancy 

are yet to be achieved. Studies that used pharmacokinetic parameters to predict 

pharmacodynamic parameters are not yet available. Thus, in the current study, using 

GastroPlus™ software, we aimed to assess the relationship in changes in PK parameters on PD 

parameters related to miscarriage so we can predict cutoffs of caffeine intake for each trimester. 

We also aimed to verify and extend previously developed PBPK models for caffeine in pregnant 

population to predict changes on caffeine PD parameters associated with miscarriage risk by 

performing the following: 1) develop and validate a non-pregnancy and pregnancy PBPK/PD 

models that consider the physiochemical and PK of caffeine, and physiologic and metabolic 

changes that normally occur during pregnancy, 2) validate and predict PK changes of caffeine 

across the three trimesters of pregnancy and the PD effect of caffeine on certain enzymes and 

catecholamines associated with caffeine intake, and 3) predict potential cut-offs for caffeine 
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intake in various stages of pregnancy to avoid reported an increased risk of miscarriage with high 

caffeine intake.  
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Experimental Section 

Software and Workflow of PBPK Model and Model Validation  

All simulations were performed using the software GastroPlus™ (Version 9.5; Simulation 

Plus Inc., Lancaster, CA) integrated with ADMET Predictor, and PBPKPlus™ and PDPlus™ 

modules. The general workflow of caffeine PBPK model development and validation consisted 

of the following steps. First, the PBPK model was initially developed using the physicochemical, 

biopharmaceutical, and pharmacokinetic parameters obtained from the literature (Cheng et al., 

1990; Birkett and Miners, 1991), or estimated by ADMET Predictor in non-pregnant women 

population (Table 1). The model was further validated by comparing the simulated PK data from 

a virtual population with the observed clinical studies. Second, in case that predicted PK profile 

and parameters were deviant from the observed data, the model was refined by parameter 

optimization by fitting against the non-pregnant clinical data. Third, the pregnancy PBPK model 

was developed with these verified drug-specific parameters and pregnancy-induced 

physiological changes. Population-dependent physiological parameters for non-pregnant and 

pregnant PBPK models were obtained using the Population Estimates for Age-Related 

Physiology™ module in GastroPlus™ with a size of 25 virtual female subjects (chosen randomly 

by the software) per population with an average age from 20 to 40 years old. The predicted mean 

values of the PK parameters Cmax (plasma highest concentration) and AUC (area under the 

curve) for non-pregnant and pregnant women were then obtained based on the simulations. The 

predicted mean values of the PK parameters Cmax and AUC for non-pregnant and pregnant 

women, as well as these parameters ratios, were then obtained based on the simulations. Besides 

Cmax and AUC, verification of the established PBPK models was based on the time at which the 
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drug presents the highest concentration (Tmax), volume of distribution (Vd), systemic clearance 

(Cl), and half-life (t1/2). 

Table 1. Physiochemical and pharmacokinetic parameters of caffeine used in PBPK model.  

Parameter Value Reference 

Molecular Weight (g/mol) 194.19 [a] 

LogP -0.15 [a] 

Ionization constant (pKa) 2.24 (base) 
Estimated by ADMET 

predictor 

Bioavailability (%) 100 [b] 

Blood/plasma ratio (Rbp) 1.03 
Estimated by ADMET 

predictor 

Solubility at pH 7.4 (mg/ml) 13.92 
Estimated by ADMET 

predictor 

Diffusion Coefficient (cm2/s) 1.037x10-5 
Estimated by ADMET 

predictor 

Fraction unbound (fu) 0.7 
Estimated by ADMET 

predictor 

 CYP 1A2 Vmax (mg/sec) 0.00759 [c] 

CYP 1A2 Km (mg/l) 8.46 [c] 

Renal clearance (l/h) 0.00246 [d] 

Vd (l/kg) 0.51 [e] 

[a] drugbank.ca; https://www.drugbank.ca/drugs/DB00201 

[b] Bioavailability taken from reference [Blanchard, 1983]. 

[c] Optimized values from in vitro taken from reference [(Grant et al., 1987)] (reported values 

were 0.006 mg/sec    

      for Vmax and 8.1 mg/l for Km). 

[d] Renal clearance was taken from reference (Birkett and Miners, 1991). 

[e] Vd; Volume of distribution was taken from reference (Cheng et al., 1990). 

 

 

 

 

 

https://www.drugbank.ca/drugs/DB00201
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Two models were thus developed, non-pregnant and pregnant models. Three different 

doses of caffeine were tested in the non-pregnant model and over the three trimesters in the 

pregnant model. The PBPK models represent the organs that are relevant to drug absorption, 

distribution, excretion, and metabolism (ADME). These organs are heart, lung, brain, gut, spleen, 

gut, liver, kidney, adipose tissue, muscle, skin, and reproductive organs. The tissues are linked 

by the arterial and venous blood, and each compartment has its own blood-flow rate, volume, 

and tissue-partition coefficient (Kp) (Alqahtani, et al, 2015)). Default values of Kp implemented 

in GastroPlus were used, which were calculated using the tissue composition equations 

according to the relationship between physiological data and compound-specific determinants of 

distribution like lipophilicity (LogP), ionization (pKa), and plasma protein binding (fu). The Kp 

value for the fetoplacental unit was assumed to have similar Kp value for the brain: plasma 

partition coefficient; this assumption was mainly based on their similar characteristics, such as 

high blood perfusion and the existence of blood-tissue barriers  (Gaohua et al., 2012) (Alqahtani, 

et al, 2015). Kp values used in the non-pregnant and pregnant (T3) models are listed in Table 2; 

Kp values used for T1 and T2 models were close to T3 values. The plasma protein binding (fu) 

value was assumed not to change by pregnancy, which is consistent with other reports (Dallmann 

et al., 2018), and thus the same fu value of 0.7 was used in the non-pregnant and pregnant 

models across the 3 trimesters. Organs were also assumed to be perfusion rate-limited in both 

pregnant and non-pregnant models. The liver and kidney were considered to be the only organs 

to eliminate caffeine. 

Following models development and validation, PDPlus™ module was used to validate 

observed data and predict PD data over trimesters for phosphodiesterase (PDE), cAMP, and 

epinephrine.  
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Development and Validation of PBPK Model in Non-Pregnant Subjects 

Physiochemical and PK parameters of caffeine used in the PBPK model are presented in 

Table 1. Concentration-time profiles from healthy women were used, and a population PBPK 

model for non-pregnant was built and then validated using data from the literature (Cheng et al., 

1990), by scanning with GetData Graph Digitizer (version 2.26; http://getdata-graph-

digitizer.com). Physiological values for intestinal volumes, lengths and pH in humans used were 

those built in the software, except for the stomach transit time, which was changed from 0.25 h 

to 0.1 h because the model was developed for caffeine administered as an oral solution (Parrott et 

al., 2014) 

Table 2. Default values in GastroPlus of Tissue-to-Plasma Partition Coefficients (Kp) of caffeine 

used in non-pregnant and pregnant (T3) subjects PBPK models.  

Tissue Non-pregnancy Pregnancy 

Lung 0.2 0.21 

Adipose 0.32 0.32 

Muscle 0.06 0.06 

Spleen 0.1 0.1 

Heart 0.17 0.12 

Liver 0.51 0.5 

Kidney 0.14 0.14 

Skin 0.29 0.27 

Brain 0.51 0.601 

Red bone marrow 0.1 0.1 

Yellow Bone Marrow 0.05 0.05 

Rest of Body 0.06 0.06 

Reproductive organ 

(Fetoplacental Unit)* 0.15  0.601  
 

* Assumed to be similar to brain value.  

 

 

http://getdata-graph-digitizer.com/
http://getdata-graph-digitizer.com/
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Caffeine is mainly metabolized by CYP1A2. Liver metabolism was considered in the 

simulation by using in vitro KM and Vmax values for CYP1A2 reported in the literature that were 

optimized by GastroPlus to fit caffeine plasma profiles better and predict clearance (Grant et al., 

1987; Ke et al., 2013) Optimized values used for KM is 8.46 mg/l (reported 8.1mg/l) (Grant, D, 

1987) and for Vmax is 0.00759 mg/sec (reported 0.006 mg/sec) (Grant et al., 1987),  (Table 1). 

Caffeine is a water soluble compound but sufficiently hydrophobic to pass through tissue 

membranes (Grant et al., 1987); thus perfusion-rate limited kinetics were used in the simulation 

expressed in this equation:    

𝑉𝑡
𝑑𝐶𝑡

𝑑𝑡
= 𝑄 ∗  𝐶𝑏𝑖 −

𝑄 ∗ 𝐶𝑡 ∗ 𝑅𝑏𝑝

𝐾𝑝
− 𝐶𝐿𝑖𝑛𝑡 (

𝐶𝑡 ∗ 𝑓𝑢𝑝

𝐾𝑝
) 

Where Cbi = blood concentration in arterial; Rbp = blood/plasma concentration ratio; Vt = tissue 

volume; Cv, Ct = plasma and tissue concentrations; Kp = tissue/plasma partition coefficient; fup 

= fractions unbound in plasma; CLint = Tissue intrinsic clearance. 

 

Development and Verification of PBPK Model in Pregnant Women  

We simulated caffeine PK in pregnant women using a PBPK model with the same 

organs mentioned in non-pregnant subjects but substituting the reproductive organ (a default 

in GastroPlus™ PBPKPlus module) with the fetoplacental compartment (FPC). FPC represents 

the intra-uterine components, including the fetus, placenta, amniotic fluid and uterus 

(Abduljalil et al., 2012, Ke et al., 2018a, b). The compartment of the fetoplacental units was 

also assumed to be perfusion rate limited. Pregnancy PBPK model was developed with 

verified drug-specific parameters, similar to those used in the non-pregnant model, and 

pregnancy induced physiological changes such as changes in cardiac output, weight, 

hematocrit, blood flow and the volume of the fetoplacental compartment changes along with 
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progressing in trimesters of pregnancy as shown in Table 3 and Figure 1. Caffeine 

accumulation over the three trimesters was tested; the average of each trimester (average 

T1=6 weeks, average T2=25 weeks, average T3=35 weeks) was applied in the equations 

presented in Table 3 to obtain pregnancy induced physiological, anatomical and biological 

changes that were used as input parameters in GastroPlus™. Gut physiology was assumed to 

be the same in non-pregnant and pregnant subjects (Xia, B.; 2013 and Alqahtani ,et al, 2015) 

The decrease in CYP1A2 activity for each trimester was added to the model (i.e. by 32.8% in 

first trimester, 48.1% in second trimester and 65.2% in the third trimester) (Tracy et al, 2005). 

The cardiac output increased by 18, 28 and 30% in the first, second, and third trimester of 

pregnancy (Abduljalil et al., 2012). In addition, uterine blood flow significantly increased 

from 0.5% of cardiac output in non-pregnant women to 12% in late pregnancy (Abduljalil et 

al., 2012) 
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Table 3. Physiological, anatomical and biological changes that occur during pregnancy. 

Regression equations needed for p-PBPK model during different gestation ages (GA) in weeks, 

based on Abduljalil et al. 

Parameter Equation 

Total body weight (TBW) (kg) TBW = 61.1+0.2409 GA +0.0038 GA2 

Cardiac output (CO) (l/min) CO = 301+5.916 GA−0.088 GA2 

Hematocrit (Hct) (%) Hct = 39.1–0.0544 GA—0.0021 GA2 

Uterine blood flow (l/h) 
Uterine blood flow = 1.71+0.2068 GA+0.0841 

GA2−0.0015 GA3 

CYP1A2 activity (%) – Frist Trimester Decreased by 32.8% 

CYP1A2 activity (%) – Second 

Trimester 
Decreased by 48.1% 

CYP1A2 activity (%) – Third Trimester Decreased by 65.2% 

Fetoplacental volume = Uterus weight + Placenta volume + Fetal volume + Amniotic fluid 

volume 

Uterus weight (g) Weight of the uterus = 80+8.2931 GA+0.3546 GA2 

Placenta volume (ml) 
Placenta volume = 0.0−0.0716+0.9146 

GA2−0.0122 GA2 

Fetal volume (ml) 
Fetal volume = 0.01 

exp(13.604(1−exp(−0.0702GA))) 

Amniotic fluid volume 
Amniotic fluid volume = 0+1.9648 GA−1.2056 

GA2+0.2064GA3−0.0061 GA4+0.00005 GA5 
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Figure 1. Structure of pregnancy physiologically based pharmacokinetic (p-PBPK) model. 

 

Pharmacodynamic Model  

Many studies have found a relation with caffeine intake and miscarriage (Infante-Rivard 

et al., 1993; Weng et al., 2008; Pollack et al., 2010; Jahanfar S, 2015, Li et al., 2015b; Okubo et 

al., 2015) Pregnant women who consume caffeine intake more than 200 mg per day have a 

greater risk of miscarriage compared to those who consume less than 200 mg per day (Weng et 

al., 2008). Caffeine plays a role in cell division through inhibition of PDE (Montoya et al., 

2014), which triggers a rise in cellular cAMP (Montoya et al., 2014), and thus epinephrine that 

causes uterine contractility and sometimes miscarriage (Montoya et al., 2014). 

Built-in PD modules in GastroPlus™ were used. Direct and indirect PD models were 

fitted to concentration-time and PD effect-time profiles for high (618 mg) and low (179 mg) 

caffeine doses, reported in the literature (Kirkinen et al., 1983a, b). to find best model to describe 
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relationship between maternal concentration-time profile and PD effect of caffeine. For caffeine 

effect on PDE, it is an inhibitory process and presented as an indirect module in GastroPlus™. 

Thus, the built-in PD indirect module with the effect was used as presented in the following 

equation: 

𝐼 = 1 −
𝐼𝑚𝑎𝑥 𝐶

𝐼𝐶50 + 𝐶
 

Therefore: 

𝑑𝑅

𝑑𝑡
= 𝑘𝑖𝑛 (1 −

𝐼𝑚𝑎𝑥𝐶

𝐼𝐶50 + 𝐶
) − 𝑘𝑜𝑢𝑡𝑅    0 ≤ 𝐼𝑚𝑎𝑥 ≤ 1 

Where ImaxC is the maximal inhibitory concentration, IC50 is the concentration of an inhibitor 

required to reduce the rate of an enzymatic reaction by 50%, kin and kout represent rate 

constants for drug transfer from plasma to effect compartment and from effect compartment to 

plasma, respectively, and R is the rate of generation and dissipation of the response in the 

absence of the drug. 

For caffeine effect on cAMP and epinephrine, PD response is directly proportional to 

caffeine concentration. Effect is presented in the following equation: 

𝐸 = 𝐸0 +
𝐸𝑚𝑎𝑥𝐶

𝐸𝐶50 + 𝐶
 

Where E0 is the baseline response, Emax is the maximum response, C is drug concentration and 

EC50 is the concentration at which 50% of the maximum response is observed. 
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Results 

Development and Validation of PBPK Model in Non-Pregnant Subjects 

Input data that were used in the simulation are presented in Table 1. Concentration-time 

plasma profiles from healthy women were used to construct and validate the PK model for non-

pregnant women (Cheng et al., 1990). The model was developed and validated against the 

disposition kinetics for 3 different doses of caffeine at 70, 200 and 300 mg (Cheng et al., 1990).  

The simulated plasma concentration-time profiles captured the observed PK profiles (Figure 2), 

with predicted values in the range of 90% confidence interval performed using the built-in 

population simulator in GastroPlus™. Model-predicted Cmax, AUC0-t, Vd, and systemic clearance 

(CLsys) met the verification criterion, with predicted/observed ratio in the range of 0.80–1.2 and 

are presented in Table 4. 
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Figure 2. Predicted and observed plasma concentration-time profiles of caffeine after administration of single oral doses at 70, 200 and 

300 mg to non-pregnant women. The square symbols represent the mean of observed data, and solid lines represent the predicted mean of 

caffeine profiles. Inserts contain caffeine plasma profiles in semi-log scale. Green shaded areas represent the 90% confidence interval for 

the simulated data. 
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Table 4. Predicted and observed pharmacokinetic parameters in non-pregnant and pregnant populations after single doses of caffeine at 

70, 200 and 300 mg. 

 

Caffeine 

dose 

 Parameter 
Cmax 

(μg/ml) 

Tmax 

(h) 

AUC0-t    

(μg.h/ml) 

Vd 

(l/kg) 

Clsys 

(l/h) 

t1/2 

(h) 

 

70 mg  

Non- 

pregnant 

Observed 2.5 0.2 9.5 0.51 6.3 4.5 

Predicted 2.7 0.3 9.8 0.60 5.0 7.6 

 Pred/Obs 1.08 1.5 1.03 1.17 0.80 1.68 

T1 Predicted 3.7 0.4 14.1 0.65 4.9 8.0 

T2 Predicted 3.8 0.4 16.2 0.70 4.3 8.1 

T3 Observed 4.1 0.5 - - - - 

  Predicted 3.9 0.4 26.9 0.70 4.3 10.8 

  Pred/Obs 0.95 0.8     

200 mg 

Non- 

pregnant 

Observed 8.5 0.3 31.6 0.54 4.8 6.0 

Predicted 8.5 0.4 32.4 0.60 4.9 9.0 

 Pred/Obs 1.0 1.33 1.03 1.11 1.02 1.5 

T1 Predicted 8.6 0.4 44.1 0.65 4.5 9.8 

T2 Predicted 8.6 0.5 45.6 0.70 4.3 11.0 

T3 Observed 8.4 0.5 - - - - 
 Predicted 8.8 0.5 74.3 0.72 4.1 15.0 

  Pred/Obs 1.05 1.0     

300 mg  

Non- 

pregnant 

Observed 16.5 0.2 91.9 0.55 4.5 6.4 

Predicted 16 0.2 91.3 0.60 3.2 13.0 

 Pred/Obs 0.97 1.0 0.99 1.09 0.71 2.03 

T1 Predicted 16.3 0.4 91.5 0.72 3.5 13.1 

T2 Predicted 16.6 0.5 152.8 0.72 3.2 15.0 

T3 Predicted 16.9 0.5 170.3 0.75 3.1 18.0 

Non-pregnant observed values from reference (Cheng et al., 1990). 

Pregnant observed values from reference (Kirkinen et al., 1983a, b). 

- Not available 

- Pred/Obs:  Predicted/Observed
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Development and Verification of PBPK Model in Pregnant Subjects 

Concentration-time profiles from pregnant women in third trimester were used to 

construct and validate the PK model (Braizer JL, 1983). The model was developed and validated 

against the disposition kinetics of caffeine after administration of 150 mg single dose (Braizer 

JL, 1983). As shown in Figure 3, the simulated plasma concentrations-time profile captured the 

observed PK parameters with predicted values in the range of 90% confidence interval. The 

validated PBPK model was then used to develop a PBPK model for virtual pregnant population 

(p-PBPK) over the three trimesters, which takes into account the physiological changes during 

pregnancy and the FPC (Figure 1, Table 3), in addition to changes in maternal CYP1A2 activity. 

Concentration-time profiles were built and PK parameters were predicted for the three caffeine 

doses of 70, 200 and 300 mg used for the non-pregnant model. The model was able to predict 

observed Tmax (between 0.4-0.5 h) and Cmax values for 70 (4.1 vs 3.9 µg/ml) and 200 mg (8.4 vs 

8.8 µg/ml) for T3 of pregnancy (Kirkinen et al., 1983a). In addition, and as expected, caffeine 

exposure was significantly increased as a function of dose across the trimesters, which is 

consistent with previous studies reported a significant prolongation of caffeine elimination half-

life in pregnant women (Braizer JL, 1983; Gaohua et al., 2012). 

The effect of CYP1A2 downregulation in pregnancy was obvious on the decreased Clsys and 

increased t1/2 as a function of dose (Table 4). The model predicted a prolonged t1/2 from 7.6 h in 

non-pregnant to 10.8 h in 70 mg dose, 15 h in 200 mg dose, and 18 h in 300 mg dose in the third 

trimester of pregnancy. Reduced clearance and increased t1/2 were associated with a significant 

increase in AUC values as presented in Table 4. Other changes in caffeine PK parameter across 

the 3 trimesters are presented in Table 4. Compared to non-pregnant subjects, a gradual 

significant increase in Vd was also predicted as pregnancy progresses. 
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Figure 3. Predicted and observed plasma concentration-time profiles of caffeine in pregnant 

women in their third trimester following the administration of a single 150 mg oral dose. The 

square symbols represent the mean of observed data, and solid lines represent the predicted mean 

of caffeine profiles. Inserts contain caffeine plasma profiles in semi-log scale. Green shaded 

areas represent the 90% confidence interval for the simulated data. Observed data was obtained 

from (Braizer JL, 1983). 

 

  



 53 

Maternal PK parameters and profile were used to predict caffeine concentration in the 

FPC in the three trimesters. Based on predicted concentration-time profiles in pregnant women, 

caffeine concentration-time profiles in T1, T2 and T3 in the FPC of the three evaluated doses 

were also predicted (Figure 4). The model predicted a significant increase in caffeine 

concentration in the FPC with prolonged half-life, which increased across the trimesters as a 

function of dose. 

 

Caffeine Multiple Dosing Data Validation 

Non-pregnant and pregnant women could consume caffeine multiple times a day as well, 

so an assumption was made that an ingestion of three times daily of caffeine from different 

resources was acceptable. Thus, the model was further validated by using steady state 

concentrations from the literature (Birkett and Miners, 1991).  In this study, caffeine was used at 

150 mg dose administered three times daily in non-pregnant subjects (Birkett and Miners, 1991).  

Pharmacokinetic parameters from (Birkett and Miners, 1991)  were used to validate the predicted 

data from GastroPlus such as CmaxSS, Clsys and ClR, which were then used to predict parameters at 

300 mg multiple dosing in non-pregnant subjects, pregnant women and changes across the 3 

trimesters. The results are listed in Table 5. For the 150 mg dose, predicted values for Cmaxss, 

Clsys and ClR were consistent with the observed values in non-pregnant subjects with 

predicted/observed in the range of 0.80–1.2 (Table 5). At both doses, predicted values across the 

3 trimesters revealed that while renal clearance remained the same, the systemic clearance and 

hence CmaxSS gradually decreased and increased, respectively, because of reduced CYP1A2 

activity caused by pregnancy. Comparing the 300 mg dose in pregnancy, CmaxSS and AUC were 

higher than single dosing at T3 by ~1.4- and 2.9-fold, respectively, due to the steady state effect. 
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Figure 4.  Predicted caffeine concentrations-time profiles in the fetoplacental compartment (FPC) over the three trimesters (T1, 

T2 and T3) following the administration of single oral doses of caffeine at 70, 200 and 300 mg. Inserts contain caffeine FPC 

concentration-time profiles in semi-log scale. 
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Table 5. Predicted vs. observed steady state pharmacokinetic parameters of caffeine at 150 and 300 mg administered three times daily in 

non-pregnant and pregnant subjects (Birkett and Miners, 1991).   

Pregnant subjects  

 Parameters 

Caffeine dose                           
CmaxSS (µg/ml) 

Observed      Predicted 

AUC0-t (μg.h/ml) 

Predicted 

Clsys (l/h) 

Observed      Predicted 

ClR (l/h) 

Observed      Predicted 

150 mg Q8* 

Non-pregnant        
                  

                 T1 

                 T2 

                 T3 

 

6.7            7.1 

   Pred/Obs            1.06 

  -          7.8 

  -          8.0 

  -        11.1 

 

62.4 

 

99.8 

110.0 

178.9 

 

 

4.5            4.7 

   Pred/Obs            1.05    

   -           4.5 

   -           4.2 

   -           4.0 

 

  0.032                0.038 

   Pred/Obs              1.19       

       -                0.038 

       -                0.038 

       -                0.038 

300 mg Q8* 

Non-pregnant        

                 T1 

                 T2 

                 T3 

 

 -                   16.1 

-                   16.9 

-                   17.5 

-                   22.3 

 

199.7 

277.4 

371.7 

498.8 

 

   -                  4.8 

   -                  3.6 

   -                  3.3 

   -                  3.0 

 

       -                0.032 

       -                0.032 

       -                0.032 

       -                0.032 

CmaxSS is Cmax at steady state; *Q8; three times per day; - not available; observed values from (Birkett and Miners, 1991).
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Pharmacodynamics Models 

It has been reported that PDE inhibition is inversely related to cAMP levels, which are correlated 

with maternal caffeine concentrations (Paul Weathersbee, 1977, Kirkinen et al., 1983b; Montaya, 

2005). To monitor the effect of caffeine in pregnancy, the developed models were fitted for the 

reported PD responses after caffeine administration based on caffeine concentration-time profiles 

(Montaya, 2005). In the non-pregnant model, reported PD responses on the 7th day Cmax for 179 

and 618 mg caffeine doses administered once daily for one week were used to validate the 

model. At both doses, the indirect model successfully predicted caffeine effect on PDE in non-

pregnant subjects (Table 6) (Montaya, 2005). Similarly, for cAMP, the direct PD model at the 

high dose (618 mg) demonstrated close match between observed and simulated PD effect of 

caffeine (Table 6). When predicted for pregnancy, increasing the dose from 70, 200 to 300 mg 

demonstrated a gradual decrease in PDE activity and increase in cAMP levels predicted at 

caffeine Cmax across the trimesters as shown in Figure 5, which demonstrates a correlation 

between Cmax, PDE and cAMP where increased Cmax as a function of dose and trimester is 

associated with decreased PDE and increased cAMP.  

In addition, a direct PD model for epinephrine was developed. Average normal epinephrine 

levels in non-pregnant subjects is around 25 ng/l, and epinephrine levels usually increase with 

caffeine intake (Kirkinen et al., 1983a, b), which was successfully predicted by the developed 

model where epinephrine level at Cmax increased from 31.7 to 40.3 ng/l at 179 and 618 mg doses, 

respectively (Table 6). To validate the model in pregnancy, caffeine at both 70 and 200 mg 

administered as single doses in the third trimester were compared to a reported observed Cmax 

data (89.5 and 124.7, respectively (Kirkinen et al., 1983a, b),  and the results showed our model 

successfully predicated epinephrine at both doses (Table 6). Next, the model was used to predict 

epinephrine levels for first and second trimesters, and for 300 mg caffeine; the results 
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demonstrated that following a single caffeine dose, epinephrine blood levels increases with 

increased caffeine dose and across the trimesters (Table 6). 
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Figure 5.  Predicted caffeine Cmax in non-pregnant and pregnant women at three different 

single doses (70, 200 and 300 mg) for the three trimesters of pregnancy, and its correlation to 

predicted PDE and cAMP levels. Each category represents a caffeine dose; First grey: 70 mg, 

White: 200mg, second grey: 300mg caffeine. Non is for non-pregnant.

 

Table 6. Observed and predicted values of PDE, cAMP and epinephrine at observed caffeine Cmax 

values following its daily dosing for one week at 179 and 618 mg in non- pregnant, and predicted 

values following a single dose at 70, 200 and 300 mg in pregnant subjects. 

Non-pregnant subjects (All observed data were from Reference (Montaya, 2005)) 

 Parameters 

Caffeine 

dose 

Cmax 

Predicted 

(µg/ml) 

PDE# 

Observed   Predicted 

cAMP* 

Observed   Predicted 

Epinephrine! 

Observed   Predicted 

179 mg 8.5 72.5 72.3 - - - 31.7 

618 mg 32.3 5.5 7.1 0.9 0.91 - 40.3 
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Pregnant subjects (All observed data were from Reference (Kirkinen et al., 1983a, 

b) 

 Parameters 

Caffeine dose                           

Cmax  

Predicted 

(µg/ml) 

PDE# 

Predicted 

cAMP* 

Predicted 

Epinephrine! 

 Observed        Predicted 

70 mg 

Non-pregnant        

                 T1 

                 T2 

                 T3 

 

2.7 

3.7 

3.8 

3.9 

 

72.1 

69.4 

60.1 

55.3 

 

0.22 

0.29 

0.33 

0.41 

 

- 

- 

- 

89.5 

 

27.1 

53.3 

61.3 

71.5 

200 mg 

Non-pregnant        

                 T1 

                 T2 

                 T3 

 

8.5 

8.6 

8.7 

8.8 

 

41.5 

38.8 

35.3 

21.3 

 

0.55 

0.62 

0.73 

0.87 

 

- 

- 

- 

124.7 

 

32.1 

70.2 

91.6 

121.5 

300 mg 

Non-pregnant        

                 T1 

                 T2 

                 T3 

 

16.0 

16.3 

16.6 

16.9 

 

30.1 

27.3 

13.1 

8.6 

 

0.75 

0.83 

0.99 

1.17 

 

- 

- 

- 

- 

 

36.2 

83.1 

106.3 

145.7 

# pmol/min*mg protein; * ng/mg protein; ! ng/l; -  not available. 
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Discussion 

 

Several physiological and biological changes occur during pregnancy that can affect 

drugs disposition, however, it is impossible to study changes in PK of all drugs administered 

during pregnancy. Hence, PBPK models are developed to validate and predict drugs disposition 

and effect on the body using a physiologically realistic compartmental structure with sets of 

differential equations. This method has the benefit of incorporating both physiological 

parameters that change in pregnancy (e.g., time-varying changes in maternal weight, individual 

organ volumes/blood flows, cardiac output, glomerular filtration rate, and drug-metabolizing 

enzyme activities) that are important for ADME processes, and drug-specific parameters (e.g.,  

physicochemical  and in vitro metabolism/transport characteristics) (Montoya et al., 2014).     

Several studies have reported caffeine disposition in pregnancy in real and virtual 

populations (Weng, X.; 2008, Gaohua, L.; 2012, Kirkinen et al., 1983a, b); 1983, Xia, B.; 2013, 

Ke et al., 2018a), Dallmann, A.; 2018). In addition, several reports related the risk of miscarriage 

with caffeine intake >200 mg per day, Okubo, H.; 2015, COT Statement 2001/06,2001, WHO , 

2016, EFSA, 2015). Thus, in the current study, we verified and extended previously developed 

PBPK models for caffeine in pregnant population to predict changes on caffeine PD parameters 

associated with miscarriage risk namely PDE, cAMP and epinephrine (Monatay,; 2005, 

(Kirkinen et al., 1983a, b), Weathersbee, P. S.;1977).   The developed pregnancy PBPK/PD 

model that considered caffeine physiochemical and PK parameters, and physiologic and 

metabolic changes that occur normally during pregnancy successfully predicted changes in 

maternal caffeine plasma levels and PD-related parameter at different stages of pregnancy. In 

addition, the pregnant PBPK model predicted the increase in caffeine accumulation in the 

fetoplacental compartment over the trimesters. 
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Consistent with other developed PBPK models based on Simcyp and PK-sim for caffeine 

in non-pregnant and pregnant women, our developed PBPK model using Gastroplus successfully 

simulated and predicted caffeine plasma concentration-time profiles and PK parameters 

following single and multiple dosing. In non-pregnant population, simulated caffeine PK 

parameters exhibited non-linear kinetics, which is consistent with the reported observed data 

(Cheng et al., 1990) For example, Cmax increased from 2.5, 8.5 to 16.5 μg/ml at caffeine doses of 

70, 200 and 300 mg, respectively; similar behavior was observed with the parameters AUC, ClSys 

and t1/2 indicating saturable caffeine metabolism by CYP1A2 in the dose range tested. The model 

predictive performance was reliable as evaluated by predicted Cmax, AUC, Vd, and Clsys with 

values being within ±20% of the observed data for the 3 doses with the exception for Clsys at 300 

mg dose (predicted/observed data is 0.71) and t1/2 at the 3 doses (predicted/observed data ranged 

from 1.5-2.03; Table 4). This is acceptable due to reported caffeine variable half-life in non-

pregnant subjects ranging from 1.5 to 10 hours that increases with increasing the dose (Cheng et 

al., 1990). 

Next, we developed and verified the pregnant PBPK model. This model accounted for 

CYP1A2 down regulation in each trimester in addition to other known pregnancy-induced 

changes presented in Table 3. As expected, the effect of reduced CYP1A2 activity by pregnancy 

and across the three trimesters exhibited non-linear kinetics and significantly increased caffeine 

exposure (AUC) by 2- to 3-fold, decreased systemic clearance and prolonged t1/2, a pattern that is 

consistent with previously reported findings (Gaohua, L.; 2015, Kirkinen et al., 1983a, b), 

Partosch, F.; 2015, Dallmann, A.; 2018). Also, an increase in Vd was observed, mainly in the 

third trimester, which could be due to water-weight gain in pregnant woman; caffeine is a water 

soluble compound and prefers to distribute to the new water-gained weight area, which increases 
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the Vd. Besides, the pregnant-PBPK model predicted caffeine concentration-time profile in the 

FPC. As demonstrated in Figure 4, caffeine accumulated in the FPC with prolonged half-life as a 

function of dose across the three trimesters. For example, with the 300 mg caffeine dose, 

predicted t1/2 increased from 5 to 8 h in the third trimester. This behavior is expected as caffeine 

exposure in the FPC parallels that of the maternal blood. On the other hand, based on Kirkinen 

and colleagues study (Kirkinen et al., 1983a, b), a 200 mg caffeine dose reduced intervillous 

blood flow by 25% in T3 of pregnancy, a parameter that was included in the pregnancy model. 

This reduction in intervillous blood flow caused a 12.5% reduction in diffused amount of 

caffeine to the fetus across the placenta, and thus lower FPC-caffeine exposure than what would 

be expected if caffeine didn’t alter the intervillous blood flow by 25%. While the effect of 

caffeine at lower and higher doses than 200 mg on the intervillous blood flow is unknown, we 

assumed similar 25% reduction in intervillous blood flow for T1 and T2 of pregnancy and with 

other tested caffeine doses (i.e. 70 and 300 mg).  

Following PBPK models validation, a PD model was developed to evaluate the effect of 

increased plasma levels of caffeine on PDE, cAMP and epinephrine, parameters associated with 

miscarriage risk study (Kirkinen et al., 1983a, b, Li, J.;2015). While pregnancy could induce 

changes in the evaluated PD parameters, in the model, we assumed PD in non-pregnant and 

pregnant women are the same. Yet, the model successfully predicted epinephrine levels in third 

trimester that was comparable with reported observed values (Table 6) (Kirkinen et al., 1983a, b) 

(Kirkinen, P.;1983 is this 1983a or 1983b?, Montoya, et al 2014). To predict effect of caffeine on 

these parameters in pregnancy, PDE activity and cAMP concentrations were validated for high 

(618 mg) and low (179 mg) single doses of caffeine that were compared to non-pregnant subjects 

as presented in Table 6. The model successfully predicted changes in PD parameters as a 
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function of dose in non-pregnant subjects, and concluded a significant decrease in PDE and 

increase in cAMP levels at higher doses of caffeine (Table 6, Figure 5). Similarly, the p-PKPD 

model successfully predicted the effect of different doses of caffeine on PDE, cAMP and 

epinephrine levels in pregnant women. Compared to normal epinephrine levels of 25 ng/l 

(Doepker, C.;2018), predicted data for the 3 trimesters revealed increased levels of maternal 

epinephrine. In the third trimester, observed data following 70 and 200 mg doses of caffeine 

showed increased epinephrine levels by 3 to 5- fold compared to non-pregnant levels, and the 

predicted data for both doses was consistent with observed levels (Kirkinen et al., 1983a, b). For 

300 mg dose, epinephrine increased approximately by 5-fold. Such high levels of epinephrine 

could cause a significant decrease in intervillous blood flow, which could increase the risk of 

pregnancy loss (Kirkinen et al., 1983a, b).  The limitation of the study it did not consider higher 

doses of caffeine as it was hard to verify the model for higher doses due to lacking literature 

data. 

 

Conclusions 

PBPK modeling and simulation has been used recently to predict drugs action to support 

or as an alternative for clinical investigations especially in patient populations where clinical 

trials are not possible. This study highlights the utility of PBPK/PD modeling and the unique 

application of the PBPK model to a PD outcome that could be utilized to help define potential 

cut-offs for caffeine intake in various stages of pregnancy. Our work verified that caffeine 

maternal blood levels increase with pregnancy due to progressive reduction in its metabolism by 

CYP1A2. CYP1A2 is downregulated as pregnancy progresses. Caffeine increase leads to 

reduced levels of PDE, increased levels of cAMP and epinephrine. For example, in the third 
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trimester, daily intake of 200 mg or more of caffeine increased epinephrine blood levels by 4-

fold and higher when compared to normal levels, which could increase risk of pregnancy loss. 

Epinephrine is a vasoconstrictor, at high levels it could reduce the blood flow to the placenta 

causing complications. Therefore, pregnant women are advised to limit their caffeine intake. 

While further clinical investigations are necessary, our findings could assist in designing clinical 

investigations to understand caffeine-miscarriage association better and thus prevent such risk. 
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Chapter 3 

Modeling and simulation of the effect of P-glycoprotein and lysosomal entrapment, and 

genetic variation in metabolizing enzymes on granisetron PK and PD  
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Abstract 

Chemotherapy-induced nausea and vomiting (CINV) is one of the most undesirable side 

effects that affect a patient’s quality of life. Granisetron is one of the most widely used 5-

hydroxytryptamine 3 (5-HT3) receptor antagonists in the field of CINV. Granisetron is effective 

in many cases; however, about 20-30% of patients remain to show unsatisfactory responses. The 

purpose of this work is to explain the variability in granisetron efficacy. First, we identified the 

role of P-gp and lysosomal entrapment on granisetron intestinal permeability and plasma profiles 

following oral dosing using the transport study. In this study, we showed that granisetron as a P-

gp substrate and based on its physiochemical properties susceptible for lysosomal entrapment, 

and thus limiting permeability across Caco2 cell monolayer in-vitro. Also, we investigated and 

predicted the effect of P-gp and lysosomal modulation and interplay on granisetron levels using 

MembranePlus software. We were able to predict the effect of P-gp and lysosomal entrapment 

on granisetron permeability, where P-gp inhibition and increasing lysosomal pH would increase 

granisetron permeability.  

As another cause of variability, we evaluated the effect of genetic polymorphism in 

CYP1A1 and CYP3A5 on granisetron PK and PD. For this, we developed a PKPD model to 

validate and predict the effect of genetic variations in CYP1A1 and CYP3A5 on granisetron 

levels in plasma and brain and predict the impact of these genetic variations on the occupancy of 

5-HT3 receptors where lower occupancy was noticed with the CYP1A1 *2A SNP as an 

extensive metabolizer, and higher occupancy with the CYP3A5 *3 SNP as a poor metabolizer. 
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Introduction 

Chemotherapy-induced nausea and vomiting (CINV) is one of the most undesirable side 

effects that affect a patient’s quality of life. Serotonin, released from the enterochromaffin cells 

of the small intestine after the administration of chemotherapeutic agents, activates both 

peripheral and central 5-hydroxytryptamine 3 (5-HT3) receptors on vagal nerve terminals and 

central structures (Navari, 2009, 2015; Smith et al., 2019). 5-HT3 receptor antagonists are one of 

the most effective antiemetic agents for suppressing acute phase CINV prophylaxis (Kilpatrick, 

1990; Engel et al., 2013). 5-HT3 receptor antagonists suppress CINV by preventing serotonin 

binding to 5-HT3 receptors (Engel et al., 2013). 5-HT3 receptors are distributed in many brain 

regions, with the highest levels of distribution in the brainstem, especially in regions involved in 

vomiting reflex such as the area postrema (AP); 5-HT3 receptors binding sites in the CNS was 

first recognized using a radiolabeled 5-HT3 receptor antagonist namely [3H]GR65630  

(Kilpatrick et al., 1987; Tecott et al., 1993; Miller and Leslie, 1994; Aapro et al., 2015; Zhang et 

al., 2016). 

Granisetron is one of the most widely used 5-HT3 receptor antagonist drug in the field of 

CINV. Granisetron is effective in many cases, however about 20-30% of patients remain to show 

unsatisfactory responses (Kioka et al., 1989; Darmani, 1998; Zhong et al., 2014). P-glycoprotein 

(P-gp), is a member of the adenosine triphosphate (ATP)-binding cassette family and is encoded 

by human ABCB1 gene (ATP-binding cassette, subfamily B), also called MDR1 (multidrug 

resistance protein) (Hodges, 2011; Tsuji et al., 2017). P-gp functions as a transmembrane efflux 

pump that transports various molecules out of the cell; it works by identifying substrates and 

moving them out of the cell (from intracellular to extracellular). It also identifies substrates 

trapped in the cell membrane and efflux them out of the cells (Fromm and Kim, 2011; Hodges, 
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2011; Meszaros et al., 2013). P-gp is found in the canalicular surface of hepatocytes, the apical 

surface of proximal tubular cells in kidneys, and the brush border surface of enterocytes (Fromm 

and Kim, 2011). In addition, P-gp is expressed in the epithelium of the brain choroid plexus 

(which forms the blood–cerebrospinal fluid barrier), as well as on the luminal surface of blood 

capillaries of the brain namely on the endothelial cells of the blood-brain barrier (Hodges, 2011). 

To be a substrate, the drug has to be lipophilic, and the number of hydrogen bonds appears to be 

a relevant parameter, as both have been proportionally correlated to the affinity of compounds 

for P-gp. Whether granisetron is a P-gp substrate or not requires further evaluation (Von Richter 

et al., 2009); however, available reports on other 5-HT3 receptor antagonists drugs have 

demonstrated ondansetron as a substrate for P-gp (Durieux, 1995). Lysosomes are acidic 

organelles (pH 4–5), its main function is in degrading macromolecules, the turnover of 

phospholipids, breakdown of endogenous waste products, autophagy, and apoptosis (Daniel and 

Wójcikowski, 1997). It was first studied by de Duve et al. in (1974), where they described the 

function of lysosomes in sequestering or entrapping drugs through a non-enzymatic, non–

transporter-mediated process known as lysosomal trapping. To get entrapped inside a lysosome, 

a drug should exhibit a lipophilic feature (LogP > 1), and amphiphilic drugs with ionizable 

amines (pKa > 6) can also accumulate in lysosomes  (Kazmi et al., 2013; Zhitomirsky and 

Assaraf, 2015, 2017). A greater proportion of the total concentration of these drugs are present as 

a non- protonated neutral molecule at physiologic pH (7.2–7.4) and can readily pass across cell 

membranes by passive diffusion (Kazmi et al., 2013; Zhitomirsky and Assaraf, 2015). Inside the 

lysosomes, an equilibrium shift towards the protonated form occurs because of the lysosomal 

acidic environment (pH 4–5), which restricts the movement of the drug back through the 

lysosomal membrane into the cytosolic space (Zhitomirsky and Assaraf, 2015). Compared with 
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the blood pH (7.4), the cytosolic pH is a bit more acidic (7.0–7.2), and that could play a 

significant role in drug disposition such as granisetron, which becomes highly sequestered in 

lysosomes (Zhitomirsky and Assaraf, 2015). 

About 20-30% of patients receiving granisetron for the prevention of CINV still suffer 

from nausea and vomiting (Kioka et al., 1989; Darmani, 1998; Zhong et al., 2014). While 

several factors could play a role in the variation of granisetron efficacy, in this work, we will 

evaluate the effect of modulating P-gp and lysosomes on granisetron permeability and plasma 

levels following oral administration. The second part of the study will predict the effect of 

genetic variations in CYP enzymes on granisetron plasma and brain levels, and ultimately 

receptor occupancy. Granisetron is mainly cleared by hepatic metabolism, with less than 20% of 

the dose is eliminated unchanged in urine. Granisetron is metabolized primarily by cytochrome 

P450 1A1 (CYP 1A1) and CYP 3A5, as established by ketoconazole inhibition studies in in-vitro 

liver microsomal studies (Nakamura et al., 2005; Bustos et al., 2016). Thus, the purpose of this 

work is to first, develop a mechanistic model for in-vitro analysis of granisetron permeability, 

considering P-gp efflux and lysosomal entrapment, which was then validated by analyzing the 

effect of inhibitors on its apparent permeability using MembranePlus™ and plasma profile 

following oral administration using GastroPlusTM. Second, to develop a PKPD model to validate 

and predict the effect of genetic variations in CYP1A1 and CYP3A5 on granisetron levels in 

plasma and brain and predict the effect of these genetic variations on the occupancy of 5-HT3 

receptors by granisetron using GastroPlusTM. 
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Materials and methods 

 

Materials 

Granisetron hydrochloride was purchased from Tokyo chemicals industry, Co., LTD 

(Portland, OR). Ammonium chloride was purchased from Macron fine chemicals (Radnor, PA), 

and verapamil hydrochloride and triethyllamine (TEA) were obtained from Sigma Aldrich (MO, 

USA). Bafilomycin A1 was obtained from Alfa Aesar (Tewksbury, MA). Acetonitrile and 

methanol, HPLC grade, were obtained from EMD Chemicals (Burlington, MA). Dulbecco’s 

modified Eagle medium (DMEM), fetal bovine serum (FBS) and penicillin–streptomycin 

(10000 I.U.-10 mg/ml) were obtained from American Type Cell Culture Collection (ATCC; 

Manassas, VA). Deionized water (DI) was used for all preparations. 

 

Cell culture and in-vitro assay for granisetron transport across Caco2 cells monolayer 

Caco2 cells (passage numbers 40-60) were cultivated in DMEM media supplemented 

with 20% FBS and 2.5% antibiotics in a humidified incubator with 5% CO2 at 37 °C. The cells 

were cultured on a 75 cm² flask at a density of 1 × 106 cells/flask and were then harvested at 90% 

confluence with trypsin–EDTA. For the preparation of Caco2 cell monolayers, cells were plated 

in a 12-well transwell plate (1.131 cm2 membrane surface area, 13.85 mm diameter; Corning 

Inc., Tewksbury, MA). The culture medium was renewed every other day with 0.5 ml and 1.5 ml 

into the apical and basolateral sides, respectively. 

In-vitro transcellular transport of granisetron was performed to determine P-gp-mediated 

transport parameters in both directions, apical to basolateral (A→B) and basolateral to apical 
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(B→A). Transport experiments were performed in triplicates, as described below. Caco2 cell 

monolayer was pre-incubated in HEPES buffer for 30 min at 37 °C. Then, the transepithelial 

electrical resistance (TEER) was estimated with the Millicell-ERS system (Millipore Co., 

Bedford, MA) to confirm monolayer formation. Caco2 monolayers with TEER values over 300 

Ωcm² were included in the experiments. To begin the experiment, granisetron was diluted in 

transport buffer to make different concentrations ranging from 10 to 400 μM and added to apical 

or basolateral sides of the insert. To determine the passive permeability of granisetron, 

verapamil, as a P-gp inhibitor, was co-incubated at a concentration of 100 μM in the apical 

side(Durie and Dalton, 1988). To determine lysosomal entrapment of granisetron, ammonium 

chloride (NH4Cl) was added at a concentration of 20 mM in the apical side (Ufuk et al., 2015). 

Samples were taken from the apical and the basolateral side (100 μl) at 0, 0.5,1, 2, and 4 hours 

and replaced with transport buffer. Concentrations of granisetron in the samples were measured 

by high-performance liquid chromatography (HPLC), as described below. P-gp Vmax and Km, 

efflux ratios, and lysosomal entrapment were calculated from the in-vitro studies. These values 

were used and optimized as input parameters in MembranePlus and GastroPlus to predict the 

effect of P-gp and lysosomal entrapment on granisetron permeability. 

 

Measurement of cell viability assay using MTT 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used to measure cell 

viability. The MTT based cell viability was determined based on published reports by Zheng et 

al., 2014. Caco2 cell lines were incubated with different concentrations of granisetron in the 

range (10-400µM) for 24 h. MTT 1mg/ml was added for 4 h at 37°C and the dark blue formazan 
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crystals formed were dissolved in DMSO and was subjected to colorimetric measurement at 570 

nm using a microtiter plate reader. 

Western Blot Analysis to Confirm P-gp Expression 

 Twenty-five micrograms of protein samples were applied and resolved using 10% 

SDS−polyacrylamide gel at 140 V for 1.5 h and transferred electrophoretically to PVDF 

membrane at 300 mA for 2 h at 4 °C. PBS solution containing 3% BSA was used to block 

nonspecific binding while rocking at room temperature for 1 h. Membranes were then incubated 

with primary antibodies overnight at 4 °C. Primary antibodies used for P-gp (C-219) and β-actin. 

Secondary antibodies used were HRP- conjugated anti-mouse IgG secondary antibodies (1:1000) 

dilutions for P-gp and β-actin. Blots were formed using a chemiluminescence detection kit 

(ThermoFisher). Bands were pictured using ChemiDoc MP Imaging System (Bio-Rad Hercules, 

USA). Image Lab Software V.6.0 (Bio-Rad) was used to quantify the resultant bands. 

 

HPLC analysis of granisetron  

HPLC analysis was achieved by an isocratic Prominence Shimadzu HPLC system 

(Columbia, MD). The system consisted of a SIL 20-AHTautosampler, fluorescence detector 

(Shimadzu, RF10A XL), PDA detector and a LC-20AB pump connected to a Dgu-20A3 

degasser. Data acquisition was achieved by LC Solution software version 1.22 SP1. 
The chromatographic conditions consisted of a Luna 5 μm C18 column (250 × 4.6 mm i.d.; 

Phenomenex, USA); the mobile phase was a mixture of  phosphate buffer (5 mM, pH 3.0), 

methanol and acetonitrile (25:40:35 v/v/v) containing 1% triethylamine (TEA), delivered at 1.0 

ml/min flow rate. Standard curves of granisetron were prepared in the range of 0.5 to 50 μM. 
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Validation of the developed HPLC method 

System parameters were evaluated by using a solution of granisetron (100 µg/ml in mobile 

phase). Six replicates were injected to the HPLC system. The linearity of the method was 

evaluated by constructing six series of calibration curves using granisetron solutions of 0.5, 1, 5, 

10 and 50 µg/ml prepared by subsequent dilution of stock standard solution of granisetron in 

acetonitrile. The inter-day and intra-day accuracy and precision was established by using three 

replicates of standard solutions of granisetron at three different concentrations (0.5, 5 and 50 

µg/ml) during a single day and three separate days. The stability of granisetron standard 

solutions (10 µg/ml in acetonitrile) was checked after storing at room temperature for 1 week. 

The concentration of granisetron samples was determined and compared with freshly prepared 

samples. Lower limit of detection (LOD) and lower limited of quantification (LOQ) were 

calculated: LOD by measuring three replicates of spiked sample, taking the AUC of the peak at 

the same retention time of granisetron and compare it to the AUC of the same retention time in a 

blank sample to get a signal/noise ratio of 3. LOQ is the lowest concentration in the calibration 

curve that give reliable levels with CV <20%. 

 

Development of a PBPK model for granisetron 

All PBPK simulations were carried out using MembranePlus™ and GastroPlus™ 

integrated with ADMET Predictor (Simulation Plus Inc., Lancaster, CA). MembranePlus™ is a 

software platform for simulation of passive and active drug transport in various cell assays. 

MembranePlus give us the opportunity to simulate and predict drug concentrations based on in-

vitro based assays, where we are able to calculate permeability and other parameters for in-vivo 

extrapolation, by integrating multiple experimental and cellular processes, for example, 

lysosomal trapping parameters, carrier-mediated transport and protein binding (Szeto et al., 
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2007). Input parameters are presented in Table 7-1. In this work, MembranePlus™ was used to 

assess, validate, and predict the transport of granisetron through Caco2 cells from the data 

acquired from in-vitro experiments. P-gp Vmax and Km calculated from the in-vitro experiments 

(P-gp Vmax 0.029 µM/sec and P-gp Km 43.93 µM) were used as input data where they were 

optimized by the software (P-gp Vmax 0.035 µM/sec and P-gp Km 49.1 µM) for better 

prediction of the amount transported across the monolayer. MembranePlus™ was also used to 

predict the effect of changes in lysosomal pH (from 6 to 4) on the entrapment of granisetron 

inside the lysosomes, where data from in-vitro experiments using bafilomycin A1 were used as 

input parameters. Table 7-2 shows the differences in physiochemical values between ADMET 

prediction and literature reports. It was noted when comparing the values from ADMET and 

from different literature resources that granisetron molecular weight, solubility, LogP and pKa 

are comparable or close values to those predicted by ADMET, thus we don’t expect an effect on 

the modeling when these small changes are applied. 

Table 7-1. The input parameters that are used in both MembranePlus and GastroPlus.  

Input Parameter Value Reference 

Molecular weight (g/mol) 312.41 A 

Solubility (mg/ml) pH=7 17 A 

LogP 2.2 A 

Diffusion coefficient (cm²/sec) 0.722 x 10-5 A 

Inonization constant (Pka) 9.21 (base) A 

Bioavailability (%) 60 B 

Fraction Unbound (fu) 0.35 B 

P-gp Vmax (µM/sec) 0.028 C 

P-gp Km (µM) 43.93 C 

CYP1A1 Vmax (nmol/min/nmol of enzyme) 4.6 A 

CYP1A1 Km (µM) 61.4 A 

CYP3A5 Vmax (nmol/min/nmol of enzyme) 4.7 A 

CYP3A5 Km (µM) 312 A 

Renal clearance (l/h/Kg) 0.52 D 
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Vd (l/kg) 4.2 D 

A- ADMET Predictor 9.5 

B- Drugbank.ca https://www.drugbank.ca/drugs/DB00889 

C- In-vitro Caco2 cells results, optimized by MembranePlus to: P-gp Vmax 0.035 µM/sec and P-

gp Km 49.1 µM 

D- Is from reference (Roche, 2013) 

Table 7-2. Comparing values from ADMET and literature. 

Value ADMET Literature  Reference 

Mwt (g/mol) 312.41 312.417 https://www.drugbank.ca/drugs/DB00889  

Solubility (mg/ml) 

pH=7 17 18 SciFinder 

LogP 2.2 2.55, 2.8 

https://doi.org/10.1016/j.jconrel.2014.05.022, 

SciFinder, respectively 

pKa 9.21 9.01, 10.1 

https://www.drugbank.ca/drugs/DB00889, 

SciFinder, respectively 

    

 

Development of a PBPK model for granisetron using GastroPlus 

We also used GastroPlus to develop and validate granisetron plasma and brain profiles, 

using parameters obtained from MembranePlus and literature values from different formulations 

(Oral, IV, SubQ, and transdermal). It was also used to predict the differences in granisetron 

levels in both plasma and brain in response to genetic variations in granisetron metabolizing 

enzymes CYP1A1 and CYP3A5. 

The general workflow of granisetron PBPK model development and validation involved 

the following steps. Granisetron physicochemical properties and metabolism data were acquired 

from the literature or estimated by ADMET Predictor. A summary of these parameters is listed in 

Table 7. The model was validated by comparing the predicted PK data with observed data from 

the literature. The predicted mean values of the PK parameters Cmax and AUC were then 

obtained based on the simulations. Besides Cmax and AUC, verification of the established PBPK 

models was based on Tmax, Vd, CL and t1/2.  

https://www.drugbank.ca/drugs/DB00889
https://doi.org/10.1016/j.jconrel.2014.05.022
https://www.drugbank.ca/drugs/DB00889
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Concentration-time profiles based in the literature were used and validated for four 

different granisetron formulations (oral, IV, SC and transdermal) (Gurpide et al., 2007a; Mason et 

al., 2012; Zhao et al., 2016; Spartinou et al., 2017) by scanning with GetData Graph Digitizer 

(version 2.26; http://getdata-graph-digitizer.com). Physiological values for intestinal volumes, 

lengths, and pH in humans used were those built in the software, except for the transdermal forms 

of granisetron. Transdermal granisetron is available as a matrix-type patch;however, GastroPlus 

does not offer this formulation, but it has a reservoir-type patch, and recommends using a 

transdermal solution to simulate matrix- type patch. Thus, in this work, for transdermal 

granisetron, a transdermal solution was used. 

The transdermal model in GastroPlus consists of the following layers in the order of: a) 

stratum cornium with 10 sublayers and a thickness of 13.03 microns, b) viable epidermis layer 

with 5 sublayers and 61.43 microns in thickness, c) dermis with 5 sublayers and 1130.6 microns 

of thickness and 9.89 ml/min/100g skin blood flow rate, and d) the subcutaneous layer with 

2641.8 microns thickness, 2.6 ml/min/ 100gsubQ blood flow rate (Zhao et al., 2016). Both the 

dermis and the subQ tissues are linked with the systemic circulation; however, only the subQ 

tissue is linked to the lymphatic circulation (Suehiro et al., 2016). Granisetron patch is applied to 

the stratum cornium. Three doses of granisetron patches have been validated (34.3 with a surface 

area of 52cm2, 21.8 with a surface area of 33cm2 and 9.9 mg with a surface area of 15cm2) with 

an application time of 168 hours. Evaporation was not considered since the compound is not 

volatile.  

 

CYP1A1 and CYP3A5 polymorphisms and granisetron variability 

http://getdata-graph-digitizer.com/
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The most important benefit of using PBPK modeling is the ability to predict PD 

parameters by connecting granisetron plasmas or tissue concentrations to its possible 

concentration at the site of action, thus being able to predict granisetron effect. (Perera et al., 

2013). That is important because plasma concentration cannot be used directly as a substitute for 

the concentration at the site of drug action (Chetty et al., 2014). An additional benefit of this 

method is that it possibly lets us inspect the effect of variability in various physiological factors 

(e.g., genetic polymorphisms) on the drug effect, particularly where clinical studies are lacking 

(Perera et al., 2013). 

Granisetron is mainly metabolized to 7-hydroxygranisetron and, to a lesser degree, to 9- 

desmethyl granisetron by CYP1A1 and CYP3A (Corrigan et al., 1999; Nakamura et al., 2005; 

Sissung et al., 2011; Zoto et al., 2015). Single nucleotide polymorphisms (SNPs) in CYP3A and 

CYP1A1 genes can affect drug metabolism. For instance, the allele variant CYP1A1*2A is 

associated with increased enzymatic activity (extensive metabolizer, EM), while the allele 

variant CYP3A5*3 is associated with decreased enzymatic activity (poor metabolizer, PM)  

(Bustos et al., 2016). To study the effect of CYP1A1 and CYP3A5 polymorphisms on 

granisetron plasma and brain levels, GastroPlus which offers both enzymes as PM (CYP3A5*3) 

and EM (CYP1A1*2A) will be used to test whether polymorphisms in these enzymes could 

affect granisetron levels and consequently the effect on nausea and vomiting. From observed and 

predicted plasma vs. time profiles, granisetron brain concentrations, and hence 5-HT3 receptor 

occupancy, were predicted in both CYP1A1*2A and CYP3A5*3 carriers. 

Granisetron brain levels were predicted based on the partitioning between the plasma and 

the brain (kp). For 5-HT3 receptors occupancy prediction, data from reference (Endo et al., 2012) 

following granisetron 2 mg oral was used by correlating brain concentrations to occupancy. Direct 
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response model was used in the pharmacodynamic simulation, where this model has its theoretical 

roots in receptor-binding theory, as shown in equation 1: 

𝐸 = 𝐸0 + (
𝐸𝑚𝑎𝑥 𝐶

𝐸𝐶50+𝐶
)                                                                    (Equation 1) 

Where E0 is the baseline response, Emax is the maximum response and EC50 is the 

concentration at which 50% of the maximum response is observed. Emax and EC50 were calculated 

from concentration vs. occupancy plot using GraphPad software, where the EC50 value was 

0.97µM. To have a good response to CINV, granisetron needs to occupy at least 75% of 5-HT3 

receptors (Corrigan et al., 1999). 

 

Statistical analysis 

The experimental results were statistically analyzed for significant differences using two‐tailed 

Student's t‐test. A p‐value <0.05 was considered statistically significant. Results from in vitro 

studies were expressed as mean ± SD. All studies were performed at n=3. 

Results 

HPLC Method validation 

The linearity of the method was evaluated by preparing six series of standard solutions of 

granisetron in the range of 0.5-50 (0.5, 1, 5, 10 and 50) µg/ml in acetonitrile and injection of the 

solutions to the HPLC system. Excellent correlation between granisetron peak area and 

concentration was observed with r2 > 0.999. Statistical data are presented in Table 8. 

The accuracy and precision of the method was evaluated at three different concentrations of 

granisetron (0.5, 5, and 50 µg/ml) in triplicate and during the three separate days. Concentrations 

were determined, using calibration standard curves prepared for each day. The within-day and 
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between-day data are presented in Table 9. The robustness of the method was determined by 

evaluating the influences of small changes in the mobile phase composition, and buffer 

concentration. Peak area values were influenced less than ± 3% in all different conditions used. 

The retention time of granisetron changed about 7% using different mobile phase composition. . 

Chromatograms for granisetron stability are shown in Figure 6. The LOQ is the lowest 

concentration in the calibration curve that give reliable levels with CV <20% was found to be 0.5 

µg/ml for granisetron. An estimate of limit of detection LOD is the lowest analyte concentration 

likely to be reliably distinguished, based on S/N ratio of 3 was found to be 0.05µg/ml. The 

relative recovery of granisetron from media at three different concentration levels by standard 

addition method ranged from 99.5 to 100.7%.  

Table 8. Linearity data of calibration curves of granisetron. 

Parameter Values 

Linearity range 0.5-50 µg/ml 

Linearity equation y= 21.16x-1.46 

Correlation coefficient (r2) 0.9997 

 

Table 9. Inter and intra-day precision and accuracy of the method for determination of 

granisetron (Three sets for 3 days). 

Concentration (µg/ml) 
Concentration 

measured (µg/ml) 
Precision% Accuracy% 

Inter-day    

0.5 0.502 2.85 1.2 

5 5.1 1.25 0.52 

50 49.91 0.85 0.41 

Intra-day    

0.5 0.505 2.52 1.5 

5 5.04 1.87 0.3 

50 49.94 0.95 0.68 
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Figure 6. Representative chromatograms from HPLC analysis for granisetron. (A) Granisetron 

dissolved in mobile phase injected directly after preparation (B) Sample of Granisetron from 

transport study (C) Granisetron recovery from media samples, where the concentration added to 

the sample was 5 µg/ml and the concentration measured was 5.0±0.07 µg/ml. 

 

Prediction and validation of granisetron transport across Caco2 monolayer and the use of 

In-vitro transport studies to calculate the efflux ratio and Michalis-Menten parameters 

First, we had to validate the expression of P-gp in Caco2 cells used for transport studies 

using western blot. As seen in Figure 7A, where we can see a significant increase in the 

expression of P-gp going up with passages number in Caco2 cells. We also validated cell 

viability of Caco2 over several concentrations of granisetron (10-400 µM), as shown in Figure 

7B, where we notice that there is no significant change in cell viability over the concentration 

range used of granisetron. 
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Figure 7. A. P-gp expression in Caco2 cells at passage 20 and passage 45. The picture shows a 

significantly higher P-gp expression in passage 45 number of Caco2 cells, which was used in all 

in-vitro experiments. B. MTT assay was used to assess cell viability. Control cells were 

incubated in granisetron free media in parallel to treatment groups. 

 

Michalis –Menten kinetic constants Vmax and Km were determined from granisetron 

transport with time from A→B over the concentrations range 10-400 µM as seen in Figure 8. 

Values were 0.028 μM/sec for Vmax and 43.93 μM for Km. These values were optimized by 

MembranePlus to: P-gp Vmax 0.035 µM/sec and P-gp Km 49.1 µM to predict and validate 

granisetron transport and permeability across Caco2 cells monolayer. We were also able to 

predict the intracellular Km of 20 µM. Saturation was obtained in the range from 100 to 400 uM. 

Data was analysed and confirmed using two softwares: Desmos and GraphPad. Figure 8A shows 

that data analysis obtained by Desmos (Vmax= 0.024 μM/sec and Km is=48.2 μM), is similar to 

that obtained using Graphpad (where Vmax is=0.028 μM/sec and Km is 43.9 μM). 
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Figure 8. Michalis-Menten profile to calculate Vmax and Km values from in-vitro transport 

studies. A Using the software Desmos. B. Using Graphpad. The black curves represent the 

virtual non-linear regression lines predicted by both software, while the red line is the connecting 

line between dots. Saturation is noticed in both figures. The flux is plotted against several 

concentrations of granisetron till saturation is reached. A. Vmax value is 0.024 µM/sec, and Km 

value is 48.2 µM. B. Vmax value is 0.02813 µM/sec and Km value is 43.93 µM. 

 

Using the input parameters that are listed in Table 7-1, we were able to validate the 

transport of granisetron across Caco2 cell monolayer from apical to basolateral (A→B) and 

basolateral to the apical (B→A) sides in the presence and absence of verapamil (a P-gp inhibitor) 

and bafilomycin A1 (increase lysosomal pH) and are present in Figure 9 (Tapper and Sundler, 

1995). Apparent permeability (Papp) and efflux ratios were calculated as follow: 

𝑃𝑎𝑝𝑝 = (
𝑑𝐶𝑟

𝑑𝑡
)(

𝑉𝑜𝑙

𝐶𝑑∗𝐴
)      (Equation 2)  

 

Where: Cr = concentration in the receiving compartment, t= time (sec), Vol=volume in the 

receiving compartment (ml), Cd=concentration in the donor compartment at t=0, and A= 

membrane surface area that is 1.131 cm².    
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  𝐸𝑓𝑓𝑙𝑢𝑥 𝑟𝑎𝑡𝑖𝑜 =
𝑃𝑎𝑝𝑝𝐵→𝐴

𝑃𝑎𝑝𝑝𝐴→𝐵
     (Equation 3) 

 

Where: PappB→A= permeability from B→A, and PappA→B= permeability from A→B. 

 

 

Figure 9. Calculated granisetron transport across Caco2 monolayer. A. Granisetron transport 

across Caco2 cell monolayer from apical side to basolateral side (A→ B) (red line) and from 

basolateral side to apical side (B → A) (blue line). B. Granisetron transport across Caco2 cell 

monolayer from in the presence of verapamil. C. Granisetron transport across Caco2 cell 

monolayer in the presence of bafilomycin A1.  

 

Figure 10A shows the differences in the permeability of granisetron in the presence and absence 

of verapamil as a P-gp inhibitor. In the absence of verapamil, the permeability of granisetron was 

significantly higher (p<0.005) from B→ A, indicating the presence of P-gp as a limiting factor 

for permeability. Efflux ratios > 2 demonstrate that a drug is a P-gp substrate, (Dolghih and 

Jacobson, 2013) and data shown in Figure 10A suggest granisetron is a P-gp substrate where in 

the absence of verapamil, granisetron efflux ratio was 3.0 that dropped to 0.9 with verapamil and 

in the presence of bafilomycin A1 with an efflux ratio 1.11. Figure 10B shows the predicted 

changes in granisetron permeability over a range of granisetron concentrations, where we can 

notice a steady behavior of the permeability followed by a sudden increase. This could be 

explained by the saturation of P-gp and lysosomes with higher granisetron concentration 

resulting in the passive diffusion of granisetron. 
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Figure 10. Calculated apparent permeability of granisetron through Caco2 cell monolayer. A. In 

the absence of verapamil where the permeability of granisetron was significantly higher from 

B→ A, indicating the presence of P-gp as a limiting factor for permeability. The efflux ratio in 

the absence of verapamil is 3, where it drops down to 0.9 in the presence of verapamil, 

suggesting granisetron is a P-gp substrate. B. Predicted granisetron cell permeability over a range 

of granisetron concentrations. Data are presented as mean + SD. ** p<0.005.  

 

In-vitro determination of granisetron lysosomal entrapment 

To determine lysosomal entrapment of granisetron, cells, and media collected were analyzed 

using the HPLC to determine granisetron concentrations. Then, Kp was calculated from 

granisetron concentration in the cell in the absence or presence of NH4Cl added to the medium. 

NH4Cl prevents lysosomal entrapment by increasing lysosomal pH, and thus reduces granisetron 

accumulation in the lysosomes. In the absence of NH4Cl, granisetron demonstrated intracellular 

accumulation (i.e., in the lysosomes) as suggested by the high Kp value (Figure 11A), which was 

significantly (p<0.005 for the 5 and 10µM and <0.0001 for the 50 µM) reduced in the presence 

of NH4Cl (which raises lysosomal pH and reduces granisetron lysosomal accumulation) due to 

intracellular granisetron transport to the media. In the absence of NH4Cl, Kp increased with 10 

µM granisetron that could be related to P-gp saturation and thus less efflux, as shown in Figure 

11A.  
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Figure 11. Calculated granisetron lysosomal entrapment. A) Observed Kp (Ccell/Cmedia) in the 

absence and the presence of 20 mM ammonium chloride (NH4Cl) at different granisetron 

concentrations. Ammonium chloride, that decreases lysosomal entrapment, thus decreases 

lysosomal pH, significantly decreased granisetron intracellular accumulation relative to control. 

B) Predicted (using MembranePlus) lysosomal entrapment of granisetron at 2 different pHs. 

Where at pH 4 (normal lysosomal pH), granisetron was highly entrapped inside the lysosomes 

and this was significantly decreased when the lysosomal pH increased to 6. C) Shows the 

predicted effect of changes in lysosomal pH on cell permeability and granisetron cell 

concentration. Data are presented as mean + SD. * p<0.05, ** p<0.005, and *** p< 0.0001.  

 

The assessment of P-gp effect and lysosomal entrapment using MembranePlus 

To confirm lysosomal entrapment of granisetron, bafilomycin A1, a vacuolar H+ -ATPase 

inhibitor that reduces lysosomal acidification (Tapper and Sundler, 1995), was added to the 

medium simultaneously with granisetron. As shown in Figure 11B and using MembranePlus, we 

were able to predict that granisetron shows greater lysosomal entrapment in the absence of 

bafilomycin A1. In contrast, in the presence of bafilomycin A (lysosomal pH change from 4 to 

6), granisetron lysosomal concentrations decreased significantly (p<0.0001). MembranePlus™ 

was also used to simulate granisetron cell permeability and intracellular concentration. Figure 

11C shows the effect of changes in lysosomal pH on granisetron permeability as well as 

granisetron cell concentration, where we can notice that with the increase in lysosomal pH, 
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granisetron cell permeability increases. However, granisetron cell concentration decreases, 

suggesting an increase in lysosomal pH would prevent granisetron entrapment inside the 

lysosomes. Figure 12 shows the effect of implying P-gp and lysosomal entrapment parameters on 

granisetron plasma profiles, where we can notice a successful fit for observed and predicted 

values with the parameters (Figure 12A), a fit that was lost when the optimized parameters were 

not used (Figure 12B). Figure 13A shows the effect of changes in granisetron logP on Cmax 

values. We can notice that changes of logP that deviates from the original logP value (2.2) did 

not have an effect on Cmax. Figure 13B shows the effect on changes in stomach and intestinal 

pH on percent absorbed of granisetron. We can conclude that while the gastrointestinal pH 

increases there is a trend in increasing the precent absorbed of granisetron. This could be because 

of the increased percent unionized granisetron at the site of absorption with increasing pH. 

 

Figure 12. Granisetron plasma profile after 2mg oral with and without using refined parameters 

for P-gp and lysosomes. A. Without the parameters. B. Using the parameters. 
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Figure 13. Parameter sensitivity analysis for the effect of the change of A. LogP values on 

granisetron Cmax. B. the effect of changing stomach and intestinal pH of granisetron absorption.  

 

 

Development of a PBPK model for granisetron genetic variation 

Input data that were used in the simulation are presented in Table 7. The model was 

developed and validated against granisetron disposition kinetics from four different formulations 

(Oral, IV, SubQ, and transdermal). The simulated plasma concentration-time profiles captured 

the observed PK profiles (Figure 14) and predicted values. Model-predicted Cmax, AUC0-t, Vd, 

and Clsys met the verification criterion, with predicted/observed ratio in the range of 0.80–1.2 

and are presented in Table 10. 
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Figure 14. Predicted and observed plasma concentration-time profiles of granisetron after 

administration of a single 2 mg oral (A), 3 mg IV (B), and 3 mg SC dose (C). Transdermal 

granisetron is predicted for three different doses at (D) 34.3 mg, (E) 21.8 mg, and (F) 9.9 mg. 

The square symbols represent the mean of observed data, and solid lines represent the predicted 

mean of granisetron profiles. Inserts contain granisetron plasma profiles in a semi-log scale. 

Observed data for oral dose (A) is from (Zhou et al., 2014), for IV (B) and SubQ (C) is from 

(Gurpide et al., 2007b), the transdermal doses (D-F) are from (Howell et al., 2009). 

 

Table 10. Observed and predicted pharmacokinetic parameters of granisetron in four different 

formulations after a single administration (oral, IV and SC) and after 168 h of application for 3 

dosages of transdermal granisetron patches. Observed data for oral dose (A) is from (Zhou et al., 

2014), for IV (B) and SubQ (C) is from (Gurpide et al., 2007b), the transdermal doses (D-F) are 

from (Howell et al., 2009). 
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CYP1A1 and CYP3A5 polymorphism and granisetron variability 

Figure 15 shows the predicted effect of CYP1A1 and CYP3A5 polymorphism on 

granisetron levels in the plasma and the brain after 2mg oral granisetron. GastroPlus offers a 

form of extensive and poor metabolizer settings of CYP enzymes. These were applied for 

CYP1A1 and CYP3A5 enzymes. To have a good response to CINV, granisetron needs to occupy 

at least 75% of 5-HT3 receptors (Corrigan et al., 1999). Figure 15A-C and Table 3 show that 

CYP1A1*2A polymorphism decreased significantly (p<0.005 for AUC, and p< 0.0001 for brain 

and plasma) granisetron levels in plasma and brain, and AUC0- ∞ when compared to CYP1A1*1 

(wild type). CYP3A5*3 polymorphism (Figure 15D-F), on the other hand, increased 

significantly (p< 0.0001) granisetron plasma levels in plasma and brain, and AUC0- ∞ when 

compared to CYP3A5*1 (wild type). 
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Figure 15.  The effect of CYP1A1 and CYP3A5 polymorphisms on granisetron variability. (A-

C) granisetron plasma (A), AUC0- ∞ (B) and brain levels (C) are significantly decreased in the 

presence of CYP1A1 SNP polymorphism namely CYP1A1*2A. (D-F) granisetron plasma (D), 

AUC0- ∞ (E) and brain levels (F) are significantly increased in the presence of CYP3A5 SNP 

polymorphism namely CYP3A5*3. ** p<0.005, and *** p< 0.0001.  

 

 

Table 11 shows predicted and observed PK parameters in wild-type patients and 

predicted PK and PD parameters for CYP1A1*2A and CYP3A5*3 polymorphisms. 

Predicted/observed ratio for wild-type Cmax, AUC0- ∞ and Tmax were within the acceptable 

prediction range of 0.8-1.2. Predicted brain concentration was decreased in CYP1A1*2A 

compared to wild-type, where receptor occupancy decreases, which could result in less control of 

the CINV. Conversely predicted brain concentration were increased in CYP3A5*3 compared to 
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wild-type, where receptor occupancy increased significantly, which results in better control of 

the CINV with this polymorphism. Our model predicted a receptor occupancy of 71% in wild-

type. However, the occupancy of granisetron is predicted to decrease to 62% in patients who 

have CYP1A1 *2A SNP and to increase to 92% in patients who have CYP3A5 *3 SNP. 

 

Table 11. Predicted PK and PD parameters in CYP1A1*2A and CYP3A5*3 compared to 

observed and predicted parameters in wild type after a 2mg PO granisetron. Observed data from 

(Corrigan et al., 1999; Spartinou et al., 2017). 

  Wild-type CYP1A1 *2A CYP3A5 *3 

 PK/PD parameters Observed Predicted Obs/Pred Predicted Predicted 

Cmax  (ng/ml) 4.5±0.55 4.41 1.02 2.91 6.17 

AUC 0-∞ (ng-h/ml) 34.69±0.82 33.43 1.03 21.57 46.02 

Tmax (h) 1.5±0.02 1.6 0.93 1.6 1.6 

Brain Conc. (ng/ml) NA 0.37 NA 0.2 0.55 

Receptor occupancy 

% 70-90% 71 -- 62 98 
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Discussion 

Part 1 (P-gp and lysosomes): 

Previous models have been developed for granisetron (Moura, 2011; Xia et al., 2013; 

Elmorsi et al., 2016; Dallmann et al., 2018). In these studies, models were developed to predict 

granisetron PK from oral and IV formulations (Moura, 2011; Xia et al., 2013; Elmorsi et al., 

2016; Dallmann et al., 2018). Here, we successfully predicted granisetron profiles and PK 

parameters for oral and IV formulations as well as for transdermal patches. We also were able to 

successfully predict the effect of P-gp and lysosomes on granisetron permeability, the effect of 

genetic polymorphisms in CYP1A1, and CYP3A5 enzymes on granisetron disposition (Perrine 

Susan, 2005; Faria et al., 2014; Gilmore et al., 2018). We were also able to correlate granisetron 

plasma and brain concentrations to its receptor occupancy, where higher occupancy would result 

in better CINV control. 

MembranePlus® was used to develop a model for granisetron to analyze in-vitro 

permeability that is responsible for mechanisms engaged to observed apparent permeability such 

as transport and drug accumulation in some intracellular compartments (e.g., lysosomes) (Lipper 

and Higuchi, 1977; Adson et al., 1995; Heikkinen et al., 2009). In this work, MembranePlus® 

was used to predict granisetron concentration-time profiles in the apical and basolateral 

compartments after administration of granisetron in the presence of bafilomycin A1 and 

verapamil. Figure 1 shows the observed and predicted transport of granisetron in both directions 

across the monolayer in the presence and absence of bafilomycin A1 and verapamil, using input 

parameters presented in Table 7. The developed model was used to predict the effects of 

lysosomal trapping of granisetron on the measured permeability. MembranePlus® has facilitated 
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the analysis of in-vitro experiments taking into consideration the variety of mechanisms such as 

P-gp efflux and lysosomal trapping, affecting measured apparent permeability (Szeto et al., 

2007). The current study shows that it is a promising tool in drug research and development, not 

only for predicting of granisetron permeability but also in other elements that affect drug 

distribution in several tissues (e.g., lysosomal trapping) (Adson et al., 1995). 

Serotonin released from the enterochromaffin cells of the small intestines after the 

chemotherapeutic agent’s administration activates both central and peripheral 5-HT3 receptors. 

Central structures (area postrema) are rich with 5-HT3 receptors. Granisetron suppresses CINV 

by inhibiting serotonin binding to 5-HT3 receptors (Kioka et al., 1989; Andrews, 1992; Darmani, 

1998; Zhong et al., 2014). P-gp restricts the permeability of drugs from the apical side of 

intestinal lumen and blood–tissue barriers. P-gp identifies and effluxes a variety of structurally 

and biochemically irrelevant substrates (cyclic, linear, basic, uncharged, zwitterionic, negatively 

charged, hydrophobic, aromatic, nonaromatic, amphipathic) from 250 to 4000 molecular weight 

( Miller et al., 2009). This suggests that P-gp has a major impact on the disposition of P-gp 

substrates. Findings from the in vitro experiments suggested granisetron is a substrate for P-gp, 

consistent with other members of 5-HT3 antagonists, such as ondansetron and ramosetron, 

known P-gp substrates, and have chemical structure similarities (Hodges, 2011; Bustos et al., 

2016). The cause of the resistance to antiemetic prophylaxis with 5-HT3 receptor antagonists has 

been suggested to be linked to increased efflux transport by P-gp, thus decreasing its absorption 

(Tsuji et al., 2013). 

As a result of their lysosomotropic tendencies, granisetron has a distinctive PK properties 

including a relatively long-terminal elimination half-life (Gong et al., 2007). Besides having a 

long-elimination half-life, there is often an extreme intra and inter- patient variability in plasma 
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and target levels, which could lead to wrongful dosage regimens that could possibly lead to 

unwanted adverse reactions or even drug-related toxicity with the lack of therapeutic effect. 

Granisetron shows a large volume of distribution due to its physicochemical properties and 

lysosomal entrapment (Daniel and Wójcikowski, 1997). The high volume of distribution 

indicates that most of the drug is located in the tissue (Daniel and Wójcikowski, 1997). Given 

that granisetron has the recognized common properties of lysosomotropic agents, such as a LogP 

> 1 and a basic pKa between 6.5 and 11, it could be sequestered in the lysosomes. Caco2 cell 

permeability assay with the assumption of a lysosomal pH of 4 was used. In Figure 11B, at a 

lysosomal pH = 4.0, the simulated lysosome concentration of granisetron is approximately three 

orders of magnitude higher than with the lysosomal pH = 6 (p<0.0001). The concentration of 

granisetron in the lysosomal compartment is reduced suggesting that granisetron, and due to its 

physicochemical properties, was in the cationic form when the lysosomal pH was at 4. However, 

when the lysosomal pH increased to 6, a greater portion of the total granisetron concentration 

returned to the neutral form and was able to escape the lysosomes. We can notice that the 

difference in LogP and pKa values from ADMET® predictor to literature values (Table7-2) did 

not affect Cmax and percent absorbed of granisetron as shown in Figure 13. 

P-gp is present on the luminal side of the enterocytes. P-gp effluxes substrates out of the 

enterocytes, thus reducing substrates absorption. When granisetron is uptaken by the cells, P-gp 

will efflux it back to outside the cell. When P-gp is saturated, granisetron will pass the cell 

membrane and face the lysosomes that will engulf into the acidic environment and become and 

trapped in the ionized state inside the lysosomes for degradation. Granisetron that is not 

degraded by the lysosomes, is released and effluxed out of the cell by P-gp. Results from the 

transport studies (Figure 9) suggest that granisetron transport from B to A side was higher than 
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granisetron transport from A to B side in the absence of P-gp inhibitor verapamil (Figure 9A) 

with an efflux ratio of 3; and in the presence of bafilomycin A1 with an efflux ratio 1.11 (Figure 

9C); in the presence of verapamil (Figure 9B), granisetron efflux ratio dropped down to 0.9.  

With Kp values presented in Figure 11A, we can conclude that in the absence of NH4Cl, Kp was 

high, indicating that granisetron accumulation was predominantly intracellular. However, when 

NH4Cl was added, Kp values decreased significantly (p<0.005 for the 5 and 10µM and <0.0001 

for the 50 µM), suggesting that lysosomal pH increased, thus releasing granisetron out of the 

cells into the media. This was also confirmed when we predicted lysosomal concentration of 

granisetron in Figure 11B, where it shows that in the absence of bafilomycin (lysosomal pH at 

4), lysosomal concentration of granisetron was significantly higher (p<0.0001) than when the 

lysosomal pH increased to 6 (in the presence of bafilomycin). 

Collectively, these results suggest granisetron transport is not only P-gp dependent, but also it is 

dependent on lysosomal entrapment that could impact granisetron transport across the cell 

membrane. It could be possible that the passage of granisetron from the A to the B in the 

presence of lysosomal entrapment reduces the trafficking on P-gp.  

 

Part 2 (Genetic variation): 

To explain the observed variability in granisetron disposition and efficacy, we tested the 

effect of genetic variation in granisetron metabolizing enzymes on its PK parameters. There are 

relatively high percentages of people carrying the SNPs in CYP enzymes where these SNPs 

could affect drug metabolism, ranging from 29.31% for CYP1A1*2A to 62.14% for CYP3A5*3 

(Bustos et al., 2016). Using PBPK, we were capable of predicting the effect of SNP in CYP1A1 

and CYP3A5 on granisetron plasma and brain levels as well as the AUC. Since CYP1A1*2A is 
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an extensive metabolizer, granisetron levels with this polymorphism are predicted to be 

significantly lower (p<0.005 for AUC, and p< 0.0001 for brain and plasma). However, in the 

presence of the CYP3A5*3 SNP variant as a poor metabolizer, granisetron predicted plasma 

levels and AUC increased significantly (p< 0.0001) (Table 11 and Figure 15). 

To show the antiemetic effect and total control over CINV, granisetron should occupy 

70-90% of receptors (Spartinou et al., 2017). We were able to predict the effect of SNP on the 

receptor occupancy of granisetron, and thus we could correlate that occupancy to the variability 

of granisetron effect as well as the control of CINV. We predicted that patients with CYP1A1 

*2A SNP show a receptor occupancy was 62%, which could lead to less control over CINV. 

However, we also predicted that patients with CYP3A5 *3 SNP show a receptor occupancy of 

98%, which could lead to higher control over CINV. 

 

 

Conclusion 

We can conclude that granisetron shows poor CINV control in around 20-30% of patients, and 

that could be due to several factors. Granisetron is a P-gp substrate and is usually effluxed out, 

thus limiting its absorption. Also, due to its physicochemical properties, granisetron gets 

entrapped inside the lysosomes, also limiting its passage through cell lines. The interplay 

between P-gp and lysosomes plays an important role in granisetron absorption and availability 

for the site of action. Since granisetron is mainly metabolized by CYP1A1 and CYP3A5, a SNP 

in these CYP enzymes has been predicted to affect granisetron PK parameters as well as receptor 

occupancy, thus control of CINV. 
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Chapter 4  

Conclusions 

PBPK modeling is a useful tool to determine the strategy of drug development. PBPK 

modeling could be very effective in studying drugs’ pharmacokinetics and pharmacodynamics in 

particular populations. PBPK modeling provides a platform to study the impact of genetic 

variations on drug pharmacokinetics and pharmacodynamics when clinical studies have not or 

cannot be conducted. This highlights the utility of PBPK/PD modeling and the unique 

application of the PBPK model to a PD outcome that could be utilized to help define potential 

cut-offs for caffeine intake in various stages of pregnancy. In the second chapter, our first 

objective was to develop and validate a non-pregnancy and pregnancy PBPK/PD model. We 

were able to build both models and the model successfully predicted the observed data. 

Following that, we built the pregnancy model taking into considerations changes that usually 

occur during pregnancy. We were able to verify that caffeine maternal blood levels increase with 

pregnancy due to progressive reduction in its metabolism by CYP1A2, since CYP1A2 is 

downregulated as pregnancy progresses. We were also able to predict FPC caffeine 

concentrations and how it accumulates over trimesters because of lack of metabolizing enzymes 

inside the FPC. We also correlated maternal caffeine levels with PD effect and its risk of 

miscarriage. We concluded that caffeine levels increase leads to reduced levels of PDE and 

increased levels of cAMP and epinephrine. For example, in T3, daily intake of 200 mg or more 

of caffeine increased epinephrine blood levels by 4-fold and higher when compared to normal 

levels, which could increase the risk of pregnancy loss. So, we suggest that any caffeine dose 
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that could result in low PDE levels and high epinephrine levels could cause the patient to 

miscarriage (200mg) so pregnant women are advised to limit their caffeine intake. In the third 

chapter, our objectives were to build a PBPK model to predict and verify the transport of 

granisetron over Caco2 cell monolayer, and to study the effect of P-gp and lysosomes on 

granisetron levels. We were also able to build a PBPK model to predict the effect of genetic 

variations on granisetron levels. Our conclusions were that granisetron is a P-gp substrate and is 

usually effluxed out thus limiting its absorption. Due to its physiochemical properties, 

granisetron gets entrapped inside the lysosomes also limiting its passage through cell lines. We 

also concluded that SNP in CYP1A2 and CYP3A5 could hugely affect granisetron plasma as 

well as brain levels; thus, eventually affects receptor occupancy and the ability to control CINV. 

Our future directions will be to use PBPK modeling to build models and predict drug effect and 

doses in several other important populations like the pediatric population, where drug dosing is 

problematic. Another important direction is the utilization of PBPK modeling in simulating 

several DDI, especially in geriatric population where most of the patients are on polypharmacy 

and the possibility of DDI is high. 
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