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Abstract

Recent advances in Driver-Assisted Truck Platooning (DATP) have shown success in link-

ing multiple trucks in leader-follower platoons using Cooperative Adaptive Cruise Control

(CACC). Such setups allow for closer spacing between trucks which leads to fuel savings.

Given that frontal collisions are the most common type of highway accident for heavy trucks,

one key issue to truck platooning is handling situations in which vehicles cut-in between pla-

tooning trucks. Having more accurate and quicker predictions of cut-in behavior would im-

prove the safety and efficiency of truck platooning by prompting the control system to react to

the intruder sooner and allow for proper spacing before the cut-in occurs.

This thesis implements a deep neural network that generates multimodal predictions of

traffic agents around a truck platoon in a simulated environment and culminates in testing on

data obtained from the Auburn truck platoon. The method uses Long Short-Term Memory

networks in an ensemble architecture to predict multiple possible future positions of vehicles

passing by a truck platoon over a 5 second prediction horizon and classifies the potential ve-

hicle behavior as ‘passing’ or ‘cut-in’ with prescribed certainties. The network performance

is compared to a baseline of common state-based predictors including the Constant Velocity

Predictor, the Constant Acceleration Predictor, and the Constant Turn Radius Predictor.

The Ensemble LSTM network is shown to be a promising predictor, outperforming state-

based predictors over a 5 second prediction horizon with lower average and standard deviation

of root mean squared error across 1000 test trajectories. The network is also shown to provide

good predictions for a cut-in detector, which is able to accurately detect cut-in behavior on

test trajectories with a balanced accuracy of 87.6 percent. Finally, the network is run on data

collected from the Auburn truck platoon to demonstrate the viability of adapting the system to

real world testing and development.
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1

Introduction

1.1 Background and Motivation

In 2018, the transportation industry in the United States reached $1.6 trillion, or 8% of

Gross Domestic Product. Of this, revenues in the trucking industry totalled $700 million, with

11 billion tons of freight moved throughout the country [1]. The average class 8 truck travels

6 times as many miles as the average passenger vehicle and consumes 26 times as much fuel

per year [25] [24]. This makes fuel consumption a large cost in the trucking industry, and even

small improvements can lead to large savings. For example, if the FedEx truck fleet, which is

comprised of roughly 25,000 trucks, improved gas mileage by 1% it would lead to $20 million

in savings per year. [37]

One of the promising areas of fuel savings in the trucking industry is truck platooning.

Truck platooning relies on Cooperative Adaptive Cruise Control (CACC) to allow trucks to

follow one another at distances as close as 50 feet. By having close spacings between vehicles,

the trucks experience fuel savings through drafting. CACC makes this close spacing possible

by removing human reaction time from the driving process. [77] [68].

In the research and development of CACC for platooning trucks at Auburn University,

there is a recurring problem of vehicles merging in between platooning trucks, otherwise known

as a ”cut-in”. When a cut-in is detected, it causes the CACC to switch references from the lead

truck to the cut-in vehicle in order to create more spacing between the follower truck and the

cut-in vehicle. This process leads to reduced fuel savings as it requires more work from the

longitudinal controller and can be dangerous if the gap is not wide enough by the time the

1



vehicle cuts in, and given that an 80,000 lb trailer requires between 400 and 500 ft of stopping

distance on the highway [37], there isn’t much margin for error. One potential solution to

this problem is to begin creating the gap sooner, provided the platoon has knowledge of the

future pose of the cut-in vehicle. This thesis explores various prediction methods for vehicles

surrounding a simulated truck platoon, which is modeled to reflect scenarios encountered on

the Auburn University truck platoon during highway testing.

The Auburn University truck platoon is comprised of two Peterbilt 579 and two military

Freightliner M915 trucks. Highway testing involves the two Peterbilt trucks platooning at

varying distances, of which the truck leading the platoon is referred to as the “lead” truck

and the truck following the lead truck is referred to as the “follower” truck.

On board the follower truck in the Auburn University truck platoon is a 64 channel delphi

radar which, coupled with DRTK relative positon vectors, is used to provide accurate range

estimates between the follower and lead truck for the CACC as well as to detect vehicle cut-

ins. The current method for detecting cut-ins is by estimating the intruding vehicle’s local

position relative to the follower truck via radar measurements, estimating lane lines using the

relative position vector between the lead and follower trucks using radar measurements and

DRTK, and signaling a cut-in if the vehicle crosses over an estimated lane line between the

follower and lead truck. The lane lines are drawn by estimating a circular path between the

lead and follower trucks using Pure Pursuit and then extrapolating the drawn path laterally on

each side by a nominal lane width [77]. This holds well assuming the lead and follower trucks

keep to the center of their lanes and that each truck remains in the same respective lane.

Predicting the future pose of vehicles is an emerging field with many new innovations

coming in recent years. Currently, predictors most commonly used are state-based [32] and

stochastic prediction methods such as Kalman Filtering with a Nearly Constant Acceleration

Model [81], but the use of Machine Learning for prediction is gaining traction. Among the

methods studied are Hidden Markov Models [71] [16], CNNs [21], and LSTMs [82] [16]. Two

papers particularly influential to the network design in this thesis come from Cara et al. [16] at

TNO Helmond and Cui et al. at Uber [21].
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Previous work by Cara et al. has shown that using a constant velocity predictor (CV) pro-

vides a good model of cut-in behavior, with Support Vector Regression and K-Nearest Neigh-

bor providing even better results [16]. In the study, these methods outperform Long Short-Term

Memory Recurrent Neural Networks (LSTM), a common neural network architecture used in

time series forecasting. However, the study used a small sample of 140 trajectories to train the

LSTM, which they acknowledge is likely too small to achieve a good generalized fit due to

their low number of cut-ins. Additionally, the predictions were produced in a unimodal nature

which likely causes the LSTM to average the output behavior of potential future trajectories,

leading to predictions that are less accurate. The average root mean squared error of the LSTM

trained in their study compared to a constant velocity predictor is shown in Figure 1.1.

Figure 1.1: The RMSE in the longitudinal distance as function of time for prediction using an
LSTM neural network consisting of 4 neurons. [16]

In other related work, Cui et al. used a Convolutional Neural Network (CNN) in con-

junction with a Multilayer Perceptron Model (MLP) to generate multi-modal vehicle trajectory

predictions of vehicle behavior in intersections [21]. The paper showed that Deep Learning net-

works have the ability to learn multiple behavior modes of traffic agents in an intersection and

can accurately predict the correct mode of behavior that a vehicle approaching an intersection

will perform. This is useful, as on a highway a vehicle neighboring the platoon has primarily
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two decisions, whether to continue straight or to merge right. An example of the averaging

prediction behavior is shown in Figure 1.2.

Figure 1.2: Multimodal vs Single Modal Predictions of a Vehicle at an Intersection [21]

Figure 1.2 shows a vehicle represented by a red rectangle approaching an intersection. The

predictions of the vehicle behavior are shown as the blue lines extending from the vehicle. The

plot on the right shows the result of a unimodal predictor, which averages the possible predicted

outcomes into a single prediction that predicts the car to drive off the road. The image on the

left uses two modes, one predicting a right hand turn, and the other predicting the vehicle to

drive straight through the intersection. The network assigns a percentage confidence value to

each prediction that sums to one to indicate which mode is more likely to occur.

In addition to multimodal predictions, the paper incorporates contextual road information

by passing rasterized top down images of the road and traffic scenario to the network. This

gives the network the ability to observe where the road and other cars are, allowing it to rule

out improbable trajectories. The downside of using CNN’s, however, is the large amount of

memory it requires during training. Loading images for each time epoch requires a significant

amount of video memory, requiring the designer to use small batch sizes. Thus training net-

works using this method requires methods to combat over-fitting such as early stopping, which

leads to long training times. On the other hand LSTMs can be trained very quickly to predict

sequences with good generalization provided they have enough training data.
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This thesis aims to give LSTMs another shot at this problem by incorporating the princi-

ples developed by Cui et al. into the LSTM design process. The network has been designed

to output two trajectory predictions, one optimized to track and predict “passing” behavior and

the other to track and predict “cut-in” behavior. The two predictions are assigned probabilities

by the network that reflects the network’s confidence in the predicted trajectories.

Training data for the network was created by simulating a bicycle model commanded to

follow merging or passing waypoints using a Pure Pursuit controller. Longitudinal dynamics

of the following vehicle are modeled using a second order transfer function that tracks a noisy

reference. This controller was used to drive the vehicle to a set longitudinal distance behind the

lead truck if it decided to cut into the platoon. The trucks were simulated as points traveling at

a constant velocity and separation distance. The simulation parameters, including look ahead

distance and longitudinal velocity, were randomly varied during training and testing to allow

the network to train off of a wide range of random trajectories. The scenarios are simplified to

consider to single vehicles neighboring the truck platoon.

The Network performance is benchmarked against several state-based predictors which

use knowledge of the vehicles past and present states to predict future states [32]. These pre-

dictors include the Constant Velocity Predictor, the Constant Acceleration Predictor (CA), and

the Constant Turn Radius Predictor (CTR).

1.2 Contributions

The academic contributions of this thesis are listed below.

• Provided a thorough background on Time Series Forecasting and how it relates to Ma-

chine Learning and Ground Vehicle Navigation.

• Designed a Deep Neural Network to predict the future pose of vehicles around a truck

platoon.

• Compared the performance of the network to traditional state-based prediction methods.

• Designed and Evaluated a cut-in detection algorithm using network and state-based pre-

dictions.
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• Evaluated the ability of a simulation trained neural network to predict behavior on exper-

imentally collected data.

1.3 Thesis Outline

This thesis consists of 4 remaining chapters. Chapter 2 provides an introduction to Ma-

chine Learning and introduces methods used in Deep Learning. Chapter 3 discuss background

in Time Series Forecasting. Chapter 4 discusses the Modeling and Simulation environment

used to generate training and test data sets for this thesis, the design of the network architec-

ture, training methodology, and results in the simulated environment. Chapter 5 discusses the

process of collecting empirical data from the Auburn University truck platoon, and provides

prediction results on that data. The final chapter contains a summary, conclusions, and future

work.
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2

Deep Learning Background

2.1 Introduction

This chapter will introduce principles in Deep Learning that are used in this thesis. Sec-

tion 2.2 gives a topical presentation of general concepts in Machine Learning, describing Tasks,

Experiences, and Performance measures, and presenting the Universal Approximation Theo-

rem and Active Learning Pipeline. Sections 2.3, 2.4, and 2.5 present three commonly used

types of Neural Networks: Multi-layer Perceptron Models or Feedforward Neural Networks,

Covolutional Neural Networks, and Recurrent Neural Networks.

2.2 General Concepts in Machine Learning

In his 1997 text on Machine Learning, Tom Mitchell gives a definition of Machine Learn-

ing: “A computer is said to learn from experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks in T, as measured by P, improves with expe-

rience E” [54]. In the case herein the task T is to predict the future pose of traffic agents around

a truck platoon and classify their behavior as either “passing” or “cut-in”. This is accom-

plished with the experience E of observing vehicle positions taken from radar measurements

over time, and with performance methods P being Mean Squared Error Loss and Cross-Entropy

Loss. The first objective of this chapter is to discuss the Machining Learning concepts of Task,

Experience, and Performance further, then to hone in on Deep Learning, a subset of Machine

Learning. Therein general equations used in Neural Networks will be developed, and Recurrent

Neural Networks will be introduced.
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2.2.1 Task

Machine Learning is beneficial in that it provides solutions to tasks that could otherwise

be too time consuming or difficult to be traditionally programmed. A task is the way a machine

learning algorithm processes an example, where an example is a collection of features that have

been quantitatively measured by an event or object that we would like the machine learning

algorithm to process. Features are typically represented as a vector

x ∈ Rn (2.1)

where each value in the vector x is a feature value. Commonly in Deep Learning, the type of

Machine Learning used herein, features are pixels of images which are used in image process-

ing. In this thesis, the features used in training are the time-ordered positions of traffic agents

around the truck platoon.

Common tasks of Machine Learning include but are not limited to classification, classi-

fication with missing inputs, regression, transcription, machine translation, structured output,

anomaly detection, synthesis and sampling, imputation of missing values, denoising, and den-

sity estimation or probability mass function estimation [29].

Probably the most common of these tasks to a beginning Machine Learning practitioner is

classification. Classification involves training the algorithm to specify which category an input

belongs to. An example of this is tasking a machine learning algorithm with classifying an

image as either a dog or a cat.

Classification with missing inputs is commonly used in the medical field. Classifying

objects with missing inputs complicates the task because the learning algorithm needs to learn

more functions in order to make the proper classification. Usually probability density functions

are fitted to measure the confidence of classifications. Such algorithms allow doctors to make

more accurate diagnoses without needing to perform more invasive or expensive procedures

[29].

Regression is the task of training the network to predict a numerical value given a sequence

of preceding numerical values. An example would be to feed the algorithm a sequence of
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values such as [0, 1, 2, 3] and expect the algorithm to output the number p = 4 or another

sequence of specified length such as [4, 5, 6, . . . , pn]. This task is also commonly known as

time series forecasting and is used in stock market forecasting, weather forecasting, and product

recommendation [12]. The network discussed in Section 4.3 to provide obstacle pose prediction

solutions to the truck platoon is designed to perform this task. The task of Regression, or Time

Series Forecasting, is further elaborated upon in Chapter 3.

Transcription is the task of training an algorithm to describe an image or speech recording

with written text. Such tasks typically employ Recurrent Neural Networks, which will form

the basis of the Learning Algorithm designed herein. Machine Translation performs the task

of translating words from one language to another. A neural network architecture known as

the Encoder-Decoder model was designed to better perform this task than traditional methods.

Previously, one large network would be trained to both understand the first language and speak

the second. The Encoder-Decoder architecture divides this task into two independent tasks:

one to learn the first language and the other to speak the second language [3]. This method has

been shown to reduce overall network size and training time. Given that transcription is a task

closely related to Time Series Forecasting, it is likely that the Encoder-Decoder architecture

will improve network performance for Time Series Forecasting as well. Thus the Encoder-

Decoder architecture is included in the network design in Section 4.3. Encoder-Decoder models

are elaborated upon in Section 3.6.3.

Structured Output is a broad category of tasks and involves any task in which the output

is a vector with interrelationships between elements. Such tasks include mapping grammatical

structure to a sentence, identifying roads from an aerial view camera, and describing an image

with a sentence [45].

Anomaly Detection is commonly used in cyber security and tasks the algorithm with iden-

tifying events or objects that don’t normally belong. Such algorithms perform tasks such as

fraud detection and spam email filtering.

Synthesis and Sampling is the task of generating new samples of data similar to data

trained upon. One example is generating new landscapes in a video game [52] or using a

Generative Adversarial Network to generate new images [28].
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Imputation of Missing Values is the task of predicting the values that are missing in a given

input. An example of this task is filling in the missing hole in an image or filling in the blanks

in a sentence.

Denoising is the task of modeling the conditional probability distribution p(x|x) or more

specifically predicting a filtered sequence from a noisy one. Filtering properties of Deep Neural

Networks tend to be inherent and will be studied further herein [66].

Density estimation or Probability Mass Function Estimation is the task of capturing the

structure of the data given to the algorithm and defining a probability mass function for discrete

data or a probability density function for continuous data [29].

The tasks of this work incorporate both classification and regression. The first task of the

network is to perform time series forecasting, of which a sequence of neighbor vehicle positions

are used to predict future positions. The second task is known as time series classification, in

which the network is tasked to predict which of its output trajectories will have a lower root

mean squared error to the truth trajectory.

2.2.2 Performance Measure

The performance measure is a quantitative measure of performance of the learning algo-

rithm. In Deep Neural Networks, this performance measure is defined as the loss, which is the

value to be optimized in the training process of gradient descent. Performance measures must

be carefully chosen for each task. In image classification a common performance measure is

Cross-Entropy Loss [29]. In sequence prediction the commonly used performance measure is

Mean Squared Error, otherwise known as L2 Loss, or Mean Absolute Error, otherwise known

as L1 Loss. This work employs Cross-Entropy to quantify the performance of the classifier

and Mean Squared Error loss to characterize the regression performance. These performance

measures are further described in Section 4.3.5.
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2.2.3 Experience

Machine Learning algorithms can be generally divided into several categories of experi-

ence methods including supervised learning, unsupervised learning, and reinforcement learn-

ing. These categories loosely organize Machine Learning algorithms by the way they’re given

and process data sets.

Supervised learning is the experience method used in this work, and involves comparing

the network output to the truth output. This is one of the key processes in back-propagation,

which is described in Section 2.3.2. In this case, the predicted trajectories output from the net-

work are compared to the true trajectories, and the predicted confidence probabilities assigned

to the predicted trajectories are calculated as a result of comparing the predicted trajectory pre-

dicted to have the lowest root mean squared error to the truth trajectory to the actual trajectory

with the lowest root mean squared error to the truth.

Unsupervised learning is much more difficult to implement and requires the algorithm

to learn without access to correct data points for comparison. Unsupervised learning is an

area of growing research due to its resemblance to the way humans learn and its difficulty in

implementation. Tasks in unsupervised learning include density estimation and denoising [29].

Reinforcement Learning is a method of learning in which the data set used is not fixed and

employs a feedback loop between the learning algorithm and new experiences. A few examples

of this include a network designed to play Atari through trial and error [55], and a robot that

continually trains on new data to avoid obstacles [15]. Recently in April of 2019, OpenAI

sucessfully trained a network to beat professional teams in the video game DOTA [57]. The

network was trained by playing itself repetitively since June 2018.

Given that reinforcement learning has shown to be able to beat the best human players

in strategic video games, there is reason to believe that reinforcement learning can be used

extensively in the autonomous vehicle space. However, networks likely need to reach a certain

level of safety before they practice driving on the road [76]. For this reason, it is likely that

efforts like the one being made in this thesis will contribute significantly toward this goal in

two ways. First, developing a high fidelity simulation close to reality can allow for significant
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reinforcement learning before real world deployment, and second, algorithms trained and tested

manually in the ”Active Learning Pipeline” as described in Section 2.2.5 can provide ample

ground from which reinforcement algorithms can begin training from through transfer learning.

By this, in future work reinforcement learning be be used to give the platoon the ability to learn

as it runs.

2.2.4 The Universal Approximation Theorem

The Universal Approximation Theorem given by Hornik et al. in 1989 [36] and by Cy-

benko in 1989 [22] states that any continuous Borel measureable function can be approxi-

mated with any specified non-zero amount of error by a Multilayer Perceptron Model with any

“squashing” activation function such as Sigmoid given the network has enough layers. In other

words, MLP models can be theoretically used to represent any function. However, successful

training to achieve satisfactory representation is not guaranteed. First, the network might not

be able to converge to the correct weights to approximate the function, second, the network

might over-fit the function desired to be approximated. This points to the “No Free Lunch”

theorem [78], in which there is no universally superior Machine Learning algorithm at learning

all possible tasks. To quote from Goodfellow, Bengio, and Courville [29]:

Fortunately, [this] holds only when we average over all possible data-generating

distributions. If we make assumptions about the kinds of probability distributions

we encounter in real-world applications, then we can design learning algorithms

that perform well on these distributions. This means that the goal of machine

learning research is not to seek a universal learning algorithm or the absolute best

learning algorithm. Instead, our goal is to understand what kinds of distributions

are relevant to the “real world” that an AI agent experiences, and what kinds of

machine learning algorithms perform well on data drawn from the kinds of data-

generating distributions we care about.

In other words, this thesis aims to 1) define the desired tasks for the machine learning

algorithm to perform, 2) choose and design an algorithm well suited to learn and perform the
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desired task, and 3) design relevant experience distributions for the network to train off of.

Hence, the efforts of the subsequent chapters below are set upon thoughtful design of each of

these facets.

2.2.5 Active Learning Pipeline

“Start out dumb, become brilliant over time.”

– Lex Fridman, MIT Deep Learning State of the Art 2020 [27]

The Active Learning Pipeline [27], also dubbed the Data Engine by Telsa’s AI director

Dr. Andrej Karpathy [41], is the iterative process of network design used by companies like

Waymo and Tesla to design their networks [27]. The process begins with designing a network

to perform a task given the steps listed above in Section 2.2.4. Then the network performance

is evaluated and failure modes are searched for. Once failure modes are found, the experience

distribution and network design is revised to account for the problems. Finally the network is

retrained and reevaluated, and so on.

This thesis aims to make one pass at the Active Learning Pipeline by 1) designing an

experience distribution in Section 4.2, 2) designing and training the network to perform the task

of predicting vehicle trajectories in Section 4.3, 3) evaluating the performance of the network

in Section 4.4 and Section 5.5, and 4) suggesting avenues for future work in future passes.

2.3 Multi-Layer Perceptron (MLP)

Multi-layer Perceptron models, also referred to as Feed Forward Neural Networks or

“Vanilla” Neural Networks, are the simplest kind of neural network. MLPs can be intuitively

thought of as a series of linear regressions, with nonlinearities added in between each regression

layer.

Linear Regression is a basic machine learning algorithm in which the parameters of a line

or polynomial are used to perform the task of classification. The process involves data which

is input into a series of linear regressions that then calculate a classification. This is given in

vector form by

f(x,W, b) = wTx+ b (2.2)
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Where x is the input array, w is a vector of weights, and b is a scalar commonly referred to as

the bias.

Multi-layer Perceptron Models contain at least three layers of linear regressions, usually

with activation functions at each node except the ones on the first layer. The architecture of

neural networks is defined as the width (number of nodes per layer) and the depth (total number

of layers). Stacking many layers on top of one another yields a “Deep Neural Network”, of

which the term “Deep Learning” is derived.

A diagram representation of a typical MLP architecture is shown in Figure 2.1.

Figure 2.1: Multilayer Perceptron Network with one hidden layer of width 3

This network has three layers total one hidden layer with three nodes. Algebraically this

network can be rewritten as:

h = g(W Tx+ b) (2.3)

Where W is the vector of weights at each layer, b is the bias scalar at each layer, g is the

nonlinear activation function applied to the outputs of each layer, and x is the state passed

through each layer. Through a process known as back propagation, the network may be trained

to learn the weight vectorsWj and biases bj to approximate a function, as given by the Universal

Approximation Theorem.

2.3.1 Activation Functions

The power of neural networks rests largely in the design and use of activation functions.

Designing a neural network without activation functions will yield a linear function like equa-

tion 2.2. Applying activation functions within the hidden layers of the network will provide the
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network with nonlinearities, and it is these nonlinearities that allow neural networks to learn

complex problems well. Commonly used activation functions include Sigmoid, tanh, ReLU,

and ReLU variants such as leaky ReLU and GELU. These functions can be visualized in figure

2.2 and will be discussed in brief below.
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Figure 2.2: Commonly used Activation Functions

2.3.1.1 Rectified Linear Unit (ReLU)

The rectified linear unit or ReLU is one of the most common activation functions. It is

given by

g(f) = max(0, f). (2.4)

The benefits of ReLU are that it is computationally inexpensive compared to other activation

functions and that it has been found to increase the rate of loss convergence with stochastic

gradient descent [48]. The downside of ReLU is that it can cause nodes in the network to get

permanently stuck outputting zeros or “die” [42].

15



2.3.1.2 Variants of ReLU

Several variants of ReLU have been invented with the intention of fixing the dying node

problem. One of these is the Leaky ReLU, which instead of setting negative inputs to zero, it

multiplies them with a linear function with a small negative slope of around 0.01. Success of

the Leaky ReLU function is mixed [42].

Another variant is the Gaussian Error Linear Unit (GELU) function [33], which appears to

outperform ReLU in some studies. GELU also addresses the problem of not allowing negative

values to pass through the network. The GELU function is given by

g = 0.5f

(
1 + 2√

π

∫ x√
2

0 e−t
−2dt

)
(2.5)

which can be approximated with

g = .5f(1 + tanh(0.797885f + 0.035677f 3)) (2.6)

2.3.1.3 Sigmoid Activation Function

The sigmoid activation function is given by

σ(f) = 1/(1 + e−f ) (2.7)

which ”squashes” signals passing through the function to values between 0 and 1. The sigmoid

function is meant to model the firing of a neuron, with an output signal of 0 indicating the

neuron not firing at all up to a maximum output signal of 1 indicating full firing.

The sigmoid activation function suffers two main drawbacks. First it has a tendency to

saturate and kill gradients. If large positive or negative inputs enter the sigmoid activation

they will saturate very close to either 0 or 1. As such, the gradients calculated during back

propagation will be very close to zero. This has an effect of significantly attenuating the signal

flowing through that node in the network. Secondly the sigmoid function is not zero centered.

This causes the output of the activation function to always be positive, which means the weights
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of the network have no way to change sign. Due to these setbacks the sigmoid activation is

rarely used in modern neural network design, although they can still be found in the architecture

of more complex networks like the Long-Short Term Memory network [42].

2.3.1.4 tanh Activation Function

The tanh activation function ”squashes” signals passing through the function to a range

between -1 and 1.

tanh(f) = 2σ(2f)− 1 (2.8)

Like the sigmoid function it suffers from issues with saturating, however its benefit is that it is

zero mean. Tanh is used more commonly than sigmoid today [43].

2.3.2 Back Propagation

Back Propagation is the fundamental supervised learning method of which neural net-

works are trained. This method has existed for decades [64], and since its inception, many

methods have been published with newer and faster ways to perform the process. Back propa-

gation works by first computing the calculating the end values given the inputs to the network,

which is the forward propagation of the network. Then the network outputs are run backwards

through the network, recursively applying the chain rule at each layer to compute the gradients

at each step. These gradients are then used to update the weights and bias of each layer in a

manner dependent upon the type of optimizer chosen, with the ultimate aim of minimizing the

loss of the output to a global minima. Two popular optimizers, among others, will be discussed

briefly below.

2.3.2.1 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent performs the operation of gradient descent over minibatches

of data. The optimizer draws a sample or “minibatch” of data from the training data set, and

takes the average gradient across the minibatch of m examples. The gradient estimate is cal-

culated, multiplied by the learning rate, and subtracted off the original weights to create the

new weights. The use of minibatches is beneficial in that it allows for faster computation time
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with larger datasets, since small amounts can be passed through the computer at a time. Us-

ing Stochastic Gradient Descent introduces two hyperparameters: learning rate and batch size.

These parameters are tuned to improve learning performance. Adding a momentum term to the

SGD algorithm can speed up training by reducing the amount that SGD tends to zig-zag within

a bowl to get to the bottom. Momentum aims to solve poor conditioning of the Hessian matrix

and variance in the stochastic gradient [29]. There are several different methods to include

momentum in the optimizer model, with the most successful being the Adam optimizer.

2.3.2.2 Adam Optimizer

The name for the Adam Optimizer is derived from “Adaptive Moments”. It is an adaptive

learning rate optimizer that utilizes momentum which helps carry the minimization process

across local minima to make convergence to the global minimum more likely [29]. Adam is

currently held as one of the most efficient optimizers and it is therefore the optimizer used for

network training in this thesis. More information on the inner workings of Adam can be found

in [46].

2.4 Convolutional Neural Networks

Convolutional Neural Networks, originally composed in the late eighties by LeCun [50],

today make up the backbone of most image recognition networks. Although not used in this

thesis, these are worth being briefly touched upon due to their significant success in pushing the

state of the art in deep learning applications, particularly to applications in image classification.

Convolutional Neural Networks have an inherent structure very similar to that of vanilla

neural networks or MLPs with the key difference being the replacement of conventional ma-

trix multiplication between layers with the convolutional operator. The convolutional operator

typically assumes the input to be shaped as an image with a length, width, and depth. In image

processing, the length and width make up the pixels of an image, while the depth is usually

comprised of three values representing the red, green, and blue color components. The con-

volutional operator uses at least one “filter” which is a window that is slid across the image,

performing convolutions at each step. Filters can be designed to look for different features in
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the image such as color and edges. The depth of the next layer in the convolutional neural net-

work is equal to the number of filters parsing through the preceding layer. A typical summing

filter of size 2x2 will be a 2x2 matrix of weights that are multiplied to the values in the image

that the filter is panning over and then summed, essentially performing a dot product of the

weights and the values in the image. The new values outputted from the filter make up that

next block in the next layer image, which is completed as the filter pans across the preceding

image. The stride is the number of pixels the filter pans over at a time. This is a tune-able hy-

perparamter. Padding is a processed used to increase size of images in order to make geometry

flow better. Padding is usually set to zeros [42].

The use of CNNs may find itself in the truck platoon at some point or another. The obvious

use for them is for applications regarding image data received from cameras. Given images

from a camera on the follower truck, CNNs can be used to place bounding boxes on the lead

truck trailer, and can bound and classify other traffic agents such as cars, trucks, and road signs.

These can be used to aid in visual odometry algorithms as well, such as determining the location

of lane lines or the relative location of other traffic agents. Another application of CNNs to this

work could be using raster images of surrounding traffic and road boundaries such as was done

in [21] in order to produce results similar to the results of this thesis, but perhaps more robust

to interactions between traffic agents.

2.5 Recurrent Neural Networks (RNN)

Closing the loop on the networks mentioned above allows a network to relay information

to itself over training sequences and yields another class of neural networks known as Recur-

rent Neural Networks (RNNs). Recurrent Neural Networks specialize in processing sequential

information and due to their recurrent nature are able to learn more complex and longer term

sequential patterns. Recurrent Neural Networks can come in several different orientations:

many-to-many, one-to-many, and many-to-one. Many-to-many takes a sequence and outputs a

sequence. Similarly one-to-many takes one input (such as a photo) and outputs a sequence (a

description of the photo). Many-to-one takes in a sequence and outputs a single output [44].

These orientations are elaborated upon in Section 3.6.2.
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A computational graph of a vanilla RNN is shown below.

dot

dot

+ + tanh

ht-1

Wh

Wx

x

b

ht

Figure 2.3: Diagram of RNN Forward Propagation

The variable x is the vector input to the network, and the variable h is the hidden state

vector that is carried through from one RNN cell to the next. This variable is passed through to

the next RNN layer to share information about the past. As shown in the diagram, both the input

and hidden state are multiplied by their own respective weight vectors. Forward propagation

through a vanilla RNN is shown algebraically in equation 2.9.

hlt = tanh

W l

hl−1
t

hlt−1


 (2.9)

where t denotes the time step and l denotes each RNN cell.

There are two well known fundamental issues with vanilla RNNs. First is the issue of

overload of information. Flooded with data from the hidden state, the RNN has no way to

decide which information is needed and what is not, leading to loss of generalization. Second,

discovered originally by Bengio in 1994 [5] and Hochreiter back in 1991 [34], is the issue of

vanishing (or exploding) gradients during training. The vanishing gradient problem is caused

when small gradients less than zero pass from the end of a deep neural network back to the front

during back propagation. As the chain rule is applied at each layer, the gradients can shrink

exponentially. Similarly, when large gradients are passed back through back propagation in

deep networks, continual multiplications through the chain rule in back propagation can lead to
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exploding gradients. One solution to the exploding gradients of RNNs is by gradient clipping

[58], however, to solve the problem of vanishing gradients, changing the architecture to the

Long-Short Term Memory Recurrent Neural Network is usually the route taken.

2.5.1 Long-Short Term Memory (LSTM)

The Long-Short Term Memory Recurrent Neural Network (LSTM) solves many of the

problems associated with the vanilla Recurrent Neural Network [35]. The LSTM solves the

vanishing gradient issue by carrying over the states in an additive manner between each layer

through the cell state c, and better learns long term dependencies through the use of a forget

gate f , which decides which information is useful for remembering. This allows the network

to only remember information that is important, leading to better use of context.

A computational graph of the LSTM Forward Propagation is shown below.
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Figure 2.4: Diagram of LSTM Forward Propagation

LSTM Forward Propagation is given algebraically as:



i

f

o

g


=



σ

σ

σ

tanh


W

ht−1

xt

 (2.10)

ct = f ◦ ct−1 + i ◦ g (2.11)

ht = o ◦ tanh(ct) (2.12)
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Where Wh and Wx are the weights multiplied to the training data x and the hidden states

h respectively. The vector c is the cell state. The cell state c and hidden state h both serve to

conserve information from one step in the network to the next, allowing the network to learn

time series dependencies. The vectors a1, a2, a3, a4 serve as inputs to the forget gate, input gate,

“gate” gate, and output gates respectively. These gates collectively determine how information

is retained (or forgotten) as the network is trained. Back propagation equations for RNNs and

LSTMs are given in the Appendix. A detailed history of the LSTM can be found in [31].

2.5.2 Gated Recurrent Unit (GRU)

Gated Recurrent Units were devised by Cho et al. in 2014 as another architecture of

Recurrent Neural Network [18]. According to the findings of Karpathy et al. both LSTM

and GRU architectures achieve comparable performance while both outperforming traditional

RNNs when trained for character-level language modeling. The Gated Recurrent Unit is sim-

pler than the LSTM with only two gates instead of four. Algebraically GRUs take the form

r
z

 =

σ
σ

W l
r

 hlt

hlt−1

 (2.13)

h̃lt = tanh(W l
xh

l−1
t +W l

g(r ◦ hlt−1)) (2.14)

hlt = (1− z) ◦ hlt−1 + z ◦ h̃lt (2.15)

Where W l
r is a matrix of shape [2n x 2n], and W l

g and W l
x are of shape [n x n].

Despite the successes of GRUs in recent studies, the LSTM network is still by far the

most popular Recurrent Neural Network used in application. For these reasons, the LSTM was

chosen for this work. Future studies may incorporate comparisons between LSTMs and GRUs

for this application if desired.
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2.5.3 Convolutional LSTM (ConvLSTM)

When dealing with large arrays of input data or time-distributed image input data, one may

choose to use Convolutional LSTMs, which were originally developed by researchers from the

Hong Kong University of Science and Technology [79]. They proposed using a convolutional

LSTM (ConvLSTM) to predict future rainfall magnitude given radar images. Their findings

show that ConvLSTM layers are able to fuse the strengths of Convolutional Neural Networks

with LSTMs into a layer that can capture both time dependencies and spatial dependencies.

The Convolutional LSTM works by performing convolutions within the state-to-state and

state-to-input transitions of the LSTM. This is not to be confused with stacking a CNN layer in

front of an LSTM layer. Instead, the CNN is fused inside of the LSTM. The downside of the

ConvLSTM compared to the LSTM is longer training time. Therefore, one may try using an

LSTM for their problem first and see if the results are good enough before attempting to train

a ConvLSTM. For reference, the ConvLSTM forward propagation equations are given below:



i

f

o

g


=



σ

σ

σ

tanh


W ∗

Ht−1

Xt

 (2.16)

Ct = f ◦ Ct−1 + i ◦ g (2.17)

Ht = o ◦ tanh(Ct) (2.18)

where the formulation is the same as forward propagation for LSTMs, but the convolutional

operator ∗ is applied between the weights W and the hidden states H and inputs X . Addi-

tionally, the cell state C, hidden state H , and input X become 3 dimensional tensors with the

width, length, and depth that an image would have.
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2.6 Conclusion

This concludes the discussion on machine learning concepts and the fundamentals of Deep

Neural Networks. To wrap up, Deep Neural Networks, per the Universal Approximation The-

orem, are theoretically able to approximate any nonlinear function or task. Some network

configurations are better at certain tasks than others. In this thesis, the task of the designed

network is to approximate the future positions of vehicles surrounding a truck platoon on a

highway, which falls within the general task of Time Series Forecasting. Recurrent Neural

Networks, particularly Long-Short Term Memory networks have been shown in literature to

perform particularly well at the task of time series forecasting, hence LSTMs are the chosen

algorithm in this thesis. From this we gather some tools with which to approach the overall

task of time series forecasting from a machine learning perspective, which will be explored in

the next chapter.
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3

Time Series Forecasting

3.1 Introduction

Typical data used in Deep Learning applications, such as images used to train a neural

network to recognize traffic agents, lacks a temporal dependency. Once the observations con-

tain a time dimension, they become a time series. To quote George Box, “A time series is a

sequence of observations taken sequentially in time” [7]. When working with time series data,

one may choose to understand it, or one may use it to make predictions of the future. The for-

mer is known as Time Series Analysis and aims at modeling the mechanism that give rise to an

observed series. The latter is known as Time Series Forecasting. While Time Series Analysis

can aid in Time Series Forecasting, it is not necessarily required to perform the task.

This chapter aims to survey various Time Series Forecasting methods used to forecast

vehicle behavior, and categorizes these methods into “State-Based” and Stochastic prediction

methods, “Goal-Based” prediction methods, and Machine Learning methods. Particular atten-

tion will be given to methods used later in this thesis including the Constant Velocity, Constant

Acceleration, and Constant Turn Radius predictors, and the Long-Short Term Memory Net-

work.

3.2 State-Based Predictors

In a report released by the Naval Surface Warefare Center in March 1994, several meth-

ods are detailed to generate the predicted future positions of incoming torpedo threats of US

Navy ships. In their work, future threat position prediction methods were split into two main
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categories: State-Based predictors and Goal-Based predictors. State-based predictions involve

using the current pose of the vehicle and predicting out future pose via a state propagation

method. Such methods include Constant Velocity (CV), Constant Acceleration (CA), Constant

Turning Rate (CTR), Exponentially Deceasing Turning Rate (EDTR), and Helical predictors

[32]. Among these used in this thesis are the CA, CV, and CTR predictors. These predictors

will be described in the sections below.

3.2.1 Constant Velocity

The Constant Velocity Predictor operates by differentiating the last two trajectory obser-

vations of the tracked vehicle with respect to time such that

Vest =
pk − pk−1

dt
. (3.1)

Where p is the position vector of the tracked vehicle, dt is the time step, and Vest is the estimated

velocity vector. Then future positions are estimated such that

pk+1 = pk + Vestdt. (3.2)

3.2.2 Constant Acceleration

Likewise the Constant Acceleration Model first estimates the vehicle’s acceleration at the

current time instant such that

aest =
pk − pk−1

dt2
− pk−1 − pk−2

dt2
. (3.3)

Then future accelerations are estimated such that

pk+1 = pk + Vestdt+
1

2
aestdt

2. (3.4)
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3.2.3 Constant Turn Radius

The Constant Turn Radius Predictor holds the velocity magnitude constant over time while

allowing for lateral accelerations. The Constant Turn Radius predictions are calculated to be

pk+1 = pk + αVest + βaest. (3.5)

Where α and β are defined as

α =
sin Ω0t

Ω0

, (3.6)

and

β =
1− cos Ω0t

Ω0
2 , (3.7)

and Ω is given to be

Ω =
norm(aest)

norm(Vest)
. (3.8)

3.3 Stochastic Estimators for Tracking and Prediction

Kalman Filtering [40] and other stochastic track filters are commonly used to track obsta-

cles for collision avoidance using dynamic models derived from the state-based models men-

tioned above. The key addition to the state-based models in the filter dynamics is the modelling

of noise in the dynamic model. The models are derived in two main methods, differing in the

treatment of noise: First is by driving the continuous dynamic model with continuous-time

white noise acceleration (for CV) or jerk (for CA) and discretizing for a given sampling period.

This is referred to as discretized continuous white noise and is given in Section 3.3.1. Second is

by defining the process noise in discrete time as a piecewise constant white noise sequence [4],

relying off the assumption that the process noise is constant and independent between sampling

periods. This is referred to as discrete white noise and is given in Section 3.3.2 [63]. The track

filter using these models can be modified to be a predictor by skipping the measurement update

and recursively running the process update out in time.
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These models are widely used in applications related to this thesis. Cosgun et al. use a

Nearly Constant Acceleration (NCA) model in a Kalman Filter to provide obstacle detection for

their autonomous vehicle implementation [20]. Engineers at Mercedes-Benz use an Extended

Kalman Filter with a Nearly Constant Velocity (NCV) model to provide tracking solutions of

obstacle vehicles [81].

Similar to these works, the Nearly Constant Velocity model using discrete white noise

acceleration is used for the dynamic model of a Kalman Filter to track neighboring vehicles in

Chapter 5. The testing in Chapter 4 of this thesis focuses on ideal observations of neighboring

vehicles, of which radar measurements perfectly capture vehicle position. In this case, the

stochastic state-based models presented below will conform to the ideal models listed above.

For example, the Nearly Constant Velocity model will conform to the Constant Velocity model

in a non-noisy environment. In future work, once a sizeable data set is empirically collected

from the Auburn truck platoon, the stochastic models below can replace their ideal versions in

analysis.

The stochastic models will be presented given the two methods of modeling noise in the

subsections below.

3.3.1 Discretized Continuous-Time State-Based Models

In this method, the discrete kinematic motion models are derived by first defining the

continuous models driven by continuous time white noise and then discretizing. The models

resulting from this method are better suited to model systems with variable sampling intervals

[4].

3.3.1.1 Nearly Constant Velocity (NCV)

An object in motion with just slight changes in velocity over time can be modeled with a

continuous time zero-mean white noise v(t) acceleration such that

ẋ(t) = Ax(t) +Bv(t) (3.9)
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where

v(t) = r̈(t) (3.10)

and where

E[v(t)] = 0 (3.11)

and

E[v(t)v(t)] = q̃(t)δ(t− τ) (3.12)

Equation 3.9 is expanded such that

ṙ(t)
r̈(t)


︸ ︷︷ ︸
ẋ(t)

=

0 1

0 0


︸ ︷︷ ︸

A

r(t)
ṙ(t)


︸ ︷︷ ︸
x(t)

+

0

1


︸︷︷︸
B

v(t) (3.13)

Then discretizing gives

rk+1

ṙk+1


︸ ︷︷ ︸
xk+1

=

1 dt

0 1


︸ ︷︷ ︸

Ak

rk
ṙk


︸ ︷︷ ︸
xk

+ vk (3.14)

where dt is the time step, rk is the position, ṙk is velocity, and vk is related to v(t) such that

vk =

∫ dt

0

eA(dt−τ)Bv(kdt+ τ)dτ (3.15)

The covariance is then given as

Qk = E[v(k)v(k)′] =

1
3
dt3 1

2
dt2

1
2
dt2 dt

 (3.16)

where q̃ is the power spectral density for a time-invariant system [63]. Using a small q value

gives the Nearly Constant Velocity model, as changes in velocity of the track are small com-

pared to the modelled velocity [4][63].
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3.3.1.2 Nearly Constant Acceleration (NCA)

If the object being tracked is frequently maneuvering, the white noise can be modeled as

zero-mean white noise jerk such that

v(t) =
...
r (t) (3.17)

Then the dynamics are given as


ṙ(t)

r̈(t)

...
r (t)


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ẋ(t)

=


0 1 0

0 0 1

0 0 0


︸ ︷︷ ︸

A


r(t)

ṙ(t)

r̈(t)


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x(t)

+


0

0

1


︸︷︷︸
B

v(t) (3.18)

This is then discretized to give


rk+1

ṙk+1

r̈k+1


︸ ︷︷ ︸
xk+1

=


1 dt 1

2
dt2

0 1 dt

0 0 1


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
rk

ṙk

r̈k


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xk

+ vk (3.19)

where dt is the time step. rk, ṙk, and r̈k are position, velocity, and acceleration. vk is white,

zero mean process Wiener process acceleration error. The covariance is given as

Qk = E[v(k)v(k)T ] =


1
20
dt5k

1
8
dt4k

1
6
dt3k

1
8
dt4k

1
3
dt3k

1
2
dt2

1
6
dt3k

1
2
dt2 dt

 q̃ (3.20)

Where q̃ is the power spectral density of v(t). Setting a small q̃ gives low jerk relative to

acceleration levels, leading to the Nearly Constant Acceleration Model [4].

This model works well to track highly maneuvering targets, so long as the measurement

noise is relatively low and there is a high enough sampling rate to capture each maneuver well.
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If there are only 2 or 3 measurements taking during each maneuver, acceleration of the target

cannot be estimated well and the Nearly Constant Velocity model should be used instead [63].

3.3.2 Direct Discrete-Time Kinematic Models

The second method of defining the kinematic models used in tracking filters is by defining

them directly in discrete time. This method is more commonly used [4], and is the method used

in defining the NCV model used in the tracking filter currently on board the truck platoon as

described in Section 5.3.3.

3.3.2.1 Nearly Constant Velocity (NCV)

The Nearly Constant Velocity model is

rk+1

ṙk+1


︸ ︷︷ ︸
xk+1

=

1 dt

0 1


︸ ︷︷ ︸

Ak

rk
ṙk


︸ ︷︷ ︸
xk

+

1
2
dt2

dt


︸ ︷︷ ︸

Bk

vk (3.21)

where

vk ∼ N(0, σvk) (3.22)

where, again, dt is the time step, r and ṙ are position and velocity, and acceleration, and vk is

discrete Wiener process noise that is assumed to be constant in between time steps. The process

noise covariance is related to the system such that

Q = E[BvkvkB
T ] = Bkσ

2
vkB

T
k = σ2

vk

1
4
dt4k

1
2
dt3k

1
2
dt3k dt2

 . (3.23)

Where σvk is a design parameter. Setting a small σvk gives the NCV model.
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3.3.2.2 Nearly Constant Acceleration (NCA)

The NCA model as derived directly within discrete time is given as


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2
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and the covariance matrix is given as

Q = BkσvkB
T
k = σ2

vk


1
4
dt4k

1
2
dt3k

1
2
dt2k

1
2
dt2k dt2k dt

1
2
dt2k dt 1

 (3.25)

Again, setting a small σv gives low jerk relative to acclerations and leads to the Nearly Constant

Acceleration model.

3.3.2.3 Nearly Constant Speed (NCS)

The Nearly Constant Speed (NCS) model derived directly in discrete time can be used to

characterize movement of targets who maintain constant speed as they maneuver. This model

is analogous to the CTR predictor described in Section 3.2.3. From [63], the NCS model is

given as

Ak =


1 sin(Ωkdtk)

Ωk

1−cos(Ωkdtk)

Ω2
k

0 cos(Ωkdtk)
sin(Ωkdtk)

Ωk

0 −Ωksin(Ωkdtk) cos(Ωkdtk)

 (3.26)

Where

Ωk =
‖r̈k‖
‖ṙk‖

. (3.27)
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3.3.3 Kalman Filter

The Kalman Filter [40] is a recursive filter that utilizes a dynamic model of a system to

predict the system’s states through a time update, which it then corrects with measurements

during a measurement update. The Kalman Filter performs this process assuming linear dy-

namics and stochastic evolution of the model. Because the filter is linear, the state estimates are

also stochastic. Thus the state estimation error can be characterized by a mean and covariance.

The steps of the Kalman Filter are given as

Time Update


x̂−k+1 = Akx̂

+
k

P−k+1 = AkP
+
k A

T
k +BkQkB

T
k

P+
k = [P−k

−1
+ CTR−k C]−1

Measurement Update


Lk = P+

k C
TR−1

k

x̂+
k = x̂−k + Lk(Yk − Cx̂−k )

(3.28)

Where Ak andBk are given by the CV or CA model, Lk is the Kalman Gain, Yk is the measure-

ment update, Pk is the state error covariance, and Rk is the measurement covariance matrix.

More information on the Kalman Filter can be found in [60] [63] [70].

3.4 Goal-Based Predictors

Goal-based predictors propagate the future states of the tracked vehicle forward in time

by assuming knowledge of 1) the vehicle’s dynamics, 2) the vehicle’s goal point, and 3) the

vehicle’s guidance and control law [32]. The accuracy of the prediction heavily relies on the

accuracy on the assumptions made, therefore, a potential area of research would be to find

good vehicle models, goal points, and guidance and control laws for cut-in prediction. This,

however, is beyond the scope of this work, as the goal of this thesis is to train a network to learn

these assumptions.
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3.5 Machine Learning Predictors

Many Machine Learning predictors have been applied to time series forecasting. A brief

summary of prior work for several predictors will be given below. This list is not compre-

hensive. There are likely other methods other than these that currently exist or are yet to be

invented that may perform well at time series forecasting. The algorithms chosen to be listed

below have been have been picked due to their application in literature to problems related to

traffic behavior prediction.

3.5.1 Hidden Markov Model

In [71], Hidden Markov Models (HMMs) were used to predict driver behavior at inter-

sections. The study found that HMMs could use average velocities of vehicles approaching

an intersection to predict whether the vehicle would turn right, left, or stay straight with an

accuracy of 90 percent with mean prediction times of 7 seconds before the car reached the

intersection.

3.5.2 Bayesian Networks

Schreier et al. in [65] used Bayesian Networks to create maneuver based probabilistic

models to predict vehicle motion forward in time. The study incorporated random scenarios

and driver decisions, including “irrational” driver decisions, using Monte Carlo simulations.

The study divides predictions into different classes of maneuvers such as “Follow Road”, “Fol-

low Vehicle”, “Lane Change”, and “Target Brake”. Each maneuver relies on a model for pre-

dictions, including the Constant Acceleration and Constant Turn models.

3.5.3 Gaussian Processes

Wang et al. in [75] use Gaussian process dynamical models to learn nonlinear models

of human pose from motion capture data. The paper demonstrates the ability of the Gaussian

Processes to effectively learn nonlinear behavior, even with small sample sizes.
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3.5.4 Inverse Reinforcement Learning

Reinforcement learning operates by training an agent to perform an action based off some

loss function or reward policy. Inverse Reinforcement Learning, also known as Inverse Optimal

Control, attempts to calculate the loss function used by the observed agent via expert observa-

tions of the actions of that agent. Work by Andrew Ng and Stuart Russell in 2000 explored

using Inverse Reinforcement Learning to predict Monte Carlo simulated trajectories [56], and

work by Kitani et al. explored Inverse Optimal Control to predict future motion of pedestrians

[47].

3.5.5 Convolutional Neural Networks

Engineers from Uber used Convolutional Neural Networks (CNNs) to predict the future

positions of vehicles around intersections [21]. The algorithm used top-down rasterized maps

of the road, lanes, vehicles, and vehicle orientations as input to a CNN. The time series output

from the CNN was concatenated onto a vector of the tracked vehicle states and fed through an

MLP network. The network outputted multiple trajectories with associated probabilities. This

paper inspired the multi-modal trajectory prediction method used in this thesis.

3.5.6 Mixture Density Network

Mixture Density Networks (MDN) [6] were used by Shah and Romijdners in conjunction

with LSTMs to predict the future position and success rate of NBA three point basketball

trajectories [66]. The Mixture Density Network and LSTM combination allowed for a network

output of Gaussian means and covariances for future basketball positions. The study found that

the combination could predict success rate of three point shots with an accuracy of 72 percent

at 8 feet from the basket. The prediction accuracy increased as balls moved closer to the basket,

maxing out at 94 percent accuracy at 2 feet from the basket.
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3.6 LSTM for Time Series Forecasting

LSTMs have been widely studied and applied to many Time Series Forecasting prob-

lems including predicting basketball trajectories [66], handwriting [30], image captioning and

Shakespear play writing [44], and increasing reading efficiency by learning to read from left to

right [2]. According to Jason Brownlee of Machine Learning Mastery, LSTMs provide state

of the art results on difficult sequence problems [14][31]. Contrary to ordinary RNNS, LSTM

networks have the advantage of being able to remember context over large amounts of data due

to the workings of the forget gate as described in the previous chapter. For example, in the task

of sentence completion, giving a network the sentence fragment “I live in France so I speak”

and expecting the output to be “French”, requires knowledge of the context attached to living

in France. LSTMs have been shown to excel at learning these problems. This thesis set outs to

show their viability in forecasting traffic behavior as well. But first, it is worth detailing a few

more concepts surrounding the practical implementation of LSTMs in Time Series Forecasting.

3.6.1 Data Augmentation

“The success of all Machine Learning algorithms depends on how you present

the data.”

– Mohammad Pezeshki, Mila [59]

Training a network on raw data is typically a bad idea, as networks have trouble training

off of data that has large variations in magnitude, non-normal distributions, or is non-stationary.

To help with training, the raw trajectory data must be prepared before being pulled into the net-

work. The most popular transforms to time series data include coordinate transform, power

transform, differencing, standardization, and normalization, usually performed in that respec-

tive order to the data. Once the network is trained, predictions are detransformed in reverse

order to arrive to the forecasted solution. In addition to having properties that enhance training,

data augmentation methods can also be used to increase the robustness of the learned solution.

This is further described in Section 3.6.1.6.
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3.6.1.1 Stationarity

One of the goals of data augmentation is to ensure the time series is stationary. A time

series is considered stationary if its statistical parameters (mean and variance) are not changing

over time. In other words, a stationary time series does not have a trend or seasonality. As it

turns out, having a stable mean and variance can make machine learning models much easier

to train, and thus we explore ways of making time series models stationary. A useful method

to detrend a time series is by differencing consecutive values. Methods for deseasoning a time

series include differencing consecutive seasons in the data or by applying a log transform [11].

3.6.1.2 Differencing

Differencing is performed by subtracting the previous values from the current values at

each time-step, essentially performing a discrete differentiation of the data, estimating velocity

from position measurements, acceleration from velocity measurements, jerk from acceleration

measurements, etc. An example of differencing is given in Equation 3.29.

Xtrain =



x

y

z

t


−→ Xtrain =



∆x

∆y

∆z

∆t


=



xk

yk

zk

tk


−



xk−1

yk−1

zk−1

tk−1


(3.29)

This detrending of the data serves two main purposes. The first property of differencing

is that it can make data stationary by stabilizing the mean of the time series. It does this by

removing the changes of the time series data, helping to remove trends or seasonality [38].

Second, differencing allows the neural network to learn the trends of a sequence rather

than the original values, ensuring that the predictions can be made even if the data is shifted

in space or taken at different time intervals. This property of differencing is rather powerful in

spatial forecasting, as it can significantly reduce the amount of data needed to train a network.

For example in [66], given a list of sequential positions taken from a basketball following

a 3 point shot trajectory, a network can learn to predict the next position in the sequence, so

long as the shot lies in the same area as shots that were trained upon and is headed toward the
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origin located at the basket. In order to predict shots headed toward the basket on the other

side of the court, all that needs to be done is a rotation on the shots to orient them toward the

basket in the same way the training data was oriented. However, if the network tried to predict

shots taken at another point in space, such as shots not directed toward the basket or translated

away from the training data, the predictions would fail. Thus, in order to successfully learn the

dynamics of a basketball shot, the network would need to see examples of shots taken in all

points in space. If the basketball trajectories used for training were differenced beforehand, the

network would be able to predict the rest of the trajectory at any point in space and at any point

in time.

3.6.1.3 Power Transform

If the time series has a quadratic or exponential trend, applying a square root or log trans-

form can remove the respective power trend and reduce the trend to a linear one. These trans-

forms are given in equations 3.30 and 3.31.

Xtrain = log(X) (3.30)

Or

Xtrain =
√
X (3.31)

Once the trend is linear, it can be detrended by consecutive differencing. Moveover, ap-

plying a power transform may aid in deseasoning the data if the variances grow with time [10].

Determining which power transform to use is typically a process determined visually with trial

and error until the variances and means appear to be of first or zeroth order.

3.6.1.4 Standardization

Standardization is a process of making the data zero mean with a standard deviation of

1. Standardization is commonly used when training neural networks as it aids in optimization

in the process of gradient descent. This is because of the way gradients are calculated during

the optimization process. If the features in the network are scaled differently, the gradients
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for each feature will vary. Given that the step size toward the minima is the learning rate

multiplied by the gradient, training a network on unstandardized data will cause each feature

to have differing optimal learning rates. Standardization solves this problem by ensuring the

features have similar gradients, thus one learning rate can be chosen for all features and an

optimal solution can be reached quicker [61] [62].

Standardizing data is rather straight forward, simply subtract the mean value of the time

series and then divide by the standard deviation as is shown in Equation 3.32

Xtrain =
X − X̄
σX

(3.32)

It is important to accurately estimate the mean and standard deviations for standardiza-

tion. Using estimates given by the training set should suffice, given the training set is well

representative of the general time series problem at hand [13].

The standardization should be performed for each feature independently. Additionally, it

is important that standardization parameters are calculated from random samples of the train-

ing data prior to training as opposed to using means and standard deviations of each respective

training segment. This ensures the network predictions on new data be destandardized accu-

rately. Standardization also will not be accurate if the data is not yet stationary, thus differencing

and/or power transforms should be performed prior to standardization if the data is not already

stationary.

3.6.1.5 Normalization

Rescaling or normalizing the time series before training can be beneficial when training

neural networks. This is because the activation functions within the networks can attenuate

signals that lie beyond certain ranges. For Long-Short Term Memory networks, the typical

activation functions used include sigmoid and tanh functions. Sigmoid functions will attenuate

data outside the bounds of 0 and 1, while tanh will attenuate signals outside -1 and 1. This was

seen in Figure 2.2. As such, it is prudent to normalize the data in between one of these two

ranges before training [13].
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To normalize each feature in the time series tensor to values between 0 and 1, each feature

is first differenced by the global minimum, and then divided by the global maximum minus

the global minimum, as seen in Equation 3.33. To normalize between -1 and 1, perform the

procedure above and then multiply by 2 and subtract 1, as shown in Equation 3.34.

Xtrain =
X −min(X)

max(X)−min(X)
(3.33)

Or

Xtrain =
2(X −min(X))

max(X)−min(X)
− 1 (3.34)

Like standardization, normalization requires accurate estimates of the statistical parame-

ters used in the transform. Particularly important is that normalization uses global parameters;

the use of local parameters would require knowledge of future minimum and maximum val-

ues. A potential difficulty with normalization is that any errors in estimate maximums and

minimums will cause errors in the predictions after denormalization.

Additionally using global minimum and maximum values alone can cause large discrep-

ancies in the orders of magnitudes between features. Ideally, networks train off of time series

with order of magnitude differences within 102. Any larger or smaller may harm the training

process. Thus, it is desirable to normalize only after differencing and standardizing the time

series data. This allows for accurate estimation of global minimums and maximums within a

predictable range, ensuring that the output values are in a desirable range. More information

on Normalization can be found in [49] and [9].

3.6.1.6 Feature Engineering

Perhaps some of the most practical transforms made to the data are transforms that aim to

reduce the degrees of freedom that the machine learning model is required to learn. In this step

lies much of the thought and creativity when a machine learning practitioner is attempting to

successfully train accurate and robust networks. Several examples of this have been discussed

above, particularly pertaining to transforming coordinate frames and differencing. First, rotat-

ing coordinate frames can significantly reduce the amount of data needed to train a network as
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well as the size of the network needed to learn a particular relationship. An example of this can

be seen in Figure 3.1.

Figure 3.1: Coordinate Transform of data from Cartesian to polar coordinates [51]

In order to design a network to classify the red dots from the blue dots in the plot on the

left, a nonlinear model would need to be learned. However, by transforming the coordinates

from cartesian to polar coordinates, the classification problem is reduced to a first order linear

regression [51]. Such is the importance of carefully and thoughtfully transforming data before

it is chewed on by the network.

Another example of this was described in the subsection pertaining to differencing. By

performing consecutive differencing and training off changes in the states as opposed to the

states themselves, the network can predict future states within any area in space and time.

Finally, combining properties of the rotation transform and the difference transform can

be beneficial to both the robustness of the trained network as well as reduction in network

complexity. The implementation discussed in Chapter 4 performs all predictions in a local

coordinate frame referenced to the radar located on the follower truck in the truck platoon

as seen in Figure 4.9. This way, the network only needs to learn trajectories moving in the

same general direction, thereby reducing the required complexity of the network. Similarly in

Chapter 5, tracks of neighboring vehicles are converted to Normal and Tangential Coordinates

referenced to the estimated center of the lane the trucks are platooning in. This transformation

removes the complexities of road curvature from the data the network is tasked with learning.

The effects of this transform is further explained in Sections 5.3.1 and 5.3.2.
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3.6.2 Sequence Prediction Input to Output Mapping

Most neural network architectures are constrained to having a single input map to a single

output, known as “One-To-One”, however Recurrent Neural Networks can be configured to re-

ceive inputs of varying sizes, adding a level of flexibility when designing time series prediction

networks. These input sizes, or input-output mapping, can be an input sequence of size one

and an output sequence of size one (one to one), input sequences of varying size and output

sequences of size one (many to one), or receive inputs of varying size and output sequences of

varying size (many to many) [44].

3.6.2.1 One-To-One

One-To-One mapping, as shown in Figure 3.2, is commonly used with non-recurrent neu-

ral networks such as Convolutional Neural Networks and Multi-layer Perceptron Models. It

maps fixed size inputs to fixed size outputs. An example is feeding a network images and out-

putting classifications (image classification). One-To-One modeling is not used in Recurrent

Neural Networks as it cannot learn over time steps.

x(0) u h(0)

x(1) u h(1)

x(n) u h(n)

Figure 3.2: One-To-One Sequence Prediction Model

3.6.2.2 One-To-Many

One-To-Many mapping, shown in Figure 3.3, involves mapping one fixed size input to a

sequence output. One common usage for this mapping is image captioning. The input to the

Recurrent Neural Network is an image, and the output is a caption describing the image.
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x(0) u(0) h(0)

u(n) h(1)

x(m) u(0) h(m)

u(n) h(m+1)

Figure 3.3: One-To-Many Sequence Prediction Model

3.6.2.3 Many-To-One

The Many-to-One configuration uses a vector of sequences to predict a future value, as is

depicted in Figure 3.4. An example would be given the list of numbers (1,2,3,4), the network

could predict the next number in the list to be 5. The Many-To-One configuration can be used

in time series forecasting if all that is required is a single point in the future. If a vector of future

sequences is required the network can be run recursively after each prediction by appending the

new prediction onto the input vector and dropping the last value. The weakness in this method

is that it introduces compounding errors as the algorithm calculates new predictions using the

old predictions.

x(0) u(0)

x(1) u(n) h(1)

x(m) u(0)

x(m+1) u(n) h(m+1)

Figure 3.4: Many-To-One Sequence Prediction Model
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A better application of Many-To-One is for time series classification. Given a sequence

of values, the network can be trained to classify the sequence between different categories. An

example of this is predicting the success of NBA 3 point basketball shots given prior ball posi-

tions [66]. This thesis employs this configuration to predict probabilities attached to predicted

trajectories.

A potential applications of the Many-To-One configuration in Recurrent Neural Networks

in the field of vehicle control could be to train a network to perform the duties of a guidance

and control algorithm. A network could be trained to receive inputs of the vehicle’s states,

positions of obstacles, location of waypoints on the road, etc. and output actuator inputs.

Another potential application of Many-To-One in Navigation could be to use a Recurrent

Neural Network as a nonlinear filter. A network can be trained to provide navigation solutions

in difficult environments in which traditional methods such as Kalman Filters have trouble

performing. In pedestrian navigation, a network can be trained to operate in GPS denied en-

vironments using a map and imu measurements such as in [60]. It would be interesting to see

RNNs applied to other state of the art issues in the field of Guidance, Control, and Navigation

such as what is being done in this thesis.

3.6.2.4 Many-To-Many

The Many-To-Many configuration removes the issue of compounding errors by allowing

the network to predict future values over a desired amount of steps into the future. A diagram of

this can be seen in Figure 3.5. The future sequence length is not fixed to the length of the input

sequence. For example, an input sequence of size 5 can be used to predict a future sequence of

size 10. This adds flexibility over other prediction methods that are limited to predicting fixed

sequence lengths. This is the chosen mapping to be used to predict the future pose of vehicles

neighboring the truck platoon given the vehicles’ previous states, as a shorter time length can

be mapped to a longer prediction horizon.
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x(0) u(0)

x(1) u(1)

x(m) u(n) h(m)

u(n+1) h(m+1)

u(n+2) h(m+2)

Figure 3.5: Many-To-Many Sequence Prediction Model

Another form of Many-To-Many maps synced sequence inputs to outputs, and can be seen

in Figure 3.6. An example of this would be labeling frames of video one frame at a time. This

method is used for CNN labeling of objects over time such as labeling vehicles in each epoch of

camera or radar data. This mapping could be useful in aiding radar detection algorithms. For

example, a forward facing camera could be used to validate detected radar objects like cars,

trucks, or clutter.

x(0) u(0) h(1)

x(1) u(1) h(2)

x(m) u(n) h(m)

Figure 3.6: Synced Many-To-Many Sequence Prediction Model

3.6.3 Encoder Decoder Models

Encoder Decoder Models divide the work of a network into two discrete tasks between

an Encoder and a Decoder network. The Encoder Network is tasked with receiving input data
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and “encoding” meaning from the data into a vector. The Decoder Network is then tasked to

“decode” or interpret the vector outputted from the Encoder network and to generate predictions

from it. An example of this would be a network that is trained to translate a sentence written

in French to English. By using an Encoder-Decoder structure, one network can essentially be

trained to understand French, and the other to speak English. Together they work to complete

the entire task more efficiently than a single network of the same size. This allows for smaller,

more efficient network sizes [73][39][17].

3.7 Conclusion

Many methods of tracking and time series forecasting have been presented with aim to

predict the future states of systems. These methods include Kalman Filtering, state-based and

goal-based predictors, as well as machine learned and deep learned methods, including the

Long-Short Term Memory Recurrent Neural Network. Recurrent Neural Networks are a type

of deep neural network specifically designed to predict sequential behavior and have seen large

success in many areas including natural language processing, economics, and weather. This

thesis utilizes on the Long Short-Term Memory Network to take advantage of its ability to

learn complex nonlinear problems such as truck platoon cut-ins.
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4

LSTM Network for Cut-in Prediction and Detection in Simulated Environment

“Essentially, all models are wrong, but some are useful.”

– George Box, Empirical Model-Building and Response Surfaces [22]

4.1 Introduction

A simplified approach is given to provide proof of concept for the use of an LSTM pre-

dictor for track platoon cut-ins. A truck platoon is simulated to drive due north at a constant

velocity and constant spacing while a neighboring vehicle is randomly commanded to either

cut into the platoon or to drive past. The simulation is performed for straight, flat roads, and

vehicle pose estimates are calculated without radar noise. The results of this initial study serve

to guide the direction of the implementation in Chapter 5, in which these principles will be

applied to empirical data obtained from highway runs on the track platoon.

4.2 Training Data Design

One weakness of Deep Neural Networks is the requirement of large swaths of data needed

for training. If the training set for a network is too small, the network may fail to generalize

to new data sets after training, a phenomena well known as over-training or over-fitting. There

are several solutions to over-training including early stopping, decreasing the network size, and

dropout. However, none of these solutions plays to the advantages of Deep Neural Networks

as much as increasing the size of the data-set [72].
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This creates difficulties when using a tool like LSTMs to solve a problem with a dataset

of limited size. This thesis aims to predict cut-ins for a truck platoon, but there is no existing

database centered on this issue. Moreover, the available experimental data does not provide

enough instances of cut-ins to create a training set, thus this thesis relies heavily off of mod-

eling and simulation to provide enough data to train and test the LSTM networks designed

herein. Chapter 4 focuses on the theoretical feasibility of LSTMs to predict cut-ins given a

simulated environment. Chapter 5 explores the concept of using modeling and simulation to

generate supplementary data for training networks to predict behavior of real world systems,

this case being radar tracked vehicles driving near the truck platoon. This section focuses on

the Modeling and Simulation environments created to supply training and test sets for these

studies.

4.2.1 Lateral Vehicle Dynamics

The simulation environment for this study uses a bicycle model shown in Figure 4.2 to

model the lateral dynamics of a vehicle merging in between two trucks. The car parameters

originate from a generic SUV vehicle model in the high fidelity Anvel car simulation. This

model was chosen in the case this work would be moved into a higher fidelity simulation

environment such as Anvel. A comparison between the Anvel simulation environment and

other environments such as Gazebo and Carsim can be found in [8]. A rendering of the vehicle

is given in Figure 4.1.

Figure 4.1: Vehicle Rendering of Anvel Generic SUV
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The vehicle parameters are given as:

Table 4.1: Anvel Generic SUV Vehicle and Tire Parameters

Vehicle Parameters Tire Parameters

lf 1.05 m Caf 20000 N
deg

lr 1.61 m Car 20000 N
deg

Izz 2059.2 kgm2

m 1430 kg

A visual diagram of the bicycle model used herein is given in Figure 4.2.

Figure 4.2: Bicycle Model used in Simulation Environment to Represent the Merging Vehicle

Assuming two degrees of freedom (lateral velocity and heading), no lateral or longitudinal

load transfer, and no rolling or pitching motion, the dynamic model of the system can be written

as

mÿ = −mψ̇Vx + 2Fyf + 2Fyr, (4.1)

Izψ̈ = 2lfFyf − 2lrFyr, (4.2)
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where lr and lf are the distances from the center of gravity to the rear and front axles respec-

tively, Fyf and Fyr are the front and rear tire forces, and m and Iz are the mass and inertia of

the vehicle.

The front and rear tire slip angles can be expressed as:

αf = δ − ẏ + lf ψ̇

Vx
, (4.3)

αr = − ẏ + lrψ̇

Vx
. (4.4)

Where δ is steer angle and Vx is the longitudinal velocity. These equations can be arranged

into State Space format yielding the system

A =

 − (l2fCaf+l2rCar

VxIz

−lfCaf−lrCar

VxIz

−lfCaf+lrCar−mV 2
x

mVx

−Caf+Car

mVx

 , (4.5)

B =

 lf∗Caf

Iz

Caf

m

 . (4.6)

Where  ψ̈
V̇y

 = A

 ψ̇
Vy

+Bδ(t). (4.7)

The local lateral velocities obtained from the bicycle model can then be integrated and

rotated about the heading ψ to yield the vehicle’s global position [67]. Using Euler Integration,

the global position is described as

X
Y


k+1

=

X
Y


k

+

cos(ψ) −sin(ψ)

sin(ψ) cos(ψ)


Vx
Vy


k

dt. (4.8)

50



4.2.2 Longitudinal Vehicle Dynamics

Given that this chapter is intended to provide proof of concept, varying longitudinal ve-

locity in the following manner may not be perfectly representative of real driver behavior, but

it should provide the training data with comparable complexity, as it introduces nonlinearities

into the simulated vehicle dynamics. To approximate varying longitudinal velocities in passing

vehicles, the ground vehicle’s longitudinal velocity is controlled via a second order transfer

function that follows a sine reference with random magnitude and frequency and with zero

mean random added noise σ. An integrator was added to remove steady state errors [26]. The

transfer function is given as

V (s)

e(s)
=

1

s(s2 + 2ζωns+ ω2
n)
. (4.9)

Where the error between the reference velocity Vref and the vehicle velocity Vk is given as

ek = Vref − Vk + σ. (4.10)

The transfer function may be inverse Laplace Transformed to yield

...
V k+1 = −2ζωnV̈k − ω2

nV̇k + ek. (4.11)

Euler integrating gives

V̈k+1 = V̈k +
...
V k+1dt, (4.12)

which may be integrated once more to yield the longitudinal acceleration command

V̇k+1 = V̇k + V̈kdt. (4.13)

This is then used to calculate the new longitudinal velocity such that

Vxk+1 = Vxk + V̇xk+1dt. (4.14)
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Lastly, longitudinal velocity in the A matrix of the bicycle model is updated with Vxk+1.

A separate controller is used to drive the vehicle to a reference distance behind the lead

truck if the vehicle decides to merge into the platoon. In similar fashion as above, the merging

vehicle’s longitudinal dynamics are modeled as a second order transfer function of which an

integrator has been added to remove steady state error.

d(s)

e(s)
=

1

s(s2 + 2ζωns+ ω2
n)

(4.15)

Where ek is the error between the current distance from the lead, dk, and the reference distance

dref is given as

ek = dref − dk. (4.16)

dk is calculated as the longitudinal distance between the lead truck and the vehicle and is

given as

dk = YLeadTruck − Yvehicle. (4.17)

Applying the inverse Laplace Transform yields

...
d k+1 = −2ζωnd̈k − ω2

nḋk + ek. (4.18)

Which may be Euler Integrated twice to give

ḋk+1 = ḋk + d̈k+1dt. (4.19)

Given that

d̈k+1 = aLeadTruckk+1
− axk+1

, (4.20)

then (4.20) can rearranged and substituted into (4.19) to yield

Vxk+1 = Vxk + axk+1dt. (4.21)
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The longitudinal dynamics may be tuned with the parameters ζ and ωn which are the respective

damping ratio and the natural frequency of the system.

4.2.3 Pure Pursuit Controller

The ground vehicle is controlled along a two lane highway to either make a lane change

in between two platooning trucks moving at constant velocity or to pass the platoon. A Pure

Pursuit controller is used to provide lateral control for the vehicle. The controller can be defined

as

δ(t) = tan−1

(
2(lf+lr) sinα(t)

Ld

)
(4.22)

where Ld is the distance between the vehicle and the next waypoint, known as the look ahead

distance, and α(t) is the angle between the vehicle’s heading and the desired waypoint. The

pure pursuit controller drives the vehicle along a circular arc to its desired waypoint, which

it chooses using a set look-ahead distance Ld. This distance acts as a tuneable parameter with

shorter look-ahead distances providing quicker responses and longer distances providing slower

responses [69].

4.2.4 Radar

The Delphi radar on the follower truck has a wide span of 45 degrees with a range of 60

meters, and a narrow span of 15 degrees with a range of 120 meters. The radar has an update

frequency of 20 Hz. The radar is modeled in simulation using a 45 degree span with a range of

120 meters extending from the center of the follower truck. A vehicle is detected and tracked

once it first enters this region, and is tracked at a frequency of 20 Hz. The three measurement

outputs from the radar are azimuth, range, and range rate. These are determined as follows:

θ = atan2
(y
x

)
(4.23)

R =
√
y2 + x2 (4.24)
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Ṙ =
√
ẏ2 + ẋ2 (4.25)

where x and y are the vehicle position coordinates local to the follower truck. The radar outputs

are converted to global North and East coordinates to be used as features in the network input

and to determine a cut-in once the tracked vehicle crosses the lane line.

4.2.5 Monte Carlo Trajectory Generation

Monte Carlo runs are performed with randomized lateral and longitudinal control param-

eters between each simulated trajectory. The aim of this is to provide randomness and un-

predictability that may be roughly representative of driver behavior, or at least as difficult to

predict. The vehicle waypoints are given zero mean uniform white noise such that the controller

response may capture some disturbances and a steady state bias to represent drivers that may

have tendencies to drive within different fractions of the lane. The waypoints are also added to

a sinusoid with random magnitude and frequency such that the vehicle may sway from the left

lane into the right lane but may not run off the road.

The initial vehicle speed is uniformly randomized to be between

VTruck + 1 < Vcar < Vtruck + 17,mph. (4.26)

This allows the network to view more interesting behavior such as a vehicle slowing down

quickly to merge.

The Pure Pursuit initial look ahead distance is initialized randomly between

20 < Ldk=0 < 100,m. (4.27)

Look ahead distances of 20 meters provide aggressive cut-in behavior by driving the lateral

response to a settling time of roughly a second. On the other end of the spectrum, look ahead

distance of 100 meters provides a slower cut-in response with a settling time of roughly 5

seconds.
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To make the merge response more unpredictable, subsequent look ahead distances are

calculated as

Ldk+1 = Ldk + ρ sinωtk + σ. (4.28)

Where ρ and σ are given as

20 < ρ < 50,m, (4.29)

and

20 < σ < 50,m. (4.30)

ω is set to be

0 < ω < 0.5,
rad

s
. (4.31)

This can cause a slow merging vehicle to suddenly merge quickly, and vice-versa.

The longitudinal control transfer function parameters are randomized uniformly between

0.7 < ζ < 1.4, (4.32)

and

0.5 < ωn < 4,
rad

s
. (4.33)

This causes some longitudinal velocity responses to behave with quick response times, repre-

senting more aggressive drivers, or more slowly representing more conservative drivers.

The longitudinal velocity reference is added with a sinusoid of random magnitude and

frequency, as well as white noise given by

Vref k+1 = Vref k + ρ sinωtk + σ (4.34)

where

0 < ρ < 6,mph, (4.35)

and

0 < ω < 0.5,
rad

s
. (4.36)
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The random noise disturbance, σ, added to the velocity response is set as σ = 3m
s

. This

parameter allows the vehicle to remain close to a reference velocity but may waver about the

reference depending on the values of ζ and wn.

The positions of the vehicle are uniformly randomized between

YFollowerTruck − 40 < Ycar < YFollowerTruck − 250,m. (4.37)

If the passing vehicle decides to cut into the platoon, the reference longitudinal cut-in

position is set as a uniformly random distance behind the lead truck in order to mimic driver’s

differing preferences of following distance. The possible range of following distances is given

by

4 < YLeadTruck − Ycar < 12,m. (4.38)

4.2.6 Sample Trajectories

Sampled trajectories for the straight road simulation are presented below to demonstrate

the dynamics of passing and cut-in vehicles near the platoon. Whether a trajectory is a cut-in

or passing is randomly predetermined at the start of the simulation. If the simulation is of a

cut-in, the vehicle will begin to merge between the trucks once it has calculated that it can

merge without a collision. Presented in detail are one passing and one cut-in trajectory, then

1000 training trajectories are plotted together for comparison.

4.2.6.1 Passing Trajectory

A passing trajectory was sampled with a Look Ahead Distance of 90 meters and initial ve-

locity of 66.8 miles per hour and is shown in Figure 4.3. The waypoints are shown in black, the

vehicle trajectory is in red, and the lead and follower trucks are in green and blue respectively.

It can be seen from Figure 4.3 the effect of the 90 meter Look Ahead distance on the lateral

dynamics of the passing vehicle, as the vehicle captures the sine reference with roughly half π

of phase delay. This is useful in modeling drivers that may tend to sway back in forth in their

lane. The vehicle Steer Input and Heading can be viewed in Figure 4.4.
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Figure 4.3: Sample Passing Trajectory with Look Ahead Distance of 90 meters
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Figure 4.4: Heading for a Sample Passing Trajectory with Look Ahead Distance of 90 meters

Figure 4.4 shows the slight phase delay in heading that the vehicle undergoes that occurs

with a period of roughly 15 seconds. Figure 4.5 shows the longitudinal velocity of the passing

vehicle, which oscillates with a period of roughly 35 seconds with an amplitude of 2.2 miles

per hour.
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Figure 4.5: Longitudinal Velocity for a Sample Passing Trajectory with Look Ahead Distance
of 90 meters

Given the input to the network is 1.25 seconds or less, the random noise and sinusoids ap-

plied to the vehicle lateral and longitudinal responses significantly increase the needed learning

space for the designed network.
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4.2.6.2 Cut-in Trajectory

Figure 4.6 shows a sample cut-in trajectory with a look ahead distance of 50 meters. Like

the passing trajectory sampled above, the cut-in trajectory follows a sine reference with a ran-

dom amplitude, frequency, and bias. The waypoints snap to the left lane when the vehicle

decides to cut-in. For this sample, the cut-in decision is made at t = 23.14 seconds and the

subsequent cut-in occurs at t = 27.85 seconds, giving a time to cut in of 4.71 seconds.
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Figure 4.6: Sample Cut-in Trajectory with Look Ahead Distance of 50 meters
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Figure 4.7 shows the the steer angle input from the Pure Pursuit controller and the heading

response from the bicycle model. The heading to the next waypoint can be seen snapping

from 0 degrees to roughly -4.8 degrees when t = 23.14s, marking the moment when the vehicle

begins to track waypoints that are now in the right lane.
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Figure 4.7: Heading for a Sample Cut-in Trajectory with Look Ahead Distance of 50 meters

As shown in Figure 4.8 the vehicle brakes at t = 23.78 seconds in order to align itself

longitudinally behind the lead truck. This process occurs once the vehicle has determined it

can start braking without merging into the follower truck.
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Figure 4.8: Longitudinal Velocity for a Sample Cut-in Trajectory with Look Ahead Distance
of 50 meters

This sampled trajectory demonstrates the nonlinear and random varying behavior of gen-

erated cut-in trajectories that will make training the network non-trivial.
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4.2.6.3 Training Data

Running the simulation over 100 iterations yields the sample trajectories seen in Figure

4.9. The sample trajectories plotted are the north and east components calculated from the radar

measurements taken from the front of the follower truck, which points due north in the center

of the right lane. The passing modes are colored blue while the cut-in modes are colored red.
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Figure 4.9: 100 Sampled Trajectories of Straight and Merging Vehicles

Translating the sample trajectories to the same starting point gives a better view of the

training data set. This is shown in Figure 4.10.
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Figure 4.10: 100 Sampled Trajectories of Straight and Merging Vehicles Translated to the Same
Starting Point
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There were threee training sets in total: one consisting entirely of cut-ins, one consisting

of passings, and one evenly divided between both modes. For the first two sets simulations

were run until 5000 trajectories of each mode were generated. These sets were used to train the

cut-in and passing networks. The third training set of 2000 trajectories mixed equally between

both modes was generated to train the probability piece of the ensemble network. In addition

to the training set, comprised of 11000 trajectories in total, validation sets were generated to

test the progress of network training throughout training. The validation sets consisted roughly

of 1000 cut-ins, 1000 passings, and 1000 randomly mixed modes. Finally, a test set of 1000

trajectories, randomly generated evenly between cut-in trajectories and passing trajectories was

generated to test the performance of the trained network.

4.3 Neural Network Design

This section describes the algorithms and procedures used in the simplified implementa-

tion, divided into subsections describing the design of the Neural Network and the design of

the simulation used to generate training and testing trajectories.

4.3.1 Inputs and Outputs

The input to the network is the north and east position components of the tracked vehicle

as measured by the radar at each time step referenced to the navigation frame of the follower

truck. These inputs were chosen because they are sensor nonspecific, and can be used given

other methods of traffic agent position estimation. This leads to an input array shape of (batch

size, sequence length, features). The batch size is the number of sampled trajectories, sequence

length is the length of each trajectory, and the number of features is summed to two, where the

two features are the north and east positions of the tracked vehicle.

4.3.2 Data Augmentation

Before being fed into the network, the radar input is preprocessed to improve training.

The data is first differenced and then standardized about the mean and standard deviation of the
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differenced values. The differencing of the input data is given as

Xdiff =

∆N

∆E

 =

Nk

Ek

−
Nk−1

Ek−1

 . (4.39)

Then the data is standardized such that

Xtrain =
Xdiff − X̄diff

σXdiff

. (4.40)

Standardization is performed using means and standard deviations of a differenced sample

set of the training data and is performed for each feature independently. The standardization is

performed after differencing because the standardization will not be accurate if the data is not

yet stationary.

After training, the network output is converted back to Cartesian coordinates by destandard-

izing, using the same sampled mean and standard deviation for each feature, and then reverse

differencing using the original initial values of each segment.

4.3.3 Network Architecture

The network is comprised of an ensemble of two separately trained networks, one trained

to recognize cut-in behavior hereby known as the Cut-in Network, and the other trained to rec-

ognize passing behavior hereby known as the Passing Network. Each network in the ensemble

is comprised of an encoder-decoder structure, which divides the task of time series prediction

into two discrete tasks. The encoder network interprets the input data and derives objective

meaning from it in the form of a vector. The decoder observes the objective meaning of the

output vector from the encoder and infers predictions from it. The encoder and decoder are

both composed of two LSTM layers with 128 hidden units.

The network trajectory predictions are taken from the output of the respective final LSTM

layers in the Cut-in and Passing Networks. The probabilistic confidence values attached to

each trajectory output are generated by passing the respective outputs through another LSTM

layer to yield a single output array with two features, which is then passed through an MLP
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(dense) layer to remove the time dependency, and finally the output is passed through a Softmax

activation function so that the final output is two scalars with a sum equal to one. The entire

network architecture can be viewed in Figure 4.11. The network and custom loss functions

were coded using the Keras Functional API [19] with TensorFlow [53] as the back-end.
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Figure 4.11: Network Architecture

4.3.4 Network Training

The network is trained using Adam optimizer with a learning rate of 0.001, input se-

quence lengths of 25 neighboring vehicle position estimations over 1.25 seconds, output se-

quence lengths of 100 future neighboring vehicle positions over 5 seconds, and batch sizes of

1000 trajectory segments, each randomly sampled from a unique trajectory in the training set.
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Dropout of 0.5 was used in the final LSTM and dense layers of the Ensemble Network. The

entire Ensemble Network is trained in two steps. First, the Cut-in and Passing networks are

trained on data sets consisting solely of their respective vehicle behavior mode. In other words,

the Cut-in Network is trained and validated on cut-ins only, and the Passing Network is trained

and validated on passings only. These networks are trained using Mean Squared Error (MSE)

as the loss function. The second step in training was to train the probability outputs assigned to

the trajectories predicted by the trained Cut-in and Passing Networks.

4.3.5 Loss Function for Ensemble Probability Output

To train the network to predict probabilistic certainty values for each prediction mode, a

custom loss function was created that takes into account the two modal trajectory predictions as

well as the predicted probabilities. The network outputs from LSTM layers 1 and 4 as described

by Figure 4.11 are passed through an MSE distance loss given by (4.41).

LDistancej =
1

sl

sl∑
i=1

(ypredj,i − ytruei)
2 (4.41)

Where sl is the output sequence length, ypredj, i is the jth predicted trajectory at the ith

time instance and ytrue is the truth trajectory.

A slightly modified Cross-Entropy loss, given in (4.42), is applied to the probability out-

put corresponding to the prediction with the lowest distance loss to penalize low probabilities

attributed to winning trajectories.

LClassification = mask

[
−αlog(p)β

]
(4.42)

where

maskj =


1 if minimum index of LDistance = j

0 otherwise
(4.43)

This procedure drives the probability of the winning predicted trajectory to be closer to

one and the loser closer to zero. α and β are used as tuning parameters to aid in training.
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Increasing α punishes predicted probabilities of winning predicted trajectories that are further

from 1, encouraging the network to provide more confident predictions. Increasing β punishes

probabilities of winning trajectories that are close to zero, encouraging the network to provide

more conservative predictions, or predictions closer to the probability of a coin flip. The dis-

tance loss is then discarded and the classification loss is passed back through the network for

back propagation to train the probability outputs.

4.4 Results

The results of the network performance on a simulated test data set are presented below.

Several different metrics are used to measure performance of different pieces of the network. To

evaluate the accuracy of predicted trajectories, Root Mean Squared Error to the truth trajectory

is calculated at each time epoch. This is given in Section 4.4.1. The accuracy of the probabilities

attached to the trajectories are evaluated by plotting the Mode Probability Calibration, which

describes how well the predicted probabilities correspond to actual rate of occurrence. This,

as well as the overall Root Mean Squared Error performance of the Ensemble Network, is

presented in Section 4.4.1.3. In section 4.4.2 the root mean squared error of predicted time

until cut-ins were calculated for each test cut-in trajectory at each time step. A naive cut-in

detection algorithm is developed in Section 4.4.3 and results are compared between predictors.

Finally in section 4.4.4 plots of sampled predictions are presented.

4.4.1 Root Mean Squared Error

The network is tested on 1000 test trajectories comprised of 488 cut-ins and 512 passing

trajectories. The results are divided into sections regarding the Cut-in Network, the Passing

Network, and the Ensemble Network.

4.4.1.1 Cut-In Network

The network was tested on 488 test cut-in trajectories and compared to state based predic-

tors. The resulting average error and standard deviations over a prediction horizon of 5 seconds
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can be seen in Figure 4.12. The network begins to out-predict the other predictors at the 2 sec-

ond mark. This is likely due to the network’s ability to capture the entire lane change maneuver

in its predictions, whereas the other predictors are constrained to linear behavior.
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Figure 4.12: Cut-in Network Error on 488 test cut-in trajectories over 5 second prediction
horizon

As seen in Table 4.2, the LSTM network significantly outperforms the state-based pre-

dictors over the 5 second prediction horizon with a final mean distance to truth of less than 3

meters and an average RMSE close to 1.5 meters. The next best predictor was the Constant

Acceleration predictor which had an average final distance to truth of roughly 7 meters and an

average RMSE of 2.7 meters.
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Table 4.2: Cut-in Predictor Performance over 488 Test Trajectories

Predictor Performance for Cut-Ins Only

Predictor
Mean
RMSE (m)

RMSE Stan-
dard Devia-
tion (m)

Mean Error
at t = 5s (m)

Error Stan-
dard Devia-
tion at t = 5s
(m)

LSTM 1.496 1.590 2.842 3.261

Constant Ve-
locity

3.739 2.483 7.525 4.895

Constant
Accel.

2.914 2.307 7.079 5.587

Constant
Turn

3.268 2.711 8.007 6.675

4.4.1.2 Passing Network

The network was tested on 512 test passing trajectories and is compared to state based

predictors. The resulting average error and standard deviations over a prediction horizon of 5

seconds can be seen in Figure 4.13.
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Figure 4.13: Passing Network Error on 512 Test Passing trajectories over 5 second prediction
horizon
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The LSTM network under performs the state based predictors when predicting straight

driving behavior. This can be seen again in Table 4.3.

Table 4.3: Passing Predictor Performance over 512 Test Trajectories

Predictor Performance for Passing Only

Predictor
Mean
RMSE (m)

RMSE Stan-
dard Devia-
tion (m)

Mean Error
at t = 5s (m)

Error Stan-
dard Devia-
tion at t = 5s
(m)

LSTM 1.090 0.876 2.240 1.867

Constant Ve-
locity

0.902 0.949 1.930 2.019

Constant
Accel.

0.530 0.587 1.323 1.486

Constant
Turn

0.534 0.606 1.335 1.541

The under-performance of the LSTM in this case can likely be attributed to it over-fitting

to unmeaningful maneuvers that the vehicle may be making while passing the trucks. It is

worth noting that the overall performance of the Passing Network has better metrics than the

Cut-in Network with an average final distance to truth of 2.24 meters and an average RMSE

of 1.09 meters as opposed to the Cut-in Network performance of 2.85 meters and 1.5 meters

respectively. This suggests that within the constraints of the simplified model of perfectly

straight roads and scenarios with only one passing vehicle, the state-based predictors are likely

sufficient to predict future behavior of passing vehicles. However, as in the case of the cut-in

mode, added complexity to the model such as curved roads or added traffic may produce an

environment in which the LSTM may shine.

4.4.1.3 Ensemble Network

The Ensemble Network was tested on the entire test data set of 1000 trajectories. A mode

probability calibration chart, shown in Figure 4.14 was used to evaluate the performance of

the Ensemble Network probability predictions. The red line in Figure 4.14 corresponds to
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the likelihood of predicting the correct trajectory mode versus the network’s predicted mode

confidence probability. The dashed grey line along the diagonal indicates perfect calibration,

meaning that the predicted confidence probabilities match perfectly with their corresponding

likelihood of occurrence or accuracy. For example, in perfect calibration a predicted confidence

probability of 85 percent attached to a trajectory mode would correspond to an 85 percent

likelihood the predicted mode is correct.
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Figure 4.14: Mode Probability Calibration taken from 1000 Test Trajectories

As shown in Figure 4.14, the predicted mode probabilities are trained to be well calibrated,

but a little under-confident in the 60% to 70% bucket. Figure 4.15 shows the distribution of

predictions.
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Figure 4.15: Distribution of Predictions by Predicted Probability

The majority of predictions are between 50% and 60%, indicating that the predictions are

cautious. This is fine performance, given that the primary design goal of training the ensemble

network was to generate well calibrated predictions, even if it came at the cost of confident

predictions. In other words, the goal in this work was to ensure that if the network predicts

behavior with 95% confidence that it will be correct 95% of the time. In future design itera-

tions more care and attention should be given toward boosting the confidence of the network

predictions while maintaining good calibration.

Training the ensemble predictions necessitated adding the tuning parameters α and β in

the Cross Entropy Loss function designed in Section 4.3.5 in Equation 4.42. Tweaking these

parameters in the loss function during training allowed the trained distribution to be shaped in

the desired way, which in this work was to be as confident as possible while maintaining a close

to perfect calibration.

The correct mode prediction did not always coincide with the trajectory prediction with

the lowest RSME. This is indicated by the green line in Figure 4.14. Although better than a coin
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flip, a 95 percent confidence corresponds to only 61 percent likelihood the chosen trajectory

will have the lower RMSE. This is because the Cut-in Network may sometimes better predict

a passing trajectory and vice-versa, which causes the Ensemble Network RSME to be sub-

optimal. One solution to this could be to retrain the network without differencing. This way

the networks can better incorporate lane positions into predictions. It is seen in Figure 4.16 and

in Table 4.4, however, that the Ensemble Network still out performs the state-based predictors.
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Figure 4.16: Ensemble Network Error on 1000 Test Trajectories over 5 Second Prediction
Horizon

Figure 4.16 shows the network outperforms the state-based predictors in both average

RMSE and average final distance with lower variance.
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Table 4.4: Ensemble Predictor Performance over 1000 Test Trajectories

Predictor Performance for All Trajectories

Predictor
Mean
RMSE (m)

RMSE
Standard
Deviation
(m)

Mean Er-
ror at t = 5s
(m)

Error
Standard
Deviation
at t = 5s
(m)

LSTM 1.461 1.439 2.803 2.879

Constant
Velocity

2.331 2.393 4.655 4.667

Constant
Accel.

1.679 2.051 3.995 4.850

Constant
Turn

1.853 2.377 4.444 5.697

4.4.2 Predicted Time to Cut-in

Estimated time to cut-in was calculated for each predictor by propagating the predictions

forward and recording the time that the prediction crosses the lane line. The Root Mean Squared

Errors were taken from the estimated cut-in times for each predictor at each time step of pre-

diction. This is shown in Figure 4.17. Trajectories that cut in before the 1.25 seconds of data

needed to be run through the neural network is collected are padded with zeros and then fed

through the network anyway, generating sub-optimal predictions.
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Figure 4.17: RMSE of Predicted Time to Cut In over 241 Cut-in Trajectories
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From Figure 4.17 it appears that the network predictions under perform the state-based

predictions, especially once the time until cut-in is less than 1 second. This is due to the inac-

curacy in the outputs given by the network when it receives incomplete inputs. A solution to

this could be to train another network optimized for smaller input vectors, however the perfor-

mance of the CA and CTR predictors suggest that at best this would provide redundant results.

However, as the time horizon increases, the network begins to outperform other predictors.

This is shown in Figure 4.18.
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Figure 4.18: RMSE of Predicted Time to Cut In over 409 Cut-in Trajectories with a Minimum
1.25 Seconds Before Cut-in

Figure 4.18 shows that when functioning with trajectories of the full designed input sample

size of 1.25 seconds, the network predictions outperform the state-based predictors, particularly

between the range of 2 to 5 seconds. Within this time window, the LSTM predictors are able

to provide second-level accuracy of predicting cut-in times, being roughly twice as accurate as

the state-based predictors while having much lower variances. The LSTM predictors begin to
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under perform again around 6 seconds to cut-in, which is likely due to the LSTM predictors

only predicting over 5 second horizons. Given that the maximum time the LSTM predictors

are designed to predict is 5 seconds, the under performance after this horizon is expected.

Oddly, the Passing Network outperforms the Cut-in Predictor in predicting cut-in times

within this window as well. This could be due to the Passing Network being more patient with

cut-in predictions, as it has been trained to keep the vehicles within their lane. Given that the

cut-in trajectories are filtered to be instances in which the vehicles deliberate in the left lane

before merging, having more patience would increasingly benefit time to cut-in predictions as

the true time to cut-in increases. Conversely, the eagerness to predict cut-ins benefits the Cut-in

Predictor as the true time to cut-in decreases below 2 seconds. This implies that the modal

predictions are in fact working as intended, and that training the network to assign confidence

values to its predictions can lead to more accurate predictions overall.

Filtering the trajectories to only trajectories with at least 1.25 seconds of data, however,

cuts the sample size by about 80 percent. Of 2087 generated cut-in trajectories, only 409

trajectories were long enough for the network to operate to its full potential. One reason for

this is due to the narrowness of the radar span. Given that the radar on the follower truck can

only view vehicles within a span of 45 degrees in front of the truck, a vehicle has to be roughly

3.5 meters ahead of the follower truck longitudinally before it can be detected and tracked. As

such, cut-in vehicles may have very short trajectories before cutting into the platoon.

These results motivate several avenues for practical implementation. 1) Increasing the

vision range of the follower truck can provide more time for both the state-based predictors and

LSTM predictors to make earlier and more accurate predictions. 2) Given that the state-based

predictors perform best in short time horizons, and the LSTM over longer horizons, state-based

predictors can be used for the immediate case and then the prediction responsibilities can be

switched to the LSTM after a tracking time threshold between 1 to 2 seconds.

4.4.3 Cut-in Detection

A cut-in detection algorithm has been designed to signal to the truck platoon when a cut-in

is predicted to occur. The detection algorithm operates by first choosing the predicted trajectory
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from the ensemble model with the higher probability, then calculating if the predicted trajectory

crosses the Pure Pursuit lane line. If the prediction crosses into the lane of the platoon, the cut-

in detector signals a cut-in. A threshold is introduced to prevent chattering and decrease the

frequency of false positives (FP) such that a cut-in will not be signalled by the detector until

the predictor predicts enough cut-ins in succession to satisfy the set threshold.

To evaluate the detector, network and state-based predictions were run over a test set of

2350 trajectories of which 13% are cut-ins and 87% are passing. Like in Section 4.4.2, tra-

jectories were limited to those long enough to employ the network predictions. Cut-in signals

were recorded for each predictor at every time epoch in the tested trajectories. Similarly, the

truth mode is recorded at each time stamp using a horizon of 5 seconds into the future. If the

true trajectory cuts into the platoon within 5 seconds, the time epochs are labeled at cut-ins.

Otherwise they are labeled as passings. This is to reduce the reduction in performance due to

the unpredictable randomness of cut-ins that are beyond 5 seconds into the future.

The truth mode of each time stamp in the trajectory is compared to the predicted mode

signalled by the detector. Each signal yields either a false positive (FP), a false negative (FN),

a true positive (TP), or a true negative (TN). A true positive is recorded if the detector signals a

cut-in and the truth signal is a cut-in. Similarly a true negative is recorded if the detector signals

a pass and the truth is a pass. A false positive occurs if the detector signals a cut-in and the

truth is a pass, and a false negative occurs if the detector signals a pass but the truth is a cut-in.

Results for varying thresholds for each predictor are presented below in Tables 4.5 and 4.6.

The metrics used to evaluate the performance of the detector include Balanced Accuracy

(BACC), False Positive Rate (FPR), False Negative Rate (FNR), mean and standard deviation

of the time the detector signals a cut-in before the vehicle crosses the lane line. Balanced

Accuracy is the average between the True Positive Rate (TPR) and the True Negative Rate

(TNR). This is given in Equation 4.44.

BACC =
TPR + TNR

2
(4.44)
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where the True Positive Rate, TPR, is the ratio of correctly classified cut-in signals to all true

cut-in signals, and the True Negative Rate, TNR, is the ratio of correctly classified passing

signals to all true passing signals. These are given in equations 4.45 and 4.46 as

TPR =
TP

TP + FN
(4.45)

and

TNR =
TN

TN + FP
. (4.46)

where TP is the total number of true positive signals, TN is the total number of true negative

signals, FP is the total number of false positive signals, and FN is the total number of false

negative signals.

The False Positive Rate FPR, or false alarm rate, is given as the rate in which the detector

predicts a cut-in on a passing trajectory. This is given in equation 4.47.

FPR =
FP

FP + TN
(4.47)

The False Negative Rate FNR, or missed detections, are instances in which the detector

predicts a vehicle to pass the platoon when it is bound to cut into the platoon. This is given in

equation 4.48

FNR =
FN

FN + TP
(4.48)

The time until cut-in at detection is determined by calculating the time difference between

the first cut-in signal and the instance the vehicle crosses the lane line. The mean and standard

deviation are taken of the aggregate of times until cut-in since detection across all true positive

detections.

Table 4.5 below shows the detector performance given a truth horizon of 5 seconds and

thresholds ranging between 1, representing 0.02 seconds, to 50, representing 1 second.
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Table 4.5: Cut-in Detection Performance for Different Thresholds with 5 Second Horizon

Predictor Threshold

Balanced
Accuracy
(%)

FPR
(%)

FNR
(%)

Mean Time
until Cut-in at
Detection (s)

Standard Devi-
ation of Time
until Cut-in at
Detection (s)

1 90.34 3.88 15.44 4.40 1.40
10 89.88 2.96 17.28 4.04 1.37
20 89.04 2.70 19.23 3.47 1.32
30 87.97 2.50 21.57 2.94 1.24
40 86.90 2.33 23.86 2.46 1.11
50 85.42 2.39 26.77 1.95 1.00

CA

1 83.39 2.05 31.16 3.47 1.27
10 81.91 1.99 34.20 3.02 1.19
20 79.92 1.90 38.25 2.53 1.16
30 77.72 1.83 42.72 2.11 1.15
40 75.77 1.62 46.84 1.78 1.22
50 73.34 1.49 51.82 1.41 0.89

CV

1 90.33 3.86 15.48 4.38 1.38
10 89.87 2.93 17.34 4.02 1.36
20 89.02 2.67 19.28 3.46 1.30
30 87.95 2.48 21.63 2.93 1.23
40 86.88 2.32 23.93 2.45 1.11
50 85.40 2.38 26.83 1.95 1.00

CTR

1 87.61 7.06 17.71 4.29 1.98
10 87.10 6.37 19.44 3.98 2.13
20 86.38 6.04 21.19 3.36 2.12
30 85.50 6.29 22.72 2.88 2.10
40 84.45 8.35 22.76 2.47 2.65

LSTM

50 82.12 9.51 26.26 1.84 2.54
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In table 4.5 it can be seen that increasing the threshold tends to decrease the rate of false

positives or false alarms for each predictor, but increases the rate of false negatives or missed

detections. Intuitively, increasing the threshold also reduces the mean time until cut-in since

detection.

Overall the CA predictor performed best, with the CTR and LSTM predictors in second

and the CV predictor in last. The LSTM predictor had similar missed detection rates and mean

time until cut-in at detection to the CTR and CA predictors, but came up short on the Balanced

Accuracy score largely due to its under-performance in its rate in false alarms. This could

be due to the composition of the data set the network was trained on. The LSTM Ensemble

network was trained on a data set that was roughly comprised evenly between modes, whereas

in this test and in real testing the ratio is likely to be heavily skewed in favor of the passing

mode. This suggests that the LSTM has learned to expect cut-in behavior more often than it

should.

Given that the NCV model is the dynamic model currently being used by the truck platoon

in the tracking filter as described in section 5.3.3, running the CV predictor will likely be the

easiest to implement. Implementing the CA or CTR predictors instead requires replacing the

NCV dynamic model in the track filter with the NCA and NCS dynamic models as given in

sections 3.24 and 3.3.2.3. Given the noisy nature of radar measurements, it may be difficult to

implement the CA model due to the amplification of noise in range acceleration estimates, but

this has yet to be tested. For these reasons, the CV predictor is the recommended predictor for

immediate term cut-in detection implementation onto the platoon, but developing the CA and

CTR predictors for use in cut-in detection is also recommended. It is also worth noting that the

CV predictor comes with the lowest rates of false alarms, which however comes at the cost of

a higher rate of missed detections than the other predictors.

Table 4.6 below shows the same test performed with a 2 second truth horizon. In other

words, the ”truth” signal on cut-in trajectories is set to be a pass until 2 seconds before the

vehicle crosses the lane line.
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Table 4.6: Cut-in Detection Performance for Different Thresholds with 2 Second Search Hori-
zon

Predictor Threshold

Balanced
Accuracy
(%)

FPR
(%)

FNR
(%)

Mean Time
until Cut-in at
Detection (s)

Standard Devi-
ation of Time
until Cut-in at
Detection (s)

1 95.41 8.29 0.88 4.40 1.40
10 95.38 8.01 1.22 4.04 1.37
20 94.81 8.70 1.67 3.47 1.32
30 93.62 9.83 2.93 2.94 1.24

CA

1 96.20 5.04 2.57 3.47 1.27
10 95.66 5.39 3.29 3.02 1.19
20 94.78 5.94 4.50 2.53 1.16
30 93.21 6.81 6.77 2.11 1.15

CV

1 95.42 8.27 0.88 4.38 1.38
10 95.40 7.98 1.22 4.02 1.36
20 94.83 8.67 1.67 3.46 1.30
30 93.63 9.81 2.93 2.93 1.23

CTR

1 93.36 11.85 1.44 4.29 1.98
10 93.19 11.93 1.70 3.98 2.13
20 92.37 12.77 2.49 3.36 2.12

LSTM

30 90.85 14.73 3.57 2.88 2.10
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Once the horizon is reduced to 2 seconds, the rate of missed detections drops significantly

for all predictors. This is intuitive, as the predictors should perform better at accurately pre-

dicting cut-ins if the time frame is shorter. Perhaps unexpectedly, however, the rate of false

alarms rises across detectors. This is likely due to the mean time until cut-in since detection

being greater than 2 seconds for all predictors. This means the the predictor may be correctly

classifying a cut-in beyond 2 seconds out, but it is showing up as a false positive because the

truth signal isn’t set to ’cut-in’ yet.

It looks from these results that the LSTM is inferior to the state-based predictors. After all,

why train a sophisticated learning algorithm if a simple CV or CA model can do the job? There

are two answers to this. First, as is seen in Section 4.4.4, the LSTM has the ability to predict

the full dynamics of a lane change maneuver whereas the state-based predictors do not. This is

useful in that the learning algorithm may theoretically perform better in a more dynamic setting

with more modal behavior, such as introducing more lanes and off ramps. Additionally, as in

[21], deep neural networks can take advantage of additional information such as road maps

and visual indicators such as detecting blinkers [80], although this additional information is not

used in this implementation.

Second, keeping in mind the Active Learning Pipleine outlined in section 2.2.5, this LSTM

design is just a first pass design and there are potentially many other network architectures,

network experience sets, and performance measures that may result in a better performing

network. In other words, the LSTM has room to improve from here, whereas the performance

of the state-based predictors is fixed. This goes without saying the performance of the state-

based predictors is surprisingly good, and that they are significantly easier to implement and

understand than an LSTM model. The result in real world implementation could be to start by

using the state-based predictors, and if improvement in prediction is desired a network can be

designed to fit the job.

4.4.4 Sampled Predictions

This section gives a look at several simulation results. Figure 4.19 shows a sample cut-

in trajectory and its predictions. It can be seen that while the state-based predictors capture
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the vehicle crossing the lane, they also predict the vehicle running off the road. The LSTM

predictions, however, predict the rest of the lane change maneuver.
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Figure 4.19: Sample Cut-in Mode Trajectory Prediction with 5 Second Horizon

Table 4.7 shows the performance metrics of the predictions in Figure 4.19. It can be

seen that the network correctly predicts the behavior to be a cut-in. Additionally, the cut-in

prediction has a final distance to the truth of less than a meter after the 5 second prediction

horizon.

It is also interesting that the Passing Network captures the typical cut-in behavior without

being trained to predict cut-ins. This is likely due to the training trajectories always being

oriented north, so the network learns to steer trajectories to head north. This property could

be useful when implementing the LSTM predictions on empirical data in Chapter 5, as all

empirical trajectories can be rotated to be oriented in the same cardinal direction, acting to give

the LSTM an indication of where the road is headed.
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Table 4.7: Sample Cut-in Mode Prediction Performance

Predictor Performance

Predictor Probability RMSE (m)
Error at t =
5s (m)

Cut-in Net-
work

0.628 7.524 0.612

Passing
Network

0.372 15.52 1.243

Constant
Velocity

– 67.29 13.52

Constant
Accel.

– 66.43 15.93

Constant
Turn

– 73.80 17.89

Figure 4.20 shows a sample passing trajectory and its predictions, and Table 4.8 shows

the corresponding performance metrics. Although the state-based predictors have lower RMSE

and final distance values, they run the vehicle off the road.

The Ensemble Network correctly chose the passing mode prediction, which has a final

distance to the truth of 2 meters after the 5 second prediction horizon and ends with the vehicle

remaining on the road. The passing mode also ends with the correct heading, indicating that it

may be a more useful prediction than those provided by the state-based predictors even if it has

a higher RMSE.
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Figure 4.20: Sample Passing Mode Trajectory Prediction with 5 Second Horizon
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Table 4.8: Sample Passing Mode Prediction Performance

Predictor Performance

Predictor Probability RMSE (m)
Error at t =
5s (m)

Cut-in Net-
work

0.105 25.93 5.89

Passing
Network

0.894 9.54 2.024

Constant
Velocity

– 2.153 0.517

Constant
Accel.

– 3.488 0.837

Constant
Turn

– 3.487 0.837

4.5 Conclusion and Discussion

This work has demonstrated the viability of using deep learning methods to predict behav-

ior of vehicles around truck platoons in a simplified approach. The LSTM method successfully

predicts the behavior of cut-in vehicles and is able to accurately assign probabilities between

modes. The resulting Ensemble Model predicts future vehicle behavior with a mean RMSE

of 1.461 meters with a standard deviation of 1.439 meters. A cut-in detector was designed

and tested over several thousand test trajectories using each predictor. The state-based models

overall outperformed the network, although the network has room to improve performance in

subsequent design passes.

The Ensemble network was particularly good at predicting the behavior of cut-in trajec-

tories, outperforming the state-based predictions as shown in 4.12. It struggled to beat the

state-based predictors at predicting passing trajectories, leading to mixed RMSE results. This

is certainly an area of needed improvement for the network, as it will lead to better results in the

cut-in detection algorithm. The Ensemble was successfully trained to predict which predicted

89



trajectory was more likely to occur in a well calibrated fashion, however it remained very cau-

tious with most of its probability predictions ranging between 50 and 60 percent. Therefore

another area of significant improvement for the network going forward would be to better train

the network to maintain good calibration while making higher confident predictions. Improv-

ing both of these weak areas in the network may lead to out performance in cut-in detection in

future iterations.

Additional improvements to the network in future passes can come in the design of the

experience distribution. It may be desirable to adapt the simulation to a high fidelity environ-

ment like CARLA in which network performance can be trained and tested in a more complex

environment. Collecting a real data set of trajectories of vehicles next to the platoon in highway

settings such as is done in Chapter 5 would also be useful to provide training and test sets in

future iterations.

Beyond the LSTM Ensemble network, the state-based models have been shown to provide

good predictions, especially in the short term. These models are also significantly easier to

implement than the LSTM network, making them the recommended first prediction models to

try for cut-in detection on the real truck platoon. If better performance is desired, a sophisticated

network such as the one herein can then be designed.
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5

Experimental Validation of Simulation Trained Neural Network

5.1 Introduction

This chapter aims to build off of the results given in Chapter 4 by adapting the LSTM and

state based predictors to an empirical data set collected on the Auburn truck platoon. First,

a description of the data collection hardware setup will be provided. Then, the processes of

Detection and Tracking of neighboring vehicles will be discussed. Next, the filtered data set

will be shown and described. Lastly the network implementation will be detailed and results

will be given.

5.2 Data Collection

The data collected for this study came from runs of the Auburn Truck Platoon along inter-

state 85 near Auburn, Alabama. During this span of highway, the road has two lanes on each

side, separated by a wide median, with a speed limit of 70 miles per hour and a nominal lane

width of 3.6 meters.

5.2.1 Truck Platoon Setup

The platoon, comprised of two Peterbilt 579 and two military Freighliner M915 trucks,

can be seen in Figure 5.1. These trucks are equipped with software developed by Auburn Uni-

versity to allow for autonomous longitudinal control capabilities on each truck. The software

was written in Python and C++ and implemented on the trucks with the Robotic Operating Sys-

tem (ROS). The trucks employ a sensor suite including Novatel GPS, Dedicated Short Range
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Communication (DSRC) Radios, Delphi ESR Radar, and a Nuvo-509GC computer. The DSRC

Radios provide communication between trucks, relaying GPS pseudorange and carrier phase

measurements, and the truck’s states including velocity, acceleration, and brake status. The

Delphi radars on the follower trucks have a wide span of 45 degrees with a range of 60 meters,

a narrow span of 15 degrees with a range of 120 meters, and an update frequency of 20 Hz [77]

[23].

Figure 5.1: Auburn University Truck Platoon

Together, the range measurements from the radar on the follower trucks and the GPS posi-

tioning gathered on the lead trucks are used to estimate a relative position vector between each

follower and lead in the platoon. This relative position vector is updated with measurements

from Dynamic Base Real Time Kinematic positioning (DRTK), which uses differential GPS

positioning between truck receivers to provide cm level relative positioning accuracy between

trucks without a base station [74]. DRTK operates at a frequency of 2 Hz. In between DRTK

measurements, the relative position vector estimate is updated with the radar range measure-

ments taken at 20 Hz.

5.3 Detection and Tracking of Neighboring Vehicles

The detection and tracking of neighboring vehicles was developed and written by Dan

Pierce but has not yet been documented, thus this section will take the liberty of describing
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his work. The neighboring vehicle detection and tracking solution uses radar returns as well

as DTRK provided solutions of relative positioning to the lead truck. Given knowledge of the

relative position of the lead truck, lanes can be drawn using Pure Pursuit between the follower

and lead truck. These lanes serve to filter radar points of interest, which are then clustered

before being tracked via a NCV Kalman Filter. These methods will be further described below.

5.3.1 Pure Pursuit Lane Drawing

The existing lane estimation solution employs a Pure Pursuit model to estimate the road

curvature between the lead and follower truck. This solution assumes the trucks are within the

same lane, that the follower and lead trucks are at or near the center of the lane, and that the

trucks are close enough to one another such that the road space between them only curves in one

direction. Violating these assumptions may causes the Pure Pursuit lane drawing solution to

inaccurately estimate lane boundaries [77]. In future work, finding more robust lane estimation

solutions is certainly a must; however, this solution works well for the highway runs used in

this study.

For a given range, R, and azimuth, θ, estimate of the lead truck from the follower truck,

the relative position vector is calculated to be

y
x

 = R

cos(θ)
sin(θ)

 . (5.1)

Where y and x are the cartesian components of the relative position vector. The path curvature

C between the trucks is then calculated as

C =
2y

x2 + y2
(5.2)

This curvature forms the estimate of the center of the lane between the follower and lead

truck. This estimate is used to constrain radar returns to the road as is shown in Section 5.3.2.
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5.3.2 Road Constraining

To constrain radar returns to the road, the relative position of the tracked points are pro-

jected to a circle, using the estimated road curvature calculated above. This is given such that

x′
y′

 =
C−1√

y2 + (x− C−1)2

 y

x− C−1

+

 0

C−1

 , (5.3)

and xpath
ypath

 =

 y′

x− x′

 . (5.4)

The resulting xpath and ypath are the coordinates of the tracked radar returns with respect

to the circular lane path drawn by Pure Pursuit. xpath is the longitudinal distance the tracked

return along the lane path, and ypath is the lateral distance of the tracked return from the lane

path. These tracks are constrained such that xpath is less than the distance of the nose of the

leader truck and ypath is within 3
2

lane widths from the path. Tracks that do not satisfy these

constraints are thrown out, while the surviving tracks are then clustered into a single point per

vehicle.

5.3.3 Kalman Filtering

Filtered track measurements from the radar are fed into a Nearly Constant Velocity Kalman

Filter with continuous Wiener process noise. The Kalman Filter and Covariance Matrix are

given as


rk+1

ṙk+1

θk+1


︸ ︷︷ ︸
xk+1

=


1 dt 0

0 1 0

0 0 1


︸ ︷︷ ︸

Ak


rk

ṙk

θk


︸ ︷︷ ︸
xk

+

 1
2
√

3
dt3/2 1

2
dt3/2

0
√
dt


︸ ︷︷ ︸

Bk

vk (5.5)
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Where r and ṙ are estimates of range and range rate, and θ is the estimated azimuth angle

between the follower truck and the tracked vehicle.

Qk =


q̃1 0 0

0 q̃1 0

0 0 q̃2

 (5.6)

where q̃1 is the variance of the range acceleration given by the radar, and q̃2 is the square of the

variance of the bearing rate. These are set such that

q̃1 = σ2
RangeAcceleration = 0.25m

s2

q̃2 = σ2
BearingRate = 0.1 rad

s

(5.7)

The process noise covariance matrix for the system can be given as

BkQkB
T
k =


1
3
dt3k

1
2
dt2k 0

1
2
dt2k dt 0

0 0 dt



q̃1 0 0

0 q̃1 0

0 0 q̃2

 (5.8)

This model is run through the Kalman Filter given by Equation 3.28 at a frequency of 20 Hz

to provide NCV Filtered range, range rate, and bearing for each neighboring vehicle. Once

measurements are no longer received for a tracked vehicle, it is removed from the stack of

tracked vehicles.

5.4 Data set

Usually the truck platoon takes place on the NCAT test track in a closed environment, but

sometimes runs are recorded on public highways. As stated earlier, the data collected for this

study was taken from platoon runs on interstate 85 near Auburn, Alabama. A map of a data

collection run is shown in Figure 5.2.

95



Turn
Around

Finish

Start

Figure 5.2: GPS Track of Data Collection Run along Interstate 85

5.4.1 Trajectory Visualization

As described above, radar returns on the follower truck were filtered for points that are

dynamic and constrained within the “road” drawn by Pure Pursuit. Points satisfying these con-

straints were filtered through a Kalman Filter using a Nearly Constant Velocity and continuous

Weiner process noise model. After removing tracks that are shorter than 2.5 seconds, the result-

ing positions of neighboring vehicles are shown in Figure 5.3 in the road frame. The trajectories

are divided into cut-in and passing trajectories where cut-in trajectories are determined as tracks

that crossed the Pure Pursuit lane boundary.
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Figure 5.3: Tracked vehicle trajectories from the 10/01/2019 interstate 85 run using the NCV
Filter
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From Figure 5.3 it can be seen that passing trajectories tend to be around 4 meters to the

left of the follower truck. Two vehicles merging off the highway is also observed, as there are

two trajectories of which drivers merged into the right lane in between the truck platoon before

merging into a right hand exit lane. The trajectories resemble those plotted in 4.10 but with

noise added.

5.4.2 Cut-in Trajectories

There were six observed cut-ins, with a minimum time until cut-in of 1.800 seconds and

a maximum time until cut-in of 5.5 seconds. The mean and standard deviation were 3.753

seconds and 1.950 seconds respectively. This suggests the network designed in Chapter 4 with

an input of 1.25 seconds and output of 5 seconds may be suitable to model cut-ins, as the

minimum cut-in time observed is greater than the network input time by 0.55 seconds.

Table 5.1: Estimated Times until Cut-in

Time Until Cut-in

Cut-in 1 2.1328 (s) Cut-in 4 7.204 (s)

Cut-in 2 2.7365 (s) Cut-in 5 1.800 (s)

Cut-in 3 3.1425 (s) Cut-in 6 5.504 (s)

Mean 3.753 (s)
Standard
Deviation 1.950 (s)

5.5 Network Results

The ensemble network performance was tested on the empirical data obtained from the

truck platoon by comparing predicted trajectories from the LSTM and CV predictors to actual

behavior. Running the network trained and tested in Chapter 4 on a cut-in trajectory shown in

Figure 5.3 gives promising results. A sequence of predictions across a single cut-in are given

in Figure 5.4.
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(a) t = 2.45s (b) t = 3.15s

(c) t = 3.95s (d) t = 6.65s

Figure 5.4: Network Predictions on a Cut-in Trajectory at Different Time Epochs
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Figure 5.4 shows the network predictions on an observed cut-in trajectory. The blue line

represents the Kalman Filtered estimates of the vehicle’s positions in the road frame. The

network begins predicting after observing 1.25 seconds of position estimates, and predictions

are shown at various time stamps since the vehicle was tracked.

Figure 5.4a shows the network predictions after the vehicle has been tracked for 2.45

seconds. Despite the short term trend guiding the CV predictor off the road, the network is able

to predict from the previous time steps that the vehicle is going to continue along the road. In

Figure 5.4b, the network sees an additional 0.6 seconds of data and sees the shift in velocity

trend of the neighboring vehicle. The Cut-in predictor responds by beginning to predict cut-in

behavior, and, oddly, the passing predictor predicts the vehicle to continue on a straight path.

This could potentially be due to the network being confused by observing noise it hasn’t seen

before.

Figure 5.4c shows predictions closer to what is expected from the predictors. The cut-in

network predicts the cut-in behavior rather accurately, while the passing predictor attempts to

turn the vehicle back into its lane. Finally, Figure 5.4d shows the predictor performance as the

vehicle completes its merging maneuver. It is shown that the Cut-in predictor recognizes the

cut-in maneuver is almost complete and predicts that the vehicle will head north along the road

again. In this plot it appears the cut-in and passing predictions both predict the vehicle to travel

further than it actually does, but in this case the vehicle track ended sooner than the 5 second

prediction horizon, probably due to the vehicle leaving radar range.

5.6 Conclusion and Discussion

This chapter has demonstrated that the principles discussed and applied in Chapters 2

through 4 can be applied to real vehicle trajectories surrounding the truck platoon. Rotating

each trajectory into the Normal-Tangent frame about the Pure Pursuit lane line yields trajecto-

ries that are generally confined to two straight lanes, as seen in Figure 5.3. This rotation allows

the network and state-based predictors to observe two degrees of freedom for the vehicle, dis-

tance along the Pure Pursuit track and distance radially from it, making predictions easier. The
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network was run on the data set of real trajectories and was able to recognize and predict cut-

in behavior, suggesting that the network is able to learn from ideal experiences designed in

Chapter 4 to potentially predict real traffic behavior.

There are many improvements to be made to the network predictions. First, the robustness

of predictions can be improved. This can come from two avenues: first the simulation environ-

ment can be improved to better approximate the distribution of vehicle trajectories observed on

the truck platoon, or better, a cohesive data base of neighboring vehicle radar returns can be

gathered from current and future runs of the truck platoon to form a training and test set that

can be used to retrain the network. Additionally, the track filters used to estimate the vehicle

positions can be extended to predictors, and thus the state-based predictors can be tested on the

empirical set in the same manner as was done in Chapter 4.
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6

Conclusions

6.1 Summary

Chapter 2 introduced the overarching concepts in Machine Learning and honed in on prin-

ciples in Deep Learning, a subset of Machine Learning in which neural networks are stacked

with many layers. The Universal Approximation Theorem and the idea of “No Free Lunch”

were introduced in section 2.2.4. In this theorem lies the key to Machine Learning success.

First is to know what task is needed to be performed. Many potential tasks were outlined in

the chapter, with the tasks herein to 1) predict future positions using regression, and 2) clas-

sify which prediction was most likely to be correct using classification. Second is to choose

a machine learning algorithm well suited for the problem at hand. This thesis chose to use an

LSTM to perform these tasks due to its success in prediction sequences such as handwriting,

basketball shot trajectories, and image captioning. Third is to design relevant experiences for

the network to observe, which is further described in Chapter 4. These steps, coupled with test-

ing and validation of the network to identify areas needing improvement formulates one pass of

the Active Learning Pipeline, as described in Section 2.2.5. As a whole, this thesis represents

one pass of Active Learning Pipeline, and therefore aims to lend plenty of insight into future

passes.

Chapter 3 introduces the field of Time Series Forecasting, particularly how it pertains to

the prediction of neighboring vehicles around a truck platoon. Several different methods of
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predicting vehicle positions are presented including state-based and stochastic methods, goal-

based methods, and machine learning methods. Within the state-based methods are the Con-

stant Velocity, Constant Acceleration, and Constant Turn Radius predictors. These predictors

served as the base-line for results in Chapter 3, and also formulate dynamics models for com-

mon stochastic track models as is described in section 3.3. Several controllers for goal-based

predictors were presented, and then related work of other machine learning algorithms used in

Time Series Forecasting applications was presented. Practical considerations for LSTM imple-

mentation were then discussed, with careful attention to the process of choosing features and

preprocessing procedures for training data.

Chapter 4 details the modeling and simulation of neighboring vehicles around a moving

truck platoon, and provides network prediction results in the simulated environment. A neigh-

boring vehicle was simulated using a bicycle model for lateral dynamics and a second order

transfer function was used to approximated longitudinal dynamics. A pure pursuit controller

was used to steer the vehicle in between the truck platoon for cut-in vehicles. A Monte Carlo

trajectory generation process was used to generate training, validation, and test trajectories to

the network to process. Among the varied parameters were longitudinal velocity, reference

distance behind the lead truck for the merging vehicle, lateral biases inside the lane, noisiness

of the reference waypoints and reference longitudinal velocities, look ahead distance of the

Pure Pursuit Controller, and starting position of the neighboring vehicle. The results of the

trained network show that the network is particularly good at predicting cut-in behavior over

the state-based benchmark predictors. The passing predictor performance on passing trajecto-

ries appeared to lag that of the state-based methods, although its average distance to the final

end point of test trajectories after the 5 second prediction horizon was less than 3 meters. In-

corporating the performance of both predictors by using the trajectory of highest confidence

as rated by the ensemble network, the ensemble network tended to outperform the state-based

predictors, especially after horizons of 3.5 seconds. The results of using the ensemble network

to predict time until cut-in showed that the state-based predictors did really well at predicting

cut-in times for time until cut-ins of up to 1 second, however, after that horizon the network

outperformed, predicting times till cut-in with an average of 2 seconds error at 5 seconds until
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cut-in. A cut-in detection algorithm was designed which used the prediction models to predict

if a cut-in would occur and when. The performance of the detector was measured for each pre-

dictor by determining the balanced accuracy, rate of false alarms, and rate of missed detections.

The state based predictors performed the best, although the LSTM Ensemble Predictor wasn’t

far behind.

Chapter 5 details the collection and processing of data from the Auburn truck platoon.

The truck platoon was driven for a couple hours on a round trip trajectory on i85 near Auburn,

Alabama. Within the radar data collected was roughly 50 passing trajectories and 6 cut-in tra-

jectories. The radar points were static-dynamic filtered, rotated into the road frame as estimated

by the curvature between the two trucks, and discriminated based off whether they were on the

estimated road or not. Points that survived were clustered and Kalman Filtered using a Nearly

Constant Velocity model. These filtered tracks were used as test trajectories to demonstrate the

viability of the network designed in Chapter 4. Results show that the network is able to identify

and predict cut-in behavior, and that although improved models can likely improve network

behavior, collecting roughly 1000 cut-in trajectories in total should allow for good training

generalization.

6.2 Conclusion

A framework for the use of Long-Short Term Memory Networks in the prediction of cut-

ins for the Auburn Truck Platoon was presented. The results suggest that the network is able to

predict trajectories of cut-in vehicles much more accurately than current state-based predictors

can. Results also show that the network is successful in predicting the trajectory output with

the lowest root mean squared error with predicted probabilities corresponding to the correct

probability of occurrence. A cut-in detection algorithm was designed using the various predic-

tors and found that the state-based predictors perform well. With a truth horizon of 5 seconds,

the LSTM predictor had a balanced accuracy of 87.61 percent. This was an improvement over

the constant velocity predictor which had a balanced accuracy of 83.39 percent. However,

the constant acceleration and constant turn radius predictors performed the best with balanced

accuracies of 90.34 percent and 90.33 percent respectively.
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Given the comparable performance of the LSTM to the state-based predictors and con-

sidering the large difference in ease of implementation between the state-based and LSTM

predictors, it is therefore recommended that the state-based predictors be used first for real im-

plementation, then a network can be design and implemented if better performance is needed. It

is recommended that the constant velocity predictor be implemented first, for two main reasons.

First, it is currently the model used in the track filter working on the truck platoon for cut-in

detection, so it will be the easiest to implement. Second, the CV predictor should perform bet-

ter than the CA and CTR predictors with noisy radar returns, since the CA and CTR predictors

require noisy range solutions be derived twice, they may suffer in accuracy due to noisy range

acceleration estimates. Nonetheless, the CA and CTR predictors worked better than the CV

predictor over longer prediction horizons, so their implementation is worth exploring. Addi-

tionally, the CV predictor performed the best overall within the 2 second truth horizon with

a balanced accuracy of 96.2 percent. Therefore it may be useful to design a detection system

that implements several different models, weighting them based on their accuracy at different

prediction horizons.

Ultimately, this thesis recommends exploring the state-based methods for real implemen-

tation on the truck platoon first and foremost. During this implementation, a data set of vehicle

trajectories may continually be gathered that eventually may serve as a fertile ground for testing

machine learning implementations. Once this point is reached, this thesis recommends contin-

uing the multi-modal trajectory prediction method, as it has been shown that an LSTM is able

to accurately predict trajectories in a multi-modal fashion, leading to better overall predictions.

6.3 Future Work

The work performed in this thesis provides fertile ground for future work. Some areas for

future work are presented below.

• Improve upon the simulation designed in Chapter 4. This could mean moving to a higher

fidelity simulation such as Anvel or CarSim, or improving the Monte Carlo Simulations

to incorporate varying vehicle parameters or to simulate scenarios with more than one
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neighboring vehicle. Additionally, the Monte Carlo distributions in this thesis used uni-

form distributions for all varying parameters. It may be more accurate to change some

of these distributions to normal distributions. For example, in the simulation in this the-

sis the lateral bias from the center of the lane was uniform. This means that simulated

vehicles were as likely to drive within the center of the lane as on the edges of the lane.

Switching this to a normal distribution would mean the majority of vehicles drive near

the center of the lane.

• Incorporate the abilities of CNNs like they are used in [21] to model interactions between

traffic agents. This could improve predictions if the networks are able to understand

interactions between vehicles neighboring the truck platoon. For example, the network

could learn not to predict a neighboring vehicle to merge into a vehicle already in between

the platoon.

• Expand the network experiences beyond that of a two lane highway. Trucks travel on

many different types of highways. This thesis focused on predictions on traffic behavior

on a two lane interstate with a speed limit of 70 miles per hour. Future work can expand

the experience distributions to include highways with more than two lanes, include ve-

hicles merging into the platoon and then off an off ramp, and roads with different speed

limits.

• Explore the use of other models for the tracking of neighboring vehicles. Currently used

is the Nearly Constant Velocity Model but other Models such as the Nearly Constant

Acceleration Model could be used as well. One issue with the NCA model, however, is

the need for an accurate estimate of range acceleration. Given the noisy nature of radar

measurements, deriving noise twice can lead to erroneous estimates.

• Use other sensors in the position solution. This could be lidar or camera. Sensor fusion

of lidar and/or camera with radar could lead to much more robust tracking and prediction

solutions of neighboring vehicles. This could manifest in better positioning as well as

gathering signals such as blinkers and brake lights from vehicles.
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• Add additional radars to the sides of the follower trucks. Additional radar facing forward

on the sides of the follower trucks can provide earlier vehicle detection, allowing net-

works to begin observing data sooner. This would allow them to make predictions more

robustly, as one of the failure modes of the current design is that the network doesn’t

have enough time to observe a full input trajectory if the vehicle cuts in too quickly.

• Gather a large training set of cut-in vehicles. This could come gradually over time from

various highway tests the truck team does. Given diligent recording of bag files through

ROS, someone could go back through each test and segment the individual trajectories

into passing and cut-in trajectories. Code from this work can easily be recycled to do this

and can provide a starting point for more studies involving all methods under the sun that

could potentially be used to solve this problem.

• Implement the CV and CA predictors on data collected from the truck platoon and per-

form a cut-in detection analysis similar to that performed in Section 4.4.3. Performing

this first will avoid much of the development time involved with getting prediction net-

works to work, and will give a solid baseline of which future designed networks can

compete against.

• Design a more robust lane line estimate. Ward et. al in [77] show the feeble nature of

the current solution. While it works well on the data collected in Chapter 5, it breaks

down when the trucks aren’t in the center of the lane, are in different lanes, or if the road

curves in more than one direction in between the trucks. One potential aid to this could

be to place cameras on the back of the lead truck and the front of the follower to estimate

where the trucks are in their respective lane, as well as the width of the lane.

• Explore goal based prediction methods. A nominal lane change model can be designed

for each modal behavior. This could include a model to keep the vehicle straight on the

lane, a model to merge right, merge left, or to exit an off ramp. A network can be reading

the past positional behavior as well as additional information such as neighboring vehicle

positions and off ramp locations and output a probability of occurrence attached to each
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model similar to the functionality of the Ensemble Network designed in Section 4.4.1.3.

A recent work that explored this method similar to this approach can be found in [65].
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Appendix A

Vanilla RNN Backward Propagation

The derived equations for back propagation through an RNN are written out below.
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Figure A.1: Diagram of RNN Forward Propagation
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Appendix B

LSTM Backward Propagation

The derivation for LSTM Back-Propagation is given below.
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